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ABSTRACT: A new formulation of the Reaction Ensemble Monte Carlo technique (RxMC) combined with the Continuous
Fractional Component Monte Carlo method is presented. This method is denoted by serial Rx/CFC. The key ingredient is that
fractional molecules of either reactants or reaction products are present and that chemical reactions always involve fractional
molecules. Serial Rx/CFC has the following advantages compared to other approaches: (1) One directly obtains chemical
potentials of all reactants and reaction products. Obtained chemical potentials can be used directly as an independent check to
ensure that chemical equilibrium is achieved. (2) Independent biasing is applied to the fractional molecules of reactants and
reaction products. Therefore, the efficiency of the algorithm is significantly increased, compared to the other approaches. (3)
Changes in the maximum scaling parameter of intermolecular interactions can be chosen differently for reactants and reaction
products. (4) The number of fractional molecules is reduced. As a proof of principle, our method is tested for Lennard-Jones
systems at various pressures and for various chemical reactions. Excellent agreement was found both for average densities and
equilibrium mixture compositions computed using serial Rx/CFC, RxMC/CFCMC previously introduced by Rosch and Maginn
(Journal of Chemical Theory and Computation, 2011, 7, 269−279), and the conventional RxMC approach. The serial Rx/CFC
approach is also tested for the reaction of ammonia synthesis at various temperatures and pressures. Excellent agreement was
found between results obtained from serial Rx/CFC, experimental results from literature, and thermodynamic modeling using
the Peng−Robinson equation of state. The efficiency of reaction trial moves is improved by a factor of 2 to 3 (depending on the
system) compared to the RxMC/CFCMC formulation by Rosch and Maginn.

1. INTRODUCTION

Substantial efforts have been made by scientists and engineers to
study chemical reactions in nonideal environments.1−3 An
optimal design and operation of many chemical processes relies
on accurate information regarding reaction equilibria.4 Reaction
equilibria vary as the operating conditions of a reactor change. As
a result, an approach is required which can provide information
regarding chemical equilibria for a wide range of operating
conditions. In an ideal gas, chemical equilibria are determined by
the difference between the standard Gibbs free energies of
formation of reactants and reaction products.5 Due to
interactions of the reacting molecules with surrounding
molecules, the chemical equilibrium may significantly differ

from the ideal gas situation as the medium formed by the
surrounding molecules may stabilize reactant and reaction
product molecules differently.4 It is not always possible to
measure reaction equilibria experimentally. The main reasons for
this are as follows: (1) Extreme conditions may not be accessible
experimentally. (2) Kinetic limitation may prohibit reaching
chemical equilibrium on accessible time scales. (3) Large-scale
experimental screening of solvents for chemical reactions may
not be feasible. Therefore, there is a demand for theoretical
methods that can accurately predict reaction equilibria.
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Molecular simulation is a natural tool for this as interactions
between atoms and molecules are explicitly taken into account.
One can perform Molecular Dynamics (MD) with a force field
that can handle chemical reactions, e.g., DFT-based,6 Car−
Parrinello,7,8 or ReaxFf based MD.9,10 The main disadvantage of
these approaches is that reactions may not occur within the
limited time scale of MD simulations. Therefore, advanced
simulation techniques such as metadynamics11−13 or transition
path sampling14−21 may be required. These types of simulation
techniques are not considered further in this paper. One of the
most commonly used approaches in molecular simulation is to
simulate the reaction equilibria in the reaction ensemble
(RxMC).1,4,22−27 In this approach, the chemical reaction is
carried out by a Monte Carlo (MC) trial move. Beside
thermalization (translation, rotation, etc.), trial moves are carried
out in which reactants are removed and reaction products are
inserted in the system, in such a way that an equilibrium
distribution of reactants and reaction products is obtained. The
mechanism and the transition state of the reaction are not
considered as this approach is purely thermodynamic and
reaction kinetics are not considered. As a result, the efficiency of
this simulation technique is not affected by the height of the
activation energy barrier of the reaction as reaction kinetics are
not considered. The RxMC method requires the ideal gas
partition functions of all reactant and reaction product
molecules, a list of all possible chemical reactions in the system,
and an appropriate force field accurately describing interactions
between molecules.4 The ideal gas partition function can be
obtained from Quantum Mechanics5,26,28 or standard thermo-
chemical tables, e.g., the JANAF tables.29 Computing ideal gas
partition functions using quantum packages is well established.28

However, due to lack of experimental data, it is not always
straightforward to compute partition functions from QM
software, especially for large molecules or ions.30,31 For a
detailed review of RxMC techniques, the reader is referred to ref
4.
Just like many other ensembles that rely on sufficient molecule

insertions/removals (e.g., the Gibbs ensemble and grand-
canonical ensemble),32 RxMC struggles when insertions/
removals of molecules are difficult, e.g., at low temperatures
and high densities. During the past few years, significant progress

has been made in Monte Carlo techniques for the insertion and
deletion of molecules. There are two types of solutions to
overcome low acceptance probabilities for molecule insertions/
removals in RxMC: methods such as Configurational-Bias
Monte Carlo (CBMC) or related methods26,27,33−39 that try to
insert whole molecules in a single Monte Carlo trial move and
methods based on the idea of expanded ensembles40−42 such as
the Continuous Fractional Component Monte Carlo (CFCMC)
method first developed by Shi and Maginn.43,44 The main
advantage of the latter approach is that instead of inserting whole
molecules in a single trial move, molecules are inserted gradually,
so that the surrounding can easily adapt to the inserted/deleted
molecules. This is particularly important at high densities.45

Therefore, CFCMC does not rely on the spontaneous
occurrence of cavities in the system that are large enough to
accommodate a large molecule. The CFCMC technique is
frequently used for simulations that suffer from low acceptance
probability of molecule insertions/removals.1,45−55 Applications
of this approach include computation of the loading and enthalpy
of adsorption of guest molecules in porous materials near the
saturation loading,38,45 reaction equilibria of complex systems,1

and solubilities of small molecules in ionic liquids.43,44,46,47,56−59

For more details on the challenges of Monte Carlo simulations in
open ensembles, the reader is referred to refs 60−62. The
combination of CFCMC in RxMC was first proposed by Rosch
and Maginn55 (from now on referred to as “parallel Rx/CFC”).
Balaji et al. used parallel Rx/CFC to compute the equilibrium
concentrations of the different species in CO2/monoethanol-
amine solutions for different CO2 loadings.1 In this method,
fractional molecules of reaction products are gradually changed
into whole reaction product molecules, while the fractional
molecules of reactants are gradually removed and vice versa. This
algorithm is shown schematically in Figure 1a. A key ingredient
of parallel Rx/CFC is that the fractional molecules of both all
reactants and reaction products are always present in the system.
This CFCMC version of RxMC improves the acceptance
probability of molecule insertions/removals significantly com-
pared to the conventional RxMC algorithm.55 It does not allow
direct calculation of chemical potentials, and it is not possible to
directly check if the reaction is at equilibrium. Additional free
energy calculations are needed to compute the chemical

