
 
 

Delft University of Technology

Why and How JavaScript Developers Use Linters

Tómasdóttir, Kristín Fjóla; Finavaro Aniche, Mauricio; van Deursen, Arie

DOI
10.1109/ASE.2017.8115668
Publication date
2017
Document Version
Accepted author manuscript
Published in
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering. ASE'17

Citation (APA)
Tómasdóttir, K. F., Finavaro Aniche, M., & van Deursen, A. (2017). Why and How JavaScript Developers
Use Linters. In G. Rosu, M. Di Penta, & T. N. Nguyen (Eds.), Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. ASE'17 (pp. 578-589). IEEE.
https://doi.org/10.1109/ASE.2017.8115668
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ASE.2017.8115668
https://doi.org/10.1109/ASE.2017.8115668


Why and How JavaScript Developers Use Linters
Kristı́n Fjóla Tómasdóttir, Maurı́cio Aniche, Arie van Deursen

Delft University of Technology - The Netherlands
k.f.tomasdottir@student.tudelft.nl, {m.f.aniche, arie.vandeursen}@tudelft.nl

Abstract—Automatic static analysis tools help developers to
automatically spot code issues in their software. They can be of
extreme value in languages with dynamic characteristics, such
as JavaScript, where developers can easily introduce mistakes
which can go unnoticed for a long time, e.g. a simple syntactic
or spelling mistake. Although research has already shown how
developers perceive such tools for strongly-typed languages such
as Java, little is known about their perceptions when it comes to
dynamic languages. In this paper, we investigate what motivates
and how developers make use of such tools in JavaScript projects.
To that goal, we apply a qualitative research method to conduct
and analyze a series of 15 interviews with developers responsible
for the linter configuration in reputable OSS JavaScript projects
that apply the most commonly used linter, ESLint. The results
describe the benefits that developers obtain when using ESLint,
the different ways one can configure the tool and prioritize
its rules, and the existing challenges in applying linters in the
real world. These results have direct implications for developers,
tool makers, and researchers, such as tool improvements, and a
research agenda that aims to increase our knowledge about the
usefulness of such analyzers.

I. INTRODUCTION

Automatic static analysis tools (ASATs) are used to auto-
matically examine code and look for defects or any issues
related to best practices or code style. These tools aid in find-
ing issues and refactoring opportunities early in the software
development process, when they require less effort and are
cheaper to fix [1], [2]. Therefore, ASATs have become com-
monly used by software development teams, and particularly
in JavaScript projects [3].

JavaScript indeed has become a very popular language
in the last years and in fact has been the most commonly
used language on GitHub since 2013 [4]. One of its most
remarkable characteristics is its dynamicity. As an example,
the language allows for generating new code during runtime
execution and for dynamic typing where variables do not
need to be declared before they are used. Partly due to its
dynamic nature, the language is considered to be error-prone
where it can e.g. be easy to introduce unexpected program
behavior with simple syntactic or spelling mistakes, which can
go unnoticed for a long time [5], [6], [7]. A linter is a a type
of tool that performs static analysis of source code, which
can be especially useful for JavaScript to detect these types of
mistakes.

Several studies have focused on static analysis in JavaScript
since ASATs have different kinds of requirements for dynamic
languages than for static languages [8], [9], [10]. Others
have studied how developers use general ASATs and how
they perceive them [11], [12], [13], [3]. It is important for

both researchers and industrial tool makers to know how
developers use these tools to provide the appropriate context
and requirements for future development and research. Until
now, no studies have concentrated on how developers perceive
ASATs specifically for a dynamic language such as JavaScript.
As JavaScript is very different from other commonly studied
programming languages, such as Java, we expect different
motivation and behavior from developers.

In this study, we aimed at understanding how and why
developers use linters in real world applications, where we
examine the usage of ESLint [14], the most commonly used
linter for JavaScript1. We investigate the benefits of using such
a tool and what could be done in a better way. Furthermore,
linters need to be incorporated to the development process
and configured appropriately for a project to reduce the
amount of perceived false positives out of the large volume of
warnings that are often reported [2], [16], [12]. We investigate
what methods developers use to configure this tool and how
they maintain those configurations. To that goal, we used a
qualitative research method [17], [18] to conduct and analyze
interviews with 15 developers from reputable open source
software (OSS) projects that have been actively involved with
enabling and configuring ESLint in those projects.

Our main results from this study consist of in-depth knowl-
edge and actual use cases that can benefit other developers,
tool makers and researchers. More specifically, the contribu-
tions of this study are the following:

1) We describe the different benefits JavaScript developers
obtain when using a linter. With that information, we
present to other developers motivation on why using a
linter can be valuable for them and provide tool makers
with information regarding what type of linter function-
ality is the most important to its users.

2) We gather various methods regarding how developers
prioritize rules and how they decide which rules to
include in configurations for a project. This information
can be used to help developers in using a linter and to
guide them in creating a suitable configuration.

3) We collect several challenges that developers face when
using linters in the real world, providing tool makers with
advice for future tool improvements and researchers with
opportunities for further research.

The remainder of the paper is organized as follows. We
start by providing some background information on linters
for JavaScript in Section II. The methodology of the study

1According to the number of npm downloads [15].



is described in Section III with the derived results in Sec-
tion IV. We examine related work in Section VI and provide
a discussion with implications in Section V. Finally we go
over the limitations of the study in Section V-C and conclude
the paper in Section VII.

II. BACKGROUND: LINTERS FOR JAVASCRIPT

Well known and much researched static analysis tools
include FindBugs [19], CheckStyle [20] and PMD [21]. These
tools all have different focus. For example, FindBugs finds nu-
merous defects, such as infinite recursive loops and references
to null pointers, CheckStyle is focused towards following cod-
ing standards, and PMD detects both code style and defects.
JavaScript linters work in a similar fashion where the best
known and most popular ones include ESLint, JSHint [22],
JSCS2 [23] and, the first linter created for JavaScript, JS-
Lint [24].

ESLint is the newest of these and has gained much popular-
ity in the last two years in the JavaScript community. ESLint
was designed to be an extremely flexible linter, where it is both
easily customizable and pluggable. ESLint provides a number
of 236 base rules3, grouped in the following categories: Pos-
sible Errors, Best Practices, Strict Mode, Variables, Node.js
& CommonJS, Stylistic Issues and ECMAScript 6. Example
rules include no-eval, which disallows the use of the notorious
eval function in JavaScript [25], and indent, which enforces
consistent use of indentation. The description of each rule and
category can be found at the tool manual [14]. Developers are
required to specify which of these 236 rules should be turned
on or use publicly available presets, as none of these rules are
enabled by default. A preset is a set of rules that are made
available to the public, such as the ones from Airbnb [26],
Standard [27], or even the ESLint’s recommended settings.

ESLint was chosen as the linter to be analyzed in this
study as it is the most commonly used linter in the JavaScript
community and offers the greatest amount of functionality and
flexibility out of all well known linters, thus not excluding nor
focusing on any specific type of linting such as only analyzing
styling issues or solely identifying possible errors.

