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A B S T R A C T

The low-frequency dielectric spectroscopy of granular material, where the porosity is representative for sands
and sandstones, is until now always modeled using theories based on the work of Schwartz (1962). The theory
for the low-frequency dielectric spectroscopy of suspensions, on the other hand, has been developed much
further over the last decades both numerically and analytically.

In this article new analytical expressions for the complex conductivity of granular material, such as sands and
sandstones in an electrolyte solution, are presented. These expressions have been derived using the theories
developed for suspensions. We show that the new expressions enable to predict the measured complex con-
ductivity of various granular material, such as packed glass beads, sands and sandstones. Because of the typical
grain size of sand and sandstone particles, for any ionic strength the double layer is much thinner that the
particle size. Contrary to existing theories for granular materials, the expressions we derived are valid for any
ionic strength and no adjustable parameters are required.

The grains are represented by monodispersed charged spheres. We also discuss how the expressions can be
adapted in the case the particles are not spherical and the grains are polydisperse.

1. Introduction

DC and AC conductivity measurements are usually performed to
predict the reservoir properties of granular materials and porous rocks
[1–3]. These properties are in particular: porosity, surface charge, grain
or pore sizes and fluid saturation. Archie's law [4] is typically used to
derive the porosity and saturation from DC measurements. In the case

of AC conductivity measurements, the typical relaxation frequencies are
usually obtained by using Cole–Cole type of models [5–7]. These fre-
quencies are then linked to the grain/pore sizes [8,2].

In this article, porous media consisting of grains and electrolyte are
studied. The porous media are considered to be fully saturated by the
electrolyte. Compacted and uncompacted sands and sandstones can be
seen as representative for these type of porous media. Percolation
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thresholds are not considered, nor is pore clogging. Because of the ty-
pical size of the particles involved (of the order of microns), it can be
estimated that one of the relaxation frequency associated with the ionic
diffusion at the lengthscale of a grain is of the order of fa ≡ D/(2πa2) ≃
[1–300 Hz], where D ≃ 2 × 10−9 m2/s is taken as the typical diffusion
coefficient of an ion and a ≃ [10–1 μm] the typical radius of a grain.
This relaxation is called α relaxation by some authors [10,11]. Another
relaxation exists, usually at higher frequency (depending on ionic
strength and grain size), associated with the ionic diffusion at the
lengthscale of the electric double layer of each grain. The corresponding
relaxation, called Maxwell–Wagner–O’Konski relaxation, is also re-
ferred to as δ or β relaxation by some authors [10,11]. The Maxwell–-
Wagner–O’Konski relaxation frequency, often referred to as Maxwell–-
Wagner relaxation, is defined by f0 ≡ Dκ2/(2π) where κ−1 represents
the double layer thickness. This thickness is given in Eq. (5) and can be
estimated to give f0 ≃ [0.1–10 MHz] for monovalent salt concentrations
between 0.1 mM and 10 mM. A third relaxation frequency can be as-
sociated with the polarization of water molecules. The associated re-
laxation frequency is termed γ relaxation [10,11] and corresponds to a
strong decrease of the water dielectric permittivity in the GHz range. In
the present article this relaxation is not studied as the frequency range
considered is [0–10 MHz].

Models that are more elaborate than the Cole–Cole model enable to
give additional information about the grain properties, such as the
grain's surface charge. The surface charge of grains is an important
property of the granular material as it can, for instance, be used to
predict the variation of conductivity upon a pH change due to chemical
reactions, or be linked to the retention and transport of contaminants
and nutrients within the porous media. Current models in geophysics
for granular type of porous media are based on the work of Schwartz
[12], who was one of the pioneers, along with O’Konski [13,14] in
setting-up the first models for the dielectric response of a colloidal
particle in an applied electric field. Their models have been extended
by, among others, Fixman [15,16], Hinch et al. [17] and O’Brien
[18,19]. In 1981, DeLacey and White presented a full numerical model
for the dielectric response of a charged sphere at any electrolyte con-
centration and electric field frequency [20]. In 2008, an analytical
model was presented that reproduced this full numerical solution
within a few percent [21]. These improved models have successfully
been applied in the context of (concentrated) sediment suspensions
[22–26], but never been studied in relation with porous media.

The complex conductivity of two-component mixture is usually
given either in terms of Bruggeman–Hanai–Sen or Maxwell–Wagner
formalisms (not to be confused with the Maxwell–Wagner relaxation
introduced above). Until now, the Bruggeman–Hanai–Sen relation that
includes Schwartz-like models, is used for interpreting DC and AC
conductivity measurements of granular materials. The Schwartz/
Bruggeman–Hanai–Sen relation has been revised by Bussian [27], to
include the particle's surface conduction. In the last decade various
expressions for this conduction have been proposed and tested on
granular material [6,11,28].

The Bussian model however is only valid for large Dukhin numbers,
which is defined in Eq. (6), and we will show how it has to be adapted
for any Dukhin number. Another approach is possible, based on the
Maxwell–Wagner (also named Clausius-Mossotti) relation for the
complex conductivity of two-component mixture [9]. Originally the
Bruggeman–Hanai–Sen and the Maxwell–Wagner relations were de-
rived for uncharged particles. In this article we derive the corre-
sponding relations for charged particles. We show that there is little
difference between the Bruggeman–Hanai–Sen and the Maxwell–-
Wagner formalisms for both charged and uncharged particles. In par-
ticular, both formalisms give the same relaxation frequencies as ex-
pected.

In this article new analytical expressions for the complex con-
ductivity of granular material, such as sands and sandstones in an
electrolyte solution, are presented. These expressions are given in Eq.

(9) for the Maxwell–Wagner formalism and Eq. (16) for the Bruggeman
formalism. These expressions are derived using an analytical theory for
the dielectric response of a colloidal particle in an applied electric field
[21] that reproduces the full numerical solutions of the electrokinetic
set of equations within a few percent. We show that the new expres-
sions enable to predict the measured complex conductivity of various
granular material, such as packed glass beads, sands and sandstones.
Contrary to existing theories for granular materials, the expressions we
derived are valid for any ionic strength and no adjustable parameters
are required. The grains are represented by charged spheres and the
associated electrolyte can be of any ionic strength. The particle size
considered in the present study ensures that for any ionic strength
κa≫ 1. The fact that the double layers of grains overlap for low ionic
strength seems to have a minor contribution to the overall conductivity
as no adjustable parameters are required to predict this conductivity.
We also discuss how the expressions can be adapted in the case the
particles are not spherical and the grains are polydisperse.

2. Complex conductivity of granular material

In this section, new relations for the conductivity of a porous
medium consisting of compacted, immobile, charged spheres are de-
rived. As schematized in Fig. 1, we make the assumption that the
spherical particles have most of their surface in contact with the elec-
trolyte. We therefore do not consider percolation thresholds nor clog-
ging of the interstitial cavities.

We will use ε͠k as the notation for the complex relative dielectric
permittivity of substance k (k = g for grains and k = e for electrolyte
for example). The link between the complex variables σ͠k (complex
conductivity) and ε͠k (complex relative permittivity) is given by:

≡ε ω σ ω
iωε

( ) ( )͠ ͠
k

k

0

with

= +σ ω σ ω iωε ε ω( ) ( ) ( )͠ k k k0

where σk is the conductivity of the studied medium, εk is the relative
dielectric permittivity of the studied medium, ε0 is the permittivity of
vacuum, ω the applied electric field frequency and i= −1 . A tilde on a
symbol indicates that the corresponding variable is complex.

We define the volume fraction ϕs of the grains as function of the
medium porosity ϕ by:

= − =
+

ϕ ϕ v
V v

1s (1)

where the total volume +V v is the sum of the volume of electrolyte V
and the volume v of grains.

