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Abstract We present an improved mascon approach to
transform monthly spherical harmonic solutions based on
GRACE satellite data into mass anomaly estimates in Green-
land. The GRACE-based spherical harmonic coefficients are
used to synthesize gravity anomalies at satellite altitude,
which are then inverted intomass anomalies permascon. The
limited spectral content of the gravity anomalies is properly
accounted for by applying a low-pass filter as part of the
inversion procedure to make the functional model spectrally
consistent with the data. The full error covariance matrices
of the monthly GRACE solutions are properly propagated
using the law of covariance propagation. Using numerical
experiments, we demonstrate the importance of a proper data
weighting and of the spectral consistency between functional
model and data. The developed methodology is applied to
process real GRACE level-2 data (CSR RL05). The obtained
mass anomaly estimates are integrated over five drainage
systems, as well as over entire Greenland. We find that the
statistically optimal data weighting reduces random noise by
35–69%, depending on the drainage system. The obtained
mass anomaly time-series are de-trended to eliminate the
contribution of ice discharge and are compared with de-
trended surface mass balance (SMB) time-series computed
with the Regional Atmospheric Climate Model (RACMO
2.3). We show that when using a statistically optimal data
weighting in GRACE data processing, the discrepancies
between GRACE-based estimates of SMB and modelled
SMB are reduced by 24–47%.
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1 Introduction

One of the primary sources of information about mass varia-
tions of the Greenland Ice Sheet (GrIS) is the Gravity Recov-
ery and Climate Experiment (GRACE) satellite mission.
Using primarily K-band ranging (KBR) data between the
two GRACE satellites, monthly sets of spherical harmonic
coefficients (SHCs) are computed complete to some maxi-
mum degree, e.g. 96 for CSR (the Center of Space Research
of the University of Texas at Austin) RL05 solutions (Bettad-
pur 2012) and 90 for GFZ (GeoForschungsZentrum) RL05
solutions (Dahle et al. 2012). Alternatively, gravity solutions
in terms of mass anomalies per mass concentration block
(“mascon”) have also been released by Jet Propulsion Labo-
ratory (JPL) (Watkins et al. 2015; Wiese 2015; Wiese et al.
2016), Goddard Space Flight Center (GSFC) (Luthcke et al.
2013) andCSR(Save et al. 2016).To cleanKBRdata from the
contribution of high-frequencymass variations, an ocean tide
model [e.g. EOT11a (Savcenko andBosch 2010)], amodel of
non-tidal components of the atmospheric and oceanic mass
variations [e.g. theAtmosphere andOceanDe-aliasingmodel
(AOD) (Dobslaw et al. 2013)] and other background models
are routinely used.

The sensitivity of GRACE measurements is known to be
anisotropic: it is higher in the along-track direction and lower
in the cross-track direction (Condi et al. 2004; Ditmar et al.
2012). A higher sensitivity amplifies data errors, which are
caused, among others, by noise in the data provided by on-
board sensors and imperfectness of background models. As
a result, monthly sets of SHCs are contaminated by strong
north–south “stripes”, with amplitudes that depend on the
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latitude (Wahr et al. 2006). These amplitudes are smaller in
polar areas and larger near the equator (Wahr et al. 2006;
Linage et al. 2009).

In principle, gravity field variations expressed in spheri-
cal harmonics can be converted into mass anomalies at the
Earth’s surface by a spectral transfer using a proper scaling
of SHCs (Wahr et al. 1998). To suppress stripes and high-
frequency noise, low-pass filters and/or de-striping schemes
are typically used (Jekeli 1981; Wahr et al. 1998; Swenson
and Wahr 2006) at a price of a reduced spatial resolution
and distortions in the estimated mass anomalies (Duan et al.
2009).

Alternatively, the mass anomalies can be estimated from
theSHCsusing least-squares techniques. In this case, they are
modelled as a thin mass layer located at the Earth’s surface,
or some approximation of it. The mass layer is introduced
as a constant function over mascons of pre-defined geome-
tries. The geometry of the mascons can be chosen to take
into account existing physical constraints, like the geometry
of the coastal line. A proper choice of the size of the mas-
cons allows for noise suppression without the need for any
additional filtering of the SHCs, e.g. de-striping scheme. This
helps in reducingdistortions in the estimatedmass anomalies.
Luthcke et al. (2006) were the first to use the mascon rep-
resentation to derive mass anomalies over Greenland from
GRACE level-1b data, followed by Luthcke et al. (2013),
Watkins et al. (2015) and Save et al. (2016). To reduce the
numerical complexity, variants of the mascon approach have
been suggested, which use monthly sets of SHCs as input,
e.g. Forsberg and Reeh (2007), Baur and Sneeuw (2011) and
Schrama andWouters (2011). In line with Forsberg and Reeh
(2007) and Baur and Sneeuw (2011), we compute monthly
sets of gravity disturbances at a mean satellite altitude from
the monthly sets of SHCs as data to estimate mass anomalies
per mascon.

