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Abstract

In this paper, the use of an absorbing boundary condition (ABC) is investi-
gated for the numerical simulation of free surface water waves. An enhanced
type of an ABC based on the first- and second-order Higdon boundary con-
ditions is presented. The numerical implementation of the ABC using a
staggered grid arrangement is explained in detail. Numerical examples are
provided to demonstrate the performance of the proposed boundary condi-
tions.

Keywords: local absorbing boundary condition, regular and irregular water
waves, Higdon boundary condition, dispersive effects, directional effects

1. Introduction

Since the 19th century when first wave theories were proposed, under-
standing the motion and behavior of the waves in nature has been a very
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popular subject among researchers from various fields of science. Never-
theless, even today when we have highly capable numerical methods and
computational power at our disposal, particular aspects of numerical mod-
eling of water wave propagation remain a formidable challenge. Typically
the phenomena of interest are local but embedded in a vast spatial domain;
for example, the interaction between free surface waves and numerous kinds
of man-made structures in the ocean. For efficient computational model-
ing, this vast spatial domain around the region of interest is truncated via
artificial boundaries, which suggests that a compact computational domain
around the structure and a residual infinite domain are introduced. At this
point, one of the most elusive and difficult topics surfaces when we try to an-
swer this question: What is the boundary condition to be imposed on these
artificial boundaries in such a way that the solution in the compact domain
coincides with the solution in the original domain?

In the literature the boundary conditions applied on the artificial bound-
aries are called by various names, such as non-reflecting, absorbing, open,
transparent and radiating boundary conditions. Throughout the rest of this
paper we will use the term Absorbing Boundary Condition (ABC). Several
types can be listed under the wide variety of ABCs: Nonlocal, semi-local or
local operators, numerical dissipation zones and Dirichlet-to-Neumann (DtN)
map based conditions.

Each type of ABC has significant amount of work behind it since a large
number of researchers from different fields extended earlier works in various
directions over the last few decades. This has resulted in a substantially broad
literature. Fortunately, there are a number of good reviews. For a review
regarding only high-order local ABCs, see [19]. [18] and [52] present lengthy
overviews of local and non-local ABCs along with other artificial boundary
conditions. Also, [26] offers a survey of exact ABCs. [9] discusses the use
of ABCs and numerical dissipation zones suitable especially for compressible
turbulent shear flows. For a review of ABCs and perfectly matched layers
(PML) for wave propagation problems, the reader is referred to [1]. Several
techniques to absorb free surface waves are briefly discussed by [48].

In order to state our motivation for the work presented in this paper,
we will first lay out some requirements which are relevant for free surface
water wave simulations, coastal and offshore applications. We will walk in
the footsteps of [20], and present the criteria which a new ABC is expected
to fulfill. We will give our comments together with his remarks written in
italic form. In the mean time we will keep in mind the work by [48] and [60]
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which discuss properties of different types of ABCs with respect to a number
of criteria.

1. Well-posedness: The problem in the domain including the implementa-
tion of the ABC on the artificial boundary is well-posed. Well-posedness
of an initial-boundary value problem (IBVP) needs to be addressed be-
fore discretization, and a number of classical references are available in
that regard, e.g., [37], [50] and [32]. The starting point of our work will
be the Higdon ABC given in Eq. (6), and the well-posedness of the
IBVP with the Higdon ABC was studied by several researchers, e.g.,
(31, 48, 45].

2. Accuracy on the continuous level: The amount of spurious reflection
due to the ABC' is small. Theoretically speaking it is possible to reduce
the amount of reflection by setting the order of an ABC as high as
possible. But is that really necessary? In numerical simulations of
relevant practical situations around five percent reflection is generally
acceptable since this amount is also encountered in experimental basins
and flumes. Therefore it may not be necessary to apply a high-order
ABC for the sake of very small amount of reflection. Hence the 1st- and
2nd-order Higdon ABCs will be the starting point in our derivation.

3. Scheme compatibility: The ABC on the boundary is compatible with the
numerical scheme used in the domain. Overall scheme compatibility
can be a strict limitation for an ABC. For example, some ABCs in the
literature are applicable only in spherical coordinates, and/or in 2D
and/or 3D, e.g., the Grote-Keller ABC [23, 24] is designed in spherical
coordinates and is inherently 3D. For us it is of critical importance that
the ABC is applicable both in 2D and 3D, and can be discretized on a
rectangular Cartesian grid. In Section 3.5 we will present the ABC in
discrete form, and explain how easily the ABC is incorporated into the
framework of the overall numerical method.

4. Stability: The ABC does not allow any unwanted modes which propa-
gate into the computational domain. Stability of an ABC, or any other
boundary condition, is very critical since it provides a clear indication
for a potentially successful or unsuccessful computation. For the sake
of brevity, we will not discuss the stability of the proposed ABC in this
paper. For that purpose the reader is referred to [12].

5. Accuracy on the discrete level: The error due to the numerical im-
plementation of the discrete ABC is small. Even though an ABC is
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accurate on the continuous level, it may not be so on the discrete level.
[20] discusses this and reports that, for example, the Perfectly Matched
Layer (PML) by [3] suffers from such an issue. In Section 4 we will
present results from numerical tests, and show that the error produced
by the use of the discrete ABC is at an acceptable level.

. Efficiency: The application of the ABC on the boundary does not in-
crease computational cost significantly. This is where the decision of
using a local ABC rather than any other type of ABC becomes more
clear. With local ABCs it is possible to locate the artificial boundary
close to the area of interest, and hence reduce the amount of computa-
tional work to obtain a solution. This is not the case for some of the
other ABCs, for example, with the damping layer where large zones of
one or more wavelengths are usually added to the domain [59]. Such
implementation requires considerable computational effort especially
in 3D, which renders the method inefficient. The ABC we will present
does not require a large computational effort. This will be shown in
Section 3.5. This property also holds when the ABC is applied in 3D.
The cost of using the ABC on the boundary is proportionate to the cost
of solving the governing equations within the interior of the domain.

. Ease of implementation: The ABC' is easy to apply, and resulting nu-
merical code is maintainable. Implementation of an ABC is generally
not rudimentary. When several properties in this list are set out to
be satisfied, the resulting ABC gradually becomes more complicated.
Nevertheless we will demonstrate later in this chapter that consider-
ing the overall properties of the presented ABC, the difficulty of its
numerical implementation is only commensurate.