Figure 1. (a) Schematic representation of parallel Rx/CFC for the combination of RxMC with CFCMC (denoted by parallel Rx/CFC).55 The
conventional RxMC is expanded with fractional molecules of each component participating in the reaction. The number of fractional molecules of each
component is equal to its stoichiometric coefficient νi. The coupling parameters for intermolecular interactions of fractional molecules of reactants and
reaction products are constrained by λR + λP = 1. (b) Schematic representation of serial Rx/CFC for the combination of RxMC with CFCMC (the
method described in this paper). In serial Rx/CFC, either fractional molecules of reactants or fractional molecules of reaction products are present in the
system. In both figures, we consider the reaction A ⇌ B, in which A = green and B = black. The dashed spheres represent fractional molecules.
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potentials of reactant and reaction product molecules. The
fractional molecules of reactants and reaction products have to
adapt to their surroundings simultaneously, which reduces the
efficiency of the algorithm.
Recently, a more efficient approach to combine CFCMC with

the Gibbs ensemble was introduced by us.63,64 Only one
fractional molecule per component is present, which can be in
either of the simulation boxes, and chemical potentials of all
components are obtained without any additional calculations.
Inspired by this, a new formulation for RxMC combined with
CFCMC is introduced (denoted by serial Rx/CFC). The crucial
difference with the parallel Rx/CFC is that either fractional
molecules of reactants or reaction products are present in the
system. The chemical potentials of reactants/reaction products
are directly obtained without using Widom’s test particle
insertion (or related) method. Therefore, one can directly
check for the condition of chemical equilibrium.
This paper is organized as follows. In Section 2, the

conventional RxMC ensemble and its combination with
CFCMC are reviewed. Our formulation of RxMC with
CFCMC (denoted by serial Rx/CFC) is introduced in Section
3. The partition function, types of trial moves, and computation
of chemical potentials are also discussed in this section.
Simulation details and systems are described in Section 4. In
Section 5, the performance of serial Rx/CFC is compared to
conventional RxMC and parallel Rx/CFC for Lennard-Jones
(LJ) molecules. We considered various model reactions and
pressures for which ideal gas free energy changes are specified in
advance. Our approach is also tested for the reaction of ammonia
synthesis at various temperatures and pressures. Compared to
parallel Rx/CFC, serial Rx/CFC is more efficient, faster, and
allows for the computation of chemical potentials of all
components without any additional computation. Our findings
are summarized in Section 6.

2. CONVENTIONAL RXMC AND PARALLEL RX/CFC
In RxMC simulations, the number of atoms is conserved and not
the number of molecules of individual species.4 Usually, the
temperature is constant and either pressure or volume is
imposed. The constant pressure version is more interesting for
practical applications. In the Supporting Information, first the
partition function and acceptance rules are derived for the
constant volume case and extended to the constant pressure
version by adding a term exp[−β PV] to the partition function.32
In this section, the partition function and acceptance rules are

discussed in detail for the constant pressure version. In addition
to Monte Carlo trial moves for thermalization and volume
changes, attempts are made to remove reactants and insert
reaction product molecules and vice versa. These are the so-
called reaction trial moves. Here, for simplicity, we only consider
systems with a single reaction, as extension to systems with
multiple reactions is straightforward.1,32 The partition function
for the constant pressure version of conventional RxMC
equals4,23
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where S is the number of components, β = 1/(kBT), kB is the
Boltzmann constant, s are reduced coordinates, V is the volume
of the simulation box, P is the pressure, Ntotal is the total number
of molecules in the simulation box, and U is the total potential
energy. Here, qi, μi, Ni, and Λi are the ideal gas partition function
excluding the translational part, the chemical potential, the
number of molecules, and the thermal wavelength of component
(molecule type) i, respectively. The ensemble of eq 1 is subject to
the constraints that the total number of atoms of each type is
constant and that chemical reactions converting reactants into
reaction products are in equilibrium. This sets limits on the
values of μi. Sampling of configurations in this ensemble requires
(1) sampling of the degrees of freedom of the interacting
molecules (e.g., translation, rotation (for chain molecules), and
sampling the internal configuration of molecules), (2) sampling
the volume fluctuations, and (3) sampling of chemical reactions
subject to the constraint that the total number of atoms of each
component is constant, as well as that the reaction is at chemical
equilibrium. The latter is obtained by performing reaction trial
moves. The reaction trial move is attempted to remove randomly
selected reactants and insert reaction product molecules,
simultaneously. According to the partition function of conven-
tional RxMC (eq 1), the probabilities of being in the old and new
configurations for the reaction trial move in the forward direction
are
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where νi is the stoichiometric coefficient of component i in the

reaction. Here, n and o denote the new and old configurations,

respectively. We choose the convention that νi is positive if

component i participates in the reaction, and νi is zero otherwise.

Here, R is the number of reactant components, and P is the
number of reaction product components. As only systems with a
single reaction where all components are either reactants or
reaction products are considered here, one can write R + P = S.
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Therefore, the reaction product components are ranging from R
+ 1 to S, with S being the total number of components. The
summation∑i = 1

R is a sum over all reactant types, and∑j = R+1
S is

the sum over all reaction product types. Therefore, the ratio of
the probabilities of being in the new and old configurations
equals
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here ΔU = Un − U0 is the total change in the potential energy of
the system. Reaction equilibrium implies∑i = 1

R μiνi =∑j = R+1
S μjνj.

Consequently, the acceptance rule for the reaction trial move
is4,32
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Due to simultaneous insertion of the molecules in a single step,
the efficiency of this algorithm can be very low at high densities.
This is also the case when Configurational-bias Monte Carlo is
used for inserting/deleting molecules.26

In parallel Rx/CFC,55 the conventional RxMC is expanded
with fractional molecules of each component participating in the
reaction (Figure 1a). The number of fractional molecules of each
component is equal to its stoichiometric coefficient. Interactions
of the fractional molecules are scaled with a coupling parameter
λj. The value λj = 0 corresponds to no interactions with the
surrounding molecules (the fractional molecule acts as an ideal
gas molecule), and λj = 1 corresponds to full interactions with the
surrounding molecules (the fractional molecule has the same
interactions as whole molecules of the same component). There
are two coupling parameters per reaction, one for all reactants
(λR) and one for all reaction products (λP). The coupling
parameters for the fractional molecules of reactants and reaction
products are constrained by λR + λP = 1. Attempts are made to
change the coupling parameters by λn,R = λo,R + Δλ with Δλ ∈
[−Δλmax, + Δλmax]. Due to the constraint λR + λP = 1, the
coupling parameter of the fractional molecules of reaction
products also changes according to λn,P = λo,P −Δλ. When λn,R
> 1 or λn,R < 0, an attempt is made to perform a chemical
reaction. The acceptance rule for performing a chemical reaction
in this ensemble is the same as eq 4. For more details, we refer the
reader to the original publication by Maginn and Rosch.55