Fig. 1. The porous media is seen as packed, immobile spheres in an electrolyte.
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2.1. Extended Maxwell–Wagner (or Clausius–Mossotti) relation for
charged spheres

The original derivation for the Maxwell–Wagner relation for un-
charged spheres is given in Appendix A. In the same appendix, we
discuss why the two major hypotheses we make are valid. The first
hypothesis is that the grains are mainly surrounded by electrolyte
which is a valid assumption as the fluid phase remains continuous to
very low values of porosity [9]. We emphasize that this does not mean
that the volume of electrolyte should be larger that the volume of the
grains. We will show in fact that the model holds until porosities re-
presentative for sands and sandstones in Section 3. The second hy-
pothesis is that the grains should not interact which is also a valid as-
sumption provided that the double layers of the grains do not overlap.
The particle size considered in the present study ensures that for any
ionic strength κa≫ 1. The fact that the double layers of grains overlap
for low ionic strength seems to have a minor contribution to the overall
conductivity as no adjustable parameters are required to predict this
conductivity (see Figs. 2 and 3). When an electrical field E0 is applied
on a grain of a radius a surrounded by a double layer, both the grain
and the double layer polarize. The polarization P can be written:

=P αE͠ 0 (2)

where =α πε ε a β4͠ ͠e0
3 is the polarizability and β͠ is the dipolar coeffi-

cient. Different expressions can be found in the literature for the po-
larizability. For instance, the polarizability of a sphere coated with a
material of different dielectric constant is given by Eq. (8) in [9].

In [21] an analytical expression is given for the dipolar coefficient of
a spherical charged particle in an electrolyte, which reproduces within
a few percent the dipolar coefficient found by solving numerically the
full set of electrokinetic equations as presented in [20]. The expression
is valid for the whole range of particle's charge, ionic strength and
applied field frequency. In [20,21] the colloidal particle could have an
electrophoretic mobility. As stated above, in the present case, the par-
ticles are immobile. This implies that the electrophoretic term (defined
as ∼KU in [21]) is set equal to zero in the relation of β͠ given by Eq. (64)
in [21]. Adapting Eq. (64) for the case of a non-moving sphere with a
double layer thickness that is smaller than the particle size (a valid
assumption for micrometric particles in nearly all experimental condi-
tions) leads to Eq. (49) in [21] which is given by (adapting the nota-
tions to the ones used in the present article):

=
− + +

+ + −
⊥

⊥
β

σ σ σ σ
σ σ σ σ2 2

͠ ͠ ͠ ͠
͠ ͠ ͠ ͠

͠ g e

g e

//

// (3)

where =σ iωε ε͠ g g0 with εg is the relative permittivity of the grains,
= +σ σ iωε ε͠ e e e0 with εe and σe are the relative permittivity and the

conductivity of the electrolyte, respectively. The complex con-
ductivities σ͠// and ⊥σ͠ account for the parallel and perpendicular ion
motion close to the grain's surface that leads to the polarization of the
double layer (eventually a Stern layer contribution can also be ac-
counted for, see Appendix C). Good approximations for σ͠// and ⊥σ͠ in the
case there is no Stern layer are given by [21]:

= = ⎡
⎣

− ⎤
⎦

= −⊥

( )σ σ

σ σ

2 exp 1͠

͠

σ
κa

e ζ

J
J

// //
| |

2kT

//

e

1
2 (4)

where ζ is the zeta potential of the particle, k is the Boltzmann constant
and T the temperature. The relation between zeta potential and surface
charge density is discussed in Appendix B. The Debye layer thickness
κ−1 is given by

=−κ ε ε D
σ

e

e

1 0

(5)

Furthermore

= +
= + +
=

J λ a
J λ a
λ

1
1 (1 )

n

n

n
iω
D

1

2
2

2

where D is the typical ionic diffusion coefficient. We note from the
previous expressions that the characteristic relaxation frequency asso-
ciated to ⊥σ͠ is linked to the so-called α relaxation defined in the in-
troduction, fa ≡ D/(2πa2), by =λ a ω πf| | /(2 )n a

2 2 . For simplicity, we here
only consider a symmetric monovalent electrolyte of valence 1 and
assume that the diffusion coefficient of the cation and the anion are
equal. More general expressions can be found in [21]. One generally
defines

⎜ ⎟= = ⎡
⎣⎢

⎛
⎝

⎞
⎠

− ⎤
⎦⎥

σ
σ κa

e ζ
Du 2 exp

| |
2kT

1
e

//

(6)

The factor Du is the so-called “Dukhin number” which expresses the
ratio between the parallel surface conductivity due to the ions in the
double layer and the bulk conductivity. This ratio was first given by
Bikerman in 1940 [29], but given the name of Dukhin who made sig-
nificant progress in the work of particle polarization in electric fields in
the 1970–80's [30].

A similar expression for Du is given by Eq. (37) in [31]. This Eq. (37)
is also valid for non-monovalent salts and this leads to the inclusion of
valences (zk) in their expression (we use z+ = −z− = 1). Finally, the
terms involving m2 and Θ2 in their expressions are corrections for the
ionic velocity in the neighborhood of the particle and the contribution
of the conduction of the ions in the Stern layer respectively. From Eqs.
(3)–(6), one gets

=
− + −

+ + +
β

σ σ σ J J
σ σ σ J J

(1 / )
2 (1 2 / )

͠ ͠
͠ ͠

͠ g e

g e

// 1 2

// 1 2 (7)

In Appendix A we show that the general expression for the medium
conductivity is given by

=
+
−

σ ω σ ω
ϕ β ω

ϕ β ω
( ) ( )

1 2 ( )
1 ( )

͠ ͠
͠
͠m e

s

s (8)

The complex conductivity of the medium σ͠m can be obtained from
measuring the current density through the porous medium for a given
applied electric field. Note that no additional effects, such as electrode
polarization, is accounted for here. In practice, σ͠m is usually obtained
from 4-electrode cell measurements [41,33].

The combination of Eqs. (8) and (7) provides a new relation for the
Maxwell–Wagner expression for charged spheres:

=
+ + + + − + −
+ + + − − + −

σ σ
σ σ σ J J ϕ σ σ σ J J
σ σ σ J J ϕ σ σ σ J J

[ 2 (1 2 / )] 2 [ (1 / )]
[ 2 (1 2 / )] [ (1 / )]

͠ ͠
͠ ͠ ͠ ͠
͠ ͠ ͠ ͠m e
g e s g e

g e s g e

// 1 2 // 1 2

// 1 2 // 1 2 (9)

For uncharged spheres one can show that the previous expression re-
duces to

−
+

=
−

+
σ σ

σ σ
ϕ

σ σ
σ σ2 2

͠ ͠
͠ ͠

͠ ͠
͠ ͠

m e

m e
s

g e

g e (10)

which is the original Maxwell–Wagner expression (Eq. (48) in Appendix
A).