Themajor objective of the present study is to develop a sta-
tistically optimal variant of the mascon approach applicable
to the estimation of Greenland mass anomalies. We suggest
a number of improvements upon Forsberg and Reeh (2007)
and Baur and Sneeuw (2011). Two of the major improve-
ments are described here. Firstly, we properly propagate the
full error covariance matrices of monthly SHCs into gravity
disturbances at satellite altitude using the law of covari-
ance propagation. These noise covariancematrices of gravity
disturbances are used in the subsequent least-squares adjust-
ment. We expect a noticeable improvement in the estimated
mass anomalies and their uncertainties, as noise in SHCs
is highly correlated (Swenson and Wahr 2006), among oth-
ers due to the anisotropic sensitivity of the GRACE KBR
data. To address the ill-conditioning of the propagated noise
covariance matrices, we develop an approximate inversion
scheme based on an eigenvalue decomposition. Secondly,
we ensure a spectral consistency between the GRACE-based

gravity disturbances and the unknown mascon parameters.
The spectrum of the GRACE-based gravity disturbances is
limited by the maximum spherical harmonic degree of the
monthly sets of SHCs, whereas the mascon representation
implies that gravity disturbances contain energy at higher
frequencies, too. The spectral consistency has not been con-
sidered in previous studies, which is partially due to the fact
that in these studies scaled unit matrices were used to repre-
sent the data noise.Whenusing full noise covariancematrices
as in this study, spectral consistency between model and data
noise is indispensable to obtain high-quality solutions.

Typically, the mascon approach makes use of regulariza-
tion or other spatial constraints to suppress noise at a price
of introducing a bias in the solution. In this study, no spatial
constraints in the form of regularization are used. Instead, the
size of the mascons is chosen carefully in order to control the
noise.

To demonstrate the performance of the proposed method-
ology, we make use of both synthetic and real data. In the
latter case, we exploit GRACERelease-05monthly solutions
provided by CSR. To investigate the importance of proper
data weighting and for validation, we compare the estimated
mass anomalies with surface mass balance (SMB) estimates
from the Regional Atmospheric Climate Model (RACMO
2.3) (Noël et al. 2015). However, a direct comparison of
GRACE-based and SMB-based mass anomalies is not pos-
sible because the latter time-series lacks the ice discharge
signal. To solve that problem, we estimate and remove linear
trends from both time-series. This is justified because sea-
sonal mass variation signals of Greenland are dominated by
SMB-related signals (van den Broeke et al. 2009).

The remaining part of the paper is organized as follows. In
Sect. 2, we present the statistically optimalmascon approach.
The performance of this approach is demonstrated using sim-
ulated data, which is the subject of Sect. 3. Particularly, we
investigate to what extent the estimates are improved when
incorporating the full noise covariance matrices and ensur-
ing the spectral consistency between the data and the mascon
parameters. In Sect. 4, we present the results of real data pro-
cessing and validate them against SMB time-series. Finally,
we provide a summary and the main conclusions in Sect. 5.

2 Methodology

We propose an improved mascon approach compared to
earlier studies by Forsberg and Reeh (2007) and Baur and
Sneeuw (2011). Section 2.1 describes the exploited func-
tional model, which is forced to be spectrally consistent with
monthly GRACE SHCs. In Sect. 2.2, we discuss a practical
way to divide the territory of Greenland into almost equal-
area patches of irregular shape. The proper choice of the area
over which gravity disturbances at satellite altitude are gen-
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erated is discussed in Sect. 2.3. Section 2.4 describes the
statistically optimal inversion of gravity disturbances into
mass anomalies per mascon.

2.1 Gravity disturbances

Monthly sets of gravity disturbances atmean satellite altitude
are computed from monthly GRACE SHCs using spherical
harmonic synthesis. Then, they are linked to the gravitational
attraction of mascons at the Earth’s surface. Finally, mascon
parameters are estimated using least-squares techniques.

