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Stereographic projection for three-dimensional global
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Louvain-la-Neuve, Belgium, 3Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands

Abstract A method to solve the three-dimensional compressible Navier-Stokes equations on the sphere is
suggested, based on a stereographic projection with a high-order mapping of the elements from the stereo-
graphic space to the sphere. The projection is slightly modified, in order to take into account the domain
thickness without introducing any approximation about the aspect ratio (deep-atmosphere). In a discontinu-
ous Galerkin framework, the elements alongside the equator are exactly represented using a nonpolynomial
geometry, in order to avoid the numerical issues associated with the seam connecting the two hemispheres.
This is an crucial point, necessary to avoid mass loss and spurious deviations of the velocity. The resulting
model is validated on idealized three-dimensional atmospheric test cases on the sphere, demonstrating the
good convergence properties of the scheme, its mass conservation, and its satisfactory behavior in terms of
accuracy and low numerical dissipation. A simulation is performed on a variable resolution unstructured grid,
producing accurate results despite a substantial reduction of the number of elements.

1. Introduction

Thanks to its attractive properties such as parallel efficiency and the availability of high-order accurate
schemes, the discontinuous Galerkin (DG) method is particularly well adapted to atmospheric dynamics. Sev-
eral DG atmospheric models are currently under development [e.g., St-Cyr and Neckels, 2009; Nair et al., 2005;
Giraldo and Restelli, 2008; Giraldo et al., 2010; Brdar et al., 2013; S. Blaise et al., A stable three-dimensional dis-
continuous Galerkin discretization for nonhydrostatic atmospheric simulations, International Journal for
Numerical Methods in Fluids, submitted for publication, http://hdl.handle.net/2078.1/155002]. While a few DG
models simulate geophysical flows on the sphere, they are still in active development, and generally not ready
for climate or weather studies. The generalization of those models to realistic three-dimensional flows on the
sphere is a very challenging and pressing task. The ability to solve flow equations on spherical domains is
indeed an indispensable skill for global atmospheric and ocean models. However, despite the existence of var-
ious techniques developed to this aim, none of them can be considered entirely satisfactory.

Classical longitude-latitude grids are characterized by pole singularities requiring to be handled carefully [Mur-
ray, 1996; Mohseni and Colonius, 2000]. Indeed, the zonal grid spacing decreases toward zero as the poles are
approached, causing efficiency issues. Such grids are also subject to stability restrictions, the stable explicit time
step being directly proportional to the grid size. Thus, filters or stabilizations are usually needed in the vicinity
of the poles [Murray and Reason, 2002]. More recent models, such as ENDGame from the UK MET Office, benefit
from an improved stability at the poles, removing the need of polar filters in most cases [Mayne et al., 2014].

The most general and flexible method is probably the use of local tangent bases [Comblen et al., 2009; Ber-
nard et al., 2009; Blaise et al., 2010; Comblen et al., 2010], allowing for the use of any type of mesh on a large
class of curved manifolds. However, the vector fields need to be interpolated to and from the high-order
tangent local bases, which requires additional computational effort, as well as a more complex implementa-
tion. The implementation of the coupling between elements is also made more complex by the different
bases associated with each element.

A simplified approach, using only six local bases, is based upon the cubed sphere: the central projection of a
cube onto the surface of the sphere [Sadourny, 1972; Ronchi et al., 1996]. It is one of the most popular meth-
ods used in the past years to simulate atmospheric flows on the sphere [Nair et al., 2005; Dennis et al., 2005;
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Putman and Lin, 2007]. Six different coordinate systems associated with the faces of the cube are defined, to
which correspond additional metric terms. Several versions of the cubed sphere have been developed, which
may allow for the use of a conformal mapping [Rančić et al., 1996]. However, the corners of the cube corre-
spond to singularities that must be handled with care [e.g., Ivan et al., 2013]. Furthermore, the alignment of
the mesh, as well as the presence of the most distorted elements close to the corners, are likely to generate
spurious modes or grid-related oscillations [St-Cyr et al., 2008; Nair and Jablonowski, 2008; Lauritzen et al.,
2010].

Another simple method resorts to Lagrange multipliers: the equations are solved in a three-dimensional
Cartesian space, and an additional constraint forces the fluid particles to remain on the surface of the
sphere [Côt�e, 1988]. Regardless of the spatial discretization, it is probably the easiest way to transform an
explicit two-dimensional planar model to a model operating on the sphere. The technique has been suc-
cessfully used in the DG framework for two-dimensional flows [Giraldo et al., 2002; Blaise and St-Cyr, 2011;
Blaise et al., 2013], and can be extended to three-dimensional flows [Stuhne and Peltier, 2006, 2009]. How-
ever, this approach requires the resolution of an additional equation for the momentum. Furthermore,
enforcing the abovementioned constraint in an implicit framework is not straightforward.

An alternative approach is based upon the stereographic projection [Snyder, 1987]. The technique has been
introduced during the early developments of geophysical models [Phillips, 1957]. However, the change of the
grid size resulting from the projection makes it difficult to use efficiently methods such as finite differences,
which do not provide enough flexibility on the mesh resolution. As a consequence, the stereographic projec-
tion was used in conjunction with a different coordinates system (e.g., Mercator), resulting in overlapping
grids and associated numerical errors [Phillips, 1957; Chen and Kuo, 1986]. More recently, Marras et al. [2014]
proposed to avoid overlapping grids by connecting the different subdomains using transition regions on
which a transfinite interpolation was applied. However, this approach involves a domain division into 14 dif-
ferent regions associated with three different transformations, resulting in a more complex implementation.

Benefiting from the grid flexibility associated with the finite element method, D€uben et al. [2012] proposed a
two-dimensional discretization of the shallow water equations on the sphere using exclusively the stereo-
graphic coordinates. However, the stereographic projection involves a singularity, associated with the projec-
tion point at a pole. In order to map the whole sphere on a plane without singularity, it is necessary to split
the spherical domain into its southern and northern hemispheres, each one being associated with a different
projection point respectively located at the north and south pole. Doing so, D€uben et al. [2012] observed a
loss of global mass in their numerical simulations, caused by the inaccurate treatment of the seam coupling
the two domains. Furthermore, they were able to obtain a stable model only by considering a linear mapping
between the reference element on the plane and the element on the sphere, which is why they concluded
that other methods should be considered for atmospheric simulations on global spherical domains.

In this study, we propose to use the stereographic projection with a high-order mapping of the elements
from the stereographic space onto the sphere. The projection is slightly modified, in order to take into
account the domain depth without introducing any approximation as to the aspect ratio (section 2). Based
on their general expression in an orthogonal curvilinear system, the relevant differential operators are
derived in the stereographic system of coordinates (section 3). Those operators are used to express in the
same system the three-dimensional compressible Navier-Stokes equations, describing nonhydrostatic
atmospheric flows (section 4), which are then discretized using the discontinuous Galerkin method (section
5). The elements alongside the equator are represented using a nonpolynomial geometry, so that the two
subdomains match exactly, without hole or overlapping region (section 6). The method is then validated on
classical three-dimensional atmospheric test cases on the sphere (section 7).