III. METHODOLOGY

We followed a qualitative research approach in our
study [17], inspired by many concepts of classic Grounded
Theory [18], [28] where the aim is to discover new ideas
emerging from data instead of testing any preconceived re-
search questions. With an open mind we wanted to understand
how and why developers use a linter for JavaScript. For that
purpose we collected data by conducting 15 interviews with
developers from reputable JavaScript projects on GitHub. We
explain the process of conducting these interviews in Sec-
tion III-A. The interview recordings were manually transcribed
and analyzed with continuous memoing and coding, which

2JSCS is no longer supported and the maintainers have joined forces with
ESLint as of April 2016.

3As of release v3.13.0 in January 2017.

is further described in Section III-B. Finally, we detail our
participants in Section III-C.

A. Interview Procedure and Design

The interviews were conducted in a semi-structured fashion
as it is commonly done in software engineering research [29].
With this method specific questions are combined with open-
ended questions to also allow for unexpected information in
responses. Hove and Anda [29] describe the experience of
performing interviews in software engineering research and
encourage interviewers to talk freely, to ask relevant and
insightful questions and to follow up and explore interesting
topics. These guidelines were followed while performing the
interviews. Each interview was built upon a list of 13 standard
questions but were also dynamic where follow up questions
were asked based on the participants’ replies.

The questions were designed to get as much information
from the participants as possible in a relatively short time. To
begin with they were asked broad questions which often pro-
vided an opportunity for further discussion. Example questions
include: Why do you use a linter in your project? and How
do you create your configuration file and maintain it?. Other
questions were more specific, such as: Do you experience false
positives? if so, which?. The complete list of questions is
available in the technical report [30].

Interviewees were asked to participate in an online video
call. The interviews were recorded with permission and lasted
from 16 to 60 minutes, with an average duration of 35 minutes.
Three out of the 15 participants were not able to participate
in the call and instead received a list of questions via email
and gave written responses.

B. Analysis

Continuously after each interview, memoing was done to
note down ideas and to identify possible categories in the
data. The interview recordings were then ultimately manu-
ally transcribed. As parts of the interviews included casual
chat about the topic, some irrelevant information along with
repetition was left out and some parts were summarized.
First, we performed open coding where the transcripts were
broken up into related sentences and grouped together into
the two main topics that drove our interviews (why and
how developers use linters). During this process, we observed
developers addressing many of the challenges they face when
using linters, and therefore we decided to promote this topic.
Secondly, we performed selective coding where more detailed
categories were identified which became the topics we present
in the Results section. In this process we took advantage of the
memos that had been written over the course of conducting
the interviews. The complete list of codes can be found in the
technical report [30].

C. Participants

In order to find potential participants for the interviews we
examined the most popular JavaScript projects on GitHub,
according to their number of stars in December, 2016. We



conjecture that by observing the top projects on GitHub we
can obtain an insight into active and reputable projects with
many contributors, providing more interesting and relevant in-
formation about the usage of linters. We detected those who 1)
use ESLint, 2) have some custom configuration (e.g. not only
using a single preset) and 3) where one or two contributors
could be identified that have been more involved than others
in editing the configuration file. We then sent an e-mail to
one or two main contributors of the ESLint configuration file
of the corresponding project, briefly explaining the purpose
of the study and asking for a short interview. These requests
were sent out in batches of 5-10 emails (starting with the
most popular projects) as it was difficult to predict how many
positive replies we would receive. Batches were sent out until
we had received a sufficient number of positive replies back,
where the goal was to perform at least 10 interviews, or until
we were satisfied with the amount of information we had
collected.

A number of 120 projects were eventually examined where
37 requests were sent out. These resulted in 15 interviews
being performed, thus with a response rate of 40%. The in-
formation from these 15 interviews was considered enough to
provide us with theoretical saturation [18]. Table I shows the
developers who participated in the interviews where, in order
to keep the participants’ anonymity, they are given names start-
ing with the letter P and followed with a number from 1 to 15.
The amount of months for which each corresponding project
had used ESLint is also displayed4, where most projects had
migrated from using another linter such as JSHint. The table
furthermore shows the placement of the projects in the top 120
JavaScript projects on GitHub within a range of 10 projects
each, also to maintain the participants’ anonymity. A summary
of the participants’ experience is shown in Table II where the
average experience as a professional software developer was
11.8 years. Among the 15 participants, four are founders of the
project, seven identified themselves as lead or core developers
and four are project maintainers.

IV. RESULTS

In the following we present our results on why and how
JavaScript developers use linters, along with the challenges
that they face.

A. Why do JavaScript developers use linters?

1) Prevent Errors: Using a dynamic language such as
JavaScript is not free of risks: “Without a linter [JavaScript]
is a very dangerous language. It’s very easy to make a very
big problem and then spend 30 minutes to find it.” (P7).
The majority of the participants reported that the number one
reason as to why they use a linter is to catch possible errors
in their code: “There are things which are easy mistakes to
make and are obvious errors and I think those provide the
highest value. Because you have a one to one correspondence
between times that a rule catches something and bugs that

4As of February 2017.

TABLE I
ALL PARTICIPANTS’ CODENAME, AMOUNT OF MONTHS USING ESLINT IN
THE CORRESPONDING OSS PROJECT AND THE RANGE FOR THE PROJECT

PLACEMENT IN THE TOP 120 JAVASCRIPT PROJECTS ON GITHUB

Code Months Placement

P1 25 11-20
P2 22 11-20
P3 5 21-30
P4 14 21-30
P5 8 31-40
P6 7 41-50
P7 1 61-70
P8 23 71-80
P9 5 81-90
P10 3 81-90
P11 4 91-100
P12 16 91-100
P13 15 111-120
P14 24 111-120
P15 22 111-120

TABLE II
EXPERIENCE OF PARTICIPANTS, SHOWING THE LOWEST AND HIGHEST

ANSWERS ALONG WITH THE AVERAGE OF ALL ANSWERS

.

Low High Average

Years as developer 3.5 27 11.8
Years as JS developer 1.3 20 8.9

Years in project 0.6 5 2.7
Project age 1 8 5.1

you’ve prevented.” (P4). More explicitly, when asked about the
most important category of warnings in ESLint, 10 participants
answered that Possible Errors was the most important one (P1,
P2, P3, P4, P5, P7, P8, P9, P11, P12): “Possible Errors is the
#1 most important, the biggest reason to use a linter is to catch
errors the programmer missed, before they become a runtime
bug.” (P9). So not only does it catch many bugs but it also
does so early in the development process: “If you can get some
bugs away from your code so early as when you write it, it’s
great.” (P12). These rules can also be especially useful for
bugs that are hard to find and to debug (P15). An example
of this situation is using two equal marks when three should
have been applied, which can cause substantial unpredicted
problems but the cause can be very difficult to find (P8).

A special category of bugs in JavaScript has to do with
the declaration of variables because of the dynamic nature of
the language. Indeed, there is a specific category in ESLint
that only contains rules that have to do with variable decla-
rations and errors regarding variables (appropriately named
Variables): “Possible Errors will catch a lot of unintended
behavior, and Variables will catch a good deal more.” (P5).
Two participants reported that Variables was the most impor-
tant category (P10, P15). When a developer e.g. mistypes a
variable or uses the wrong variable name, the linter can catch
it and warn the developer: “It’s very easy to write JavaScript
code that has errors, you might use a variable that hasn’t



been declared or you might have a typo in your variable
name and because JavaScript is often not compiled, you’ll only
discover that much later when you run the code.” (P1). More
specifically, nine participants (P1, P3, P4, P5, P8, P10, P12,
P13, P15) mentioned the importance of the rule no-unused-
vars (identifies variables that have been declared but never
used) and five (P1, P3, P5, P13, P15) mentioned no-undef
(identifies variables that have not been defined) which are both
useful to identify mistyped variables.

