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Chapter 1 
Introduction 

 

Cortical damage after a stroke often affects movement control, resulting in impairments such 
as paresis and synergies. Although some recover, most stroke survivors are left with reduced 
function of the upper limb, which has a severe impact on their activities of daily living. 
People who have suffered a stroke demonstrate heterogeneous impairments due to large 
variability in lesion location and extent; thus, rehabilitation should be tailored to each 
individual. Design and evaluation of rehabilitation programs requires a thorough 
understanding of the healthy and the impaired sensorimotor system. Impairments to the 
motor system have been extensively investigated. On the contrary, the sensory aspects of 
impaired motor control have received less attention. This thesis intends to characterize the 
relation between sensory information from the periphery and the corresponding cortical 
responses using quantitative measurement techniques. The introductory chapter provides the 
reader with the required background on the topic of movement control, 
electroencephalographic recordings and stroke, before presenting the problem and aim of the 
thesis. 
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 Movement control 1.1
Humans plan and execute complex movements, and have the ability to correct for 
disturbances while doing so. This feedforward (i.e. voluntary motor drive) and feedback 
control (i.e. reflexes) is facilitated by the central nervous system (controller), in conjunction 
with muscles (actuators) and mechanoreceptors (sensors). Together, these components form 
a closed loop control system: the sensorimotor system (see Figure 1.1). 

The sensorimotor system 
To enable feedback control and the optimization of internal models for feedforward control, 
sensors are essential. The human body is equipped with many types of sensory systems, such 
as the vision system, auditory system, vestibular system and somatosensory system (Kandel et 
al., 2000). This thesis focuses on the somatosensory system, and specifically on the 
mechanoreceptors. Mechanoreceptors, comprising proprioceptive and tactile sensors, 
facilitate feedback control of limbs due to their ability to communicate quickly with the 
central nervous system. There are several types of afferent fibers, which can be classified 
according to the type of mechanoreceptors they connect to, and to their conduction speed. 
Ordered from high to low conduction speed, the fibers are defined as Aα, Aβ, Aδ, and C 
fibers, where the conduction speed is directly related to their cross-sectional area and amount 
of myelination.  

The proprioceptive system consists of muscle spindles, Golgi tendon organs, joint capsules, 
and stretch sensitive free endings. Muscle spindles are located within the muscle, parallel to 
the extrafusal muscle fibers. Thus, when the muscle is stretched, the muscle spindles are 
concurrently stretched, sensing both muscle length and rate of change in muscle length. 
Length information is transmitted through II-afferent (i.e. Aβ) fibers. Ia-afferent (i.e. Aα) 
fibers transmit either length or change in muscle length information. Nonlinear velocity 
dependence in the response of the muscle spindle has been experimentally observed (Houk et 
al., 1981), and has also been incorporated into a mathematical model of the muscle spindle 
(Mileusnic et al., 2006). The sensitivity of the muscle spindles can be altered through the 
activation of gamma motor neurons. Golgi tendon organs sense muscle tension and are 
connected to the CNS via Ib-afferent (i.e. Aα) fibers. There is a linear relation between firing 
rate and muscle force (Crago et al., 1982). Muscle force is mainly sensed during active 

 

 

 

 

Figure 1.1. Scheme of the elements of movement control. 
The brain and spinal cord constitute the central nervous 
system, which controls the muscles in the periphery through 
voluntary or reflexive activation. This efferent information is 
indicated by the blue arrows. Sensory (or afferent) 
information is passed from the mechanoreceptors to the 
spinal cord and subsequently to the brain, as indicated by the 
red arrows. 
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contraction of the muscle, and less during passive stretch. Joint capsule mechanoreceptors 
provide information on joint angle via II-afferent (i.e. Aβ) fibers. Stretch-sensitive free 
endings register excess stretch and muscle force and transmit through the slower III-afferent 
(i.e. Aδ) fibers. 

The tactile system encompasses many types of sensors in the skin, including Meissner’s 
corpuscles, Merkel disk receptors, Pacinian corpuscles and Ruffini endings. These sensors 
vary in the size of their receptive field, their bandwidth, and their sensitivity to transient or 
sustained stimulation. Tactile sensors enable the sensing of (for example) pressure, texture, 
vibration, and skin stretch; these sensors are connected to the CNS through Aβ afferent 
fibers. Additionally, there are sensors in the skin for registration of pain and temperature 
which connect to the CNS through the slower Aδ and C afferent fibers.  

The actuators of the sensorimotor system are the muscles, which consist of muscle fibers 
grouped into motor units. These motor units are activated by alpha motor neurons in the 
spinal cord; alpha motor neurons can be excited or inhibited both by spinal reflexes and by 
supraspinal input. When a motor unit is innervated, the potential travelling across the unit 
can be noninvasively recorded from the skin using electromyography (EMG).  

The sensory neurons from the mechanoreceptors are connected to the spinal cord. From 
there, the proprioceptive and tactile sensory information reaches the brain. Information first 
arrives in the thalamus, and is subsequently conveyed to the primary somatosensory cortex; 
this cortex has a somatotopic organization (see Figure 1.2), in which body parts for fine 
motor control have a large representation. From the primary somatosensory cortex, sensory 
information is distributed to the posterior parietal cortex and the secondary somatosensory 
cortex, where the information is further processed and integrated. The motor cortex, 
consisting of the primary motor cortex, premotor cortex and supplementary motor area, is 
responsible for the planning and execution of motor commands. The primary motor cortex 
has a somatotopic organization similar to that of the primary somatosensory cortex. Motor 
commands are sent down to the alpha motor neurons in the spinal cord through the 
corticospinal tract. Although there are other tracts through which muscles can be activated, 
these do not allow for such fine motor control as does the high-resolution corticospinal tract. 
The ascending sensory tracts and most fibers of the descending corticospinal tract cross sides 
in the medulla (i.e. undergo sensory and motor decussation), and as a consequence the right 
hemisphere controls the left side of the body and vice versa.  

Impaired movement control: stroke 
The malfunctioning of one of the components of the sensorimotor system can lead to 
functional impairments. Impaired movement control can, for example, be caused by 
movement disorders such as essential tremor and Parkinson’s disease, or by damage to the 
central nervous system due to a stroke. 
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Stroke is a major cause of acquired disability in developed countries (Mendis, 2013), with an 
incidence of around 1.5 million per year in Europe (Wilkins et al., 2017). Due to the aging 
population, this number is expected to increase over the coming years (Truelsen et al., 2006). 
Upper limb paresis after stroke has significant consequences for autonomy during activities 
of daily living (ADL) (Veerbeek et al., 2011) and occurs in about 80% of stroke survivors. 
Only around one third of those people will regain some dexterity (Kwakkel et al., 2003).  

Stroke occurs when the blood supply to the brain is disturbed, leading to the death of brain 
cells. There are two main types of stroke, namely ischemic and hemorrhagic. An ischemic 
stroke occurs when a blockage in a blood vessel interrupts the blood supply to a brain region. 
A hemorrhagic stroke occurs when there is bleeding inside the brain or in the space 
surrounding the brain, causing, besides a lack of blood supply, swelling and pressure. 
Hemorrhagic strokes are less common, as 87% of strokes are classified as ischemic (Benjamin 
et al., 2017). 

Even though all strokes result in damage to the brain, the consequences of this damage vary 
greatly among individuals due to differences in affected brain region and tracts. Therefore, 
the population of individuals who suffer a stroke is very heterogeneous with respect to initial 
impairments and functional outcomes after recovery. In addition to impairments that affect 
cognition (e.g. aphasia, problems with attention and neglect) and emotions, motor 
impairments are very common. Motor impairments after stroke have a huge impact on an 
individual’s independence during activities of daily living (ADL), and thus on their quality of 

 

 
 

 
Figure 1.2. Sensory homunculus. Figure depicts the primary somatosensory cortex of one hemisphere. 
Size of the body parts shown on the cortex indicates the relative size of cortical representation for that 
body part. Insert shows the location of the primary somatosensory cortex (A) and the primary motor 
cortex (B). Adapted from Kandel et al. (2000). 
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life. There are many different types of motor impairment associated with stroke, such as 
(hemi)paresis, spasticity and synergisms (Krakauer, 2005).  

Studying movement control of the upper limb 
Humans can generate movements and forces in many ways due to the redundancy of the 
musculoskeletal system (Franklin and Wolpert, 2011), which challenges the consistent and 
unambiguous study of movement control. This redundancy can be mitigated by presenting a 
person with a functionally-relevant upper limb control task and by constraining the limb 
under study, as with a robotic manipulator; robotic manipulators ensure well-conditioned 
experiments and they provide a quantitative way of assessing movement control. 

The sensorimotor system consists of multiple control loops, in which the controller 
performance is largely dependent on the inherent time delays in the system. Due to its closed 
loop nature, discerning cause and effect in the sensorimotor system requires an external 
stimulus (van der Kooij et al., 2005). System identification techniques can be employed to 
model the dynamics between the different components of the sensorimotor system. This 
modeling can be nonparametric or parametric, where the former has the advantage of 
requiring little a priori knowledge about the system and the latter has the advantage of 
requiring a limited set of parameters to describe the system. 

Two main strategies can be employed to perform movement control tasks, namely voluntary 
muscle (co-)contraction (feedforward) and reflexes (sensory feedback). The latter is crucial 
for disturbance rejection during movement control, which can be internal (e.g. variability in 
muscle output force [Faisal et al., 2008]) or external (e.g. the train movements when standing 
in a train). The intrinsic properties of a limb (i.e. viscoelasticity and inertia of tissues), 
together with the reflexive activity, govern the dynamic relation between joint angle and joint 
torque, which is defined as mechanical impedance. Unimpaired individuals can adapt their 
mechanical impedance to the task at hand by modulating voluntary muscle contraction and 
reflexes (Mugge et al., 2010), while impaired individuals might not adapt properly (Meskers et 
al., 2009, Mugge et al., 2016). Unambiguous task instruction (e.g. “maintain position” or 
“maintain force”) and extensive training prevent adaptation of sensory feedback during an 
experiment. 

During the execution of an upper limb control task, several mechanical and physiological 
signals can be noninvasively recorded, all of which provide information on task execution. 
These signals include the position of and the force on the joint, the activity of the muscles 
controlling the joint, and the activity in the brain. There are several methods that allow for 
the noninvasive recording of cortical signals, such as electromagnetic measurements (e.g. 
electroencephalography [EEG] or magnetoencephalography [MEG]) and measurements 
related to metabolism (e.g. functional magnetic resonance imaging [fMRI], positron emission 
tomography [fMRI] or functional near-infrared spectroscopy [fNIRS]). Electromagnetic 
measurements provide a direct measure of brain activity by recording electromagnetic signals 
generated by neuronal populations with high temporal resolution (< 1 ms). These signals can 
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only be recorded if many aligned neurons fire synchronously, and they are most detectable in 
the superficial cortical areas. Metabolic measurement techniques such as fMRI and PET, can 
detect activity in deeper regions of the brain; however, they measure an indirect effect of 
brain activity, i.e. energy consumption. Therefore, the temporal resolution with which 
changes in brain activity can be detected is slow, i.e. on the order of seconds. EEG is highly 
suitable for studying movement control due to its high temporal resolution and its mild 
experimental restrictions with regard to movement and presence of a robotic manipulator. 

Due to volume conduction effects in EEG (see Figure 1.3), the signals generated in the brain 
are spread to all recording electrodes on the scalp. The cortical areas responsible for 
generating the activity observed at the scalp have to be identified through a procedure called 
source localization. Due to the high sensitivity of EEG to artifacts coming from muscle 
activity, eye movements and line noise, as well as to the ongoing cortical activity that is not 
necessarily related to the response of interest, the signal-to-noise ratio in EEG is poor. 
Consequently, a proper estimate of the evoked response is only obtained after applying many 
(typically >100) stimuli and averaging the recorded responses. 

 Stroke recovery 1.2
Recovery after stroke can be classified as restitution, substitution or compensation. Recovery 
is most likely to occur within six months after the stroke (defined here as the sub-acute 
phase) (Cramer, 2008, Langhorne et al., 2011), after which the chronic phase is reached. 
Restitution entails the regain of function of damaged brain areas. Substitution comprises the 
use of anatomically different brain areas or pathways to achieve pre-stroke function. 
Compensation strategies involve the use of other joints or muscles to perform movements 
that can no longer be performed using regular strategies due to the stroke. Compensation can 
restore independence during ADL; however, it may further reduce the capabilities of the 
affected joints due to non-use (Krakauer, 2006). Although the types of recovery that can 
occur are known, the mechanisms that drive this recovery are presently not well understood 
(Buma et al., 2013). As a result, rehabilitation programs are currently not achieving maximal 

 
 
 

 

Figure 1.3. Volume conduction in EEG. 
Green and red dot represent a source inside 
the brain, of which the signal is picked up at all 
electrodes on the scalp. The signals recorded at 
the scalp electrodes are therefore a mix of all 
signals generated in the brain, as well as 
sources of artifacts such as muscle activations 
and eye blinks. Figure by R. Oostenveld, 
reprinted with permission. 
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outcome. 

Impairments of motor function after stroke have been extensively studied, and their course 
during recovery in relation has been studied in relation to cortical activity (Kim and Winstein, 
2017). The study of impaired sensory function, along with its relation to motor recovery, has 
received less attention. Control of movement is facilitated by both feedforward control and 
feedback control, which require sensory information to form proper internal models and 
correct for internal and external disturbances. Therefore, it is important to design appropriate 
experimental methodologies that specifically allow to study the sensory system. 

 The 4D-EEG project 1.3
The 4D-EEG project is a collaboration among Delft University of Technology, VU 
University Medical Center, VU University, and Northwestern University, and is funded by 
the European Research Council (Advanced ERC grant, n. 291339). The 4D-EEG project 
studies the cortical involvement in motor control in unimpaired individuals and in individuals 
who suffered a stroke. The application of system identification techniques on the 
sensorimotor system generates quantitative descriptions of the dynamic relations between the 
different components of the sensorimotor system. Such descriptions are particularly 
interesting when obtained from a sensorimotor system which is engaged in a meaningful 
control task. Different research activities within the project include the development of: 
system identification techniques on signals recorded from the brain, source localization 
techniques, and diffusion tensor imaging (DTI). Combining the results from these different 
lines of research increases our understanding of the sensorimotor system; for individuals who 
suffered a stroke, the obtained understanding may aid setting therapeutic goals and select 
particular rehabilitation programs (Stinear, 2010), with improving functional outcome as the 
final objective. 

 Research approach 1.4
This thesis studies the cortical involvement in sensorimotor control by examining the 
responses to robotic proprioceptive stimulation of the wrist as recorded using EEG (a typical 
experimental setup is shown in Figure 1.4). The wrist stimulation serves two purposes. 
Firstly, it challenges individuals to control their wrist, thus engaging the sensorimotor system 
in control. Secondly, this stimulation generates responses in the sensorimotor system, which 
can be recorded using noninvasive measurement techniques. The responses from the muscles 
can be recorded using EMG, whereas the cortical responses can be recorded using EEG. The 
cortical responses have two particularly interesting aspects: the location (i.e. which brain 
region is involved in processing the sensory signal) and the time course, which reveals 
information about the dynamic relation between the stimulus and the cortex. As excess 
muscle stretch and muscle force, pain, and changes in temperature are avoided, the evoked 
cortical responses are assumed to origin from mechanoreceptors which connect to CNS 
through Aα and Aβ afferent fibers. First exploring cortical involvement in movement control 
in unimpaired individuals, makes it possible to determine how this cortical involvement is 
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altered after stroke. Importantly, experimental paradigms for studying the restitution or 
substitution aspects of recovery after stroke should ensure that compensation strategies are 
reduced to a minimum (Buma et al., 2010), which is achieved by the use of the robotic 
manipulator. 

Many nonlinearities are present in human movement (e.g. nonlinear behavior of sensors, 
nonlinear force-length and force-velocity relationships of muscles, and changing geometry of 
limbs leading to changes in lever arms). In a nonlinear system, the superposition principle 
does not hold, which means that the output is not proportional to the input; in other words 
scaling the amplitude of the input signal does not necessarily mean that the output signal 
scales the same amount. Many methods and techniques implicitly assume linearity. When 
repeatedly using the same somatosensory stimulus in combination with linear analysis 
techniques, as is often done when studying cortical evoked responses, possible nonlinear 
behavior is easily overlooked and might be assumed absent. Herein lies the danger of 
neglecting nonlinear behavior: the obtained model (i.e. description of the relation between 
sensory stimulus and cortical response) will only be valid for that specific stimulus, and can 
therefore only be descriptive. Previous studies have revealed that the relation between 
sensory stimulus and recorded cortical response is nonlinear to some extent (e.g. Snyder, 
1992, Tobimatsu et al., 1999, Jamali and Ross, 2013). Therefore, the applicability of linear 
analysis techniques in the study of somatosensory evoked cortical responses needs to be 
investigated. 

Perturbing the sensorimotor system using an intermittently applied brief stimulus reveals the 
response to an abrupt change in the system, whereas the use of continuous stimulation allows 
to study the sensorimotor while it is constantly and consistently engaged in performing a 
control task; the initial transient response can be omitted from the analysis and the steady 

 

 

 
Figure 1.4. Experimental setup. The right forearm of the participant is strapped into an armrest and 
the right hand is strapped to the handle, requiring no hand force to hold the handle. Both angle of 
and torque at the axis of the motor are recorded. 
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state behavior of the system can be studied. Many types of continuous stimulation signals 
have been used in the study of movement control, including white (or colored) noise, 
pseudo-random binary sequences (Kearney et al., 1997) and multisine signals (Schouten et al., 
2008a, Meskers et al., 2009, Mugge et al., 2010). Multisine signals are generated by summing 
multiple sinusoids; they have a fully customizable frequency content, allowing for increased 
signal-to-noise ratio (SNR) per frequency, leakage-free analysis and the ability to detect and 
quantify nonlinear distortions (Pintelon and Schoukens, 2012). These advantages make the 
multisine signal a good candidate for use in the investigation of a noisy and potentially 
nonlinear system, as it allows to quantify and characterize both noise and nonlinear behavior. 

 Problem statement 1.5
Most recovery after stroke occurs within the first six months and varies widely: some people 
regain full function, while others are left with severe disabilities. Increased insight in 
neurological recovery patterns after stroke will enable the development of more effective and 
patient-tailored rehabilitation programs, and of methods to test the effectiveness of these 
programs. Comprehension of neurological recovery can be enhanced by studying cortical 
involvement in sensorimotor control, with a focus on the processing of sensory information; 
the problem is that this requires carefully designed experiments and analysis techniques, 
which specifically take into account the possibly nonlinear behavior of the sensorimotor 
system. 

 Aim and outline 1.6
The overall objective is to enhance the understanding of the sensorimotor system in both 
unimpaired individuals and individuals who have suffered a stroke. The goal of this thesis is 
to characterize the cortical responses evoked by robotic joint manipulation in unimpaired 
individuals, and to establish how it is altered during and after stroke recovery.  

Chapters two to six have been written as journal articles and are therefore considered 
autonomous chapters.  

Chapters 2 to 4 explore the characteristics of the cortical evoked responses in unimpaired 
individuals. The aim of Chapter 2 is to determine the appropriate analysis tools for 
characterizing the cortical evoked responses to robotic joint manipulation. The obtained 
findings are applied in Chapter 3, which quantifies the linear and nonlinear contributions to 
the cortical responses obtained from continuous somatosensory stimulation. Chapter 3 
reveals that the response is dominated by nonlinear behavior, such that application of linear 
system identification tools is not appropriate. Therefore, in Chapter 4 the relation between 
stimulus at the wrist and the response in the cortex is modeled using novel nonparametric 
nonlinear modeling techniques. 

The last chapters study the cortical evoked responses in individuals who have suffered a 
stroke. Measurements are performed during both the subacute and the chronic phases of 
stroke. In Chapter 5 the differences in cortical evoked responses are explored between 
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individuals with different levels of impairment who are in the chronic phase after stroke and 
unimpaired age-matched individuals to investigate if cortical evoked responses relate to level 
of impairment. Chapter 6 presents a measurement protocol and analysis strategies to track 
the location and intensity of the responses in longitudinal recordings. These recordings take 
place during four measurement points from the subacute to the chronic phase of stroke, 
allowing for the study of recovery mechanisms and the development of predictive models. 
Preliminary findings are presented and a relation between these findings and the levels of 
sensory and motor impairment is explored, with improving prediction of functional outcome 
as the ultimate goal. 

Finally, Chapter 7 discusses and connects the main conclusions, and reflects on the research 
approach by discussing limitations and future directions. 

  



Chapter 2 
Frequency Domain Characterization of the 

Somatosensory Steady State Response using 
Electroencephalography 

Martijn P. Vlaar, Frans C.T. van der Helm, and Alfred C. Schouten 

A continuous somatosensory stimulation evokes a steady state response in the cortex, which 
can be measured using electroencephalography. Studying somatosensory evoked cortical 
responses can increase our understanding of cortical involvement in movement control. 
Previous studies reported a cortical response with power at frequencies that were not in the 
stimulation signal, indicating nonlinear behavior. The goal of this study was to characterize 
the cortical evoked response and establish the type of system identification tools that can be 
used to study the relation between applied stimulus and evoked response. Wrist joint 
manipulation using a multisine signal was applied to unimpaired individuals to investigate the 
properties of the steady state response in the frequency domain. The results showed a 
response in the contralateral sensorimotor cortex at the stimulated frequencies, yet with more 
power at their even harmonics, indicating substantial nonlinear behavior. It was concluded 
that the observed cortical response to a mechanical somatosensory stimulation is nonlinear; 
however, shows no time-variant behavior or subharmonics, allowing for the application of a 
broad range of (non)linear system identification tools. 

  

IFAC Symposium on System Identification 2015, 48(28), 1391-1396 
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 Introduction 2.1
Movement control entails the feedforward and feedback control of posture. The central 
nervous system uses information from sensors (proprioceptors) to control actuators 
(muscles). Movement disorders cause erroneous control and often have an unknown 
pathophysiology (Obeso et al., 2014, Smith et al., 2014b). By studying movement control we 
can increase our understanding of the pathophysiologies of movement disorders. Much work 
has been done regarding movement control with respect to reflexive feedback (e.g. Kearney 
et al., 1997, Schouten et al., 2008a, Lewis et al., 2010). These studies use system identification 
techniques to assess joint and muscle dynamics, and focus on short latency reflexive 
feedback, which is believed to originate from the spinal cord. 

The use of system identification techniques to assess the cortical involvement in movement 
control is currently underexplored. Cortical activity can be noninvasively recorded with a high 
temporal resolution and reasonable spatial resolution using electroencephalography (EEG). 
In this study we take a first step to explore the relationship between somatosensory input at 
the periphery and the response in the cortex, using system identification techniques. 

Nevertheless, extracting information from cortical signals generated by external stimuli has 
been around for a long time. Cortical responses to sensory stimuli can be obtained by 
applying transient stimuli or repetitive stimulation (Capilla et al., 2011). Due to the poor 
signal-to-noise ratio of cortical signals recorded with EEG, many (in the order of hundreds) 
stimuli have to be applied to enable averaging and therewith sufficient noise reduction. An 
event related potential (ERP) can be obtained by averaging the cortical response to transient 
stimuli. Alternatively, by recording the cortical response to repetitive stimuli (such as a square 
wave or sinusoidal signal) and omitting the transient response, a steady state response (SSR) is 
obtained (Regan, 1966). SSRs are obtained from stimulating a specific sensory systems (e.g. 
visual or auditory system). In the visual system SSRs have been obtained for clinically related 
purposes, such as investigating migraine (Angelini et al., 2004) and schizophrenia (Clementz 
et al., 2004, Brenner et al., 2009) as well as to obtain an improved general understanding of 
the visual system (Narici et al., 1998, Herrmann, 2001). Similarly, SSRs have been obtained 
from the auditory system (Stapells et al., 1984).  

SSRs from the somatosensory system can be studied for example by applying electrical 
stimulation over sensory nerves (Narici et al., 1998) or by applying mechanical stimuli. Due to 
our interest in movement control, we focus on mechanical stimuli as they are closest to 
disturbances we experience during daily tasks. The number of studies investigating 
mechanically evoked SSRs (MSSRs) in humans is limited; Table 2.1 gives an overview of all 
published studies involving MSSR to the best of our knowledge. MSSRs are in most studies 
obtained using tactile stimulation, either using low frequencies (<40 Hz) signals (e.g. 
Giabbiconi et al., 2004, Nangini et al., 2006) or a high frequency carrier signal (128-200 Hz) 
which is amplitude modulated at lower frequencies (<40 Hz) (e.g. Tobimatsu et al., 1999, 
Müller-Putz et al., 2006). MSSRs have been obtained from stimulating the fingers, palm of 
the hand, sole of the foot and from the wrist, resulting in a response in the contralateral 
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Figure 2.1. Experimental setup. The right forearm of the participant is strapped into an armrest and 
the right hand is strapped to the handle, requiring no hand force to hold the handle. Both angle of 
and torque at the axis of the motor are recorded. 

sensorimotor area. MSSRs are not often obtained using joint manipulation (Campfens et al., 
2013, Piitulainen et al., 2013), yet are most relevant when interested in studying movement 
control. Interestingly, previous studies reported a response at harmonics of the stimulated 
frequency, while other studies did not. One study even reports the presence of subharmonics 
in the MSSR. Harmonics and subharmonics in the MSSR indicate nonlinear behavior of the 
system. Since (sub)harmonics will govern the type of usable analysis tools, it is important to 
establish their presence. 

System identification techniques can be a valuable tool to investigate the cortical involvement 
during movement control. The goal of this study is to characterize the mechanically evoked 
steady state response (MSSR) at the cortex and therewith establish the type of system 
identification tools that can be applied to this type of signals. 

 Methods 2.2
Experimental protocol 
To evoke a proprioceptive MSSR at the cortex, small rotations were imposed on the right 
wrist of the participant using a robotic manipulator (MOOG, The Netherlands), see Figure 
2.1. EEG was recorded using a 128 channel EEG cap (ANT, The Netherlands) and amplifier 
(TMSi, The Netherlands) which acquired data at 2048 Hz. Three unimpaired volunteers 
participated in the experiment. The study was approved by the local research ethics 
committee. All participants gave written informed consent prior to participation. The 
participants performed a passive task in which they were instructed to relax and ignore the 
imposed movements of the wrist. The participants were furthermore instructed to gaze at the 
circle in the center of the screen and not to move during trials. 
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Table 2.1. Literature on MSSR. Literature is categorized based if the authors reported on finding 
harmonics in the MSSR. Asterisk (*) indicates there was ambiguity about the presence of harmonics. 

No harmonics Weinberg et al. (1989), Kelly and Folger (1999), Müller et al. (2001), (Smith et 
al., 2014b), Giabbiconi et al. (2004), Müller-Putz et al. (2006), Nangini et al. 
(2006), Giabbiconi et al. (2007), Bardouille and Ross (2008), Adler et al. (2009), 
Bardouille et al. (2010), Severens et al. (2010), Spitzer et al. (2010), Spitzer and 
Blankenburg (2011), Voisin et al. (2011a), (Prochazka and Gorassini, 1998), 
Voisin et al. (2011b), Breitwieser et al. (2011), Breitwieser et al. (2012), Severens 
et al. (2013), Teale et al. (2013), Canizales et al. (2013), Marcoux et al. (2014), 
Ahn et al. (2014), Smith et al. (2014a), Pang and Mueller (2014), Pokorny et al. 
(2014) 

Harmonics Snyder (1992), Tobimatsu et al. (1999), Tobimatsu et al. (2000)*, Goto et al. 
(2003)*, Jamali and Ross (2012), Budd and Timora (2013), Campfens et al. 
(2013), Jamali and Ross (2013), Piitulainen et al. (2013), Porcu et al. (2013), Ross 
et al. (2013), Timora and Budd (2013) 

Subharmonics Langdon et al. (2011) 

 Sinusoidal stimulation signals with multiple excited frequencies (e.g. f1 and f2) allows for 
detection of nonlinear distortions at harmonics of these frequencies (e.g. 2f1 and 3f2) as well as 
at intermodulation frequencies (e.g. f1+f2 and 2f1-f2). Intermodulation distortions and higher 
harmonics can reveal the order of the nonlinearity, where the higher harmonics might be 
attenuated by for example the presence of low pass characteristics. It is important to note 
that the use of square waves as stimulation signals will (unintentionally) include higher 
harmonics in the input signal (Teng et al., 2011) and will therefore hinder determining the 
origin of power at the harmonics in the recorded EEG signal. 

In this study we applied a multisine signal as a periodic stimulus, which is defined as: 

 ( ) ( )
1

0
1

cos 2
N

k k
k

r t A πf kt f
−

=

= +∑  (2.1) 

where k is the frequency line (integer number), Ak and kφ  are the amplitude and phase at 
frequency line k, f0 is the frequency resolution in hertz, N is the number of samples (as well as 
frequency lines) in one period and t is the time vector describing one period of the signal. 
Frequency line k corresponds to the Fourier coefficients, where k = 0 is the DC coefficient 
and is omitted to have a zero-mean signal. The multisine signal was designed at a sampling 
rate of 2048 Hz to match the sampling rate of the robotic manipulator and had a period 
duration of 1 s (i.e. f0 = 1 Hz, N = 2048). The excited frequencies in the multisine signal were 
3, 7 and 11 Hz. Phases were randomly selected from a uniform distribution between 0 and 2π 
rad. The amplitude of the excited frequencies decayed with -20 dB/dec by decreasing Ak for 
increasing values of k, so the spectrum of the velocity signal is flat (the stretch sensors in the 
muscles are thought to be primarily velocity sensitive). The amplitude of the time domain 
signal was set to have a maximum absolute amplitude 0.03 rad (~1.7 deg). An experiment 
consisted of twenty trials, where each trial is defined as 60 s consecutively recorded periods. 



Chapter 2 

 15 

Between trials there was a small break. The first 5 periods of each trial were discarded to 
reduce transient effects. For each participant 1100 periods of 1 s were used for analysis. 

Data processing 
Data processing was performed using FieldTrip (Oostenveld et al., 2011) and MATLAB 
R2014a (The Mathworks, Inc., USA). Electrodes with poor connectivity to the scalp and 
therefore picking up large amounts of noise were removed from the analysis. All data were 
referenced to the common average and were high-pass filtered with a fourth order 
Butterworth filter (cut-off frequency 2 Hz). Due to the high electrical conductivity of the 
brain, a signal recorded at an EEG electrode contains contributions from multiple cortical 
sources. This volume conduction effect can be mitigated by separating the mixed signals at 
the electrodes into independent signals at separate sources using an independent component 
analysis (ICA) (Makeig et al., 1996a). ICA is a technique commonly used for neural signals 
and allows for blind source separation, meaning no prior knowledge is required on the signal 
mixing process. The number of obtainable components is one less than the number of 
recording channels; the use of a common average reference reduces the rank of the recorded 
date by one. The output of the ICA algorithm is a set of weights, which determine how all 
electrodes are weighed in each component. Relevant signal sources can in this way be 
separated from noise sources (e.g. eye blinks and muscle contractions).  

Analysis tools 
All data are transformed to the frequency domain, where [ ] ( )pX k  represents the Fourier 

transformed signal of an independent component (obtained with ICA) for each recorded 
period p. 

The signal-to-noise ratio (SNR) for a signal at a component is calculated using the power in 
the signal (2.2) and the sample variance (2.3). 

 ( ) [ ] ( )
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where P is the total number of periods (P = 1100). The SNR is subsequently calculated: 
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Only the component with highest SNR is used for further analysis, as this component is 
assumed to reflect the response most strongly related to the stimulus. 
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Figure 2.2. Responses at the component with the highest SNR for each participant (P1, P2 and P3). 
The first column shows weight distribution of electrodes in the component (presented on arbitrary 
symmetric scale: red is positive weighing and blue is negative weighing of the electrodes indicated in 
black dots). Second column shows averaged time response. Third column shows the averaged 
autospectral density for all periods and the fourth column shows the auto spectral density for the 
average of all periods (dots) and additionally the noise level (solid line) as calculated in (2.3). 

 

The time domain response at the component with the highest SNR can be obtained by 
averaging over all periods, thereby reducing the influence of noise. The auto spectral density 
of the response can be obtained in two ways: (I) by calculating the auto spectral density for 
each of the 1100 periods and subsequently averaging the auto spectral density over these 
periods; or (II) by averaging the time domain signal over 1100 periods and subsequently 
calculating the auto spectral density over the obtained signal. Both methods have been 
applied before (e.g. Ross et al., 2013) and yield different information on the cortical response. 
In this paper both methods were applied. 

Taking a Fourier transform over one whole 55 s trial allows us to see ‘in between’ the 
frequencies which enables detection of slow time-variant behavior (Lataire and Pintelon, 
2009). The frequency resolution is now increased from 1 Hz to 1/55 Hz. The frequency 
points in between the integer frequencies give an indication of the noise level. If there is a 
higher response at frequency points very close to the integer frequencies, we can conclude 
that there are slow time variations present. If this behavior occurs, the measured response 
will not exactly fit the (rectangular) observation window of 1s and leakage will occur. 

Additionally we want to investigate the presence of subharmonics. Considering we only 
stimulated odd integer prime frequencies, these subharmonics are most likely to occur at non-
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integer frequencies (e.g. at 1 2 , 1 3  and 1 4  of a stimulated frequency). To obtain a 
frequency resolution that permits the detection of these frequencies we removed some 
additional periods from the beginning of a trial, leaving 48 periods for each trial. By averaging 
all twenty trials with 48 consecutively recorded periods, we obtain strong noise reduction as 
well as a frequency resolution allowing to check for the presence of subharmonics. 

A response at unstimulated frequencies indicate nonlinear behavior. Since only odd 
frequencies were excited, we can distinguish between odd ( ( ) ( )y u y u= − − ) and even  

( ( ) ( )y u y u= − ) nonlinear behavior, since they result in a response at even and odd 

frequencies respectively (Pintelon and Schoukens, 2012). By regarding the unstimulated 
frequencies that show a response and relating them to the frequencies in the input signal, an 
estimate of the order of the nonlinearity can be obtained. 

 Results 2.3
Figure 2.2 shows the response of the component having the highest SNR for each 
participant. Each of these components has a similar weight distribution, indicating a similar 
set of electrodes contributes to the signal at this component. Such a distribution is expected 
to be the result of a cortical source in the contralateral (left) sensorimotor area. The average 
time domain response for each participant is presented in the second column of Figure 2.2. 
The responses are not identical; however, when directly comparing them in Figure 2.3 it is 
apparent that the three response share many features. 

 

 

 
Figure 2.3. Average cortical response for the ICA component with the highest SNR for all three participants. 
Blue line: participant 1, red line: participant 2, yellow line: participant 3. Correlations between the signals 
ranged from 0.54 to 0.65, which is relatively high considering these cortical responses come from (low SNR) 
recordings from different participants. 
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Figure 2.4. Frequency domain results for a representative participant (participant 1). Top graph is 
similar to the top right graph in Figure 2; however, the frequency points have been color/shape 
coded to provide more details. Black circles: stimulated frequencies (3, 7, 11 Hz), red triangles: odd 
unstimulated frequencies, blue squares: even unstimulated frequencies, green solid line: noise level 
nX(k). Middle graph shows the FFT of twenty averaged 48 s trials. Black squares: integer 
frequencies, red circles: non-integer frequencies. Bottom graph shows the FFT of one 55 s trial. 
Black squares: integer frequencies, red circles: non-integer frequencies. 

 

The auto spectral density (Figure 2.2, column 3) shows the presence of the intrinsic alpha 
(around 10 Hz) and beta (around 20 Hz) rhythms, which are typical for a wakeful relaxed 
state. The power for these rhythms varies per participant. The typical decrease of power with 
1/f is often observed in biological systems. When we average all the recorded responses 
before calculating the power (Figure 2.2, column 4), the intrinsic rhythms are less apparent. 
This occurs because these rhythms are not related to the stimulus and will therefore be 
removed by averaging. Hence, the intrinsic rhythms will for a large part be regarded as noise, 
as can be seen in the noise level (Figure 2.2, column 4). 
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Our stimulation signal only contained three frequencies. Figure 2.2 (column 4) illustrates 
there is a response at many more frequencies than the number of stimulated frequencies. 
More detailed results are presented for one representative participant in Figure 2.4. The top 
graph of Figure 2.4 shows the power in the signal after first averaging over 1100 periods. 
There is little power in the stimulated frequencies compared with the unstimulated 
frequencies. The relative output power at the stimulated frequencies is limited to 2%, 18% 
and 5% for the three participants respectively. It is clear that most of the power is in the even 
unstimulated frequencies (e.g. 6, 8, 10, 14, 18 and 22 Hz). Figure 2.4 (middle graph) shows 
that there is no response at 1 2 , 1 3  and 1 4  of the stimulated frequencies, suggesting there 
are no subharmonics present. All frequencies with power above noise level are integer 
frequencies, except around the alpha rhythm and around 50 Hz. Figure 2.4 (bottom graph) 
illustrates the magnitude of the Fourier transform of one out of twenty 55 s trials. There are 
54 data points in between each integer frequency. The dots around 50 Hz indicate the noise 
picked up from the mains. Around 8 to 10 Hz the effect of the alpha rhythm is visible. The 
neighboring non-integer frequencies around 18 and 22 Hz do not show increased power 
compared with the non-neighboring non-integer frequencies, indicating there is no time 
variant behavior of the cortical response. 