2.1.1. DC electric fields
In many experiments performed in geosciences, DC electric fields

are traditionally used, primarily to avoid crosstalks and electromagnetic
interferences within the equipment. In that case, one gets J1/J2 = 1/2.
As σg = 0 it leads to:

= = − +
+

β ω( 0) 1 Du/2
2 2Du

͠

Assuming that Du is small (which is a reasonable assumption when κa is
quite large), one gets substituting this equation into Eq. (8)
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=
− −

+ −
σ σ

ϕ
ϕ

1 (1 3Du/2)
1 (1 3Du/2)/2m e

s

s (11)

This would be the conductivity of a sandstone consisting of charged
spheres in an electrolyte. To obtain the porosity, the porous medium
conductivity σm is usually fitted as function of the electrolyte con-
ductivity σe according to Archie's law [4] which reads σm = ϕmσe,
where m is an empirical coefficient, often called the cementation ex-
ponent (or index) [9], found by fitting the data. Making the equivalence
between Eq. (11) and Archie's law gives the following theoretical ex-
pression for m:

≡ ⎡
⎣⎢

− − −
+ − −

⎤
⎦⎥

ϕ
ϕ

ϕm ln
1 (1 )(1 3Du/2)

1 (1 )(1 3Du/2)/2
/ln[ ]

(12)

2.2. Extended Bruggeman expression for charged spheres

The Bruggeman expression is an alternative to the Maxwell–Wagner
expression given the previous subsection. In order to derive the
Bruggeman expression, one traditionally makes use of the
Maxwell–Wagner relation Eq. (10) given for instance as Eq. (6) in Sen
et al. [9]. The derivation is based on the evaluation of the mean
medium conductivity +σ͠n 1 of a two-component mixture at a step n+ 1
as function of the conductivity σ͠n at step n. Between step n and n+ 1, a
small amount of one component is added to the mixture and therefore
the mean conductivity of the medium will slightly change between the
steps. A derivation can be found in Sen et al. [9]. Instead of using Eq.
(10), we are going to utilize Eq. (8) in order to find a more general
expression for the Bruggeman equation.

Let us assume that at step n= 1 the medium is composed of only
electrolyte, thus ==σ σ͠ ͠ en 1 . The initial volume occupied by the electro-
lyte is V. At each next step n, a small volume dvn of spheres and a small
volume dve of electrolyte is added to the medium. Rewriting Eq. (8) one
finds that:

−
+

=+

+
+

σ σ
σ σ

ϕ β
2

͠ ͠
͠ ͠

͠
n

n n

n
n n

1

1
1 (13)

where the grain volume fraction at step n+ 1 is defined by the ratio
between the volume of spheres added and the total volume. This defi-
nition stems from the derivations given in Eqs. (39)–(45), from which it
follows that dvn = a3dN, where dN represents the number of spheres
added at the step n+ 1. We therefore get:

=
++ϕ

V v
dv

n
n

n n
1 (14)

From the definition of the volume fraction Eq. (1) we get dϕs =
(1 − ϕs)ϕn+1. Using the fact that ≃+σ σ͠ ͠ nn 1 and − ≡+σ σ dσ͠ ͠ ͠n n n1 we
obtain from Eq. (13):

=
−

dσ
σ

dϕ
ϕ

β
3 1

͠
͠

͠n

n

s

s
n (15)

The dipolar coefficient β͠n of a sphere at step n is found by replacing σ͠e
by σ͠n in Eq. (7). Combining Eqs. (15) and (7), one gets the new Brug-
geman relation:

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

− − −
− − −

⎞
⎠

=σ
σ

σ σ σ J J
σ σ σ J J

ϕ
(1 / )
(1 / )

͠
͠

͠ ͠
͠ ͠

e

m

α
m g

e g

γ
// 1 2

// 1 2 (16)

with:

=
+ +

+ −

=
+

+ −

α
σ σ J J

σ σ J J

γ
σ σ

σ σ J J

(1 2 / )
3( (1 / ))

(1 / )

͠
͠

͠
͠

g

g

g

g

// 1 2

// 1 2

//

// 1 2

In the limit of uncharged spheres σ// = 0 and Eq. (16) reduces to

⎜ ⎟
⎛
⎝

⎞
⎠

−
−

=σ
σ

σ σ
σ σ

ϕ
͠
͠

͠ ͠
͠ ͠

e

m

g m

g e

1/3

(17)

which is usually referred to as the Hanai–Bruggeman–Sen formula and
is equivalent to Eq. (21) in [9].

2.2.1. DC electric fields
In the DC limit one get =σ 0͠ g and J1/J2 = 1/2 leading to

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

−
−

⎞
⎠

=σ
σ

σ σ ϕ/ Du/2
1 Du/2

e

n

n e
4/3 2

(18)

At high ionic strengths, one expects that Du → 0 and σm = σeϕ3/2 < σe
which is the limit for uncharged spheres, see [9]. By analogy with Ar-
chie's law, we then find for the cementation exponent m= 3/2.

2.2.2. A comment about the model of Sen et al. [9]
In [9] Sen et al. introduce the model of a self-similar rock. This

model is based on the traditional Bruggeman expression Eq. (17). In
their model, at each step n+ 1 a small volume dvn is added to the
mixture. Like in the derivation presented above, they assume that

==σ σ͠ ͠ en 1 and the volume of electrolyte is given by V at step n= 1. The
authors consider a two component mixture: one component is the
electrolyte, the other is a fluid composed of electrolyte and grains. The
fluid is seen as a continuum and no distinction is made between grain
and electrolyte. In Sen et al.'s model, a small quantity of this fluid is
added between step n and n+ 1. The volume of component 1 (the
electrolyte) is therefore not changing and remains equal to the volume
V. In the derivation presented above, a small volume dve of electrolyte is
added at each step. The fact that the volume of electrolyte is varying or
not does not change the derivations given in Eqs. (13)–(17). When
component 2 is seen as a continuum, it has the same properties at any
scale. This enables Sen et al. to set-up their self-similar rock model, as
depicted in Fig. 1 in [9].

The fact that the component made of electrolyte and grains has the
same properties at any particle's radius (for a given volume fraction) is
only valid in the case that the dipolar coefficient of the particles do not
depend on their size. This is strictly true for uncharged spheres. In that
case Eq. (7) reduces to:

=
−

+
β

σ σ
σ σ2

͠ ͠
͠ ͠

͠ g e

g e (19)

which is indeed radius-independent. For charged spheres, the self-si-
milar model is in principle not valid. In fact, for particles with different
sizes but having the same surface density, we will see in Section 4 that
the main contribution to the complex conductivity of the granular
medium arises from the smallest particles if they are present in rea-
sonable amount.

2.3. Comparison with the modified Vinegar and Waxman model [32,33]

A common expression for the complex conductivity σ͠m of granular
material is given by [32,33]

= + +σ σ σ σ͠ ͠ ͠m surf hf (20)

where σ͠hf is associated to “high-frequency effects”, σ͠surf to “surface
conduction effects” and σ is defined by an Archie's law, σ= ϕmσe. In
this case = ≠σ σ σRe( )͠m m . This expression can be compared to the one
we obtained for the Maxwell–Wagner expression for charged spheres.
We rewrite the dipolar coefficient given in Eq. (7):

= − + =
+

+ + +
β x x

σ σ
σ σ σ J J

1
2

with
3( )

2[ 2 (1 2 / )]
͠

͠ ͠
͠ g

g e

//

// 1 2

The complex conductivity of the medium can then be rewritten from
Eq. (8):
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=
−

+
+

+ − + −
σ

ϕ
ϕ

σ
ϕ xσ

ϕ x ϕ x
1

1 /2
3

1 (1 ) (1/2 )/2
͠ ͠

͠
m

s

s
e

s e

s s
2

which leads to:

=
−

+
+

+ − + −
+

−
+

σ
ϕ

ϕ
σ

ϕ xσ
ϕ x ϕ x

ϕ
ϕ

iωε ε
1

1 /2
3

1 (1 ) (1/2 )/2
1

1 /2
͠

͠
m

s

s
e

s e

s s

s

s
e2 0

(21)

We could therefore make the equivalence:

≡
−

+

≡
+ − + −

≡
−

+

σ
ϕ

ϕ
σ

σ
ϕ xσ

ϕ x ϕ x

σ
ϕ

ϕ
iωε ε

1
1 /2

3
1 (1 ) (1/2 )/2
1

1 /2

͠
͠

͠

s

s
e

s e

s s

s

s
e

surf 2

hf 0
(22)

Note that the decomposition is not unique. In the decomposition we
adopted, both σ͠surf and σ͠hf contains high-frequency terms that are not
zero. However, this decomposition is quite convenient for a better
comparison with other models, as will become clear in the next sub-
section.