3. SERIAL RX/CFC
3.1. Partition Function. In serial Rx/CFC, either fractional

molecules of the reactants or reaction products are present in the
system, in sharp contrast to parallel Rx/CFC where fractional
molecules of both reactants and reaction products are always
present (Figure 1b). Besides trial moves for thermalization and
volume changes, there are three additional trial moves to
facilitate the sampling of chemical reactions subject to the
constraint that the total number of atoms of each component is
constant, as well as chemical equilibrium. As derived in the
Supporting Information, the partition function for the constant
pressure version of the ensemble equals (not yet taking into
account the conservation of atoms)
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whereNint is the total number of whole molecules (regardless the
component type), and Ni is the number of whole molecules of
component i. When δ = 1, fractional molecules of reactants are
present in the simulation box (νi fractional molecule for
component i), and when δ = 0, fractional molecules of reaction
products are present. Here, a system with a single reaction is
considered. Also, Uint is the total internal energy of whole
molecules, and Ufrac,i is the interaction energy of fractional
molecules of component i with the other molecules, including
other fractional molecules. The interactions of the fractional

molecules with the surroundings are such that λ = 0 means no
interactions and λ = 1means full interactions, and the value of λ is
restricted to λ ∈ [0,1].
Since fractional molecules are always distinguishable from

whole molecules, the term Ni! only counts for whole
indistinguishable molecules. The main difference between eq 5
and eq 1 is the integration over λ in eq 5. This is an immediate
consequence of expanding the conventional RxMC with
fractional molecules. In the Supporting Information, we show
that for systems without intermolecular interactions (ideal gas
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phase) the partition functions of eq 5 and eq 1 are proportional.
Therefore, these ensembles result in identical average numbers of
molecules for each component, provided that fractional
molecules are not counted when computing ensemble averages.
The fact that one should not count fractional molecules when
computing the average number of molecules is in line with earlier
studies in the Gibbs ensemble and in the grand-canonical
ensemble.45,64

3.2. Trial Moves. In addition to Monte Carlo trial moves for
thermalization and volume changes, there are three trial moves in
this ensemble to mimic the chemical reaction. A detailed
description of these trial moves and the derivation of the
acceptance rules is provided in the Supporting Information.
3.2.1. Changing the Value of λ. This trial move is used to

change the value of λ either for reactants or reaction products,
depending on the value of δ (Figure 2). The value of λ is changed
according to λn = λo +Δλ, in whichΔλ is a uniformly distributed
random number between −Δλmax and +Δλmax. Note that Δλmax

can be different for reactants and reaction products. When the
new value of λ is not in the range λ ∈ [0,1], this trial move is
automatically rejected. In this trial move, the value of δ, all
positions of molecules, and the number of whole molecules and
fractional molecules remain the same. By changing the value of λ,
only the interactions between the fractional molecules and other
molecules are changed. In the Supporting Information, it is
shown that the acceptance rule for this trial move is

β→ = − ΔUacc(o n) min[1, exp[ ]] (6)

in which ΔU = Un − U0 is the change in the total internal energy
of the system.

3.2.2. Reaction for Fractional Molecules. In this trial move,
fractional molecules of reactants/reaction products are removed,
and fractional molecules of reaction products/reactants are
inserted at random positions (Figure 3). In this trial move,
essentially the value of δ is changed, so if δo = 1 then δn = 0 and
vice versa. The number of wholemolecules and also the value of λ

Figure 2. Schematic representation of the trial move attempting to change the coupling parameter λ for serial Rx/CFC. In this trial move, δ and the
positions of all molecules remain the same. We consider the reaction A⇌ B in which A = green and B = black. The dashed spheres represent fractional
molecules.

Figure 3. Schematic representation of the trial move attempting to perform the reaction for fractional molecules for serial Rx/CFC. In this trial move, the
number of the whole molecules and also the value of λ are constant. We consider the reaction A⇌ B, in which A = green and B = black. The dashed
spheres represent fractional molecules. The fractional molecule of A is removed, and a fractional molecule of B is inserted at a randomly selected
position.
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are constant. This trial move basically mimics a chemical reaction
for the fractional molecules. Here, the acceptance rule for the
forward reaction (reactants→ reaction products) is shown. The
direction of the chemical reaction is defined by the value of δ for
the old configuration (if we have the fractional molecules of
reactants or reaction products). In the Supporting Information, it
is derived that the acceptance rule for converting the reactants
into reaction products equals
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Since the number of whole molecules remains constant during

this move, the terms ∏
ν=
!

− !i
R N
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are not

present in eq 7. The acceptance rule for the reverse reaction
(reaction products→ reactants) simply follows by swapping the
labels of the reactants and reaction products. The acceptance
probability for this trial move is large when λ is small. The reason
for this is that fractional molecules have very limited interactions
with the surrounding molecules, and therefore, the term ΔU is
nearly zero. For the limiting case of λ ↓ 0, the acceptance rule
reduces to
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3.2.3. Reaction for Whole Molecules. In this trial move,
fractional molecules of reactants/reaction products are trans-
formed into whole molecules of reactants/reaction products,
while simultaneously, randomly selected whole molecules of
reaction products/reactants are transformed into fractional
molecules of reaction products/reactants. In this trial move, all
molecule positions and the value of λ stay the same. The value of
δ is changed as follows: if δo = 1, then δn = 0 and vice versa. This

trial move is illustrated in Figure 4 and can be seen as a reaction
for whole molecules. In the forward reaction, whole molecules of
reactants are transformed into fractional molecules, and
fractional molecules of reaction products are turned into whole
molecules. Essentially, the number of whole molecules of
reactants is reduced, and the number of whole molecules of
reaction products is increased, according to their stoichiometric
coefficients. Trial moves are automatically rejected when there
are not enough whole molecules to turn into fractional
molecules. Here, the acceptance rule for the forward reaction
(reactants → reaction products) is shown. The direction of the
reaction eventually depends on the value of δ for the old
configuration (if we have fractional molecules of reactants or
reaction products). As derived in the Supporting Information,
the acceptance rule for this trial move is
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in which ΔU = Un − U0 is the change in the total internal energy
of the system including the interaction of fractional molecules as
result of the trial move. The acceptance rule for the reverse
reaction (reaction products → reactants) simply follows by
swapping the labels. Since the total number of whole and
fractional molecules for each component remains constant, ideal
gas partition functions are not present in eq 9. This trial move has
a very high acceptance probability when the value of λ is close to
1. The reason for this is that fractional molecules have almost the
same interactions as whole molecules, and therefore, the term
ΔU is nearly zero. For the limiting case of λ ↑ 1, the acceptance
rule reduces to
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Figure 4. Schematic representation of the trial move attempting to perform the reaction for whole molecules for serial Rx/CFC. In this trial move, the
value of λ and all positions of all molecules remain the same. We consider the reaction A⇌ B in which A = green and B = black. The dashed spheres
represent fractional molecules. The fractional molecule of A is transformed into a whole molecule of A, while at the same time a randomly selected whole
molecule of B is transformed into a fractional molecule of B.
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3.2.4. Volume Changes. This trial move is only used for the
case where the temperature and external pressure are imposed. In
this trial move, the volume of the simulation box is changed,
while the number and relative coordinates of the whole