2.1.1 GRACE-based gravity disturbances

In the context of this study, a gravity disturbance � g is under-
stood as the negative radial derivative of the gravitational
potential V , generated by a mass anomaly:

� g = − � V
� r

. (1)

They are linked to a set of GRACE SHCs � Clm and � Slm

complete to degree L as

� gp = GM
r 2p

L�

l=1

l + 1

1 + k′
l

�
a
r p

� l l�

m=0

P̄lm

× �
sin � p)(� Clm cosm� p + � Slm sinm� p

�
, (2)

whereGM is the geocentric constant;a is the semi-major axis
of the reference ellipsoid; (r p, � p, � p) are spherical coordi-
nates of a data point p, which in this study is assumed to be
located at an altitude of 500 km above a mean Earth sphere;
L is the maximum degree of the monthly GRACE solutions;
and P̄lm is the normalized associated Legendre function of
degree l and order m. Notice that the expression contains the
load Love numbers k′

l , which are introduced to eliminate the
effects of the elastic response of the Earth to a load, which is
included in the SHCs. The lateral distribution of data points
is discussed in Sect. 2.3.

2.1.2 Gravity disturbances generated by a set of mascons

Suppose we have N mascons Mi (i = 1, 2, . . . , N). The
surface density (mass per unit area) of mascon i is denoted
as � i . Then, Eq. (1) can be rewritten as

� gp = − �
� r

�

G
N�

i=1
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�
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l p

	

= − �
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�
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(3)

where G is the universal gravitational constant and

Ii , p =
�

Mi

ds
l p

(4)

with l p being the distance between an integration point and
the data point p.

Ii , p has to be computed using numerical integration. Here,
we use a composed Newton–Cotes formula. The nodes are
located on a Fibonacci grid (González 2010). The number of
nodes of mascon i is denoted Ki . Then,

Ii , p ≈
Ki�

j =1

wi j
1

l i j , p
, (5)

wherewi j = Si / Ki with Si the surface area of mascon i . The
distance l i j , p between a Fibonacci point (i , j ) with spheri-
cal coordinates (ri j , � i j , � i j ) and the data point p with
spherical coordinates (r p, � p, � p) can be computed as

l i j , p = (r 2i j + r 2p − 2ri j r p cos � i j , p)
1
2 , (6)

where cos � i j , p = sin � p sin � i j + cos � p cos � i j cos(� p −
� i j ).

Then,

� gp ≈ G
N�

i=1

� i

Ki�

j =1

wi j (r 2i j + r 2p − 2ri j r p cos � i j , p)−
3
2

× (ri j − r p cos � i j , p). (7)

Equation (7) represents the functional model that relates the
gravity disturbances and the surface densities of themascons.
In matrix-vector form, Eq. (7) can be written as

d ≈ A′x, (8)

where x is the vector of surface densities, d is the vector of
gravity disturbances, and A′ is the design matrix. The vector
x is estimated from the vector of gravity disturbances d using
weighted least-squares techniques.

The gravity disturbances of Eq. (2) have a limited band-
width because the monthly GRACE solutions are limited to
a certain maximum spherical harmonic degree. However, the
gravity disturbances of Eq. (7) are not band-limited. Hence,
the functional model, Eq. (8), is not correct as there is a spec-
tral inconsistency between the data and the model. To obtain
a spectrally consistent functional model, we need to apply
a low-pass filter to the design matrix A′, i.e. A′ needs to be
replaced by A, where

A = YA′, (9)
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andY represents the low-pass filter. Without such a low-pass
filter, the short wavelengths of the estimatedmascon solution
would be biased towards zero.

To define a suitable low-pass filter, we need to remember
that each column of the design matrix A′ represents a set
of gravity disturbances caused by a single mascon of unit
surface density. Therefore, the filter operation can be imple-
mented as follows. Firstly, gravity disturbances caused by a
single mascon of unit surface density are computed on an
equal-angular global grid. They are used as input to estimate
a SH model of gravity disturbances complete to some max-
imum degree L > LG using spherical harmonic analysis.
The SH model is truncated at the maximum degree LG of
the monthly GRACE spherical harmonic models and suc-
cessively used to synthesize a column of the design matrix
A, which corresponds to the single mascon. This procedure
has to be followed for every mascon. The result is a design
matrixA, which is spectrally consistent with the information
content in the data and the data noise covariance matrix.

