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1) “Robust” open-loop production optimization 
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• 8 injectors, rate-controlled 

• 4 producers, BHP-controlled 

• Production period of 10 years 

• 12 wells x 10 x 12 time steps 

 => 1440 optimization parameters 

• Bound constraints on controls 

• Objective J: oil revenues minus water costs (‘NPV’) 

• Forward model: fully implicit FV simulator (Dynamo MoReS, MRST) 

• Optimizer: gradient- based (steepest ascent; line search with simple 

back tracking, gradients with adjoint formulation; projected constraints) 

 

 

12-well example (the “egg model”) 

Van Essen et al., 2009 
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• Number of realizations Nr = 100 
• Optimize expectation of objective function J  
 
 
 

•u: inputs (well rates, pressures) for all optimization 
      time steps 
• m: parameters (permeabilities) 

Van Essen et al., 2009 
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‘Robust’ optimization example (‘mean’ optimization)  
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3 control strategies applied to set of 100 realizations: 
reactive control, nominal optimization, robust optimization 

 

        
            

         
   

 

Van Essen et al., 2009 

Robust optimization results 
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• Various complex models: 
– Prospective Outlook on Long-term Energy Systems (POLES) 

(EU and French Government) 
– National Energy Modeling System (NEMS) (US DoE) 

• We use: Auto-Regressive-Moving-Average model 
(ARMA) (Ljung, 1999) 
 
 

• rk = oil price 

• ek = white noise sequence 

• a0, ai, bi are constants 

Oil price uncertainty – time series 

6 6
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Oil price uncertainty – ensemble 

• Base oil price 471 $/m3 = 75 $/bbl 

n = 10 n = 100 
Siraj et al. 2015 
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Mean-variance optimization (MVO) 

• Symmetric ‘risk measure’ 
• Penalizes the best cases 
• Decision makers are mainly 

concerned with worst cases 

H. Markowitz (1952), Yeten et al. (2003), Bailey et al. (2005), Yasari et al. 
(2013), Capolei et al. (2015), Siraj et al. (2015), Liu and Reynolds (2016)  
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Worst-case optimization (WCO) 

• Nr inequality constraints 
• Asymmetric ‘risk measure’ 
• Sensitive to outliers 
• Usually very conservative 

( )max min , ∀i

i

J m i
m

u
u

( )max s.t. ,
,

≤ ∀iz z J m i
z

u
u

• Min operator on discrete set is non-differentiable 
• Reformulate with slack variable z 
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• Large-scale non-linear constrained 
optimization 
 

• Both interior-point (barrier) and 
active-set methods; 
 

• Programmatic interfaces: C/C++, 
Fortran, Java, Python;  
 

• Modeling language interfaces: 
AMPL ©, AIMMS ©, GAMS ©, 
MATLAB ©, MPL ©, Microsoft 
Excel Premium Solver ©;  

 

Optimizer KNITRO 
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Worst-case optimization (WCO) (geology) 

• Worst-case increase: 3.60 % 
• Average decrease:     1.54 % 
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MO, MVO and WCO (geology) 

• MVO and WCO all reduce upside  
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MO, MVO and WCO (oil price) 

• Note: WCO = single optimization with lowest oil price 
• Same story: MVO and WCO all reduce upside  
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Mean worst-case optimization (MWCO) 

( )WCO max min ,= i

i

J J m
m

u
u

• JWCO is usually very conservative 
• Can be controlled ad-hoc with weighted formulation: 

 
 
 
 

• Will not be pursued any further 

MWCO MO WCOλ= −J J J
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• Value at risk (VaR): 
 
 

• x is a random variable 
• Fx(z) is the cdf P(xz) 
•               is the confidence level 
• In words: β fraction of objective function distribution 
• Conditional Value at Risk (CVaR): 

 
 
 

Conditional value at risk (CVaR) 

( ) ( ){ }minβα β= ≤xx z F z

]0,1[β ∈

( ) { }β βϕ α= ≤x E x x
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Worst case, VaR, and CVaR 

β under curve 
CVaR VaR Worst case 
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Semi variance 
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MCVaR (geology) 

 
• Computationally tedious (integration) 

MCVaR MO VaRω= −J J J
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MCVaR (oil price) 

 
• Not convincingly successful 

MCVaR MO VaRω= −J J J
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• MVO (symmetric) leads to strong reduction in upside 
• Asymmetric risk measures (WCO, CVaR, SV and their 

‘mean’ varieties) improve the situation somewhat 
• MCVaR seems to perform best, but is computationally 

demanding and requires choice of weighting parameter 
• Improvements under oil price uncertainty lower than 

expected 
• Joint geological - oil price scenarios not yet tested 

Conclusions ‘risk measures’ 
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2) Computer-assisted history matching 

Noise Output Input System  
(reservoir, wells 

 & facilities)  

Noise 

Sensors  

Predicted output Measured output 

Data 
 assimilation 
algorithms 

Controllable 
 input 

System models 
Geology, seismics, 
well logs, well tests, 
fluid properties, etc. 