molecules and fractional molecules stay the same. Here, the

random walk is performed in V and not ln(V).32 The acceptance

rule for this trial move is32
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3.2.5. Efficient Selection of Trial Moves. As discussed in the
previous section, the reaction trial move for fractional molecules
has a very high acceptance probability at low values of λ, and the
reaction trial move for the whole molecules has a very high
acceptance probability at high values of λ. In Figure 5, typical

acceptance probabilities of these trial moves as a function of λ are
shown. Therefore, one may attempt reaction trial moves for
fractional molecules only at values of λ close to 0, and reaction
trial moves for the whole molecules only at values of λ close to 1.
In this way, each trial move is used where it is efficient, and the
overall efficiency of the algorithm is improved. This is done as
follows: one can define a switching point for the value of λ (λsec).
The probabilities of selecting a trial move [thermalization,

volume change, or changing the value of λ (Section 3.2.1)] are
always constant. For selection of the remaining trial moves
(Sections 3.2.2 and 3.2.3), one has a choice: selecting these with
fixed probability or always selecting the reaction trial move for
fractional molecules (Section 3.2.2) when λ < λsec and always
selecting the reaction trial move for whole molecules (Section
3.2.3) when λ > λsec. In the latter approach, the reaction trial
moves are selected when they have a higher acceptance
probability. Since the value of λ remains constant during either
of these trial moves, the probabilities for selecting the trial moves
also remain constant. Therefore, the condition of detailed
balance is not violated.

3.3. Biasing the Probability Distribution p(λ, δ). It is
important to bias the probability distribution of p(λ, δ) (δ
indicates whether fractional molecules of reactants or reaction
products are in the simulation box) in such a way that the
sampled probability distributions p(λ, δ) is flat and that it is
equally likely to have the fractional molecules of reactants (δ = 1)
or reaction products (δ = 0). By using an adequate biasing
function, one can overcome the problem of being “stuck” in free
energy minima and can easily diffuse through the λ space. This is
obtained bymultiplying the statistical weight of each system state
by a factor exp[W(λ, δ) ]. For parallel Rx/CFC,55 since fractional
molecules of both reactants and reaction products are always
present in the system, one would only need a one-dimensional
weight function to obtain flat probability distribution of p(λ). It is
important to note that in serial Rx/CFC the weight function
W(λ, δ) is a two-dimensional function that depends both on λ
and the identity of the fractional molecules (δ). By using this
biased sampling, additional terms exp[W(λn, δn) − W(λo, δo)]
will be present in the acceptance rules of eqs 6,7, and 9. For
example, the acceptance rule for the trial move attempting to
mimic a reaction for the fractional molecules (eq 7) will become
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To remove this bias, the Boltzmann averages of any observable X
should be computed using

λ δ
λ δ

⟨ ⟩ =
⟨ − ⟩
⟨ − ⟩

X
X W

W
exp[ ( , )]

exp[ ( , )]Boltzmann
biased

biased (13)

The weight function W(λ, δ) can be obtained using the Wang−
Landau algorithm65,66 or iteratively.55 To compute ensemble
averages corresponding to the conventional RxMC while
performing simulation with serial Rx/CFC, one should exclude
the contribution of fractional molecules. By doing this, one can
analytically show that for an ideal gas case the ensemble averages
computed using the serial Rx/CFC and the conventional RxMC

are identical (see Supporting Information). Including the
contribution of the fractional molecules in the ensemble averages
leads to small differences between the ensemble averages
compute in the serial Rx/CFC and those computed in the
conventional RxMC.64

3.4. Free Energy Calculations. In serial Rx/CFC, chemical
potentials can be computed without any additional computa-
tional efforts. As shown in the Supporting Information, one can
show that

Figure 5.Acceptance probabilities for trial moves attempting to perform
reactions for fractional molecules (dashed line, Figure 3) and for trial
moves attempting to perform reactions for whole molecules (solid line,
Figure 4) for serial Rx/CFC. Simulation conditions are reduced
temperatureT = 2 and constant reduced pressure P = 3.0 for the reaction
A⇌ B. Similar results are obtained for the other reactions and at other
conditions.
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where qi is the ideal gas partition function of component i
excluding the translational part. One can obtain the sum of the
chemical potentials of reaction products in a similar way.
Equation 14 allows for an independent check of reaction
equilibria without any additional calculations (e.g., test
molecules). The chemical potential of component i for a
nonideal gas equals4,5

μ
β

β
β

φ
=

Λ
+

P
q

yP

P
1

ln
1

lni
i

i

i i0
3

0 (15)

in which φi and yi are the fugacity coefficient and mole fraction of
component i, respectively. Here, P0 is the reference pressure (1
bar), and P is the pressure of the mixture. The first term on the
right-hand side of eq 15 is the standard reference chemical
potential (μi

0(T)). Therefore, we have
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Combining this with eq 14 immediately leads to
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where λR = λ when we have the fractional molecules of reactants
(δ = 1). In this equation, p(λR ↑ 1) is the probability that λR
approaches 1, and p(λR ↓ 0) is the probability that λR approaches
0. To compute the chemical potential of individual components,
one should couple the interactions of different components in a
smart way. The two limiting cases are well defined: at λ = 0,
fractional molecules of reactants (or reaction products) do not
interact, and at λ = 1, fractional molecules of reactants have full
interactions with the surrounding molecules. However, for
intermediate values of λ, one has a choice. One can choose
different paths to scale the interactions of fractional molecules
from no interactions to full interactions. The interactions can be
scaled atom by atom, or molecule by molecule, or in any other
way. By scaling the interactions of the fractional molecules of
only one of the components from no interactions to full
interactions when the value of λ is changed from 0 to A, one can
write
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The first term on the right-hand side accounts for the ideal gas
part.The second term on the right-hand side accounts for the
excess part of the chemical potential (due to interactions with
surrounding molecules). Similar to eq 17, one can write for φi
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When νi > 1 and interactions of fractional molecules are scaled
sequentially (one by one), fractional molecules that have
interactions with surrounding molecules later (at higher values
of λ) experience the effect of the fractional molecules which were
inserted earlier (at lower values of λ). For sufficiently large

system sizes, this will not affect the calculated chemical
potentials. However, for small system sizes, there may be
minor differences between the chemical potential of molecules
that are inserted at lower values of λ and those inserted at at
higher values of λ. Although these differences are expected to be
small, one should be aware of them.