 Discussion 2.4
In this study we used novel frequency domain signal analysis techniques to characterize the 
cortical response to mechanical somatosensory stimuli. Exploring the presence of 
nonlinearities and time variant behavior is an essential step in system identification, since it 
determines which analysis techniques can be used to study the system. This initial 
characterization is often neglected in the neuroscience community, where measures such as 
linear coherence are often used and where the cortical response is often only analyzed at the 
stimulated frequency. We provide evidence for a nonlinear yet time-invariant response. 

Mechanical sensory stimuli evoke a cortical response 
By applying small rotations to the wrist joint we evoked a response in the brain which is 
correlated to those rotations, as has been correspondingly shown in previous literature on 
MSSRs. The averaged time domain responses (Figure 2.3) reveal similarity between 
participants, suggesting the signals are generated by a similar system. The applied rotations 
stimulate the proprioceptive systems, although we cannot exclude contributions from 
cutaneous receptors. For the proposed method of characterizing the response, the exact 
origin of the response is not crucial. Dedicated experiments can be designed to separate 
proprioceptive and cutaneous contributions. 

Harmonics and intermodulation 
The results show most of the power is in the unstimulated frequencies, more specifically at 
the even harmonics, indicating the presence of an even nonlinear operator. Therefore, 
describing the relation between stimulus and response in the EEG using linear techniques 
should be approached with caution. The response of a nonlinear system depends on the 
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amplitude and distribution of the stimulus signal, as well as on the operating point in which 
the system is studied, thereby hindering comparison between recordings. A nonlinear system 
can be linearized; however, particularly in an even nonlinear system this will have little chance 
of success. The strongest response appears at twice the stimulated frequencies (2f1) and at 
combinations between two stimulated frequencies (f1+f2 and f1-f2), indicating the presence of a 
second order nonlinear operator. However, the response shows power at other frequencies 
than the harmonics and intermodulation products for the second order, pointing to a 
complex static or dynamic nonlinear system. 

Subharmonics 
Subharmonics are commonly found in VSSRs (e.g. Herrmann, 2001, Angelini et al., 2004). 
The occurrence of subharmonics in SSSRs was only found by Langdon et al. (2011). In this 
study we did not encounter the presence of subharmonics. The lack of subharmonics and the 
presence of a periodic response indicates the system behaves as a “period in, same period 
out” system which permits the use of a large set of (non)linear system identification 
techniques (Pintelon and Schoukens, 2012). 

Time variant behavior 
The observed responses appears to be limited to the integer frequencies; the power at directly 
neighboring frequencies is not higher than at the non-direct neighbors of integer frequencies, 
indicating there is no slow time variant behavior within a trial. Because the response of 
interest occurs at integer frequencies, there will be no leakage when the 1 s segments are 
analyzed without applying a window. 

Recommendations and future work 
The apparent nonlinearity in the system can be further investigated using for example cross 
frequency coupling measures (Yang et al., 2015). Additional research will reveal if the 
response is governed by a static nonlinear operation with a neural time delay or if there are 
also dynamics involved. Increased understanding of the cortical response to stimulation 
during a passive task paves the way for investigating the role of the cortex in active 
movement control tasks. The presented approach can be similarly applied to different types 
of mechanical, visual or auditory stimulation. 

 Conclusions 2.5
The cortical response to mechanical stimulation of the wrist contains substantial nonlinear 
components. The applied novel system identification techniques allow for the extraction of 
extra information from the mechanically evoked steady state responses (MSSR) without extra 
experimental effort. The observed cortical response to a mechanical somatosensory 
stimulation is time invariant and nonlinear; however, shows no subharmonics, allowing for 
the application of a broad range of (non)linear system identification tools. 



Chapter 3 
Quantifying Nonlinear Contributions to Cortical 

Responses Evoked by Continuous Wrist 
Manipulation 

Martijn P. Vlaar, Teodoro Solis-Escalante, Alistair N. Vardy,  
Frans C. T. van der Helm, and Alfred C. Schouten 

Cortical responses to continuous stimuli, as recorded using either magneto- or 
electroencephalography (EEG), have shown power at harmonics of the stimulated frequency, 
indicating nonlinear behavior. Even though the selection of analysis techniques depends on 
the linearity of the system under study, the importance of nonlinear contributions to cortical 
responses has not been formally addressed. The goal of this paper is to quantify the nonlinear 
contributions to the cortical response obtained from continuous sensory stimulation. Ten 
unimpaired individuals participated in this study. EEG was used to record the cortical 
response evoked by continuous robotic manipulation of the wrist joint. Multisine stimulation 
signals (i.e. the sum of several sinusoids) elicited a periodic cortical response and enabled 
assessment of nonlinear contributions to the response. Wrist dynamics (relation between 
joint angle and torque) were successfully linearized, explaining 99% of the response. In 
contrast, the cortical response revealed a highly nonlinear relation; most power (~80%) 
occurred at non-stimulated frequencies. Moreover, only 10% of the response could be 
explained using a nonparametric linear model. These results indicate that the recorded evoked 
cortical responses are governed by nonlinearities and that linear methods do not suffice when 
describing the relation between mechanical stimulus and cortical response.  

IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017, 25(5), 481-491 
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 Introduction 3.1
Sensory feedback is crucial for effective movement control and allows compensating for 
internal and external disturbances. For example, proprioceptors in the human body, such as 
muscle spindles and Golgi tendon organs, provide sensory feedback on the state of limbs 
(i.e., position, velocity, and force). Reflexive control action can originate from spinal level 
(short latency) and from supra-spinal level (long latency) (Pruszynski and Scott, 2012). 
Disturbed sensory function or sensorimotor integration is often implicated in movement 
disorders (Patel et al., 2014). The functioning of the somatosensory system can be assessed by 
applying sensory stimuli and studying muscle or brain response (Mortimer and Webster, 
1979, Pisano et al., 2000, Rossini et al., 2001).  

Sensory stimuli are commonly presented as transients; such as when investigating the patellar 
stretch reflex. The response of a muscle to such a stretch can be recorded using 
electromyography (EMG)(Pruszynski et al., 2011). The dynamic cortical response to a 
transient sensory stimulus can be noninvasively recorded using magnetoencephalography or 
electroencephalography (EEG) and is referred to as the event related field or event related 
potential (ERP). Investigating the sensorimotor system with intermittent short lasting stimuli 
only reveals the transient response of the system. As an alternative, continuous stimuli, such 
as sinusoidal, square wave or noise-like signals, are capable of continuously engaging the 
system in the processing of information; therefore revealing both transient and steady state 
behavior (Kearney and Hunter, 1990). While transient responses depend on initial conditions, 
steady state responses present the system behavior accommodated to the stimulation and 
regardless of the initial state.  

Several studies used continuous mechanical stimuli to investigate intrinsic and reflexive limb 
dynamics by recording the mechanical and muscle response during postural control tasks 
(Mirbagheri et al., 2001, Perreault et al., 2008, Schouten et al., 2008a). The role of the cortical 
structures in reflexive feedback control is yet still not fully understood (Pruszynski and Scott, 
2012). Cortical sensory processing of continuous mechanical stimulation has been 
investigated, for example using vibrotactile stimulation to the fingers, hand and foot 
(Tobimatsu et al., 2000, Müller et al., 2001, Giabbiconi et al., 2004). 

Increased insight in normal and pathological sensorimotor function can be obtained by 
modeling the relation between stimulus and response. To work towards developing these 
models it is essential to determine which model classes are appropriate. Studies using 
continuous vibrotactile stimulation report responses at frequencies other than the frequencies 
present in the stimulus, illustrating a nonlinear relationship between the stimulus and the 
cortical response measured by EEG (Snyder, 1992, Tobimatsu et al., 1999, Langdon et al., 
2011, Jamali and Ross, 2013). Mechanical (i.e. joint angle and torque) and EMG recordings 
obtained from continuous mechanical stimulation also show a small response at non-
stimulated frequencies (Mugge et al., 2010, Campfens et al., 2013, Forbes et al., 2014). 
Nonlinear responses in the sensorimotor system could result from sensors (e.g. unidirectional 
sensitivity), muscles (e.g. unidirectional force generation and a nonlinear force-length 
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relationship) and other parts of the sensorimotor system including the central nervous 
system.  

Although many studies acknowledge the nonlinear properties of the cortical response to 
sensory stimuli, it remains unclear to which degree the nonlinearities govern the response. 
Systems with weak nonlinear behavior can be studied in a specific operating range, facilitating 
linear analysis. Linear system identification techniques are matured, computationally 
undemanding, require little a priori knowledge and can reveal many characteristics of the 
system under study, including time delays. Linear techniques are useful if the system under 
study can be properly linearized, which should be checked during analysis. If the linear 
approximation only describes a small portion of the behavior of the system, any conclusions 
based on the linearized system will most likely not be applicable to the actual system under 
study. The well-established and accessible linear system identification framework should in 
this case be exchanged for a nonlinear system identification approach. Applying system 
identification to systems with strong nonlinear behavior requires techniques which are 
computationally more demanding and often require a priori selection of a model structure or 
order.  

To determine which analysis tools are appropriate to study the cortical response to sensory 
stimuli, it is imperative to study the contributions in the cortical response to sensory stimuli 

 

 

 
Figure 3.1. Experimental setup. A) The right forearm of the participant is strapped into an armrest and 
the right hand is strapped to the handle, requiring no hand force to hold the handle. B) Visual feedback 
(the target (red circle) is static and always visible during a task, the blue circle is only visible during the 
active task and indicates the position of the handle and the task is to keep the blue circle in the red circle). 
C) Close up of the hand in the robotic manipulator. D) Block scheme depicting the robotic manipulator 
and the human. The perturbation signal (angle or torque) is applied to the human by the robotic 
manipulator, which will present the human with a certain angle (φ). In case of the torque perturbation the 
torque on the handle (T) is fed back to the robotic manipulator (dashed line). The robotic manipulator 
ensures the angle is set such that the torque on the handle (T) matches the perturbation signal. 
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due to nonlinearities in the system, which have never been systematically quantified.  

Using multisine stimulation signals, which are designed by summing a specific set of 
sinusoidal signals (Pintelon and Schoukens, 2012), we can detect nonlinearities in the cortical 
response at frequencies which are not present in the stimulation signal. The goal of this paper 
is to quantify the nonlinear contributions to the cortical response obtained from continuous 
sensory stimulation. To the best of our knowledge, the cortical response obtained from 
continuous joint manipulation has only been investigated in one previous study by Campfens 
et al. (2013); however, they analyzed the response only at the excited frequencies. 

A robotic manipulator was used to apply continuous mechanical manipulation of the wrist 
joint and the response of the sensorimotor system was analyzed at three levels: mechanical 
response (joint angle and torque), muscle activity (electromyogram, EMG), and cortical 
activity (EEG). The nonlinear contributions are quantified in passive and active tasks, where 
the active tasks are performed to evoke and analyze EMG responses. 

 Materials and Methods  3.2
Participants 
Eleven right-handed unimpaired volunteers (5 men, 6 women; age 22-25 years) with no self-
reported history of neurological disorders participated in this study. Participants were all right 
handed (laterality index greater or equal to 80 according to the Edinburg Handedness 
Inventory (Oldfield, 1971)). The study was approved by the local research ethics committee. 
All participants gave written informed consent prior to participation. Participants were well 
rested and refrained from alcohol and drug intake 12 hours before the experiment. 

Experimental setup 
A one degree-of-freedom robotic wrist manipulator (Wristalyzer by MOOG Inc, Nieuw-
Vennep, The Netherlands) applied the stimulation as angular or torque perturbations to the 
right wrist of the participants (see Figure 3.1A). The handle was adjusted so that the axis of 
rotation of the wrist was aligned with the axis of rotation of the manipulator (see Figure 
3.1C). The neutral angle was defined as the angle of the wrist when fully relaxed, resulting in a 
slight flexion posture. A screen placed at 1.5 m from the participant presented a target and 
task relevant feedback (see Figure 3.1A&B). The participants were instructed to gaze at the 
center of the screen throughout the experiment to minimize head and eye movements. All 
recordings were performed in a slightly dimmed soundproof cabin. 

Figure 3.1D illustrates the closed-loop configuration of the robotic manipulator and the 
human, and indicates the recorded signals. All signals were sampled at 2048 Hz (136 channel 
Refa by TMSi, Oldenzaal, The Netherlands), ensuring synchronicity between all signals. Scalp 
potentials were measured using a cap with 126 Ag/AgCl electrodes (WaveGuard by ANT, 
Enschede, The Netherlands). The electrodes were arranged according to the 10-5 system 
(Oostenveld and Praamstra, 2001). The mastoid electrodes on the cap were left unconnected. 
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The participant ground electrode was connected to the left mastoid (Ag/AgCl electrode, Blue 
Sensor N by Ambu, Ballerup, Denmark). Muscle activity was measured from the flexor carpi 
radialis (EMGF) and extensor carpi radialis (EMGE) using electrode pairs (Blue Sensor N by 
Ambu) attached to the skin and placed over the muscle belly with an electrode distance of 10 
mm. Handle angle and applied torque were measured from analog output signals of the wrist 
manipulator and were galvanic isolated from the amplifier using optical isolation amplifiers 
(TMSi, Oldenzaal, The Netherlands). 

Tasks 
Each participant performed two tasks: an active task and a passive task. In the passive task 
the participant was instructed to relax and to ignore the angular perturbations imposed by the 
manipulator. During the passive task the screen only presented the target and no feedback 
was given. The intensity of the angular perturbation was set such that the rotation of the 
handle had a root mean square (RMS) of 0.02 rad (≈1.1 deg). Previous studies on the wrist 
joint applied perturbations in a similar range (Schouten, 2004, Campfens et al., 2013). In the 
active task the participant was instructed to put effort in maintaining the wrist in the neutral 
angle while the manipulator imposed torque perturbations. During the active task the 
feedback screen presented the angle of the handle (see Figure 3.1B), which was low-pass 
filtered online (0.5 Hz, 2nd order Butterworth) to avoid rapid eye movements and to prevent 
the frequencies in the perturbation signal from stimulating the visual system. The intensity of 
the torque perturbations during the active task was iteratively set such that the rotation of the 
handle had an RMS of around 0.02 rad. By studying the system for both tasks around the 

 

 
 

 
Figure 3.2. Perturbation signals. Top graphs: power spectral density (PSD) of the perturbation signals. 
Bottom graphs: a time domain representation of two out of seven realizations (thin black and thick gray) 
for both types of perturbation signal. The two realizations have identical frequency content and power 
however the phases are randomly distributed for each of the realizations resulting in different time 
courses of the signals (maximum correlation for any time shift for the two shown angular perturbation 
signals was 0.61 and for the torque perturbation signals 0.57). 
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same operating point and applying small rotations allows for comparison between the tasks 
and facilitate linearization. Prior to the experiment participants were required to practice the 
tasks. 

Perturbation signal selection 
The type of signal used to provide continuous manipulation of the wrist was a random phase 
multisine signal, which is a periodic signal consisting of several sinusoids summed together 
(Pintelon and Schoukens, 2012) as in: 
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where k is the frequency line (integer number), which corresponds to the Fourier coefficients 
(k = 0 is the DC coefficient and is omitted to obtain a zero-mean signal), Ak is the amplitude 
at frequency line k which can be zero or nonzero, f0 is the frequency resolution in hertz, 
defined by period length T in seconds ( )0 1f T= , kφ  is the random phase at frequency line 

k which is taken from a uniform distribution, N is the number of samples in T which is 
defined by the sampling frequency, and t is the time vector. Frequencies where the amplitude 
is nonzero compose the set of excited (i.e. stimulated) frequencies { }exf . 

Multisine signals allow for broadband excitation and system identification over a desired 
frequency range, and have several advantages in system identification over random 
perturbation signals such as (white) noise. Firstly, multisine signals allow concentrating signal 
power in a limited number of frequencies, which increases the input signal-to-noise ratio 
(SNR) at those frequencies while maintaining the same stimulation amplitude. Secondly, the 
noise levels can be quantified and reduced by recording multiple periods. Thirdly, multisine 
signals allow for leakage-free analysis due to their periodicity. Finally, by proper signal and 
experiment design a multisine perturbation signal allows for the detection and quantification 
of nonlinear distortions. 

There exists a large class of nonlinear systems which, when excited with a periodic input 
signal, will generate a periodic response with the same period as the input. This class includes 
polynomials, saturations and rectifiers amongst many other systems. When repeatedly 
perturbing such a system with a multisine signal, the system will be excited in the same way 
and will therefore generate the same output (Pintelon and Schoukens, 2012). The presence of 
nonlinear distortions generated by these systems can be revealed by using different 
realizations of a multisine signal, which have different phases but the same excited 
frequencies and amplitudes per frequency. As for a nonlinear system the superposition 
principle does not hold, perturbing the system using a different multisine realization (i.e. 
different time course) will excite the nonlinear system in a different way. This property will be 
exploited in the analysis by calculating to what extent a nonparametric linear model will be 
able to describe the input-output relation regarding all different realizations, which should be 
high for a linear system. 
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When using a multisine signal where only odd frequency lines are excited (e.g. k = 1,3,5) we 
can, besides quantifying the nonlinear contributions, also further describe the type of 
nonlinear behavior which will be helpful in a subsequent (non)parametric nonlinear modeling 
step. A linear system will show a response only at the excited frequencies. Nonlinear systems 
will show a response at unexcited frequencies, which can be harmonics of the excited 
frequencies (e.g. 2fex1) or intermodulation products (e.g. fex1 + fex2). Nonlinear systems can have 
an odd or even behavior, or show both behaviors at the same time. When an odd nonlinear 
system (i.e. ( ) ( )y u y u= − − ) is excited at an odd frequency line, the response will only 

contain power at harmonic odd frequency lines. When an even nonlinear function (i.e. 
( ) ( )y u y u= − ) is excited at an odd frequency line, the response will only contain power at 

harmonic even frequency lines. More generally, when perturbing a system with a signal 
containing only odd frequency lines, any power that is present in the (noise free) output 
signal at the even frequency lines must be due to nonlinear distortions generated by an even 
or even and odd nonlinear function. Additionally, exciting only odd frequency lines ensures 
there is no disturbing effect of even nonlinear distortions on the excited frequency lines. This 
characteristic allows for differentiation between even and odd nonlinear distortions, while 
maintaining the ability to perform system identification over the chosen (odd) frequency 
range of interest. 

Perturbation signal design 
Multisine perturbation signals with a period of 1 s were designed, resulting in a frequency 
resolution of 1 Hz. The excited odd frequency lines are 1, 3, 5, 7, 9, 11, 13, 15, 19, 23 Hz, 
resulting in a total of 10 excited frequencies. As mentioned above, selecting these frequencies 
allows for the detection of even and odd nonlinear distortions. Additionally, the dynamics of 
the wrist are observable within this frequency range (Schouten et al., 2004). Seven different 
realizations of a random phase multisine were applied, as at least seven realization are needed 
to preserve the properties of the maximum likelihood estimator (such as consistency) in 
possible future parametric modeling step (Schoukens et al., 2012). 

All perturbation signals were generated offline and the same set of signals was used for all 
participants (see Figure 3.2). The angular perturbation signal was designed to have equal 
power on the first three excited frequencies and a decreasing power for the higher 
frequencies (-20dB/decade slope), which is a tradeoff between reduced predictability of the 

 

 
 

 
Figure 3.3. Schematic representation of the composition of one 36 s trial. Each lobe represents one 1s 
period of the perturbation signal and the three different colors represent different multisine realizations. 
Highlighted periods are excluded from analysis, leaving ten periods per realization in each trial for 
analysis. 
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signal (to prevent anticipation) and capabilities of the robotic manipulator. The torque 
perturbation signal was designed to have equal power on all excited frequencies. For each 
perturbation signal seven realizations of a random phase multisine were generated. To ensure 
these realizations are actually different and therefor excite the (non)linear system in a 
different way, the correlation amongst these seven signals was controlled. This was achieved 
by generating 25000 random-phase multisine signals and removing 10% of the signals having 
the highest peak-to-RMS ratio (crest factor) and another 10% having the least normal 
distribution (chi-square test). Out of the remaining 20000 signals, seven realizations were 
obtained with a correlation coefficient of less than 0.65 amongst each other for any time 
shift, which was found to be the lowest achievable number with the signal properties used. 

Experimental protocol 
To prevent fatigue the experiment was partitioned in trials of 36 s. There was a break 
between trials of at least 10 s or longer if requested by the participant. The active and passive 
trials were alternately presented to the participant. To avoid habituation to the signals each 
trial consisted of three randomly selected multisine realizations, which were repeated several 
times and smoothly merged. A smooth transition from on multisine realization to another 
was achieved by shifting all seven multisine realizations to have an amplitude and velocity 
close to zero at the beginning (and therefore also end) of its period. The transition between 
two concatenated realizations was further smoothed by interpolating between the last sample 
of the first realization up to the 50th sample (~25 ms) of the second realization using 
piecewise cubic spline interpolation. Periods containing the transition between two 
realizations were removed. Additionally, the first four periods of each trial were removed 
from the analysis to account for transient effects, resulting in a total of ten useful periods for 
each of the three multisine realizations in the trial (see Figure 3.3). A total of 49 trials (i.e. 
1470 useful periods) was recorded per task, consisting of 210 periods (P = 210) for each of 
the seven realizations (M = 7). Including mandatory breaks, this protocol resulted in a 
minimal recording time of 76 minutes for each participant. 

Pre-processing 
Data processing was performed using FieldTrip (Oostenveld et al., 2011) and MATLAB 8.1 
(The Mathworks, Inc., Natick, MA, USA). Line noise (50 Hz and its harmonics) was removed 
using the discrete Fourier transform as implemented in FieldTrip. The EMG signals were 
high-pass filtered in two directions (25 Hz, 4th order Butterworth) to remove movement 
artifacts introduced by the robotic manipulator, and were subsequently rectified. The mean of 
the rectified EMG signal was removed as we are interested in the response of the muscle to 
the perturbation (i.e. reflexive contributions) and less in tonic activation and the generated 
torque (Schouten et al., 2008a). The EEG signals were referenced to the common average 
and high-pass filtered in two directions (1 Hz, 4th order Butterworth). No artifact rejection 
was applied.  
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Data analysis 
Since periodic perturbation signals were used, all recorded signals were organized in P periods 

of M realizations ( [ ] ( ),m px t ). Consequently any part of the response that is not periodic with 

the same period as the perturbation signal will be regarded as noise. 

Quantifying the relative power of the nonlinear distortions 
The frequency domain representation of the recorded signals was obtained by applying the 

Fourier transform, resulting in [ ] ( ),m pX f . An estimate of the total power in each signal was 

obtained by averaging over periods (P) and thereby reducing the noise, calculating the power, 
averaging over realizations (M) and summing over all frequencies (F): 

 [ ] ( )
2

,
,

1 1 1

1 1ˆ
F M P

m p
X total

f m p

E X f
M P= = =
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(3.2), where:  
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X total X ex X unex odd X unex evenE E E E= + + . (3.3) 
The relative power in these frequencies can be estimated by dividing the power in excited, 
unexcited odd, or unexcited even frequencies by the total power. 

Noise-to-signal ratio 
An estimate of the noise level in the recorded signals was made by calculating the variance 
over periods (P), averaging this variance over all realizations (M), and summing over all 
frequencies (F): 
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The noise-to-signal ratio (NSR) for each recorded signal was obtained by dividing the 
estimate of the noise level by the estimate of the power in the signal, and is used to select the 
electrode showing the strongest response relative to the noise level: 
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ˆ
ˆ
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σ
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E
= . (3.5) 

The sample noise level on the averaged data (i.e. standard error of the mean) compared to the 
sample mean is referred to as the NSRscaled, and is an estimate of the amount of noise still 
present in the averaged data: 
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 scaled
NSRNSR

P
= . (3.6) 

For each participant the EEG signal at the electrodes with the lowest NSR in the passive and 
active task were used for subsequent analysis and were named EEGP and EEGA respectively. 

Determining the best linear approximation 
System identification was used to determine how much of the recorded signals can be 
described by a nonparametric linear model. We obtained such a linear model by non-
parametric estimation of the frequency response function (FRF). . In agreement with the 
system depicted in Figure 3.1D, an FRF of the human was estimated with the perturbation 
signal as external reference signal (R), angle φ as input (U) and the torque, EMG and EEG 
signals as output signal (Y). The input-output relations are given by the measured FRFs TφG , 

FEMG φG , 
EEMG φG  and 

AEEG φG . 

Each FRF ( )G f  consists of three parts (Pintelon and Schoukens, 2012): 

 ( ) ( ) ( ) ( )BLA SNL noiseG f G f G f G f= + + . (3.7) 
Here GBLA is the best linear approximation (BLA) of the (non)linear system under study, GSNL 
represents the stochastic nonlinear distortions, and Gnoise the errors due to the presence of 
noise. Gnoise is assumed to be uncorrelated with the reference signal and to have zero mean. In 
case of a random reference signal GSNL will appear as uncorrelated zero-mean noise; however, 
not in case of a periodic deterministic reference signal such as the multisine signals used. This 
implicates that Gnoise will be different for each period in each realization whereas GSNL will be 
the same in each period in a realization, but will differ over realizations. GBLA was estimated 
for each of the four FRFs using a closed loop estimator:  

 ( ) ( )
( )

ˆ

ˆ

ˆ
ˆ

ˆ
exYR

BLA ex
exUR

S f
G f

S f
= . (3.8) 

Here ( )Ŝ f  is the estimated cross-spectral density, averaged over periods and realizations, 

which reduces the contributions of noise and stochastic nonlinear distortions in the final 
estimate. The cross-spectral density was calculated between the perturbation signal R and 
input U (φ) and output Y (torque, EMG and EEG) at the excited frequencies. A detailed 
overview of the equations used to obtain an estimate of BLAG and its noise variance can be 
found in Appendix 3A. 

To quantify how well the nonparametric transfer function BLAG  describes the measured data, 
we used the variance accounted for (VAF). The model output Ymod was determined using: 

 [ ] ( ) [ ] ( ) ( ),

1

1 ˆ
P

m pm
mod ex ex BLA ex

p

Y f U f G f
P =

= ∑ , (3.9) 
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and converted to the time domain, using the inverse Fourier transform: 

 [ ] ( ) [ ] ( )( )1m m
mod mod exy t Y f−=   (3.10) 

The model output [ ]
mod,
m

cy  and the average recorded output [ ]ˆ my  of the seven different 

realizations were concatenated into mod,cy  and ˆ cy  respectively. The VAF for each recorded 

output signal (torque, EMGF, EMGE and EEGP or EEGA) was obtained using: 
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 (3.11) 

 Results 3.3
This section presents the averaged NSR, power distribution over frequency groups and VAFs 
as well as individual results of a representative participant. In both the passive and active task 
we were able to quantify the nonlinear contributions to the mechanical and EEG data. 
Additionally, the active task also allowed us to study the nonlinear contributions to the EMG 
data. One out of the eleven participants was not included in the analysis for not being able to 
successfully complete the active task. In one other participant one electrode (FT9) was 
removed from the analysis because it was accidentally disconnected during the experiment 
due to the improper placement of glasses. 

Noise-to-signal ratio 
Figure 3.4 illustrates the averaged NSR in the passive and active tasks. The lowest NSR for 
both tasks appears around the contralateral sensorimotor areas. A decreased NSR indicates 
there is a periodic response in the brain due to the external perturbation signal, which is 
reproducible over trials. 

For all participants the electrode which had the lowest NSR was found on the contralateral 
hemisphere, close to the sensorimotor areas in the passive (EEGP: 3x FCC3h, 2x CP3, 2x 
FCC1h, 1x C3, 1x CCP3h and 1x FC1) and active task (EEGA: 4x CP3, 2x FC1, 2x FCC1h, 
1x CCP3h and 1x FCC3h). 

The first two columns in Table 3.1 show the NSR and noise levels in the recorded signals 
(angle, torque, EMG and EEG) averaged across persons. The NSR of the recorded angle (φ) 
is lower for the passive task because the robotic manipulator directly controls the angle, while 
the angle in the active task is the result of the human responding to torque perturbations. 

The noise level in the EMG signals for the passive task indicates there is not a consistent 
EMG response to the perturbations, as expected. The noise levels in the EMG signals for the 
active task and the EEGP and EEGA signals indicate that there is still some noise present 
after averaging over 210 periods, thereby limiting the maximal attainable VAF. However, 
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these numbers also indicate that over 80% of the recorded physiological data can be 
described when a proper model is used.  

Power of nonlinear distortions 
Figure 3.5 shows the power distribution over frequencies for EEGP for one realization of a 
representative participant. We can observe that most power is in the unexcited even 
frequencies, while the power in the excited and unexcited odd frequencies is much lower. The 
noise level clearly shows two peaks around 10 and 20 Hz; most likely representing the 
intrinsic alpha and beta band rhythms. It can also be seen that close to 100 Hz the power 
becomes small and the NSR increases. The effect of the line noise filter is clearly visible at 50 
Hz and 100 Hz. The averaged power distribution, NSR, and noise levels for the signals of 
interest can be found in Table 3.1. The power distribution for the EMG signals in the 

 

 
 

 

 
Figure 3.4. NSR per electrode for passive task (left) and active task (right) averaged over all participants. 
Dots indicate electrode locations. The lowest NSR is found over the contralateral sensorimotor areas.  

Table 3.1. Average noise-to-signal ratio and relative power distribution over frequency groups 

  
NSR  
[dB] 

NSRscaled  
[%] 

Eex  
[%] 

Eunex-odd 
[%] 

Eunex-even  
[%] 

Passive task mean (sd) 
φ -30.9 0.0 (0.0) 100 (0.0) 0.0 (0.0) 0.0 (0.0) 

T -18.8 0.0 (0.0) 99.6 (0.2) 0.2 (0.1) 0.2 (0.1) 
EMGF 20.0 58.9 (24.4) - - - 
EMGE 19.9 55.9 (24.8) - - - 
EEGP 14.8 17.1 (7.2) 18.6 (5.7) 6.0 (2.1) 75.4 (5.6) 

Active task mean (sd) 
φ -8.9 0.1 (0.0) 99.6 (0.2) 0.0 (0.0) 0.4 (0.2) 
T -19.6 0.0 (0.0) 99.4 (0.3) 0.1 (0.0) 0.5 (0.3) 
EMGF 10.8 7.4 (3.9) 77.5 (4.9) 5.6 (1.6) 16.8 (4.3) 
EMGE 12.0 10.7 (7.8) 76.4 (7.4) 8.8 (3.4) 14.8 (4.8) 

EEGA 14.2 13.2 (3.6) 16.8 (3.3) 2.6 (0.9) 80.7 (4.1) 
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passive task is not shown, due to the inherently high NSR. Figure 3.5 as well as Table 3.1 
indicate that most of the power in the EEG signal is in the unexcited even frequencies. 

Frequency response functions 
The four FRFs for a representative participant are shown in Figure 3.6. The mechanical 
admittance (GφT) behaves like a second order system for both tasks, which was previously 
established (Schouten et al., 2008b). As expected, the mechanical admittance is higher for the 
passive task compared with the active task, where the instruction was to maintain the angle by 
resisting the perturbation, i.e., to lower the admittance. This increased stiffness can be 
generated by co-contracted muscles as well as reflexive activity (primarily from the spinal 
reflex loop). Due to the increased stiffness in the active task the natural frequency of the wrist 
also increases from approximately 3 Hz to 5 Hz, which can be observed in the shifted 
resonance peak in the gain graph. The high frequency response, which is governed by the 
inertia of the wrist, is similar in both tasks. This result was expected as the inertia does not 
vary over tasks.  

The reflexive impedance (GEMGφ) for the passive task is much lower than for the active task 
and is of the same order of magnitude as the noise level, also indicating a high NSR. The 
reflexive activity was minimal in the passive task as compared with the active task. The 
reflexive impedance for the active task shows similar behavior between flexor and extensor 

 

 

 
Figure 3.5. Power distribution in EEGP (CP3) over frequencies for one realization of the passive task for 
a representative participant. Results are averaged over P = 210 periods. Black dots represent the excited 
frequencies, red triangles represent the unexcited odd frequencies and the blue squares represent the 
unexcited even frequencies. The (scaled) noise level is indicated by the green line.  
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muscles, except for the phase being 180 degrees shifted. This corresponds to the 
unidirectional nature of the muscles, which are only able to actively contract. The increasing 
phase lag at the higher frequencies is caused by the neural time delay in the reflex loop.  

The FRF for GEEGφ indicates that the linear transfer function is of the same order of 
magnitude as the noise level. Together with the non-smooth and erratic behavior of both 
gain and phase, this indicates a low quality nonparametric linear model. 

Fitting the best nonparametric linear model 
We used the best linear approximation as a nonparametric model and obtained the VAF for 
each of the four input-output relations (see Table 3.2). For the passive task the VAF for the 
relation between the angle φ and the EMG signals is not calculated, since there is no 
consistent EMG response to the perturbation in this task. An example of the model fit in the 
time domain for the active task for one representative participant can be found in Figure 3.7. 

The average VAF for GφT (i.e. mechanical admittance) is around 99% for both the passive 
task and the active task, indicating the relation between angle and torque is well described by 
a nonparametric linear model. Due to the high number of recorded periods and subsequent 
low noise level in this study, the VAF was high compared with other studies were the 
mechanical admittance was modeled from much less recorded periods. In previous studies on 
the wrist and other joints (Schouten et al., 2004, Schouten et al., 2008a, Mugge et al., 2010, 
van Drunen et al., 2013) a VAF between 80% and 95% was obtained when using a 
parametric linear model to describe the relation between angle and torque. The averaged 

 

 

 
Figure 3.6. Frequency response functions (gain and phase) for a representative participant. The units for 
GφT are [rad/Nm] and for the other FRF’s [μV/rad]. Black lines with markers indicate the FRF at the 
excited frequencies and gray lines the scaled noise level (see Appendix 3A for equations). Solid and 
dashed lines represent the active task and passive task respectively. The transfer function GφT is presented 
as an admittance to correspond to existing literature (GφT = GTφ-1). 
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VAF obtained when modeling the EMG signal was around 70% for both muscles, which is 
slightly higher than the same studies mentioned before where a VAF of 40% to 60% was 
common when modeling the EMG signals with a parametric linear model. Besides the low 
noise level, the high flexibility of the nonparametric models used in this study compared with 
parametric models resulted in a higher VAF. Noteworthy, the relation between the wrist 
angle and the measured EEG signal is poorly captured by the nonparametric linear model. 
The averaged VAF is around 10% for both the passive task and active task, thus a linear 
system description is not appropriate to describe the response in the EEG evoked by 
mechanical manipulation of the wrist. 

 Discussion 3.4
Mechanical manipulation of the wrist using multisine signals elicits a periodic response in the 
EEG, which is shown to be highly nonlinear. Linear system identification techniques were 
employed and indicate that the wrist torque and EMG response to small changes in wrist 
angle can be explained for 99% and 70% respectively using a nonparametric linear model. 
Following the same approach, the response in the EEG could only be explained for 10% 
with linear methods. Moreover, the power in the cortical response at the unexcited 
frequencies (i.e. due to nonlinear behavior) is over 80%. Similar results were obtained for all 

 

 

 
Figure 3.7. Time domain fit of nonparametric linear model (dashed red line) on top of the averaged 
recorded output (blue line, light blue area represents the averaged response ± the noise level) for one 
realization of the active task for a representative participant. 
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participants. Thus, we conclude that a linear description of the relation between stimulus and 
response in the EEG is inappropriate and a nonlinear description is required.  

Quantification of the nonlinear contributions 
The use of multisine perturbation signals with power concentrated in a limited number of 
odd frequency lines, allowed assessment of any power transferred from excited to unexcited 
frequency lines, which is caused by nonlinear behavior. The method used can detect 
nonlinear distortions which are periodic with the same period as the perturbation signal. 
Nonlinear distortions generated by nonlinearities such as chaos and bifurcations, as well as 
distortions due to time-variant behavior, can therefore not be detected and will increase the 
noise level. In a previous study using a similar setup, we demonstrated there was no 
substantial time-variant behavior in the EEG signals evoked by wrist manipulation (Vlaar et 
al., 2015). 