2.4. Comparison with the Bussian model

This model has originally been developed by Bussian [27] and is
based on the Bruggeman expression. It describes the DC electric con-
ductivity of a granular medium formed by charged dielectric spheres in
electrolyte solution. This model, and extensions thereof, are presently
widely used for interpreting complex conductivity data of porous ma-
terials [11]. We briefly recall how the Bussian model is obtained. In the
text under Eq. (18), we have found that the cementation exponent is
given by m= 3/2 for uncharged spheres. Assuming that the cementa-
tion exponent will not be too different for charged spheres (which is
theoretically true for small Du), Eq. (17) can be re-written:

⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

σ σ ϕ
σ σ
σ σ

1 /
1 /m e

g e

g m

3/2
3/2

(23)

see for example Appendix A of Revil and Cathles [34]. The Bussian
model is obtained by introducing a particle surface conductivity σs,
which is defined by σg ≡ σs. Assuming that σs/σe ≪ 1 the Bussian model
reads:

= ⎡
⎣⎢

+ − ⎤
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−σ σ ϕ σ
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s

e
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Many authors (e.g. [11,28,33]) subsequently define a Dukhin number
as

≡ σ
σ

Du* s

e

Let us now compare the Bussian model, based on Bruggeman, with the
previous model given by Eq. (21), based on Maxwell–Wagner. Eq. (21),
which is equivalent to Eq. (8), gives for DC conditions, using Eq. (22):
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The last equivalence is obtained assuming that the term in ϕs
2 could be

omitted in Eq. (22), which is a reasonable assumption. Comparing Eqs.
(25) with Eq. (24) leads to the identification:
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The approximation given in the first line of Eq. (26) can be tested using
characteristic values for the porosity. For a sandstone with porosity
ϕ= 0.20 one finds m = 1.21 for example (for an unrealistically high
porosity of ϕ = 0.50 one gets m = 1.32). This gives 20% difference
with m = 3/2. This difference between the Maxwell–Wagner and the
Bruggeman model can be tested at high salinities, when Du ≃ 0. The
comparison with experimental data is done in the next section and we
will see that considering the experimental error the difference between
the models is not very significant. We will therefore assume that in good
approximation

≃
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1
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from which we deduce, using the second line of Eq. (26), that:
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Comparing Eqs. (25) and (28) leads to the identification:
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In general there will be some difference between σ// and σs and only for
low volume fraction (high porosity) one will have σ// = σs. In that case,
the relation Eq. (27) is a very good approximation.

Some authors, by extending the Bussian model, have accounted for
a complex surface conductivity σ͠s that they define as (see Eq. (58) in
[28])

∼σ
a
2 Σ*͠ s S (30)

The complex conductivity Σ*S is obtained from the derivation originally
performed by Schwartz [12]. In Appendix D we discuss how this surface
conductivity Σ*S is obtained and can be linked to σ//. The presence of the
factor 2 is also explained in the Appendix D. The conductivity σ͠s has to
be scaled by a as the authors in [28] express Σ*S as function of Γ's which
are surface charge density (number/m2) and not ionic densities
(number/m3). In Appendix D we express Σ*S as function of the ionic
density n͠k (number /m3).

3. Comparison with measurements

In this section the newly derived expressions for the
Maxwell–Wagner and Bruggeman expressions for charged spheres are
compared to experimental data. All ionic conductivities are taken equal
to the values found in Handbooks. The relative dielectric permittivity of
water is taken to be 80 (εe = 80) and the relative dielectric permittivity
of the grain is taken to be the value for silica (εg = 5). The grains are
assumed to be non conductive.

3.1. DC electric fields measurements

At low frequencies, for silica-based grains one can assume that
= ≪σ σ σ͠ g g e and the Maxwell–Wagner and the Bruggeman expressions

Eqs. (11) and (18) for uncharged grains (Du= 0) in an electrolyte re-
duce to

=
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+
= −
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=
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ϕ
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For low volume fractions, both expressions reduce to:
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From Archie’ law, one gets:
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From the equivalence it follows that m = 3/2. Note that for the
Bruggeman expression m = 3/2 is valid for the whole range of volume
fractions (for uncharged spheres). For the Maxwell–Wagner expression,
the equivalence is only true at low volume fractions. For arbitrary vo-
lume fractions Eq. (12) should be used (applying Du = 0). In Fig. 2, we
show the differences between the Maxwell–Wagner and the Bruggeman
expressions in the case of glass spheres of different diameters with
porosity of 0.4. The data is taken from [35]. The porosity required to fit
the high ionic conductivity is 0.4 for the Maxwell–Wagner expression
and 0.46 for the Bruggeman expression. For all sizes the surface charge
is determined as function of ionic strength following the procedure
given in Appendices B and C (see Fig. 10 in Appendix C). As can be seen
from Fig. 2, for all particle sizes, the medium conductivity σm reduces to

=σm
Du 0 for σe ⩾ 10−2 S/m as expected. It is verified that for all particle

sizes a surface charge value of q= 0.0062 C/m2 could be used to model

the data, regardless of ionic strength. This is possible because of the
small dependency of q on σe at low σe. For large σe the Dukhin number is
in all cases in good approximation zero.

As the available measurements data presented in Fig. 3 were ob-
tained for different porosities, we found it convenient to renormalize
the data using Eq. (31) by

= =σ σ σ/m meff
Du 0

This normalization ensures that at high electrolyte conductivity (where
Du = 0) all the data should be on the σeff = σe line. The similarly
normalized Eqs. (9) and (16) are used to evaluate the theoretical curves.
For all datasets, both porosity and mean particle size are known.

As can be seen in Fig. 3 there are little differences between the
Maxwell–Wagner and the Bruggeman approaches. Both models re-
produce quite well the data, and the values found for the surface charge
are within reasonable values for silica-based grains, see Appendix B. It
is also clear that for all systems investigated, the Maxwell–Wagner and
the Bruggeman models for uncharged spheres can safely be used for
ionic conductivities larger than 10−2 S/m. This is to be expected, as the
grains are all about a ≃ 10 μm and therefore, for σe = 10−2 S/m,

≃ ≃κa a σ
ε ε D

850e

e0 (34)

For the largest surface charge tested (q = 0.3 C/m2), this gives
Du ≃ 0.5.

3.2. AC electric fields measurements

Measurements in AC electric fields are quite difficult to perform as
unwanted effects hamper the measurements, such as electrode polar-
ization in the case of 2 electrodes measurements [39], or crosstalks in
the case of 4 electrodes measurements [40,41].

In the present subsection, we test the Maxwell–Wagner and
Bruggeman expressions for charged spheres developed in Section 2.
Similarly to what was observed for DC electric fields, the Maxwell–-
Wagner and Bruggeman expressions give very close results in the case
of AC fields, as can be observed in Fig. 4. In particular both expressions
give the same relaxation frequencies, which was to be expected. As the
Maxwell–Wagner relation is the one most commonly found in colloid
science, we made the choice of using it in the remainder of the sub-
section.

We first present the prediction obtained for some measured data
from [33]. The two experiments represent the dielectric response of the
same sandstone of 0.40 porosity, saturated with 3 mM NaCl, at 25 °C
and a pressure of 5 MPa. The experiments are done in a 4-electrode cell
(experiments no 8 and 15 in [33]), before any injection of gas (hour 14
of the experiment, dark blue line in Fig. 9 of [33]). As can be seen in the
figure, even though the values found are quite close in both experi-
ments, the values of the medium conductivity differ by 9%, even though
the conductivity of the electrolyte was the same in both experiments
(0.037 S/m, see Table 2 in [33]). An electrolyte conductivity of
0.037 S/m corresponds roughly to a salinity of 2.5 mM NaCl. It is not
clear why this salinity does not correspond to the salinity given in

Fig. 2. Comparison between the Maxwell–Wagner and Bruggeman expressions for
charged spheres using a dataset for glass beads, given in [35].