The spectrally consistent analogue of Eq. (8) is written as

d = Ax + n, (10)

where the vector n is introduced to account for noise in the
GRACE-based gravity disturbances. This noise is assumed
to be of zero mean and Gaussian. Furthermore, we assume
that

D{n} = Cd, (11)

where D{·} is the dispersion operator and Cd is the data
noise covariance matrix. The latter is computed on a month-
by-month basis from the full noise covariance matrix of the
monthly SHCs using the law of covariance propagation.

Then, best-linear unbiased estimator (BLUE) �x of the
mass anomalies is

�x = (ATCd
−1A)−1ATCd

−1d. (12)

The BLUE, Eq. 12, is referred to as the “statistically optimal
estimator” in this study.

2.2 Parameterization

The proper choice of the size of a mascon is important to
mitigate noise amplification during the data inversion. To
facilitate experiments with different mascon sizes, we devel-
oped a procedure for an automatic division of the territory of
Greenland into nearly equal-area mascons of a desired size.
The procedure consists of two steps. In the first step, Green-
land is split into latitudinal strips of equal width, which is
chosen to be as close to the desired size as possible. In the
second step, each strip is split into individual mascons of

an approximately desired size using straight segments in the
rectangular projection. The orientation of the segments is
adapted to follow the orientation of the west and east borders
of the current strip. Examples of the resulting parameteriza-
tions are shown in Fig 1. Note that the mascons located at the
Greenland coast are defined in linewith the coastal geometry.

We also define 9 mascons outside Greenland to reduce
leakage of signal from outside Greenland into the Greenland
mascons. These mascons cover Iceland, Svalbard and the
Canadian Arctic Archipelago glaciers, see Fig. 2. It is worth
mentioning that we do not parameterize the nearby ocean
areas, due to a minor impact of oceanic mascons, e.g. at the
level of 7 Gt/year for the trend over 2003–2013, when the
optimal data weighting is applied.

2.3 Distribution of data points

In choosing the altitude of data grid, we followed the sugges-
tion of Baur and Sneeuw (2011): 500 km. Another option is
to use altitudes between 480 and 500 km in order to address
the decrease in orbital altitude of the GRACE satellites, as
was done by Forsberg et al. (2017). Numerical studies (not
shown here) reveal that this leads to similar estimates (around
10 Gt/year in terms of trend over 2003–2013) when the data
weighting is switched on. We attribute the observed minor
differences to the fact that the applied data processing strat-
egy, including the truncation of the spectrum of the matrix
Cd, was fine-tuned for the grid altitude of 500 km.We expect
that fine-tuning of the data processing for grid altitudes cho-
sen consistently with actual GRACE orbits would reduce
these differences further. This was out of the scope of this
study, butmay be the subject of future research. The data area
comprises Greenland and a buffer zone of 800 km around
Greenland. The use of a buffer zone is justified by the fact
that each gravity disturbance at satellite altitude is sensitive
to a mass redistribution in a neighbourhood of a few hundred
kilometres around that point (Baur and Sneeuw 2011). Thus,
defining the data area in such a way ensures a more compre-
hensive representation of the target signals. The data points
are located on a Fibonacci grid with a mean distance of 37.5
km. Additional data points on the oceans, but outside the
data area are introduced for reasons discussed in Sect. 3.2.2.
They are located on a Fibonacci grid with a mean distance
of 2000 km. The total number of data points is 6953 with
6867 points inside the data area and 86 points in ocean areas
outside the data area.

2.4 Data inversion

The full noise covariance matrix of the GRACE-based grav-
ity disturbances, Cd, is ill-conditioned and possesses a
gradually decreasing eigenvalue spectrum with many eigen-
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Fig. 1 Partitioning of Greenland into 23 (size about 300 × 300 km), 36 (size about 250 × 250 km), 54 (size about 200 × 200 km) and 95 (size
about 150 × 150 km) mascons, respectively
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Fig. 2 Mascons outside Greenland used in this study

values close to zero. Therefore, some kind of regularization
is needed before this matrix is inverted. Here, we use an
eigendecomposition to compute an approximate inverse, i.e.

Cd = Q� QT, (13)

where Q is a unitary matrix which contains the eigenvectors
of Cd and � is the square diagonal matrix of eigenvalues of
Cd. In Appendix A, we show that the matrices Q and � can
be computed without an explicit computation of the matrix
Cd, which helps to minimize the loss of significant digits.

