

Delft University of Technology

Modeling aircraft performance parameters with open ADS-B data

Sun, Junzi; Ellerbroek, Joost; Hoekstra, Jacco

Publication date 2017 **Document Version** Final published version

Citation (APA) Sun, J., Ellerbroek, J., & Hoekstra, J. (2017). *Modeling aircraft performance parameters with open ADS-B data*. 12th USA/Europe Air Traffic Management Research and Development Seminar, Seattle, Washington, United States.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Twelfth USA/Europe Air Traffic Management Research and Development Seminar

Modeling Aircraft Performance Parameters with Open ADS-B Data

Junzi Sun, Joost Ellerbroek, Jacco Hoekstra

Delft University of Technology

Content

- Background
- Objective
- Method
 - Parameters
 - Flight phases
- Results
- Discussions

Objective

• Open data

elft

- Operational performance in all flight phases
 - takeoff, initial climb, climb, cruise, descent, final approach, landing
- Direct performance parameters
 - Speed, vertical rate, distance, etc
- Hidden Performance Parameters
 - Different speed and vertical rate under constant CAS/Mach profile
- As many aircraft types as possible
- Used for kinematic modeling
- Results are reproducible and open-source

	Table 1: Performance model parameters								
Flight phase	Performance parameters								
Takeoff	$V_{lof},d_{tof},ar{a}_{tof}$								
Initial Climb	$V_{cas,ic}, V_{h,ic}$								
Climb	$R_{top,cl}, V_{cas,cl}, M_{cl}, H_{cas,cl}, H_{mach,cl}, V_{h,pre-cas,cl}, V_{h,cas,cl}, V_{h,mach,cl}$								
Cruise	$R_{cr}, R_{max,cr}, H_{cr}, H_{max,cr}, M_{cr}, M_{max,cr}$								
Descent	$egin{array}{cccccccccccccccccccccccccccccccccccc$								
Final Approach	$V_{cas,fa}, V_{h,fa}$								
Landing	Vann, durk, and								

Why another model ?

Open data, open models.

Background (Open-source application)

Bluesky - The open-source air traffic simulator

https://github.com/ProfHoekstra/bluesky

Background (Data)

Large amount of air traffic data from ADS-B

Background (Tool)

pyModeS - the Python ADS-B and Enhanced Mode-S decoder

https://github.com/junzis/pyModeS

Background (Tool)

Well designed, automatic, flight phase extraction tools

takeoff > initial climb > climb > cruise > descent > final approach > landing

Background (Open wind data / model)

Global Forecast System

Updated every 6 hours

TUDelft

All vertical levels, except surface

Smooth wind data from GFS model

Integrated Surface Data Typically updated every hour Only surface data Real time wind measurements

Background (Statistical model)

Parametric / non-parametric analysis

$$\{\hat{\psi},\psi_{min},\psi_{max},*pdf\}$$

$$*pdf = \begin{cases} ['norm', \mu, \sigma] & for \ x \sim \mathcal{N} \\ ['gamma', \alpha, \mu, k] & for \ x \sim \Gamma \\ ['beta', \alpha, \beta, \mu, k] & for \ x \sim B \end{cases}$$

How is it constructed ?

Flight phase and statistics.

Terms and definitions

- Optimal, minimum, and maximum value
- Confidence intervals
 - \circ 80% for most of the velocity parameters,
 - 98% for range parameters
 - 90% for other parameters.
- Distributions
 - Normal distribution (prefered)
 - Gamma distribution
 - Beta distribution

Takeoff

- Approximate the takeoff moment
- Parameters
 - Takeoff distance
 - Liftoff speed
 - Mean ground acceleration

Aircraft: Airbus A320

Initial climb

- To altitude 1500 ft
- Parameters
 - Speed
 - \circ Vertical speed

Climb

Identification of constant CAS/Mach profiles

time (scaled)

Climb

Identification of constant CAS/Mach profiles

$$f_{mach}(t) = \begin{cases} k_1 \cdot (t - t_{mach})^2 + y_{mach} & t \le t_{mach} \\ y_{mach} & t \ge t_{mach} \end{cases}$$
(18)
$$f_{cas}(t) = \begin{cases} -k_2 \cdot (t - t_{cas})^2 + y_{cas} & t \le t_{cas} \\ y_{cas} & t_{cas} \le t \le t_{mach} \end{cases}$$

Climb

Parameters

- Speeds
 - CAS
 - Mach
- Vertical rates
 - At different parts
- Transition altitude
- Range of climb

Cruise

• Parameters

- Operational and maximum cruise speed
- Operational and maximum cruise altitude
- Cruise range