The approach proposed in this article has several advantages. It is simple: only two space transformations
are considered, which can share a common implementation since they only differ by a sign. This implemen-
tation is straighforward, consisting in the addition of source terms to the equations, as well as the multipli-
cation of integral and derivation operators by a simple factor. Further, the geometrical mapping associated
with the elements located along the equator needs to be modified, a modification easily performed in a
high-order (dis)continuous Galerkin based code. Despite this simplicity, no approximation is made about
the aspect ratio (deep-atmosphere effects are considered), and mass is strictly conserved. Further, the over-
head in computational time is negligible, since it is only due to a few additional source terms.
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2. The Stereographic Transformation for Three-Dimensional Domains

The stereographic transformation projects a point from the surface of a sphere to a plane tangent to one of
its poles, using a projection point located on the opposite pole (Figure 1). It has the advantage of being con-
formal (i.e., angles are preserved). However, the transformation is undefined at the projection point, making
it impossible to map the whole sphere onto a plane. To circumvent this limitation, existing two-dimensional
geophysical models [e.g., D€uben et al., 2012] split the spherical domain into its southern and northern hemi-
spheres, each one being associated with a different projection point respectively located at the north and
south pole. As a result, each hemisphere is mapped onto a disk whose radius is twice that of the Earth.

However, in the case of a three-dimensional domain, the projection of a curved surface onto a plane surface is not
adequate. Because of the atmosphere thickness, it is necessary to consider a mapping from a three-dimensional
domain, lying in the Cartesian space of coordinates x5x1ê11x2ê21x3ê3, to another three-dimensional domain in
the stereographic space of coordinates a5a1ĝ11a2ĝ21a3ĝ3, where ê i and ĝ i are the respective basis vectors of
the Cartesian and the stereographic spaces. Such a mapping, whose vertical structure is illustrated by Figure 2, can
be obtained through an appropriate modification of the stereographic transformation:

x1ða1; a2; a3Þ 5
R1a3

R
4R2a1

4R21a2
11a2

2
;

x2ða1; a2; a3Þ 5
R1a3

R
4R2a2

4R21a2
11a2

2
;

x3ða1; a2; a3Þ 5 6 R1a3ð Þ 4R22a2
12a2

2

4R21a2
11a2

2
;

8>>>>>>>>><
>>>>>>>>>:

(1)

where R is the Earth radius while the 6 sign is related to the hemisphere under consideration (1 for the
north and – for the south). This relation corresponds to the classical stereographic transformation for a shell,
with the right-hand side multiplied by the factor R1a3

R to account for the depth of the atmosphere. Hence, it

Figure 1. Stereographic projection of the southern hemisphere onto a plane. From top to bottom, the bullets along the line of projection
represent the projection point (north pole), the point on the sphere to be projected and the projection of this point on the stereographic
plane. The respective basis vectors of the Cartesian and the stereographic space ê i (single lines) and ĝ i (double lines) at the projection
point are displayed in the Cartesian space (red) and the stereographic space (blue). Meridians and parallels, represented by dotted lines,
are displayed for visualization purposes.
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is possible to obtain the classical projection by prescribing a350, resulting in the projection of the spherical
surface onto a disk (Figure 1). The mapping (1) preserves a conformal character without introducing any
approximation as to the aspect ratio (i.e., no shallow-atmosphere approximation).

The basis vectors of the stereographic space ĝ i expressed in terms of those defining the Cartesian basis ê i

are obtained through the differentiation of (1) with respect to the coordinates of the stereographic space:

ĝ15
1

h1

@xða1; a2; a3Þ
@a1

5
1

h1

4 R R1a3ð Þ 4 R22a1
21a2

2ð Þ
4 R21a1

21a2
2ð Þ2

ê12
8 R a1 a2 R1a3ð Þ
4 R21a1

21a2
2ð Þ2

ê27
16 R2 a1 R1a3ð Þ
4 R21a1

21a2
2ð Þ2

ê3

 !
;

ĝ25
1

h2

@xða1; a2; a3Þ
@a2

5
1

h2
2

8 R a1 a2 R1a3ð Þ
4 R21a1

21a2
2ð Þ2

ê11
4 R R1a3ð Þ 4 R21a1

22a2
2ð Þ

4 R21a1
21a2

2ð Þ2
ê27

16 R2 a2 R1a3ð Þ
4 R21a1

21a2
2ð Þ2

ê3

 !
;

ĝ3 5
1

h3

@xða1; a2; a3Þ
@a3

5
1

h3

4 R a1

4 R21a1
21a2

2 ê11
4 R a2

4 R21a1
21a2

2 ê26
4 R22a2

12a2
2

4 R21a1
21a2

2 ê3

� �
;

8>>>>>>>>>><
>>>>>>>>>>:

(2)

where h1, h2 and h3 are the so-called scale factors or Lam�e coefficients [Lam�e, 1859; Chen et al., 1996], whose
values are defined in such a way that the basis vectors have a unit norm:

h15h25
4RðR1a3Þ

4R21a2
11a2

2
h351: (3)

Since the orthogonality of the basis vectors ĝ1; ĝ2 and ĝ3 at any point is easily verified, the basis (2) is asso-
ciated with an orthogonal curvilinear coordinate system.

3. Three-Dimensional Differential Operators in Stereographic Coordinates

For orthogonal curvilinear coordinates systems, the differential operators can be expressed in terms of the
scale factors, as has been done in the literature [e.g., Kemmer, 1977; Martinec, 2003]. Those expressions are
useful to rewrite each term of a differential equation in the stereographic coordinate system.

The divergence of a vector v5v1ĝ11v2ĝ21v3ĝ3 defined in an orthogonal curvilinear system of coordinates
reads [Martinec, 2003]

r � v5
1

h1h2h3

@ h2h3v1ð Þ
@a1

1
@ h1h3v2ð Þ

@a2
1
@ h1h2v3ð Þ

@a3

� �
; (4)

which can be expressed in stereographic coordinates using (3):

Figure 2. Slice at x25a250 of a three-dimensional global atmospheric domain in the (left) Cartesian and (right) stereographic spaces. Par-
allels and height isovalues, represented by dotted lines, are displayed for visualization purposes.
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r � v5
1
J
@v1

@a1
1

1
J
@v2

@a2
1
@v3

a3
1

1
R1a3

2v32
a1v11a2v2

2R

� �
; (5)

where J is defined to be J5h15h2. Note that expression (5) with a35v350 corresponds to the divergence
written in the original stereographic coordinates, as described by D€uben et al. [2012]. The gradient of a sca-
lar s in curvilinear orthogonal coordinates is obtained similarly:

rs5
X

k

1
hk

@s
@ak

5

1
J
@s
@a1

1
J
@s
@a2

@s
@a3

0
BBBBBBB@

1
CCCCCCCA
: (6)

According to Martinec [2003], the divergence of a tensor can be evaluated as follows

r � T5
X

kl

1
hk

@Tkl

@ak
1
X
m6¼k

1
hm

@hk

@am

 !
ĝ l1

X
l

X
k 6¼l

1
hk hl

@hl

@ak
Tlk2

@hk

@al
Tkk

� �
ĝ l; (7)

where Tkl refers to the entry of the tensor T corresponding to line k and column l. Each component of the
gradient of a vector is

rvð Þkl5

1
hk

@uk

@ak
1
X

m

1
hm

@hk

@am
um

 !
if l5k;

1
hk

@ul

@ak
2

1
hl

@hk

@al
uk

� �
if l 6¼ k:

8>>>><
>>>>:

(8)

4. Three-Dimensional Equations in Stereographic Coordinates

The three-dimensional compressible Navier-Stokes equations, describing nonhydrostatic atmospheric
processes [e.g., Giraldo and Restelli, 2008; Blaise et al., submitted manuscript, 2015], are considered as
the starting point. Simplified diffusion terms, with a diagonal diffusion tensor when expressed in in
the stereographic basis D5diagðjh;jh;jvÞ, are considered [Straka et al., 1993; Jacobson, 2005]. Coriolis
effect has been added to take into account the Earth rotation around its axis with an angular
velocity x:

@q0

@t
1r � quð Þ50 (9a)

@qu

@t
1r � qu u1p0Ið Þ1q0gĝ32r � qD � ruð Þ12q x3u50 (9b)

@ðqhÞ0

@t
1r � qhuð Þ2r � qD � rhð Þ50 (9c)

where q is the density, h is the potential temperature, and u5½u1; u2; u3� is the velocity vector. The gravita-
tional acceleration is denoted g while I5diagð1; 1; 1Þ is the identity matrix of size 3. Equations (9) are writ-
ten in terms of deviations from a reference state, such that the prime symbol refers to a perturbation of a
variable around a background value (overlined), which is in hydrostatic balance (for details, see Giraldo and
Restelli [2008]):

q0ðx; tÞ5qðx; tÞ2�qðzÞ; (10a)

qhð Þ0ðx; tÞ5 qhð Þðx; tÞ2qhðzÞ: (10b)

The pressure perturbation p0 in the momentum equation is obtained from
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p05p0
qhRd

p0

� �cp
cv

2p0
qhRd

p0

� �cp
cv

; (11)

where p05105 Pa is the reference surface pressure, Rd5cp2cv is the gas constant, while cp and cv are the
specific heat of the air at constant pressure and volume.