Formally, the inversion of the matrix Cd can be written as

Cd
−1 = (Q� QT)−1 = Q� −1QT. (14)

However, many eigenvalues of the matrix Cd are small,
reflecting the ill-conditioning of this matrix. Therefore, an
approximate inverse of this matrix is computed as follows.
The matrix � is truncated in such a way that only the eigen-
values exceeding a pre-defined threshold are retained:
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� t = J� JT, (15)

where J = [I 0] is the truncation operator with I being a unit
matrix and � t is the resulting diagonal matrix, containing
a truncated set of eigenvalues. By retaining only sufficiently
large eigenvalues, we stabilize the computation of the inverse

of the matrix � t. An approximate inverse ˜� −1
of the original

matrix � is obtained by replacing the missing elements with
zeros:

˜� −1 = JT� −1
t J. (16)

After that, we define the approximate inverse C̃−1
d of the

matrix Cd as

C̃−1
d = Q ˜� −1

QT = QJT� −1
t JQT = Qt� −1

t Qt
T, (17)

where

Qt = QJT (18)

is the truncated matrix Q containing only the eigenvec-
tors related to the retained eigenvalues. Then, according to
Eq. (12), the weighted least-squares solution �x is

�x = (ATC̃−1
d A)−1ATC̃−1

d d

= (ATQt�
−1
t QT

t A)−1ATQt�
−1
t QT

t d

= (BT� −1
t B)−1BT� −1

t QT
t d, (19)

where

B = QT
t A. (20)

This solution is still unbiased, but strictly spoken not a min-
imum dispersion solution.

3 Numerical experiments

We do a number of numerical experiments to investigate
the performance of the improved mascon approach and to
fine-tune some data processing parameters. In Sect. 3.1, we
present the basic set-up of the numerical experiments. Sec-
tion 3.2 is devoted to a presentation and discussion of the
results. The importance of the spectral consistency is dis-
cussed in Sect. 3.3.

3.1 Experimental set-up

The basic set-up used in all numerical experiments includes
the definition of (i) the “true” signal and (ii) the error sources.

3.1.1 “True” signal

We define the “true” signal as the yearly mass change, which
is determined on the basis of trends extracted from ICE-
Sat altimetry data (see Table 1) (Felikson et al. 2016). As
shown in Fig. 3, these trends represent the mean rate of mass
change over the period 2003–2009 per 20 × 20 km patch
covering entire Greenland, converted from the surface eleva-
tion change rate by applying a density of 917 kg/km3 (Wahr
et al. 2000). This signal is directly used to compute the mass
anomaly per mascon as “truth”. Using the proposed mas-
con approach, we generate gravity disturbances at satellite
altitude from the ICESat altimetry data. Thereafter, we low-
pass-filter them to limit the spectrum to spherical harmonic
degrees from 1 to 120. Finally, we estimate mass anomaly
per mascon and compare with the “truth” to evaluate the per-
formance of the methodology.

There ismuch freedom in the definition of the “true” signal
in the presence of secular trends. The “true” signalmay reflect
total mass change over an arbitrary time interval, ranging
fromonemonth tomanyyears. The choice of the time interval
determines the contribution of error sources like signal leak-
age and parameterization errors to the overall error budget.
If the time interval is short (e.g. one month), signal leakage

Table 1 A summary of data used in this study

Data Role Temporal resolution Spatial resolution Pre-processing

ICESat elevation
change rate

Simulating the true signal 2003–2009 20-km blocks –

GRACE SHCs from DMT Simulating signal
leakage

Month Degree 120 –

GRACE SHCs from CSR RL05 Real data Month Degree 96 –

Surface mass
balance from
RACMO 2.3

Validating estimates Daily 11-km blocks Resampled to monthly
mean SMB for each
drainage system and
entire Greenland
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Fig. 3 The “true” signal defined as the yearly mass change over the
GrIS, in terms of EWH in units of metres

and parameterization errors may be small compared to the
data noise. However, the relative contribution of these error
sources to the overall error budget increases with increasing

time interval. In this study, we define the “true” signal as the
yearlymass change, which represents a kind of intermediate
choice between the two extremes of a monthly signal and a
multi-year signal. Our time interval is somewhat shorter than
that considered in the study by Bonin and Chambers (2013),
which was set equal to 4 years. In any case, the amplitude
of the true signal in real GRACE data processing may differ
depending on the signal of interest, which may range from
short-term mass variations to long-term trends.