2) Augment Test Suites: While linters are being used to
catch errors in code, there is another popular and widely
accepted method to catch bugs which is to write unit tests.
It is therefore interesting to know how these two methods are
combined for this purpose. Some participants mentioned that
they use a linter on top of unit testing as a complementary
approach to the regular tests (P1, P3, P8). P1 and P8 pointed
out that unit tests commonly do not cover all code which can
result in problems being easily missed: “You need to seek all
possible cases for unit tests, but sometimes it’s very hard, and
of course in all projects, unit tests don’t cover all possible
cases. So this is why a linter is a second protection line.” (P8).
In some cases a developer might have written tests for new
code but then makes a final refactoring or clean up and forgets
to update the tests as well: “Definitely I’ve done that before
and the linter has helped me catch those errors beforehand.”
(P3). Furthermore, the tests can also take substantial time to
run and thus the linter can be seen as a much faster version
of smaller subtests (P1).

On the other hand, participant P4 believes that unit tests
and manual tests can usually cover all errors, so even though
ESLint would not be used, the errors would eventually be
caught by the various tests that are applied. However he says
that the linter can catch them earlier in the process and is also
better at identifying code that is ambiguous.

3) Avoid Ambiguous and Complex Code: It can be diffi-
cult to understand code correctly where the intention is not
perfectly clear. The category Best Practices tries to tackle
this problem where, according to its documentation [14], it
contains rules that relate to better ways of doing things to
help developers avoid problems. While only one participant
recognized the category to be the most important one (P6),
others identified it as the second most important (P4, P8, P13,
P15). Some of these rules try to prevent code from being
misunderstood: “It helps enforce code which says what it
does, so that it’s easy to understand.” (P4). In some cases
code is actually doing something else than it appears to and
a linter can help to detect these situations (P2, P4, P6). One
example of this is restricting the usage of switch statements
by forbidding the use of ”fall throughs”5. This is done because
the intention of switch statements can be easily misunderstood
when that feature is used (P4). Another example is where the
linter identifies code that is unreachable (rule no-unreachable).
According to P2, not only can it catch possibles mistakes

5A ”fall through” occurs when all statements after a matching case are
executed until a break statement is reached, regardless if the subsequent cases
match the expression or not.

by a developer but it can also help with removing a lot of
unnecessary code that otherwise makes the codebase more
difficult to understand and where the intent of the code can be
unclear. Moreover, four other participants mentioned that this
is indeed an important rule to use (P1, P3, P6, P15): “Having
code in your app that’s never going to run sounds like the
worst idea ever.” (P1).

4) Maintain Code Consistency: Every single participant
mentioned that one of the reasons why they use a linter is
to maintain code consistency. Having a consistent code style
in a project is beneficial for many reasons, one being that
it improves the readability and understandability of the code.
As an example, P10 reported that inconsistent code, such as
having different spaces and semi colons, makes the code very
difficult to read and understand since in those cases these
inconsistencies consume all his attention. This might even
be especially relevant in the case of JavaScript since it is a
language where the developer has substantial freedom in how
to write the code (P12, P14): “With JavaScript you can write
code in many ways, and it can be hard to read other people’s
code if you write it in a different way.” (P12).

This topic relates mostly to the category Stylistic Issues
where there are many different rules available to enforce spe-
cific code styles. Even though every participant mentioned this
matter in the interviews, it does not seem to be of high priority
for them. When participants were asked which category of
rules they thought were the most and least important ones, two
considered Stylistic Issues to be the most important category
while 10 thought it to be the least important one.

Some participants were bothered by the fact that choosing
which style to follow is a very subjective decision and develop-
ers generally have very different opinions on how code should
be written (P1, P3, P5): “Stylistic Issues - they’re all opinion
based.” (P5). On the other hand, four participants explained
that Stylistic Issues was indeed the least important category
simply because other categories can catch bugs which is far
more important (P2, P4, P9, P13). This category thus still
provides a lot of value and they would not want to omit it:
“They make it [the code] harder to read but they just don’t
cause issues as much.” (P13).

5) Faster Code Review: In order to uphold code consis-
tency, project maintainers can monitor and review new code
that is proposed. GitHub projects commonly make use of
pull requests to submit new code where other developers can
review the changes and write comments on them. There are
several aspects to consider when reviewing pull requests, such
as functionality and code style. Several participants mentioned
that they use the linter to avoid having to manually review the
code style in pull requests (P1, P2, P3, P4, P8, P11, P14, P15):
“Any software project wants to maintain some bar of quality
and many of the ways that we assess that are going to need
human intervention, but there are a subset of those problems
that a piece of software has which can be done by a computer
and as engineers I think we are apt to try to use computers to
solve human problems where possible. You can free up human
time to do more interesting things.” (P4). Furthermore, it saves



time for the contributor of the pull request since he or she
receives much faster feedback from a linter than from a person
that would conduct a review (P4).

Maintaining code consistency with a linter can also make
pull requests much easier to review. When there is a set of
stylistic rules in a project to which everyone has to conform,
all pull requests have minimal stylistic changes. If there are
no rules, there can be multiple code changes of e.g. only
whitespaces or line formatting which might be caused by
different editors being used. This can make it difficult to see
the actual changes that were done in the contribution since
they are hidden by these formatting changes (P3, P12).

6) Spare Developers’ Feelings: When receiving comments
from a code review, developers can sometimes be sensitive to
criticism (P2, P8, P11). This can particularly be the case for
new developers: “If you tell to a new developer that he or
she made a mistake, it will be very sensitive. He may feel very
uncomfortable because somebody found a mistake in his work.
But if a linter tells you about a mistake, it is not a problem,
because it’s not personal.” (P8). A new developer might also
look up to the person that is conducting the code review which
can make the criticism especially dispiriting (P2). Having a
linter doing this job can also contribute to people feeling more
equal in a project if there is no senior person telling others to
do things differently (P11).

7) Save Discussion Time: Having a set of rules regarding
code style can also save time that is spent on discussing
different styles and opinions (P2, P4, P5, P6, P7, P10). In
big projects with many contributors there can be many pull
requests in circuit and discussions can occur where developers
disagree on a certain style that is used. P2 explains that
discussing code styles is not worth the effort when there are
other more important things to discuss. He further describes
that comments regarding code style on pull requests can
be different depending on which developer is conducting
the review. In some cases, contributors can therefore receive
contradictory advice if no rules exist that everyone goes by.

The discussions about code style that can occur in pull
requests or in issues can also even lead to arguments between
people since developers have very different opinions on the
matter (P1, P2, P3, P5). All this can be avoided by deciding
upon a set of rules to begin with: “It’s almost like a code
contract. There may be things that each of you have assumed
and you don’t know what your own assumptions are, and what
could possibly lead to conflict down the road, so you have a
written contract to try to address everything up front.” (P7).