The power in the excited frequencies should not be regarded as ‘the linear part of the 
response’ (Snyder, 1992) because odd nonlinear functions can very well affect the signal at 
the odd excited frequencies. Therefore analyzing the response only at the fundamental 
(excited) frequencies must be differentiated from studying the linear part of the response. By 
estimating a (linear) FRF at the excited frequencies and by calculating the VAF, we can assess 
how well such a linear nonparametric model can describe the input-output relations.  

Our results show that for small excursions around an operating point as used in this study the 
wrist dynamics are mainly linear, as almost 100% of the power in the recorded angle and 
torque signals is present in the excited frequencies and the VAF when using a nonparametric 
linear model is over 99%.  

For the EMG recordings in the active task the power in the excited frequencies is around 
76%. There is clear evidence of nonlinear distortions in the EMG signals, which are possibly 
introduced by the unidirectional nature of a muscle and stretch reflex. Previous studies on 
reflex dynamics indeed showed the muscle spindle and reflex loop behaving as a half-wave 
rectifier (Mirbagheri et al., 2000). A linear model can still describe the EMG response for 
approximately 70%. Even though the reflexive impedance is nonlinear, paradoxically the 
mechanical admittance behaves linear. The relation between joint angle and muscle EMG is 

Table 3.2. Average VAF for the four nonparametric linear models 

  
Passive task [%] Active task [%] 

TφG  99.5 (0.2) 99.0 (0.3) 

FEMG φG  - 70.0 (6.4) 

EEMG φG  - 68.0 (8.1) 

EEGG ϕ  10.0 (4.0) 10.3 (2.3) 
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nonlinear; however, the flexor and extensor muscles act as two opposing half-wave rectifiers, 
therewith linearizing the net reflexive behavior. 

In contrast to the mechanical and EMG signals, the excited frequencies for the EEG signal 
account for only 17% of the total signal power, indicating the EEG signal is dominated by 
nonlinear contributions. The relation between input and output therefore cannot be 
described by an FRF at the excited frequencies, since it only takes a small portion of the 
output into account and therefore results in a low VAF (~10%). Most power in the EEG 
signal, over 75% for both the passive and active task, is in the even frequency lines, indicating 
the presence of a dominant even nonlinear function. Examples of an even nonlinear function 
are y(u)=u2, y(u)=u4 and y(u)=abs(u). Seiss et al. (2002) and Campfens et al. (2015a) showed that 
a stretch of respectively the finger and wrist resulted in a similar ERP for both flexion and 
extension direction, which also indicates an even nonlinear relation. 

Origin of nonlinear contributions 
The nonlinear behavior of the muscle spindles (Houk et al., 1981, Hasan, 1983, Mileusnic et 
al., 2006) is likely to add to the nonlinear contributions in the EMG response. Their 
unidirectional sensitivity to velocity changes, together with their position in antagonistic 
muscles, could result in a similar neural signal for both flexion and extension. When using 
EEG to record these neural signals from the cortex, the distance between processing sites 
might be too small to be distinguishable, resulting in a lumped response of flexor and 
extensor muscle spindles. This response would, due to the similar signal for flexion and 
extension, result in an even nonlinear relation between stimulus and recorded EEG. 

Passive and active task 
Similar results for the EEG response are obtained for the passive and active task: the NSR as 
well as the distribution of power over frequency groups are of the same order of magnitude 
in both tasks. The NSR is slightly lower in the active task and low NSR is found in a larger 
region compared with the passive task. There are several possible explanations for these small 
changes. In the active task the muscles are generating force due to both co-contraction and 
reflexive activity, resulting in increased wrist torque. Compared with the passive task, this will 
result in changed muscle spindle sensitivity (Dimitriou, 2014) and an increase in output of the 
Golgi tendon organ (Crago et al., 1982). Changes in EEG could also be due to the 
involvement of additional brain regions in voluntary co-contraction during the active task 
(e.g., supplementary motor area, pre-motor cortex, posterior parietal cortex) (Scott, 2012).  

Implications 
When applying a mechanical (multi)sine stimulus signal to a linear system, the response will 
occur only at the exited frequencies. In a nonlinear system, the frequency domain analysis of 
the response must consider excited frequencies and their harmonics and intermodulation 
products. Taking all these components into account will elucidate which nonlinear model 
could appropriately describe the relationship. In this study we have shown that the larger part 
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of the EEG response to small mechanical perturbations, and therefore most information, is 
found in the unexcited frequencies, indicating nonlinear behavior. 

When applying transient sensory stimuli, the resulting average response is called the event-
related potential (ERP). Information about the sensory system is derived from the timing of 
certain components in the ERP, for example the negative deflection 20 ms after electrical 
stimulation (N20) (see (Cruccu et al., 2008) for more details on somatosensory evoked 
potentials). Although the ERP technique is widely used, it often overlooks that 
neurophysiological systems exhibit nonlinear behavior. In a linear system the response scales 
proportionally with the stimulus amplitude and the shape of the response remains the same 
(e.g. doubling the input amplitude results in a doubled output amplitude), whereas in a 
nonlinear system both the shape and amplitude of the response will vary with applied 
stimulus amplitude. Several studies on mechanically somatosensory responses show that the 
shape of the ERP changes with the amplitude of the mechanical stimulus (Franzén and 
Offenloch, 1969, Johnson et al., 1980, Hashimoto et al., 1992, Lin and Kajola, 2003). Due to 
this nonlinear behavior of the system (also shown in our results) the shape of the response 
and subsequently the timing of characteristic peaks will change with a change in amplitude of 
the sensory stimulus. Due to the nonlinear behavior of the system its characteristics cannot 
be fully captured by responses to a transient stimulus (ERP) or by responses to a continuous 
stimulus at only the excited frequency (e.g. Goto et al., 2003, Nangini et al., 2006, Voisin et 
al., 2011a). 

Our results have shown that the relation between mechanical manipulation of the wrist joint 
and the response in the EEG cannot be described by a nonparametric linear model (VAF: 
~10%), demonstrating nonlinear behavior. Consequently, a linear model or method will not 
be able to capture the relation between stimulus and response. An example is found in 
directed corticomuscular (linear) coherence, where poor linearization might contribute to 
inconsistently estimated time delays between cortex and muscle (e.g. Witham et al., 2011). 

The observed nonlinear behavior is periodic with the same period as the perturbation signal. 
Even though there is still substantial noise left in the EEG signals after averaging, a perfect 
model should be able to describe over 80% of the relation between wrist movement and 
recorded EEG. By using nonlinear modeling techniques we should be able to provide a 
better description of the input-output relationship. There exists an infinite amount of 
nonlinear operators and nonlinear model structures and this study provides essential 
information on the nature of the nonlinearity in the system. The next step in this research will 
be to obtain a nonlinear model relating the imposed wrist movement to the recorded EEG 
signals, therewith improving the understanding of the human sensory system and ultimately 
providing insight in movement disorders. 

Both ERP’s and cortical responses to continuous stimulation have been obtained using other 
types of stimuli such as visual, auditory and electrical nerve stimulation. The cortical 
responses to these types of stimuli also shows higher harmonics of the stimulation frequency 
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(Narici et al., 1998). The nonlinear contributions to the response, when these stimuli are 
applied, can be quantified using the techniques described in this study. 

 Conclusions 3.5
• Multisine perturbation signals applied to the wrist elicit a periodic cortical response 

and allow assessment of nonlinear contributions to the response. 
• When studied in a small range, wrist dynamics can be successfully linearized. 
• The relationship between mechanical stimulus and cortical response is highly 

nonlinear. Over 80% of the cortical response is caused by nonlinear behavior of the 
system. We showed that a nonparametric linear model only explains 10% of the 
cortical response to mechanical joint manipulation. 

• Event related potentials are insufficient to fully characterize the highly nonlinear 
relationship between mechanical stimulus and EEG response. 
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 Appendix 3A 3.7
The following equations allow for estimation of the sample mean and sample (co)variance for 
each recorded signal or signal combination (Pintelon and Schoukens, 2012). X(f) and Z(f) 
refer to Fourier transformed recorded signals, which can be the same or different signals. 

First the phase in the recorded signal is turned back by the phase in the perturbation signal 
(R) (3.12), which allows for averaging over the different realizations (3.14): 
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The sample (co)variance for each recorded signal or signal combination is estimated in (3.15) 
and averaged over realizations in (3.16): 
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The FRF and its noise variance at the excited frequencies are obtained by inserting the 
recorded input and output signals of interest into equation A1-A5 and subsequently inserting 
the result in (3.17) and (3.18): 
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Chapter 4 
Modeling the Nonlinear Cortical Response in EEG 

Evoked by Wrist Joint Manipulation 

Martijn P. Vlaar, Georgios Birpoutsoukis, John Lataire, Maarten Schoukens,  
Alfred C. Schouten, Johan Schoukens, and Frans C.T. van der Helm 

Joint manipulation elicits a response from the sensors in the periphery which, via the spinal 
cord, arrives in the cortex. The evoked cortical response recorded using 
electroencephalography was shown to be highly nonlinear; a linear model can only explain 
10% of the response, and over 80% of the response is generated by nonlinear behavior. The 
goal of this study is to obtain a nonparametric nonlinear dynamic model, which can 
consistently explain the recorded cortical response requiring little a priori assumptions about 
model structure. Wrist joint manipulation was applied in ten unimpaired participants during 
which their cortical activity was recorded and modeled using a truncated Volterra series. The 
obtained models could explain 46% of the cortical response, thereby demonstrating the 
relevance of nonlinear modeling. The high similarity of the obtained models across 
participants indicates that the models reveal common characteristics of the underlying system. 
The models show predominantly high-pass behavior, which suggests that velocity-related 
information originating from the muscle spindles governs the cortical response. In 
conclusion, the nonlinear modeling approach using a truncated Volterra series with 
regularization, provides a quantitative way of investigating the sensorimotor system, offering 
insight into the underlying physiology. 
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 Introduction 4.1
Healthy movement control requires proprioceptive information from the periphery to reach 
the cortex; this sensory information is required for generating internal models enabling 
accurate planned movements (feedforward control) and for generating appropriate responses 
to disturbances (feedback control). Understanding the relationship between a movement and 
the cortical response improves the understanding of the sensorimotor system and can aid in 
unravelling sensorimotor dysfunction in movement disorders. Studying the dynamic relations 
within the sensorimotor system requires applying a proprioceptive stimulus, a clear task 
instruction and a cortical measurement technique with high temporal resolution such as 
electroencephalography (EEG) or magnetencephalography. EEG is a noninvasive technique 
with mild experimental restrictions with respect to movement and is widely available. 
Applying a continuous proprioceptive stimulus by manipulation a joint (e.g. wrist or finger) 
allows for studying the system in steady state, i.e. when it is continuously and consistently 
engaged in processing sensory signals.  

Cortical responses to continuous proprioceptive stimulation in unimpaired individuals have 
been investigated during both active (Campfens et al., 2013, Yang et al., 2016b, Vlaar et al., 
2017b) and passive (Vlaar et al., 2017b) conditions using EEG. These studies revealed that 
the system under study is highly nonlinear. A linear approach to model the relation between 
proprioceptive stimulus and cortical response can only capture 10% of the relationship (Vlaar 
et al., 2017b; Chapter 3); nonlinear modeling of this relation has not been done before. 

This study sets out to obtain a nonparametric nonlinear dynamic model which consistently 
(i.e. consistently over different input signals) describes the relation between wrist movement 
and the average evoked cortical response recorded using EEG. The evoked cortical response 
showed no strong presence of subharmonics (Vlaar et al., 2015; Chapter 2), therefore a 
Volterra series should be able to describe the underlying physiological process. Here, the 
system is modeled using a truncated Volterra series with regularization (Birpoutsoukis et al., 
2017a). Such a model requires limited a priori knowledge about the system, while allowing for 
a quantitative description of the dynamics of the sensorimotor system. 

The experimental setup, perturbation signals used, and the modeling approach are presented 
in the Methods section. The Results section provides the characteristics of the recorded 
cortical signals, the performance of the models and their dynamic behavior. The Discussion 
section interprets the models based on physiology and provides a reflection on the approach, 
including suggestions for future work. 

 Methods  4.2
Participants and experimental protocol 
Ten unimpaired right-handed participants (age range 22-25 years; 5 men) participated in the 
study (Vlaar et al., 2017b). The study was approved by the local ethics committee and all 
participants gave written informed consent prior to participation. Data of these participants 
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were collected in a previous study; a summary of the relevant aspects of the experimental 
protocol will be presented here, for a full description the reader is referred to (Vlaar et al., 
2017b; Chapter 3). Participants were seated with their right forearm fixated to an arm support 
and their hand strapped to the handle of a robotic manipulator (Wristalyzer by MOOG Inc, 
Nieuw-Vennep, The Netherlands). Participants were instructed to relax their wrist and not 
react to the continuous angular perturbation applied by the robotic manipulator.  

The perturbation signals were random phase multisine signals (i.e. the sum of several 
sinusoids, each with a random phase). In multisine perturbation signals, there is full control 
over the frequency content, leading to several advantages over random signals when 
performing system identification (Pintelon and Schoukens, 2012). These advantages include 
the ability to detect even and odd nonlinear behavior, which is facilitated by the use of 
multisine signals with only odd frequency lines excited (Pintelon and Schoukens, 2012). The 
perturbations were multisine signals with a period of 1 s, resulting in a fundamental frequency 
of 1 Hz. Only selected odd harmonics of the fundamental frequency were excited, namely 1, 
3, 5, 7, 9, 11, 13, 15, 19, and 23 Hz. Exciting the nonlinear system using different phase 
realizations of a multisine signal (i.e. same amplitude per frequency, yet other random phases) 
allows for using different data sets for estimation and validation when modeling. Seven 
different multisine realizations were generated which were alternatingly applied during 49 
trials of 36 seconds. Six seconds were removed from each trial to reduce transient effects, 
resulting in a total of 1470 recorded periods, i.e. 210 periods available for each of the seven 
realizations.  

The angular perturbations had a root-mean-square (RMS) of 0.02 rad (see left insert in 
Figure 4.1) and were applied with the wrist in a relaxed angle (i.e. slight flexion). The signals 
were designed to have equal power on the first three excited frequencies and a decreasing 
power for the higher frequencies (-20dB/decade slope), which is a tradeoff between reduced 
predictability of the signal (to prevent anticipation) and capabilities of the robotic 
manipulator. 

Cortical activity was sampled at 2048 Hz from 126 electrodes using an EEG amplifier (Refa 
by TMSi, Oldenzaal, The Netherlands). The handle angle of the robotic manipulator was, via 
a galvanic isolation transformer (TMSi, Oldenzaal, The Netherlands), recorded by the same 
amplifier. 

Preprocessing 
EEG data were high-pass filtered using a fourth order Butterworth filter with a cut-off 
frequency of 1Hz to attenuate noise at frequencies lower than the fundamental frequency of 
the perturbation signal. This filter was applied in two directions to achieve zero-phase 
filtering. Independent component analysis (ICA)(Makeig et al., 1996a) was performed using 
the Infomax algorithm (Bell and Sejnowski, 1995) as implemented in CUDAICA (Raimondo 
et al., 2012). Subsequently, the data at component level were segmented into periods, 
resulting in x[c,m,p](n), where x is the response, c = 1,…,C is the component (C=125), m = 



Chapter 4 

 44 

1,…,M is the multisine realization (M=7), p = 1,…,P is the period (P = 210) and n = 1,…,N 
is the time index. An ideal filter was used to remove line noise (50 Hz) and to remove all 
frequencies from 100 Hz onward; i.e. signals were transformed to the frequency domain 
using the discrete Fourier transform (DFT)(Briggs and Henson), all mentioned frequency 
lines were set to zero, and the signals were converted back to the time domain using the 
inverse DFT. The use of periodic perturbation signals allows for the application of such a 
frequency domain filter without causing transient effects in the time domain representation of 
the data. Subsequently, all signals were resampled to 256 Hz (N = 256 samples) to reduce the 
amount of data; as there are no high frequencies present in the data anymore, this can be 
done without loss of information. 

To characterize the response of each component both the power in the average response 
(4.1) as well as the sample variance (4.2) were calculated at each frequency 
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where X(f) is the DFT of x(n). To find the component which is most associated with the 
perturbation signals, the noise-to-signal ratio (NSR) was calculated; the component with the 
lowest NSR demonstrates the most consistent response. The NSR is defined as 

 

 

 

Figure 4.1. Experimental setup. The right forearm of the participant is strapped into an armrest and the 
right hand is strapped to the handle, requiring no hand force to hold the handle. Participants were 
instructed to gaze at the screen, which showed a static target. The insert on the left shows one of the 
realizations of the perturbation signal. The insert on the right shows a close up of the hand in the robotic 
manipulator. The wrist joint was aligned to the axis of rotation of the manipulator. 
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where F is the set of considered frequencies. For each participant, the NSR of each 
component c was determined by calculating the NSR over all frequencies and by subsequently 
averaging across realizations m. The signal of the component with the lowest NSR is defined 
as y[m,p](n) and this signal was used for subsequent modeling. This signal was averaged over the 
recorded periods to reduce noise, and was subsequently defined as y[m](n) and transformed to 
the frequency domain using the DFT, resulting in Y[m](f). Similarly, the recorded input signal 
(i.e. wrist joint angle) was averaged over the recorded periods, giving u[m](n) and transformed 
to the frequency domain, resulting in U[m](f). 

Distinguishing the spectral contributions 
The frequency content of the response of a static nonlinear system is governed by the order 
of the system as well as by the frequency content of the input signal. A quadratic static 
nonlinear system (y=u2, which is an even nonlinearity) generates an output spectrum 
containing all possible combinations of two (positive or negative) input frequencies. In the 
case where only one input frequency is excited (e.g. f0), the output will contain f0+ f0=2f0, and 
also f0- f0=0. This concept extends for higher order systems and is described in more detail in 
(Schoukens et al., 2016, pp. 43, Fig. 9). 

By the virtue of exciting only the odd frequency lines in the perturbation signals, the 
frequencies in the averaged output signal can be split into four groups. The first frequency 
group (f{1}) consists of the excited frequencies in the input signal. The response at these 
frequencies will represent the linear contributions as well as part of the higher order odd (e.g. 
3rd, 5th and 7th order) nonlinear contributions. The second group (f{2}) consists of all the 
frequencies that can come from 2nd order nonlinear contributions (f{1},1±f{1},2), as well as part 
of the higher order even (e.g. 4th and 6th order) nonlinear contributions. The third group (f{3}) 

 

 

 
Figure 4.2. Block schematic of the model structure. The top branch is a linear model which governs the 
output at the excited frequencies (i.e. f{1}). This model is estimated by calculating the linear frequency 
response function. The bottom branch is a nonlinear model which is estimated using two terms of the 
Volterra series, namely the 2nd order kernel h2 and the 0th order kernel h0. The 2nd order kernel governs 
the output at f{2}. The 0th order kernel is included to account for the potentially nonzero-mean signals 
generated by the 2nd order kernel. 
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consists of all odd frequencies not in f{1}, which are the result of higher order odd (3rd order 
or higher) nonlinear contributions. The fourth and final group (f{4}) consists of all even 
frequencies not in f{2}, which are the result of higher order even (4th order or higher) 
nonlinear contributions. The total power in the signal can be split amongst these frequency 
groups to determine their individual contributions. Additionally, in all frequency groups there 
are still noise contributions present, given that the NSR is not reduced to zero. The NSR per 
frequency group is calculated using (4.3). The noise level in the averaged output signals puts a 
theoretical limit on the modeling accuracy, as that portion of the output data cannot be 
explained by a model. 

Model structure 
The block scheme in Figure 4.2 illustrates the modeling approach. The relation between 
joint angle (input) and cortical response as represented by the selected component (output) is 
modeled. The model consists of two parallel branches, specifically one 1st order and one 2nd 
order model. The latter also includes a 0th order model; due to filtering, the recorded output 
signal is zero-mean, yet the 2nd order model should not be restricted to produce a zero-mean 
output. The models in the two branches can be obtained in two separate modeling steps, as 
the 1st order model can only affect the output at f{1}, and the 2nd order model can only affect 
the output at f{2} (i.e. using an odd perturbation signal, the two models are orthogonal). As a 
final step the two models are combined. 

The 1st order (linear) model h1 will be estimated in the frequency domain at the excited 
frequencies (f{1}) in the input and at the same frequencies in the output, resulting in the best 
linear approximation (BLA) (Pintelon and Schoukens, 2012). The frequency domain 
representation of this model is defined as H1(f). 

The 2nd order (nonlinear) model is estimated using a truncated Volterra series expansion 
(Schetzen, 1980), which is similar to a Taylor series expansion, yet it includes dynamics. 
Regularization is used to incorporate prior information during the modeling procedure. 
Namely, by assuming that the model parameters are correlated and that the models decay to 
zero after a certain time, appropriate penalties can be imposed on the model estimation, 
which results in estimated models of substantially lower uncertainty. Regularization has 
previously been applied to linear (Chen et al., 2012, Lataire and Chen, 2016) and nonlinear 
(Pillonetto et al., 2011, Risuleo et al., 2015) model estimation, such that prior information 
about the estimated models is used during the identification step. Regularization imposing 
correlation and model decay for estimation of Volterra kernels has only recently been 
introduced (Birpoutsoukis et al., 2017a). 

Volterra kernel estimation using regularization 
The true underlying even nonlinear contributions in the output y at f{2} (defined as y2) are 
modeled with two terms of a discrete-time Volterra series (Schetzen, 1980), namely the 2nd 
order kernel h2 and the 0th order kernel (i.e. constant term) h0:  
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where u(n) denotes the recorded joint angle, ymod,2(n) represents the modeled cortical response 
at f{2} (including 0 Hz), h2(τ1,τ2) is the 2nd order Volterra kernel, τ1 and τ2 denote lag variables, 
and d2 corresponds to the memory of h2. Without loss of generality, the estimated Volterra 
kernels are considered to be symmetric. An example of a function h2(τ1,τ2) is given in Figure 
4.3. Given the measured signals u and y, the goal is to efficiently estimate the Volterra kernel 
coefficients h0 and h2(τ1,τ2). Equation (4.4) can be rewritten into a vectorial form as: 
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where 2
2  nθθ ∈  is a vectorized version of h2, 2nθ  denotes the number of coefficients in h2, 

( ) 2( 1)N M nθK ⋅ × +∈  is the regressor matrix, and ( )
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mody ⋅∈  contains the modeled output. 

The regressor matrix K  contains the input signal, which includes samples from time instants 
before the beginning of the input signal (u(n), n<0); however, due to the periodicity of the 
data the signal at those time instants is known. 

The model parameters h0 and θ2 are estimated by minimizing the regularized least squares cost 
function: 
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where 2y  is the vectorized recorded output data, which is assumed to be contaminated by 

zero mean i.i.d. white noise with finite variance 2σ . The first term of the summation in the 
cost function minimizes the difference between the recorded output and the modeled output 
in a least-squares sense. Matrix   penalizes the parameters such that prior information about 
the underlying dynamics of the true system is taken into account. The regularization matrix 

( ) ( )2 21 1  nθ nθ⋅+ +∈ is constructed using a Bayesian perspective as explained in (Pillonetto et 
al., 2011, Chen et al., 2012). The matrix   is a block-diagonal covariance matrix: 
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operator. 
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The prior information encoded in the matrix   assumes that the Volterra kernels used to 
describe the true system are decaying and smooth. The property of decaying refers to the fact 
that h2(τ1,τ2)→0 for τ1,τ2→∞. For the discrete-time Volterra series used in the current study, a 
smooth estimated kernel means that there exists a certain level of correlation between 
neighboring coefficients, which decreases the larger the distance between two Volterra 
coefficients. The properties of decaying and smoothness for the 2nd order Volterra kernel are 

encoded into the matrix 2   . The ( , )i j -element, which corresponds to 2, 2,Ε     ,i jθ θ i j ∀    

where 2, 2,   i jθ θ denote two Volterra coefficients in θ2, is given by (Birpoutsoukis et al., 2017a): 
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where the coordinate system μ,ν is rotated 45 degrees counter-clockwise with respect to 
coordinate system τ1,τ2 (see Figure 4.3): 
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The so-called hyper-parameters αμ and αν are used to control the smoothness property of the 
coefficients along the μ and ν direction, respectively. The hyper-parameters βμ and βν 
determine the decay rate along the μ and ν direction, respectively. Hyper-parameter c is a 
scaling factor used to determine the optimal trade-off between the measured data and the 
prior information encoded in 2 . 

Efficient tuning of the prior knowledge 
All the hyper-parameters, namely c, αμ, βμ, αν, βν, σ2 and 0  are tuned with the use of the input 
and output data by maximizing the marginal likelihood of the measured output (Rasmussen 
and Williams, 2006). Once the optimal values for the hyper-parameters are obtained, the 
model can be estimated from (4.6). Tuning the hyper-parameters is a non-convex 

 

 

 
Figure 4.3. Example of a function h2(τ1,τ2). The model corresponds to a Wiener-structure with a linear 
system followed by a square-operator. The left graph shows a 3D view of the model h2. The right graph 
shows the same model from a top view, with additionally an indication of the directions μ  and ν , along 
which the smoothness and decay rate of the model were quantified during regularization. The colors of 
the surface indicate amplitude. 
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optimization problem. To facilitate the algorithm and increase the probability of reaching the 
global maximum, the hyper-parameter space is restricted. Specifically: (i) 2

0,  , 0c σ >  
because they are all directly linked to a measure of variance; (ii) The upper bound for αμ and αν 
is 2  samples-1 which results in no correlation between the coefficients in the corresponding 
direction. The lower bound is set equal to 1/(5d2) samples-1, which would result in a strong 
correlation between all the coefficients of h2(τ1,τ2) and therefore an almost flat surface; and 
(iii) the upper bound for βμ and βν is 2  samples-1, which means that the estimated surface will 
decay in general almost immediately after one or two lags. The lower bound is set equal to 
3/d2 samples-1, which means that the estimated model will have virtually decayed to zero at 
the truncation lag of the model imposed by the memory d2 [see (4.4)]. To further minimize 
the risk of resulting in a local maximum of the non-convex marginal likelihood function, the 
models presented in this paper have been obtained after multi-start optimization of the 
hyper-parameters. 

Preparing the data for modeling 
The perturbation signals were designed to have power at particular frequencies: the excited 
frequencies. Any power in the recorded wrist joint angle signal (i.e. the input to the human) at 
the unexcited frequencies was assumed to be due to nonlinear behavior of the robotic 
manipulator or noise; namely it is assumed that the human does not influence the angle of the 
robotic manipulator. The power at these frequencies was checked to be minimal and was 
subsequently removed from the recorded input signal to prevent the estimated model from 
using the power at the unexcited frequencies to explain the recorded output signals.  

The recorded signals for the seven realizations were scaled to set their RMS to approximately 
one. The same scaling was applied to each realization to maintain their interrelations. The 
scaling was performed for both the input and output signals to prevent numerical problems 
in the nonlinear optimization of the hyper-parameters. 

There is a time delay between the applied joint manipulation at the wrist and the evoked 
response in the cortex, which is a consequence of the limited conduction velocity in the 
afferent nerve fibers as well as of synapses in the pathway. For all participants the recorded 
output signals were shifted in time to impose a time delay of 20 ms. 

Model estimation procedure 
There are M = 7 multisine realizations available in the input and output data. Out of those 
seven, six realizations are used for estimation and the remaining realization is used for 
validation to assess the quality of the model. This procedure is repeated seven times to 
achieve seven-fold cross-validation, resulting in seven models for each branch in Figure 4.2. 

The linear and odd nonlinear contributions are modeled at the excited frequencies (f{1}) in the 
input and output by calculating the average linear frequency response function for the 
different sets of estimation realizations: 
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Here, [ ]
1

ˆ vH  is the model obtained when using realization v for validation, and U and Y are the 
frequency domain representation of the input (angle) and the output (selected independent 
component) respectively. 

The even nonlinear contributions are also modeled using alternatingly six realizations for 
estimation and one for validation. The 0th and 2nd order kernels are estimated using (4.6), 
from f{1} in the input signal to f{2} in the output signal. As the required memory for the 2nd 
order kernel is unknown, different memory lengths in the range 10 to 75 samples 

(approximately 40 to 300 ms) are tried. This results in a set of models [ ]2,
0̂  v dh  and 

[ ]2,
2 1 2 ̂ ( , )v dh τ τ , where v is the realization used for validation and d2 is the number of samples 

included as memory of the model [see Eq. (4.4)]. 

Selecting the memory length of the 2nd order kernel 
Modeling the 1st order contributions (the BLA) generates one model for each validation 
realization and does not require further model selection.  

For the 0th and 2nd order Volterra kernel, the modeling error on the validation datasets was 
calculated for all lags 

 [ ] [ ] ( ) [ ] ( )( )2 2
2, ,

,2
1

N
v d v d v

mod
n

ε y n y n
=

= −∑ , (4.11) 

where ε  is the sum-squared error and [ ] ( )2,
,2

v d
mody n  is the modeled output using the 

corresponding 0th and 2nd order models (i.e. [ ]2,
0̂
v dh  and [ ] ( )2

12 2
,ˆ ,v dh τ τ ), with validation dataset 

v as input. The set of 0th and 2nd order models which demonstrated the lowest error were 

selected and were defined per validation realization v as [ ]
0̂
vh  and [ ] ( )1 22 ,ˆ v τ τh . The obtained set 

of 2nd order models was transformed to the frequency domain using the two-dimensional 

DFT at a frequency resolution of 1 Hz, resulting in [ ] ( )2 1 2
ˆ ,vH f f . 

Model evaluation 
The performance of the set of seven models for both the 1st and the 2nd order was evaluated 
by calculating the variance accounted for (VAF) on the validation data. As there are seven 
models available, the VAF is reported as its mean across the seven models including the 
standard deviation. The modeled output was calculated by summing the output of the 0th, 1st 
and 2nd order models  
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[ ] ( ) [ ] [ ] ( ) [ ] ( ), ' 0 , ,1 , ,2

ˆv v v v
mod val mod val mod valy n h y n y n= + + , (4.12) 

from which the mean was removed. The VAF can be calculated on the 1st and 2nd order 
contributions separately, or on the total modeled output using 
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1 100%
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y n y n
VAF

y n
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 

. (4.13) 

For completeness, the VAF was also calculated on the data used for estimation. This was 
achieved by calculating the modeled output using the estimation data and concatenating the 

result into [ ]
mod, ,
v

est cy . The six estimation realizations of the recorded averaged output signals 

y[m] were concatenated into [ ]
,

v
est cy , enabling calculation of the VAF on the estimation data. 

 Results 4.3
Component selection 
Figure 4.4A shows for each participant the topographic representation of the independent 
component (IC) with the lowest noise-to-signal ratio (NSR). These components for all 
participants suggest a similarly located cortical source in the contralateral sensorimotor 
cortices. For each participant, the signal of the shown component was used for modeling. 

Signal characteristics and model fit 
Table 4.1 reveals that the noise level in the averaged recorded output signal is around 8% for 
all participants, indicating that the maximum achievable total VAF is around 92%. 
Additionally, Table 4.1 shows the ability of the models to fit both the validation and 
estimation. 

Figure 4.5 illustrates for one representative participant how each set of frequencies 
contributes to the averaged recorded output signal, and further splits the power into modeled 
(validation) data, unmodeled data and noise. Figure 4.4B reveals that the bulk of the power 
in the averaged recorded output signal is concentrated in f{2} and that the contribution of f{3} 

and f{4} is small. This finding supports this paper’s modeling approach, which focuses on the 
1st (linear) and 2nd order (nonlinear) contributions in the recorded output signal.  

Between the two models included, the main contribution in terms of VAF comes from the 
2nd order model (around 39%). The model performance strongly depends on which 
realizations were used for estimation and which for validation. The VAF obtained from 1st 
order model (around 8%) is comparable to that obtained from modeling the electrode level 
response (Vlaar et al., 2017b; Chapter 3). Besides the modeled data (46%) and the remaining 
noise in the averaged cortical signals (8%), there is still approximately 46% of unmodeled 
data.  
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Representative models 
Figure 4.4C and Figure 4.4D show for each participant one representative model for the 1st 
and 2nd order respectively (a detailed example of a 2nd order model is given in Figure 4.6). 
Models obtained for the different validation realizations were very similar. The obtained 1st 
and 2nd order models for all validation realizations can be found in Appendix 4A and 4B, 
respectively. 

The 1st order models shown in Figure 4.4C on average only describe 8% of the output data, 
yet there exists a similarity for models obtained for the different participants; all 1st order 
models attenuate the low frequencies and amplify the high frequencies.  

Figure 4.6 shows the two-dimensional frequency response functions (gain and phase) of the 
obtained 2nd order model for one representative participant. Figure 4.6 clearly illustrates 
which input frequencies contribute to the output. The model has the highest gain in the 
bottom-right corner, where high frequency input combinations generate low frequency 
output through intermodulation (e.g. f1 = 23 Hz and f2 = -19 Hz in the input signal contribute 
to f1+f2 = 4 Hz in the output signal). The other region with high gains is found in the top 
right corner, which is again where the high frequencies interact. The lowest gains are found in 

Table 4.1. Noise levels and model fits. The first ten rows represent the data for the ten participants. NSR 
presents the noise-to-signal ratio in the cortical response. VAFval total presents the total variance-
accounted-for on the validation data. The VAF is also reported separately for the 2nd and 1st order models 
(H2 and H1 respectively) on both the validation and estimation data (VAFval and VAFest respectively). 
Mean (and standard deviation in parenthesis) across different realizations are presented. The last row 
represents the mean (and standard deviation in parenthesis) of the results across all participants. 

 NSR 
 

[%] 

VAFval 
total  
[%] 

VAFval  
H2  
[%] 

VAFest  
H2  
[%] 

VAFval 
H1  
[%] 

VAFest 
H1  
[%] 

P1 15 (2) 45 34 (8) 42 (2) 11 (4) 14 (1) 
P2 9 (4) 34 26 (12) 40 (12) 8 (3) 10 (1) 
P3 7 (3) 40 38 (13) 48 (14) 2 (2) 4 (0) 
P4 6 (1) 50 37 (8) 48 (9) 13 (5) 16 (1) 
P5 11 (4) 56 50 (11) 58 (7) 6 (3) 8 (1) 
P6 8 (2) 46 45 (25) 64 (3) 1 (2) 3 (0) 
P7 4 (1) 60 46 (9) 52 (4) 14 (4) 15 (1) 
P8 4 (1) 51 48 (7) 55 (7) 3 (4) 5 (1) 
P9 15 (3) 36 19 (7) 34 (10) 17 (4) 20 (1) 
P10 11 (3) 44 43 (21) 60 (6) 1 (1) 3 (0) 
mean 8 (5) 46 (8) 39 (10) 50 (9) 8 (6) 10 (6) 

 

Figure 4.4 on left page. Signal characteristics and models for each participant (represented by columns). 
Column A: Topographic representation of the weighing of electrodes in the independent component 
with the lowest NSR. Column B: Power distribution over frequency groups in the output signal. The 
black and blue indented segment represent the VAFval for the 1st and 2nd order models respectively. 
Shaded segments represent the noise level in that frequency group. See Figure 4.5 for a detailed 
explanation for one representative participant. Column C: 1st order model for validation realization 5 
(linear frequency axis). Column D: 2nd order model for validation realization 5 (linear frequency axis). 
See Figure 4.6 for a detailed explanation for one representative participant. 
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the region where the low frequencies in the input interact. This same behavior can be 
observed in the models for all participants, as shown in Figure 4.4D. Similarly to the 1st 
order model, the 2nd order models seem to exhibit high-pass behavior. 

The memory of the selected 2nd order kernels [d2 in (4.4)] strongly depended on which 
realization was used for validation and therefore varied within each participant (combined 
standard deviation of 15 samples). However, the average memory across realizations was 
similar across participants, with an average memory of 33 samples (standard deviation of 4 
samples), corresponding to approximately 130 ms at a sampling rate of 256 Hz. 

For each participant, the seven different models obtained from cross-validation were very 
similar. This holds for both the 1st order and the 2nd order models. Interestingly, the models 
obtained from the different participants are also similar; all obtained models strongly 
attenuate the low-frequent input signal and amplify the high-frequent input, resulting in high-
pass behavior. The difference between the 1st order and 2nd order model is that although the 
2nd order model acts as a high-pass filter, most power in the output is generated at the low 
frequencies.   