. Generality: The ABC performs well in a wide variety of applications.
The ABC designed here is not a general ABC which is suitable for
a large class of problems. The main focus in this work is to account
for dispersive and directional effects of free surface waves in an arbi-
trary water depth in a 3D domain. Another goal is to design an open
boundary condition which allows waves to travel in and out of the do-
main over the same boundary. This is especially needed when there
is a structure in the domain. At the moment, it is not clear how to
deliver this property with other type of ABCs due to the fact that an
in-depth discussion on this topic has been made only by a small num-
ber of researchers, e.g., [6, 40, 53, 42, 62]. In the literature, various
types of boundary conditions have been used for both wave generation
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and absorption. For example, Carpenter’s scheme used the radiation
operator by [49], which was later replaced with the high-order operator
of [29] by [43]. [40] used a sponge layer method, which increased com-
putational cost to some extent. This method has also been successfully
implemented by various researchers, e.g., [51, 16]. As a strong empha-
sis on efficiency is made in the sixth criterion, we realized that local
operators are more suitable in developing an open boundary condition
in an efficient manner; see [12] for further discussion on this matter.
Furthermore, combined wave-current flow is an interesting challenge
for any type of ABCs; work is currently underway on this topic; see [7].

The first four criteria in the list are somewhat associated with convergence
of a numerical scheme. Naturally this can be demonstrated more readily once
the ABC is applied. [20] states that most of the work in this field has focused
on the combination of properties 5 and 6. Designing an ABC which satisfies
all the criteria above remains a formidable challenge. Therefore, as many
researchers, we made some compromises when it comes to some properties,
and tried to deliver an ABC which accomplishes the most needed goals in an
efficient manner. The novelty of the proposed ABCs lies in the properties 5,
6 and 8. Essentially, two local ABCs will be proposed that can account for
dispersive and directional effects of free surface water waves in a reasonably
accurate and efficient manner. The ABCs will be based on the first- and
second-order Higdon operators, and only up to second-order derivatives will
appear in the final discrete forms. Furthermore, the design of the ABCs will
be flexible such that further improvements can be made in the future. These
features will be demonstrated throughout several sections in the rest of this
paper.

The absorbing boundary conditions presented in this paper have been
incorporated into a numerical method called ComFLOW. ComFLOW was
initially developed to simulate one-phase flow. Later, implementation of
the method was extended to a wider class of problems after improving the
method to model two-phase flows; see [61]. Simulation of sloshing on board
spacecraft [57], [17], [55]; medical science [41], [44]; p-gravity biology ap-
plications [46]; engineering problems in maritime and offshore industry [5],
[10], [34], [36], and [39] are among those where ComFLOW has been gen-
erally used. The reader is referred to [56] and the ComFLOW website
(www.math.rug.nl/~veldman/comflow /comflow.html) for an overview of the
current status of the method.



The rest of the paper is organized as follows. Section 2 presents an intro-
duction to the topic of local absorbing boundary conditions. Design of the
ABC is explained in a comprehensive manner in Section 3. After establishing
the statement of the problem first, this section continues with discussions on
the dispersion relation, theoretical reflection coefficient, and numerical dis-
cretization of the ABC. In Section 4 results of numerical experiments are
presented in order to fully demonstrate the performance of the ABC.

2. Absorbing boundary conditions

For convenience we will present a short introduction to the first hierarchy
of local absorbing boundary conditions developed by [15]. This work can
be considered as one of the cornerstones in the field of absorbing boundary
conditions, and is essentially related to the ABC that we will design later
in this chapter. We start the discussion by considering the two dimensional

wave equation
0? 0? 0?
= (Gt o g
ot ox dy
where c¢ is the propagation or phase speed. Solutions of this equation are
plane waves which have the following form

¢ (w,y,1) = ebarthmw=en (2)

where w is the frequency and (k,, k,) are the components of the wave number
vector in the x- and y-directions, respectively, k = (k,, k,). Substitution of
Eq. (2) in Eq. (1) results in the following expression

w? = (Kl + k) (3)

which is called the dispersion relation. Left-running waves, like reflections at
a right-hand side boundary at a location along the x-direction, are suppressed

by demanding
0 0

(E + c%> ¢ =0. (4)

This condition, studied by [49], has been proposed as a non-reflecting bound-
ary condition by [15]. Higher-order versions can simply be formed by using



powers of the left-hand side operator. The 2nd-order Engquist-Majda bound-
ary condition then takes the following form

) o\?

Switching to the three-dimensional case, [31, 33] showed that it is possible
to allow the wave under an angle of incidence o with the outflow boundary. In
the higher-order conditions even more angles can be chosen: o, p=1,..., P
where P is the order of the boundary condition. Higdon’s condition reads:

P
H (cos ap% + c(%)¢ = 0. (6)

p=1

Y

In order to assess the benefit of using Eq. (6) as opposed to Eq. (5), we
need to take a look at the amount of spurious reflection generated by each
scheme as a function of the angle of incidence. For this purpose we utilize
the idea that at the artificial boundary, we can express the solution as the
sum of outgoing and reflected waves, that is

¢ ((L’,y,t) = ei(kg;x-i-kyy—wt) + Rei(—kzx—&-kyy—wt)’ (7)

where the first term represents the wave with amplitude equal to unity im-
pinging on the boundary, and the second term represents the spuriously
reflected wave with amplitude R. To evaluate R, we substitute Eq. (7) into
the 1st- and 2nd-order Engquist-Majda boundary conditions, and arrive at
the following relation

1 —cosét
R = |—
| Reear| ‘1+cos€ ’
2 (®)
R = 1 —cosf
BEM=21 =17 1 cos 0|

Here Rpgar—1 and Rpg—2 denote the amount of spurious reflection corre-
sponding to the 1st- and 2nd-order Engquist-Majda boundary conditions,
respectively, and 6 is the 'real’ angle of incidence measured in the clockwise
or counter-clockwise direction from the positive z-direction, |0| < m/2. If Eq.