4. SIMULATION DETAILS

As a proof of principle, simulations are performed for different
systems of LJ molecules. The ammonia synthesis reaction at
various pressures (100−1000 bar) and temperatures (573−873
K) is also considered as a practically important application. For
different systems of LJ molecules, simulations are performed at
constant pressure and temperature using conventional RxMC,
parallel Rx/CFC,55 and serial Rx/CFC. Various model reactions
of LJ molecules are studied. For these simulations, all properties
are defined in reduced units. LJ interactions are truncated and
shifted at 2.5σ. The reduced temperature is set to T = 2.0, and
simulations are always started with 400 molecules of component
A. For simulations of LJ molecules using parallel Rx/CFC and
serial Rx/CFC, the maximum molecule displacements, max-
imum volume change, and maximum change in the value of λ are
set to achieve 50% acceptance for these trial moves. For
simulations using serial Rx/CFC, the switching point for the
value of λ is set to λsec = 0.3 (Section 3.2.4). In each Monte Carlo
step, a trial move is selected at random with the following
probabilities: 49.5% molecule displacements, 1% volume
changes, and 49.5% reaction trial moves.
For the ammonia synthesis reaction, simulations are

performed at constant pressure and temperature using serial
Rx/CFC. All simulations start with a random configuration of
120 N2, 360 H2 molecules, and no ammonia molecules.
Fractional molecules are added to this configuration. All
molecules are rigid and interact only through LJ and electrostatic
interactions. Force field parameters for N2, H2, and NH3 are
taken from the literature.67−70 The Wolf method is used to
compute electrostatic interactions.71 Details regarding the force
field parameters, scaling of the electrostatic interactions, and the
Wolf method are provided in the Supporting Information. The
ideal gas partition functions for this system are listed in Table S3
of the Supporting Information. In this table, a detailed
comparison is made between ideal gas partition functions from
experiments and QM computations using Gaussian09.72 In each
Monte Carlo step, a trial move is selected at random with the
following probabilities: 33% molecule displacements, 33%
molecule rotation, 1% volume changes, and 33% reaction trial
moves. For the ammonia synthesis reaction, LJ interactions are
switched on for λ ∈ [0,0.9], and electrostatic interactions are
switched on for λ ∈ [0.9,1].
For all simulations using parallel Rx/CFC and serial Rx/CFC,

the weight function is determined using the Wang−Landau
algorithm.65 In serial Rx/CFC, the weight function W(λ, δ) is
determined such that the observed two-dimensional probability
distribution p(λ, δ) in the proposed ensemble is flat. Here, 200
bins are used to store the probability distribution of λ for
reactants or reaction products. All simulations are started with
0.2 million Monte Carlo cycles to equilibrate the system,
followed by 1 million production trial moves. The number of
Monte Carlo steps per cycle equals the total number of molecules
initially in the system, with a minimum of 20. LJ interactions are
scaled according to48
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In the conventional method and parallel Rx/CFC, there is only
one type of reaction trial move. In contrast, serial Rx/CFC
requires three types of trial moves for facilitating molecule
transfers: 50% changes in the λ space (Figure 2), 50% reaction for
the fractional molecules (Figure 3) when λ < λsec, or 50% reaction
for the whole molecules (Figure 4) when λ > λsec. In serial Rx/
CFC, the chemical potentials are computed from eq 14. The
contribution of fractional molecules are excluded while
computing ensemble averages.64

To compare the efficiencies of the three methods, a fair way to
define the efficiency of each method is required. In this work, the
efficiency for all three methods is defined as the number of
accepted trial moves (either forward or backward) resulting in a
change in the number of whole molecules due to the reaction
divided by the total number of reaction trial moves. For parallel
Rx/CFC, this means the number of accepted λ trial moves that
resulted in λn > 1 or λn < 0 divided by the total number of λ trial
moves. For serial Rx/CFC, this means the number of accepted
reaction trial moves for whole molecules (Figure 4) divided by
the total number of all reaction trial moves, including changing
the value of λ, reaction for fractional molecules, and reaction for
whole molecules. It should be noted that reaction trial moves in
serial Rx/CFC are computationally cheaper compared to parallel
Rx/CFC. This is due to the reduction in the number of fractional
molecules, and therefore, the number of interacting molecule
pairs is reduced. Simulations performed using serial Rx/CFC
require less CPU time compared to similar simulations when
parallel Rx/CFC is used. The CPU time depends on the
programming of the algorithms, the compiler, and CPUs used to
perform the calculations. In this paper, different approaches are
only compared in terms of efficiency and not the CPU time. This
can be considered as the worst-case scenario for serial Rx/CFC.

5. RESULTS

To ensure that serial Rx/CFC is implemented correctly, the
equilibrium composition for different reactions of LJ molecules
are computed and compared for the three methods. The LJ
parameters and partition function for LJ molecules used in this
study are listed in Table 1. The equilibrium composition
obtained with different methods at reduced pressures P = 0.3, P =
1.0, P = 3.0, and P = 5.0 are shown in Tables 2−5, respectively.
Equilibrium compositions obtained for the three methods are the

same for all reactions and conditions (Tables 2−5). This
confirms the validity of the expressions used for the partition
function and acceptance rules of serial Rx/CFC and indicates
that this method is implemented correctly. The efficiencies of the
three methods for different reactions are also shown in Tables
2−5. The conventional method has a very high efficiency for all
reactions at the lowest pressure (P = 0.3). Since in this case the
density of the system is very low and therefore interactions
between the molecules are limited, there is almost no energy
penalty for the reaction trial moves, and most of the attempts to
perform reaction trial moves for whole molecules are accepted.
Therefore, the method which attempts to directly replace the
reactants with reaction products and vice versa has a high
efficiency. For the conventional method, reaction trial moves for
the whole molecules are the only reaction trial move, and this
trial move is accepted with a high probability for the low pressure
case. As a result, this method has high efficiencies for this case. In
parallel Rx/CFC,55 many trial moves are spent diffusing through
the entire λ-space, and less attempts are made to perform a
reaction. Therefore, this method has the lowest efficiency for the
low pressure case. Already at P = 1.0, the efficiency of the
conventional method is much lower than its efficiency at P = 0.3.
At higher pressures (P = 3.0, P = 5.0), the efficiency of the
conventional method drops below 0.01 even for the simplest
reaction (A⇌ B). When the density is high, most of the reaction
trial moves in the conventional method result in an overlap
between the newly inserted molecules and molecules that are
already in the system. Therefore, this move has very low
acceptance probability. In this case, the efficiency of parallel Rx/
CFC varies between 0.06 to 0.1, while the efficiency of serial Rx/
CFC varies between 0.1 to 0.2 depending on the reaction. Due to
the efficient use of the three trial moves in serial Rx/CFC, this
method has a better performance compared to the conventional
method and parallel Rx/CFC.
In Figure 6, the (unbiased) probability distributions p(λ, δ) for