 

 

 
Figure 4.5. Power distribution over frequency groups in the output signal for one representative 
participant (participant 4). Narrow bar on the left indicates the relative power in the four frequency 
groups. Wide bar segments on the right further split the power per frequency group into noise (shaded 
segments without text) and modeled data; the black and blue indented segment represent the VAFval for 
the 1st and 2nd order model respectively. In this example, the total noise contributions are 6% and the 
total VAF on the validation data is 50%, where the 1st and 2nd order models explain 13% and 37% 
respectively (numbers from Table 4.1). The power in f{3} and f{4} cannot be explained using the current 
model structure. 
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Figure 4.6. Frequency domain representation of a 2nd order model (gain and phase) for one 
representative participant (participant 4) for validation realization 5. The obtained surface is symmetrical 
with respect to the line f1 = f2, as f1 and f,2 are exchangeable in ( )2 1 2

ˆ ,H f f . Additionally, as the model at 
the negative frequencies is the complex conjugate of the model at the same positive frequencies, the full 
behavior of the model can be represented using one quarter of the entire surface. Red lines and 
numbers at the right vertical axes indicate the frequencies (in Hz) in f{2} in the output signal that result 
from the excited input frequency combinations f{1},1 (on the x-axes) and f{1},2 (on the y-axis) that are 
indicated by the black dots. The gain graph on the left reveals that combinations of low input 
frequencies are strongly attenuated (i.e. gains are very low). The highest gains are found in the bottom 
right corner; in this region the model generates low-frequent output (as indicated by the red numbers) 
through the intermodulation of the high-frequencies in the input signal. Relatively high gains are also 
found in the top right corner; in this region the model generates high-frequent output through the 
intermodulation of again the high-frequencies in the input signal. This behavior can be classified as 
high-pass behavior. 
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 Discussion 4.4
The goal of this study was to obtain a dynamic nonparametric nonlinear model that could 
explain the observed cortical response recorded using EEG and evoked by continuous wrist 
joint manipulation. The high similarity in the cortical response across participants, in terms of 
location, distribution of power over frequencies, and observed dynamics in both the 1st order 
(linear) and 2nd order (nonlinear) parts of the model, allow for confident interpretation of the 
results. On average, 46% of the cortical response could be modeled by the proposed 
approach; additionally, a clear distinction was made between parts of the cortical signal which 
could and could not be modeled. Around 8% of the averaged cortical signals could be 
attributed to noise. The obtained models reveal attenuation of low frequencies and 
amplification of high frequencies; this behavior can be interpreted as high-pass filtering, 
probably linked to dominant contributions from velocity-related information via Ia afferents 
originating from the muscle spindles. This study provides first evidence that the nonlinear 
cortical response to a proprioceptive stimulus can be quantitatively modeled, as was 
demonstrated using a truncated Volterra series expansion.  

Selection of cortical response 
This study focuses on the response most associated with the perturbation signal (i.e. with the 
lowest NSR). The independent component with the lowest NSR reveals a source at a similar 
location for each participant, namely the contralateral sensorimotor cortices. This finding is in 
line with previous literature on somatosensory evoked responses evoked by tactile stimulation 
of the hand (Snyder, 1992) and by wrist joint manipulation (Campfens et al., 2013), and is 
also expected based on where afferent fibers carrying proprioceptive and tactile information 
reach the cortex (Kandel et al., 2000). Besides the similarity in location, these selected cortical 
responses shared more characteristics across participants. The power distribution over 
frequencies is very much alike, where most power is concentrated in f{2} (see Figure 4.4B). 
Additionally, the dynamics for both the 1st and 2nd order model revealed a comparable high-
pass behavior for all participants. These similarities point towards a generalizable cortical 
response to the applied joint manipulation. 

Although the participants also have other components which show a response related to the 
perturbation signal, none of those were as strong as the one selected for modeling. Other 
brain regions which are known to be active during somatosensory stimulation under passive 
conditions include the posterior parietal cortex (Forss et al., 1994a) and the secondary 
somatosensory cortices (Onishi et al., 2010). The anatomical pathway for both tactile and 
proprioceptive information is the dorsal column-medial lemniscus pathway. This pathway 
connects the sensors in the periphery to the contralateral primary somatosensory cortex with 
only two intermediate synapses, namely in the spinal cord and the thalamus. Responses in 
other cortical areas are likely to be relayed by the primary somatosensory cortex to the 
secondary somatosensory cortex and the posterior parietal cortex (Kandel et al., 2000). In 
those cortical regions the somatosensory signals are further processed and integrated with 
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motor control. The proposed modeling approach could also be applied to other parts of the 
cortex that respond to an external somatosensory stimulus.  

Physiological origin of the evoked cortical response 
The imposed joint rotation is registered by the sensory organs in the periphery and is 
transported to the cortical regions, where the response is recorded using EEG. This study 
cannot differentiate to what extent the obtained models are governed by the dynamics of the 
sensors or by the dynamics in the pathways between sensors, spinal cord and brain regions. 

The applied joint manipulation stimulated at least the muscle spindles, Golgi tendon organs 
(GTO), joint capsules, and tactile sensors (e.g. Meissner's corpuscles, Pacinian corpuscles and 
Merkel's discs). Applying anesthesia which blocks afferents from tactile sensors and joint 
capsules did not substantially alter the cortical evoked response to passive finger flexion 
(Mima et al., 1996), to passive wrist extension (Abbruzzese et al., 1985), or to passive plantar 
flexions of the ankle (Starr et al., 1981). Additionally, GTO do not generate strong signals 
under passive conditions, as a slack muscle has lower stiffness than the fibrils of the tendon 
that activate the GTO. Therefore, it is argued that in this particular study under passive 
conditions the cortical evoked response is mainly generated by muscle spindles. Muscle 
spindles sense both length and changes in length (i.e. velocity information). There are two 
types of fibers originating from the muscle spindles Information is transmitted via Ia and II 
afferent fibers, which have a high and medium conduction velocity respectively. The II 
afferent fibers provide position information, while Ia afferent fibers provide either velocity or 
position information, where the former is dominant during movement. The observed high-
pass behavior could originate from the velocity sensitivity of the Ia afferents. 

The contribution of the afferent pathways in the observed dynamic behavior is less clear. 
Insight can be obtained by including a measurement point within those pathways, for 
example by measuring the output of the muscle spindles using microneurography (Prochazka 
and Gorassini, 1998). 

A possible explanation for the even nonlinear relation between joint manipulation and 
cortical response is found in the signals generated by muscle spindles in antagonistic muscles 
(i.e. wrist flexor and extensor); muscle spindles register velocity mainly when the muscle is 
lengthened and less when shortened (Matthews, 1964), which might be altered by fusimotor 
activity (Appenteng et al., 1982, Mileusnic et al., 2006). This unidirectional sensitivity makes 
the muscle spindle behave like a half-wave rectifier for velocity input. In contrast to the 
stretch reflex, which will activate different muscles depending on stretch direction, the 
cortical response to either direction generates similar responses in the cortex (Seiss et al., 
2002, Campfens et al., 2015a) of which the locations are probably too near to be 
distinguishable when using EEG; possibly, the half-wave rectifiers in antagonistic muscle 
pairs together behave as a full-wave rectifier. The resulting insensitivity to direction is a 
typical characteristic of even nonlinear behavior. 
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Relation to previous continuous joint manipulation studies 
Cortical responses evoked by continuous mechanical stimulation have been studied before 
(see Vlaar et al. (2015) for an overview); however, most of those studies stimulate the tactile 
system using high frequent vibrations. The number of studies that apply continuous joint 
manipulation is limited. The studies that do so, investigate the relation between joint 
movement and cortical evoked response by perturbing with one specific periodic joint 
perturbation signal and quantify the relation between stimulus and cortical response using 
either linear coherence (Campfens et al., 2013, Piitulainen et al., 2013) or higher order cross-
spectral coherence (Yang et al., 2016a). Linear coherence in combination with periodic 
perturbation signals impedes the detection of nonlinear behavior (Maki, 1986) and the 
obtained coherence is a mix of linear and nonlinear contributions. In contrast, higher order 
cross-spectral coherence (e.g. bi-coherence) does allow for the detection of nonlinear 
interactions. Although coherence can detect the strength of the coupling between input and 
output signal at certain frequencies, it fails to inform on how much of the output signal 
reflects that specific coupling. For example, in the case of significant coherence it can be 
concluded there exists a consistent relation between a frequency (or combination of 
frequencies) in the input and a frequency in the output signal; however, it is unclear to what 
extent the output signal at that frequency is governed by the input signal at the investigated 
frequency. In contrast, the current study provides an approach for quantifying the nonlinear 
interactions in the sensorimotor system through a nonlinear dynamic model, which creates 
insight into which frequencies in the perturbation signal govern the observed cortical 
response. 

The use of multiple different perturbation signals is essential when modeling a nonlinear 
system; as the superposition principle does not hold, the model obtained from one 
perturbation signal is not generalizable to other perturbation signals, even if they have similar 
characteristics (e.g. RMS and excited frequencies). In the current study, this can be illustrated 
by estimating the linear relation between the input and output signals for just one realization 
of the perturbation signal; the resulting frequency response function does not reveal the high-
pass behavior observed when using multiple realizations for estimation, and the VAF on any 
other realization is very poor. 

Regardless of which approach is used to investigate the nonlinear relation between joint 
movement and cortical response, when exciting the system with one specific perturbation 
signal it is difficult to investigate the characteristics of the underlying system; the cortical 
response could drastically change when a different perturbation signal is used. Evidently, the 
use of a repeatedly applied transient stimulus, which is the most common EEG recording 
paradigm when the investigating somatosensory system, suffers from the same weakness. 

Reflection on the experiment 
To further improve the perturbation signals for use in nonlinear modeling there are several 
options. Firstly, by using a longer period more frequencies can be accommodated. This 
would allow for including lower frequencies and more intermediate frequencies, thus creating 
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a richer perturbation signal. Secondly, more phase realizations could be used, as apparently 
the seventh (i.e. validation) realization is in many cases still very different from the six used 
for modeling. By exciting the system with more phase realizations, the nonlinearity of the 
system is explored in more detail, which allows for more accurate modeling. Lastly, recording 
more periods per realizations would further reduce the noise level, although the noise is 
currently not the main issue as the noise level is much lower than the level of unexplained 
data (8% and 46% respectively, see Table 4.1). As one might expect, any of these three 
improvements would be accompanied by increased recording time.  

The current study investigates the relation between joint manipulation and cortical response 
under passive conditions, i.e. without voluntary muscle activation. Under both passive and 
active conditions, any cortical efferent motor drive is not likely to be periodic to the 
perturbation; feedforward control synchronized to the perturbation would require a 
predictable perturbation signal, and feedback control via the cortex would be ineffective due 
to the relative large time delay of a cortical reflex loop. Thus, the evoked cortical response 
recorded during the execution of a task as described in the current study would reflect mainly 
sensory information processing. 

In this study the joint was studied in a specific ‘operating point’. This point constitutes, 
amongst other aspects, the angle in which the wrist is studied, the frequency content and 
amplitudes of the perturbation signal, task instruction, and the efferent motor drive. With a 
change in any of these parameters the operating point could change, possibly requiring a 
different model. The current study illustrates that by controlling the ‘operating point’, it is 
possible to obtain similar models across participants. 

Reflection on modeling approach 
In the current study, the system under study is described by a 1st and 2nd order model. The 
power in f{3} and f{4} is small (around 10%, see Figure 4.4B), indicating that the cortical 
response has little power at frequencies that can only be generated by 3rd and higher order 
nonlinearities. However, from this observation it cannot be concluded that there are no 
nonlinearities in the system higher than the 2nd order; high frequencies generated by higher 
order nonlinearities could be attenuated by low-pass dynamics. Any attempt to model higher 
order odd nonlinear behavior would result in a maximal VAF increase of around 9%, which 
corresponds to the unmodeled signal in f{1} and f{3}. It would be beneficial to include higher 
order even Volterra kernels (e.g. a 4th order model); if the system under study indeed includes 
a rectifier as proposed before, higher order even kernels would be needed to better 
approximate that behavior. However, the estimation of higher order Volterra kernels would 
increase the number of parameters to be estimated, and therefore might require an 
experiment with a richer perturbation signal (i.e. more excited frequencies and increased 
period length). For the estimation of the model parameters in Equation 4.6 it was assumed 
that the recorded data is contaminated with white noise. As the contaminating noise in this 
type of data is colored (see for example Figure 2.4 and Figure 3.5), the proposed approach 
is suboptimal for the data at hand. 
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For all participants a time delay of 20 ms was imposed in the model, which is based on 
findings in literature for transient wrist joint manipulation (Abbruzzese et al., 1985, Campfens 
et al., 2015a) as well as for electrical stimulation at the median nerve (Abbruzzese et al., 1985). 
Although the actual time delay is participant specific (e.g. depending on arm length), due to 
the small differences observed in literature, here the time delay was set to 20 ms for all 
participants in the study.  

The best performing 2nd order models had an average memory of about 130 ms; hence, the 
impulse response of such a model will, including the imposed time delay of 20 ms, have an 
approximate duration of 150 ms. Such a response duration is close to those obtained in the 
contralateral sensorimotor cortex by applying a brief transient stimulus (Onishi et al., 2013, 
Campfens et al., 2015a). 

Nonparametric modeling of a nonlinear system using a Volterra series has the major 
advantage of requiring limited a priori information about the exact nature of the nonlinearity, 
making it a powerful tool for exploring the characteristics of the nonlinear system under 
study. Hammerstein or Wiener cascades (e.g. the combination of a static nonlinearity with 
linear dynamics) are also often used to model nonlinear (neuro-)physiological systems 
(Westwick and Kearney, 2000), for example to study the relation between electrical nerve 
stimulation and muscle force output (Bai et al., 2009) or to study muscle reflexes due to joint 
movement (Mirbagheri et al., 2000). The number of parameters required to estimate 
Hammerstein or Wiener cascades is substantially lower than for Volterra series estimation; 
however, the former methods require prior assumptions about the nonlinearity. The 
drawback of a high number of parameters required for Volterra series estimation is mitigated 
by the use of regularization. Especially in the case of noisy data, regularization can reduce the 
uncertainty of the obtained models substantially. Nonparametric modeling is a necessary step 
before obtaining a quantitative dynamic nonlinear parametric model, which would provide 
crucial insights in the cortical involvement in processing of sensory information and cortical 
involvement in for example reflex modulation. 

 Conclusions 4.5
• A nonparametric nonlinear modeling approach requiring little assumptions captures 

46% of the relation between joint manipulation and evoked cortical response. 
• For each participant, the similarity among the models obtained when using different 

parts of the data for estimation provides confidence in the estimated models. 
• The observed consistency of the obtained models across participants indicates that 

these models are able to capture the behavior of the sensorimotor system.  
• Multisine perturbation signals with only odd frequency lines excited reveal dominant 

even nonlinear behavior in the cortical response evoked by joint manipulation. 
Additionally, the odd and even contributions can be modeled separately due to 
orthogonality of odd and even models when using such a perturbation signal.  
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 Appendix 4A 4.6
 

  

 

Supplementary figure. Frequency domain representation (gain) of the estimated models ( )1Ĥ f  for 
each participant (P1,P2,…,P10) and each validation realization (v = 1, v = 2,…,v = 7). 
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 Appendix 4B 4.7
 

 

  

 

Supplementary figure. Frequency domain representation (gain) of the estimated models ( )2 1 2
ˆ ,H f f  

for each participant (P1,P2,…,P10) and each validation realization (v = 1, v = 2,…,v = 7). Black dots 
indicate the excited frequencies in the input signal. 



Chapter 5 
Quantification of Task-Dependent Cortical 

Activation Evoked by Robotic Continuous Wrist Joint 
Manipulation in Chronic Hemiparetic Stroke 

Martijn P. Vlaar*, Teodoro Solis-Escalante*, Julius P.A. Dewald, Erwin E.H. van Wegen,  
Alfred C. Schouten, Gert Kwakkel, and Frans C.T van der Helm, on behalf of the 4D-EEG consortium 

Cortical damage after stroke can drastically impair sensory and motor function of the upper 
limb, affecting the execution of activities of daily living and quality of life. Motor impairment 
after stroke has been thoroughly studied; however, sensory impairment and its relation to 
movement control has received less attention. Integrity of the somatosensory system is 
essential for feedback control of human movement, and compromised integrity due to stroke 
has been linked to sensory impairment. The goal of this study is to assess the integrity of the 
somatosensory system in individuals with chronic hemiparetic stroke with different levels of 
sensory impairment, through a combination of robotic joint manipulation and high-density 
electroencephalogram (EEG). A robotic wrist manipulator applied continuous periodic 
disturbances to the affected limb, providing somatosensory (proprioceptive and tactile) 
stimulation while challenging task execution. The integrity of the somatosensory system was 
evaluated during passive and active tasks, defined as ‘relaxed wrist’ and ‘maintaining 20% 
maximum wrist flexion’, respectively. The evoked cortical responses in the EEG were 
quantified using the power in the averaged responses and their signal-to-noise ratio. Thirty 
individuals with chronic hemiparetic stroke and ten unimpaired individuals without stroke 
participated in this study. Participants with stroke were classified as having severe, mild, or no 
sensory impairment, based on the Erasmus modification of the Nottingham Sensory 
Assessment. Under passive conditions, wrist manipulation resulted in contralateral cortical 
responses in unimpaired and chronic stroke participants with mild and no sensory 
impairment. In participants with severe sensory impairment the cortical responses were 
strongly reduced in amplitude, which related to anatomical damage. Under active conditions, 
participants with mild sensory impairment showed reduced responses compared with the 
passive condition, whereas unimpaired and chronic stroke participants without sensory 
impairment did not show this reduction. Robotic continuous joint manipulation enables 
studying somatosensory cortical evoked responses during the execution of meaningful upper 
limb control tasks. Using such an approach it is possible to quantitatively assess the integrity 
of sensory pathways; in the context of movement control this provides additional 
information required to develop more effective neurorehabilitation therapies.  

*Authors contributed equally to this work  
Journal of NeuroEngineering and Rehabilitation 2017, 14(1), 30 
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 Introduction 5.1
The cerebral cortex plays an important role in feedforward (i.e. voluntary motor drive) and 
feedback control (i.e. reflexes and modulation of spinal reflexes) of human movement (Scott, 
2012). Cortical damage after stroke impairs both feedforward and feedback control. Altered 
feedforward control after stroke has been thoroughly studied and may lead to motor 
impairments such as weakness and abnormal synergy-dependent motor control (Krakauer, 
2005, Miller and Dewald, 2012). 

Cortical involvement in feedback control (including sensorimotor integration and spinal 
reflex modulation) requires connectivity between somatosensory receptors in the periphery 
and the sensorimotor cortex, yet compromised integrity of this somatosensory system after 
stroke has received little attention in the literature. Understanding the impact of sensory 
impairment, as well as motor impairment, is highly relevant for the development and 
selection of neurorehabilitation therapies aimed to enhance and normalize motor control 
(Winward et al., 1999, Stolk-Hornsveld et al., 2006, Buma et al., 2013, Bolognini et al., 2016) 
and for evaluating their effectiveness. 

Proprioceptive and tactile information are required for feedback control of a joint, and can be 
studied in an experimental setting by disturbing the joint via a robotic manipulator during 
motor control tasks. This robotic joint manipulation results in activation of spinal reflex 
loops (Mirbagheri et al., 2000, Ludvig et al., 2007, Schouten et al., 2008a) as well as in 
activation of the somatosensory cortex via high-resolution sensory pathways (Matthews, 
1991). However, the cortical activity evoked by joint manipulation and consequently the 
cortical involvement in feedback control have received less attention. 

In able-bodied individuals, evoked cortical responses to robotic joint manipulation have been 
studied with transient (Mima et al., 1996, Seiss et al., 2002) and continuous disturbances 
(Campfens et al., 2013, Yang et al., 2016b, Vlaar et al., 2017b). Continuous disturbances 
uninterruptedly provide input to the sensory system, allowing for studying movement control 
and somatosensory cortical activity during meaningful motor tasks. This study determines the 
cortical representation of afferent (proprioceptive and tactile) information in individuals with 
chronic hemiparetic stroke under different upper limb control conditions, relying on 
objective metrics derived from the electroencephalogram (EEG). Here, the goal is to quantify 
evoked cortical activation in individuals with chronic hemiparetic stroke, through a 
combination of robotic continuous joint manipulation of the paretic limb and high-density 
EEG. The evoked cortical activation reveals the integrity of the connections between sensory 
receptors in the periphery and the sensorimotor cortices. 

It is hypothesized that, due to stroke-induced damage to the somatosensory system, 
individuals with clinically assessed proprioceptive and tactile impairment will show decreased 
cortical evoked responses to continuous joint manipulation in the absence of voluntary 
motor activity of the affected upper limb, as compared with unimpaired persons. In general, 
when voluntary motor activity of the affected upper limb is required, individuals with 
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hemiparesis have been shown to recruit their contralesional brain hemisphere, i.e. ipsilateral 
to the movement (Serrien et al., 2004, Buma et al., 2010, Ward, 2011, Grefkes and Fink, 
2014). It is unclear, however, what this recruitment means with regard to somatosensory (i.e. 
afferent) evoked cortical activity, as the anatomical pathways conducting proprioceptive and 
tactile information mainly connect to the contralateral hemisphere (Kandel et al., 2000); thus, 
increased evoked cortical activation of the ipsilateral hemisphere is not expected.  

 Methods 5.2
Participants 
Thirty participants with chronic hemiparetic stroke (i.e. at least six months post stroke, with 
initial hemiparesis) participated in this study (12 female, average age 64 years, SD = 11, see 
Table 5.1). The inclusion criteria were (i) first-ever ischemic stroke in an area supplied by the 
anterior, medial, and/or posterior cerebral arteries, (ii) age ≥ 18 years, (iii) no severe cognitive 
deficits (mini-mental state examination score of ≥19) (Folstein et al., 1983), and (iv) able to sit 
in a wheelchair for at least two hours. Exclusion criteria were previously existing pathological 
neurological conditions, pacemaker or other metallic implants, previously existing orthopedic 
limitations of the upper limb that would affect the results, and botulinum-toxin injections or 
medication that may influence upper limb function in past 3 months. Additionally, ten 
unimpaired age-matched volunteers without stroke were recruited as control group (3 female, 
average age 59 years, SD = 9). The inclusion (ii-iv) and exclusion criteria for the unimpaired 
volunteers were the same as for the participants with stroke. All participants gave written 
informed consent prior the experiments. The study has been approved by the Medical Ethics 
Reviewing Committee of the VU Medical Center, Amsterdam (protocol number 2014.140, 
Dutch Central Committee on Research Involving Human Subjects, CCMO, protocol number 
NL47079.029.14). This study was conducted in accordance with The Declaration of Helsinki.  

The levels of sensory and motor impairment of each participant with chronic stroke were 
assessed using the Erasmus modification of the Nottingham Sensory Assessment for the 
upper extremity (EmNSA-UE) (Stolk-Hornsveld et al., 2006) and the Fugl-Meyer Assessment 
for the upper extremity (FMA-UE) (Fugl-Meyer et al., 1974), respectively. Participants with 
stroke were classified in three groups according to their level of sensory impairment in a 
similar way as in Stolk-Hornsveld et al. (2006). Participants who achieved a full score on each 
subtest of the EmNSA-UE were classified as having no sensory impairment. Participants 
with a reduced score in one or two subtests were classified as having mild sensory 
impairment, whereas participants with a reduced score on more than two subtests of the 
EmNSA-UE were classified as having severe sensory impairment.  
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Table 5.1. Participants with stroke grouped by level of sensory impairment (sub-sorted by FMA-UE 
score). Number of participants in sensory impairment groups: severe (6), mild (13), none (11). 
Subscores for EmNSA-UE (2: no impairment, 1: some impairment 0: fully impaired) LT:light touch, 
P:pressure, PP:pinprick, D:discrimination, PR:proprioception. N/A means this test was not 
performed due to tactile impairment as established in LT, P and PP. 
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1 severe 0 1 1 N/A 1 6 6 71 F L R 

2 severe 0 1 1 N/A 1 8 21 54 M L L 

3 severe 1 1 1 N/A 0 9 212 66 F R R 

4 severe 1 1 1 0 1 10 6 64 M R R 

5 severe 1 1 1 N/A 1 20 142 68 M L L 

6 severe 1 1 1 N/A 1 26 15 72 M L L 

7 severe 1 2 2 1 1 62 7 77 M L L 

8 mild 1 2 2 1 2 9 71 59 M L L 

9 mild 1 2 2 1 2 10 81 48 M L L 

10 mild 2 2 2 1 2 10 6 93 F R R 

11 mild 2 2 2 1 2 54 26 67 M R R 

12 mild 2 2 2 1 2 56 11 56 M L L 

13 mild 1 2 2 1 2 59 53 50 F R R 

14 mild 2 2 2 1 2 60 11 61 F R R 

15 mild 2 2 2 1 2 63 35 76 F L L 

16 mild 2 2 2 1 2 63 10 78 F R R 

17 mild 2 2 2 1 2 64 23 65 M L L 

18 mild 2 2 2 1 2 64 6 70 F R R 

19 mild 2 2 2 1 2 64 6 75 F L R 

20 none 2 2 2 2 2 11 6 52 F R R 

21 none 2 2 2 2 2 13 82 64 M L L 

22 none 2 2 2 2 2 20 6 77 M L R 

23 none 2 2 2 2 2 39 50 62 M R R 

24 none 2 2 2 2 2 48 35 50 M R R 

25 none 2 2 2 2 2 58 75 55 M L L 

26 none 2 2 2 2 2 59 41 49 F L L 

27 none 2 2 2 2 2 60 6 73 M L R 

28 none 2 2 2 2 2 66 67 68 F R R 

29 none 2 2 2 2 2 66 10 57 M L L 

30 none 2 2 2 2 2 66 88 48 M R R 
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Figure 5.1. Experimental setup. A) The forearm of the participant is strapped into an armrest and the 
hand is strapped to the handle of the robotic manipulator, requiring no hand force to hold the handle. 
B) Visual feedback as presented to the participant. The circle and crosshairs are always visible. The 
yellow arrow is only visible during the active task and points up if the target torque is applied. C) Close-
up of the arm in the robotic manipulator. The wrist joint is aligned with the axis of the motor and is 
placed in the neutral angle, defined as 20° wrist flexion. D) One period of the disturbance signal applied 
to the wrist (root-mean-square of 0.02 rad). Zero radians corresponds to the neutral angle of the wrist. 
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Experimental protocol 
Processing and integration of sensory information was evaluated with a passive and an active 
upper limb control task. In this protocol a robotic manipulator applied continuous periodic 
disturbances to the wrist to provide sensory stimulation and to challenge task execution. This 
protocol focuses on the paretic forearm acknowledging that the upper limb is often more 
severely affected and return of some dexterity is essential for activities of daily living 
(Langhorne et al., 2011, Nijland et al., 2011, Raghavan, 2015). 

Experimental setup 
All EEG recordings were performed in a customized measurement van (Volkswagen Crafter, 
Wolfsburg, Germany) equipped with stabilizing feet, shaded windows, curtains, a wheelchair 
(Ibis, Sunrise Medical Incorporated, Fresno, CA, USA), and all experimental equipment (see 
Figure 5.1A). The participant’s stimulated forearm (i.e. paretic arm for participants with 
stroke or dominant arm for unimpaired participants) was attached to the robotic manipulator 
(Wristalyzer, MOOG, Nieuw-Vennep, The Netherlands). The wrist joint was aligned to the 
motor axis and the hand was strapped to the handle of the robotic manipulator using Velcro 
straps, requiring no active grip from the participant. The shape of the handle ensured forces 
were applied to the palmar surface of the hand and prevented fingertips from holding the 
edge. Both tasks were performed with the wrist positioned in a neutral angle, defined as 20° 
wrist flexion (see Figure 5.1C), which allowed for comparison between tasks and 
participants. A computer screen showed a circle during all tasks, with an arrow that presented 
task relevant feedback during the active task, as explained below. All visual feedback signals 
were low-pass filtered (cut-off frequency of 0.6 Hz) to prevent correlation between eye 
movement and the disturbance signal. 

Structural magnetic resonance images of each participant were obtained at the VU Medical 
Center, Amsterdam, using a Discovery MR750 3T scanner (GE, Waukesha, WI, USA). T1-
weighted volumes were acquired with a 3D fast spoiled gradient-recalled-echo sequence, 
consisting of 172 sagittal slices (256 x 256), using the following acquisition parameters: TR = 
8.208 ms, TE = 3.22 ms, inversion time = 450 ms, flip angle = 12°, voxel size 1 x 0.94 x 0.94 
mm. 

Recording system 
All signals were recorded using a Refa amplifier (TMSi, Oldenzaal, The Netherlands) 
sampling at 2048 Hz and without hardware filters (only anti-aliasing). Scalp potentials were 
recorded using an electrode cap with 64 Ag/AgCl electrodes (TMSi), arranged according to a 
subset of the extended 10/20 system. A separate electrode (Blue Sensor N, Ambu, Ballerup, 
Denmark) was connected to the left mastoid process and served as the participant ground. 
Muscle activity was recorded from two muscles in each forearm (m. flexor carpi radialis and 
m. extensor carpi radialis brevis) using pairs of unipolar electrodes (Blue Sensor N, Ambu). 
Signals from the robotic manipulator (recorded and commanded angle and torque) were 
recorded via optical isolation amplifiers (TMSi) to ensure participant safety.  
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Upper limb control tasks 
Passive tasks require no active involvement of the participant, allow for assessment of 
connectivity between the periphery and the sensorimotor cortex, and are feasible for 
individuals with severe motor impairment (FMA-UE score lower than 40). Active tasks 
engage the sensorimotor system in movement control, therewith requiring motor activity and 
sensorimotor integration. Hence, contrary to passive tasks, active tasks require sensory 
information for adequate task execution. The active task was included to investigate if 
voluntary motor drive would be accompanied by an abnormal lateralization of sensory-related 
cortical activity. This task was chosen such that individuals who suffered a stroke and are 
capable of some wrist flexion can perform it. 

Passive task – relaxed wrist. In this task, participants were instructed to relax their wrist and 
ignore the applied disturbances. A screen in front of the participants showed a static image 
without any task-related feedback. The periodic angular disturbances applied by the robotic 
manipulator elicit sustained oscillatory responses in the EEG commonly referred to as steady 
state responses (SSR) (Snyder, 1992, Tobimatsu et al., 1999). In unimpaired persons, the SSR 
obtained under the passive condition appear in the contralateral sensorimotor cortices.  

Active task – isotonic wrist torque. In this task participants were instructed to maintain a wrist 
flexion torque of 20% of the maximum voluntary contraction (MVC), for which they 
received visual feedback (see Figure 5.1B). During this task the participants received the 
same angular disturbances as in the passive task. The active task was not performed if the 
participant was not capable of voluntary wrist flexion. Due to limitations of the robotic 
manipulator, the maximum torque level for the active task was set to 4 Nm. There were three 
unimpaired participants for whom 20% MVC was higher than 4 Nm (i.e. 5.7 Nm, 5.6 Nm 
and 4.5 Nm). Additionally, two participants with chronic stroke executed the active task at a 
higher level than 20% MVC, as the task was not challenging for them at 20% MVC (ID 10, 
MVC was 1.8 Nm, active task performed at 40% MVC or 0.7 Nm; and ID 20, MVC was 2.8 
Nm, active task performed at 50% MVC or 1.4 Nm). 

The passive task was performed before the active task. To prevent fatigue in the active tasks, 
a trial lasted only 12.5 s. For each task 20 trials were recorded. There was a short break 
between trials which was at least five seconds, or longer if the participant or experimenter 
deemed necessary. Recording of the active task was stopped in case of severe fatigue or 
discomfort. 

MVC during wrist flexion was determined for the stimulated arm. Participants were verbally 
encouraged to perform wrist flexion with maximal effort. For participants with wrist flexion 
torque lower than 5 Nm (experimentally established), the MVC was measured using the 
robotic manipulator, which maintained a fixed angle (neutral angle). Stronger participants 
performed this MVC test by exerting flexion torque on a handheld force transducer 
(MicroFet, Draper, UT, USA). The hand was attached to the robotic manipulator and the 
neutral angle was approximately maintained. 
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Disturbance signal design 
During both the passive and active task the robotic manipulator applied the same continuous 
periodic angular disturbance signal to the wrist. The disturbance signal was a random-phase 
multisine signal (e.g. the sum of several sinusoids, each with a random phase) (Pintelon and 
Schoukens, 2012), which was designed to stimulate the sensory system in a frequency range 
relevant to movement control. Control of the wrist at high frequencies is limited by inertia of 
the limb and by the ability of the muscle to contract at high rates. To accommodate low 
frequencies the period of the disturbance signal was set to 1.25 s (i.e. frequency resolution of 
0.8 Hz). This selection is a tradeoff between frequency resolution and number of periods that 
can be recorded in a given measurement time, where recording more periods allows for better 
estimation of an average response. The included sinusoids in the multisine signal were: 0.8, 
1.6, 2.4, 3.2, 4.0, 4.8, 5.6, 6.4, 8.0, 9.6, 11.2, 13.6, 16.0, and 19.2 Hz. The frequencies below 
the natural frequency of the wrist (approximately 3 to 5 Hz for a relaxed wrist) had the 
highest amplitudes, since in the low frequency region reflexes are most effective due to the 
inherent time delay associated with them. Frequencies above 4 Hz had decreasing amplitudes 
(-20 dB/dec). The reason for this is twofold. Firstly, due to inertial properties of the wrist, the 
forces required to manipulate the wrist increase quadratically with increasing frequency for 
frequencies above the natural frequency, surpassing the capabilities of the robotic 
manipulator. Secondly, the muscle spindles serving the Ia afferents are particularly sensitive 
to velocity information (Kandel et al., 2000, Mileusnic et al., 2006).  

The angular disturbances were identical for all participants, were always applied in the neutral 
angle, and had an excursion of 0.02 radians root mean square (see Figure 5.1D). The 
disturbance signal was flipped for recordings on the left hand to have similar flexor/extensor 
stimulation as in right handed participants. Each trial consisted of ten consecutive periods of 
the disturbance signal. 

Data processing 
All data was processed using MATLAB 8.1 (The Mathworks, Inc., Natick, MA, USA). 
Topographic representations were generated using EEGLAB (Delorme and Makeig, 2004). 

Pre-processing 
Recorded EEG trials were band-pass filtered between 0.8 Hz and 120 Hz and band-stop 
filtered in narrow bands around 50 and 100 Hz (line noise and its harmonic). Data were 
filtered using 4th order Butterworth filters applied bi-directionally to achieve zero-phase 
filtering. EEG electrodes with high impedance (automatically detected by the recording 
equipment) were excluded from further analysis. The remaining EEG channels were re-
referenced to the common average.  

Period rejection 
After filtering, the trials (12.5 s) were split up into ten periods (1.25 s), according to the 
period of the disturbance signal. The first two periods were discarded to reduce the influence 
of transient effects, resulting in a total of 160 periods for each task. Periods were rejected 
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from the active task if the mean wrist torque in the period was not within ±50% of the target 
torque. If there were less than 80 successfully recorded periods in the active task, the task was 
excluded from analysis. 

EEG analysis 
Independent component analysis 
To separate brain signal from artifacts, an independent component analysis (ICA) was 
performed using the Infomax algorithm (Bell and Sejnowski, 1995, Makeig et al., 1996a) as 
implemented in CUDAICA (Raimondo et al., 2012). ICA was performed on the EEG data of 
both upper limb control tasks combined, with subsequent rejection of independent 
components (ICs) corresponding to non-brain signals. ICs representing muscle activity were 
detected based on an increase of power in the power spectrum for increasing frequency. 
Components related to blinking and eye movement were detected based on their 
topographical representation, as well as time course of each component. ICs representing 
contributions mainly from one electrode were removed. Remaining components were 
projected back to the electrode level. 

Outcome metrics 
Processing of afferent information was analyzed using the steady state response (SSR), 
obtained for each electrode by averaging the responses to all periods: 

 ( ) ( )[ ]

1

1ˆ
P

p

p

x k x k
P =

= ∑ , (5.1) 

where, x̂  is the SSR, x is the recorded signal from one electrode, k is a sample in a period p, 
and P is the total number of recorded periods. As the recorded EEG signals are electrical 
potentials measured on the scalp, the magnitude of the signal can easily vary across 
participants, for example due to differences in skull and scalp conductivity. Therefore, to 
enable comparison across participants the signal-to-noise ratio (SNR) was used. The SNR 
was calculated for each electrode by dividing the power in the SSR by the variance across 
recorded periods:  
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Due to the applied filtering and rejection of components representing artifacts, the major 
cause of variance across periods is expected to be background cortical activity, which is 
uncorrelated to the periodic disturbance signal. Note that the SNR is not scaled with the 
number of periods as in Chapter 3 and 4; the number of periods might vary between 
participants and between tasks, which would hinder any comparisons. 
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The difference in power in the SSR between the passive and the active task is calculated to 
see the intra-participant effect of the active task on the SSR power: 
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Calculation of changes in power in the SSR is facilitated by the use of ICA for artifact 
rejection, as EMG signals coming from facial and shoulder muscles would otherwise 
contaminate the EEG signals, biasing the power in the SSR. Alterations in evoked cortical 
activation during the active tasks are expressed relative to the passive task by comparing the 
power in the SSR. The obtained metric is dimensionless, thereby allowing comparison 
between participants. This metric is also less sensitive to changes in noise (e.g. changes in 
background cortical activity and EMG activity) due to the voluntary force production. 