(7) is substituted into the general Higdon boundary conditions Eq. (6), the
following reflection coefficient is obtained

b
|Ru| = H

p=1

cos ay, — cos 0

. (9)

cos ay, + cos 0

Observing Eq. (8) it can be readily seen that the Engquist-Majda bound-
ary conditions are non-reflecting when the waves are approaching in the nor-
mal direction to the boundary, § = 0. If the waves approach the bound-
ary at nonnormal angles of incidence, then |Rggn—o| < |Rrgar—1] holds for
10| < 7/2. When |0| = /2, both boundary conditions provide full reflection.
This result is of no consequence since it corresponds to the case where waves
propagate parallel to the boundary, which is redundant with our discussion.
On the other hand, Higdons boundary condition (6) is non-reflecting as soon
as 6 equals one of the +a,,’s. Hence, it is possible to adapt the choice of a
to any situation at hand.

[-- E&M-1 111111 E&M-2 = = = H-1 —— H-2
T T T T T T
l |
0.8
06
x
0.4
0.2f
0 ------- iy -..—-v '''' =TT .;‘ el NEWRE A‘I [NARR)
| | | | | | | |
0 10 20 30 40 50 60 70 80 £

Angle of incidence 6

Figure 1: Reflection coefficient of four boundary conditions versus the angle of incidence.
E&M —1 and E&M — 2 stand for the 1st- and 2nd-order Enguist-Majda ABC, and H — 1
and H —2 the 1st- and 2nd-order Higdon ABC. oy = 30° is chosen for the 1st-order Higdon
ABC, and oy = 0°, g = 45° for the 2nd-order Higdon ABC.

The reflection coefficient as a function of the angle of incidence for the
1st- and 2nd-order Enguist-Majda and Higdon ABCs is illustrated in Fig.



1. Clearly the 2nd-order methods are superior to lst-order ones. Among
the four methods the 2nd-order Higdon is the most effective. The choice of
a; = 0° as = 45° appears to give the best overall performance for waves
striking the boundary under the range of angles between # = 0° and 6 = 50°.

Similar efforts have been made by other researchers to design high-order
local absorbing boundary conditions. For example, [2] developed a high-
order local boundary condition in spherical coordinates. Theoretically, these
high-order boundary conditions have an arbitrary accuracy which increases
as the order of the conditions increases. However, they include high-order
spatial and temporal derivatives, which eventually compromises the locality
of these conditions. Furthermore numerical implementation starts to become
a serious bottleneck since discretizing an arbitrary Pth-order differential op-
erator is unpractical. Indeed [25] notes that only up to 2nd-order conditions
are most commonly used in practice. Nevertheless the above boundary con-
ditions have been used in practical applications and satisfactory results have
been achieved in many cases [20].

In order to circumvent the difficulty of having high-order derivatives as-
sociated with a high-order boundary condition, [8] introduced the use of
auxiliary variables imposed on the artificial boundary. The Collino bound-
ary condition of arbitrary order does not involve any high derivatives beyond
2nd-order. Many high-order local absorbing boundary conditions today uti-
lize the idea of auxiliary variables as the basis in their design, e.g., [27], [21]
and [29]. Thus [19] claims that [8] can be regarded as the pioneer of the
practically high-order local absorbing boundary conditions.

In addition to directional effects of the waves, dispersion has also been
the focus of many researchers. Considering the highly nonlinear governing
equations which are employed in many complex modeling applications, it is
unlikely to have a priori knowledge regarding the phase speed c. As a result
c is generally computed during the course of the numerical simulation. [47]
suggested the following idea to compute ¢

99/t
T 0¢/0x

Clearly this expression is found from the boundary conditions (4) itself, and
makes sense only in the discrete form. To discretize the right-hand side, he
suggested using the information near the boundary at the previous time step
via suitable finite difference approximations. An obvious problem is that we
may encounter unphysical values from this computation. When the angle of

(10)
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incidence increases, i.e., the waves are rather oblique, the normal derivative
approaches zero, which results in an infinitely large value for c. Furthermore
if ¢ < 0 is obtained, then this implies that information propagates back into
the domain instead of outside. If these unphysical values are in turn used
with the boundary condition, numerical instability will occur. Therefore, in
practice, a restriction on c¢ is imposed for stable solutions, for example when
explicit leapfrog time differencing and upstream space differencing are used
in discretizing the boundary condition, then ¢ is bounded to satisfy the CFL
condition, 0 < ¢ < At/Axz. [11] investigated the use of Orlanski’s scheme in
numerical simulations of shallow water waves, for which ¢ has the well-defined
value of \/gh. They report that the scheme rarely yields a meaningful value
for ¢ because computed values of ¢ often fall outside the stability limit, and
have to be reset to either zero or At/Az. In the spirit of Orlanski’s work
various schemes have been developed to approximate ¢ in a more accurate
and stable fashion. For a survey of those schemes the reader is referred to
the work of [30] and [35].

Other attempts have also been made to incorporate the dispersive na-
ture of the free surface waves into the construction of absorbing boundary
conditions. The main trend among researchers seems to be using high-order
local ABCs, e.g., [22] and [28] where auxiliary variables are utilised to elimi-
nate high-order derivatives in the high-order ABCs, see [38] for a comparison
between the two works for a dispersive one-dimensional medium.

3. Design of the ABC

3.1. Statement of the problem

If we consider water as a homogeneous, incompressible, viscous fluid, we
can describe fluid motion in an arbitrary domain by the continuity equa-
tion and the Navier-Stokes equations written in a conservative form as the
following,

Jq{u-ndr—o, (11)

r

Ju

1
—dQ+ 7{ uu’ - ndll = —~ f (pn — pVu - n)dF—Fj{ Fd<. (12)
o Ot J pJ Q

In Eqns. (11) and (12), 2 denotes a volume with boundary I' (see Fig. 2) and
normal vector n, u = (u,v,w)” is the flow velocity, p is the fluid density, p
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is the pressure, p is the dynamic viscosity, V is the gradient operator and
F = (F,, F,, F.)" represents external body forces acting on the fluid such as
gravity, centrifugal, Coriolis and electromagnetic forces. In-depth analysis of
how these equations are implemented is beyond the scope of this paper, and
the reader is referred to the following works for that purpose, e.g., [58] and
[36]. However, we will briefly explain the adopted solution technique since
some intermediate expressions in this process will often be referred to later in
the paper. In order to do so, we write the equations of motion in a schematic
form

div u"™ =0, (13)

un+1 —u"

At

where n and n + 1 indicate the old and new time level, respectively, At is
the time step, and R contains all convective, diffusive and body forces

1
+ = grad p"*' = R" (14)
p

R" = — (un . grad) u” + v div grad u” + F" (15>

in which v is the kinematic viscosity. Discretizing the continuity equation
(13) at the new time level ensures a divergence-free velocity field at this time
level. Rearranging the terms in Eq. (14) yields

-, At
un+1 —a" — 7 grad pn—H (16)

where
u" =u" 4+ AtR". (17)

The term u" is often referred to as an auxiliary velocity, and calculated first
in the solution process. After substituting (16) into (13), we have

div grad p"™' = é div a". (18)

Equation (18) is the Poisson equation for the pressure. Typically, this equa-

tion is solved using the SOR (Successive Over Relaxation) method such as

developed by [4]. Once the pressure field is obtained, the velocity field at the
new time level is calculated via Eq. (16).