8) Learn About JavaScript: ESLint can be used to learn
about new JavaScript features or new syntax. P12 used ESLint
in helping him to learn the new syntax of ECMAScript 6
(ES6): “When I switched to ES6, I used it as an educational
tool. It’s so easy to continue to use var for variable decla-
rations. I used ESLint very strictly to enforce ES6 syntax,
otherwise I would probably still use ES5 when I write code.
But with the help of the linter it forces you to switch to ES6,
which is a good habit.” (P12). He used a custom rule set for
React [31], a JavaScript library for building user interfaces,

in a similar fashion when using it for the first time. He was
notified by ESLint how the React code could be written in
a better way, not just regarding formatting but also so that it
would be better for execution. With that he learned how to
write both correct and efficient React code.

Even though linters can be beneficial to all JavaScript
developers, they can be especially helpful for new developers,
either those who are new to a project or those who are new to
programming in general (P6, P7, P9, P13, P14). Contributors
in OSS projects usually have different levels of experience
and using a linter can help with “leveling the playing field and
helping people to understand what’s actually going on” (P13).
This particular example came from a developer that had been
working with students who were accustomed to getting errors
from the Java compiler, telling them what they can and can
not do. However when using JavaScript, one can run code that
includes various coding mistakes and not get notified about it
(P13).

Some features of JavaScript can also be used in clever
ways with enough knowledge of the language. However, P7
explains that, without sufficient knowledge, those features can
be used in the wrong way and lead to unwanted behavior. He
exemplifies: experienced developers can use a double equality
with perfect intentions, but a newcomer in JavaScript might
use it by accident, not knowing that a triple equality should
have been used instead. ESLint indeed has a rule that warns
developers about the usage of two equal marks (rule eqeqeq),
and many other rules that deal with other possible mistakes.

Having non ambiguous code and a consistent style can also
be even more helpful for new developers (P6, P9). Having
consistent code can make it easier for new developers to read
the codebase and get up to speed quickly. Using a linter “makes
sure it’s the same throughout so that when other people come
in and want to add a feature, they’re not really confused for
what they should be doing. It’s easy to follow.” (P6).

B. How do JavaScript developers configure linters?

1) Use an Existing Preset: There are many publicly avail-
able presets that anyone can use in a project instead of
creating a custom configuration, or use as a part of a custom
configuration. These presets have been carefully constructed
by their creators and have been changed attentively over time:
“They thought about the code standard quite extensively and
put a lot of thought in it.” (P12). Several participants like to
use a preset as a part of their configuration file (P1, P6, P10,
P12, P13, P15) and one normally tries to solely use the preset
as is (P8).

2) Project Fit: It is important that the stylistic and best
practice rules fit the existing code when the rules are chosen
(P3, P4, P6, P12): “I wanted them to fit the code as it was,
I wanted the linting in place with as little mess as possible.”
(P12). P4 explained that if something is already being done
in a project, it is rather straightforward to enable a rule that
ensures that it will continue to be done the same way in the
future. Furthermore, if there is already some sense of style
in the existing code, it is not very sensible to change it to



something else since it would create more work than necessary
when setting up a linter. As an example, P4 mentioned that if
a preset contains a rule that enforces either spaces or tabs and
the setting is opposite to what has commonly been done in the
project, the particular rule will be overwritten to fit better to
the project. Otherwise, multiple stylistic changes would need
to be done to conform to the rule.

For rules that relate to possible errors, P4 discussed a similar
approach where he considers whether that particular rule will
be useful for the project or if they will need to disable it
in multiple locations in the code. If it needs to be disabled
frequently, it is not worth it to enforce it.

3) Automatically Generated: Extending the last approach,
ESLint provides an automatic method to insure that a con-
figuration fits well to a specific project. The source code is
inspected to detect a common code style and the user is asked a
few questions, and from this a suitable configuration is created.
Two interviewees used this method to create their configura-
tion file (P11, P14). P11 then looked over the generated rules
and the errors in the output to see if he agreed with them.
He does not consider it to be wise to use a preset since linter
configurations are generally very project dependant: “I didn’t
even consider Airbnb or Google because I think every project
is a little different.” (P11).

4) Pull Request Discussions: Three participants (P2, P4,
P10) reported that when something is discussed in a pull re-
quest that can be enforced with a rule, they use the opportunity
to enable the corresponding rule. Since the topic surfaced in
the pull request then there was obviously a need to make a
decision on the matter being discussed, whether it is a code
style or a best practice. Furthermore, that way the topic will
not surface again and time will not be spent on discussing it,
as it will be already decided on in the configuration file (P2).

5) Minimal Configurations: Some prefer to keep the con-
figuration as simple and minimalistic as possible (P1, P5, P8,
P15): “We don’t want people to feel like they have to jump
through unnecessary hoops to get their PR’s in, so turning on
every single thing wouldn’t be great.” (P1). Furthermore, P8
thinks that if too many rules are enabled in a project, people
will not trust the configurations: “They will think that it is a
bureaucracy and that it’s not important.” (P8). Both P1 and
P8 prefer to only enable rules that can prevent errors.

6) Effort of Enforcing a Rule: Participant P15 described
that he commonly enables a set of rules, e.g. a known preset,
and then sees how it works out for the project. If some of
the rules are starting to be bothersome for the project, e.g.
needing to be disabled with inline comments or if too much
refactoring is required to fit the rule, it is permanently disabled:
“Just start to use it and see how much pain it causes, where
it’s beneficial. But usually it’s turning things off when it’s
apparent that it’s creating more effort than it really helps.”
(P15). He describes the process as a feedback cycle where it
is important that contributors agree on the rules that are used:
“The disagreement between people is very important, you have
to get everyone on the same page.” (P15).

7) Most Voted Style: Participant P7 reported that in a new
project he would most likely go with the code style that is
the most common one amongst the developers in the team,
consequently adding rules that enforce that style. Generally
when working with a new team, the first discussion he often
has with them is which code style people are used to.

8) Consistent Rules: Lastly, some developers do not care
very much about which rules are actually enabled (P2, P6,
P10): “I almost don’t even care what the rules are, I have
some opinions, but I’m much more interested in there just
being consistent rules, than having a point of view about any
particular rule.” (P10). There just has to be some fixed set of
rules to enforce consistency and to prevent unnecessary time
being spent on discussions: “Having a linter forces us to make
choices, even if it’s arbitrary choices in some situations.” (P2).

C. What are the challenges faced by JavaScript developers
when using linters?

1) Create and Maintain Configurations: Several partici-
pants mentioned that it was challenging to create the original
configuration or to keep it updated (P1, P3, P5, P8, P12). Only
two participants reported that they had read over all available
rules when they originally created the configuration file (P3,
P9). This involves evaluating a set of 236 rules that ESLint
has available which can be a tedious process: “Most of it was
read through every rule, it was kind of a very painful process
to set it up.” (P3). Another participant used very similar
wording when it came to setting up the tool: “Sometimes a
pain to set up in your editor with the right configuration.”
(P5). Meanwhile, the other participant that manually created
the configuration file claimed that it was actually quite easy
to set up (P9).