Laterality indices were calculated for the evoked responses at the electrode level using two 
sets of electrodes located over the sensorimotor cortices. On the left side of the cortex the 
following (odd) electrodes were included: F1, F3, F5, FC1, FC3, FC5, C1, C3, C5, CP1, CP3, 
CP5, P1, P3 and P5. On the right side of the cortex their even counterparts were included: 
F2, F4, F6, FC2, FC4, FC6, C2, C4, C6, CP2, CP4, CP6, P2, P4 and P6. The electrode sets 
are referred to as ipsilateral (same side) or contralateral (opposite side) relative to the 
manipulated wrist. The SNR was averaged for the electrodes on the side contralateral to the 
disturbance (SNRcontra) and for the ipsilateral side (SNRipsi), and the sum of both was expressed 
as ΣSNR. The laterality index for SNR was obtained using: 

 contra ipsi

contra ipsi

SNR SNR
LI

SNR SNR
−

=
+

, (5.4) 

which is similar to lateralization indices previously obtained in for example fMRI (Pujol et al., 
1999) and EEG (Jung et al., 2003). The laterality index is bounded between -1 and 1, where 1 
indicates only contralateral activity and -1 indicates only ipsilateral activity. 

Statistical analysis 
Statistical analysis on the outcome metrics SNR and LI was performed using a one-way 
analysis of variance (ANOVA) over the different sensory impairment groups (severe, mild, 
none, and control). Post hoc analysis using Tukey's honest significant difference criterion was 
performed if a significant difference between groups was observed. Statistical analysis on the 
outcome metric ΔE was performed within each group using a Wilcoxon signed rank test. All 
tests were performed using a two-tailed significance level of 95% (α = 0.05). 
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Relation between EEG-derived outcome metrics and estimation of anatomical 
damage 
Anatomical damage 
The structural magnetic resonance images were analyzed to estimate the volume of the 
sensory and motor tracts (SMT) affected by the stroke lesion. A participant-specific lesion 
mask was created from the T1-weighted volumes using the LINDA toolbox for automatic 
segmentation of chronic stroke lesions (Pustina et al., 2016). The volume of the SMT affected 
by the stroke lesion was estimated by comparing the person-specific lesion mask against the 
mask corticospinal tract obtained from the John Hopkins University white-matter tractography 
atlas (Hua et al., 2008) included in the FMRIB Software Library (Jenkinson et al., 2012). 
Noteworthy, this mask incorporates both descending and ascending fibers. To validate the 
SMT lesion volume as a metric of sensory impairment, the rank correlation between 
EmNSA-UE and SMT lesion volume was computed. 

Regression analysis 
Linear regression was used as a means to evaluate the relationship between the EEG-derived 
outcome metrics and sensory impairment. LASSO regression (Tibshirani, 1996) was used to 
fit a linear model from the outcome metrics to the SMT lesion volume, using ten-fold cross-
validation. The LASSO regression improves the generalization of the linear model (via 
shrinkage) and can help determining the importance of the predictor variables. The 
evaluation was conducted for the passive and active tasks separately, with an additional model 
combining the outcome metrics of both tasks. The performance of the linear model was 
evaluated using the variance-accounted-for (VAF). Statistical significance was determined by 
comparing the model performance against data generated using 1000 permutations of the 
SMT lesion volume. 

 Results 5.3
The average torque in the passive task was expected to be close to 0 Nm, which could be 
altered due to passive wrist stiffness when the wrist was placed in the neutral position. Only 
one participant (ID 8, individual with mild sensory impairment) demonstrated a substantial 
(>0.3 Nm) passive wrist torque of 2.9 Nm. Due to this large torque under passive conditions, 
this participant (who only performed the passive task) was excluded from further analysis, as 
such alteration results in a different task execution. All other participants performed the 
passive task without substantial wrist torque and without significant increases in EMG 
activity on wrist flexor and extensor (paired t-test between wrist EMG during passive task 
and rest: relaxed wrist without robotic manipulation). Participants who successfully 
performed the active task had a high percentage of periods which fulfilled the task criteria: 
93% (SD = 8) for the severe group, 95% (SD = 12) for the mild group, 98% (SD = 3) for the 
no impairment group and 93% (SD = 11) for the control group. 
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Signal-to-noise ratio and laterality index 
Figure 5.2 shows the SNR for each electrode averaged across the participants in each group 
and Figure 5.3 shows the individual results. As expected, in the passive task (Figure 5.2, top 
row) the control group demonstrates the highest SNR over the contralateral sensorimotor 
cortex (left side in Figure 5.2). The groups of participants with mild and no sensory 
impairment also show the highest SNR over the contralateral sensorimotor cortex. The 
lateralization of the SNR is not observed in the group of participants with severe sensory 
impairment. Moreover, the SNR is low in the severe sensory impairment group compared 
with the other groups, indicating that sensory input does not reach the scalp electrodes. The 
laterality index for the passive task (Figure 5.3, top row, most left graph) quantifies the 
differences seen in the scalp maps and shows a significantly altered laterality index for the 
severe sensory impairment group. The laterality index of close to zero indicates equal 
contributions from the contra- and ipsilateral cortices. The other graphs in Figure 5.3 
illustrate that this group has a significant reduction in SNR on both sides of the cortex. One 
participant in the severe sensory impairment group (ID 7) demonstrated a markedly higher 
SNR and FMA-UE score in comparison to other participants in this group. This participant 
had problems with concentration during EmNSA-UE, which could have interfered with the 
clinical assessment resulting in a low EmNSA-UE score as opposed to actual sensory 
impairment. 

In the active task (Figure 5.2, middle row), the scalp distribution of the average SNR for the 
different sensory impairment groups show higher SNR for the control and no impairment 
groups than the mild and severe impairment groups. Once again, these differences are 
quantified by the laterality index (see Figure 5.3, middle row, most left graph). The laterality 
index is positive for the control and no sensory impairment groups. The laterality index for 
the severe and mild sensory impairment groups still presents positive values, but it also 
includes participants with a laterality index close to zero. The low SNR for participants with 
severe and mild sensory impairment is evident in the components of the laterality index 
(contralateral, ipsilateral, and total SNR).  

Power change 
The bottom row of Figure 5.3 shows the percentage power change (ΔE) in the SSR in the 
active compared with the passive task. The active task results for the mild sensory 
impairment group not only demonstrate a lower SNR than the unimpaired participants and 
participants with stroke without sensory impairment as concluded from Figure 5.3 (middle 
row), these participants also have a negative ΔE. The negative ΔE indicates that the reduced 
SNR is not (solely) due to an increase in “noise” in the active task, but that the “signal” (e.g. 
SSR) is reduced. The ΔE for the severe sensory impairment group has a high variance across 
participants. This can be explained by the total absence of an SSR in the passive task and a 
minor SSR in the active task, causing the percentage change to be very large. The active task 
was only performed if allowed by time and stamina. Other reasons for not performing the 



Chapter 5 
 

 75 

active task included complications with the experimental setup in setting the correct force 
level. 

Evaluation of sensory and motor tract integrity 
The rank correlation between EmNSA-UE and SMT lesion volume indicates that lower 
EmNSA-UE scores are associated with larger SMT lesion volumes (Spearman’s ρ = -0.5, p = 
0.005), thus enabling the use of SMT lesion volume as supporting anatomical evidence for 
sensory impairment. 

 

 
 

 

Figure 5.2. Average SNR and change in power in the SSR for the different sensory impairment groups. 
The number of participants in a group is indicated by n. The results for all recordings performed on the 
left hand were flipped with respect to the sagittal plane, such that left in these topographic 
representations is always contralateral to the perturbation. Topographic representations of SNR reveal 
that: (i) in the passive task the group with severe sensory impairment has a reduced evoked response as 
compared with all other groups, (ii) in the active task both the severe and mild sensory impairment 
groups demonstrate a reduced evoked response as compared with the no sensory impairment group and 
the control participants, and (iii) all the observed response occur around the contralateral sensorimotor 
cortices. Topographic representation of ∆E reveals an overall decrease of power in the evoked response 
for the group with mild sensory impairment. 
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The linear model for estimation of SMT lesion volume based on EEG-derived outcome 
metrics obtained from the passive task (SNRcontra, SNRipsi, and LISNR) explained 75% of the 
variance in the actual SMT lesion volume (p < 0.01, n = 29), where the algorithm indicated 
that all outcome metrics contributed to this model. This finding indicates a relation between 
the proposed EEG outcome metrics and the anatomical damage to the SMT. To further 
investigate the relevance of these outcome metrics in the active task, several steps were 
performed. The model was again estimated using the outcome metrics from the passive task, 
yet only for the participants who performed the active task. This resulted in a similar model 
performance of 77% (p < 0.01, n = 16). Interestingly, when using the outcome metrics 
(SNRcontra, SNRipsi, and LISNR) obtained from the active task, the model performance decreased 
to 45% (p < 0.05, n = 16). Additionally, a model including outcome metrics from both tasks 
explained 75% of the variance (p < 0.01, n = 16), which does not represent an improvement 
over using the outcome metrics from only the passive task exclusively. 

 Discussion 5.4
The goal of this study was to quantitatively assess the integrity of the somatosensory system 
in individuals with chronic hemiparetic stroke using a combination of robotic continuous 
joint manipulation and high-density EEG. Continuous wrist manipulation under passive 
conditions results in contralateral cortical evoked responses in unimpaired participants and 
participants with chronic stroke with mild and no sensory impairment. In contrast, in 
participants with chronic stroke and severe sensory impairment the evoked responses are 
strongly reduced or absent in both ipsi- and contralesional sides of the brain and thus not 
lateralized to either hemisphere. Under active conditions, participants with mild sensory 
impairment show a reduction in power of the cortical evoked responses in both hemispheres, 
as compared with the passive condition, whereas unimpaired age-matched participants and 
participants with no sensory impairment do not show this reduction. 

Cortical activation in the passive task 
The distribution of SNR over the scalp of unimpaired participants covered electrode sites 
overlaying the contralateral primary somatosensory cortex. Continuous joint manipulation 
provokes the flow of proprioceptive and tactile sensory information to the cerebral cortex. 
This information is mainly mediated by the dorsal column-medial lemniscal pathway, which 
connects the mechanoreceptors in the periphery to the contralateral primary somatosensory 
cortex via the ventral posterolateral nucleus of the thalamus. From the primary 
somatosensory cortex, the somatosensory information is distributed mainly to the secondary 
somatosensory and posterior parietal cortices (Kandel et al., 2000, Chang et al., 2009, Vakorin 
et al., 2010). The results of this study are consistent with the distribution of cortical areas 
listed above, and are similar to cortical activation patterns previously reported for 
mechanically evoked SSR (Langdon et al., 2011, Severens et al., 2013, Vlaar et al., 2017b). 
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Figure 5.3. Outcome metrics and statistical analyses. Top and middle row: laterality index for SNR, 
SNR over contralateral (SNRcontra) and ipsilateral (SNRipsi) sensorimotor cortices and the total SNR 
(ΣSNR) for the passive and active task respectively. Horizontal bars (in gray) indicate significant 
differences between groups; in case there was no significant difference between groups, the p-value of 
the ANOVA is reported. Bottom row: change in power in the SSR in the active task as compared with 
the passive task (ΔE). The left graph is the ΔE for the contralateral hemisphere and the right graph is 
the ΔE for the ipsilateral hemisphere. Asterisks indicate a median power change significantly different 
from zero. Triangles indicate participants with FMA-UE score lower than 40 (i.e. with severe motor 
impairment), and dots indicate participants with higher FMA-UE scores (i.e. with mild or no motor 
impairment). The statistical analysis shows that most outcome metrics obtained from the passive task 
significantly differ for the group with severe sensory impairment. For the active task, the laterality index 
does not differ over groups; the other parameters indicate reduced responses for the severe and mild 
sensory impairment groups. 
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In the current study, participants with chronic stroke and mild and no sensory impairment do 
not demonstrate a significantly altered SNR (both contra- or ipsilateral) as compared with 
unimpaired participants. In contrast, participants with severe sensory impairment show a 
lower contralateral SNR in comparison with the other groups. This finding is in line with 
previous research in individuals with stroke and sensory impairment, in which the cortical 
responses to median nerve stimulation were reported to be severely decreased or absent (see 
Coupar et al., 2012). A recent study showed that the cortical responses to joint manipulation 
are reduced in individuals with subacute stroke and motor impairment (Campfens et al., 
2015b). The lower SNR suggests altered connectivity between the periphery and the 
contralateral sensorimotor cortices, as a result of stroke-induced damage along the sensory 
and motor tracts. As demonstrated in the participants with stroke included in the current 
study, the diminished cortical responses to a sensory stimulus seem to be related to the level 
of sensory impairment, which does not necessarily correspond to the level of motor 
impairment (see Table 5.1). In general, sensory function can be unimpaired while there might 
be severe motor impairment, depending on which neural tracts are affected (Park et al., 
2016). As human movement control requires sensorimotor integration, it requires functioning 
of both the afferent and efferent pathways. Damage to either pathway will affect motor 
control. 

Besides lower contralateral responses, participants with severe sensory impairment also 
exhibit lower ipsilateral responses, in comparison to unimpaired participants. The 
combination of reduced contralateral and ipsilateral responses causes the laterality index to 
shift towards zero, i.e. no lateralization of the response. Previous neuroimaging studies using 
a laterality index to assess cortical activity during hand movement reported a shift in the 
laterality index (i.e. closer to zero or negative) associated with an increased recruitment of 
ipsilateral (i.e. contralesional) cortical brain areas (Serrien et al., 2004, Buma et al., 2010, 
Ward, 2011, Grefkes and Fink, 2014), possibly via corticobulbospinal pathways (Schwerin et 
al., 2008). Such lateralization is likely related to changes in voluntary motor drive instead of 
sensory afferents. Campfens et al. (2015b) reported, in individuals with subacute stroke, 
lateralization of cortical evoked responses towards the ipsilateral hemisphere (relative to the 
stimulated arm). This shift was interpreted as increased responses of the ipsilateral cortex (i.e. 
contralesional), without reporting the actual metrics for the responses of the ipsilateral cortex. 
Ipsilateral evoked responses to continuous joint manipulation could be mediated by 
transcallosal or thalamic pathways (Kandel et al., 2000, Reis et al., 2008, Welniarz et al., 2015). 
Although transcallosal pathways can transfer information from the contralateral (i.e. 
ipsilesional) to the ipsilateral (i.e. contralesional) hemisphere this requires information arrives 
first at the contralateral sensorimotor cortex. Moreover, there is no evidence of thalamic 
pathways connecting mechanoreceptors in the periphery to the ipsilateral sensorimotor 
cortices. In general, increased ipsilateral activation could be the result of reduced 
interhemispheric inhibition, potentially allowing information from the periphery to reach the 
ipsilateral somatosensory cortices. Interhemispheric inhibition is drastically altered in 
individuals who underwent a hemispherectomy; in these individuals ipsilateral activation of 
somatosensory cortices is sometimes observed in response to sensory stimulation (Holloway 
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et al., 2000, Yao et al., 2013). However, the hemispherectomy was often performed at a 
young age and these individuals were studied many years after surgery, resulting in a long time 
span during which brain plasticity can occur. In the current study there is no evidence for an 
increase of ipsilateral evoked responses to joint manipulation.  

The group with severe sensory impairment consisted of participants with both proprioceptive 
and tactile impairment, as established from the EmNSA-UE. The mild sensory impairment 
group consisted of participants with only tactile impairment. Interestingly, in this study there 
were no participants with chronic stroke who only had proprioceptive impairment but no 
tactile impairment. The recorded cortical evoked responses are generated by 
mechanoreceptors; however, in the current approach it is not possible to distinguish between 
contributions from proprioceptive and tactile sensors. Inclusion of participants with stroke 
and only proprioceptive impairment would allow for further investigation of the 
corresponding sources of the cortical evoked response. Previous research by Mima et al. 
(1996) established that under passive conditions the cortical evoked responses due to finger 
joint manipulation are mainly due to proprioceptive and not tactile sensors. This is in line 
with the current finding that the lowest SNR under passive conditions was obtained for 
participants with proprioceptive impairment. The nature of the responses under active 
conditions might be altered as information about pressure on the hand (i.e. obtained by 
tactile sensors) would aid task execution when the objective is to maintain a certain force 
level. 

Alterations to cortical activation during the active task 
In the current study, participants with mild sensory impairment show a significant decrease of 
SSR power in both the contra- and ipsilateral hemispheres during the active task, as 
compared with the passive task. For participants with severe sensory impairment, the change 
in power in the SSR could not be accurately determined due to the absence of responses in 
the passive task. However, during the active task, participants with severe sensory impairment 
show an equally low SNR as compared with the participants with mild sensory impairment. 
Thus, the groups of participants with mild and severe sensory impairment demonstrate lower 
cortical evoked responses during the active task, as compared with unimpaired participants 
and participants with stroke without sensory impairment. In unimpaired participants and 
participants with no sensory impairment no significant differences were observed between 
passive and active conditions. The latter finding is in agreement with previous studies. 
Cortical activity during a wrist flexion task with joint manipulation was performed in 
individuals with stroke in two other studies with transient (Campfens et al., 2015a) and 
continuous (Campfens et al., 2015b) joint disturbances. Both studies reported metrics based 
on evoked responses for passive and active conditions, with small differences between 
conditions. Interestingly, in these studies the active condition was only performed by 
individuals with stroke and FMA-UE scores above 40 points without any sensory 
impairment. 
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The decreased evoked responses in participants with mild sensory impairment suggest a 
reduction in sensory information relayed to the brain, either due to reduced sensory signals 
from the periphery, changes in the mechanisms of sensorimotor integration related to 
sensory impairment, or both. Importantly, the disturbance signal applied by the robotic 
manipulator was the same under passive and active conditions. In the peripheral nervous 
system, the active wrist flexion causes the proprioceptive and tactile sensors to operate in a 
different range in comparison to the passive task, as the proprioceptors are shortened due to 
the muscle contraction (and lengthened for the antagonist muscle) and the tactile sensors on 
the hand register the increase pressure applied to the handle. In response, the central nervous 
system might modulate the sensitivity of the muscle spindles using alpha-gamma motor 
neuron co-activation, to compensate for the changing afferent signals (Prochazka et al., 
1985). Impaired sensory function may lead to impaired feedback control, which could affect 
the modulation of muscle spindle and gamma motor neuron co-activation. Additionally, 
active movement induces changes in the activity of the sensorimotor cortices observed as 
suppression of the mu and beta rhythms during preparation and execution of movement 
(Pfurtscheller and Da Silva, 1999). A similar phenomena occurs during passive movements 
(Müller et al., 2003, Parkkonen et al., 2015, Tacchino et al., 2016), suggesting that suppression 
of cortical rhythms is partly related to neural processing of sensory input. In individuals with 
motor impairments after stroke, suppression of the beta rhythm is significantly reduced 
during active movement (Rossiter et al., 2014) and following somatosensory stimulation 
(passive movement and tactile stimulation) (Laaksonen et al., 2012, Parkkonen et al., 2015). 
These alterations are related to changes in excitation and inhibition through varying levels of 
γ-aminobutyric acid (GABA) (Rossiter et al., 2014), which are considered detrimental for 
motor control and could be linked to the observed decrease of the evoked responses. Extra 
insight into the source of the reduced responses could be obtained by directly measuring the 
output of the sensors in the periphery, for example using microneurography (Prochazka and 
Gorassini, 1998), and by measuring the induced changes to cortical mu and beta rhythms as 
metrics of impaired sensorimotor integration (Laaksonen et al., 2012). 

Ipsilateral cortical activity during voluntary motor drive has been shown before in individuals 
with chronic stroke and severe motor impairments (Serrien et al., 2004, Buma et al., 2010, 
Ward, 2011, Grefkes and Fink, 2014). Here, the focus is on quantifying the cortical responses 
evoked by continuous joint manipulation (sensory information) and determining if there is 
lateralization of sensory information to the ipsilateral hemisphere. The results in this study do 
not show a consistent shift of cortical evoked responses towards the ipsilateral hemisphere 
for any group. This result suggests that proprioceptive and tactile information is transmitted 
to the contralateral hemisphere only, in accordance with known anatomic constraints (i.e. 
dorsal columns). This lack of sensory information reaching the contralateral and the 
ipsilateral cortex is likely to hamper any role of the ipsilateral cortex in feedback control (e.g. 
reflex modulation). 
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Robotic joint manipulation to assist the assessment of sensory 
impairment 
Continuous joint manipulation allows studying somatosensory cortical evoked responses 
during the execution of meaningful control tasks. With this approach it is possible to measure 
the SNR and SSR to quantitatively assess the integrity of the sensory pathways under passive 
and active conditions, while being certain of stimulating the sensory systems involved in 
movement control (i.e. proprioceptive and tactile). Determining the integrity of sensory 
pathways in the context of movement control provides additional information for the 
accurate description of sensory impairment of a stroke patient. This information can assist 
the development and selection of patient-specific rehabilitation programs (and interventions) 
that promote plastic reorganization of the remaining cerebral networks (Dimyan and Cohen, 
2011, Langhorne et al., 2011), with the ultimate goal to improve functional outcome.  

Current clinical practice determines sensory and motor impairment based on subjective 
expert evaluation using established clinical assessments, which are vulnerable to issues related 
to validity and reliability (Connell and Tyson, 2012). The majority of the existing clinical 
assessments focus on describing motor-related impairments such as weakness, spasticity, and 
pathological synergies (e.g. Ashworth, 1964, Fugl-Meyer et al., 1974, Lyle, 1981), even though 
the assessment of sensory impairment is necessary for proper selection and evaluation of 
stroke rehabilitation interventions (Winward et al., 1999, Stolk-Hornsveld et al., 2006, 
Veerbeek et al., 2014, Bolognini et al., 2016). Alternatively, methods for objective 
quantification of brain function rely on neuroimaging techniques (Ward, 2015). When using 
indirect, blood oxygenation level dependent neuroimaging techniques, the poor temporal 
resolution hampers studying the cortical evoked response, which in turn hinders any 
distinction between cortical activation due to sensory information processing or voluntary 
motor drive. A known way of quantitatively assessing sensory function of the upper limb using 
neuroimaging techniques is the characterization of somatosensory evoked responses to 
electrical stimulation of the median nerve. Sensory function is then described based on the 
latency of the peaks in the cortical evoked response as measured using MEG or EEG (Huang 
et al., 2004). However, by applying an electrical stimulus one cannot be sure which sensory 
system is actually being stimulated, as there are many types of afferent fibers (e.g. for 
conveying pain, temperature, tactile, or proprioceptive information). Furthermore, electrical 
stimulation is generally applied under passive conditions and provides a non-physiological 
type of activation of sensory nerves. Because control of human movement demands ongoing 
sensorimotor integration, it is desirable to evaluate the status of the sensory system while 
engaged in a meaningful sensorimotor task.  

In this study, the relation between the EEG-derived outcome metrics and the integrity of 
sensory and motor tracts is demonstrated by the successful estimation of SMT lesion volume 
by a linear regression model obtained from the outcome metrics measured from the passive 
task. Adding the outcome metrics measured from the active task did not improve the model 
performance. This finding emphasizes the importance of the passive task for revealing the 
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integrity of the connections between the periphery and sensorimotor cortices. The 
information obtained from the active task likely reflects other aspects of the sensorimotor 
system, for example altered sensorimotor integration. 

This study demonstrates the quantitative assessment of the integrity of the somatosensory 
system through continuous joint manipulation. Although the passive and active task require 
some capabilities of the participants in terms of cognition and ability to sit upright 
independently, the protocol is feasible for individuals with chronic stroke, even in the 
presence of severe motor impairment. The passive task could be executed by all participants 
in this study. The active task could be executed by most participants, except for participants 
lacking voluntary wrist flexion (n = 3), which is related to severe motor impairment. In the 
current study, participants with FMA-UE scores of nine and lower were incapable of 
voluntarily flexing their wrist.  

Limitations and future directions 
Previous work by Vlaar et al. (2015, 2017b) revealed that the relation between continuous 
wrist manipulation and cortical evoked responses is highly nonlinear, yet the responses are 
periodic with the disturbance signal. The implication is that a linear metric will not be able to 
capture the relationship between disturbance at the wrist and cortical responses. Although the 
metrics in the current study do not attempt to describe this relationship, they can successfully 
quantify the full periodic response (i.e. both linear and nonlinear contributions). The 
repeatability of these metrics has yet to be verified; however, test-retest reliability of 
mechanically evoked steady state responses has previously been established. Pang and 
Mueller (2014) demonstrated that the amplitude of the evoked cortical response does not 
vary over recording sessions in unimpaired young participants using continuous tactile 
stimulation. 

Due to the specific focus on the wrist in this study, some elements of the EmNSA could 
have been omitted (e.g. tactile sensation of the upper arm and proprioception of the shoulder 
and elbow). However, omitting these scores would not alter the way participants are 
classified. Two participants (ID 2 and 5) would receive a 0 instead of a 1 for proprioception, 
but both would still remain in the severe sensory impairment group. Indeed, sensory 
impairment is highly correlated between segments of a limb for the same sensory modality 
(Connell et al., 2008). 

To further develop relevant outcome metrics for sensory impairment, it would be important 
to relate these outcome metrics to the current golden standard in sensory assessment, i.e. 
EmNSA. However, this raises several issues, as clinical assessments typically use ordinal 
scales and no normative data are available. The EmNSA only assesses passive movement and 
investigates all sensory modalities separately. During (natural) movement control, there is 
always interplay between sensory modalities. Although the applied wrist joint manipulation 
stimulates multiple sensory systems at the same time and therewith reduces the ability to 
distinguish them, the system is assessed in a way reflecting everyday control, making 
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comparison to EmNSA not straightforward. In the current study, sensory impairment was 
related to SMT integrity as estimated from the location of the stroke lesion. An attractive 
alternative is the quantification of SMT integrity by means of diffusion tensor imaging (Kim 
and Winstein, 2017), which can directly measure the integrity of the sensory and motor tracts. 

The metrics demonstrated in this study (SNR, SSR, and the laterality index) may allow for 
tracking sensory impairment over time, which is of specific interest in the acute and subacute 
phases of stroke recovery. Most recovery of neurological impairment is spontaneous and 
takes place in the first six months after stroke (Cramer, 2008, Langhorne et al., 2011). At the 
end of this period, a significant number of individuals show poor recovery of upper limb 
function and thus do not follow the proportional recovery rule (Prabhakaran et al., 2008, 
Krakauer and Marshall, 2015), which predicts that individuals with stroke will recover 
approximately 70% of the difference between the maximum FMA-UE score and their initial 
score. Although the underlying cause of poor recovery is not understood, recent studies 
indicate that early assessment of corticospinal tract integrity has the potential to identify 
individuals with poor recovery (Byblow et al., 2015, Buch et al., 2016). Importantly, 
individuals with poor recovery of upper limb function also present impairments such as 
aphasia (Lazar et al., 2008) and visuospatial neglect (when affected in the same brain 
hemisphere) (Winters et al., 2016c). Thus, poor recovery after stroke may be linked to a 
multimodal suppression of brain function, which possibly also includes sensory function. 
Quantitative outcome metrics obtained from longitudinally monitoring sensory impairment, 
starting very early after stroke onset, allows investigating the effects of therapy on the 
recovery after stroke and the potential use of these metrics as neurophysiological biomarkers 
of recovery that may predict final outcome post stroke (Kwakkel and Kollen, 2013). This 
latter aim is in line with previous worldwide initiatives to achieve consensus in stroke 
recovery research (Bernhardt et al., 2016) and prognostic modeling (Reinkensmeyer et al., 
2016). 

Added value 
This study demonstrates an approach to quantitatively assess the integrity of the 
somatosensory system using EEG and a robotic manipulator that applies periodic 
disturbances to the wrist joint. This setup allows for analysis of the evoked cortical responses 
to robotic joint manipulation in individuals with stroke during upper limb control. The 
advantage of this approach is that it specifically stimulates sensory systems involved in 
movement control, in contrast to electrical stimulation. The evoked responses can be studied 
during a passive condition, revealing connectivity between the periphery and the cortex. 
Additionally, studying the evoked responses under active conditions allows insight in 
alterations due to engagement of the sensorimotor system in a meaningful movement control 
task. 
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 Conclusions 5.5
• Using the electroencephalogram and a robotic manipulator allows for quantitative 

assessment of evoked cortical activity reflecting proprioceptive and tactile 
information during meaningful upper limb control tasks executed under both 
passive and active conditions. 

• In individuals with mild and no sensory impairment in the chronic phase of stroke, 
the cortical representation of somatosensory stimuli of the affected upper limb is 
lateralized to the contralateral hemisphere, as seen in age-matched unimpaired 
individuals. 

• The cortical representation of somatosensory stimuli is not lateralized to the 
contralateral hemisphere in individuals with severe sensory impairment in the 
chronic phase after stroke. The absence in lateralization results from a reduction in 
responses in the contralateral hemisphere and not by an increase in responses in the 
ipsilateral hemisphere. 

• Individuals with mild sensory impairment after stroke have reduced cortical 
representation of somatosensory stimuli under active conditions as compared with 
passive conditions. This reduction does not occur in unimpaired individuals and 
individuals without sensory impairment after stroke. 

 4D-EEG consortium 5.6
In addition to the authors of the present study, the consortium consists of Jan de Munck, 
Carel Meskers, Mique Saes*, Luuk Haring*, Caroline Winters*, Aukje Andringa*, Dirk 
Hoevenaars*, Ines de Castro Fernandes, and Sarah Zandvliet from VU University Medical 
Centre; Andreas Daffertshofer from MOVE Research Institute Amsterdam; Jun Yao from 
Northwestern University; Yuan Yang, Mark van de Ruit, Konstantina Kalogianni, and Lena 
Filatova from Delft University of Technology. 

*These consortium members performed the measurements.  
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Stroke is a leading cause of long-term disability in the developed world. Prediction of 
recovery of upper limb function in stroke survivors is important for stroke management, yet 
is challenging in individuals with severe initial impairments. Understanding of stroke recovery 
and accuracy of prediction may be enhanced by using functional neuroimaging to measure 
cortical mechanisms of neurological recovery (i.e. neuroplasticity). The goal of the study is to 
present preliminary results of a protocol that tracks time-dependent neuroplasticity from the 
subacute to the chronic phase after stroke, focusing on the sensorimotor system. Cortical 
activity of hemiparetic stroke survivors was recorded at four fixed time points during 
recovery after stroke using electroencephalography. Participants performed passive and active 
wrist control tasks with the affected wrist, during which a robotic manipulator applied 
continuous periodic wrist manipulation. The intensity and location of the response evoked by 
the manipulation were studied. Preliminary results are presented for the fifteen participants 
who completed the four recording sessions. Eleven unimpaired participants performed the 
same protocol. Cortical responses evoked by joint manipulation were less strong in 
participants with severe sensory impairment and increased over time in participants who 
regained sensory function. The cortical sources generating the evoked responses were in all 
participants with intact contralateral primary sensorimotor cortices located within this region 
(all participants except one). No altered balance between contralateral and ipsilateral cortical 
evoked responses was observed under passive and active conditions. Cortical responses 
evoked by joint manipulation contain information about the status of the sensorimotor 
system. Recovery of sensory function is associated with return of responses to the 
contralateral hemisphere; we did not observe a compensatory mechanism for processing 
sensory information involving the ipsilateral hemisphere. Sensory information is essential to 
movement control. This study suggests that severe sensory impairment hinders recovery of 
motor function after stroke. 

  

To be submitted 
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 Introduction 6.1
Stroke is a leading cause of long-term disability in the developed world (Feigin et al., 2014). 
Upper limb paresis affects about 80% of stroke survivors (Langhorne et al., 2009) and less 
than half of these individuals regain some dexterity at the chronic phase (>6 months) after 
stroke; the majority is left with disabilities in activities of daily living (ADL) ) (Kwakkel et al., 
2003, Dobkin, 2005, Langhorne et al., 2011). Most neurological recovery occurs in the first 
three months after stroke (Cramer, 2008, Langhorne et al., 2011, Winters et al., 2016b) and 
largely occurs by spontaneous, time dependent recovery processes (Kwakkel et al., 2016). 
Early prediction of final functional outcome of the paretic upper limb is important for stroke 
management, and specifically rehabilitation therapy selection (Kwakkel and Kollen, 2013, 
Kwakkel et al., 2015).  

The proportional recovery model (Prabhakaran et al., 2008) is based on initial upper limb 
impairment as measured using the Fugl-Meyer assessment for the upper extremity (FMA-UE, 
maximum score of 66) (Fugl-Meyer et al., 1974). The model predicts that the final upper limb 
improvement is approximately 70% of what was initially lost (∆FMA-UEpredicted = 0.7 ∙ (66 - 
FMA-UEinitial) + 0.4). Individuals with a moderate to mild initial upper limb impairment 
generally fit the model and thus have good chance to regain almost full function (Winters et 
al., 2015b). However, prediction in the case of severe initial impairment is less accurate: some 
patients recover the predicted 70% of their maximum possible improvement, while others 
barely show improvement and are left with severe disabilities (Byblow et al., 2015, Ward, 
2015, Winters et al., 2015b). The recovery of individuals with severe initial upper limb 
impairment is of specific interest: why do some recover and others do not? Absence of 
recovery has been associated with clinical observations such as lack of finger extension, facial 
palsy, and more severe lower extremity motor impairments (Winters et al., 2015b). Accurate 
prediction of functional outcome of stroke survivors with severe initial impairments may be 
enhanced by using functional neuroimaging to study cortical mechanisms of neurological 
recovery (i.e. neuroplasticity) and extracting metrics which possess predictive value regarding 
functional outcome (i.e. biomarkers).  

Functional neuroimaging studies on recovery after stroke are predominantly performed using 
functional magnetic resonance imaging (fMRI). These studies typically investigate voluntary 
motor drive and have revealed an abnormal balance between ipsilesional and contralesional 
cortical activity (i.e. abnormal lateralization) (see Kim and Winstein, 2017 for a review). 
Although somatosensory impairments are very common after stroke (Connell et al., 2008, 
Meyer et al., 2016a) and somatosensory information reaching the cortex is important for 
motor recovery after stroke (Murphy and Corbett, 2009), altered cortical processing of 
somatosensory information after stroke has received little attention (Ward, 2015). It is 
currently unclear if lateralization of sensory-related cortical activity is altered during stroke 
recovery. 

Existing neuroimaging studies on sensory information processing are mostly performed by 
applying an electrical somatosensory stimulus to the median nerve and recording the cortical 
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evoked response using electroencephalography (EEG) or magnetoencephalography (MEG). 
For example, Feys et al. (2000) conducted a longitudinal study with 64 stroke survivors and 
concluded that the electrically evoked responses have limited prognostic value for motor 
recovery by themselves; prediction accuracy was increased when clinical variables were 
combined with the absence of a somatosensory evoked response. A recent study by Rollnik 
(2015) confirmed an association between absence of evoked responses and poor motor 
outcome in 449 stroke patients; however, there was no association between motor outcome 
and characteristics (e.g. timing and amplitude of peaks) in the evoked response. Electrical 
stimulation is known to stimulate a variety of fibers (Forss et al., 1994b). As an alternative, 
tactile stimulation is more specific to certain sensors and thus fibers, and can be considered a 
more natural type of stimulation (Forss et al., 1994b); however, the tactile system is not as 
relevant for movement control as the proprioceptive system. Importantly, the type of 
mechanoreceptors being stimulated determines which part of the somatosensory cortex 
receives the somatosensory information; tactile and proprioceptive information arrives in 
Brodmann area 3b and 3a, respectively (Kandel et al., 2000).  