In ComFLOW, the equations of motion (11) and (12) are solved in a

computational domain €2 via imposing various types of boundary conditions
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y z
| S |-
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Figure 2: A computational domain with I'y and I'g as artificial boundaries.

such as free surface, wall, inflow and absorbing boundary conditions. Typ-
ically on the west and south boundaries I'yy and I's the incoming wave is
prescribed. At every time level starting from ¢ = 0, free surface elevations,
values of the velocity components and pressure corresponding to the consid-
ered wave model are provided on I'y and I's. At the bottom I'g we specify
a no-slip no-penetration condition which is simply the Dirichlet condition.
At the free surface I'rg continuity of normal and tangential stresses results
in expressions for the velocity components and pressure. We now introduce
two artificial boundaries I'y and I'g, see Fig. 2. To complete the statement
of the problem, we will implement an ABC on these artificial boundaries.

3.2. ABC-1 (Dispersive ABC)
Consider the following boundary operator on I'g:

0 0
(cos Qs + c%) ¢ =0. (19)

[33] showed that (19) is perfectly absorbing if « is equal to the angle of
incidence 6 (see Fig. 2) for a wave described by the wave or velocity potential
¢ and traveling with phase speed c.

If we replace ¢ in (19) by the dispersion relation, namely,

B tanh(kh)
c=/gh i (20)

we can rewrite (19) as
tanh (kh) 0 B
(cos ag 4 \/gh —8x> ¢ = 0. (21)
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The boundary condition (21) is perfectly absorbing for this single component,
but recall that a wave is sometimes formed by superposition of a number of
components. Each individual component of this wave has its own frequency,
amplitude, wave number and phase. Therefore, the boundary condition (21)
cannot annihilate all these wave components simply because it is evidently
designed for only one of them.

At this point a question crosses one’s mind: Is it possible to develop
a boundary condition which has the feature of allowing reflection only to
an acceptable threshold for all the components which all together form an
irregular wave? One can deduce from the way this question is asked that we
expect some amount of reflection for such a boundary condition but it will
be restricted within certain limits.

1.2 T

Exact (c)

- = = Approximation (ca)

0.8

¢/\/gh

0.6

0.4

02 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Figure 3: Approximation of the dispersion relation. For the coefficients in (22), ag = 1.04,
a1 = 0.106 and b; = 0.289 are used.

Now we introduce the following rational expression which approximates
the dispersion relation (20),

ao + a1 (kh)®
L~ y/ghL T 22
NI (k) (22)

13



where a proper choice of coefficients ag, a; and b, leads to a close approxi-
mation for the largest possible range of kh values, see Fig. 3. The difference
between the two curves gives an indication for the amount of reflection caused
by the rational approximation. Although the accuracy of the approximation
decreases for high wave numbers, eventual reflections at these wave numbers
will be damped by other physical mechanisms.

Now a further improvement is introduced into the design of the boundary
condition: by exploiting the approximately exponential behavior of the wave
potential in the z-direction, the wave number k is computed locally from
the potential itself. For waves of the form of ¢ ~ e*@=!) cosh k(h + z), the
following relation can be obtained

62

Po=— 23
b= 1 (23)
By employing (23) there is no need to choose a value for k before the nu-
merical simulation since it is calculated during the course of the simulation.
Finally we substitute (23) and (22) in (19) to reach the final form of the

absorbing boundary condition to be applied on I'g

0 0
(:0804(1—1—171l12(9 2) ¢+\/ (ao—l—atha 2) a—i 0. (24)
Following the same method it is easy to write the ABC on I'y.

3.3. ABC-2 (Dispersive directional ABC)

Now, a further modification of the dispersive ABC will be discussed to
account for both dispersive and directional effects of the waves. As it was
already illustrated in Fig. 1, the 2nd-order Higdon ABC has superior per-
formance over the 1st-order one in terms of directional effects. Therefore,
we will incorporate the improvements that we made in the previous section
concerning dispersive effects into the 2nd-order Higdon ABC. We can write
this ABC for I'g as the following:

2
g (cos a;— + c%) o=0 (25)

where |o;| < 7/2 for all i. The condition (25) is satisfied exactly by any
plane wave ¢ traveling out of the domain at angles of incidence a; and ay
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with the phase speed c. If we expand Eq. (25), we will have

0 0 dp ~ 0p\
(cos al@t 8x> <cos gy + Cﬁ_x) = 0. (26)

Considering the relations (22), (23) and (26), we realize that only one of the
operators can include the approximation for the dispersion relation. Other-
wise, the product of two approximations would yield a fourth-order derivative
in the z-direction which will cause difficulties when discretized at the bound-
aries. Therefore, we substitute the relations (22) and (23) in one of the
operators. The resulting expression for the ABC-2 is the following

0 0 0? O
((305041a (9x) ((1 + btha 2) cosag— + v/ gh (ao +aih W) %>

27)
Analogous with the discussion for the ABC-1, this expression can also be
easily written for the boundary operator to be applied on I'y. In what follows,
we will demonstrate the effectiveness of the four boundary conditions, Eqs.
(19), (24), (25) and (27), by displaying the amount of reflection as a function
of both the angle of incidence # and the dimensionless wave number kh.