two different reactions (A⇌ B and A⇌ D + E) and the weight
functions to make p(λ, δ) flat are shown. For the reaction A⇌ B,
the probability distributions and the weight functions for the
reactants and reaction products are identical, as A and B have a
similar interaction with the surrounding molecules. For the
reaction A⇌ D + E, one reactant molecule is replaced with two
product molecules. For this reaction, the interactions of the first
product molecule are scaled from no interactions (ideal gas
molecule) to full interactions (whole molecule) when the value
of λ is changed from 0 to 1

2
. For the second molecule, the

interactions are scaled from no interactions (ideal gas molecule)
to full interactions (whole molecule) when the value of λ is
changed from 1

2
to 1. This can also be clearly seen in the shape of

the probability distribution of λ and the weight function of the
reactant molecules. In this way, according to eq 18, one can
obtain the excess chemical potential of the first reactant molecule

using p(λR ↓ 0) and λ ↑( )p R
1
2

and the excess chemical potential

of the second reactant molecule using λ ↓( )p R
1
2

and p(λR ↑ 1).

The values obtained for the excess chemical potential of the first
and second reactant molecules were very close to each other.
In Table 6, the sum of the total and excess chemical potentials

times the stoichiometric coefficients are shown forthe reactants
and reaction products for different pressures and reactions.
These values can only be directly computed in serial Rx/CFC
according to eq 14. The data provided in Table 6 shows that for

Table 1. Interaction Parameters (Lennard-Jones) and
Partition Functions (q/Λ3) for Different Molecule Typesa

Molecule type σ ϵ q/Λ3

A 1.0 1.0 0.002
B 1.0 1.0 0.002
C 1.1 0.9 0.002
D 1.0 1.0 0.02
E 1.1 0.9 0.02
F 1.0 1.0 0.02

aNote that there are several molecule types with exactly the same
interaction parameters. This was done to show the effect of
(in)distinguishability of the molecules in the reactions.
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the reaction A ⇌ B, where the reactant and reaction products
have identical LJ interactions, the values obtained for the
chemical potentials of the reactants and reaction products are
equal. Since molecules of A and B are identical (Table 1), this is
exactly what is expected. This case is included because it is trivial
and can serve as an additional check on the implementation and
on convergence of the simulation. It is verified that the computed
excess chemical potentials are identical to those obtained from
Widom’s test particle insertion method in the conventionalNPT
ensemble at the same conditions (data not shown).32

It is instructive to repeat this test case for systems with a full LJ
potential. The use of tail correction is dictated by legacy use of
some force field like TraPPE, as these were developed using
Monte Carlo methodology. It tries to approximate the “full”

Lennard-Jones interactions using a finite (small) cutoff to keep
computations tractable. However, for many other system,
especially for use in MD, the discontinuity such a cutoff would
create in the forces is problematic. In the SI, it is also shown that
for the case of LJ molecules (truncated interactions and using
analytic tail correction) identical values for the excess chemical
potentials are obtained from the serial Rx/CFC, Widom’s test
particle insertion method in the conventional NPT, and EOS
modeling using a full LJ potential.73

Reaction equilibrium implies∑i = 1
R μiνi =∑j = R+1

S μjνj. It can be
clearly seen that this condition is satisfied for all reactions at all
pressures within the error bars. This indicates that simulations
have reached the condition of chemical equilibrium, and one can
trust the results obtained from the simulations. Moreover, one

Table 2. Average Number of Molecules and Density at Equilibrium for Different Reactions for Different Methodsa

Reaction ⟨NA⟩ ⟨NProduct 1⟩ ⟨NProduct 2⟩ ⟨ρtot⟩ Efficiency Method

200.00(3) 200.00(3) 0.162(0) 0.40 Conventional
A ⇌ B 199.99(7) 200.01(7) 0.161(0) 0.11 Parallel Rx/CFC

199.98(6) 200.02(6) 0.161(0) 0.30 Serial Rx/CFC
206.62(2) 193.38(2) 0.155(0) 0.37 Conventional

A ⇌ C 206.63(3) 193.37(2) 0.154(0) 0.098 Parallel Rx/CFC
206.62(5) 193.38(5) 0.155(0) 0.30 Serial Rx/CFC
192.59(6) 414.8(2) 0.162(0) 0.26 Conventional

A ⇌ 2D 192.27(6) 415.5(2) 0.161(0) 0.097 Parallel Rx/CFC
192.36(4) 415.27(8) 0.161(0) 0.25 Serial Rx/CFC
202.75(5) 394.5(1) 0.153(0) 0.21 Conventional

A ⇌ 2E 202.35(6) 395.3(2) 0.152(0) 0.086 Parallel Rx/CFC
202.47(4) 395.06(8) 0.152(0) 0.25 Serial Rx/CFC
91.52(3) 308.48(3) 308.48(3) 0.162(0) 0.26 Conventional

A ⇌ D + F 91.22(9) 308.78(9) 308.78(9) 0.161(0) 0.097 Parallel Rx/CFC
91.33(3) 308.67(3) 308.67(3) 0.161(0) 0.25 Serial Rx/CFC
95.57(3) 304.43(3) 304.43(3) 0.156(0) 0.23 Conventional

A ⇌ D + E 95.28(4) 304.72(4) 304.72(4) 0.155(0) 0.094 Parallel Rx/CFC
95.39(2) 304.61(2) 304.61(2) 0.155(0) 0.25 Serial Rx/CFC

aThe efficiency is defined in Section 4. The reduced pressure and temperature are set to P = 0.3 and T = 2.0, respectively. Simulations are started
with 400 molecules of type A. The interaction parameters of different molecules are listed in Table 1. The numbers between brackets denote the
uncertainty in the last digit.