Descent

Identification of constant Mach/CAS profiles

Descent

Identification of constant CAS/Mach profiles

$$f_{mach}(t) = \begin{cases} y_{mach} & t \leq t_{mach} \\ -k_1 \cdot (t - t_{mach}) + y_{mach} & t \geq t_{mach} \end{cases} (21)$$
$$f_{cas}(t) = \begin{cases} -k_2 \cdot (t - t_{cas})^2 + y_{cas} & t \leq t_{cas} \\ y_{cas} & t_{cas} \leq t \leq t_{mach} \end{cases}$$

Descent

Parameters

- Speeds
 - CAS
 - Mach
- Vertical rates
- Transition altitude
- Range of descent

Final approach

- From altitude 1500 ft
- Parameters
 - Speed
 - Vertical speed

Landing

- Parameters
 - Landing distance
 - \circ Approach speed
 - Mean ground deceleration

Results

Open sourced

Performance Database

Phase	Param	Unit	A319	A320	A321	A332	A333	A343	A388	B737	B738	B739	B744	B752	B763	B77W	B788	B789	E190
то	$v_{lof} \ d_{tof} \ ar{a}_{tof} \ V_{h,ic} \ V_{cas,ic}$	m/s km m/s^2 m/s m/s	80.8 1.62 1.83 77 12.12	85.3 1.68 1.95 81 12.78	89.6 1.84 1.95 85 13.20	91.2 2.01 1.75 85 12.35	91.5 2.05 1.73 88 12.19	86.3 2.27 1.37 82 6.74	88.1 2.51 1.31 87 5.84	81.3 1.59 1.71 78 11.62	85.2 1.75 1.77 85 11.90	90.7 2.04 1.81 90 12.15	91.9 2.31 1.64 91 9.52	88.8 1.72 1.85 86 12.93	92.7 1.82 1.89 88 14.09	98.2 2.24 1.87 97 12.95	89.8 2.16 1.56 87 10.40	95.6 2.52 1.60 91 10.50	87.0 1.81 1.79 77 11.20
CL	$\begin{array}{l} R_{top,cl} \\ V_{cas,cl} \\ M_{cl} \\ H_{cas,cl} \\ H_{mach,cl} \\ V_{h,precas,cl} \\ V_{h,cas,cl} \\ V_{h,mach,cl} \end{array}$	km m/s - km km m/s m/s m/s	214 150 0.77 4.8 8.1 11.27 10.14 6.54	246 155 0.77 4.8 7.8 10.32 8.60 5.44	244 156 0.77 5.0 7.4 9.50 7.89 5.35	282 156 0.80 5.1 8.2 9.71 8.02 5.04	291 158 0.79 4.9 7.8 8.94 7.65 4.93	290 158 0.78 5.0 7.4 7.15 6.93 4.40	297 167 0.83 5.1 7.7 8.17 7.19 5.45	209 150 0.77 5.0 8.2 11.90 11.44 7.21	222 153 0.78 5.4 8.3 11.06 9.96 6.44	243 157 0.78 5.2 7.7 10.42 8.76 5.74	232 171 0.84 5.8 7.6 8.87 8.72 6.65	227 160 0.80 5.3 7.8 10.44 8.91 6.38	208 161 0.80 5.8 7.8 10.47 9.86 7.18	221 170 0.84 5.8 7.9 9.45 8.80 6.23	278 162 0.84 5.5 8.5 9.69 8.49 6.10	274 168 0.84 5.5 8.0 9.32 8.19 5.99	226 143 0.75 4.4 8.5 10.64 9.27 5.13
CR	$R_{max,cr}$ $V_{cas,cr}$ $V_{cas,max,cr}$ M_{cr} $M_{max,cr}$ H_{cr} $H_{max,cr}$	km m/s - - km km	3613 129 135 0.77 0.88 11.5 11.4	3819 134 144 0.78 0.86 10.9 11.1	4065 141 151 0.78 0.88 10.4 10.6	10622 133 148 0.82 0.89 12.0 12.0	8773 135 150 0.82 0.88 11.5 11.8	13263 140 160 0.82 0.89 11.0 11.6	13928 139 160 0.85 0.91 11.6 12.1	4485 122 130 0.77 0.87 11.7 11.9	4417 130 142 0.78 0.86 11.2 11.4	4404 139 150 0.79 0.88 10.5 10.7	12083 149 169 0.85 0.92 10.8 11.3	6528 134 147 0.80 0.88 11.2 11.4	10531 140 158 0.81 0.90 10.8 11.2	14839 152 173 0.85 0.91 10.5 11.0	11338 135 153 0.85 0.92 12.0 12.3	13685 140 159 0.85 0.92 11.6 12.0	2380 131 139 0.78 0.88 11.0 11.2
DE	$\begin{array}{c} R_{top,de} \\ M_{de} \\ V_{cas,de} \\ H_{cas,de} \\ H_{mach,de} \\ V_{h,cas,de} \\ V_{h,mach,de} \\ V_{h,postcas,de} \end{array}$	km - km km m/s m/s m/s	239 0.76 148 9.5 5.1 -5.81 -9.59 -5.79	234 0.77 150 9.4 5.3 -6.30 -9.73 -5.88	239 0.77 151 8.7 5.9 -5.46 -9.14 -5.89	285 0.80 153 10.1 5.5 -7.51 -9.12 -5.43	294 0.81 152 9.5 5.8 -6.00 -8.65 -5.53	282 0.80 154 9.3 5.5 -6.32 -9.17 -5.38	321 0.82 155 10.1 5.8 -7.25 -8.21 -5.22	254 0.77 147 9.8 5.4 -6.96 -9.03 -5.71	249 0.76 147 9.7 5.5 -7.39 -9.71 -6.03	247 0.76 149 9.4 6.1 -6.16 -8.81 -5.73	264 0.81 152 9.8 6.1 -5.89 -8.97 -6.07	255 0.77 151 9.0 6.0 -6.16 -9.31 -5.89	245 0.79 153 9.1 6.3 -6.63 -9.66 -6.00	262 0.82 157 9.1 6.1 -6.57 -9.12 -6.04	298 0.82 154 10.4 6.5 -8.12 -9.34 -5.88	304 0.83 156 10.3 6.4 -7.77 -8.92 -5.87	242 0.75 147 8.9 5.0 -6.90 -9.19 -5.77
FA	$V_{cas,fa} V_{h,fa}$	$\frac{m/s}{m/s}$	64 -3.42	69 -3.54	72 -3.68	70 -3.61	72 -3.63	72 -3.64	71 -3.65	68 -3.57	75 -3.82	76 -3.92	78 -3.89	68 -3.42	75 -3.73	77 -3.98	74 -3.89	76 -4.08	68 -3.57
LD	$V_{app}\ d_{brk}\ ar{a}_{brk}$	$m/s \ km \ m/s^2$	62.2 1.66 -0.77	68.1 1.20 -1.07	69.9 1.76 -1.04	68.9 1.66 -1.08	72.1 1.63 -1.11	70.8 1.71 -1.03	68.1 2.25 -0.94	66.1 2.22 -0.76	73.5 1.38 -1.32	74.7 1.64 -1.23	77.3 1.92 -1.14	65.8 1.26 -0.98	73.0 1.60 -1.05	75.5 1.62 -1.26	70.6 2.11 -1.03	74.4 2.51 -1.02	64.7 1.90 -0.94