3.1.2 Error sources

The data generated in the previous section are superimposed
by errors. In this study, we consider 4 error sources, i.e. sig-
nal leakage, AOD noise, random noise in GRACE-based
SHCs and parameterization error. The latter is also some-
times referred to as “model error” (e.g. Xu 2010; Stedinger
and Tasker 1986).
3.1.2.1 Signal leakageIn this study, signal leakage refers
to the impact of mass variations from outside Greenland on
the estimated mascons. To simulate signal leakage, we intro-
duce mass variations in Alaska, northern Canada, northern
Russia and Fennoscandia, see Fig. 4. The “true” signal over
these areas is also defined as the yearly mass variation. It
is generated using the available optimally filtered trend over
2003–2008 based on the Delft Mass Transport (DMT)model
(Siemes et al. 2013).

Fig. 4 Mascons used to
simulate signal leakage. The
value of each mascon is the full
signal generated using the trend
over the period 2003–2008
derived from the DMT model, in
terms of EWH in units of metres

 150
°  W

 1
20

°  W

  90
° W

  60 ° W

  30 °
 W

   0°
  30

°  E

  6
0

°  E

  9
0

°  E

 120 ° E

 150 °
 E

 180° E

 40° N  

 60° N  

 80° N  

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

123



J. Ran et al.

3.1.2.2 AOD noiseAOD noise refers to errors in the back-
ground models, which are used to reduce non-tidal mass
transport in the atmosphere and ocean. AOD error is consid-
ered to be one of large error sources in the monthly solutions.
Here, we also take 10% of the difference of twoAODmodels
separated by one year as the AOD noise, in line with the def-
inition of the true signal (yearly mass accumulation). To that
end, we choose AOD models in August of 2005 and 2006,
because this period is roughly in the middle of the true sig-
nal (ICESat trend over 2003–2009). Based on our numerical
study, we find that the AOD noise plays a minor role. There-
fore, there would be negligible impact if a different time
interval were chosen. Defining the AOD error as 10% of the
AOD model signal is believed to be a reasonable choice, in
view of previous studies (Thompson et al. 2004; Ditmar et al.
2012).

3.1.2.3 Random noiseWeassume that the yearlymass change
is the result of the difference between two monthly solutions
separated by a time interval of one year. Furthermore, we
assume that there is no noise correlation between monthly
solutions. This implies that the random noise in the gener-
ated yearly mass change can be set equal to the noise in a
monthly solution multiplied with a factor of

√
2. First, we

generate a vector n of zero-mean white Gaussian noise with
unit variance; the length of n is equal to the number of SHCs.
Then, a realization of correlated noise with the covariance
structure of the matrix C� p is obtained as

nc = Ln, (21)

where L is the lower triangular Cholesky factor of the noise
covariance matrix C� p of GRACE monthly SHCs:

C� p = LLT. (22)

In this study, the noise covariance matrix is complete to
degree 120. It describes the noise inGRACESHCs inAugust
2006 and was produced together with the DMT model. Note
that the noise in the degree-one coefficients is not included.
One hundred random noise realizations are simulated in this
way in order to make the results of the numerical study more
representative. Figure 5 shows one of these noise realizations
in terms of EWH (equivalent water height).

3.1.2.4 Parameterization errorsParameterization errors are
caused by the fact that the adopted parameterization assumes
a uniform surface density distribution within each mascon,
whereas the actual distribution within a mascon may spa-
tially vary. Here, parameterization errors are automatically
introduced, as the “true” signals are generated with ICESat
altimetry data with a spatial resolution of 20 km, which is
much finer than the mean size of a mascon.
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Fig. 5 The top panelshows the AOD error, which is taken as 10%
of the difference between August 2005 and August 2006. The bottom
panel is a realization of simulated random errors based on the DMT
noise covariance matrix of spherical harmonic coefficients for August
2006. (The matrix is complete up to degree 120.) The units are metres
of EWH

3.2 Choice of the optimal data processing strategy

There are a number of choices to be made when using the
improved mascon approach:

– the size of the buffer zone around Greenland;
– the number of additional data points in the oceans outside
the data area;

– the number of mascons covering entire Greenland;
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Table 2 Optimal set of
parameters for the estimation of
total mass variations of entire
Greenland

Options Optimal choice

Width of the buffer zone around Greenland 800 km

Using additional data points over the global oceans Yes

Number of mascons within Greenland 23

Optimal data weighting applied Yes

Number of eigenvalues retained in the approximate inversion of Cd 600

Spectral consistency maintained Yes

Fig. 6 Buffer zones around Greenland considered in this study

– the choice of the least-squares estimator (i.e. ordinary
least-squares versus weighted least-squares);

– the number of eigenvalues to be retainedwhen computing
an approximate inverse of the noise variance–covariance
matrix Cd.