3.4. Reflection coefficients of the absorbing boundary conditions

Substituting the potential function (7) into the four boundary conditions,
namely Eqgs. (19), (24), (25) and (27), yields the following expressions for
the reflection coefficient

out

c®* cosa — ccosf

RHi don—1 — —
g cout cosav + ccos )’

tcosa; — ccos
RHzgdon 2 — — H ( ) (29)

" cos a; + ccos b

R - (1+ bl(kh)2) ™ cosa — /gh (ao + al(kh)z) cos 6
Ape— T (1+ bi(kh)?) cout cos o + /gh (ag + a1 (kh)?) cos 6

” ao+ai (kh)?
Ut cos aig — \/ghw cos 0

"t cos g + /g % cos
(31)

c®“ cosay — ccosf
Rapc—2 = —

" cos o + ccos b
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Here c°“* denotes the phase speed of the outgoing wave, whereas ¢, which
approximates c®“, is a parameter in the operators. If ¢ and c°“ are equal to
each other, then the reflection coefficient will depend only on wave direction.
In this case if the wave direction 6 is equal to the angle parameter in the
operators «, then all the operators will be perfectly absorbing. This suggests
that since both the effects of wave direction and phase speed contribute to
the amount of reflection, we need to possess information a prior: about both
parameters for small reflection. In many practical situations, however, we
unfortunately have information on neither of them at outflow boundaries.

Figure 4 demonstrates the amount of reflection as a function of the angle
of incidence # and the dimensionless wave number kh to compare the effec-
tiveness of the four boundary conditions; the first-order and second-order
Higdon operators, ABC-1 and ABC-2. For the coefficients in (22) we take
ap = 1.04, a3 = 0.106 and b; = 0.289 while respecting the stability limits
concerning these coefficients and providing a good approximation for the kh
values from 0 to 20. We also take ¢ = 0.3164/gh in the boundary conditions
in which this parameter appears. This choice corresponds to the kh value of
10 which is exactly in the middle of the considered kh range between 0 and
20. All the angle parameters in the boundary conditions are set to be zero
as an arbitrary initial choice.

In Fig. 4, light-colored areas between isolines illustrate small reflection
zones while as the color gets darker the amount of reflection increases since
grazing incidence is approached where waves propagate parallel to the outflow
boundary. More particularly, white-colored zones demonstrate the ranges
where the reflection coefficient is below five percent which is an acceptable
threshold in practical wave simulations. Close examination of the results
clearly shows the relative merits of the ABC-1 and ABC-2 over the first-
order and second-order Higdon operators. The first-order Higdon operator
generates reflection below five percent between kh values of 8 to 12 approx-
imately, which is expected since the prespecified ¢ value corresponds to the
kh value of 10. However, this range is between 0 to 8 with the ABC-1. The
reason for this behavior lies in the way the dispersion relation is approxi-
mated. The area between the two curves in Fig. 3 gives an indication of the
amount of reflection caused by the approximation. From this plot, we clearly
see that the dispersion relation is approximated well in the range kh € (0, §].
From 8 to 20, the reflection increases as the approximation becomes gradu-
ally poor, which is shown in Fig. 4(b). In terms of directional effects, the
performance of the ABC-1 is somewhat better than that of the first-order
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Figure 4: Amount of reflection (in percent) as a function of the angle of incidence 6 and
kh when various boundary conditions are used. In the first-order boundary conditions
«a = 0 is used, and in the second-order boundary conditions oy = ay = 0 is used. Also,
¢ = 0.3164/gh is taken in all the boundary conditions. Reflection values are written on
the contour lines.

Higdon operator.

The second-order Higdon operator improves both the dispersive and di-
rectional behavior of the first-order operator. This is a result of the fact that
the reflection coefficient of the second-order Higdon operator (29) is a prod-
uct of two factors. Since each of these factors is smaller than 1, the product
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of them becomes even smaller, and areas indicating small reflections increase,
see Fig. 4(c). However, between kh values of 0 to 4, the second-order Hig-
don operator has a poor performance. This is where the approximation for
the dispersion relation once again plays a role, and the ABC-2 consequently
eliminates this poor performance. Furthermore, with ABC-2, it is possible
to get low amount of reflection for kh values larger than 20 as well with a
proper set of parameters.

The distinguishing characteristic of generating small reflection for a wide
range of both kh values and angles of incidence reveals the reason of applying
the approximation for the dispersion relation into the second-order Higdon
operator: we have improved the dispersive behavior of the operator through
the approximation for the dispersion relation while the operator itself has
already favourable behavior in terms of directional effects. Thus, the ABC-2
becomes a versatile and accurate boundary condition for various sea states
which possess both dispersive and directional features.

3.5. Numerical discretization of the ABC-1 and ABC-2

Since the governing equations inside the computational domain are writ-
ten in terms of the velocity components and pressure, the ABCs (24) and
(27) must be interpreted in terms of the same variables. As we have a stag-
gered grid arrangement for the flow variables inside grid cells (see Fig. 5),
the location of the outflow boundary must also be specified appropriately.
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Figure 5: Locations of the velocity components and pressure in a grid cell based on the
staggered grid arrangement.
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All flow variables that we need here can be calculated by taking deriva-
tives of the wave potential. Exploiting the potential theory and linearized
Bernoulli equation, it is possible to obtain the following expressions for the
derivatives of the wave potential with respect to time and space

o _,
ax_ bs

?9_(? = —% — g2 (33)
In Egs. (32) and (33), the subscript b indicates that the quantity is defined
at the boundary, the subscript p indicates that the quantity is evaluated at
the elevation of the pressure point, and for simplicity the fluid density is
taken to be one. We see that both the velocity and pressure are defined at
the same position in space in order to avoid any phase shift errors between
flow variables. By the same logic, these variables are also defined at the same
instant in time, which is the new time level t"**.

(32)
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Figure 6: Stencil of the ABC-1 in space

The outflow boundary is situated at the same position as u; along the
z-direction, therefore we can impose

Uy = u?};l (34)
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for k = 1,..., K. In order to obtain p,, however, we employ linear interpo-
lation and introduce mirror cells adjacent to the outflow boundary (see Fig.
6), i.e.,

pﬁ;l _;p?jr_llk (35)
for k = 1,..., K. The shaded areas around the computational domain illus-
trated in Fig. 6 contain the mirror cells.