4.1. Continuity Equation
Using the expression for the divergence of a vector in the stereographic space (5), it is straightforward to
express the divergence of qu from the continuity equation (9a) in stereographic coordinates:

r � quð Þ5 1
J
@ qu1ð Þ
@a1

1
1
J
@ qu2ð Þ
@a2

1
@ qu3ð Þ
@a3

1
1

R1a3
2qu32

a1qu11a2qu2

2R

� �
: (12)

The first three terms of the right-hand side correspond to the classical divergence of qu, except for a
scaling factor J taking into account the horizontal stretching of the domain associated with the coordi-
nate transformation. The source terms are related to the curvature of the sphere. The complete expres-
sion of the equations in the stereographic basis, including all the terms of equations (9), can be found in
Appendix A.

4.2. Momentum Equation
The momentum equation (9b) involves the divergence of tensor fields, and is the most delicate to handle.
The scale factors associated with the stereographic transformation (3) are introduced in the expression of the
divergence of a tensor in the stereographic space (7) to derive the advection term:

r � qu uð Þ5 1
J
@

@a1

qu2
1

qu1u2

qu1u3

0
BBBB@

1
CCCCA1

1
J
@

@a2

qu1u1

qu2
2

qu2u3

0
BBBB@

1
CCCCA1

@

@a3

qu1u3

qu2u3

qu2
3

0
BBBB@

1
CCCCA

1
q

R1a3

3u1u32
u1

2R
a1u112a2u2ð Þ1 a1u2

2

2R

3u2u32
u2

2R
a2u212a1u1ð Þ1 a2u2

1

2R

2u2
32u2

12u2
22

u3

2R
a1u11a2u2ð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
;

(13)

and the pressure term:

r � p0Ið Þ5

1
J
@p0

@a1

1
J
@p0

@a2

@p0

@a3

0
BBBBBBBB@

1
CCCCCCCCA
: (14)

As for the continuity equations, the three first terms of the right-hand side of (13) correspond to the classi-
cal advection term except from the scaling factor J.

Associating the gradient of a vector (8) with the divergence of a tensor (7) in the diffusion term of the
momentum equation (9b) leads to
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r � qD � ruð Þ5 1
J2

@ qjh
@

@a1

� �
@a1

1
1
J2

@ qjh
@

@a2

� �
@a2

1

@ qjv
@

@a3

� �
@a3

0
BB@

1
CCA

u1

u2

u3

0
BBBB@

1
CCCCA

1
1

J R1a3ð Þ

@ðqjhu3Þ
@a1

1qjh
@u3

@a1
1

u2

2R
a2
@ qjhð Þ
@a1

2a1
@ qjhð Þ
@a2

� �
1

1
R

a1
@ u2qjhð Þ
@a2

2a2
@ u2qjhð Þ
@a1

� �

@ðqjhu3Þ
@a2

1qjh
@u3

@a2
1

u1

2R
a1
@ qjhð Þ
@a2

2a2
@ qjhð Þ
@a1

� �
1

1
R

a2
@ u1qjhð Þ
@a1

2a1
@ u1qjhð Þ
@a2

� �

2
@ðqjhu1Þ
@a1

2
@ðqjhu2Þ
@a2

2qjh
@u1

@a1
1
@u2

@a2

� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA

1
q

R1a3

2jv
@u1

@a3
2

jhu1

R1a3
11

a2
11a2

2

4R2

� �

2jv
@u2

@a3
2

jhu2

R1a3
11

a2
11a2

2

4R2

� �

2jv
@u3

@a3
1

1
R1a3

jh

R
a1u11a2u2ð Þ22jhu3

� �

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

(15)

While the expression appears to be quite long and complex, the difference with the classical diffusion in a
Cartesian coordinate system consists in additional source terms, which are rather easy to implement.

4.3. Potential Temperature Equation
The expression of the divergence of a vector in the stereographic space (5) is used once again to express
the first term of the potential temperature equation (9c) in stereographic coordinates:

r � qhuð Þ5 1
J
@ qhu1ð Þ
@a1

1
1
J
@ qhu2ð Þ
@a2

1
@ qhu3ð Þ
@a3

1
q

R1a3
2hu32

a1hu11a2hu2

2R

� �
: (16)

For the diffusion term, it is necessary to combine the divergence of a vector (5) with the gradient of a scalar
(8) in the stereographic space, leading to

r � qD � rhð Þ5 1
J

@ qjh
J

@h
@a1

� �
@a1

1
1
J

@ qjh
J

@h
@a2

� �
@a2

1
@ qjv

@h
@a3

� �
@a3

1
q

R1a3
2jv

@h
@a3

2jh

a1
@h
@a1

1a2
@h
@a2

2RJ

 !
: (17)

5. Discontinuous Galerkin Formulation

The discrete formulation of a discontinuous Galerkin model [e.g., Giraldo and Restelli, 2008] does not require
any fundamental modification in order to be adapted to a spherical domain. The discretization of the conti-
nuity equation is considered here as an example of the changes to be performed in an existing code. The
weak formulation of the continuity equation in stereographic coordinates (12) is obtained by multiplying
this equation by a set of test functions and integrating over the elements. Upon doing so, a local problem
has to be solved for each element Xe and test function /i :ð

Xe

/i
1
J

@u1

@a1
1
@u2

@a2

� �
1
@u3

@a3

� �
dx1dx2dx3

1

ð
Xe

/i

R1a3
2u32

a1u11a2u2

2R

� �
dx1dx2dx3:

(18)

However, as for the differential operators, the integrals need to be expressed in the stereographic space in
which the mesh is defined. The correspondence between the integrals is easily obtained, by resorting to
the scale factors characterizing the change of length associated with the transformation:

dx15h1da15Jda1; (19a)
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dx25h2da25Jda2; (19b)

dx35h3da35da3: (19c)

Introducing dX5da1da2da3 for brevity, the resulting weak formulation becomesð
Xe

J2/i
1
J

@u1

@a1
1
@u2

@a2

� �
1
@u3

@a3

� �
dX1

ð
Xe

J2/i

R1a3
2u32

a1u11a2u2

2R

� �
dX: (20)

Following the discontinuous Galerkin procedure, an integration by parts is performed, leading toð
Xe

J2/i
@q0

@t
dX52

ð
Xe

@ J/ið Þ
@a1

u11
@ J/ið Þ
@a2

u21
@ J2/ið Þ
@a3

u3

� �
dX

1

ð
Ce

J/i u1n11u2n2ð Þ1J2/i u3n3
� �

dC

1

ð
Xe

J2/i

R1a3
2u32

a1u11a2u2

2R

� �
dX;