Others have been frustrated with keeping their configura-
tions up to date after they have been created, especially when
using presets (P1, P8, P12). When the presets are updated,
there are often new rules that are enabled or older rules that are
changed which can cause a high volume of new warnings or
errors (P12). P12 explained that these changes are sometimes
beneficial and he happily fixes the warnings, but at other times
the change is not useful and they have to be overwritten.
Moreover, P1 discussed that it can be frustrating when the
presets update very frequently and the code has to be changed
often because of it. However he also likes that the presets keep
him updated of new rules regarding new JavaScript features.

2) Enable Rules in Existing Projects: Six participants (P1,
P3, P4, P7, P10, P13) mentioned that it can be difficult to start
using a linter or to enable new rules in an existing codebase.
If the rules that are enabled cause many warnings or errors
to occur, substantial effort is needed to go over all existing
code to fix every reported instance. There can even be such
a large volume of existing code that it would simply take too
much time to review: “The problem with [the project] is that
it’s really old and big, so for that we don’t have the luxury
of turning on whatever rules we want to because we’re never
going to be able to update a lot of our code to support them.”
(P1).



Even if it is possible to fix all warnings, it can be risky to
change old code to conform to these rules since it is easy to
introduce new bugs in the meantime (P3, P7, P10). Knowing
the original intent of the code can be very difficult and can
take considerable time to try to understand (P7). P7 discussed
an example where there were many instances of two equal
marks being used in the code instead of three, which resulted
in many errors from the linter. In these cases it could have been
intentionally written so or by accident, which would need to be
carefully verified and tested. The risk and effort of going back
and changing the old code might therefore not be worth it:
“Cleaning up for just clean up, just to enable it, I think is risky.
I’ve been bitten by that a couple of times.” (P3). Enabling a
linter in a project to begin with can be a lot easier: “A linter
is great if you start with that and you enforce all those rules
and the idea is that you will never run into ambiguous code.”
(P7). However with older projects it can be more difficult and
even dangerous (P7).

In large existing projects with many collaborators it can also
cause conflicts and frustration when new rules are enabled
(P4, P13). P4 was working at a company with around 60-70
developers, all working on the same code every day. Usually
there are multiple pull requests open at the same time and there
will be many merge conflicts when a new rule is suddenly
enabled, since it will likely affect code everywhere in the
project. In P13’s project it caused frustration with people to
enable many rules all at once since the developers were not
accustomed to them before. Instead, it was decided to do it
slowly by enabling only one rule at a time to give developers
a chance to get used to the new rules.

3) Agree on Rules in an Industrial Setting: In an open
source project it is relatively easy to build consensus around
what people want to do (P4, P15). If someone wants a new rule
to be enabled, then only a few main contributors need to say
yes and it is decided upon. Other maintainers usually follow
what the project leaders propose (P4, P15). In a business
environment it can be a very different case where everyone
in the team has a say in the matter: “There are 60 people
with their own opinion about how code should be written.”
(P4). P4 further explains that it can be especially difficult to
introduce rules on stylistic issues since it is not considered
to be important and it can be hard to justify why you would
inconvenience people to adhere to new rules: “It may create
more tension than it does actually solve problems.” (P4).

However, the power of the lead developers in open source
projects can also be a negative factor. If a contributor wants
to enable a new rule, it often only needs one reviewer to say
no, so that it will not be accepted (P2). In that case the pull
request might get rejected or it has to go through the core
technical team for a discussion which might not be worth the
trouble, only to enable a new rule (P2).

4) Enforce Developers to Follow the Rules: When a rule
is configured in ESLint there are three settings that can be
applied: off, warn and error. The rule is turned off when
applying off and will have no effect whatsoever. When a rule
is set to warn, each instance of the rule being broken will

appear in the output when running the linter. Lastly, error
will have the same effect as warn except it gives an exit code
of 1, meaning it can break the build when ESLint is a part of
the build process.

The majority of the participants used only or mostly errors
and rarely warnings. These settings are used by the participants
for different purposes, such as indicating the criticality of a
rule (P15) or by using warnings as an adaptation period when
enabling new rules (P4, P7, P13). Other participants liked to
use warnings in the development process so that their build
would not be interrupted when working on unfinished features
(P9, P12, P15).

There is however a problem with using warnings: multiple
participants claimed to use only errors since warnings would
simply be ignored by developers (P2, P3, P4, P13). In addition,
according to these participants, when warnings live for a long
time in the codebase, people will start to devalue them and
leave them behind. Developers do not feel any responsibility
for the warnings and might think “there were some warnings
when I checked it out, not my job to fix it, I’m going to
check it back in with warnings.” (P4). P4 further explains that
especially if there are many warnings, developers will not even
read them and simply leave them behind. To enforce removal
of the warnings, they therefore have to be set as errors that
actually prevent a build to succeed.

5) Dynamic Features of JavaScript: JavaScript has been
described as harsh terrain for static analysis because of its
dynamic nature [32]. Static analysis for JavaScript has thus
been critized and said to be limited since it can not account for
runtime behavior [33]. The majority of the participants would
indeed like ESLint to be able to do more, but they however
think that the current version is very acceptable since they
choose themselves to work with a dynamic language (P2, P5,
P6, P7, P8, P9, P10, P11, P15). When P9 was asked whether he
misses dynamic analysis from the linter he replied: “Of course,
but I don’t particularly think that is ESLint’s fault, so much as
a language defect. Due to the dynamic nature of JavaScript,
static analysis ranges from extremely difficult to impossible. I
don’t expect ESLint to be able to fix that.” (P9). Regarding
type checking, there are tradeoffs in choosing JavaScript as
a programming language and there is a reason why some
languages are not strictly typed (P2, P15). If static typing is
something that a developer wants, he or she should rather use
TypeScript or some statically typed language (P2, P10, P15):
“Each developer has to make a decision on if they want to
work in a typed language or in an untyped language and the
tradeoffs of that kind of lead you to the path of what tools can
provide.” (P15). The majority is therefore quite satisfied with
what the linter can do and do not expect it to be able to detect
more of the dynamic parts of the language.

Other participants were more bothered by the fact that a
linter can not analyze the dynamic parts of the language,
where the problem was mostly centered around the lack of
variable types (P3, P4, P13, P14). P3 reports that he has spent
substantial time on testing various mix-ups with strings and
numbers, for which he would either like ESLint to warn about



types that change or would like to switch from using regular
JavaScript to TypeScript. Many large companies have indeed
exerted a lot of effort to try to solve this problem with projects
such as TypeScript and Flow [34] (P4).

V. DISCUSSION

A. Implications

The results have several implications for developers, linter
creators and researchers, which we discuss in the following.
While the findings are based on the usage of linters for
JavaScript, they might also apply to other ASATs.