Fig. 3. Comparison between the Maxwell–Wagner and Bruggeman expressions for
charged spheres. The measurements for consolidated sand, unconsolidated sand, Berea
sandstone, Fontainebleau sandstone and Munsteraner sandstone are taken from
[1,36,6,37,38], respectively. The conductivity of Bentheimer sandstone is measured by
the authors.

Fig. 4. Comparison between the theoretical Maxwell–Wagner and Bruggeman relations
for charged spheres using various grain sizes without Stern layer, q = 0.062 C/m2,
ϕ = 0.4, σe = 0.0003 S/m. Two relaxation frequencies can be observed: fa = D/(2πa2)
and f0 = Dκ2/(2π), where fa < f0 because κa ≫ 1.
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Table 2 in [33]. If the electrolyte conductivity is measured at the end of
the experiment, it could be that some chemical reaction has occurred
within the porous media resulting in a lowered electrolyte conductivity.
As can be seen from Fig. 5, there is a good match between the dielectric
permittivity data and the theoretical prediction when a value of
a = 20 μm, a surface charge of 0.5 C/m2 and an electrolyte con-
ductivity of 0.037 S/m are used. At low frequencies, the theoretical
prediction becomes constant, while the data shows some increase, most
probably due to parasitic electrode effects or crosstalks of 4 electrodes.
At the highest measured frequencies some deviation also occurs that
can be due to some unaccounted crosstalks. The electric conductivity
found using the expression for charged spheres is slightly higher (by
20%) than the measured one, which is closer to the conductivity found
using the expression for uncharged spheres. We did not try to improve
the fit, which would be possible by accounting for a Stern layer for
example (see Appendix B), as we tried to keep the amount of adjustable
to a minimum.

Recently, experiments were presented that were performed on a
Portland sandstone which contained some amount of illite and kaolinite
as function of frequency, for a large range of ionic strength [41]. In that
article, the measurements were analyzed using an extended Bussian
model making use of a Schwartz-like surface conductivity. We refer to
[41] and references within for further details. From the low-frequency
data given in [41] a relation between the medium and electrolyte
conductivity, given in Fig. 6a, was found that enabled to estimate the
Dukhin number Du, see Fig. 6b, using Eq. (11). We note that if we
would use the porosity given by the authors (ϕ = 0.2) Du becomes
negative at high ionic conductivities, which is the consequence of the
fact that the medium conductivity would then be larger than the con-
ductivity of a comparable medium (in terms of same porosity and
particle size) but composed of uncharged spheres, which is theoretically
impossible. This is reflected in the crossing of the full blue curve and the
experimental curve (red circles) in Fig. 6a. For most of the experimental
data given in Fig. 3, it is also usually found that the Maxwell–Wagner
expression for uncharged spheres gives slightly higher values than the
measured ones at high salinity, and that the Bruggeman expression for
charged spheres performs better. We have to adjust the porosity to 0.05
in order to get a positive Dukhin number. This last value is not realistic,

but as can be seen in Fig. 6b the Du numbers found from using poros-
ities ϕ= (1 − ϕs) of 0.2 and 0.05 are quite close for the lowest con-
ductivities. This can be understood by realizing that for low frequencies
and for large Du Eq. (9) gives:

≃
+ +
+ −

σ σ
ϕ
ϕ

1 Du(1 /2)
1 Du(1 /4)m e

s

s

which gives quite small differences for σm for volume fractions ϕs be-
tween 0.8 and 0.95. In the remainder of this subsection, the porosity
will be kept equal to 0.20.

Some of the data given in [41] is replotted and fitted according to
the Maxwell–Wagner expression for charged spheres. Again, we tried to
keep the number of adjustable variables as minimal as possible. As
recognized by [41] (their comment in the legend of their Fig. 5), some
artifacts are observed at very low and very high frequency. Like for the
data of [33], parasitic electrode effects or crosstalks of 4 electrodes are
present at very low frequencies, resulting in an increase in the dielectric
permittivity with decreasing frequencies, whereas a constant value is
expected. At high frequencies, other unwanted effects took place, re-
sulting in unrealistic high values for the dielectric permittivity. In order
to account for these high-frequencies effects, we adjusted the dielectric
permittivity of the electrolyte in the variable σ͠e for each salinity to
match the model prediction with the high frequency value of the
sandstone permittivity. The values used in the model are given in
Table 1. Two types of fits are performed. In Fig. 7a, we show the result
of the low frequency fit of the conductivity done by adjusting Du(σm)
and in Fig. 7b we show the result of the dielectric permittivity fit done
by adjusting Du(εm). A value of 7 μm is found to be the best grain size
for all the fits. The value of q0 given in Table 1 could then be calculated
from Du(σm or εm), a and σe. The model clearly does not reproduce the
features of the 0.105 S/m data for either the Du (εm) or the Du (σm) fit.
For lower ionic conductivities, the model gives reasonable predictions.
Note however the large difference between the fit parameters for the

Fig. 5. Conductivity and dielectric permittivity of a sandstone saturated with 3 mM NaCl.
The different colors for the symbols represent two different datasets. The red and blue
solid lines show the Maxwell–Wagner relation for uncharged and charged spheres, re-
spectively. We used a = 20 μm and a surface charge of 0.5 C/m2. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. Estimation of Du from measured data. The values obtained for Du for 0.2 porosity
are given in Table 1 as Du(σm) using Du and a as adjustable parameters. (a) Du(σm) used as
fit; (b) Du(εm) used as fit.

Table 1
Values used in the model (see text for details).

σe (S/m) 0.105 0.033 0.015 0.014

a (μm) 7 7 7 7
εe 5000 6000 4000 7000

Du (εm) 0.2461 0.3214 0.4999 0.6095
q0 (C/m2) 1.2 0.5 0.35 0.4

Du (σm) 0.0031 0.2699 0.9753 1.6444
q0 (C/m2) 0.02 0.4 0.65 1.03

Fig. 7. Comparison of measured data and the Maxwell–Wagner expression for charged
spheres.
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0.015 and 0.014 S/m conductivity data. They arise from the unexpected
large differences between the conductivities for these datasets.

4. Models for non-spherical and polydisperse spheres

In the previous section we have shown that the Maxwell–Wagner
and Bruggeman expressions for charged spheres enable to estimate
reasonably correctly the different amplitudes and relaxation fre-
quencies of the complex conductivity of granular systems. The fits were
not perfect for several reasons. One reason is the uncertainty of the
measurement data. Dielectric spectroscopy measurements are very
difficult to perform accurately at low and high frequencies for many
technical reasons. From the results of the previous section, it can be
seen that even small deviations for the conductivity data results in large
changes in the fit results. High frequency inaccuracies in the dielectric
permittivity increment (resulting from inaccuracies in the phase mea-
surement), on the other hand, can better be compensated for. The other
reasons for the discrepancies between the model and the data stem from
the model. In particular, the model was derived assuming that the
particles were all monodisperse spheres. Sandstones can contain poly-
disperse and/or non-spherical particles. In the present section we will
briefly discuss on how to account for non-sphericity and polydispersity.

4.1. Non-spherical particles

The dipolar coefficient Eq. (3) that was used to set-up both the
Maxwell–Wagner and the Bruggeman expressions for charged spheres
can quite easily be extended for charged spheroidal particles. Such
general expression is given as Eq. (1) in [21]. Sen et al. give in the
Appendix of [9] similar expressions for uncharged spheroidal particles
and the associated the Bruggeman expression. Clays can in first ap-
proximation be considered to be either prolate or oblate spheroids [45].
The dipolar coefficients for other geometries are also available [42,43].