(21)

where Ce is the exterior surface of Xe and n1, n2 and n3 are the components of the outward-pointing normal
to the element face. After some manipulations, the derivatives of the scaling factor J appear, which can be
obtained analytically from (3):

@J
@a1

52
J2a1

2R R1a3ð Þ ; (22a)

@J
@a2

52
J2a2

2R R1a3ð Þ ; (22b)

@J
@a3

5
J

R1a3
: (22c)

Introducing those derivatives in (21) makes the source terms vanish, leading toð
Xe

J2/i
@q0

@t
dX52

ð
Xe

J
@/i

@a1
u11J

@/i

@a2
u21J2 @/i

@a3
u3

� �
dX

1

ð
Ce

J/i u1n11u2n2ð Þ1J2/iu3n3
� �

dC;

(23)

which is the same as the classical weak formulation in Cartesian coordinates, except for the scaling factors J.
As regards the implementation, it is possible to include those factors J in the routines computing the inte-
gral and derivation operators (e.g., multiply by J2 each function to be integrated over the volume, divide by
J each horizontal derivative). Doing so, the part of the code describing the discrete continuity equation
remains unchanged from its Cartesian version. Note that source terms do not vanish completely for the
momentum equation, but are reduced to simpler expressions.

6. Meshing a Disc

For large-scale numerical weather prediction, it is desireable that the equator coincides with a grid coordi-
nate line [Phillips, 1957; Ronchi et al., 1996], although this is not an essential requirement [see e.g., Z€angl
et al., 2015]; Majewski et al., 2002]. The double stereographic projection with a seam at the equator
described in section 2 fulfills this condition. The two subdomains in the stereographic space are cylinders
whose radius is twice the Earth radius and height corresponds to the atmosphere depth. Given the high
contrast between horizontal and vertical dynamics associated with atmospheric flows, we consider a three-
dimensional mesh obtained from the extrusion over the vertical of a two-dimensional mesh. The latter con-
sists of two circles, each one being associated with a different hemisphere with their outer boundary corre-
sponding to the equator (Figure 1). For finite element meshes, the geometry of the domain is usually
approximated with polynomials. It is then impossible to represent exactly a circle, and the resulting compu-
tational mesh does not cover the entire spherical domain (see Figure 3 for a linear discretization).
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While finer meshes and higher polynomial order approximations reduce considerably the geometrical error,
the use of a simply connected approximation of the surface of the sphere is very important when using a
finite element discretization. Indeed, as observed by D€uben et al. [2012], computations performed on a non-
simply connected mesh result in inconsistencies and mass loss.

While finite element codes usually consider polynomial approximations for the geometry, this is not a require-
ment of the method, even if the field variables are represented using a polynomial basis. The seam can be
exactly represented, using circle-shaped edges to describe the equator line. For quadrilateral elements (other
type of elements such as triangles could also be considered), classical models rely on a mapping between a ref-
erence square element of length 2 and the actual geometry of the quadrilateral in the mesh. To represent
exactly the circle, a different transformation from the coordinates in the reference element (n,g) to the coordi-
nates in the stereographic space a is used for the elements that are adjacent to the disc boundary. This map-
ping, based upon the transfinite interpolation, can be applied in 4 steps (Figure 4):

P125
11n

2
P21

12n
2

P1; (24a)

P̂125
P12

jjP12jj
; (24b)

Figure 3. Stereographic mapping of two discs approximated using linear elements. The resulting sphere exhibits holes distributed along
the equator. An example of mesh is represented by dotted lines in the stereographic (blue) and Cartesian (red) spaces.
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P345
11n

2
P41

12n
2

P3; (24c)

a5
11g

2
RP̂121

12g
2

P34: (24d)

Unlike other possible transformations, this mapping has a unique projection point, ensuring that the way in
which a node located on the seam is projected only depends on its position on the circle. This is an impor-
tant property since the edges shared between two elements of different hemispheres need to be projected
in the same manner on both sides.

Starting from (24), the mapping of the integration and differentiation operators from the reference element
to the curved element can be easily derived and included in the code to replace those associated with the
classical isomorphism.

Note that numerical spatial integration on those nonpolynomial elements cannot be performed exactly
using classical Gauss-type methods. However, it will be seen in the next section that the quality of the solu-
tion is not degraded in practice: a Gauss-Legendre quadrature rule of order 2P13 is used without any trou-
ble, P being the polynomial order of the finite element shape functions. It should be noted that exact
Gauss-Legendre integration cannot be performed for any discretization involving a projection of the sphere,
because of its nonpolynomial character.

7. Model Validation

The first part of this section briefly describes the model used for the validation of the method. This validation is
then performed through several test cases. The first one is a three-dimensional transport test case, for which the
analytical solution at the final time is known [Kent et al., 2014]. Then, a more complete benchmark, for which an
analytical solution is also available, is considered: the global propagation of gravity waves over the whole sphere
[Baldauf et al., 2014]. The model is then used for a more complex and widely used benchmark, namely the evolu-
tion of an idealized baroclinic wave in the northern hemisphere [Jablonowski and Williamson, 2006]. Finally, a
generalization of the baroclinic wave benchmark, including deep-atmosphere dynamics, is considered in order
to validate the deep-atmosphere component of the model, as well as its conservation properties [Ullrich et al.,
2013]. To facilitate the prescription of initial conditions expressed in the Cartesian or Longitude/Latitude system
of coordinates, the transformation of vectors between different spaces are provided in Appendix B.

7.1. Model Description
The model used for the validation of the technique is a nonhydrostatic model based on the compressible
Navier-Stokes equations (9). It relies upon a high-order nodal discontinuous Galerkin discretization in the
three spatial directions, whith local Lax-Friedrichs interface fluxes and a specific treatment of the gravity

Figure 4. Transformation of a linear element (black) into an element whose an edge is a circle arc (red). Any point (green), of coordinates ðn; gÞ
in the reference element, is directly mapped to the transformed element using a transfinite interpolation.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000428

BLAISE ET AL. STEREOGRAPHIC MAPPING FOR GLOBAL MODELS 1035



term improving the stability of the method (for a detailed description of the model, see Blaise et al. (submit-
ted manuscript, 2015)). Given the large contrast between horizontal and vertical dynamics in atmospheric
flows, the mesh is obtained by extruding over the vertical a horizontal unstructured mesh. The available
time-integration schemes are fully explicit, fully implicit, as well as implicit/explicit (IMEX) Runge-Kutta
methods. The IMEX scheme treats implicitly the fast acoustic waves, or alternatively their vertical compo-
nent, in order to relax the CFL constraint on the time step while avoiding the need to solve a global nonlin-
ear system (for details, see Giraldo et al. [2010]; Blaise et al. (submitted manuscript, 2015)).

Boundary conditions are weakly imposed by setting appropriate exterior values for the variables when com-
puting the Lax-Friedrichs flux at a boundary edge [Hesthaven and Warburton, 2008]. No sponge layer was
needed for any of the test cases presented here. No filtering or explicit diffusion has been used.