1) Developers: The results provide motivation for develop-
ers to use a linter and help them in using the linter for it to
be the most beneficial.

i) Developers can find numerous benefits in using a linter
that motivates future usage of such tools (IV-A). Using
a linter: a) on top of tests detects more bugs (IV-A1,
IV-A2), b) helps avoid ambiguous code (IV-A3), c) helps
maintain consistent code (IV-A4), d) makes code review
faster and easier (IV-A5), e) spares newcomers’ feelings
when making their first contribution (IV-A6), f) saves
time that goes into discussing code styles (IV-A7) and
g) helps developers to learn new language syntax and
features and with onboarding newcomers to projects
(IV-A8). The findings by Beller et al. [3] also suggest
that developers need to be made aware of the benefits of
using ASATs.

ii) Developers can find several ways to prioritize rules
(IV-B). We provide many different ways to choose the
appropriate rules for a project, such as using presets,
fitting the rules to the existing style or using discussions
in pull requests as input.

iii) Developers should include a linter from the beginning of
a project (IV-C2). Enabling a linter at a later stage can
involve substantial effort and risk. Additionally, Ayewah
et al. [11] found that FindBugs users are less likely to
fix warnings that apply to older code than to new code.

iv) In existing projects, developers should enable rules care-
fully and incrementally (IV-C2, IV-C4). This should
be done to minimize the risk of introducing bugs and
the risk of creating frustration within a development
team. Furthermore, by incrementally introducing rules
and continuously fixing the corresponding warnings, the
amount of warnings can be kept to a minimum, making
developers more likely to examine and fix them. Previous
research has also reported that many ASATs output too
many warnings which makes it more difficult to use these
tools [12], [16], [35].

2) Tool Creators: The results help linter creators to improve
future tool editions by understanding the needs and challenges
of developers when using linters.

i) Tool creators should focus on detecting possible errors
(IV-A1). This is the most important aspect to the par-
ticipants, especially errors that have to do with variable
declarations.

ii) Tool creators should offer functionality to maintain code
consistency and have customizable rules (IV-A4). This
was considered useful by all participants but as develop-
ers have different opinions on which code style to use,
tools should to be flexible.

iii) Tool creators should focus on dynamic languages (IV-A1,
IV-A4). Linters can be especially useful for this type
of languages as errors can be easily introduced because
of the dynamic typing in JavaScript. Furthermore, as
JavaScript code can be written so freely and in many
different ways, it can be even more valuable to maintain
code consistency. Beller et al. [3] also found that dynam-
ically typed languages seem to benefit more than static
languages from the usage of ASATs.

iv) Preset maintainers should not update them too frequently
(IV-C1). Developers that use the presets can get frustrated
when they have to do frequent changes to their code due
to the presets being updated.

v) Tool creators should find other ways to make developers
feel responsible to fix warnings (IV-C4). As it can be
difficult to enforce linting rules without making them
break the build, other methods would be beneficial to
encourage developers to fix warnings. This could be done
e.g. by linking the output of the tool to the project
repository, to make a somewhat more personal connection
to the developers that are responsible. Sadowski et al. [36]
had a similar experience when introducing ASATs at
Google, where developers would ignore warnings that did
not cause the build to fail.

3) Researchers: The results offer ample opportunities for
further research into these findings, where various methods
can be applied to verify them in larger scale. Some research
directions include the following:

i) Balachandran [37] conducted a study where ASATs were
applied on code changes that were subject to code re-
view, and asked developers whether they agreed with the
warnings reported by the tool. Similarly, Panichella et
al. [38] studied whether warnings were being removed
in code reviews, both in projects that use ASATs and for
some that do not. Both results indicated that code reviews
would benefit from using ASATs by automating some
of the work that developers perform. Research needs to
be conducted to understand the effects of linters during
review of JavaScript code (IV-A5) and where which
warnings developers more often remove from source code
may provide us with hints on which rules are considered
important for developers (IV-B).

ii) Steinmacher et al. [39] studied the barriers that new-
comers face when making their first contribution in
an OSS project. Social barriers that were discovered
include late responses and negative or even impolite
feedback. Technical barriers include bad code quality,
code complexity and lack of code standards. One could
do research to see whether newcomers face less of these
barriers in projects that use a linter, as the linter performs



part of the code review with a non subjective feedback
(IV-A5, IV-A6) and also helps with maintaining better
code quality (IV-A3, IV-A8).

iii) Beller et al. [3] studied the usage of ASATs and in partic-
ular how they are configured. Since several participants
claim that it is difficult to enable linters in existing code
(IV-C2), it would be intriguing to further research how
configuration files in projects that enable a linter early
on differ from those in projects that enable a linter at
a later stage. Furthermore, many participants explained
that they try to create the configuration so that it fits
the project in the best way possible (IV-B2). It would
be valuable to know how thoroughly projects follow
these configurations, providing insight into how well the
configuration reflects the project style and how much
developers care about upholding these code standards.

B. False Positives

A common problem with static analysis tools is the high
volume of false positives [12], [40], [41], [42]. Studying the
usage of ASATs, Johnson et al. [12] found that the presence
of false positives is indeed one of the largest barriers in using
such tools. Opposed to previous literature, the majority of
the participants in our study reported that they do not in
general experience false positives while using ESLint (P5, P6,
P9, P10, P11, P12, P14, P15). Three participants mentioned
that they had experienced some false positives in the past
which have now all been fixed (P5, P12, P14). Moreover, P14
only experienced a false positive once where he then reported
the issue which was fixed in a matter of a few hours. Two
participants claimed to experience somewhat frequent false
positives (P10, P13). However, in both cases they blame it
on other elements than ESLint itself. In fact, P13 migrated
from JSLint and JSHint to ESLint because he perceived much
fewer false positives with ESLint.

This difference to previous literature might result from
the type of analysis that is performed by ESLint and other
JavaScript linters. Using more complex analysis methods to
identify more intricate issues, the risk of detecting false
positive increases, and additionally the risk of users not
understanding the issue and mistaking true positives for false
positives [40]. The issues detected by ESLint are of a more
simplistic nature where warnings are typically reported on only
a single line of code, e.g. a variable that is not initialized. This
is e.g. different from code smell detection tools for Java; as
many code smell definitions are somewhat abstract, tools rely
on heuristics [43] which can lead to false positives, e.g. to
detect a God Class, PMD’s heuristic relies on the combination
of Weighted Method Count, Tight Class Cohesion and Access
to Foreign Data metrics [44], [45].

Furthermore, the term false positive can be understood in
two different ways, either a wrongly reported warning or a
true warning that is not considered by a developer to improve
the software under analysis [46]. Some participants discussed
this type of false positive, which is when the linter flags a
certain instance but the developer thought it was appropriate

to break the rule in that particular case (P3, P6, P7, P9, P11).
In those circumstances, ESLint provides the functionality to
write an inline comment to disable a rule for a piece of code.
Participants P9 and P11 however considered it to be positive
to receive a warning in these cases. P9 explained that it makes
him think about whether breaking the rule is actually a good
idea or not: “That is OK, the linter is there to make sure we
are being thoughtful about our choices.” (P9). Furthermore,
the presence of the disabling comments can be useful for other
developers to know the intention of the code: “That’s helpful
because now other people reading the code will know this
is definitely intentional. So I think it’s useful for the reader
and ESLint is great that it’s flexible like that.” (P11). It can
therefore serve as documentation of some sort to help others
understand the intention of the code.

C. Threats to Validity

It is important to address the validity of this study which
we will do in the context of qualitative research [47].

1) Transferability: The main limitation to this study is
its possible lack of generalizability. The sample size is not
large and it thus may not represent all OSS development.
Moreover, as we only talk to developers from OSS projects,
the results may not represent industry software. We tried to
mitigate this fact by interviewing experienced developers from
popular and reputable projects. However, that selection of the
sample creates another bias in the study where the results
might be different if smaller projects were examined along
with projects having fewer configurations. Only projects were
selected that had somewhat extensive configurations as they
would have more input on how rules are selected for a project,
thus being able to report on what methods they use for the
task. Furthermore, future research needs to be conducted to
understand why some developers do not use a linter or have
ceased using one.