4.2. Polydisperse samples

The Maxwell–Wagner and the Bruggeman expressions for charged
spheres can easily be extended to account for polydispersity. Let us
assume that the granular material is polydisperse. For the sake of ar-
gument we only consider a granular material composed of two types of
grains (labeled 1 and 2), but the reasoning be extended to more classes
of particles in a straightforward manner. A relation between the dif-
ferent volume fractions is given by:

= = + + = + + = +V
V

V V V
V

ϕ ϕ ϕ ϕ ϕ1 w
s
w

s s s
w

s
tot

tot

1 2

tot

1 2

(35)
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type 1 and particles of type 2. Eq. (8) gives:
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Each dipolar coefficient can be written:
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which enables to derive the DC conductivity of the polydisperse gran-
ular medium:
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From this equation it appears that the second term on the right-hand-

side will be dominated by the particle type displaying the highest
product (ϕsDu). This could particularly important in the case of shale
sands as the clay fraction particles have typically a smaller size and
higher charge than the sand particles. If their volume fraction ϕs is large
enough, the medium conductivity σm at low salinities will therefore be
dominated by the clay fraction.

5. Conclusion

The low-frequency dielectric spectroscopy (complex conductivity)
of granular material, where grains are typically of micrometer size and
porosity representative for sands and sandstones, is until now always
modeled using theories based on the work of Schwartz [12]. The
Schwartz theory has been incorporated in the Bruggeman–Hanai–Sen
relation to yield the complex conductivity. This Schwartz/Brugge-
man–Hanai–Sen relation has been revised by Bussian [27], to include
the particle's surface conduction. Models have been derived over the
last decades giving expressions for this conduction and incorporated in
the model of Bussian [6,28,11]. Alternatively, a general model Eq. (20),
that we show can be linked to the Maxwell–Wagner relation, has been
proposed and tested on granular material [32,33,41]. None of these
models properly accounts for the polarization of a charged particle in
an electric field as the model of Schwartz only reproduces the numerical
solution found by solving the complete set of electrokinetic equations
[20] for frequencies such that f ≫ fa ≡ D/(2πa2) (see Appendix D).

In 2008, an analytical model was presented that reproduced this full
numerical solution within a few percent [21]. This model has success-
fully applied to suspensions [22,24,25,45]. In the present article, this
model is incorporated into the Bruggeman–Hanai–Sen and Maxwell–-
Wagner relations. We show that there is little difference between the
Bruggeman–Hanai–Sen and the Maxwell–Wagner formalisms for both
charged and uncharged particles. In particular, both formalisms give
the same relaxation frequencies as expected. The Maxwell–Wagner re-
lation for charged spheres is tested on available data from the literature.
We show that the new expressions enable to predict the measured
complex conductivity of various granular material, such as packed glass
beads, sands and sandstones. Contrary to existing theories for granular
materials, the expressions we derived are valid for any particle size,
ionic strength, electric field frequency and no adjustable parameters are
required. All parameters can be assessed independently.

The main assumption made in deriving the theory is that the po-
larization of each grain is not much influenced by its neighbors. We
show that this condition is not restrictive for the data discussed in this
article. Percolation thresholds are not considered, nor is pore clogging.
This implies that the models are valid for porous media in which each
particle (grain) has nearly all of its surface in contact with the elec-
trolyte. In the last section we discuss how the model should be adapted
in the case the particles are of a different size, different shape and/or
have a different surface charge. This extended model should be tested
on for examples shaly sands to prove, as we discussed in Section 4, that
the main contribution to the medium complex conductivity arises from
the particles for which the product (ϕsDu) is highest.
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Appendix A. Maxwell–Wagner (or Clausius–Mossotti) relation for uncharged spheres

We recall how the Maxwell–Wagner relation is derived, as this enables to understand how this relation can be adapted to account for the
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polarization of the grains under the influence of the applied electric field E. The full derivations can be found in [46,47]. Spherical coordinates (r, Θ,
φ) are used.

We consider a system consisting of N non-interacting spheres. Each sphere, which has a complex conductivity σ͠g (equivalently the complex
permittivity is ε͠g) and a dipolar coefficient β͠ , is embedded in a medium of complex conductivity σ͠e (equivalently the complex permittivity is ε͠e). The
electric potential at a given distance of the dipoles is given by:
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where a is the characteristic radius of a particle having a dipolar coefficient β͠ . One can also represent the system consisting of N dipoles and its
surrounding fluid as being an homogeneous medium of dipolar coefficient β͠m and complex conductivity σ͠m, as depicted in Fig. 8. In this case we get
for the electric potential outside this medium:
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where R is the characteristic length of pseudo-homogeneous medium of complex conductivity σ͠m. Laplace equation can be applied to the interior of
the pseudo-homogeneous medium:

< =∼ r RΔΨ ( ) 0in (41)

yielding
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where A is an integration constant. This constant can be eliminated using the standard boundary conditions:
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and one finds:
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Equating Eqs. (39) and (40) leads to:
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where ϕs is the volume fraction associated to the N particles. We then obtain Eq. (8)
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In order to obtain the traditional Maxwell–Wagner relation, it is necessary to assume that
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a relation that is valid for an uncharged sphere of complex conductivity σ͠g [21]. Eqs. (46) and (47) lead to
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This relation is given as Eq. (6) in Sen et al. [9]. As stated by Sen et al. under their Eq. (6), the Maxwell–Wagner relation is also known as the
Clausius-Mossotti or Maxwell–Garnett relation. In most experimental studies the core material of a colloidal particle can be considered as purely

Fig. 8. Left: spheres with radius a of complex conductivity σ͠g in an electrolyte solution of complex conductivity σ͠e. Right: equivalent medium with characteristic lengthscale R of complex

conductivity σ͠m in an electrolyte solution of complex conductivity σ͠e.
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dielectric (non-conducting). This is the case for most silica-based particles for example. The medium can then be seen as an electrolyte solution in
which there are the dielectric holes. Eq. (48) leads to, assuming σg = 0:
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For low volume fractions, the medium conductivity is in good approximation equal to the conductivity of the electrolyte.
Alternatively, it is possible to consider the system as N spheres of complex conductivity σ͠e embedded in an medium of complex conductivity σ͠g.

The porous media in this case is an insulating medium in which there are pockets of electrolyte. One then gets:
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This last equation leads to, assuming σe ≫ σg:
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This last relation implies that the medium is not conducting.
In the case of sands and sandstones, one would be tempted to prefer Eq. (50) over Eq. (48), as intuitively there are more sand grains than water in

these systems. However, the restrictions imposed on Eq. (48) do not depend on the volumetric ratio between grains and water. The two major
hypotheses made to derive Eq. (48) are: (a) the grains are surrounded by electrolyte (this does not mean that the volume of electrolyte should be
more important than the volume of grains) and (b) the interactions between grains are neglected. As discussed by Sen et al., the pore space remains
connected in the first order of approximation in most experimental studies, with the grains touching each other only at or on small, isolated regions
of contact (see p. 784/785 in [9]). This implies that the fluid phase remains continuous to very low values of the porosity (very high values of the
volume fraction) and this validates hypothesis (a). As for hypothesis (b), the major consequence of dipole-dipole interaction is usually that the
dipoles tend to re-orient in the electric field, bringing particles in contact along the electric field lines. This movement is not possible in sand, as the
particles are too large and too compacted to move. Multipole effects can most probably be neglected as well in first approximation and therefore
hypothesis (b) should be quite measurable. Hypotheses (a) and (b) enable to approximate the porous medium as a concentrated suspension of
(spherical) grains which are immobile. Each grain is assumed to have the same dipolar coefficient as it would have without the presence of its
neighbors.