7.2. Three-Dimensional Global Transport
This test-case, designed by Kent et al. [2014] and referred to as the Hadley-like meridional circulation, is
used to evaluate the advection scheme in both the vertical and horizontal directions. The domain is the
global sphere of radius R56:37122 � 106 m, with a vertical coordinate 0 < 5a3 < 5H512000 m. A tracer q
is deformed during the simulation. It is initialized as a vertical layer, given by

1
2

11cos
2p a32amean

3

� �
amax

3 2amin
3

� �� �
if amin

3 < a3 < amax
3 ;

0 otherwise;

8><
>: (25)

with amin
3 52000 m, amax

3 55000 m and amean
3 50:5ðamin

3 1amax
3 Þ. The zonal, meridional and vertical velocity

fields in the longitude-latitude space ðk;uÞ read

uk5u0cos ðuÞ; (26)

uu52
Rw0pp0

KHRd T0q
cos ðuÞsin ðKuÞcos

pa3

H

� �
cos

pt
s

� �
(27)

u35
w0p0

KRd T0q
22sin ðKuÞsin ðuÞ1Kcos ðuÞcos ðKuÞð Þsin

pa3

H

� �
cos

pt
s

� �
; (28)

with u0540 ms21, w050:15 ms21, Rd 5 287 Jkg21 K21, T05300 K, p05105 Pa and K 5 5. The time-
independent density is defined by

q5
p0

Rd T0
exp

2a3g
Rd T0

� �
; (29)

with g 5 9.80616 ms22. The model is run for a complete period s 5 86400 s (1 day), such that the final solu-
tion corresponds to the initial condition to which it can be compared in order to compute the error (Figure 5).

Simulations were performed using polynomial degrees P from 1 to 4, which are denoted p1, p2, p3 and p4.
The coarsest simulations are characterized by an approximate resolution of 48 horizontally
(resolution ’ 360Dx

2pRP ) and 800 m vertically (resolution ’ Dx
P ). The finer meshes used for the convergence study

are obtained by doubling successively this resolution in both directions simultaneously. A no-flux condition
(wall) is imposed at the domain boundaries.

At an approximate resolution of 18, the results are similar to those of Kent et al. [2014]. However, the loss of
tracer at approximately 308 N and 308 S is much less pronounced and the solution seems closer to the ana-
lytical one (Figure 5). As a counterpart, oscillations around the constant zero value are generated as well as
overshoots, which are typical of unfiltered high-order methods.

The convergence of the L2 error on the tracer is shown in Figure 6. Despite increasing the polynomial order,
the rate of convergence seems to be capped at a value of about 2.6. Such a behavior is due to the lack of
regularity of the initial condition and can be explained by approximation theory. Because of the transition
between a cosine and a constant zero value at the vertical coordinates amin

3 and amax
3 in (25), the initial solu-

tion is only C1 continuous (i.e., its first-order derivatives are continuous but not the second-order ones). This
initial condition is used as the analytical solution for t 5 24 h. However, it is known that, for a C1 analytical
solution approximated by a finite element discretization, the maximum convergence rate guaranteed by
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the method is 2 [e.g., Rahman, 2008; Koren and Vuik, 2009]. We observed a similar behavior on simplified
two-dimensional advection test cases.

7.3. Three-Dimensional Gravity Waves on the Sphere
As a first validation of the complete set of equations, we resort to a configuration developed by Baldauf
et al. [2014]: the propagation of three-dimensional gravity waves on the sphere.

This test case, for which an analytical solution is available, allows one to analyze the order of convergence
of the scheme without relying upon high-resolution solutions obtained either by the tested model or a dif-
ferent one. It consists of a global atmospheric domain on the sphere in which gravity waves are triggered
by an initial perturbation of the potential temperature in the form of a warm bubble. The waves then propa-
gate around the planet (Figure 7).

The computational domain is a shell of depth 10,000 m around a planet of radius 50 times smaller than the
Earth radius: R 5 63,71,229/50 m. This planet rotates around its axis with an angular velocity 10 times higher
that the Earth’s angular velocity: x5 10�2p

86164:04 ê3 s21. The definition of the test case considers a gravitational
acceleration g 5 9.80665 m s22 describing only the pure gravitational force due to the mass of the Earth;

Figure 5. Three-dimensional global transport: latitude-height plots at k51808 of the tracer at time (top) t 5 0, (middle) t 5 12 h, and (bot-
tom) t 5 24 h. Simulation performed on meshes of third-order elements, with approximate horizontal and vertical resolutions of respec-
tively 18 and 200 m. To facilitate comparisons, the color scale is the same as the one shown by Kent et al. [2014].
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while an additional term ðR1a3Þqx3 x3ĝ3ð Þ
is added to the right-hand side of the momen-
tum equation (9b) to take into account the
effect of the apparent centrifugal force.

The initial atmosphere is described by a sta-
bly stratified state perturbed by a warm bub-
ble. The hydrostatic background state reads:

�q5q0exp 2da3ð Þ; (30)

�h5T0exp da3ð Þ
Rd
cp ; (31)

�p5p0exp 2da3ð Þ; (32)

with q05p0d=g and d5g=ðRd T0Þ. The back-
ground constant temperature T0 is set to
250 K. According to Baldauf et al. [2014], the
following constants are used: Rd5287:05
Jkg21 K21, cp 5 1005 Jkg21 K21. The gravity
waves are excited by an initial perturbation of
the background state, corresponding to a
warm bubble centered at the equator:

q05exp 2da3=2ð Þqb; (33)

T 05exp da3=2ð ÞTb; (34)

p050; (35)

with

qb52
p0Tb

T 2
0 Rd

; (36)

Tb5DT exp 100 sin ðcÞ21ð Þð Þsin
�pa3

H

�
; (37)

where c is the angular distance from the center of the bubble, which can be located anywhere at the equa-
tor. The temperature perturbation of the bubble DT is set to 0.01 K. The initial solution in terms of the
model variable ðqhÞ0 can be obtained using:

qh5�q �h; (38)

qhð Þ05 �q1q0ð ÞðT01T 0Þ p0

�p

� �Rd
cp

2qh: (39)

A zonal flow, corresponding to a solid-body rotation around the planet axis u52x3ê3 is initially consid-
ered. This flow exacty compensates the rotation of the planet such that the advection, Coriolis and centrifu-
gal terms for the background flow perfectly cancel in the momentum equation.

Unfortunately, the availability of an analytical solution is conditioned upon the use of the shallow-
atmosphere approximation. While our modified stereographic transformation (1) naturally handles deep
atmosphere effects, it is necessary to introduce the shallow-atmosphere approximation in the model to
compare the results with the exact solution. This approximation is applied by replacing every R1a3 with R
in the implementation of the differential operators.

The coarsest resolution mesh has horizontal and vertical element sizes of respectively 60 km and 10
3 km. The

finer meshes used for the convergence study are obtained by successively dividing the mesh size by
ffiffiffi
2
p

.
Free slip boundary conditions (i.e., zero normal velocity) are enforced at the lower and upper boundaries.
An explicit Runge-Kutta time disretization of order 2 is used, with the largest time step (i.e., used for the p1
simulation on the coarsest mesh) being 1.05 s.

Figure 6. Three-dimensional global transport: spatial convergence of the
L2 error for the tracer at the end of the simulation, using spatial polyno-
mial orders from 1 to 4.
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The results obtained from the model exhibit a convergence rate in good agreement with the theoretical
expectations (Figure 8). It is possible to verify that the error is not specifically concentrated along the seam
between the northern and southern hemispheres. Figure 9 shows the model results and associated discreti-
zation error for the p3 simulation using the initial mesh with two levels of refinement (i.e., horizontal and
vertical mesh resolutions of 30 km and 5

3 km). The error is well distributed inside the domain and not signifi-
cantly higher along the seam (green line).

7.4. Baroclinic Instability
After a validation on quite simple test cases, the model is tested on a more complex and realistic bench-
mark, developed by Jablonowski and Williamson [2006]. Widely used for models validations and intercom-
parisons [e.g., Park et al., 2013; Lauritzen et al., 2010], the test case consists in the evolution of a baroclinic
instability in the northern hemisphere. Such an instability is the main mechanism responsible for the forma-
tion of cyclones and anticyclones characteristic of the weather in midlatitudes.