Table 3. Average Number of Molecules and Density at Equilibrium for Different Reactions for Different Methodsa

Reaction ⟨NA⟩ ⟨NProduct 1⟩ ⟨NProduct 2⟩ ⟨ρtot⟩ Efficiency Method

200.00(4) 200.00(4) 0.433(0) 0.077 Conventional
A ⇌ B 200.0(2) 200.0(2) 0.431(0) 0.095 Parallel Rx/CFC

200.01(8) 199.99(8) 0.432(0) 0.26 Serial Rx/CFC
226.48(4) 173.52(4) 0.392(0) 0.068 Conventional

A ⇌ C 226.4(2) 173.6(2) 0.390(0) 0.079 Parallel Rx/CFC
226.45(9) 173.55(9) 0.391(0) 0.26 Serial Rx/CFC
273.05(5) 253.89(9) 0.433(0) 0.017 Conventional

A ⇌ 2D 272.8(2) 254.5(4) 0.430(0) 0.074 Parallel Rx/CFC
272.8(2) 254.3(3) 0.431(0) 0.17 Serial Rx/CFC
300.57(6) 198.9(2) 0.395(0) 0.011 Conventional

A ⇌ 2E 300.3(1) 199.4(2) 0.393(0) 0.059 Parallel Rx/CFC
300.4(2) 199.3(3) 0.394(0) 0.17 Serial Rx/CFC
177.73(5) 222.27(5) 222.27(5) 0.433(0) 0.017 Conventional

A ⇌ D + F 177.4(3) 222.6(3) 222.6(3) 0.431(0) 0.075 Parallel Rx/CFC
177.5(2) 222.5(2) 222.5(2) 0.431(0) 0.17 Serial Rx/CFC
197.92(7) 202.08(7) 202.08(7) 0.401(0) 0.014 Conventional

A ⇌ D + E 197.6(3) 202.4(3) 202.4(3) 0.399(0) 0.070 Parallel Rx/CFC
197.6(2) 202.4(2) 202.4(2) 0.399(0) 0.17 Serial Rx/CFC

aThe efficiency is defined in Section 4. The reduced pressure and temperature are set to P = 1.0 and T = 2.0. Simulations are started with 400
molecules of type A. The interaction parameters of different molecules are listed in Table 1. The numbers between brackets denote the uncertainty
in the last digit.
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can directly compute the excess chemical potential of individual
components according to eq 18.
To test the suitability of serial Rx/CFC simulations for

practical systems and molecules with partial charges, the
ammonia synthesis reaction (N2 + 3H2 ⇌ 2NH3) is considered.
Equilibrium compositions obtained from serial Rx/CFC are
validated with the RASPA software.61,62 In Figure 7, the mole
fractions of ammonia at equilibrium obtained form serial Rx/
CFC simulations at different temperatures and pressures are
compared with experimental results74 and results using equation
of state modeling (Peng−Robinson (PR) equation of state75).
Excellent agreement is observed between the equilibrium
mixture compositions obtained using the three different
approaches. This validates the applicability of serial Rx/CFC

for systems includingmolecules with electrostatic interactions. In
Figure 8, fugacity coefficients of ammonia at chemical
equilibrium computed using serial Rx/CFC simulations are
compared with the results of thermodynamic modeling (using
the PR equation of state) at different temperatures and pressures.
It is well known that cubic equations of state fail to provide
accurate estimates for the fugacity coefficient at very high
pressures.76 For pressures below 600 bar, fugacity coefficients
computed using serial Rx/CFC simulations are in very good
agreement with those calculated from equation of state
modeling. No experimental data was found to compare with
the values obtained for fugacity coefficients.

Table 4. Average Number of Molecules and Density at Equilibrium for Different Reactions for Different Methodsa

Reaction ⟨NA⟩ ⟨NProduct 1⟩ ⟨NProduct 2⟩ ⟨ρtot⟩ Efficiency Method

200.1(2) 199.9(2) 0.667(0) 7 × 10−3 Conventional
A ⇌ B 199.9(4) 200.1(4) 0.665(0) 0.096 Parallel Rx/CFC

199.9(2) 200.1(2) 0.667(0) 0.20 Serial Rx/CFC
268.7(2) 131.3(2) 0.614(0) 5 × 10−3 Conventional

A ⇌ C 268.8(2) 131.2(2) 0.612(0) 0.076 Parallel Rx/CFC
268.7(2) 131.3(2) 0.614(0) 0.20 Serial Rx/CFC
345.2(2) 109.5(4) 0.667(0) 3 × 10−4 Conventional

A ⇌ 2D 345.0(3) 110.0(5) 0.665(0) 0.066 Parallel Rx/CFC
344.8(4) 110.5(8) 0.666(0) 0.11 Serial Rx/CFC
373.0(2) 54.0(3) 0.646(0) 1 × 10−4 Conventional

A ⇌ 2E 372.9(2) 54.1(3) 0.643(0) 0.051 Parallel Rx/CFC
372.9(2) 54.3(4) 0.645(0) 0.11 Serial Rx/CFC
293.5(3) 106.5(3) 106.5(3) 0.667(0) 3 × 10−4 Conventional

A ⇌ D + F 293.1(6) 106.9(6) 106.9(6) 0.665(0) 0.068 Parallel Rx/CFC
293.3(5) 106.7(5) 106.7(5) 0.666(0) 0.11 Serial Rx/CFC
324.2(2) 75.8(2) 75.8(2) 0.641(0) 2 × 10−4 Conventional

A ⇌ D + E 324.2(5) 75.8(5) 75.8(5) 0.638(0) 0.064 Parallel Rx/CFC
324.1(4) 75.9(1) 75.9(1) 0.639(0) 0.11 Serial Rx/CFC

aThe efficiency is defined in Section 4. The reduced pressure and temperature are set to P = 3.0 and T = 2.0, respectively. Simulations are started
with 400 molecules of type A. The interaction parameters of different molecules are listed in Table 1. The numbers between brackets denote the
uncertainty in the last digit.

Table 5. Average Number of Molecules and Density at Equilibrium for Different Reactions for Different Methodsa

Reaction ⟨NA⟩ ⟨NProduct 1⟩ ⟨NProduct 2⟩ ⟨ρtot⟩ Efficiency Method

199.8(3) 200.2(3) 0.766(0) 1 × 10−3 Conventional
A ⇌ B 199(1) 201(1) 0.764(0) 0.096 Parallel Rx/CFC

200.1(4) 199.9(4) 0.766(0) 0.20 Serial Rx/CFC
298.5(5) 101.5(5) 0.718(0) 9 × 10−4 Conventional

A ⇌ C 298.5(8) 101.5(8) 0.716(0) 0.079 Parallel Rx/CFC
298.6(4) 101.4(4) 0.718(0) 0.20 Serial Rx/CFC
372.5(3) 54.9(6) 0.766(0) 3 × 10−5 Conventional

A ⇌ 2D 372.1(4) 55.8(7) 0.764(0) 0.063 Parallel Rx/CFC
372.4(2) 55.2(4) 0.765(0) 0.11 Serial Rx/CFC
390.6(3) 18.8(5) 0.757(1) 6 × 10−6 Conventional