 
Optimization 
 algorithms 

  



IPAM 2017 - Computational Issues in Oil Field Applications 24 

Upper/lower economic bounds 

Idea: 
• Explicitly search for HM-models that provide upper and 

lower bounds of economic forecasts (for a given 
production strategy) 

• Proposed solution: hierarchical optimization 
• Motivation: after obtaining a history match there is still a 

lot of room in the parameter space to optimize a second 
objective 
 

• Van Essen et al., Computational Geosciences (2016); 
ECMOR (2010) 
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Hierarchical optimization 

• Order objectives according to importance 
1.Good history-match (V) 

2.Maximize/minimize (economic) forecasts (J) 
 

• Optimize objectives sequentially 
• Optimality of upper objective constrains optimization of 

lower one 
• Use redundant degrees of freedom (DOF) in decision 

variables, after meeting primary objective (take a walk in 
the null space) 
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Null space wandering in 3D 
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Hierarchical optimization 
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Formal method: Null-space approach 
Idea: find ‘free’ directions and use these 

 to optimize second objective function 

1.Find optimal match m for primary objective V 

2.Determine null-space N of input parameter space Sm 
around m. (N relates to those directions in Sm to which 
V is insensitive) 

3.Find improving direction d for secondary objective J 

4.Project d onto basis of N to get projected direction d* 
(d* is improving direction for J but does not affect V) 

5.Update m using projected direction d* 
6.Perform steps 2 – 5 until convergence 
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Alternative: switching method 
Idea: alternate unconstrained step to optimize J   

with correction step to return to Vmin  
 

• New objective function 
 

•  
 
 
where Ω1 and Ω2 are ‘switching’ functions 
 

  
• Gradients of W with respect to the model parameters 

1 2( ) ( ) ,W V V V J= Ω ⋅ +Ω ⋅

( ) ( )min min
1 2

min min

1 if 0 if
,

0 if 1 if
V V V V

V V
V V V V

ε ε
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( ) ( )1 2
∂ ∂ ∂
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∂ ∂ ∂
W V JV V
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Switching method 
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Modified switching method 

• Goal is to keep V close to Vmin with update in J - 
direction 

• Projection of the gradients J onto the first-order 
approximation of the null-space of V : 
 
 
 
gives an alternative switching search direction d   
 

: ,
 ∂ ∂ ∂ ∂

= ⋅ − ⋅ ∂ ∂ ∂ ∂ 



TJ J V VI
m m m m

( ) ( )1 2

 ∂ ∂ ∂ ∂
= Ω ⋅ +Ω ⋅ ⋅ − ⋅ ∂ ∂ ∂ ∂  

TV J V VV V Id
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Example 1: egg model 

As before, except: 
• Production history of 1.5 

years (monthly 
measurements) 

• Forecasts for next 4.5 
years 
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Example 1: optimization method 

• In-house reservoir simulator (fully-implicit black oil) 
• Minimization with adjoint-based gradients, steepest-

descent and line search 
• Twin approach: ‘truth’ to generate synthetic; uniform 

model (correct mean) as prior for history match 
• History match objective (first optimization): 

 
 

    where d are measured data and y predicted data  
• Economic objective (second optimization): 

 ( ) ( ) ( ), , ,
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Example 1: hierarchical optimization 

• Simulation run by prescribing: 
– injection rates (from history) 
– BPHs producers (from history) 

• Minimize V (mismatch between 
measured & simulated data) 

• Data (288 points): 
– BHPs of injectors 
– Oil/water flow rates producers 

• Controls: grid block perms 
 

• Simulation run by prescribing: 
– injection rates (constant)  
– BHPs producers (constant)  

• Maximize/minimize J (NPV over 
4.5 years) 

• ro =9 $/bbl, rw = -1 $/bbl, 0 disc. 
• Weakly constrained by 

minimum primary objective Vmin  
• Controls: grid block perms 

Primary optimization problem 
History-matching  
0 – 1.5 years 

Secondary optimization problem 
 Bounds on economic forecast  
1.5 – 6 years 
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Example 1: HM results - pressures 
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Example 1: HM results – flow rates 
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Example 1: incremental permeability fields 

    “Lower bound”      “Upper bound” 
          model             model 
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Example 1: HM & forecast – pressures 
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Example 1: HM & forecast – flow rates 
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Example 1: forecast range in NPV 

2 3 4 5 60

5

10

15

+63%

-63%

Future

time [years]

N
et

 P
re

se
nt

 V
al

ue
 [M

$]

Predicted Economic Performance

average prediction
current time

0 1 2 3 4 5 60

5

10

15

20

25

time [years]

N
et

 P
re

se
nt

 V
al

ue
 [M

$]

Historic & Predicted Economic Performance

Past Future

prediction range
current time



IPAM 2017 - Computational Issues in Oil Field Applications 41 

Example 2: Brugge field 

• 60,048 cells 
• Own-generated synthetic truth 
• 10 yrs ‘production data’ + ‘interpreted 4D’; 10% error  
• Starting model for HM randomly selected out of ensemble 
• 11 producers, BHP-controlled with bounds; reactive 
• 20 injectors, fixed rate-controlled       
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Example 2: HM results (prod. only)  – water rates 

• 0.5% deviation allowed in objective function value 
• 19.5 % difference in NPV 
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Example 2: Updated permeability fields 

natural log mD 

Differences in 
permeabilities 
in 9 layers 
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Example 2: HM results – effect of ‘data type’ 
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Example 2: HM results – effect of ‘data type’ 
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Example 2: HM results – effect of threshold value (1) 

[-] 
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Example 2: HM results – effect of threshold value (2) 
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Conclusions ‘upper and lower bounds’ 

• Method can be used to gain more insight in the possible 
economic consequences of the lack of information in the 
data 
– NPV, total production, ultimate recovery, or other. 
– Economic impact alternative data sources, e.g. 4D seismic data 

 
• No guaranteed lower/upper bounds, due to local optima 

 
• Considerable number of iterations required until 

convergence 
– May be improved using more efficient optimization scheme 

(Quasi-Newton, conjugate gradient method, …) 
 

• Wandering in the null space can be useful after all  
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