In order to plug the ABC-1 into the pressure Poisson equation (18) which
is solved inside the computational domain for the pressure at the new time
step p"*1, the velocity component at the new time step v should be elim-
inated. Utilizing the discrete form of the xz-momentum equation (16), we

have

Pk =

n ~MN At n n
“1:1 =Urp — N (plillk pﬁ;l) ) (36)
Pr+1

u™ ™! is written in terms of the pressure p"*! and the auxiliary velocity 4"

(17). As a result, the ABC-1 will have the same temporal character as the
pressure Poisson equation. Consequently, we obtain the discrete form of the
ABC-1 to be prescribed on I'g as follows

1 A 1 A 2
[— cos o + agy/g ! (§b1h2 cosa + arh’y ghA ! ) a@_] p?j—-llk

2 p1+1 pI+1

1 A 1 A
+ [— cos o — agr/gh ! <§b1h2 cos o — alhzx/ghA ! ) aa—} P

2 ;DI+1 p1+1

Y .
(am/ h+ aih*\/gh a2)7,LI7,€—gzpkcos.04

(37)
for k =1,..., K where Az, ., = x,,,, — x,,. Equation (37) does not contain
any flow variables from the neighboring cells along the y-direction. Therefore,
for simplicity, we ignored the subscript j for the flow variables here and
elsewhere. For the approximation of the second-order derivative in the z-
direction, the following relation designed for a stretched grid is employed,

py, _ Azp, Pry1 — (Azpk+1 + Azpk) e+ A2y, Pt 38)
022 1Nz, Az (Azy,,, + Azy)

where Az, .\ = 2,,., — %,, and Az, is calculated similarly. [54] shows that
the approximation (38) is second-order accurate on smoothly stretched grids.
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Following the same steps, we can easily derive the ABC-1 on I'y. The
discrete ABC-1 on I'g and I'y is a set of equation for the pressure values
in the mirror cells adjacent to the computational domain, see Fig. 6. The
addition of these mirror cells to the domain actually represents the cost of
implementing the ABC-1. In fact, the ABC-1 is solved for pressure values
in a total number of (I + J) x K cells. The stencil for p?jrrllk is plotted by a
red dashed line in Fig. 6(a). Observing Figs. 6(a) and 6(b) we realize that a
typical stencil for a pressure point encompasses 9 flow variables, 6 of which
reside in the computational domain whereas 3 can be associated with the
treatment of the boundary condition.

Analogous with the discretization for the ABC-1, we follow the same steps
to obtain the discrete form of the ABC-2. The derivatives of the pressure
with respect to time and space are taken as

O n+l _ .n
9Py _ P, TP 7 (39)
ot At

% ~ (Pryk — m,k)nJrl

al‘ Axplﬂ

Using the linear interpolation of the pressure values on either side of the
boundary, the following expression for the final form of (39) can be obtained

(40)

oy _ (Prevk + pre)" " = (Preaw + pra)"
ot 2At ‘

(41)

Similarly, the derivatives of the velocity component with respect to time
and space can be obtained, more details can be found in [12]. Upon substi-
tution of Eqs. (40) and (41) and derivatives of velocity into (27), the final
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discrete form of the ABC-2 becomes

Yao Yay hQ(?Q +1
At Y b At b _— "
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r h262 2 92
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022

var\ h*0*] _. v ya WO
F(mden  55) G| T |2 g | T
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for k=1, ..., K where
COS (v] COS (o

XT oA
9 = € COS (o
Axp[-u

_cosagy/gh
* T Az, At

cAt\/gh
Az,
1 1

+ .
Ampl Ampprl

Y

&=

Analogous with the case for the ABC-1, Eq. (42) is in fact solved for the pres-
sure values in the mirror cells adjacent to the computational domain. Figure
7 shows the stencil p}‘Ill . encompassing 15 solution variables keeping in mind
that the second-order vertical derivative in the z-direction is approximated
with the relation (38) using a three-point variable group.

Compared to that of the ABC-1, the stencil for the ABC-2 becomes larger
and extends in the direction normal to the outflow boundary. However, the
cost of implementing the ABC-2 is the same as the ABC-1: Eq. (42) is solved
in the same total number of (I + J) x K cells. This is clearly advantageous
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Figure 7: Stencil of the ABC-2 in space.

compared to numerical dissipation zones such as damping layer, as the in-
crease in the size of the computational domain is substantially small: one
layer of mesh cells are added to the outflow boundaries of the computational
domain in the case of the ABCs whereas large zones of several wavelengths
[59] are usually added to the domain when damping layer is employed. [59]
mentions that the size of the damping layer is generally two or three times the
wavelength. Considering previous numerical simulations of waves or wave-
structure interactions where an absorbing boundary condition is applied in
the domain [14, 13|, the recommended size of the numerical damping zone
is even larger than the actual computational domain itself. [59] also states
that, for small reflection, numerical dissipation zones can be used in combi-
nation with absorbing boundary conditions, which increases computational
cost even further.

The pressure values within the areas enclosed by the green lines in Figs.
6(a) and 7(a) do not exist in the standard stencil of the pressure Poisson equa-
tion. Hence, the large stencils of the ABCs are not suitable for a typical SOR
solver [4] designed for the Poisson equation. To solve the pressure Poisson
equation, therefore, we employed a Krylov subspace solver: BICGSTAB. As
preconditioner ILU(p) factorization is implemented, where the approximate
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LU-decomposition is chosen more accurate near the boundary.

It should be noted that Egs. (37) and (42) are the discretized forms of
Eqgs. (24) and (27), and are the results of a series of choices made within
the framework of the solver at hand. For other solvers or flow models, the
resulting discrete forms might differ since the intermediate steps in the dis-
cretization process might vary. The starting points to implement the ABCs
are Egs. (24) and (27). Then the question becomes how to treat the deriva-
tives of the velocity potential, in particular the temporal derivative, and
subsequently how to treat the second-order derivative in the vertical direc-
tion. Here, the temporal derivative of the velocity potential is taken using
the linearized Bernoulli equation, where the quadratic velocity terms are ig-
nored. However, adopting the linearized Bernoulli equation is not an essen-
tial requirement, and this decision was made to keep the ABCs initially less
complex. In fact, future work will focus on including the quadratic terms in
the Bernoulli equation, and investigating the effects of this extension on the
performance of the ABCs. Furthermore, the second-order derivative in the
vertical direction, for example Eq. (38), may cause issues when implemented
at the bottom and free surface. Applying one-sided second-derivatives at
these cells resulted in unstable simulations. At the bottom, hydrostatic pres-
sure variation and no variation in the horizontal velocity can be assumed.
This suggests

DPb,0 = Po,1 + GZpys  Ubo = Up1, (43)

keeping in mind the index notation in Fig. 7. At the free surface, the first-
and second-order Higdon operators can be considered in order to avoid the
second-order derivative, i.e., Egs. (19) or (26).