A.1 The shell model

The same mathematical derivations as given in Eqs. (39)–(46) can be applied to evaluate the mean complex conductivity of a charged sphere
surrounded by an electric double layer. The model then obtained is called the shell model [48]. A sketch is given in Fig. 9.

Following the same lines of derivations as above, one can show that:

−
+

=
−

+
σ σ

σ σ
ϕ

σ σ
σ σ2 2

͠ ͠
͠ ͠

͠ ͠
͠ ͠

p

p

g

g

dl

dl
dl

dl

dl

where σ͠dl is the complex conductivity associated to the double layer, σ͠p is the complex equivalent conductivity of the system consisting of the grain
and its double layer (p stands for “particle” in the broad sense) and ϕdl is the volume fraction associated to the double layer of thickness κ−1, hence:

=
+

=
+

≃ −−ϕ a
a κ κa κa

κa
( )

1
(1 1/( ))

1 3 (for large )dl

3

1 3 3

Subsequently the dipolar coefficient of the particle (grain and double layer) can be evaluated from:

=
−

+
β

σ σ
σ σ2

͠ ͠
͠ ͠

͠ p e

p e (52)

The analogy between Eqs. (7) and (52) was already pointed out in [48]. Note that the shell model does not account for the distortion of the double

Fig. 9. Left: spherewith radius a of complex conductivity σ͠g with a double layer of complex conductivity σ͠dl in an electrolyte solution of complex conductivity σ͠e. Right: equivalent sphere

of radius a+ κ−1 of complex conductivity σ͠p in an electrolyte solution of complex conductivity σ͠e.
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layer (or any other layer) under the influence of the electric field, but only its polarization. This implies that the shell model is only valid for large κa.
Additional layers can similarly be added, accounting for example for a Stern layer complex conductivity. This is discussed in Appendix C.

Appendix B. pH dependence of the surface charge

The electric surface potential of the particle can be linked to its surface charge which is a measurable quantity (by titration for example). The
relation between surface charge density qeq(a) and potential Ψeq(a) is given by Gauss’ law:

⎜ ⎟
⎛
⎝

∂
∂

⎞
⎠

=
−

=r

q a

ε ε
Ψ ( )

r a e

eq eq

0 (53)

Solving this equation requires to solve the non-linear Poisson-Boltzmann equation, however there exists a very good approximation for symmetric
monovalent electrolytes [49]:

⎜ ⎟ ⎜ ⎟= ⎡
⎣
⎢

⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
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⎤
⎦
⎥q a ε ε

e
κ

e a
κa

e a
( ) kT 2 sinh

Ψ ( )
2kT

4 tanh
Ψ ( )
4kT

e
eq

0 eq eq

(54)

In most cases encountered experimentally κa≫ 1 and Eq. (54) can be simplified to provide an expression for Ψeq(a):

⎜ ⎟= ⎛
⎝

⎞
⎠

e a a

ε ε κ
Ψ ( )
kT

2 asinh
eq ( )

2 kTe

eq eq

0 (55)

We emphasize that qeq(a) is the surface charge density in the absence of any applied electric field and that this surface charge can be pH/pK
dependent. From the value of qeq(pH, pK) the zeta potential ζ(pH, pK) can be back-calculated assuming that (1) there is no Stern layer and (2) the
shear plane is located at r = a from which one gets

=a ζΨ ( )eq (56)

The salt-concentration dependence in Eq. (54) through the term κ reflects the presence of the double-layer close to the particle's surface, i.e. the
presence of indifferent ions (ions that do not chemically interact with the surface).

The surface charge qeq(a) can be given in terms of charge dissociation parameters. For simplicity, we will consider only one surface dissociation,
given by the generic formulation:

− = − +− +A HAH (57)

The corresponding mass action law for the surface equilibrium is given by:

⎜ ⎟= ⎛
⎝

⎞
⎠

+
−

a K
e aΓ

Γ
exp

Ψ ( )
kTH

A
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eq

(58)

where

= −
= −

+a
K

pH log( )
pK log( )

H

(59)

The total concentration of surface sites reads:

= +−Γ Γ ΓA
0

AH (60)

where the surface charge density originating from the dissociated groups reads:

= − −q a e( ) ΓAeq (61)

Combining the previous equations leads to:

= ⎡
⎣
⎢ + ⎤

⎦
⎥

−
−

K e a
Γ Γ 1 10

exp( Ψ ( )/kT)A
0
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eq (62)

Note that usually one defines [50]

= −
e

Ψ kT [pK pH]ln(10)N (63)

in which case it is possible to write:

= ⎡
⎣
⎢ +

−
⎤
⎦
⎥

−
e a

Γ Γ 1 1
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from which one gets:

=
− −

− +
q a

e e a
e a

( )
Γ exp( [Ψ ( ) Ψ ]/kT)

exp( [Ψ ( ) Ψ ]/kT) 1
N

N
eq

0
eq

eq (65)

In order to solve this equation, one needs an additional equation for Ψeq(a). This relation is provided by Eq. (54) which links Ψeq(a) and qeq(a).
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Appendix C. Inclusion of a Stern layer

Ions in the Stern layer can also contribute to the medium conductivity and will also depend on the existing dissociated surface sites. However,
expressions for including a Stern layer contribution will depend on several factors that are difficult, if not impossible to quantify. To name a few: the
exact position of the shear plane (defining which ions in the Stern layer will be mobile or not), the mobility of the ions in the Stern layer (which is
most probably different from their bulk mobility), the spatial extension of the chemisorbed ions (which will define the inner and outer Helmholtz
plane) [51]. This is why the Stern layer conductivity (which can be in theory a complex number i.e. frequency-dependent) is usually chosen to be an
adjustable variable and included in the dipolar coefficient as an additional shell layer, see subsection the shell model in Appendix A .

In the traditional description of the Stern layer however, the Stern layer is seen as a dielectric medium, with no conductivity. The Stern model is
in this case used to improve the prediction of the surface charge measured by titration (in the absence of applied electric field). One relates the
surface potential Ψeq(a) to the electric potential at the beginning of the diffuse layer Ψeq(a + d) by an unknown Stern layer capacitance CStern

=
− +
q a

a a d
C

( )

Ψ ( ) Ψ ( )Stern
eq

eq eq (66)

When this occurs Eq. (54) should be changed into:
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(67)

as qeq(a+ d) now represents the surface charge at the beginning of the diffuse double layer. Solving the set of Eqs. (65)–(67) together with

+ + =q a q a d( ) ( ) 0eq eq (68)

gives the value of surface charge density of the particle, qeq(a), as function of ionic strength, pH and pK. From the same equations Ψeq(a) and Ψeq(a
+ d) can be obtained. We have yet said nothing about the zeta potential in this case. In Appendix A it was assumed that in the case of no Stern layer,

=a ζΨ ( )eq (69)

In the presence of a Stern layer it is usually assumed that

+ =a d ζΨ ( )eq (70)

As d and CStern remain unknown, changing the position of the shear plane will only affect these parameters, so there is no benefit is discussing its
exact position. The following example gives the surface charge of silica as function of ionic strength assuming that the Stern layer is a dielectric
medium, using the following parameters, taken from [50]:

The traditional description of the Stern layer discussed above is to be adapted when an electric field is applied to the system. It is then usually
assumed that (part of) ions are mobile within the Stern layer in reaction to the applied electric field. This implies that the Stern layer is not a pure
dielectric medium, and that a Stern layer conductance should be accounted for.