The hydrostatic background temperature, averaged over the horizontal reads:

�T 5T0g
Rd s

g for gs � g � gt; (40)

�T 5T0g
Rd s

g 1DTðgt2gÞ5 for gtop � g; (41)

in which Rd5287:04 Jkg21 K21 and g5 p
p0

is the pressure-based vertical coordinate. The surface, tropopause
and upper boundary levels are respectively gs51; gt50:2 and gtop50:1. The temperature lapse rate s is
0.005 Km21. The gravitational acceleration is set to g 5 9.80616 ms22, while the horizontal-mean tempera-
ture at the surface is T05288 K and DT54:8 � 105 K. A horizontal variation T 0, expressed in the longitude-
latitude space (k, u), is added to this background state:

T
0
5

3
4

gpU0

Rd
sin ðgvÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ðgvÞ

p
22sin 6ðuÞ cos 2ðuÞ1 1

3

� �
1

10
63

� �
2U0cos

3
2ðgvÞ1

8
5

cos 3ðuÞ sin 2u1
2
3

� �
2

p
4

� �
ax � ê3

	 

;

(42)

where the Earth’s angular velocity is x57:29212 � 1025 ê3 s21.

The temperature T 5 �T 1T 0 can be converted into the model variables using

h5T
p0

p

Rd
cp
; (43)

Figure 7. Propagation of gravity waves on the sphere: potential temperature perturbation in several phases. The simulation was performed using third-order polynomials on a mesh of
30 km horizontal resolution and 6 vertical layers. For visualization purposes, the solution is clipped to visualize the different contours; and the atmosphere depth is stretched by a factor
of 10.
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q5
p

p0

� �cv
cp p0

hRd
; (44)

with cp51004:64 Jkg21 K21 and p5gp0.

An initial zonal wind uk is defined, characterized by a background value of amplitude U0535 ms21 to which
a perturbation of magnitude up 5 1 ms21 is added, centered around ðkc5

p
9 ;uc5

2p
9 Þ:

uk5U0cos
3
2ðgvÞsin 2ð2uÞ1upexp 2

10r
R

� �2
 !

; (45)

with r5Rarccos sin ðucÞsin ðuÞ1cos ðucÞcos ðuÞcos ðk2kcÞð Þ and the Earth radius R 5 6,371,229 m.

The initial state is written in terms of the g pressure-based vertical coordinate, while the model is based
upon height coordinates. Then, an additional equation is needed to compute g from the height a3 and
close the system. The missing link is provided by the geopotential U5ga3, which is also split into a
horizontal-mean value and a horizontal variation U5�U1U0. The horizontally averaged geopotential
reads:

�U5
T0g
s

12g
Rd s

g

� �
for gs � g � gt; (46)

�U5
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s

12g
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� �
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� �
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gtg
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1
5

g5

	 

for gtop � g;

(47)

while its horizontal variation is:

U05U0cos
3
2ðgvÞ 22sin 6ðuÞ cos 2ðuÞ1 1
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10
63
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U0cos
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2
3
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2

p
4
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Rx � ê3

	 

:

(48)

The level pressure coordinate g can then be obtained from the height coordinate a3 by iterating over equa-
tions (46–48) until the geopotential corresponding to the height a3 is attained (for details, see Jablonowski
and Williamson [2006, Appendix]).

Figure 8. Propagation of gravity waves on the sphere: spatial convergence of the L2 error after 75 min for q0 and ðqhÞ0, using spatial poly-
nomial orders from 1 to 4.
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The traditional approximation is considered for the Coriolis force:

22qx3u ’ 2qsin ðuÞx � ê3 ua
1ĝ12ua

2ĝ2

� �
: (49)

Free slip conditions are used at the bottom boundary, while the initial background state is enforced at the
upper limit of the domain, which is defined by g50:1.

Four simulations have been performed using third-order elements, with horizontal mesh sizes Dx of 333,
667, 1000, and 1333 km, corresponding respectively to approximate resolutions of 1, 2, 3 and 48 at the
equator (resolution ’ 360Dx

2pRP ). The atmosphere depth is discretized using 9 layers of elements, placed at equi-
distant g coordinates. This number of layers corresponds approximately to the 26 levels used by the differ-
ent models whose results are displayed in the intercomparison study from Jablonowski and Williamson
[2006], considering spectral transform, finite volume, semi-lagrangian and finite difference models. Given

Figure 9. Propagation of gravity waves on the sphere: (left) model solution for q0 and ðqhÞ0 after 75 min, and (right) corresponding model
error. The simulation was performed using third-order polynomials on a mesh of 30 km horizontal resolution and 6 vertical layers. The
green circle represents the equator line. For visualization purposes, the solution is clipped to visualize the different contours; and the
atmosphere depth is stretched by a factor of 10.
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the large aspect ratio, an IMEX time discretization with vertical linear terms implicit has been used (for
details see e.g., Giraldo et al. [2010]), with time steps ranging from 57.5 s for the coarsest mesh to 12.9 s for
the 18 simulation.

Simulation results at day 9 are similar to the results presented by Jablonowski and Williamson [2006], dis-
playing closed cells in the surface pressure field (Figure 10, left) and wave breaking in the temperature
field (Figure 10, right). However, at a similar resolution in terms of grid spacing, the simulations appear
to be more accurate with the discontinuous Galerkin model. Indeed, the pressure and temperature fields
obtained from the DG model at the coarsest resolution (48) are much more resolved than the results on
similar resolutions provided by the models tested by Jablonowski and Williamson [2006]. The third and
smallest closed cell in the surface pressure fields (the leftmost one) appears at a resolution of 28, while
the spectral eulerian dynamical core or the finite volume dynamical core from Jablonowski and William-
son [2006] were not able to reproduce that closed cell with a grid size higher than 0.58. The 28 DG simula-
tion is almost resolved, and a resolution enhancement to 18 barely improves the results. As a
comparison, the models presented by Jablonowski and Williamson [2006] seem to be converged at a
resolution of 0.58.

Obviously, those are approximate resolutions, and it is difficult to compare resolutions associated with simu-
lations carried out using different methods. For the same reason, the resolution is not an indicator of the
computational cost. However, those results confirm the good behavior and low numerical dissipation of the
discontinuous Galerkin method in the case of atmospheric simulations.

Another advantage of the discontinuous Galerkin method, which is also a characteristic of the finite volume
method, is its ability to rely upon variable resolution unstructured meshes. Such grids allow for increasing
the resolution exactly where needed, in order to use efficiently the computational resources. It is of great

Figure 10. Baroclinic instability: (left) surface pressure and (right) temperature at the pressure level p 5 850 hPa at day 9. Simulations performed on meshes of third-order elements,
made up of nine layers with increasing horizontal resolution. To facilitate comparisons, the colors, scales and contour intervals are the same as those shown by Jablonowski and William-
son [2006]. For the same reason, only a part of the domain is displayed, covering the longitude-latitude interval [458, 3608] 3 [08, 908].
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interest for regional modeling: a higher resolution is considered in the region of interest, while the rest of
the domain is discretized at a lower resolution. Doing that, the simulation of local processes is considered in
a global context, taking into account the interactions between the different scales.

The method presented in this study to solve the equations on the sphere is independent of the choice of
the grid, such that unstructured meshes can be used to simulate the baroclinic instability test case by refin-
ing locally the mesh in the region surrounding the instability. To do so, we consider the finest resolution
(18) in the region of interest ðk;uÞ 2 ½1408; 3108�3½308; 758�. Around this region, in a transition zone of
width 108, the grid size varies linearly to attain the coarsest resolution (48), which is kept constant in the rest
of the domain (Figure 11).