Since the proposed ABCs are local where the phase speed is estimated
with the Pade approximation utilizing local flow solution, they can be used
in cases with varying bathymetry. In problems where different flow directions
are expected, the second-order variant, ABC-2, is a better choice because it
has more favorable properties especially with respect to directional effects.
It should be noted that both ABCs do not account for nonlinear effects due
to several assumptions made in their designs. This also holds for cases where
varying bathymetry results in a strong nonlinearity in the flow.

4. Results and discussions

In this section we present results of two numerical experiments where the
ABCs are applied at the outflow boundaries of the computational domain.
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We will first investigate the capability of the ABCs in a test where a short-
crested wave is generated in the computational domain. In the second test,
circular concentric waves are generated as a result of an oscillating solid
sphere impacting on water surface in a tank.

The results of the numerical simulations will be analyzed through error
norms. For that purpose, we introduce three error measures,

e(ivj) = 775(i7j) - nf(iuj)? (44)
11 . oz
ea =772 (1 (i.3) = m (i,7)’, (45)
i=1 j=1
lelloe =, max  max {fn. (i, 5) —n- (5]} (46)

where 7 is the free surface elevation. Here the subscript s indicates the solu-
tion in the domain of interest or ’small domain’ and the subscript r indicates
the reference solution. In the numerical experiments considered here, the ref-
erence solution is obtained by solving the problem in a much larger domain
with the same discretization in space and time. More information on the
setup of the tests is given below.

The pointwise error e (i,j) provides information at particular time in-
stances throughout the simulation. In addition, it demonstrates the exact
location of the error in the computational domain which is not the case for
the other error measures. The common property of the global norm eg (also
used by [22]) and the infinity norm ||e||  is that they display a complete pic-
ture of the error behavior in a single plot. More particularly, we can examine
the normalized length of the error vector using eq, whereas ||e|| captures
the maximum value in the error vector which is useful especially to check if
a certain limit for the error is breached.

4.1. Short-crested wave test

In this numerical experiment, the ABCs are applied in a computational
domain where a directional irregular wave is generated. The reference solu-
tion used in the error measures is computed by solving the problem in a vast
domain 2y which is larger than the small domain 25 only on the z-y plane,
see Fig. 8 for the illustration of the problem. The size of €1 is defined in
such a way that the reflected waves from the outflow boundaries, which are
located at x = 250m and y = 250m, do not reach {2g during the simulation.
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This procedure guarantees that in €27, the solution in the part which has the
size of {2 will not be perturbed by the reflected waves, and hence it can be
used as a reference solution. This test combines the two effects, directional
and dispersive effects, since the wave is composed of a large number of com-
ponents each with its own frequency and propagation direction. Since the
phase speed and the angle of incidence of the wave which is impinging on the
outflow boundaries are not known beforehand, the parameters in the ABCs
are chosen in such a way that the reflection coefficient is minimum for the
ranges of kh and 6 of the components.

Figure 8: The setup for the short-crested wave simulation. The solution in €, is considered
as the reference solution.

The free surface of the short-crested wave at ¢ = Os is shown in Fig. 9(a).
This JONSWAP spectrum wave is composed of 537 Fourier components with
T, =9s and Hy; = 0.1m, and Fig. 9(b) illustrates how the energy of this wave
spreads along frequency and direction. Frequencies are defined between 0.5
and 1.4 Hz, and directions are defined between 10 and 100 degrees.

Numerical simulation is carried out by performing 4000 time-steps at
At = 0.009s. The lengths of 25 in the z- and y-directions are the same, [, =
l, = 50m, and the water depth is h = 2.875m. By running the simulations
for t,,.. = 36.0s and taking into account the phase speed of the fastest
propagating wave component +/gh, we calculate the lengths of € in the
x- and y-directions as L, = L, = 250m. Two uniform grid resolutions are
considered: 0.5m and 0.25m.

Figure 10 shows the infinity norm ||e||  and the global norm eq on two
grid resolutions for the two ABCs. The largest value of ||e|| _ for the ABC-1 is
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Figure 9: Properties of the short-crested wave

nearly 21.0% whereas it is only 11.0% with the ABC-2. ||e||, demonstrates a
highly erratic behavior with ABC-1, it reaches the value of 11.0% at t = 12.0s,
changes to 21.0% at ¢t = 23.0s, and decreases back to 9.0% at ¢ = 30.0s.
When it comes to ABC-2, however, it oscillates within a much more limited
band of 7.0% to 11.0% during the entire simulation.

Figure 11 demonstrates the pointwise error |le (i,7)|| (44), normalized
with H, and averaged over time, on the fine grid. Analogous to the previous
numerical tests, the reflected waves propagate back into the computational
domain and spoil the solution. As the short-crested wave striking the out-
flow boundaries is composed of many components propagating in their own
directions, the reflected wave is so as well. It is obvious that the second-
order ABC-2 is significantly better than its first-order counterpart ABC-1
(note the difference in color scale). The maximum time-averaged error from
ABC-1 is nearly twice as large as that from ABC-2. Moreover, the parts of
the domain which are occupied by large errors are bigger with ABC-1 than
with ABC-2. This outcome also manifests itself in the global norm egq in Fig.
10(b), where ABC-1 results in larger error values than ABC-2.

A common result from both boundary conditions is that large errors oc-
cupy only small parts of the domain; thus, eg has much smaller values than
lle]|, for both ABCs. For example, the largest value of eq is about 1.6%
with ABC-2 on the fine grid whereas the maximum of ||e[|_ is 11.0%.
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Figure 10: Error norms |e||, (46) and eq (45) as a function of time from the two ABCs
on two grid resolutions for the short-crested wave test.
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Figure 11: The pointwise error |e (4, 7)| (44) averaged over time for the short-crested wave
test on the fine grid with ABC-1 and ABC-2. The error has been scaled with the critical
wave height H, = 0.1m (note the different color scale).