As we only looked at projects that use ESLint, the results
might not reflect on usage of all JavaScript linters. Also ex-
amining other linters such as JSLint or JSHint might produce
different results than presented in this study, which would
be an interesting aspect to see in future studies. We chose
to observe the usage of only one linter to make the inter-
views more consistent. As the available linters have different
features, e.g. regarding configurability, we would not have
been able to ask all participants the same questions, and thus
possibly making the analysis less reliable. To minimize the
effects of this, we chose to address the most popular and most
flexible linter, also to not restrict the results with more limited
use cases. Additionally, we verified that ESLint is indeed the
most popular linter among the top 120 JavaScript projects by
manually evaluating each project to see whether they use any
linting tool.

2) Credibility: Possible variables that effect the results of
this study relate to the previous knowledge of the participants.
It is likely that we interviewed people who already feel
strongly about linters as they are frequent users of the tool.
We can not know for sure if their opinions are based on



their own experiences with using the tool or if it is based
on external literature that they have read. Because of this
concern, we tried to address our questions to relate specifically
to the participants’ own opinions and experience working on
the particular project. However, in some cases, the participants
had other and even more experience in working with a linter
on other projects, for which they also based their answers on.

3) Confirmability: Another possible limitation concerns the
coding of the interviews. It was conducted by one person in
order to obtain consistency in the results. It is however possible
that someone else would have coded them differently, perhaps
resulting in different conclusions [48]. This was mitigated to
some extent by focusing on not having any preconceived ideas
before processing the data and thus not trying to fit the data
to any existing theories. Furthermore, the derived codes are
available online for inspection [30].

VI. RELATED WORK

Johnson et al. [12] researched the usage of ASATs, in
particular why some developers do not use these tools to
find bugs despite of their proven benefits. Similar to our
study, they examined one tool, FindBugs, and interviewed 20
developers to find that the main reason why developers choose
to use an ASAT to find bugs is to reduce time and effort that
goes into manually performing the task. Reasons to not use
these tools include poorly presented output where there are
too many false positives or too many warnings outputted in
general, in addition to tools not being integrated conveniently
in the workflow. Christakis and Bird [13] also investigated how
developers perceive ASATs and specifically which barriers
they face in the adoption of these tools. By surveying 375
developers at Microsoft they found that the largest obstacle in
using these tools was the fact that some unwanted rules are
turned on by default in the tools’ configurations, and proposed
having only a subset of rules enabled by default instead. This
is indeed what ESLint does, where no rules are enabled by
default but it is easy to enable a preset. Other frequently
experienced challenges were bad warning messages, too many
false positives and for the analysis to be too slow. Interestingly,
our findings do not reflect the results of these two studies. This
could be explained by the different nature of ESLint compared
to the wide range of ASATs that they examine, or perhaps
by the fact that ESLint is actively maintained by a large
community where frequent improvements are made to the tool.
Our work builds on these studies as we also research why
static analysis tools are used and how they can be improved,
but focusing solely on JavaScript.

Several studies have focused on the effectiveness of ASATs
to find bugs in software where the studied tools were not
successful in identifying reported errors [49], [50], [16]. How-
ever, Wedyan et al. [50] found ASATs to be more effective in
finding refactoring opportunities. In this study, though without
any empirical verification, ESLint seems to be successful at
reporting both defects and refactoring opportunities.

Ayewah et al. [11], [51] studied the usage of FindBugs
where they saw that users are generally interested in fixing

warnings from the tool, especially the high priority ones,
but which types of warnings depends on the user’s context.
It is therefore valuable to have configuration options for
these different groups of users. Similarly, Jaspan et al. [2]
recognized the importance of customizing and prioritizing
rules to make developers more willing to use an ASAT as it
reduces the amount of perceived false positives for a project.
Regarding how much configurations are applied, Beller et
al. [3] performed a large-scale study on the prevalence of
ASAT usage along with how they are configured. They found
that these tools are commonly used in OSS software and in
particular for JavaScript projects. The configurations for these
projects are most often changed from the default settings,
but typically only one rule is added, removed or modified.
This research included ESLint but we suspect that these
results would be different if the study would be conducted
again today, as ESLint has since then removed any default
configurations in the tool and all rules are now off by default.
A developer using the tool thus now needs to create some
configuration, which in the simplest case could just include
the recommended settings from ESLint.

Several studies have examined how to prioritize warnings
from static analysis tools [52], [53], [54], [42]. Kim et al. [52]
propose a history-based method to improve the prioritization
of ASAT warnings using past bug fixes from software change
history. A different history-based approach is proposed by
Heckman [53] where the developers’ feedback to the warnings
is used. In our research we examine how the participants pri-
oritize rules to create the configuration files for their projects.

Techniques for static analysis of JavaScript code has been a
popular research topic in recent years [55], [56] where static
analysis is said to be a difficult task due to the dynamic nature
of the language and the frequent use of libraries [32], [57],
[8]. Tools have therefore been developed that apply dynamic
analysis to handle these challenging language features [58],
[10], such as DLint from Gong et al. [33]. Furthermore, Pradel
et al. [7] created a tool to counter against errors that have to
do with inconsistent types in JavaScript. Gao et al. [59] also
found that applying static type systems such as TypeScript and
Flow can reduce errors in JavaScript applications. We address
this problem by observing the challenges that developers face
with the dynamic features (including dynamic typing) of the
language and how the linter fits into that setting.

VII. CONCLUSION

In this study we examine why and how JavaScript devel-
opers use linters in their projects. To that goal, we use a
qualitative research method to conduct and analyze interviews
with developers from popular and reputable OSS projects on
GitHub. The derived results explain why and how developers
use such tools, as well as the challenges they face. Our
results have direct implications to developers, tool makers, and
researchers.

As a final message, we encourage the JavaScript community
to take advantage of the many benefits that linters provide.



REFERENCES

[1] B. W. Boehm et al., Software engineering economics. Prentice-hall
Englewood Cliffs (NJ), 1981, vol. 197.

[2] C. Jaspan, I. Chen, A. Sharma et al., “Understanding the value of
program analysis tools,” in Companion to the 22nd ACM SIGPLAN
conference on Object-oriented programming systems and applications
companion. ACM, 2007, pp. 963–970.

[3] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing
the state of static analysis: A large-scale evaluation in open source
software,” in Software Analysis, Evolution, and Reengineering (SANER),
2016 IEEE 23rd International Conference on, vol. 1. IEEE, 2016, pp.
470–481.

[4] (2015) Language trends on github. [Online]. Available: https:
//github.com/blog/2047-language-trends-on-github

[5] T. Mikkonen and A. Taivalsaari, “Using javascript as a real programming
language,” 2007.

[6] F. S. Ocariza Jr, K. Pattabiraman, and B. Zorn, “Javascript errors in the
wild: An empirical study,” in Software Reliability Engineering (ISSRE),
2011 IEEE 22nd International Symposium on. IEEE, 2011, pp. 100–
109.