The numerical results are quite smooth, and no spurious reflexion or oscillation is produced in the transition
zone between the high and the low-resolution regions. In the high-resolution region, the results are accu-
rately reproduced, and similar to those obtained from the homogeneous grid simulation at the same resolu-
tion. In the coarse resolution region, results are obviously less accurate. As an example, the smallest closed
cell, which was visible for the constant high-resolution run, does not appear on the variable resolution
mesh simulation because of its location outside of the refined region. Using seven times less elements, the
simulation with variable resolution produces the expected results, very similar to those obtained resorting
to a high constant resolution in the region of interest, and comparable to those based upon a low resolu-
tion grid outside of that region.

7.5. Baroclinic Instability With Deep-Atmosphere Effects
This last test case aims at validating the model ability to simulate deep-atmosphere effects. Recently
designed by Ullrich et al. [2013] and carried out by Wood et al. [2014], it is an analogous baroclinic wave test
case as the one proposed by Jablonowski and Williamson [2006], but is appropriate for shallow and deep-
atmosphere dynamical cores.

It consists in an initial basic state expressed in longitude-latitude coordinates (k, u), to which a perturbation
is added in the zonal and meridional wind components to trigger the baroclinic wave. The test case can be

Figure 11. Baroclinic instability. (top) unstructured computational grid with variable horizontal resolution used for the simulation. Three-
dimensional mesh on the sphere, from which elements have been removed to display the (left) vertical structure, and (right) two-
dimensional horizontal slice in the longitude-latitude space, in a subset of the domain covering the interval [458, 3608] 3 [08, 908]. (bot-
tom) (left) surface pressure and (right) temperature at the pressure level p 5 850 hPa at day 9. To facilitate comparisons, the colors, scales,
contour intervals and part of the domain displayed are the same as those shown by Jablonowski and Williamson [2006].
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configured in shallow or deep-atmosphere modes. The initial temperature for the deep-atmosphere config-
uration reads

T5
R
r

� �2

~s12~s2
r
R

cos u
� �k

2
k

k12

� �
r
R

cos u
� �k12

� �� �21

; (50)

where k 5 3 and r5R1a3 is the distance from the center of the Earth, whose radius R5 6371229
20 m is reduced

in order to increase the deep-atmosphere effects. The arbitrary functions ~s1 and ~s2 read

~s1ðrÞ5A
C
T0

exp
C
T0
ðr2RÞ

� �
1B 122

r2R
bH

� �2
 !

exp 2
r2R
bH

� �2
 !

; (51)

~s2ðrÞ5C 122
r2R
bH

� �2
 !

exp 2
r2R
bH

� �2
 !

; (52)

with A5 1
C ; B5

T02T P
0

T0 T P
0

and C5 k12
2

� � T E
0 2T P

0

T E
0 T P

0

� �
. Constant parameters are set to b 5 2, C50:005 Km21, T E

0 5310 K,
T P

0 5240 K and T05275 K. The basic state for the initial pressure is defined as

p5p0exp 2
g

Rd

ðr

R
~s1ðr0Þdr01

g
Rd

ðr

R
~s2ðr0Þdr0

r
R

cos u
� �k

2
k

k12
r
R

cos u
� �k12

� �� �
; (53)

in which Rd 5 287 Jkg21 K21, g 5 9.80616 ms22 and p05105 Pa. The integrals are computed from (51) and
(52) to obtain

ðr

R
~s1ðr0Þdr05A exp

C
T0
ðr2RÞ

� �
21

� �
1Bðr2RÞexp 2

r2R
bH

� �2
 !

; (54)

ðr

R
~s2ðr0Þdr05Cðr2RÞexp 2

r2R
bH

� �2
 !

: (55)

Pressure and temperature fields can be converted into model variables using (43) with cp51004:5 Jkg21

K21 and cv5717:5 Jkg21 K21. Only the zonal component of the wind field uk is nonzero for the basic state,
given by

ubasic
k 52xr cos u1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2r2cos 2u1rcos uU

p
; (56)

with x57:29212 � 1025 s21 and

U5
g
R

kT
ðr

R
~s2ðr0Þdr0

r
R

cos u
� �k21

2
r
R

cos u
� �k11

� �
: (57)

A perturbation is then added to this basic state such that

uk5ubasic
k 2

16Vp

3
ffiffiffi
3
p Wcos 3 pd

2d0

� �
sin

pd
2d0

� �
2sin uccos u1cos ucsin ucos k2kcð Þ

sin d=Rð Þ ; (58)

uu5
16Vp

3
ffiffiffi
3
p Wcos 3 pd

2d0

� �
sin

pd
2d0

� �
cos ucsin k2kcð Þ

sin ðd=RÞ ; (59)

with ðuc; kcÞ5ðp=9;p=9Þ, V p 5 1 ms21, do5R=6 and

d5Rcos 21 sin ucsin u1cos uccos ucos k2kcð Þð Þ: (60)

The vertical taper function W associated with the velocity perturbation reads

W5123
z
zt

� �2

12
z
zt

� �3

if 0 � a3 � at
3;

0 elsewhere;

8><
>: (61)

with at
351:5 � 104 m. The analogous shallow-atmosphere initial state is obtained by setting any occurence

of R
r or r

R equal to unity in (50), (53), and (57), as well as replacing r by R in (56).
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Free slip conditions are enforced at the bottom and upper boundaries. The complete coriolis term of (9) is
considered, without recourse to the traditional approximation. Two simulations have been performed, in
shallow and deep-atmosphere configurations. They have been performed using third-order elements, with
a horizontal mesh size Dx of 333 km, corresponding to an approximate resolution of 18 at the equator. The
atmosphere depth is discretized using 10 layers of elements. Similarly to Ullrich et al. [2013], the height of
the nth interface between two levels is set to

an
35atop

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðn=30Þ211

q
21ffiffiffiffiffiffiffiffiffiffi

l11
p

21
; (62)

with the model top atop
3 53 � 104 m and l 5 15. Given the large aspect ratio, an IMEX time discretization

with vertical linear terms implicit has been used, with a scaled time step of 13.8 s.

The surface pressure fields resulting from the simulations (Figure 12) exhibit a structure similar to those of
Ullrich et al. [2013] and Wood et al. [2014]: the pressure systems are at the same location and of comparable

Figure 12. Baroclinic instability with deep-atmosphere effects: surface pressure at days 6, 8, and 10 for the shallow-atmosphere configura-
tion (left) and deep-atmosphere configuration (right). Simulations performed on meshes of third-order elements, made up of 10 layers and
a horizontal elements size of 333/20 km. The resulting approximate resolution is 18. To facilitate comparisons, the colors, scales and con-
tour intervals are the same as those shown by Ullrich et al. [2013]. For the same reason, only a part of the domain is displayed, covering
the longitude-latitude interval [08, 2408] 3 [08, 908].
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strength. For a similar resolution, while the discontinuous Galerkin model and the semi-Lagrangian model
from Wood et al. [2014] exhibit three closed cells at day 8 for the shallow-atmosphere version, the MCore
model of Ullrich et al. [2013] only has two, suggesting a lower accuracy. The differences between shallow
and deep-atmosphere simulations are pronounced, with a more rapid intensification of the wave and stron-
ger pressure systems for the deep-atmosphere version.

The conservation of the total mass of the system (i.e., the integral of q over the physical domain) is a critical
aspect for geophysical simulations. To verify that the discretization preserves mass conservation, simula-
tions of the baroclinic instability with deep-atmosphere effects have been performed on three meshes
made up of 10 layers and horizontal elements sizes of 333/20, 667/20, and 1000/20 km. Third-order polyno-
mials are resorted to, resulting in approximate resolutions of 1, 2 and 38. As can be seen on Figure 13, the
model is able to conserve mass up to the machine precision level for each tested resolution, thanks to the
discontinuous Galerkin discretization and the careful handling of the equatorial seam. The error is slightly
higher at finer resolutions, probably due to the higher number of operations increasing the accumulation of
roundoff errors.