A ⇌ 2E 390.6(2) 18.9(3) 0.755(0) 0.048 Parallel Rx/CFC
390.5(2) 19.0(4) 0.756(0) 0.11 Serial Rx/CFC
345.2(5) 54.8(5) 54.8(2) 0.766(0) 3 × 10−5 Conventional

A ⇌ D + F 345.4(6) 54.6(6) 54.6(6) 0.764(0) 0.067 Parallel Rx/CFC
345.3(6) 54.7(6) 54.7(6) 0.765(0) 0.12 Serial Rx/CFC
368.1(6) 31.9(6) 31.9(6) 0.752(0) 1 × 10−5 Conventional

A ⇌ D + E 368.2(4) 31.8(4) 31.8(4) 0.749(1) 0.063 Parallel Rx/CFC
368.1(5) 31.9(5) 31.9(5) 0.751(0) 0.11 Serial Rx/CFC

aThe efficiency is defined in Section 4. The reduced pressure and temperature are set to P = 5.0 and T = 2.0, respectively. Simulations are started
with 400 molecules of type A. The interaction parameters of different molecules are listed in Table 1. The numbers between brackets denote the
uncertainty in the last digit.
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Figure 6. (a) and (c) Probability distributions p(λ, δ) for reactants (δ = 1) and reactions products (δ = 0) for reaction (a) A⇌ B and (c) A⇌D + E at a
reduced temperature T = 2 and constant reduced pressure P = 3.0. (b) and (d) Weight functions (in units of kBT) to flatten the corresponding
probability distributions of λ and to ensure that it is equally likely to have fractional molecules of reactants and reaction products for reactions (b) A⇌ B
and (d) A ⇌ D + E.

Table 6. Chemical Potentials of Reactants and Reaction Products for Different Reactions of the Lennard-Jones System at Different
Pressures Obtained with Serial Rx/CFCa

Reaction P ∑reactants νiμi
excess ∑reactants νiμi

tot ∑products νiμi
excess ∑products νiμi

tot

0.3 −0.344(9) 7.036(9) −0.344(6) 7.036(6)
A ⇌ B 1.0 0.07(1) 9.42(1) 0.066(6) 9.421(6)

3.0 2.73(1) 12.95(1) 2.727(6) 12.953(6)
5.0 5.23(1) 15.74(1) 5.23(2) 15.73(1)
0.3 −0.265(8) 7.101(8) −0.133(6) 7.101(6)

A ⇌ C 1.0 0.25(1) 9.66(1) 0.79(1) 9.67(1)
3.0 2.887(6) 13.541(6) 4.32(1) 13.53(1)
5.0 5.35(2) 16.53(2) 7.51(2) 16.52(2)
0.3 −0.34(1) 6.13(1) −0.68(1) 6.12(1)

A ⇌ 2D 1.0 0.07(1) 9.49(1) 0.13(1) 9.48(1)
3.0 2.73(1) 13.79(1) 5.43(4) 13.74(2)
5.0 5.23(2) 16.84(2) 10.45(3) 16.74(2)
0.3 −0.240(9) 6.253(8) −0.205(9) 6.245(9)

A ⇌ 2E 1.0 0.247(8) 9.791(7) 1.553(9) 9.772(9)
3.0 2.81(1) 14.08(1) 8.45(3) 13.98(1)
5.0 5.25(3) 17.02(3) 14.78(8) 16.67(6)
0.3 −0.340(8) 4.319(8) −0.68(1) 4.32(1)

A ⇌ D + F 1.0 0.07(1) 8.30(2) 0.13(1) 8.29(1)
3.0 2.724(9) 13.246(6) 5.44(2) 13.213(8)
5.0 5.23(1) 16.57(1) 10.45(4) 16.52(2)
0.3 −0.270(7) 4.418(7) −0.41(1) 4.43(1)

A ⇌ D + E 1.0 0.220(9) 8.578(9) 0.96(1) 8.57(1)
3.0 2.809(9) 13.573(9) 7.04(2) 13.528(6)
5.0 5.27(2) 16.80(2) 12.69(6) 16.69(3)

aThe reduced temperature is set to T = 2.0. The interaction parameters of different molecules are listed in Table 1. The numbers between brackets
denote the uncertainty in the last digit.
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6. CONCLUSION
An improved formulation of the Reaction Ensemble combined
with Continuous Fractional Component Monte Carlo is
presented (serial Rx/CFC). The main difference between serial
Rx/CFC and parallel Rx/CFC55 is that in serial Rx/CFC either
the fractional molecules of the reactants or the fractional
molecules of the reaction products are present in the system. In
serial Rx/CFC, there are three trial moves to facilitate a chemical
reaction: (1) changing the value of λ, (2) reaction for fractional
molecules, and (3) reaction for whole molecules. As a proof of
principle, serial Rx/CFC is compared to the conventional
formulation of RxMC and parallel Rx/CFC for systems of LJ
molecules at different reduced pressures. Moreover, equilibrium
mixture compositions obtained for the ammonia synthesis
reaction using serial Rx/CFC are compared with experimental
results and mixture compositions computed using equation of
state modeling. The equilibrium compositions obtained with
serial Rx/CFC are in excellent agreement with those obtained
from the conventional RxMC and parallel Rx/CFC. For the
ammonia synthesis reaction, excellent agreement between the
results of serial Rx/CFC and experimental measured mixture
compositions74 was found as well. For systems at high pressures,
the acceptance probability of the reaction trial move is improved
by a factor of 2 to 3 (depending on the system under study)
compared to parallel Rx/CFC. Serial Rx/CFC has the following
advantages: (1) One directly obtains chemical potentials of all
reactants and reaction products. These chemical potentials can

directly be used as an independent check to ensure that chemical
equilibrium is achieved. (2) Independent biasing is applied to the
fractional molecules of reactants and reaction products;
therefore, the efficiency of the algorithm is increased. (3)
Changes in the maximum scaling parameter of intermolecular
interactions can be chosen differently for reactants and reaction
products. Serial Rx/CFC can be easily extended to molecules
with intramolecular degrees of freedom. The trial moves of
Figure 3 can be performed by inserting fractional molecules at
random positions with random orientations. The internal
configuration of the molecule can be generated randomly or
using the Rosenbluth scheme.32 The trial moves of Figure 4 can
be performed by keeping the internal configuration of the
molecule the same as in the old configuration. For ergodic
sampling, trial moves that attempt to change the internal
configuration of flexible molecules should be added to the MC
method.32 The serial Rx/CFC method could also be used for
reactions involving ions. One can calculate the potential energy
of a periodic system with a net charge by placing a dummy charge
at the center of charges. Although it is difficult to interpret
computed partial molar properties of ions (such as the chemical
potential or the partial molar volume)77 by using serial Rx/CFC,
one can still benefit from other advantages of the method such as
efficient reaction trial moves.
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