[7] M. Pradel, P. Schuh, and K. Sen, “Typedevil: Dynamic type inconsis-
tency analysis for javascript,” in Proceedings of the 37th International
Conference on Software Engineering-Volume 1. IEEE Press, 2015, pp.
314–324.

[8] M. Madsen, B. Livshits, and M. Fanning, “Practical static analysis of
javascript applications in the presence of frameworks and libraries,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. ACM, 2013, pp. 499–509.

[9] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarra-
cino, B. Wiedermann, and B. Hardekopf, “Jsai: A static analysis platform
for javascript,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2014, pp.
121–132.

[10] A. M. Fard and A. Mesbah, “Jsnose: Detecting javascript code smells,”
in Source Code Analysis and Manipulation (SCAM), 2013 IEEE 13th
International Working Conference on. IEEE, 2013, pp. 116–125.

[11] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” IEEE software, vol. 25, no. 5, 2008.

[12] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in 2013 35th
International Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 672–681.

[13] M. Christakis and C. Bird, “What developers want and need from
program analysis: an empirical study,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing. ACM, 2016, pp. 332–343.

[14] Eslint. [Online]. Available: http://eslint.org
[15] Npm stats on jshint, jslint, eslint and jscs. [Online]. Available:

https://npm-stat.com/charts.html?package=eslint&package=jshint&
package=jslint&package=jscs&from=2015-01-01&to=2017-04-30

[16] C. Couto, J. E. Montandon, C. Silva, and M. T. Valente, “Static
correspondence and correlation between field defects and warnings
reported by a bug finding tool,” Software Quality Journal, vol. 21, no. 2,
pp. 241–257, 2013.

[17] J. W. Creswell, Research design: Qualitative, quantitative, and mixed
methods approaches. Sage publications, 2013.

[18] B. G. Glaser and J. Holton, “Remodeling grounded theory,” in Forum
Qualitative Sozialforschung/Forum: Qualitative Social Research, vol. 5,
no. 2, 2004.

[19] Findbugs. [Online]. Available: http://findbugs.sourceforge.net
[20] Checkstyle. [Online]. Available: http://checkstyle.sourceforge.net
[21] Pmd. [Online]. Available: https://pmd.github.io
[22] Jshint. [Online]. Available: http://www.jshint.com
[23] Jscs. [Online]. Available: http://jscs.info
[24] Jslint. [Online]. Available: http://www.jslint.com
[25] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men do,”

in European Conference on Object-Oriented Programming. Springer,
2011, pp. 52–78.

[26] Airbnb eslint preset. [Online]. Available: https://github.com/airbnb/
javascript

[27] Standard preset and linter. [Online]. Available: https://github.com/
feross/standard

[28] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering, vol. 16, no. 4, pp. 487–513, 2011.

[29] S. E. Hove and B. Anda, “Experiences from conducting semi-structured
interviews in empirical software engineering research,” in Software
metrics, 2005. 11th ieee international symposium. IEEE, 2005, pp.
10–pp.

[30] K. F. Tómasdóttir, M. Aniche, and A. van Deursen, Why and
How JavaScript Developers Use Linters: Technical Report, Jul. 2017.
[Online]. Available: https://doi.org/10.5281/zenodo.835658

[31] React. [Online]. Available: https://facebook.github.io/react
[32] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the

dynamic behavior of javascript programs,” in ACM Sigplan Notices,
vol. 45, no. 6. ACM, 2010, pp. 1–12.

[33] L. Gong, M. Pradel, M. Sridharan, and K. Sen, “Dlint: Dynamically
checking bad coding practices in javascript,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis. ACM,
2015, pp. 94–105.

[34] Flow. [Online]. Available: https://flow.org
[35] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding

tools for java,” in Software Reliability Engineering, 2004. ISSRE 2004.
15th International Symposium on. IEEE, 2004, pp. 245–256.

[36] C. Sadowski, J. Van Gogh, C. Jaspan, E. Söderberg, and C. Winter,
“Tricorder: Building a program analysis ecosystem,” in Software Engi-
neering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference
on, vol. 1. IEEE, 2015, pp. 598–608.

[37] V. Balachandran, “Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer recom-
mendation,” in Software Engineering (ICSE), 2013 35th International
Conference on. IEEE, 2013, pp. 931–940.

[38] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?” in Software
Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd
International Conference on. IEEE, 2015, pp. 161–170.

[39] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles, “Social
barriers faced by newcomers placing their first contribution in open
source software projects,” in Proceedings of the 18th ACM conference
on Computer supported cooperative work & social computing. ACM,
2015, pp. 1379–1392.

[40] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[41] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan
Notices, vol. 39, no. 12, pp. 92–106, 2004.

[42] T. Kremenek and D. Engler, “Z-ranking: Using statistical analysis to
counter the impact of static analysis approximations,” in International
Static Analysis Symposium. Springer, 2003, pp. 295–315.

[43] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in Software Maintenance, 2004. Proceedings. 20th IEEE
International Conference on. IEEE, 2004, pp. 350–359.

[44] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

[45] Pmd, description of god class metric. [Online]. Available: http:
//pmd.sourceforge.net/pmd-5.0.1/rules/java/design.html

[46] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software,” in
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering. ACM, 2007, pp. 1–8.

[47] E. G. Guba, “Criteria for assessing the trustworthiness of naturalistic
inquiries,” Educational Technology research and development, vol. 29,
no. 2, pp. 75–91, 1981.

[48] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[49] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” IEEE transactions on software engineering, vol. 32, no. 4,
pp. 240–253, 2006.

[50] F. Wedyan, D. Alrmuny, and J. M. Bieman, “The effectiveness of
automated static analysis tools for fault detection and refactoring pre-
diction,” in Software Testing Verification and Validation, 2009. ICST’09.
International Conference on. IEEE, 2009, pp. 141–150.



[51] N. Ayewah and W. Pugh, “A report on a survey and study of static
analysis users,” in Proceedings of the 2008 workshop on Defects in
large software systems. ACM, 2008, pp. 1–5.

[52] S. Kim and M. D. Ernst, “Which warnings should i fix first?” in
Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 2007, pp. 45–54.

[53] S. S. Heckman, “Adaptively ranking alerts generated from automated
static analysis,” Crossroads, vol. 14, no. 1, p. 7, 2007.

[54] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rother-
mel, “Predicting accurate and actionable static analysis warnings: an
experimental approach,” in Proceedings of the 30th international con-
ference on Software engineering. ACM, 2008, pp. 341–350.

[55] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for javascript.”
in SAS, vol. 9. Springer, 2009, pp. 238–255.

[56] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip, “Correlation
tracking for points-to analysis of javascript,” ECOOP 2012–Object-
Oriented Programming, pp. 435–458, 2012.

[57] S. H. Jensen, M. Madsen, and A. Møller, “Modeling the html dom
and browser api in static analysis of javascript web applications,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM,
2011, pp. 59–69.

[58] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Dynamic determinacy
analysis,” in ACM SIGPLAN Notices, vol. 48, no. 6. ACM, 2013, pp.
165–174.

[59] Z. Gao, C. Bird, and E. T. Barr, “To type or not to type: quantifying
detectable bugs in javascript,” in Proceedings of the 39th International

Conference on Software Engineering. IEEE Press, 2017, pp. 758–769.