In a series of numerical experiments, we have investigated
various choices. For each choice, 100 solutions have been
computed each using a different random noise realization.

Other error sources were kept the same in all experiments.
Each solution has been converted into mass anomalies per
mascon (in Gt) and then summed up over all “Greenland”
mascons to yield the total mass anomalies over entire Green-
land. The total mass anomalies are then compared with the
“true” ones; the RMS difference between estimated and true
total mass anomalies is used as a measure of the quality of
the solution.
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In this way, we found the optimal choice of the various
parameters mentioned before, which is shown in Table 2. In
the next sections, we show how the inversion results dete-
riorate if a suboptimal choice is made. In each test, only
one parameter is changed. Regarding data weighting, we
always compute two solutions: aweighted least-squares solu-
tion (weight matrix is the inverse of the full noise covariance
matrix) and an ordinary least-squares solution (weightmatrix
is the unit matrix).

3.2.1 Width of the buffer zone around Greenland

It is well known that a buffer zone beyond the area of inter-
est is necessary (Baur 2013). In this study, the extension is
referred to as the buffer zone. To investigate the impact of
the choice of the buffer zone on the estimated mass anoma-
lies over entire Greenland, we consider buffer zones varying
from100 to 1400 km (cf. Fig. 6). For each choice of the buffer
zone aweighted least-squares solution and the ordinary least-
squares solution are computed. The other parameters are set
equal to the values shown in Table 2. The resulting RMS
error of the recovered Greenland mass anomalies is shown
in Fig. 7. Using a weighted least-squares estimator, the RMS
error is minimum for a 800-km buffer zone, though other
choices only increase the RMS error with a few Gt. From
this we conclude that when using a proper dataweighting, the
solution is quite robust against the choice of the buffer zone.
The situation is different when an ordinary least-squares
estimator is used. The smallest RMS errors are obtained
for buffer zones larger than 600 km with little variations.
For smaller buffer zones, however, the RMS errors increase
quickly and attain values which are a few tens of Gts higher
than the minimum. Overall, the RMS error of a weighted
least-squares solution is always smaller than the RMS error
of an ordinary least-squares solution.

3.2.2 Using data points distributed over the oceans globally

GRACE-based SHCs at very low degrees (particularly at
degree 2) are relatively inaccurate. In principle, the imple-
mented data weighting should suppress noise which origi-
nates from these low-degree coefficients (Chen et al. 2005).
However, in regional studies as considered here, the contri-
bution of different low-degree SHCs cannot be separated.
Therefore, any attempt to suppress noise in the very low-
degree SHCs may introduce a bias in the estimated mass
anomalies over entire Greenland. For instance, eliminating
the C20 may reduce the estimated trend over 2003–2013 of
GrISmass variation by∼18Gts. To avoid such a bias, we add
additional data points. To avoid that they capture signal below
them, and they are confined to the oceans. Figure 8 shows
the geographic location of these additional data points.
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Fig. 7 RMS error of estimated mass anomalies as a function of the
buffer zone size.Redwith dataweighting,greenwithout dataweighting.
Different vertical scales are used when plotting the redand green curves
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Fig. 8 Location of additional data points over the oceans. The mean
distance is about 2000 km

The additional data points are located on a Fibonacci
grid with a mean distance of about 2000 km. Solutions are
computed with and without the additional data points. A
comparison of these solutions reveals that the added value
of using additional data points is 0.02%when using ordinary
least-squares and 0.5% when using weighted least-squares.
Though the improvement is minor, we recommend to add
additional data points in regional studies. The numerical
complexity does not change much as the total number of
extra points is very limited.

3.2.3 Optimal number of mascons over Greenland

In this test, we split the territory ofGreenland intomascons of
different sizes: from approximately 300×300 km to approx-
imately 150 × 150 km, which corresponds to the number of
mascons ranging from 23 to 95 (see Fig. 1). In addition, we
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