A Stern layer conductivity can easily be added to the dipolar coefficient Eq. (3), following the procedure given in the Shell model subsection. This
leads to the new dipolar coefficient [48]:

=
− + − + +
+ + + + −

⊥

⊥
β ω

σ σ σ J J σ σ
σ σ σ J J σ σ

( )
(1 / ) /2

2 (1 2 / )
͠ ͠ ͠ ͠
͠ ͠ ͠ ͠

͠ g e

g e

// 1 2 //
St St

// 1 2 //
St St (71)

where σ͠//
St and ⊥σ͠ St are the (complex) conductivities for the Stern layer parallel and perpendicular to the particle's surface. By fitting data on sus-

pensions, it was found that

= = ×⊥σ σ σSt͠ ͠ e//
St St (72)

where St is a real coefficient, which make both σ͠//
St and ⊥σ͠ St real variables. This choice gives the same local field as when no Stern layer is introduced

and corresponds to what many authors do: St is similar to the Θ2 introduced in [31] and similar coefficients have been used by [52,53].

Fig. 10. Surface charge densities of silica for different pH as a function of the
conductivity of the electrolyte.

A. Kirichek et al. Colloids and Surfaces A 533 (2017) 356–370

367



Appendix D. The Schwartz model

Schwartz [12] was one of the first with O’Konski [14] to develop models for the polarization of colloids. Schwartz's model is still widely used in
the current models of the conductivity of granular material (e.g. [2]). However the model of Schwartz, when applied to the polarization of a double
layer, is by construction limited to frequencies such that f≫ fa where fa is defined in the introduction. As discussed by Lyklema et al. [54], Schwartz
attributed the double-layer polarization entirely to counterions bound to the spherical particle in a thin layer. Exchange between the bulk and the
layer of surface conductivity was assumed to be absent. This explains why the contribution ⊥σ͠ which appears in Eq. (3) is not apparent in the
derivation of Schwartz. Without re-deriving the model found by Schwartz, we will here only show where the differences between the full model (as
found by numerical integration, and correctly reproduced by Eq. (3)) and the model of Schwartz arise. For derivation details, we refer to [12,21].

An alternating electric field Eext of frequency ω is applied along the z-axis. Because of symmetry, spherical coordinates are chosen. The ionic
density n͠k (number /m3) of ion k and the electric potential ∼Ψ (V) can expressed as perturbation around their equilibrium values nk,eq and Ψeq (the
equilibrium is defined as the situation when no electric field is applied):

= +

= +∼ ∼
n n δn iωt θ

δ iωt θ

exp( )cos( )

Ψ Ψ Ψexp( )cos( )

͠ ͠k k k,eq

eq (73)

To first order in the perturbation (neglecting the small products like ∼δn δΨ͠ k terms) the ionic fluxes are given by

⎜ ⎟= − ⎛
⎝

+ ⎞
⎠

∼D n δn θ
n

z eδ θJ
kT

kT cos( ) Ψ cos( )͠ ͠
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k k k

k
k

,eq

,eq (74)

where Dk is the ionic diffusion of ion k and zk its valence, e is the absolute value of the electron charge. The conservation equation yields:


∂
∂

+ =n
t

·J 0͠͠ k
k (75)

From Eqs. (74) and (75), we obtain:
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Each of the last two equations (k = +, k = −) depends on the parallel (along r) and perpendicular (along θ) to the electric field direction:

  += r θ (77)

In Schwartz’ model there is no dependence of the variables on r implying that the term in ∇r is zero. For distances close to r= a one finds, for the ion
k which represents the counterion:

  ⎜ ⎟

⎜ ⎟

= ⎡

⎣
⎢

⎛
⎝

+ ⎞
⎠

⎤

⎦
⎥

= ∂
∂

⎡

⎣
⎢

∂
∂

⎛
⎝

+ ⎞
⎠

⎤

⎦
⎥

∼

∼

iωδn θ D n δn
n

θ z e δ θ

D
a

n
θ θ

θ
θ

δn
n

θ z e δ θ

·cos( ) cos( )
kT

Ψ cos( )

sin( )
sin( ) cos( )

kT
Ψ cos( )

͠ ͠

͠

k k k θ
k

k

k

k k k

k

k

,eq θ
,eq

2
,eq

,eq (78)

This last equation is Eq. (15) in the paper of Schwartz [12]. Re-arranging this equation leads to:
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One can then define a characteristic time τk and frequency ωk (similar to the frequency ωa = 2πfa defined in the introduction)

= =ω D
a τ

2 1
k

k

k
2 (80)

This is the time τk defined by Eq. (50) in [28] and by Eq. (21) in [54]. Note, however, that Lyklema et al. [54] (as we do) use the bulk diffusion
coefficient Dk whereas Leroy et al. [28] introduce a “known Stern layer diffusion coefficient” (text under their Eq. (50)) as Leroy et al. [28] that
consider a particle with a polarizable Stern layer and no diffuse layer. In a later article by the same research group, see [2], the authors state that
“Surface conductivity corresponds to the electrical conduction in the electrical double layer coating the surface of the grains. Apparently, two
contributions can therefore coexist. The first is the electrical conduction in the diffuse layer and the second is the electrical contribution of the Stern
layer as described for instance in the dynamic Stern layer model of [3].” In fact the standard models for the polarization of a charged colloidal
particle in an electrolyte usually only consider the polarization of the double layer, which leads to the surface conductivities ⊥σ͠ and ⊥σ͠ in Eq. (3). The
inclusion of a Stern layer conductivity can be done by adapting the boundary at the particle's surface [55,3], or by the analytical methods detailed in
Appendix C. In the present subsection, we apply Schwartz model to the polarization of the double layer only, and we do not consider a Stern layer.

Eq. (74) yields for the case considered by Schwartz:
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From Eq. (79) one gets
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(82)

This equation is similar to Eq. (49) in [28]. Combining Eqs. (81) and (82) we obtain:
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The electric field ∼Eθ is the local electric field in the vicinity of the particle due to the application of the electric field. It is from this last equation that
most authors define their surface conductivity, see for example Eqs. (55) and (56) in Leroy et al. [28]. Following these authors we define a complex
surface conductivity Σ*S:
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(84)

Contrary to the expression for the surface conductivity σ// we gave in Eq. (4), Σ*S is a complex number and frequency-dependent. The reason is that Σ*S
contains terms proportional to both σ// and ⊥σ͠ . By accounting for both the parallel (along r) and perpendicular (along θ) component in Eq. (76), it
possible to evaluate completely the ionic fluxes. For the full analytical derivation, we refer to [21]. The equivalence between Σ*S and σ// can however
be made in the special case of frequencies such that ω≫ 1/τk. In that case the polarization of the double layer is mainly due to the movement of ions
in the θ direction (parallel to the particle's surface) and there is nearly no influx of ions from the r direction perpendicular to the surface ( ≃⊥σ 0͠ ) that
would lead to an additional contribution in the parallel direction. Eq. (84) gives for ω≫ 1/τk, assuming as in the previous section that |zk| = 1 and
Dk = D


e D n aΣ*
kT

( )S k
2

,eq (85)

A relation between surface charge qeq(a) and zeta potential is given in Eq. (55) of Appendix B. Using the fact that for an infinitely thin double layer,
one has in good approximation qeq(a) ≃ eank,eq(a) (where ion k represents the counterion) and we obtain:
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∞n a n
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e a
( ) 2 exp
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2kTk,eq
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(86)

As, by definition,

= ∞σ e n D2
kTe
2

(87)

we deduce that

= ≫σ ω τΣ* /2 (for 1/ )S k// (88)

The factor 2 appears because in Eq. (84) only counterions were considered, and that by definition the ionic conductivity σe depends on both co- and
counterions (hence the 2 in Eq. (87)). In the present article, we have adopted the definition of σ// used by a large community of colloid scientists,
however, in [21] a different definition was used, in which case Eq. (88) would reduce to = σΣ*S // (for ω ≫ 1/τk).
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