4.2. Circular concentric waves radiating from a localized source

In the second test an oscillating solid sphere with a prescribed motion
is impacting on water surface in a tank. The sphere with a radius of 4m
is initially located 4m above the free surface, see Fig. 12(a) for the initial
condition of the problem. The sphere is allowed to make only vertical motion
along the z-direction. Sinusoidal motion of the sphere is prescribed by z; () =
2 + 2cos (2.4t). After the impact of the sphere on the water surface initially
at rest, a series of circular concentric waves is produced radiating outward
from the center in all directions. To absorb these waves ABC-1 and ABC-
2 are used at the outflow boundaries and their performance is compared.
Similar to the previous test reference solution is obtained by repeating the
simulation in a large domain, see Fig. 12(b) for the setup of the two domains.
The length and the width of Qg is the same, Lzg, = Lyo, = 50m, and its
depth is Lzq, = 10m. €1 has the same depth but different length and
width, Lxq, = Lyq, = 400m. The size of {2, is arranged in such a way
that radiating circular waves do not reach the outflow boundaries of
throughout the simulation.

Two uniform grid resolutions of 0.25m and 0.5m are considered. Simu-
lations are performed for 30s. A large number of probes are placed in the
domain to compare the free surface elevation records at various locations.
Due to the symmetry of the problem we show results only from six probes,
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Figure 12: Setup for the test with the oscillating solid sphere.

see Fig. 13 for the locations of the probes. Because of the prescribed motion
of the sphere the generated circular wave is regular, and both the ABC-1 and
ABC-2 are tuned to absorb this regular wave. However, since the wave is
circular, it impinges on the outflow boundaries at different angles at different
positions. To account for this directional effect, the angle coefficients in both
boundary conditions are set to 45°.

Figures 14 and 15 show the free surface elevation history from the six
probes on two grid resolutions. As the circular concentric wave travels out
from the center, the amplitude of the wave decreases. This is due to the fact
that the energy of the wave is spread over a larger area as the wave radiates
from the center, which suggests that each particle of the wave gets less en-
ergy. This causes a decrease in the wave amplitude. Results demonstrate the
superiority of the ABC-2 over ABC-1 clearly. Apart from the wave probe
p#4, the other five probes show a significant difference between the perfor-
mance of the ABC-1 and ABC-2. The probe p#4 is very close the center
of the domain, and therefore, it takes more time for the reflected waves to
reach this probe. After t = 25s this probe also starts to show some differ-
ence. Looking at the peak occurring at ¢ = 29s at the wave probe p#1, the
deviations in amplitude with ABC-1 are 42% and 37% on the resolutions of
0.5m and 0.25m, respectively. With ABC-2, however, the deviations are 27%
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Figure 13: Six wave probes used for comparing the solutions in g and €. Positions
are p#1 = (15m,0m), p#2 = (20m,0m), p#3 = (256m,0m), p#4 = (5m,5m), p#5 =
(20m, 20m), p#6 = (25m, 25m).

and 9% on the resolutions of 0.5m and 0.25m, respectively. Figure 14 shows
that the deviations in amplitude on the resolution of 0.25m at p#2 are 58%
with ABC-1 and 14% with ABC-2 for the peak occurring at t = 27.5s. At
p#3 for the peak occurring at t = 28.7s, ABC-1 results in a deviation in
amplitude of 48% while ABC 21% on the fine grid. The largest deviation in
amplitude on the fine grid from ABC-1 is 81% recorded by the wave probe
p#6 for the peak occurring at ¢ = 28.4s. This value, however, is only 24%
with ABC-2. Clearly ABC-1 produces much larger reflection than ABC-2,
and the amount of deviation changes considerably between different probes;
from 37% at p#1 to 81% at p#6 on the fine grid. However, the deviations
caused by ABC-2 vary in a much more limited range; from 9% at p#1 to 24%
at p#6 on the fine grid. Similar behaviors from both boundary conditions
were observed also in Fig. 10(a).

Fig. 16 illustrates snapshots of the simulations at ¢ ~ 25s when ABC-
1 and ABC-2 are used on the fine grid. With ABC-1 different amounts of
reflection at different locations result in a chaotic free surface. With ABC-2,
however, the free surface is considerably less disturbed.

5. Concluding remarks

This paper presents the design and performance of two absorbing bound-
ary conditions. These boundary conditions are based on the first- and second-
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Figure 14: Free surface elevations as a function of time at various locations. From top to
bottom results are shown at p#1, p#2 and p#3.
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(a) ABC-1 (b) ABC-2

Figure 16: Snapshots of the simulations at ¢ ~ 25s on the fine grid with uniform resolution
of 0.25m using the two ABCs (colors correspond with the vertical velocity at the free
surface).

order Higdon operators [33]. The numerical implementation of the first- and
second-order variant, ABC-1 and ABC-2 respectively, using a staggered grid
arrangement is explained in detail. Two numerical examples are provided
to demonstrate the performance of the ABC-1 and ABC-2. The reflection
character is observed, and the results of the computations are discussed and
compared. The numerical simulations showed that the second-order variant
ABC-2 clearly outperforms the first-order variant ABC-1 in terms of both
dispersive and directional effects of waves. Moreover, the increase in perfor-
mance does not come at the expense of additional computational cost. It
was shown that the ABC-2 is solved in the same total number of cells as
ABC-1. Compared to that for the ABC-1, the stencil for the ABC-2 is larger
and extends in the direction normal to the outflow boundary. Nonetheless,
a Krylov subspace solver, BICGSTAB, with ILU(p) factorization as precon-
ditioner (which was chosen more accurate near the boundaries) was capable
enough to solve the linear system within similar amounts of time with ABC-
1 and ABC-2.

The proposed ABCs deliver the objectives that were set in the intro-
duction, yet some challenges remain. For example, during the derivation of
the ABCs, some assumptions were made; the phase speed of the wave was
replaced with the dispersion relation from the linear wave theory, and the
temporal derivative of the velocity potential was taken using the linearized
Bernoulli equation. Future work will focus on including nonlinear effects so
that the ABCs are applicable in a wider range of problems, more partic-
ularly, in cases with steep nonlinear waves. Furthermore, the ABCs leave
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ample room to include flow currents in their designs; research towards this
goal is currently underway.
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