The goal of the current study is to present preliminary results of a protocol that tracks time-
dependent neuroplasticity from the subacute to the chronic phase after stroke, focusing on 
the sensorimotor system. The approach proposed in the current study increases the 
specificity of the stimulation by targeting sensors specifically involved in motor control (i.e. 
proprioceptors); this approach enables the study of relevant sensory information processing 
and its role in motor control after stroke. Cortical activity related to control of the paretic 
upper limb is recorded using electroencephalography (EEG), which allows for the 
noninvasive recording of cortical signals during experiments involving movement. Passive 
and active upper limb control tasks are performed using a robotic manipulator, enabling the 
controlled study of cortical activity during motor control in the absence of compensation 
strategies (i.e. the use of different limbs or muscles to achieve the same task) (Buma et al., 
2010). Specifically, sensorimotor control of the wrist is studied, as the wrist is an important 
joint with respect to ADL and it is often affected after stroke. To stimulate the sensory 
system involved in sensorimotor control, the robotic manipulator applies small 
proprioceptive stimuli to the wrist joint; these stimuli generated a cortical response which is 
periodic with the periodic manipulation signal (Vlaar et al., 2015; Chapter 2) and is defined as 
the evoked response. The joint manipulation is applied during both the passive task (i.e. 
relaxed wrist) and the active task (voluntary muscle contraction of the wrist flexor). The 
protocol addresses the following questions at four measurements during recovery after 
stroke: 

i. Does the sensory information from the periphery reach the cortex? 
ii. Where in the cortex is the somatosensory evoked response generated? 
iii. Which hemisphere is involved in generating voluntary muscle contraction? 
iv. Does the voluntary muscle contraction affect the cortical representation of sensory 

signals? 
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Based on our previous work in the chronic phase after stroke (Vlaar et al., 2017a; Chapter 5) 
and existing literature, it is expected that after recovery, (i) the absence of sensory related 
signals in the cortex is associated with poor recovery; (ii) that evoked responses are localized 
around the contralateral sensory motor cortex; (iii) that stroke patients show altered cortical 
lateralization of voluntary motor drive; and (iv) that lateralization of sensory information is 
not altered under active conditions. Changes in cortical representation of somatosensory 
evoked responses during recovery after stroke have been investigated in few studies in small 
cohorts. To the best of our knowledge, source locations of the cortical response evoked by 
continuous robotic joint manipulation have not been obtained before, not in unimpaired 
individuals nor in individuals who suffered a stroke. The current study presents the 
description of the experimental protocol and the analysis techniques for a longitudinal study. 
A preliminary exploration is presented of the relationship between the EEG-parameters 
extracted from upper limb control tasks and clinically assessed recovery of upper limb 
capacity during the first six months post stroke in the first fifteen stroke survivors who have 
completed the four recording sessions. 

 Methods 6.2
Part of the methods have been discussed before in (Vlaar et al., 2017a; Chapter 5) and this 
section focuses on the differences with that study. 

Patient sample 
The current study presents the preliminary results for the first fifteen participants who 
finished the longitudinal recordings. The inclusion criteria were: (i) first-ever ischemic stroke 
in an area supplied by the anterior, medial, and/or posterior cerebral arteries, which took 
place within the last three weeks, (ii) upper limb paresis (NIHSS item 5a/b > 0), (iii) age ≥ 18 
years, (iv) no severe cognitive deficits (mini-mental state examination score of ≥19) (Folstein 
et al., 1983), and (v) able to sit without support. Exclusion criteria were: previously existing 
pathological neurological conditions, pacemaker or other metallic implants, previous existing 
orthopedic limitations of upper limb that would affect the results, and botulinum-toxin 
injections or medication that may influence upper limb function in past three months. All 
participants received regular physical therapy. Additionally, eleven control participants (age 
60±9 years, 8 men) were included using inclusion criteria iii-v and the same exclusion criteria. 
These control participants were recorded in one session and their results are included as a 
reference. The data for ten of these control participants and the data for the final session of 
nine participants who suffered a stroke were previously analyzed in another (chronic stroke) 
study (Vlaar et al., 2017a; Chapter 5); the latter participants are indicated in Table 6.1. 

All participants gave written informed consent prior the experiments. The study was 
approved by the Medical Ethics Reviewing Committee of the VU Medical Center, 
Amsterdam (protocol number 2014.140, Dutch Central Committee on Research Involving 
Human Subjects, CCMO, protocol number NL47079.029.14). This study was conducted in 
accordance with The Declaration of Helsinki. 
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Experimental setup 
All recordings were performed in a mobile recording setup using a robotic wrist manipulator 
(see Section 5.2 and Figure 5.1). In short, experiments were conducted on the affected arm 
of participants who suffered a stroke and on the dominant arm of control participants. 
Cortical activity was recorded using a 62 channel EEG amplifier and a cap arranged 
according to a subset of the extended 10/20 system. Electromyography (EMG) was recorded 
from m. flexor carpi radialis and m. extensor carpi radialis brevis on both arms. All signals 
were sampled at 2048 Hz. Maximum voluntary contraction (MVC) for wrist flexion was 
obtained using a handheld force transducer. All recordings were performed with the wrist in 
its neutral angle, defined as 20 deg flexion. 

EEG electrode positions were determined using a 3D optical system (Polaris Vicra, Northern 
Digital Incorporated, Ontario, Canada). Structural magnetic resonance images of each 
participant were obtained at the VU Medical Center, Amsterdam, using a Discovery MR750 
3T scanner (GE, Waukesha, WI, USA). T1-weighted volumes were acquired with a 3D fast 
spoiled gradient-recalled-echo sequence, consisting of 172 sagital slices (256 x 256), using the 
following acquisition parameters: TR = 8.208 ms, TE = 3.22 ms, inversion time = 450 ms, 
flip angle = 12°, voxel size 1 x 0.94 x 0.94 mm. The anatomical MR-image of participants 
who suffered a stroke was obtained at least six months after stroke. 

Experimental protocol 
Four EEG recordings were performed during the first six months post stroke. The aim was 
to record early after stroke (expected to be in week 2), and subsequently at fixed time points 
during recovery: week 5, 12, and 26. The actual recording moments were scheduled in 
consultation with the patient. EEG was recorded during a set of upper limb control tasks, 
namely the passive task and the active task. In the passive task the participant was 
instructed to relax the wrist and to ignore the angular joint manipulation applied to the wrist 
joint by the robotic manipulator. This passive task was performed first. In the active task the 
participant was instructed to apply a constant wrist flexion torque at 20% of maximum 
voluntary contraction (MVC); this task was only performed if the participant was capable of 
voluntary wrist flexion and if allowed by time and stamina. Each task was performed in 20 
trials of 12.5 s each, with breaks of at least 5 s between trials. In both tasks the robotic wrist 
manipulator applied the same periodic wrist manipulation (1.25 s period, root-mean-square 
wrist excursion of 0.02 rad ≈ 1.1 deg). The manipulation signal was a multisine signal 
(Pintelon and Schoukens, 2012), with 14 excited frequencies in a range between 0.8 and 19.2 
Hz. 

Around the same time as each robotic manipulator experiment, a set of clinical assessments 
was performed. The current study reports the Erasmus modification of the Nottingham 
Sensory Assessment for the upper extremity (EmNSA-UE) (Stolk-Hornsveld et al., 2006) and 
the Fugl-Meyer Motor Assessment for the upper extremity (FMA-UE). The EmNSA-UE 
tests five aspects of sensory function (light touch, pressure, pinprick, discrimination and 



Chapter 6 

 90 

proprioception) which are evaluated at four location in the upper limb. Each aspect can 
receive 0, 1 or 2 point, where 0 indicates no stimuli were perceived, 1 indicates some stimuli 
were perceived and 2 indicated all stimuli were perceived. Hence, the maximum score for 
EmNSA-UE is 10 (i.e. no sensory impairment), scores between 5 and 10 are considered as 
mild sensory impairment and scores of 5 and lower are considered severe sensory 
impairment. The maximum score of FMA-UE is 66, where scores lower than or equal to 31 
were considered as severe motor impairment (Hayward et al., 2017) and higher scores as 
moderate to mild impairment. Participants were grouped based on their upper limb recovery 
as assessed using the FMA-UE; participants for whom the predicted outcome and observed 
outcome differed by less than 10 points were considered fitters and participants with less 
accurately predicted outcome were considered non-fitters to the proportional recovery 
model. Participants were further grouped based on presence of severe initial motor 
impairments and severe initial sensory impairments. 

Data analysis 
All data were processed with MATLAB 8.1 (The Mathworks, Inc., Natick, MA, USA), using 
both FieldTrip (Oostenveld et al., 2011) and custom scripts. 

Data pre-processing 
Section 5.2 describes the preprocessing steps. In short, EEG data were band-pass filtered 
between 0.8 and 120 Hz. Segments of the active task which did not meet the task criteria 
were removed. Independent component analysis (ICA) was used to remove sources of 
artefacts (e.g. ocular and muscle activity). The recorded cortical activity is segmented in 
x[e,p](k), where e = 1…E is the electrode index (E = 62), p = 1…P is the period index (ideally 
P = 160), and k = 1…N is the sample index (N = 2560). 

Electrode level analysis 
Afferent connectivity is studied by quantifying the cortical activity which is periodic with the 
applied stimulation signal (i.e. the evoked cortical response). As the recorded EEG signals are 
electrical potentials measured on the scalp, the magnitude of the signal can easily vary across 
participants, for example due to differences in skull and scalp conductivity. Therefore, to 
enable comparison across participants the signal-to-noise ratio (SNR) was used. To obtain an 
estimate of the cortical response and to quantify the noise level the average and variance 

across periods is calculated, resulting in [ ] ( )ˆ ex k  and [ ] ( )2 e
xσ k  respectively. The signal-to-

noise ratio is subsequently calculated using 
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To avoid inclusion of any remaining ocular or muscular activity in these metrics, a regions-of-
interest (ROI) analysis is used. Two ROI over the sensorimotor cortices were defined (one 
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for each hemisphere), which included F1, F3, F5, FC1, FC3, FC5, C1, C3, C5, CP1, CP3, 
CP5, P1, P3 and P5 on the left side, and their even counterparts of the right side. The 
electrode sets are referred to as ipsilateral (same side) or contralateral (opposite side) relative 
to the manipulated wrist. The highest observed SNR value within both ROI is used to 
quantify the intensity of the cortical response and is defined as SNRmax. A laterality index is 
used to calculated in which hemisphere the afferent information is processed 

 contra ipsi
SNR

contra ipsi

SNR SNR
LI

SNR SNR
−

=
+

, (6.2) 

where SNRcontra is the average SNR across the electrodes in the contralateral ROI and SNRipsi 
is the average SNR across the electrodes in the ipsilateral ROI. The laterality index is 
bounded between -1 and 1, where 1 indicates only contralateral activity and -1 indicates only 
ipsilateral activity. 

Cortical activity related to voluntary motor drive is quantified by calculating power changes in 
the β-band (13-30 Hz). Power changes are calculated between the active and passive task; as 
the joint manipulation is the same in both tasks, the main difference is expected to result 
from voluntary drive. The power in the β-band is calculated at each electrode, averaged over 

frequencies, and subsequently defined as [ ]e
pβ  and [ ]e

aβ , for the passive and active task 

respectively. The power change in the β-band is defined as (Pfurtscheller and Da Silva, 1999) 
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Consequently, a positive Δβ indicates a power reduction in the active task compared with the 
passive task; this definition is chosen as a power reduction (i.e. desynchronization) has been 
associated with an increase in cortical processing. The electrode within the ROI with the 
largest power reduction was defined as Δβmax. Similar to the lateralization index presented 
above, the lateralization of Δβ is calculated using 
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where Δβcontra is the average Δβ across the electrodes in the contralateral ROI, and Δβipsi is the 
average Δβ across the electrodes in the ipsilateral ROI.  

Anatomical damage in sensorimotor regions 
The structural magnetic resonance images were analyzed to estimate the volume of the 
sensory and motor cortices (SMC) and tracts (SMT) affected by the stroke lesion. A 
participant-specific lesion mask was created from the T1-weighted volumes using the LINDA 
toolbox for automatic segmentation of chronic stroke lesions (Pustina et al., 2016). The 
volume of the SMC affected by the stroke lesion was estimated by comparing the person-
specific lesion mask against a mask of the postcentral and precentral gyri (see Figure 6.1). 
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The volume of the SMT affected by the stroke lesion was estimated by comparing the 
person-specific lesion mask against the mask corticospinal tract obtained from the John Hopkins 
University white-matter tractography atlas (Hua et al., 2008) included in the FMRIB Software 
Library (Jenkinson et al., 2012); this mask incorporates both descending and ascending fibers. 
Only the portion of the mask which did not overlap with the SMC-mask was used (see 
Figure 6.1). The lesion volume was expressed as a percentage of the mask volume (evaluated 
only at the affected hemisphere). 

Source level analysis 
To find the generator of the signals observed at the electrodes, a source localization 
procedure was performed. The anatomical MR-images were processed using the Freesurfer 
image analysis suite (http://surfer.nmr.mgh.harvard.edu/). The extracted surfaces for scalp, 
skull and brain were used to create a boundary element conductivity model (BEM) with 
OpenMEEG (Gramfort et al., 2011). The conductivities for scalp, skull and brain were set to 
0.3300, 0.0041 and 0.3300 S/m respectively. The BEM included with FieldTrip was used in 
case there was no anatomical MR-image available. Electrodes were aligned to the obtained 
volume conduction models using three anatomical landmarks, namely the nasion (NZ), and 
left and right pre-auricular points (LPA and RPA respectively). For one participant (ID G1), 
the large extent of the lesion caused the segmentation in Freesurfer to fail. To be able to 
obtain a proper volume conduction model, the lesion volume was replaced by anatomical 
information (i.e. healthy brain tissue) from the contralesional hemisphere. The resulting 
anatomical image was then successfully processed by Freesurfer to produce the required 
segmentation. 

Source locations for the evoked responses were estimated by fitting a dipole with fixed 

location to the averaged scalp potentials [ ] ( )ˆ ex n ; dipoles were estimated on a four-millimeter 

grid, after which a nonlinear optimization was performed to find the dipole location which 
could best account for the observed variance, defined as the variance-accounted-for (VAF). 
Source locations are presented in CTF space (see bottom-right illustration in Figure 6.5). To 
assess changes in source location, the location for each session was presented relative to the 

 

 

 
Figure 6.1. Mask for primary sensorimotor cortices (SMC) and corticospinal tract (SMT). Masks are 
visualized using xjView toolbox (http://www.alivelearn.net/xjview). 
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last recorded session. This metric, defined as dp, may reveal a consistent shift in source 
location over sessions. Inter-session reproducibility of source locations has been studied 
before in unimpaired individuals. Using EEG and transient tactile stimulation to the finger, 
distance dp was on average found to be 7 to 10 mm in seven individuals (Schaefer et al., 2002). 
Using MEG and electrical stimulation of the median nerve this value was on average 8 to 9 
mm in nine individuals, (Wikström et al., 2000). When considering the variability across 
participants in these studies, a shift of more than 17 mm (mean+2.5SD) is considered 
abnormal. Additionally, source locations are transformed to a common anatomical space 
using the Statistical Parametric Mapping toolbox (SPM12 v6225) (Penny et al., 2011); this 
transformation facilitates comparison between participants and allows for visualization of the 
source locations in the same anatomical space. 

List of outcome parameters 
The following parameters are tracked over sessions: 

SNRmax - level of cortical activity related to the joint manipulation 

LISNR - lateralization of the response evoked by the joint manipulation 
∆βmax - cortical activity in voluntary drive (active task compared with the passive task) 
LI∆β - lateralization of cortical involvement in voluntary drive 
dp - distance from source in passive task to that of the final session 
dp↔a - distance between source for passive and active task within a session 

Statistical analysis 
Differences across sessions within the group of all stroke participants were tested using a 
Friedman test, which is similar to a nonparametric repeated measures ANOVA. Mean 
imputation was used in the case of missing data (ID Y3, fourth session). Correlations were 
evaluated using Spearman’s rank correlation coefficient. Differences between two groups 
were evaluated using a Wilcoxon rank sum test. All statistical tests were performed using a 
two-tailed significance level of 95% (α = 0.05).   
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 Results 6.3
Participant details 
Four groups could be identified in the current sample based on fitting the proportional 
recovery model and severity of motor and sensory impairments: 

• Non-fitters 
o Severe sensory and severe motor impairment in all sessions (group G, 

indicated with green in the figures, n = 2) 
o Mild to no sensory impairment and severe motor impairment in all 

sessions (group Y, indicated with yellow, n = 5) 
• Fitters 

o Mild to no sensory impairment and mild motor impairment for all sessions 
(group B, indicated with blue, n = 6) 

o Mild to no sensory impairment and a substantial reduction in motor 
impairment over sessions (group R, indicated with red, n = 2).  

The evolution of the clinically assessed motor and sensory impairments over time is 
presented in Figure 6.2. Other participant details are presented in Table 6.1. The most 
extensive damage to the sensorimotor cortices and tracts is found in participant ID G1, while 
the other participants have largely intact sensorimotor cortices and tracts. 

  

 

 
 

 

Figure 6.2. Clinical scores over time. Relations between EmNSA-UE (max score 10), FMA-UE (max 
score 66) and time (week) are indicated; a higher score indicates less impairment. Colors represent the 
different groups. The first and last recording are indicated with a diamond and a square, respectively.  
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Passive task  
Figure 6.3 shows the maximum SNR and lateralization index (LI) for each participant in the 
different sessions. Groups Y, R and B demonstrate a response at the hemisphere contralateral 
to the manipulated joint. The SNR in group G is low compared with the other groups and 
that there is no clear lateralization of the response. There was no statistically significant 
difference across recording sessions for SNRmax (p = 0.80) or LISNR (p = 0.18). Figure 6.3 
reveals a relation between SNRmax and EmNSA-UE for the last two sessions. A relation 
between SNRmax and FMA-UE was not demonstrated in any session. The largest differences 
in SNR over sessions are found in group Y: ID Y3, Y1 and Y5, who had an initial EmNSA-
UE scores of 6, 7 and 8 respectively, improved their EmNSA-UE score and demonstrated an 
increase in SNRmax over sessions. 

The variance-accounted-for (VAF) by the source (a single dipole) was high for all participants 
and sessions, with a mean VAF of around 87% (see Table 6.2). There was no significant 
difference in VAF of the source among sessions (p = 0.61). Figure 6.4 additionally shows 
the source locations for the unimpaired participants. All sources are located at the 
contralateral sensorimotor cortex for all participants, except for the participant with the 
largest anatomical damage (ID: G1). Figure 6.5 shows the location of the source for the 

Table 6.1. Participant details. No anatomical scans were available for ID: Y3 and R2. Only the first three 
sessions were recorded for ID Y3. Abbreviations Handedness/Affected side: L-left and R-right; Bamford 
classification: P-partial, T-total anterior circulation infract, and L-lacunar infarct; lesioned area: SMC-
sensorimotor cortices and SMT-sensorimotor tracts. Asterisk indicates participants for who the final 
sessions was included in a previous publication on chronic stroke. 

ID Age 
[years] 

Sex First session 
[week] 

Affected 
side 

Handed- 
ness 

Bamford Lesioned 
SMC [%] 

Lesioned 
SMT [%] 

G1* 71 F 3 L R T 65 13 

G2* 64 M 4 R R T 0.8 8.8 

Y1* 93 F 3 R R P 0.0 0.0 

Y2 94 F 3 L R P 0.0 0.0 

Y3 75 F 2 R R P N/A N/A 

Y4* 77 F 2 L R P 0.0 2.2 

Y5* 52 F 3 R R L 0.1 0.3 

B1* 70 F 1 R R P 0.1 0.0 

B2* 75 F 2 L R P 3.7 1.3 

B3* 78 F 3 R R L 0.0 0.0 

B4 86 F 1 R R L 0.0 0.0 

B5* 73 M 2 L R L 0.0 0.0 

B6 63 M 1 R L L 0.0 0.0 

R1 58 M 3 R R P 0.0 0.0 

R2 76 F 3 R R P N/A N/A 
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passive task for each session, expressed relative to the position of the source for the last 
recorded session. No consistent shift of source location over sessions was observed. 
Additionally, the Euclidian distance between the sources for each session and the last session 
(see Table 6.2), shows that the location of the source does not shift over sessions towards 
the final location (i.e. there is not a change in distance over sessions). There was no 
significant difference in Euclidian distance of the sources among subsequent sessions (p = 
0.57). 

  
 

 
 

 

Figure 6.3. Signal-to-noise ratio and lateralization. Top graph shows the relation between SNR and 
EmNSA. Correlation between EmNSA-UE and SNRmax is significant for the third and fourth session 
(Spearman’s ρ = 0.63 (p = 0.01) and ρ = 0.55 (p = 0.04), respectively). There was no significant 
correlation between FMA-UE and SNRmax in any session (0.34<p<0.75). Bottom graph show the 
lateralization of the SNR. The black dashed line indicated a laterality index of zero (i.e. no lateralization). 
Colors represent the different groups. The first and last recording are indicated with a diamond and a 
square, respectively. Black markers indicate the control participants (C). 
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Table 6.2. Dipole details for the passive and active task. There were no significant differences among 
sessions regarding VAF or distance (Friedman test). 

Passive task mean±standard deviation 
Session 1 (n = 15) 2 (n = 15) 3 (n = 15) 4 (n = 14) C (n = 11) 
VAF [%] 87%±5 87%±4 88%±5 87%±4 87%±3 
dp: Euclidian distance to  
final session [mm] 

12±5 13±7 14±4 - - 

Active task mean±standard deviation 
Session 1 (n = 5) 2 (n = 6) 3 (n = 10) 4 (n = 9) C (n = 7) 
VAF [%] 90%±1 87%±2 89%±3 87%±4 88%±2 
dp↔a: Euclidian distance to passive 
task same session [mm] 

7±3 8±3 6±2 6±4 9±5 

 

 
Figure 6.4. Dipole locations for the passive task for all participants in standard anatomical space (source 
location of the last session is shown). Results presented in three planes. Source locations are expressed 
relative to the average location for the control participants (n = 11, individually indicated by the black 
markers). The ellipsoid indicates the 90% confidence interval based on the covariance matrix of the 
dipole locations for the control participants. Bottom-right figure shows a top view of the standard 
anatomical space and the black dot shows the average source location for the control participants. Colors 
represent the different groups. The results are flipped with respect to the sagittal plane for participants 
who performed the task with the left hand.  
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Figure 6.5. Shift of passive dipole over sessions. Results presented in CTF space (see bottom right 
illustration). Solid dot is dipole location at first recording session. The dipole location for the last session 
is set to (0,0,0). Colors represent the different groups. The results are flipped along the y-axis for 
participants who performed the task with the left hand. The first and last recording are indicated with a 
diamond and a square, respectively. 
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Alterations in the active task 
In the first two sessions only few participants were able to perform the task (see Table 6.2); 
these were either in group B or R (i.e. fitters to the proportional recovery model). The 
absence of mirror movements was ensured during the experiment as well as during post-
processing of the EMG signals recorded from the unaffected wrist. The VAF for the source 
obtained during the active task was not significantly different from the VAF obtained during 
the passive task in the same participants within the same session (Wilcoxon signed rank tests, 
p>0.39 for the four sessions, p = 0.62 for the control participants). Figure 6.6 and Table 6.2 
reveal the location of the source for the active task is in each session close to the source of 
the passive task.  

  

 

 
 

 
Figure 6.6. Active task dipole position relative to passive task dipole position in the same session. Dot: 
first recording; square: last recording. The results are flipped along the y-axis for participants who 
performed the task with the left hand. The first and last recording are indicated with a diamond and a 
square, respectively. Control participants indicated with black asterisk. 
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Figure 6.7 demonstrates that performing an active task results in changes in cortical activity, 
specifically a decrease of power in the β-band (indicates here with a positive ∆β). In the 
control group no strong lateralization is observed (i.e. LI∆β is close to 0). For most 
participants who suffered a stroke ∆β is smaller compared with controls and its lateralization 
is in some case negative; there is a significant difference (Wilcoxon rank sum test) between 
the last measurement for participants who suffered a stroke (n = 9) and controls (n = 7), for 
both ∆βmax (p = 0.02) and LI∆β (p = 0.02). One participant (ID G2) demonstrated a LISNR of 0 
for the active task. This finding is likely due to the very low SNR; the source location for the 
active task was 6 mm more left compared to the active task for this participant (see Figure 
6.6), indicating that the source did not shift to the ipsilateral hemisphere.  

 

 
 

 
Figure 6.7. ∆β and its lateralization. Top graph shows the maximum ∆β within the region of interest. 
Bottom graph shows the lateralization index for the SNR in the active task related to the lateralization 
index for ∆β (LI∆β is only evaluated if ∆β is at least 10%). The first and last recording are indicated with a 
diamond and a square, respectively. Control participants indicated with black asterisk. 
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 Discussion 6.4
The current study presents a protocol to track somatosensory evoked cortical activations 
during recovery after stroke. Studying neuroplasticity is of specific interest in individuals with 
poor initial upper limb function, as their recovery is poorly predicted using existing recovery 
models (Byblow et al., 2015, Ward, 2015, Winters et al., 2015b). The participants in this study 
can be split in fitters (n = 8) and non-fitters (n = 7) to the proportional recovery model 
(Prabhakaran et al., 2008). The fitters (participants who recovered the predicted 70% of their 
lost upper limb function) could be further split in participants with initial mild to moderate 
motor impairment (group B, n = 6) and participants with severe motor impairment (group R, 
n = 2). The non-fitters (participants who do not recover as predicted) all have initial severe 
motor impairment and could be further split in participants with severe sensory impairment 
in all session (group G, n = 2) and participants with mild, none or decreasing sensory 
impairment over sessions (group Y, n = 5). The following points address the research 
questions during recovery after stroke: 

i. Afferent connectivity: Reduced cortical evoked responses were associated with 
reduced sensory function.  

ii. Location of the evoked response: Participants with intact contralateral 
sensorimotor cortices (all except one) demonstrated an evoked response within that 
region. 

iii. Voluntary motor drive: Participants who suffered a stroke demonstrated a 
decrease and altered lateralization of cortical activity related to voluntary motor 
drive compared with unimpaired controls. The participants with most severe motor 
impairment (group G and Y) were unable to perform the active task in the first 
sessions  

iv. Sensory information during the active task: the cortical evoked response was 
generated by the same cortical generator in the contralateral sensorimotor cortices 
under passive and active conditions and no altered lateralization was observed in 
any session. 

This is the first longitudinal study after stroke which evokes cortical responses using 
proprioceptive stimuli. Evoked responses as quantified by their signal-to-noise ratio (SNR) 
correlated with sensory impairment in the last two sessions and did not correlate with motor 
impairment in any session. Integrity of the sensory pathways can be quantified using the 
evoked responses and integrity of the sensory pathways seems to be prerequisite for motor 
recovery.  

Afferent connectivity 
Altered evoked response have been previously linked to levels of sensory (Wikström et al., 
2000) and motor (Campfens et al., 2015b) impairments. In the current study, EmNSA-UE 
positively correlated to SNR in the last recording session, indicating that participants with 
more sensory impairment demonstrated a lower SNR. SNR did not correlate to FMA-UE in 
any session, suggesting that SNR reveals information about the status of the sensory system 
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rather than the motor system. These findings are in line with our previous work on responses 
evoked by joint manipulation in the chronic phase after stroke (Vlaar et al., 2017a; Chapter 5). 
Both participants in group G (severe sensory impairment) have a low SNR in all sessions. 
These participants also have the most extensive damage to SMC and SMT compared with the 
other participants, which is likely to cause less sensory information to reach the cortex. Inter-
session reliability of the SSR evoked by tactile stimulation in unimpaired individuals has been 
previously confirmed by Pang and Mueller (2014). For all participants, the SNR is quite 
constant over sessions. Largest changes in SNR over sessions were found in group Y (ID Y1, 
Y3 and Y5), which was accompanied by substantial improvement of sensory function as 
measured using EmNSA-UE. Hence, the quantitatively obtained parameters reveal 
information related to the status of the somatosensory system. 

Location of the evoked response 
The evoked cortical response at the electrodes could be modeled by one dominant source. 
The source locations in the final session reveal a cortical source around the contralateral 
primary sensorimotor cortices for the unimpaired participants and for participants with 
largely intact sensorimotor cortices. These findings are in line with a previous longitudinal 
study during recovery after stroke using tactile stimulation: if a response was registered it was 
located in the contralateral sensorimotor areas (Roiha et al., 2011). For one participant (ID 
G1) the estimated source was located subcortically. The lesion of this participant damaged 
large parts of the primary somatosensory and motor cortices, explaining the lack of a cortical 
source, the low SNR, and probably the severe impairments. Nevertheless, the VAF was still 
high across sessions (88 to 95%). Deep cortical sources could originate from input to the 
dorsal column or thalamic relay neurons, as found and proposed before in an experiment 
with transient joint manipulation (MacKinnon et al., 2000); such a source is expected to have 
a low SNR and is possibly drowned out by the cortical response in the other participants. 

Source locations over sessions did not shift towards the location in the chronic phase. This is 
in line with previous findings, where source locations changed substantially for some 
individuals, yet not in any recognizable pattern and were still located in contralateral 
sensorimotor areas (Wikström et al., 2000). The changes in source location relative to the last 
session was for all participants (except for two sessions of ID G1 and the first session of ID 
G2) less than 20 mm. These shifts are probably partially related to less accurate localization 
due to the poor SNR. Other participants for whom there was a shift of more than 17 mm 
were ID Y3 (session 1 and 2), Y4 (session 2), and Y5 (session 3). ID Y3 and Y5 
demonstrated the strongest increase in SNRmax (and an increase in EmNSA-UE). Possibly, 
the difference in source locations can be explained by the increased SNR, which allows for 
more accurate localization (Jamali and Ross, 2012).  

At no point during recovery did any participant show strong ipsilateral responses. From all 
recordings, the only participants for whom the responses were not lateralized to the 
contralateral hemisphere were the participants in the group G; the absence of a response 
results in a lateralization index close to zero. In a previous study on 29 individuals in the 
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chronic phase after stroke, no altered lateralization of the response evoked by joint 
manipulation was found (Vlaar et al., 2017a; Chapter 5). Wikström et al. (2000) recorded 
electrically evoked cortical responses during recovery after stroke and did not observe altered 
lateralization. In the current study, the cortical source was localized to the contralateral 
sensorimotor cortices for participants with largely intact sensorimotor cortices (all except ID 
G1) in all sessions and with high VAF. This finding is also in line with anatomy; 
proprioceptive and tactile information from the mechanoreceptors in the periphery is mainly 
mediated by the dorsal column-medial lemniscus pathways, which convey somatosensory 
information directly to the contralateral sensorimotor cortices. Overall, small changes in 
source locations were observed among recording sessions. Cortical representations within the 
primary sensorimotor cortices can be altered though learning in animals (Nudo et al., 1996) 
and unimpaired individuals (Elbert et al., 1995). Reorganization of perilesional cortical areas 
within the sensorimotor cortices has also been found in animal studies (Jenkins and 
Merzenich, 1987, Nudo and Milliken, 1996) and in individuals who suffered a stroke (Roiha 
et al., 2011). Changes are typically in the order of a few millimeters and such changes are not 
detectable on an individual level using the current approach. From the preliminary results it is 
hypothesized that if there is return of sensory function, it is associated with return of 
contralateral cortical responses and not with the (transient) emergence of ipsilateral cortical 
responses.  

Although afferent fibers conveying proprioceptive information are known to relay to the 
primary sensory cortex, evoked responses to transient joint manipulation have also been 
found in the primary motor cortex (MacKinnon et al., 2000, Seiss et al., 2002, Onishi et al., 
2013). Perhaps, both the primary motor and sensory motor cortex are involved in generating 
the response evoked by joint manipulation in unimpaired individuals. The source location of 
electrically evoked responses in the sensory cortex are found approximately slightly left and 
posterior of movement evoked potentials found in the motor cortex (Huang et al., 2004, 
Onishi et al., 2013). The participants in group B and R do not show a markedly different final 
source location as compared to the average location for unimpaired participants. A potentially 
interesting finding is that the source locations for the participants with severe initial motor 
impairment, demonstrate differences in source locations depending on the occurrence of 
motor recovery. In the last sessions, the source location for all participants in group Y is left 
of the average location in the control participants, which is not the case for the participants in 
group R (see Figure 6.4). In the first session, most participants in group Y seem to have a 
source posterior to that of the final session (see Figure 6.5). Possibly, the evoked response 
for participants in group Y originates mainly from the primary sensory cortex in the first 
sessions, with increasing involvement of the primary motor cortex during recovery. This 
difference between group Y and R might help distinguishing between individuals with severe 
initial motor impairment early after stroke. 
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Voluntary motor drive 
Desynchronization of β-band activity indicates activation of the sensorimotor cortices 
(Pfurtscheller and Da Silva, 1999) and correlates to cortical activation as recorded during 
fMRI (Ritter et al., 2009). Inter-session repeatability of changes in β-band activity during 
voluntary wrist drive has been established (Espenhahn et al., 2016). Stimulating the 
somatosensory system also results in desynchronization in β-band activity, as is shown during 
passive limb movement (Müller et al., 2003, Parkkonen et al., 2015, Tacchino et al., 2016). In 
the current study, the change in β-band activity is determined by comparing the passive and 
active task, in which the main difference is task instruction; in both tasks the same wrist 
manipulation was applied. Thus, observed changes in β-band activity are assumed to result 
mainly from changes in voluntary motor drive. 

Unimpaired participants demonstrated bilateral desynchronization in β-band activity during 
voluntary wrist flexion, which is in line with results from previous studies (Espenhahn et al., 
2016). The contralateral hemisphere is assumed to directly innervate alpha motor neurons in 
the spinal cord to generate the required muscle activation. The role of the ipsilateral 
hemisphere is less clear and has been related to processes related to inhibition as well as 
facilitation (Van Wijk et al., 2012) (Espenhahn et al., 2016). The desynchronization in β-band 
activity of the participants who suffered a stroke was at six months significantly lower and 
significantly more lateralized to the ipsilateral hemisphere compared with controls. Both these 
findings have been reported before (Rossiter et al., 2014). The authors suggested a role for 
the ipsilateral (i.e. contralesional) sensorimotor cortices in movement generation in 
individuals with more impairment. Altered cortical lateralization of voluntary upper limb 
motor drive has been proposed before from fMRI studies (Buma et al., 2010). The 
mechanisms of this altered lateralization are not well understood (Buma et al., 2010, Rossiter 
et al., 2014), yet abnormal cortical lateralization of voluntary motor drive is a common 
finding which is also established in the current study. 

Afferent information during the active task 
A novelty of the current study is the attempt to distinguish between cortical activity due to 
voluntary motor drive and somatosensory evoked cortical activity, recorded during a motor 
control task. The location of the source generating the evoked response did not change 
compared to the passive task in unimpaired participants. Similar observations were made 
before in unimpaired individuals (MacKinnon et al., 2000, Piitulainen et al., 2013). This 
similarity in source location between tasks was also found in participants who suffered a 
stroke. Additionally, the VAF did not differ between passive and active task. Therefore, it is 
concluded that under both passive and active conditions the cortical evoked response is 
generated by the same dominant source as in the passive task, which explains most of the 
signal recorded at the electrodes. In our previous work we found no altered lateralization 
under active conditions in individuals during the chronic phase after stroke (Vlaar et al., 
2017a; Chapter 5). 
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Interestingly, abnormal lateralization of cortical activity related to voluntary motor drive is 
not accompanied by abnormal lateralization of cortical activity related to somatosensory 
information for any participant, possibly due to anatomical constraints. This finding holds for 
the observations in the chronic phase as well as for observations during recovery. If motor 
drive is indeed controlled from the ipsilateral hemisphere, a lack of sensory information in 
that hemisphere would likely be detrimental for motor function, which relies on sensory 
information for proper control. 

Relation between sensory impairment and motor impairment 
Several previous longitudinal studies related characteristics of somatosensory evoked 
responses to motor impairments after stroke and have demonstrated some predictive value: if 
there is no evoked response in the subacute phase after stroke, recovery of motor function is 
not expected. (Feys et al., 2000, Rollnik, 2015). The sensorimotor system is a closed loop 
control system that relies on somatosensory information for control. Therefore, we 
hypothesize that an unaffected somatosensory system after stroke does not guarantee 
recovery, yet is a prerequisite for proper motor control. This hypothesis explains the lack of 
strong correlation between clinically assessed sensory and motor impairment (Meyer et al., 
2016a), and the fact that absence of somatosensory evoked response is an indicator of poor 
motor recovery (Feys et al., 2000, Rollnik, 2015). Reporting the time course of motor and 
sensory impairment separately (as shown in Figure 6.2), demonstrates –albeit in a small 
sample- that there is indeed no motor recovery without sensory function. A similar 
conclusion can be drawn from our previous study on individuals in the chronic phase after 
stroke (Vlaar et al., 2017a; Chapter 5): severe sensory impairment is strongly linked to severe 
motor impairment, yet the opposite is not true. A recent longitudinal study also suggested 
that somatosensory impairments prevent upper limb recovery (Winters et al., 2016b). Further 
research will have to reveal if lack of sensory function will result in non-fitting of the 
proportional recovery model. 

Evaluation of the protocol and analysis 
Early post stroke, clinical assessments can be difficult as they rely on cognitive and motor 
capabilities. Hence, in this time window, functional neuroimaging might aid prediction of 
motor recovery. The ability to study the sensorimotor system using stimulation signals 
relevant to motor control is a merit of the approach presented in this study. Importantly, the 
passive task can be performed by individuals with severe impairments. As there is a specific 
interest to increase prediction accuracy for individuals with severe initial impairments, it is 
necessary to search for metrics which can provide discriminative power in the lower end of 
clinical scales. Neurological biomarkers obtained through EEG could be adopted in a clinical 
setting, as EEG is often readily available, relatively low cost, and safe.  

The longitudinal EEG study is performed using a mobile experimental setup, limiting patient-
effort for participating in the study. Out of the 15 participants who were scheduled to finish 
the longitudinal study before this preliminary analysis was performed, only one individual (ID 
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Y3) withdrew from the study after at least one EEG recording was performed. Considering 
the substantial time required to participate and the absence of direct patient benefits, the 
number of withdrawing participants can be considered low; the low preliminary dropout-rate 
is likely a merit of the mobile experimental setup. 