The total mass, based upon a linear invariant, can be exactly conserved. However, this is not the case for the
total energy and angular momentum, whose errors in conservation are also displayed in Figure 13. The total
energy of the system is computed as the integral over the whole domain of qe, where e5cV T1 u�u

2 1ga3 is
the sum of the internal, kinetic and potential specific energies. The total axial angular momentum L is the

Figure 13. Baroclinic instability with deep-atmosphere effects: error in mass conservation, total energy and axial angular momentum dur-
ing the whole simulation. Simulations performed on meshes of third-order elements, made up of 10 layers and horizontal elements sizes
of 333/20, 667/20, and 1000/20 km. The resulting approximate resolutions are 1, 2 and 38.
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integral over the domain of ql with l5q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

11x2
2

p
ðx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

11x2
2

p
1ukÞ, which includes the effect of the rotation of

the Earth in addition to the relative velocity of the air mass. The overall pattern shows a slight decay of
energy as long as the time increases. As expected, the loss of energy is reduced as the resolution is improved.
However, the time series exhibit oscillations, whose amplitude decreases with time, especially at the lower
resolutions. Those oscillations are likely to be connected with an adjustement of the initial condition pro-
jected into the discrete space. The angular momentum behaves as expected: it decreases with time, at a
higher rate for low resolution simulations. When the instability develops at the end of the simulation, the
more complex dynamics results in a faster decay of energy and angular momentum.

8. Conclusions

A method to solve the three-dimensional compressible Navier-Stokes equation on the sphere has been pro-
posed, based on a stereographic projection with a high-order mapping of the elements from the stereo-
graphic space to the sphere. The projection is slightly modified, in order to take into account the domain
depth without introducing any approximation about the aspect ratio.

In a discontinuous Galerkin framework, the elements alongside the equator are exactly represented using a
nonpolynomial transformation, in order to avoid the numerical issues associated with the seam joining the
northern and southern hemispheres.

The resulting model has been validated on idealized three-dimensional atmospheric test cases on the
sphere, demonstrating the applicability of the method and the good convergence properties of the spatial
discretization, as well as the mass conservation. Error distributions computed for the different test cases
have shown that the seam is not the source of any significant discretization error, despite a nonexact
numerical integration.

The baroclinic instability test case was used to assess the method in the presence of more complex flows.
Those simulations confirmed the good behavior of the model in terms of accuracy and low numerical dissi-
pation. Comparisons with existing models suggest that the proposed implementation is able to reproduce
the main characteristics of the flow, even at lower resolutions. Simulations resulting from an analogous
benchmark, including a deep-atmosphere configuration, confirmed the ability of the method to handle
deep-atmosphere effects.

The method allows for the use of any type of unstructured grid. Simulation on such grids demonstrate the
advantages of using variable resolution discretizations, by reducing substantially the number of elements
while producing accurate results in the region of interest. Such an approach would be of great interest to
improve regional models. However, other model components have to be improved for efficient multiscale
simulations, such as resolution-aware parametrizations of unresolved physics or multirate temporal
discretizations.

Appendix A: Complete Expression of the Equations in Stereographic Coordinates

In section 4, the continuous equations are presented in vector form (9a), and each term involving a dif-
ferential operator has been expressed in the stereographic system of coordinates. In this appendix,
those developments are gathered to write the complete continuous equations in stereographic
coordinates.

Introducing (12) in the vector form of the continuity equation (9a) leads to its expression in terms of compo-
nents in the stereographic basis:

@q0

@t
1

1
J
@ qu1ð Þ
@a1

1
1
J
@ qu2ð Þ
@a2

1
@ qu3ð Þ
@a3

1
1

R1a3
2qu32

a1qu11a2qu2

2R

� �
50: (A1)

The momentum equation is obtained similarly by introducing the development in stereographic coordi-
nates of the advection (13), pressure (14) and diffusion (15) terms into its vector form (9b):
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Finally, the potential temperature equation in vector form (9c) can be rewritten with its components
expressed in the stereographic basis using (16) and (17):
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Appendix B: Vector Transformations

When initializing data fields (e.g., initial condition obtained from an prescribed value or a data assimilation
process), or for vizualization purposes, it is necessary to transform the expression of vector fields from the
Cartesian space to the stereographic space and vice versa. Consider a vector v whose Cartesian components
are vx

i , while they are va
j in the stereographic basis:

X3

i51

vx
i ê i5

X3

j51

va
j ĝ j (B1)

The transformation from one space to the other is a rotation, which can be decribed by introducing the def-
inition of the stereographic base vectors (2) in (B1):
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X3

j51
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with
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Thanks to the orthogonality of the base vectors, we can easily deduce from (B2) the transformation of the
components of v from the stereographic to the Cartesian basis:

vx
i 5
X3

j51

Mj;iv
a
j : (B4)

The transformation of the vector from Cartesian to stereographic coordinates can be found by inverting the
relation (B4) which, in the case of a rotation, results in using the transposed matrix:

va
i 5
X3

j51

Mi;j v
x
j : (B5)
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Rančić, M., R. J. Purser, and F. Mesinger (1996), A global shallow-water model using an expanded spherical cube: Gnomonic versus confor-

mal coordinates, Q. J. R. Meteorol. Soc., 122(532), 959–982.
Ronchi, C., R. Iacono, and P. S. Paolucci (1996), The cubed sphere: A new method for the solution of partial differential equations in spheri-

cal geometry, J. Comput. Phys., 124(1), 93–114.
Sadourny, R. (1972), Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Mon.

Weather Rev., 100(2), 136–144.
Snyder, J. P. (1987), Map Projections: A Working Manual, U. S. Geol. Surv., Washington, D. C.
St-Cyr, A., and D. Neckels (2009), A fully implicit Jacobian-free high-order discontinuous Galerkin mesoscale flow solver, Comput. Sci., 5545,

243–252.
St-Cyr, A., C. Jablonowski, J. M. Dennis, H. M. Tufo, and S. J. Thomas (2008), A comparison of two shallow-water models with nonconform-

ing adaptive grids, Mon. Weather Rev., 136, 1898–1922.
Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier (1993), Numerical solutions of a non-linear density current:

A benchmark solution and comparisons, Int. J. Numer. Methods Fluids, 17(1), 1–22.
Stuhne, G. R., and W. R. Peltier (2006), A robust unstructured grid discretization for 3-dimensional hydrostatic flows in spherical geometry:

A new numerical structure for ocean general circulation modeling, J. Comput. Phys., 213(2), 704–729.
Stuhne, G. R., and W. R. Peltier (2009), An unstructured c-grid based method for 3-d global ocean dynamics: Free-surface formulations and

tidal test cases, Ocean Modell., 28(13), 97–105.
Ullrich, P. A., T. Melvin, C. Jablonowski, and A. Staniforth (2013), A proposed baroclinic wave test case for deep- and shallow-atmosphere

dynamical cores, Q. J. R. Meteorol. Soc., 140(682), 1590–1602.
Wood, N., et al. (2014), An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-

hydrostatic equations, Q. J. R. Meteorol. Soc., 140(682), 1505–1520.
Z€angl, G., D. Reinert, P. Rpodas, and M. Baldauf (2015), The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M:

Description of the nonhydrostatic dynamical core, Q. J. R. Meteorol. Soc., 141(687), 563–579.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000428

BLAISE ET AL. STEREOGRAPHIC MAPPING FOR GLOBAL MODELS 1050

http://dx.doi.org/10.1002/qj.2474.
http://geo.mff.cuni.cz/vyuka/Martinec-ContinuumMechanics.pdf
http://geo.mff.cuni.cz/vyuka/Martinec-ContinuumMechanics.pdf

	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l
	l