Only a limited number of participants was able to perform the active task; the FMA-UE 
score was at least 10 for the participants who performed the task. Interestingly, the 
participants who demonstrated substantial recovery (group R, n = 2) were able to perform 
the active task in the first session (FMA-UE score of 11 and 20, both with a wrist flexion 
MVC of 2 Nm). The participants who did not recover the predicted upper limb function 
(group Y and G) did not demonstrate any voluntary wrist flexion in the first sessions and 
therefore did not perform the active task. Thus, the protocol did not allow for studying 
cortical activations in this group, hindering the use of the active task for improving 
prognostic models of stroke recovery. 

Several longitudinal studies have set strict inclusion criteria, for example by including 
individuals with no sensory impairment (Tombari et al., 2004, Loubinoux et al., 2007), or by 
only including individuals who show improvement of clinical state (Tecchio et al., 2006). The 
advantage of such an approach is that a more homogenous patient sample is obtained, 
facilitating grouping of the individuals. The importance of focusing on a wide and 
representative range of recovery was recently emphasized by Ward (2015). The current study 
included patients with a wide range of functional impairments, which is reflected in the 
results of the clinical assessments as well as in the obtained EEG parameters. A larger 
number of patients needs to be analyzed to allow for more accurate definition of groups and 
to increase the number of individuals in each group.  

There exists a wide range of stroke rehabilitation therapies, including physical therapy, 
electromyography-triggered neuromuscular stimulation (EMG-NMS), and brain stimulation 
such as transcranial magnetic stimulation and transcranial current stimulation. However the 
evidence of the effectiveness of physical therapy (Byblow et al., 2015), EMG-NMS (Kwakkel 
et al., 2016), or brain stimulation (Ward, 2015) is yet to be established; effect sizes of 
interventions account for only 5 to 15% of the differences in outcomes (Kwakkel et al., 2015, 
Winters et al., 2016a). An increased understanding of the (cortical) mechanisms involved in 
functional recovery of the upper limb, will further enable the development of rehabilitation 
programs (Veerbeek et al., 2014, Ward, 2015). 

Future work 
This paper demonstrates the feasibility of the proposed protocol to investigate cortical 
activation related to sensorimotor control of the affected upper limb from the subacute to 
the chronic phase after stroke. The relation between afferent connectivity and somatosensory 
impairments as observed in the current study suggests that the outcome parameters can 
inform on the status of the somatosensory system. The observed changes in cortical sources 
might aid predicting recovery in individuals with severe initial motor impairment. To further 
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investigate these outcome parameters, more individuals need to be added to each group. The 
next step is to finish recording a large cohort of stroke survivors. The influence of the 
outcome parameters on predicted outcome will be tested by developing a prognostic model 
including results from all clinical assessments as well as the outcome parameters derived from 
EEG recordings; the latter will include results from electrical somatosensory stimulation, 
resting state analysis as well as the metrics obtained for joint manipulation as presented in the 
current study. 

 4D-EEG consortium 6.5
In addition to the authors of the present study, the consortium consists of Jan de Munck, 
Carel Meskers, Mique Saes*, Luuk Haring*, Caroline Winters*, Aukje Andringa*, Dirk 
Hoevenaars*, Ines de Castro Fernandes, and Sarah Zandvliet from VU University Medical 
Centre; Andreas Daffertshofer from MOVE Research Institute Amsterdam; Jun Yao from 
Northwestern University; Yuan Yang, Mark van de Ruit, Konstantina Kalogianni, and Lena 
Filatova from Delft University of Technology. 

*These consortium members performed the measurements.  

 





Chapter 7 
General Discussion 

 

  



Chapter 7 

 110 

The overall objective of this thesis was to enhance the understanding of the sensorimotor 
system in both unimpaired individuals and individuals who have suffered a stroke. For this, 
we characterized the cortical responses evoked by robotic joint manipulation in unimpaired 
individuals, and established how they are altered after stroke and during stroke recovery.  

Several conclusions can be drawn based on the work in this thesis, which are divided into 
conclusion based on methodology (M), results obtained from unimpaired individuals (U), and 
results obtained from individuals who suffered a stroke (S). A novel approach was developed 
to study the characteristics of the cortical evoked responses to continuous joint manipulation 
(conclusions M.1 and M.2). The approach was applied to unimpaired individuals, and the 
nonlinear contributions to cortical evoked response were quantified (conclusion U.1) and 
modeled (conclusion U.2). Finally, an experimental protocol was developed to study 
alterations in cortical evoked responses (conclusion S.1) and their lateralization (conclusion 
S.2) during recovery after stroke. 

• M.1 Proprioceptive information is essential to movement control and its cortical 
representation is well studied using continuous joint manipulation. 

• M.2 Multisine perturbation signals evoke a cortical response which is rich in 
information: carefully designed signals allow for the detection and quantification of 
noise, nonlinear distortions, and slow time variations. 

• U.1 The evoked cortical response is periodic with the applied joint manipulation 
and is highly nonlinear: over 80% of the power in the response originates from 
nonlinear behavior. 

• U.2 A nonparametric nonlinear model describes 46% of the cortical evoked 
response, which is substantially better than the 8% described by a linear model. 

• S.1 Reduced contralateral evoked responses are associated with somatosensory 
impairment after stroke. Individuals with severe somatosensory impairment also 
have severe motor impairment. 

• S.2 Ipsilateral responses are not enhanced when contralateral responses are reduced. 

The following sections discuss these conclusions in more detail. Finally, recommendations 
for future work are given. 

  



Chapter 7 
 

 111 

M.1 Proprioceptive information is essential to movement control and 
its cortical representation is well studied using continuous joint 
manipulation 
The impact of sensory impairments on recovery of motor function after stroke is not well 
understood (Dukelow et al., 2012). Motor impairments directly limit independence during 
activities of daily living (ADL), and are therefore a conspicuous consequence of stroke. 
Rehabilitation therapies and research into recovery after stroke mainly focus on motor 
impairments (Bolognini et al., 2016). Importantly, a recent study revealed that around 84% of 
stroke survivors have somatosensory impairments, and around 56% have impaired 
proprioceptive abilities (Meyer et al., 2016b). Sensory information is vital for feedback (i.e. 
reflexes) and feedforward (i.e. voluntary motor drive) control. Increasing our understanding 
of impaired control after stroke requires studying the role of sensory impairments in 
movement control. 

Sensory impairments after stroke are generally qualitatively assessed by a clinician. 
Impairments are assessed on an ordinal scale, indicating no function, impaired function or 
unimpaired function. Consequently, the resolution of such an assessment is limited and might 
not reveal small differences in impairment (Simo et al., 2014). Proprioceptive impairments 
can be assessed in a more quantitative way and with increase resolution through the use of 
robotics (Dukelow et al., 2010, Simo et al., 2014, Gurari et al., 2017). The focus in these 
studies is on proprioceptive position sense, which is investigated by matching for example 
elbow joint angles across arms or within the same arm. Although allowing for well-controlled 
assessments, these robot-assisted assessments of sensory impairment are performed in the 
absence of a control task and often depend on self-reporting, making the assessment 
susceptible to problems with attention, comprehension and memory. Moreover, these tests 
focus on the capability to report static joint position, whereas movements are dynamic. 
Interestingly, Simo et al. (2014) additionally explored the individuals’ capability to detect 
motion by applying small joint torque perturbations, thus acknowledging the relevance of the 
velocity-sensitive muscle spindles for proprioception. 

As stroke-related impairments are a consequence of damage to the brain, it is of great interest 
to, besides looking at clinical presentation, study alterations to cortical processing (i.e. 
neuroplasticity). Herein lies a role for neuroimaging to provide quantitative metrics reflecting 
the status of the somatosensory system after stroke. The cortical evoked response to a 
somatosensory stimulus recorded using electroencephalography (EEG) is called an event 
related potential (ERP). The most commonly applied type of sensory stimulation is electrical 
stimulation of, for example, the median nerve. Electrical stimulation activates a large number 
of fibers, which originate from different layers in the underlying tissue, have varying 
conduction velocities and sense different somatosensory information (Forss et al., 1994b). 
Hence, the evoked cortical responses to stimulation of these different fibers will arrive at the 
cortex at different time points and possibly different locations, resulting in a mix of multiple 
responses which are not easily discriminated. Furthermore, electrical stimulation also 
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bypasses the dynamics of the sensors by directly innervating the nerves. As an alternative to 
electrical stimulation, the tactile system can be studied using mechanical stimuli such as 
vibrations (Snyder, 1992) or air puffs (Forss et al., 1994b). Such a natural stimulation allows 
for selectively studying the tactile system. As the sensor is stimulated instead of the fiber, the 
cortical evoked response to such a stimulus will also depend on the dynamics of the sensor. 
Both electrical and tactile stimulation generate an somatosensory evoked response, yet the 
type of stimulation is not specifically related to movement control, for which proprioceptive 
information is highly relevant (Simo et al., 2014). Importantly, proprioceptive information 
arrives in a different part of the primary somatosensory cortex (Brodmann area 3a) compared 
with information from cutaneous sensors (Brodmann area 3b). Thus, when studying 
movement control it is important to focus on the proprioceptive system.  

The proprioceptive system can be specifically studied by recording the cortical responses 
evoked by applying joint manipulation. Joint manipulation can be applied as a transient 
stimulus (e.g. MacKinnon et al., 2000, Seiss et al., 2002, Campfens et al., 2015a) or as 
continuous stimulation (e.g. Campfens et al., 2013, Piitulainen et al., 2013, Yang et al., 2016b). 
The characteristics of the cortical response evoked by transient joint manipulation, defined 
here as intermittently applied stimuli, are sensitive to the inter-stimulus interval (Custead et 
al., 2015) and attention (Pang and Mueller, 2014). This suggests that the response is sensitive 
to the specific state of the system at the time when the stimulus is applied; hence, the 
obtained cortical response depends on the initial conditions of the system. Cortical responses 
evoked by continuous joint manipulation allow for studying the sensorimotor system while it 
is constantly and consistently engaged in control. The effects of initial conditions vanish after 
stimulus onset and can therefore easily be excluded from the data.  

At the time of writing this discussion, there are several publications which evoked a cortical 
response using continuous joint manipulation and studied the coherence between stimulus 
and response (see previous paragraph). However, when the 4D-EEG project started in 2012, 
there was limited literature or data available and it was unclear to what extent small periodic 
joint manipulation would result in a discernible evoked cortical response. This thesis 
established that continuous joint manipulation evokes a cortical response in the contralateral 
sensorimotor cortices, which is highly nonlinear (i.e. over 80% of the response), yet is 
periodic with the applied periodic joint manipulation signal. As the cortical evoked response 
is directly associated with the manipulation signal, it is concluded that proprioceptive 
information generated by sensors in the periphery arrives in the contralateral sensorimotor 
cortices. This finding enables the study of cortical involvement in movement control tasks, in 
which the joint manipulation signal can serve both as a sensory stimulus to excite and study 
the afferent pathways, as well as a disturbance which engages the sensorimotor system in 
active control. 

This thesis focuses on characteristics of the evoked cortical response, such as its intensity, 
cortical location and dynamic relation with joint manipulation signal. The role of this 
proprioceptive information arriving in the cortex is a question which remains unaddressed. 
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One important purpose is the forming of internal models for generating motor commands 
(Sainburg et al., 1995). Proprioceptive information also facilitates cortical feedback control, 
for example by selecting a control strategy (e.g. the modulation of spinal reflexes) based on 
external disturbances (Pruszynski and Scott, 2012). Sensorimotor networks in the cerebral 
cortex, basal ganglia and cerebellum facilitate highly skilled motor actions. How the brain 
uses sensory feedback for online control remains poorly understood (Scott, 2016). The 
insights obtained from this thesis can aid the design of experimental paradigms to further 
explore cortical involvement in feedback control. 

M.2 Multisine perturbation signals evoke a cortical response which is 
rich in information 
Evoked cortical signals recorded using EEG generally have a very poor signal-to-noise ratio 
(SNR). Here, signal is defined as the evoked response (i.e. the response to the joint 
manipulation). The noise is defined as all other activity, such as cortical background activity, 
ocular movements, and activity originating from jaw and neck muscles. Throughout this 
thesis, the SNR was found to be around -10 to -15 dB, indicating that the noise power is 
approximately 10 to 30 times larger than the signal power. Hence, to obtain an estimate of 
the response evoked by somatosensory stimulation, the stimulus should be applied many 
times such that the influence of noise can be reduced by averaging; parts of the response 
related to the stimulus will remain, while all activity originating from unrelated processes (i.e. 
the ‘noise’) will vanish with an increased number of repetitions. However, when investigating 
the behavior of the sensorimotor system (i.e. performing system identification), this approach 
should be applied with care. 

The relation between input and output of a linear system can be studied by applying a 
continuous random perturbation signal (e.g. white noise) and the cross-correlation between 
input and output will reveal the dynamics of the system. When recording signals with poor 
SNR, a recording can be divided into multiple segments and averaging across these different 
segments of data will increase the SNR (Welch, 1967). Importantly, when applying random 
perturbation signals to a nonlinear system, averaging over different segments of data would 
remove not only the noise but also any stochastic nonlinear distortions; stochastic nonlinear 
distortions and noise have very similar properties (see Box 7.1). To be able to distinguish the 
response of a nonlinear system from the noise, it is necessary to repeatedly apply the same 
perturbation signal; the stochastic nonlinear distortions are not random once the perturbation 
signal is fixed (Pintelon and Schoukens, 2012). 
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Box 7.1. The best linear approximation of a nonlinear system. 

 
Top diagram shows a nonlinear system excited by random input u and with recorded output y. The 
recorded output is the true output (y0) contaminated with noise (n). An equivalent representation is 
given in the bottom diagram. The nonlinear system is replaced by its best linear approximation (GBLA) 
and the stochastic nonlinear distortions (ys) are added to the output (yBLA). The stochastic nonlinear 
distortions have properties very similar to those of the noise and are therefore hard to distinguish in 
the recorded output. Both the noise and the stochastic nonlinear distortions are reduced by averaging. 
 
When using a periodic perturbation signal (e.g. a multisine signal) the stochastic nonlinear distortions 
are not random anymore and will be periodic with the perturbation. Hence, averaging over periods 
will reduce the effect of noise, yet the stochastic nonlinear distortions will not be removed. Note that 
because the stochastics nonlinear distortions are fixed for a fixed perturbation signal, a linear 
coherence analysis fails to detect nonlinear distortions and the distortions will bias the coherence 
(Maki, 1986). Furthermore, a linear model estimated using a fixed perturbation signal might not be 
valid for another perturbation signal with the exact same power spectrum and amplitude distribution; 
validity depends on the level of stochastic nonlinear distortions. Techniques using multisine signals 
can be employed to detect and quantify these stochastic nonlinear distortions (Pintelon and 
Schoukens, 2012) (Box 7.4), which are used in Chapter 2 and 3. Figure adapted from Schoukens et al. 
(2016). 

Box 7.2. Exciting the system with a perturbation signal  
rich enough to reveal all relevant characteristics. 

The continuous stimulation used in most neuroimaging studies consists of a single or a few sinusoids. 
A complete representation of the system’s behavior can only be obtained if the perturbation signal is 
rich enough (i.e. excites all the relevant characteristics of the system). An example is found in the 
identification of an (ideal) linear mass-spring-damper system: if the perturbation signal does not excite 
the natural frequency of the system (e.g. a slow or low-frequent signal), an important part of the 
dynamic behavior cannot be observed from the response. When stimulating the system with a richer 
signal, the response might drastically alter and the model identified before is not valid anymore.  

When investigating a nonlinear system, its behavior can be studied in a specific operating range, 
which facilitates linear analysis: in a small operating range the systems behavior can possibly be 
linearized. Again, to obtain a proper representation of the system (within the operating range), the 
perturbation signal must be rich enough to reveal all characteristics of the system within that range. In 
contrast to a system description (i.e. model) obtained from a linear system, the model obtained from a 
nonlinear system is only valid within the investigated operating range; model extrapolation outside 
this range will likely fail. 
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Repeatedly applying the exact same stimulation signal to reduce the effect of noise is a 
common approach in neuroimaging studies on evoked responses. When these studies 
investigate the temporal characteristics (i.e. dynamics) of the sensorimotor system, the 
following points should be taken into consideration: 

1. As for a nonlinear system the superposition principle does not hold, a slight change in 
stimulation signal could substantially alter the evoked response, and thus the 
interpretation of the relation between stimulus and response.  

a. When repeatedly applying the same stimulus, the observed relation between 
stimulus and evoked response is only valid for that very specific (yet quite 
arbitrary) stimulus. As nonlinear distortions are easily overlooked, linearity might 
be wrongfully assumed. 

b. For identification of a linear system, the amplitude distribution of the perturbation 
signal is trivial. In contrast, the response of a nonlinear system does depend on the 
amplitude distribution of the perturbation signal (see Box 7.3). 

2. The perturbation signal should be rich enough to reveal all the relevant 
characteristics of the system (see Box 7.2). 

Insight in linear and nonlinear contributions to the evoked response can be obtained by 
carefully designing a random phase multisine signal, which is a periodic perturbation signal 
consisting over several summed sinusoids (see Eq 2.1 for a definition). A multisine signal has 
a fully customizable frequency content, which enables the detection of time-variant behavior 
and nonlinear distortions. An illustration of the use of multisine perturbation signals is 
presented in Chapter 2. By the virtue of recording long segments (i.e. 55 s), it was possible to 
check for slow time variations during a segment. The results of Chapter 2 revealed no 
substantial time variant (i.e. non-stationary) behavior. Additionally, no subharmonics were 
detected in the recorded responses. These findings are important for all other chapters: the 
evoked response is periodic with the perturbation, indicating it is valid to segment the 
recorded data into individual periods and further benefit from the advantages of multisine 
perturbation signals. As specific frequencies were included in the perturbation signal in 
Chapter 2, it was possible to distinguish between linear and nonlinear responses. By designing 
a multisine signal including only odd harmonics of the fundamental frequency (equal to 1 
over the duration of the period), it is possible to distinguish between odd and even nonlinear 
distortions (see Box 7.4). 
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The signal-to-noise ratio (SNR) is used throughout this thesis as a metric to determine which 
cortical signal (at electrodes or independent components) shows a response associated with 
the perturbation signal. In Chapter 5 and 6, the SNR is also used to study the integrity of the 
somatosensory pathways, by comparing the SNR across individuals. Note that the estimated 
SNR strongly depends on the number of recorded periods (see Box 7.5). The advantage of 
comparing the SNR as opposed to the power in the evoked response, is that it is a 
dimensionless metric which has less dependence on anatomical differences across individuals. 
A weakness of this approach is that from an altered SNR it is unclear if the power in the 
signal, the power in the noise, or both are altered. Intra-individual changes in power in the 
evoked cortical responses across measurement sessions could be assessed by expressing the 
power relative to the first or last session. However, comparison between individuals is 
hindered by such an approach. In Chapter 5, comparison of the evoked response in the active 
task was enabled by calculating the difference in power between the passive and active task, 
which also results in a dimensionless metric which is less sensitive to alterations in noise. A 
combination of the various metrics will provide most information on alterations to cortical 

Box 7.3. Output of a nonlinear system depends on the amplitude distribution of the input signal. 

 
Two graphs on the left show the amplitude distribution (i.e. histogram) of a normally distributed 
random input signal (top) and a random binary signal (bottom). The graph in the center shows the 
input-output relation for a dead-zone operator: small amplitude signals cannot pass through the 
system. The two graphs on the right show the amplitude distribution of the output signal 
corresponding to the input signal in the same row. The response to an input signal with an amplitude 
distribution concentrated around zero (e.g. normally distributed noise) will clearly show the effect of 
the dead-zone. In contrast, the response to a perturbation signal with an amplitude distribution 
concentrated in the extremes (e.g. random binary signal) will pass through the nonlinear operator 
unaltered; any subsequent system identification will be blind to the nonlinearity. Therefore, when 
studying a nonlinear system it is important to do so using a specific class of input signals, as the 
observed relation might not be valid for a different class. For the class of input signals with a 
Gaussian distribution the properties of the best linear approximation and the stochastic nonlinear 
distortions are well known (see Box 7.1) (Schoukens et al., 2016). Random-phase multisine 
perturbation signals have such a distribution, given that enough frequencies are excited. Note that 
shifting the phases of the sinusoids to reduce the crest factor, allows for an increase of power in the 
input signal, which is a powerful tool for identification of linear dynamic systems. However, this 
process substantially alters the amplitude distribution of the multisine signal towards a signal with a 
binary distribution and should therefore be avoided when linearizing a nonlinear system. 
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evoked responses after stroke. The SNR metric has demonstrated to be a reliable metric to 
find evoked responses associated with the manipulation signal, even in the presence of strong 
noise sources such as ocular and muscle activity. Furthermore, while coherence metrics only 
focus on a small part of the response, the SNR quantifies the complete nonlinear response of 
the sensorimotor system.  

   

Box 7.4. Example of a frequency domain response of a nonlinear system to a multisine perturbation. 

 
Only magnitude is shown. Noise is not considered here. Top row shows that only odd frequency 
lines in the multisine signal are excited (f is frequency and f0 is the fundamental frequency, i.e. one 
over the period duration). Rows two, three and four show the linear, odd nonlinear and even 
nonlinear contributions to the output, respectively. These contributions are generated by 
intermodulation of the excited frequencies in the input. Bottom row shows the response, which is a 
mix of the linear, odd and even contributions. Note that at the unexcited frequency lines in the 
response odd and even nonlinear contributions can be distinguished, yet the signal at the excited 
frequency lines in the output is a mix of linear and odd nonlinear contributions. Thus, the signal at 
the excited frequencies should not be considered as the linear part of the response, since it may 
contain odd nonlinear distortions. Note that in a linear system the response can only contain signal at 
the frequencies excited in the input. Figure adapted from Schoukens et al. (2016). 
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U.1 The evoked cortical response is periodic with the applied joint 
manipulation and is highly nonlinear 
The characteristics of the cortical responses evoked by continuous wrist manipulation in 
unimpaired individuals were investigated in Chapter 2 and 3. Chapter 2 revealed the cortical 
evoked responses to periodic with the applied manipulation; there were no detectable slow 
time variant dynamics or subharmonics. However, strong responses were observed at 
frequencies which were not excited in the input, indicating nonlinear behavior. Systems with 

Box 7.5. SNR depends on number of periods included for estimation. 

 
Top graph: solid line and dotted line represent the estimated signal and noise power, respectively. 
Estimates are obtained by randomly selecting a number of periods out of the available number of 
1100 (electrode level data from Chapter 2), and repeating this 50 times. Lines indicate the average and 
shaded areas indicate the standard deviation. Bottom graph: signal-to-noise ratio (SNR) estimated 
from the results in the top graph. Dashed blue line indicates the estimated SNR for electrode CP3 
when including all available data. Electrode CP3 is located over the contralateral sensorimotor 
cortices, while CP4 is located over the ipsilateral sensorimotor cortices. 

The noise level can be accurately estimated using a small number of periods. A good estimate of the 
power in the evoked response, and consequently of the SNR, requires around 100 periods at an 
electrode over the contralateral sensorimotor cortices (CP3). The initial decrease in estimated SNR is 
due to the very poor true SNR (dashed blue line at around -13 dB), in which the power of the signal 
is approximately 20 times smaller than the power in the noise. Interestingly, the power in the evoked 
response on an electrode over the ipsilateral sensorimotor cortices (CP4) keeps decreasing when 
more periods are included; therefore, the discriminative ability of the SNR-metric increases when 
more periods are included. 
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weak nonlinear behavior can be studied in a specific operating range, facilitating linear 
analysis. Compared with nonlinear system identification techniques, linear system 
identification techniques are matured, computationally undemanding, require little a priori 
knowledge and can reveal many characteristics of the system under study.  

The possibility of applying linear system identification techniques was investigated in Chapter 
3. A nonparametric linear model (the best linear approximation) was estimated between the 
recorded wrist joint angle and wrist joint torque, wrist flexor and extensor muscle activity and 
the cortical response which was most associated with the perturbation signal (i.e. with the 
highest SNR). The relation between wrist joint angle and torque could be linearized well, as 
the nonparametric linear model explained 99% of the recorded signal. The relation between 
wrist angle and muscle activity was weakly nonlinear: the observed nonlinear behavior mainly 
originated from an odd nonlinearity and a nonparametric linear model could explain around 
70% of the recorded muscle activity. Under both passive (“relax and ignore the perturbation 
signal”) as active (“maintain joint angle and resist perturbation signal”), only a very small 
portion of the cortical evoked response could be explained by the linear model (10%). A 
detailed analysis of the power spectrum of the evoked response revealed that there were 
strong nonlinear distortions in all participants, which mainly (>75%) originated from an even 
nonlinearity.  

Quantification of the response preferably separates linear and nonlinear contributions. This 
can be achieved by using multiple realizations of a multisine signal, as performed in Chapter 
3. Alternatively, nonlinear distortions can be detected by leaving some frequencies unexcited, 
as done in Chapter 2 and 3. In Chapter 5 and 6 a perturbation signal was used which did not 
allow for separating linear and nonlinear contributions. The ability of detecting nonlinear 
distortions comes at the price of extra measurement time. As it was already known that the 
cortical response to joint manipulation is dominated by nonlinear distortions, it was decided 
to design a relatively rich perturbation signal (i.e. many excited frequencies) to reduce 
measurement time and increase unpredictability of the signal. The metrics used in Chapter 5 
and 6 therefore quantify the full response to a rich joint manipulation signal. 

Linear coherence is a metric used in neuroimaging to quantify the coupling between joint 
manipulation and evoked response (position-cortico coherence; Campfens et al., 2013, 
corticokinematic coherence; Piitulainen et al., 2013). Based on the findings in this thesis, such 
linear coupling metrics can only capture a small part of the response. Moreover, as these 
studies use one fixed periodic perturbation signal (to reduce the effect of noise), linear 
coherence is biased by the nonlinear distortions (Maki, 1986). Overall, linear coherence is not 
suitable to quantify the cortical evoked response or to make interpretations about the 
dynamics of the sensorimotor system. As an alternative, higher order cross-spectral 
coherence can be used to study nonlinear coupling (Shils et al., 1996, Yang et al., 2016a). 
Such an approach allows for the detection of nonlinear coupling. However, these coherence 
metrics create limited insight in dynamic behavior. To further investigate the nonlinear 
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dynamic relation between joint manipulation and evoked cortical response, a nonlinear 
system identification technique is required. 

U.2 A nonparametric nonlinear model can describe the cortical evoked 
response substantially better than a linear model 
The relation between joint manipulation and cortical evoked response could not be described 
using a nonparametric linear model (VAF: 10%), as established in Chapter 3. In search of a 
model which could better capture this relation, several parametric and nonparametric 
nonlinear modeling techniques were explored. The main advantage of a nonparametric 
nonlinear modeling approach, is that it requires little a priori knowledge or assumptions. The 
drawback is that often many parameters need to be estimated compared with parametric 
models.  

A possible nonparametric nonlinear modeling approach is a Volterra series (Schetzen, 1980). 
A Volterra series is similar to a Taylor series, yet it includes dynamics. A disadvantage of 
estimating a Volterra series is that it requires many data, and the amount of data needed 
increases drastically for higher order Volterra kernels. Regularization can reduce this problem 
by incorporating some prior information about the system. Here, the regularization promotes 
correlation of kernel coefficients (i.e. a smooth kernel) and decay of the kernel (i.e. the 
models impulse response is finite) (Birpoutsoukis et al., 2017a). Note that the regularization is 
applied as a penalty, such that correlation and decay are encouraged but not imposed. 
Chapter 3 had revealed strong even nonlinear behavior and therefore a 2nd order (i.e. even) 
Volterra kernel was estimated to investigate the feasibility of the approach. An independent 
component analysis was applied to the data of Chapter 3 to obtain for each participant on 
one signal representing one cortical source, as opposed to a mix of multiple sources as seen 
on the EEG electrodes (Makeig et al., 1996b). Here, the component most associated with the 
perturbation signal was used for modeling. However, the approach could be applied to the 
signal of any component. 

The nonlinear model estimated in Chapter 4 was able to explain a substantially larger portion 
of the evoked cortical response than a linear model (46% compared to 8%, respectively). The 
dynamics of the obtained 2nd order kernels were similar across all participants and revealed 
high-pass dynamics. These high-pass dynamics were linked to velocity sensitivity of the 
muscle spindles. This high-frequent behavior of the obtained models is associated with low 
correlation of the model parameters, even though there was a penalty encouraging 
smoothness of the kernel (which could be considered low-pass behavior). This reveals the 
strength of the regularization, which steers towards, but does not enforce certain behavior. 

Several studies investigated the cortical evoked response due to transient joint manipulation 
(Mima et al., 1996, MacKinnon et al., 2000, Seiss et al., 2002, Campfens et al., 2015a). When 
varying amplitude of the transient perturbation while keeping velocity the same, very similar 
responses were evoked which differed mainly in duration and not in amplitude (Seiss et al., 
2002, Campfens et al., 2015a). Exploring the cortical evoked response to stimuli with 
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different amplitude can also reveal nonlinear behavior. Similar responses when varying 
stimulus amplitude and not velocity, could be a sign of strong velocity sensitivity, which 
would be in line with the findings of this thesis. For both finger (Seiss et al., 2002) and wrist 
(Campfens et al., 2015a) manipulation, joint flexion and extension result in a very similar 
evoked response. Insensitivity to the sign of the input is common to an even nonlinear 
system (e.g. y=u2), and is therefore in agreement with the findings based on continuous joint 
manipulation in this thesis. 

To further strengthen the confidence in the modeled dynamics of the sensorimotor system, 
experiments with richer perturbation signals could be performed. By designing a multisine 
signal with a longer period (i.e. increase frequency resolution), more sinusoids can be 
accommodated. Such an experiment can reveal if there are dynamics in the system which are 
not being excited using the perturbation signal of Chapter 3 and 4. A pilot experiment using a 
richer perturbation signal was performed (see Box 7.6). From this experiment very similar 

Box 7.6. Nonlinear model obtain using a richer perturbation signal. 

 
In an additional experiment with one young healthy participant a perturbation signal with a period of 
4 s was used (Birpoutsoukis et al., 2017b). Excited frequencies included: 0.25, 0.5, 0.75, 1, 2, 3 ... 20 
Hz (after 4 Hz, -20dB/dec). The same rms of 0.02 rad was used. The number of recorded periods 
was 105 and 7 different realizations were recorded (average noise level of 7%). Note that no 
distinction can be made between even and odd nonlinear contributions in the output using such a 
perturbation signal. Processing of the data was similar as in Chapter 4; however, here only a second 
order Volterra kernel was estimated. The VAF achieved in this experiment was around 45% on the 
validation data. Left graph shows the frequency domain representation of the obtained model; the 
obtained model is comparable to the models obtained in Chapter 4. Right graph shows the time 
domain representation of the same model. The decay is clearly visible in this graph. 
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results to those of Chapter 4 were obtained, further increasing the confidence in the 
approach and the interpretation given to the dynamics of the sensorimotor system. 

S.1 Reduced contralateral evoked responses are associated with 
somatosensory impairment after stroke. 
In the chronic phase after stroke (Chapter 5), the group of individuals with severe sensory 
impairment had significantly reduced responses compared with the group of unimpaired age-
matched individuals, as assessed under passive conditions. Reduced responses were also 
found during recovery after stroke (Chapter 6) in the participants with severe sensory 
impairment. Interestingly, participants who regained sensory function, also showed an 
increase of evoked responses. Hence, functional neuroimaging using continuous joint 
manipulation can quantitatively inform on the status of the sensorimotor system. 

Existing models which predict motor outcome after stroke do so based on initial motor 
impairment (Prabhakaran et al., 2008, Nijland et al., 2010). The proportional recovery model 
(Prabhakaran et al., 2008) can predict motor outcome after stroke quite accurately; however, 
for stroke survivors with severe initial motor impairment (e.g. FMA-UE scores lower than 
31), the recovery is much less predictable and outcome varies greatly (Byblow et al., 2015, 
Ward, 2015, Winters et al., 2015b), resulting in fitters and non-fitters to the model. The non-
fitters are the individuals who do not demonstrate the expected (proportional) recovery. 
Limited recovery has been associated with severe initial motor impairment (Zarahn et al., 
2011, Winters et al., 2015a), aphasia (Lazar et al., 2010) and visuospatial neglect (Winters et 
al., 2016c). 

Based on the findings in this thesis it is hypothesized that there is also an association with 
sensory impairment: individuals with severe sensory impairment might not fit the 
proportional recovery model and thus not show the expected spontaneous recovery. 
Argumentation for this is found in the relation between motor impairment and sensory 
impairment for the participants in this thesis (see Box 7.7); there is no recovery of motor 
function in the absence of sensory function. The proposed hypothesis is further supported by 
another recent study, which did not find a strong correlation between clinically assessed 
somatosensory and motor impairments in the first week after stroke, in the chronic phase 
after stroke, or between the somatosensory impairment in the first week and the motor 
impairment in the chronic phase after stroke (Meyer et al., 2016a). Additionally, previous 
neuroimaging studies which attempted to predict motor outcome based on cortical responses 
evoked by electrical somatosensory stimulation only found an association between absence of 
the response and poor motor recovery (Feys et al., 2000, Rollnik, 2015); the characteristics of 
the evoked response (if present) did not aid prediction of motor outcome in a large cohort 
study with 449 stroke survivors (Rollnik, 2015). The lack of correlation between levels of 
sensory impairment (assessed clinically or using neuroimaging) and motor impairment 
supports the proposed hypothesis: sensory function is a prerequisite but no guarantee for 
motor recovery. 
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S.2 Ipsilateral responses are not enhanced when contralateral 
responses are reduced 
For the evoked cortical signals recorded from unimpaired individuals, the highest SNR was 
always around the contralateral sensorimotor cortices. This finding is in line with previous 
literature on somatosensory evoked responses evoked by tactile stimulation of the hand 
(Snyder, 1992) and by wrist joint manipulation (Campfens et al., 2013), and is also expected 
based on where afferent fibers carrying proprioceptive and tactile information reach the 
cortex (Kandel et al., 2000).  

This thesis specifically investigated if there is a disbalance in representation of somatosensory 
information between hemispheres after stroke, which was investigated using the lateralization 
index. Participants with severe sensory impairment demonstrated absent or reduced cortical 
evoked responses, resulting in an absence of lateralization; however, increased ipsilateral (i.e. 

Box 7.7. Scores for sensory impairment and motor impairment. 

 
Black squares show the scores for the chronic phase after stroke (results from Chapter 5 and 6, n = 
36). Diamonds indicate the scores for the initial measurement (typically 2 weeks after stroke) for the 
participants in the longitudinal study (Chapter 6, n = 15). Diamonds connect via the scores in week 5 
and week 12 to the recording at week 26. The black dotted line at FMA-UE=46.6 is estimated 
outcome score using the proportional recovery model when starting from FMA-UE of zero (i.e. the 
lowest predictable score)(Prabhakaran et al., 2008). The figure reveals that, in the current sample, all 
individuals with severe sensory impairment demonstrate severe motor impairment, and that no 
individual with severe motor impairment followed the proportional recovery model. 
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contralesional) responses were not found in the chronic phase after stroke (Chapter 5), nor 
during recovery after stroke (Chapter 6). All participants who suffered a stroke showed an 
evoked response around the contralateral sensorimotor cortices. One exception was found in 
a participant for whom most of the contralateral sensorimotor cortices were damaged as a 
consequence of the stroke. In agreement with existing literature, differences in source 
locations over time were small and no consistent shifts were observed. Any alterations to the 
evoked response were linked to changes in strength of the response and not in location. 

Several studies have reported altered lateralization of voluntary motor drive after stroke, 
indicating a disbalance between activity in contralateral and ipsilateral hemisphere compared 
with unimpaired individuals. The mechanisms of this altered lateralization are not well 
understood (Buma et al., 2010, Rossiter et al., 2014), yet abnormal cortical lateralization of 
voluntary motor drive is a common finding which is also established in the Chapter 6. In the 
active conditions in Chapter 5 and 6, we studied voluntary motor drive while applying 
continuous joint manipulation. This allowed for quantifying cortical activity related to 
voluntary motor drive as well as the sensory representation of proprioceptive information by 
studying the cortical evoked response. No altered involvement of the ipsilateral hemisphere 
in processing proprioceptive information was found during recovery after stroke, suggesting 
that the unaffected hemisphere does not take over this role when processing in the affected 
hemisphere is reduced, possibly due to anatomical constraints. From the results in this thesis 
it is concluded that if there is return of sensory function it is associated with the return of 
function in the contralateral (i.e. ipsilesional) sensorimotor cortices. Thus, damage to the 
contralateral sensorimotor cortices is likely indicative of poor changes of sensory -and 
perhaps also- motor recovery. 

Future directions 

Further improving the model between wrist movement and cortical response 
The modeling approach used in this thesis can explain approximately 46% of the observed 
data. As the noise level was estimated to be around 8%, there is another 46% of data which is 
currently unmodeled. A next step in investigating the dynamics between imposed wrist 
movement and evoked cortical response using nonparametric modeling techniques, would be 
to include a 4th order Volterra kernel. As the even frequency lines in Chapter 4 contained the 
largest portion of unmodeled data, the inclusion of higher order odd kernels will not yield a 
large increase of model performance. When including more Volterra kernels in the 
estimation, the amount of data needed for estimation increases. The experimental protocol 
used to obtained data presented in Box 7.6 would be more suitable for this than the data 
used in Chapter 4, due to the extra information (i.e. more excited frequencies) in the 
perturbation signal. Experimental protocols which excite more frequencies in the region 10 to 
20 Hz could also be explored, as it seems that most of the dynamics are within that region. 
Accurate execution of the perturbations at these higher frequencies cannot be guaranteed 
with the robotic manipulator used in this thesis and should be performed on a more capable 
manipulator (Schouten et al., 2006). 
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The nonparametric modeling approach created insights into the dynamics of the 
sensorimotor system, which could be used when moving towards a parametric model 
representation. Both the 1st order (linear) and 2nd order (nonlinear) nonparametric models 
obtained in Chapter 4 revealed strong high-pass behavior. Several studies used anesthesia to 
reveal that under passive conditions the cortical response evoked by joint manipulation is 
largely generated by the muscle spindles (Starr et al., 1981, Abbruzzese et al., 1985, Mima et 
al., 1996). Therefore, the observed high-pass behavior was linked to the velocity sensitivity of 
the muscle spindles, which is conveyed to the cortex via Ia afferent fibers. When developing a 
parametric model representation, a possibility would be to incorporate an existing model of 
the muscle spindles (Mileusnic et al., 2006). Furthermore, the obtained 2nd order kernels 
reveal that the nonlinear dynamics cannot be fully described by a single Hammerstein branch, 
as the off-diagonal elements in the 2nd order kernel are not zero (Westwick and Kearney, 
2003). Several other guidelines for relating the Volterra kernels to cascades of various Wiener 
and Hammerstein structures exist (Westwick and Kearney, 2003). Before investigating this 
more deeply, it is important to obtain more confidence in the truncated Volterra series 
expansion by estimating multiple kernels (at least 1st and 2nd order) on data from experiments 
with richer and more informative perturbation signals. 

To further increase insight in the dynamic relation between wrist movement and cortical 
evoked response anesthesia or microneurography can be considered. Anesthesia of selected 
mechanoreceptors (e.g. tactile sensors) could help identify the source of the cortical evoked 
response, as similarly done before in the studies mentioned in the previous paragraph. This 
approach allows the relation between proprioceptors and cortical response to be studied in 
isolation. Microneurography could be employed to add a measurement point in-between the 
wrist movement and the cortical evoked response, which allows the study of the dynamic 
relation between wrist movement and mechanoreceptors, and between mechanoreceptors 
and cortical evoked response separately. The advantage is that the dynamics of the 
mechanoreceptors can be estimated and modeled separately. Such measurements during joint 
manipulation are challenging due to the required precision in placing the electrodes combined 
with the movements of the tissue due to the manipulation (De Gooijer-van de Groep et al., 
2011). Additionally, an experimental paradigm with separate tactile stimulation and joint 
manipulation could be employed to separate the cortical sources responsible for processing 
the respective somatosensory stimuli. Optimized multisine stimulation signals with for 
example different (non-integer multiple) fundamental frequencies would enable the 
separation of the temporal responses. 

Identifying cortical areas involved in processing proprioceptive information 
Cortical generators of responses evoked by joint manipulation are expected in part of the 
primary somatosensory cortex which processes proprioceptive input (Brodmann area 3a). 
Interestingly, several studies using transient joint manipulation reported a strong evoked 
responses originating from the contralateral primary motor cortex (Brodmann area 4) 
(MacKinnon et al., 2000, Seiss et al., 2002). In the literature it is not entirely clear which 
region generates the response; it is likely that both contralateral primary sensory and motor 
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cortex are involved in generating the response to a transient proprioceptive stimulus (Onishi 
et al., 2013), which could depend on movement parameters (Seiss et al., 2002). In this thesis a 
single dipole could explain most of the observed cortical response evoked by continuous 
joint manipulation. With the current experimental setup and analysis techniques it was not 
possible to differentiate between the two locations, as they are spaced only few millimeters 
apart. An increase in the number of electrodes combined with the use of signal-separation 
techniques (e.g. independent component analysis) can aid in distinguishing between these 
proximal cortical sources. Small differences were observed in source locations between the 
groups with different recovery patterns (see Chapter 6). It would be interesting to investigate 
if these differences facilitate distinguishing between individuals early after stroke. 

Studying the cortical network involved in movement control 
It would be of interest to investigate the network of cortical regions involved in sensory 
processing and how this network is altered after stroke (Grefkes and Fink, 2014). In this 
thesis, the strongest responses were obtained at the contralateral sensorimotor cortices. 
Similarly, previous studies on transient joint manipulation obtained a strong evoked response 
around the contralateral central sulcus for all their participants (MacKinnon et al., 2000, Seiss 
et al., 2002, Onishi et al., 2013). Some of these participants also had an identifiably evoked 
response in the contralateral supplementary motor area (SMA) and posterior parietal cortex 
(PPC), and in contralateral and ipsilateral secondary somatosensory cortices (Onishi et al., 
2013). The independent component analysis performed in Chapter 2, 4, 5 and 6, revealed 
multiple cortical sources with a response associated with the perturbation. In all cases, the 
response located around the contralateral sensorimotor cortices was the response with the 
highest SNR. Interestingly, in many participants components were identified which could be 
associated with cortical areas such as SMA and PPC. A future step is to study the dynamic 
relation between the cortical regions involved in processing sensory information, and the 
planning and generation of motor commands. A multitude of linear and nonlinear 
connectivity measures exist, such as measures based on Granger causality (e.g. partial directed 
coherence), dynamic causal modeling and phase locking index. Further research will prove 
which techniques are suitable to study the connectivity between cortical areas specifically 
involved in generating evoked responses to continuous periodic perturbation. Combining 
functional connectivity measures with anatomical imaging methods such as diffusion tensor 
imaging (e.g. Fukushima et al., 2015), has the potential to uncover accurate maps of pathways 
conveying information related to feedback and feedforward control. 

Studying the impaired sensorimotor system 
Robotic joint manipulation under passive conditions can inform on the status of the 
somatosensory systems relevant to movement control, even in severely impaired individuals. 
As such, the focus in this thesis was on passive tasks. The results obtained from these passive 
tasks revealed that cortical evoked responses were associated with severe sensory 
impairments in Chapter 5 and 6, and that there was no increase in evoked responses in the 
ipsilateral hemisphere. Future efforts on modeling the relation between joint movement and 
cortical response, as well as uncovering the cortical networks involved in processing 
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proprioceptive information, could create insight into abnormal cortical activity during 
recovery after stroke. Modeling cortical evoked responses in patients and stroke survivors 
first requires further investigation in unimpaired individuals. The experimental protocols used 
in this thesis were quite long due to the large number of data being collected. By optimizing 
the joint manipulation signals and analysis techniques, more concise experiments can be 
designed to study the relevant aspects of the cortical evoked response, resulting in a smaller 
burden on impaired individuals. 

Control tasks with an active component, such as performed in Chapter 3, 5 and 6, require 
higher mental and physical efforts. Studying cortical involvement in active movement control 
is challenging in a very interesting group of stroke survivors, i.e. individuals with initially 
severe motor impairments. To study the sensorimotor system under active conditions in 
participants who were mentally and physically able to sustain longer experiments, but who 
could not voluntarily flex their wrist, other experimental paradigms could be investigated. 
The use of a robotic joint manipulator for more proximal upper limb joints would allow to 
study cortical activity in individuals with more severe motor impairments, as proximal joints 
demonstrate faster return of function compared with distal joints (Colebatch and Gandevia, 
1989). When thinking about the use of robotic joint manipulation for use in a clinical setting, 
a more distal joint is recorded more easily, as the required robotic manipulator could be much 
smaller. 

Besides movement impairments associated with stroke, there exists a wide range of 
movement disorders, such as Parkinson’s disease and many types of tremor. These disorders 
cause erroneous control and often have an unknown pathophysiology (Obeso et al., 2014, 
Smith et al., 2014b). Diagnosis of movement disorders can be hindered by the similarity of 
their symptoms (Benamer et al., 2000). By studying movement control in individuals with 
these disorders using experimental protocols such as presented and suggested in this thesis, 
we can increase our understanding of the associated pathophysiologies, with the aim of 
expediting diagnosis and ultimately improving treatment. 

Applying the proposed techniques to other modalities 
The approaches presented in this thesis for the quantification and modeling of the nonlinear 
sensorimotor system can be translated to other modalities. Linearity of the visual system was 
investigated by Herrmann (2001), who investigated presence of higher harmonics to 
stimulation with a single sinusoid. Modeling of the nonlinear relation between visual stimuli 
retinal response was undertaken by Victor and Shapley (1980). Current work on the visual 
system in the Leiden University Medical Centre investigates the relation between the evoked 
cortical response and neurological diseases such as migraine using a multisine approach 
(Perenboom et al., 2016). Similarly, a project within the recently started NeuroCIMT program 
(www.neurocimt.nl) identifies dynamic cortical relations within the auditory system, with the 
aim of reducing hearing impairments. 
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Concluding remarks 
Stroke is the leading cause of acquired disability in the developed world (Feigin et al., 2014). 
Stroke incidence was estimated to be around 1.5 million in 2015 in Europe, which is 
associated with a large burden to society and economy (Wilkins et al., 2017). Reducing the 
impact of stroke can be achieved through prevention, improving acute treatments and 
improving post-stroke rehabilitation. Stroke is the leading preventable cause of disability and 
effective prevention methods should be explored (Frieden and Berwick, 2011). Major 
developments in the treatment of acute stroke, such as thrombolysis within six hours after 
onset, increases the fraction of stroke survivors and independence during activities of daily 
living (Wardlaw et al., 2014). In the sub-acute phase after stroke, spontaneous recovery is 
currently the largest contributor to reduction of impairments (Kwakkel et al., 2016); 
rehabilitation therapies can at present only account for 5 to 15% of observed improvement 
(Kwakkel et al., 2015, Winters et al., 2016a). Research into recovery mechanisms of stroke 
may lead to the development of more effective rehabilitation programs. Neuroimaging can 
facilitate this by investigating anatomical and functional changes inside the brain during 
recovery after stroke. The methodologies and insights presented in this thesis can hopefully 
be employed to deepen our understanding of the recovery mechanisms of stroke, with the 
ultimate goal of minimizing impairments and maximizing independence of stroke survivors. 
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Summary 
 

 

Cortical damage after a stroke often affects movement control, resulting in impairments such 
as paresis and synergies. Although some recover, most stroke survivors are left with reduced 
function of the upper limb, which has a severe impact on their activities of daily living. 
People who have suffered a stroke demonstrate heterogeneous impairments due to large 
variability in lesion location and extent; thus, rehabilitation should be tailored to each 
individual. Design and evaluation of rehabilitation programs requires a thorough 
understanding of the healthy and impaired sensorimotor system. Impairments to the motor 
system have been extensively investigated. On the contrary, the sensory aspects of impaired 
motor control have received less attention. This thesis intends to characterize the relation 
between somatosensory information from the periphery and the corresponding cortical 
responses using electroencephalography (EEG). 

Throughout this thesis, a robotic manipulator is used to apply stimulation to the wrist joint. 
Joint manipulation elicits a response from the mechanoreceptors in the periphery which, via 
the spinal cord, arrives in the cortex. When applied continuously, such stimulation evokes a 
steady state response (SSR) in the cortex, which can be measured using EEG. Previous 
studies reported a cortical response with power at frequencies that were not in the 
stimulation signal, indicating nonlinear behavior. The goal of Chapter 2 is to characterize the 
cortical response evoked by continuous wrist manipulation, and establishes the type of 
system identification tools that can be used to study the relation between applied stimulus 
and evoked response. Continuous joint manipulation using a multisine signal (i.e. the sum of 
several sinusoids) was applied to unimpaired individuals, to investigate the properties of the 
SSR in the frequency domain. The results showed a response in the contralateral 
sensorimotor cortex at the stimulated frequencies, yet with more power at their even 
harmonics, indicating substantial nonlinear behavior. Chapter 2 concludes that the SSR 
evoked by continuous joint manipulation is nonlinear; however, shows no time-variant 
behavior or subharmonics, allowing for the application of a broad range of (non)linear system 
identification tools. 

Even though the selection of analysis techniques depends on the linearity of the system under 
study, the importance of nonlinear contributions to evoked cortical responses has not been 
formally addressed. The goal of Chapter 3 is to quantify the nonlinear contributions to the 
cortical evoked response. Multisine stimulation signals elicited a periodic cortical response 
and enabled assessment of nonlinear contributions to the response. Wrist dynamics (relation 
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between joint angle and torque) were successfully linearized, explaining 99% of the recorded 
response. In contrast, the cortical evoked response revealed a highly nonlinear relation; most 
power (~80%) occurred at non-stimulated frequencies. Moreover, only 10% of the response 
could be explained using a nonparametric linear model. These results indicate that the 
recorded evoked cortical responses are governed by nonlinearities and that linear methods do 
not suffice when describing the relation between mechanical stimulus and cortical response. 
The characteristics of this relationship are further explored in Chapter 4. 

The goal of Chapter 4 is to obtain a nonparametric nonlinear dynamic model, which can 
consistently explain the recorded cortical response requiring little a priori assumptions about 
model structure. Wrist joint manipulation was applied in ten unimpaired participants during 
which their cortical activity was recorded and modeled using a truncated Volterra series. The 
obtained models explain 46% of the cortical response, thereby demonstrating the relevance 
of nonlinear modeling. The high similarity of the obtained models across participants 
indicates that the models reveal common characteristics of the underlying system. The 
models show predominantly high-pass behavior, suggesting that velocity-related information 
originating from the muscle spindles governs the cortical response. Chapter 4 concludes that 
the nonlinear modeling approach using a truncated Volterra series with regularization 
provides a quantitative way of investigating the sensorimotor system, offering insight into the 
underlying physiology. 

Stroke is a leading cause of long-term disability in the developed world: cortical damage after 
stroke can drastically impair sensory and motor function of the upper limb, affecting the 
execution of activities of daily living and quality of life. The goal of Chapter 5 is to assess the 
integrity of the somatosensory system in individuals with chronic hemiparetic stroke with 
different levels of sensory impairment. Continuous robotic joint manipulation was applied 
during a passive and active task, defined as ‘relaxed wrist’ and ‘maintaining 20% maximum 
wrist flexion’, respectively. The evoked cortical responses in the EEG were quantified using 
the power in the averaged responses and their signal-to-noise ratio. Thirty individuals with 
chronic hemiparetic stroke and ten unimpaired individuals without stroke participated in this 
study. Participants with stroke were classified as having severe, mild, or no sensory 
impairment, based on clinical assessment. Under passive conditions, wrist manipulation 
resulted in contralateral cortical responses in unimpaired and chronic stroke participants with 
mild and no sensory impairment. In participants with severe sensory impairment the cortical 
responses were strongly reduced in amplitude, which related to anatomical damage. Under 
active conditions, participants with mild sensory impairment showed reduced responses 
compared with the passive condition, whereas unimpaired and chronic stroke participants 
without sensory impairment did not show this reduction. Robotic continuous joint 
manipulation enables studying somatosensory cortical evoked responses during the execution 
of meaningful upper limb control tasks. This particular approach allows the quantitative 
assessment of the integrity of sensory pathways; in the context of movement control this 
provides additional information required to develop more effective neurorehabilitation 
therapies. 
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Prediction of recovery of upper limb function in stroke survivors is important for stroke 
management, yet is challenging in individuals with severe initial impairments. The 
understanding of stroke recovery and accuracy of prediction may be enhanced by using 
functional neuroimaging to measure cortical mechanisms of neurological recovery (i.e. 
neuroplasticity). Chapter 6 presents preliminary results of a protocol that tracks time-
dependent neuroplasticity from the subacute to the chronic phase after stroke, focusing on 
the sensorimotor system. Cortical activity of hemiparetic stroke survivors was recorded at 
four fixed time points during recovery after stroke using EEG. Participants performed 
passive and active wrist control tasks with the affected wrist, as in Chapter 5. The intensity 
and location of the response evoked by the robotic joint manipulation were studied. 
Preliminary results are presented for the fifteen participants who completed the four 
recording sessions. Eleven unimpaired participants performed the same protocol. Cortical 
responses evoked by joint manipulation were less strong in participants with severe sensory 
impairment and increased over time in participants who regained sensory function. The 
cortical sources generating the evoked responses were in all participants with intact 
contralateral primary sensorimotor cortices located within this region (all participants except 
one). No altered balance between contralateral and ipsilateral cortical evoked responses was 
observed under passive and active conditions. Recovery of sensory function was associated 
with return of responses to the contralateral hemisphere; we observed no compensatory 
mechanism for processing sensory information involving the ipsilateral hemisphere. Sensory 
information is essential to movement control and the results suggest that severe sensory 
impairment hinders recovery of motor function after stroke. 

The overall objective of this thesis is to enhance the understanding of the sensorimotor 
system in both unimpaired individuals and individuals who have suffered a stroke. Cortical 
responses evoked by joint manipulation contain information about the functioning of the 
sensorimotor system. This thesis concludes that multisine stimulation signals evoke a cortical 
response that is rich in information. The evoked cortical response is periodic with the applied 
joint manipulation and is highly nonlinear: over 80% of the power in the response originates 
from nonlinear behavior. A nonparametric nonlinear model describes 46% of the cortical 
evoked response, a substantial improvement compared with the 8% described by a linear 
model. After stroke, the intensity of contralateral evoked responses is associated with 
somatosensory impairment, and ipsilateral responses are not enhanced when contralateral 
responses are reduced. The methodologies and insights presented in this thesis can be 
employed to deepen our understanding of the recovery mechanisms of stroke, with the 
ultimate goal of minimizing impairments and maximizing independence of stroke survivors. 





Samenvatting 
 

 

Hersenschade na een beroerte tast vaak bewegingssturing aan, wat resulteert in beperkingen 
zoals parese en synergiën. Hoewel sommigen volledig herstellen, houdt het merendeel van de 
personen die een beroerte hebben gehad beperkingen aan de bovenste ledematen, wat een 
negatieve invloed heeft op hun dagelijkse activiteiten. Mensen die een beroerte hebben gehad 
hebben heterogene beperkingen door de grote variabiliteit in de locatie en omvang van de 
laesie, waardoor rehabilitatietherapie op elk individu worden aangepast. Het ontwikkelen en 
evalueren van rehabilitatietherapieën vereist een gedegen inzicht in het gezonde en aangedane 
sensorische-motorische systeem. Beperkingen van het motorisch systeem na een beroerte zijn 
uitvoerig bestudeerd. De invloed van sensorische beperkingen op bewegingssturing heeft 
echter minder aandacht gekregen. Dit proefschrift wil de relatie tussen somatosensorische 
informatie uit het perifere zenuwstelsel en de bijbehorende corticale responsen kwantificeren 
met behulp van elektro-encefalografie (EEG). 

In dit proefschrift wordt een gerobotiseerde gewrichtsmanipulator gebruikt om het 
polsgewricht te stimuleren. Gewrichtsmanipulatie wekt een respons op van de 
mechanoreceptoren in het perifere zenuwstelsel, die via het ruggenmerg in de cortex 
terechtkomt. Als een dergelijke stimulus continu aangeboden wordt, wekt deze een steady 
state respons (SSR) op in de cortex, welke gemeten kan worden met EEG. Verschillende 
studies hebben een corticale respons gerapporteerd met vermogen op frequenties die niet in 
het stimulatiesignaal aanwezig waren, wat wijst op niet-lineair gedrag. Het doel van 
Hoofdstuk 2 is het karakteriseren van de corticale respons opgewekt door continue pols 
manipulatie en vast te stellen welke systeemidentificatietechnieken gebruikt kunnen worden 
om de relatie tussen aangeboden stimulus en opgewekte respons te bestuderen. Continue 
gewrichtsmanipulatie met behulp van een multisinus-signaal (d.w.z. de som van meerdere 
sinusoïden) werd toegepast op personen zonder beperkingen om de eigenschappen van de 
SSR in het frequentiedomein te onderzoeken. De resultaten laten een respons zien in de 
contralaterale sensorische-motorische cortex op de gestimuleerde frequenties, maar met meer 
vermogen op hun even hogere harmonischen, wat aanzienlijk niet-lineair gedrag aangeeft. De 
conclusie is dat de SSR opgewekt door continue gewrichtsmanipulatie niet-lineair is, maar 
geen tijdvariant gedrag of subharmonischen laat zien, waardoor de toepassing van een groot 
aantal (niet)-lineaire systeemidentificatietechnieken mogelijk is. 

Hoewel de keuze voor een analysetechniek afhangt van de lineariteit van het onderzochte 
systeem, is het belang van niet-lineaire bijdragen aan de opgewekte corticale respons niet 
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formeel onderzocht. Het doel van Hoofdstuk 3 is het kwantificeren van deze niet-lineaire 
bijdragen aan de opgewekte corticale respons. Multisinus-stimulatiesignalen wekten een 
periodieke corticale respons op en maakten het mogelijk om de niet-lineaire bijdragen aan de 
respons te bestuderen in tien personen zonder beperkingen. De mechanische dynamica van 
de pols (de relatie tussen gewrichtshoek en gewrichtsmoment) kon succesvol worden 
gelineariseerd, waarbij 99% van de respons verklaard kan worden. Daarentegen onthulde de 
opgewekte corticale respons een zeer niet-lineaire relatie; het meeste vermogen (~80%) werd 
gevonden op niet-gestimuleerde frequenties. Bovendien kan slechts 10% van de respons 
worden verklaard door een niet-parametrisch lineair model. Deze resultaten wijzen erop dat 
de opgenomen corticale responsen worden overheerst door niet-lineariteiten en dat lineaire 
methoden niet volstaan bij het beschrijven van de relatie tussen mechanische stimulus en 
corticale respons. De kenmerken van deze relatie worden verder onderzocht in Hoofdstuk 4. 

Het doel van hoofdstuk 4 is het verkrijgen van een niet-parametrisch niet-lineair dynamisch 
model dat de opgenomen corticale respons consistent kan beschrijven en daarbij weinig 
veronderstellingen over de modelstructuur vereist. Polsgewrichtsmanipulatie werd toegepast 
bij tien personen zonder beperkingen waarbij hun corticale activiteit werd gemeten met EEG 
en gemodelleerd met behulp van een Volterra-serie. De verkregen modellen verklaren 46% 
van de corticale respons, waarmee de relevantie van het schatten van niet-lineaire modellen 
wordt aangetoond. De grote gelijkenis van de verkregen modellen voor de verschillende 
personen geeft aan dat de modellen gemeenschappelijke kenmerken van het onderliggende 
fysiologische systeem onthullen. De modellen tonen hoog-doorlaat gedrag, wat suggereert dat 
snelheid-gerelateerde informatie afkomstig van de spierspoeltjes een groot deel van de 
corticale respons bepaalt. De niet-lineaire modelleerbenadering met behulp van een Volterra-
serie met regularisatie geeft een kwantitatieve manier om het sensorische-motorische systeem 
te bestuderen en biedt inzicht in de onderliggende fysiologie. 

Beroertes zijn een belangrijke oorzaak van langdurige beperkingen in de ontwikkelde landen: 
corticale schade na beroerte kan de sensorische en motorische functie van de bovenste 
ledematen drastisch verminderen, hetgeen de uitvoering van dagelijkse activiteiten 
vermoeilijkt en levenskwaliteit negatief beïnvloedt. Het doel van Hoofdstuk 5 is het 
vaststellen van de integriteit van het somatosensorische systeem bij personen in de 
chronische fase na een hemiparetische beroerte met verschillende niveaus van sensorische 
beperkingen. Continue gewrichtsmanipulatie werd toegepast tijdens een passieve en actieve 
taak, respectievelijk gedefinieerd als 'ontspannen pols' en '20% van maximale pols flexie'. De 
opgewekte corticale responsen in het EEG werden gekwantificeerd met behulp van het 
vermogen in de gemiddelde responsen en hun signaal-ruisverhouding. Dertig personen in de 
chronische fase na een hemiparetische beroerte en tien personen zonder beperkingen namen 
deel aan deze studie. Deelnemers met een beroerte werden geclassificeerd als hebbende 
ernstige, milde of geen sensorische beperkingen, op basis van een klinische beoordeling. 
Onder passieve condities resulteerde polsmanipulatie in contralaterale corticale responsen bij 
deelnemers zonder beperkingen en deelnemers met milde en geen sensorische beperkingen 
na een beroerte. Bij deelnemers met ernstige sensorische beperkingen waren de corticale 
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responsen sterk verlaagd in amplitude, wat gerelateerd was aan anatomische schade. Onder 
actieve condities lieten deelnemers met milde sensorische beperkingen verminderde 
responsen zien in vergelijking met de passieve conditie, terwijl deelnemers zonder 
beperkingen en deelnemers zonder sensorische beperkingen na een beroerte deze reductie 
niet lieten zien. Continue gewrichtsmanipulatie maakt het mogelijk om somatosensorische 
corticale responsen te bestuderen tijdens de uitvoering van betekenisvolle taken met de 
bovenste ledematen. Met behulp van een deze specifieke aanpak is het mogelijk om de 
integriteit van de sensorische paden kwantitatief te beoordelen. Dit biedt belangrijke 
aanvullende informatie over bewegingssturing, welke nodig is om effectievere 
rehabilitatietherapieën te ontwikkelen. 

Het voorspellen van herstel van functie in de bovenste ledematen bij personen die een 
beroerte hebben gehad is belangrijk voor het opstellen van een behandelplan, maar is 
complex bij personen met ernstige initiële beperkingen. Begrip van herstel na een beroerte en 
nauwkeurigheid van voorspelling kan worden verbeterd door functionele hersenmetingen om 
corticale mechanismen van neurologisch herstel te meten (d.w.z. neuroplasticiteit). Hoofdstuk 
6 presenteert de voorlopige resultaten van een protocol dat het verloop van neuroplasticiteit 
bestudeert van de subacute tot de chronische fase na een beroerte en dat zich richt op het 
sensorische-motorische systeem. Corticale activiteit van personen die een hemiparetische 
beroerte hebben gehad werd gemeten op vier vaste tijdspunten tijdens herstel met behulp van 
EEG. Deelnemers hebben passieve en actieve bewegingssturingstaken uitgevoerd met de 
aangedane pols zoals in Hoofdstuk 5. De intensiteit en de locatie van de responsen opgewekt 
in de cortex door polsgewrichtmanipulatie werden onderzocht. Voorlopige resultaten werden 
gepresenteerd voor vijftien deelnemers die de vier opnamesessies hebben afgerond. Elf 
deelnemers zonder beperkingen hebben hetzelfde protocol uitgevoerd. Door 
gewrichtsmanipulatie opgewekte corticale responsen waren minder sterk bij deelnemers met 
een ernstige sensorische beperking en namen mettertijd toe bij deelnemers bij wie sensorische 
functie terugkeerde. De corticale bronnen die de opgewekte responsen genereerden waren in 
alle deelnemers met intacte contralaterale primaire sensorische-motorische cortex in dit deel 
van de cortex (alle deelnemers behalve één). Er werd geen veranderde balans waargenomen 
tussen contralaterale en ipsilaterale corticale responsen onder passieve en actieve 
omstandigheden. Herstel van de sensorische functie ging gepaard met terugkeer van 
responsen in de contralaterale hemisfeer. Er werd ook geen compenserend mechanisme 
gevonden voor het verwerken van sensorische informatie waarbij de ipsilaterale hemisfeer 
betrokken was. Sensorische informatie is essentieel voor bewegingssturing en deze resultaten 
suggereren dat ernstige sensorische beperkingen het herstel van de motorfunctie na beroerte 
verhinderen. 

Het algemene doel van dit proefschrift is om het begrip van het sensorische-motorische 
systeem te verbeteren bij personen zonder beperkingen en personen die een beroerte hebben 
gehad. Corticale responsen die door gewrichtsmanipulatie worden opgewekt bevatten 
informatie over het functioneren van het sensorische-motorische systeem. Er wordt 
geconcludeerd dat multisinus-stimulatiesignalen een corticale respons veroorzaken die rijk is 
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aan informatie. De opgewekte corticale respons is periodiek met de toegepaste 
gewrichtsmanipulatie en is zeer niet-lineair: meer dan 80% van het vermogen in de respons 
komt voort uit niet-lineair gedrag. Een niet-parametrisch niet-lineair model kan 46% van de 
corticale respons beschrijven, wat aanzienlijk beter is dan de 8% beschreven door een lineair 
model. Na een beroerte is de intensiteit van contralaterale responsen verbonden met 
somatosensorische beperkingen. Ipsilaterale responsen worden niet sterker wanneer 
contralaterale responsen verminderd zijn door anatomische schade. De methodologieën en 
inzichten die in dit proefschrift worden gepresenteerd, kunnen worden gebruikt om ons 
begrip van de herstelmechanismen na een beroerte te verbeteren, om daarmee de 
onafhankelijkheid van mensen die een beroerte hebben gehad te maximaliseren. 

  



List of publications 
 

 

Journal articles 
Vlaar, M.P., Birpoutsoukis, G., Lataire, J., Schoukens, M., Schouten, A.C., Schoukens, J., and 
Van der Helm, F.C.T (2017), Modeling the nonlinear cortical response in EEG evoked by 
continuous wrist joint manipulation. IEEE Transactions on Neural Systems and Rehabilitation 
Engineering 2017, accepted 

Vlaar, M.P., Solis-Escalante, T., Dewald, J.P.A., Van Wegen, E.E.H., Schouten, A.C., 
Kwakkel, G., and Van der Helm, F.C.T (2017), Quantification of task-dependent cortical 
activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic 
stroke. Journal of NeuroEngineering and Rehabilitation, 14(1), 30. 

Vlaar, M.P., Solis-Escalante, T., Vardy, A.N., Van der Helm, F.C.T., and Schouten, A.C. 
(2016). Quantifying nonlinear contributions to cortical responses evoked by continuous wrist 
manipulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2017, 25(5), 
481-491 

Vlaar, M.P., Mugge, W., Groot, P.F.C., Sharifi, S., Bour, L.J., Van der Helm, F.C.T, Van 
Rootselaar, A.F., and Schouten, A.C. (2016). Targeted brain activation using an MR-
compatible wrist torque measurement device and isometric motor tasks during functional 
magnetic resonance imaging. Magnetic Resonance Imaging, 34(6), 795-802. 

Forbes, P.A., Dakin, C.J., Geers, A.M., Vlaar, M.P., Happee, R., Siegmund, G.P., Schouten, 
A.C., and Blouin, J.S. (2014). Electrical vestibular stimuli to enhance vestibulo-motor output 
and improve subject comfort. PloS one, 9(1), e84385. 

Conference articles 
Vlaar, M.P., Van der Helm, F.C.T., and Schouten, A.C. (2015). Frequency domain 
characterization of the somatosensory steady state response in electroencephalography. IFAC 
Symposium on System Identification, China, 48(28), 1391-1396. 

Vlaar, M.P. and Schouten, A.C. (2015). System identification for human motion control. 
IEEE Instrumentation and Measurement Technology Conference (I2MTC), Italy, 600-605.



 



 

Curriculum Vitae 
 

 

1985  Born in Rheden, the Netherlands 

 

2010  B.Sc. Mechanical engineering at Delft University of Technology 

Minor: Biomedical Engineering 

 

2012  M.Sc. Biomedical Engineering at Delft University of Technology 

Specialization: Biomechatronics 

Thesis: Targeted Brain Activation Using Isometric Motor Tasks During 
Functional Magnetic Resonance Imaging 

 

2012-2017 Ph. D. research at Delft University of Technology 

The 4D-EEG Project: A New Tool to Investigate the Spatial and 
Temporal Activity Patterns in the Brain 

Collaboration between Delft University of Technology, VU Medical 
Centre, VU University Amsterdam and Northwestern University 

 

https://www.linkedin.com/in/martijn-vlaar-834b7432/ 

https://www.linkedin.com/in/martijn-vlaar-834b7432/

	Poging4_Ipskamp - just front
	M. Vlaar - Thesis - Digital version - Inside
	1
	1.1 Movement control
	The sensorimotor system
	Impaired movement control: stroke
	Studying movement control of the upper limb

	1.2 Stroke recovery
	1.3 The 4D-EEG project
	1.4 Research approach
	1.5 Problem statement
	1.6 Aim and outline

	2
	2.1 Introduction
	2.2 Methods
	Experimental protocol
	Data processing
	Analysis tools

	2.3 Results
	2.4 Discussion
	Mechanical sensory stimuli evoke a cortical response
	Harmonics and intermodulation
	Subharmonics
	Time variant behavior
	Recommendations and future work

	2.5 Conclusions

	3
	3.1 Introduction
	3.2 Materials and Methods
	Participants
	Experimental setup
	Tasks
	Perturbation signal selection
	Perturbation signal design
	Experimental protocol
	Pre-processing
	Data analysis
	Quantifying the relative power of the nonlinear distortions
	Noise-to-signal ratio
	Determining the best linear approximation


	3.3 Results
	Noise-to-signal ratio
	Power of nonlinear distortions
	Frequency response functions
	Fitting the best nonparametric linear model

	3.4 Discussion
	Quantification of the nonlinear contributions
	Origin of nonlinear contributions
	Passive and active task
	Implications

	3.5 Conclusions
	3.6 Acknowledgments
	3.7 Appendix 3A

	4
	4.1 Introduction
	4.2 Methods
	Participants and experimental protocol
	Preprocessing
	Distinguishing the spectral contributions
	Model structure
	Volterra kernel estimation using regularization
	Efficient tuning of the prior knowledge
	Preparing the data for modeling
	Model estimation procedure
	Selecting the memory length of the 2nd order kernel
	Model evaluation

	4.3 Results
	Component selection
	Signal characteristics and model fit
	Representative models

	4.4 Discussion
	Selection of cortical response
	Physiological origin of the evoked cortical response
	Relation to previous continuous joint manipulation studies
	Reflection on the experiment
	Reflection on modeling approach

	4.5 Conclusions
	4.6 Appendix 4A
	4.7 Appendix 4B

	5
	5.1 Introduction
	5.2 Methods
	Participants
	Experimental protocol
	Experimental setup
	Recording system

	Upper limb control tasks
	Disturbance signal design
	Data processing
	Pre-processing
	Period rejection
	EEG analysis
	Independent component analysis
	Outcome metrics
	Statistical analysis

	Relation between EEG-derived outcome metrics and estimation of anatomical damage
	Anatomical damage
	Regression analysis



	5.3 Results
	Signal-to-noise ratio and laterality index
	Power change
	Evaluation of sensory and motor tract integrity

	5.4 Discussion
	Cortical activation in the passive task
	Alterations to cortical activation during the active task
	Robotic joint manipulation to assist the assessment of sensory impairment
	Limitations and future directions
	Added value

	5.5 Conclusions
	5.6 4D-EEG consortium

	6
	6.1 Introduction
	6.2 Methods
	Patient sample
	Experimental setup
	Experimental protocol
	Data analysis
	Data pre-processing
	Electrode level analysis
	Anatomical damage in sensorimotor regions
	Source level analysis
	List of outcome parameters
	Statistical analysis


	6.3 Results
	Participant details
	Passive task
	Alterations in the active task

	6.4 Discussion
	Afferent connectivity
	Location of the evoked response
	Voluntary motor drive
	Afferent information during the active task
	Relation between sensory impairment and motor impairment
	Evaluation of the protocol and analysis
	Future work

	6.5 4D-EEG consortium

	7
	M.1 Proprioceptive information is essential to movement control and its cortical representation is well studied using continuous joint manipulation
	M.2 Multisine perturbation signals evoke a cortical response which is rich in information
	U.1 The evoked cortical response is periodic with the applied joint manipulation and is highly nonlinear
	U.2 A nonparametric nonlinear model can describe the cortical evoked response substantially better than a linear model
	S.1 Reduced contralateral evoked responses are associated with somatosensory impairment after stroke.
	S.2 Ipsilateral responses are not enhanced when contralateral responses are reduced
	Future directions
	Further improving the model between wrist movement and cortical response
	Identifying cortical areas involved in processing proprioceptive information
	Studying the cortical network involved in movement control
	Studying the impaired sensorimotor system
	Applying the proposed techniques to other modalities

	Concluding remarks

	8
	9
	10
	11
	Journal articles
	Conference articles

	12