Performance Database

https://github.com/junzis/ofe

<mark>p</mark> hase	param	opt	min	max	model	pm
то	to_v_lof	85.3	70.4	96.9	beta	155851741.4 56.8 -190963643.3 190963797.1
то	to_d_tof	1.68	0.83	2.53	norm	1.68 0.36
то	to_acc_tof	1.95	1.40	2.28	beta	3521203.08 14.02 -252954.22 252957.10
IC	ic_va_avg	81	70	92	norm	81 7
IC	ic_vh_avg	12.78	8.72	15.72	beta	49809564.57 35.98 -17724305.81 17724331.04
CL	cl_d_range	246	169	391	gamma	11 97 13
CL	cl_v_cas_const	155	136	170	beta	87780901 75 -119258618 119258875
CL	cl_v_mach_const	0.77	0.68	0.86	norm	0.77 0.06
CL	cl_h_cas_const	4.8	2.2	7.4	norm	4.8 1.3
CL	cl_h_mach_const	7.8	5.4	9.7	beta	70.4 24.4 -10.5 24.4
CL	cl_vh_avg_pre_cas	10.32	7.71	12.93	norm	10.32 1.58
CI	cl vh avg cas const	8.60	5.56	11.65	norm	8.6011.85

Discussions

1. Comparison with BADA

10 parameters on 14 different aircraft

2. Comparison with EuroControl aircraft performance database

17 parameters on 14 different aircraft

https://contentzone.eurocontrol.int/aircraftperformance/

3. CDA vs Non-CDA

Influence of performance parameter due to continuous descent approach

4. Take-off moment

Locating the take-off moment, limitation in dataset.

Conclusions

- Performance of 31 most common aircraft types
 - 17 included in the paper
- Accurate models based on 1.7 million of flights
- Comparison with BADA and Eurocontrol database
- Open source database
- Future work to improve the number of aircraft types in the database

Take away

- Best suit for kinematic ATM studies
- Flight envelop
 - Optimal, minimum, and maximum value
- Stochastic simulation
 - Parametric probability distribution functions
- [Future] kinetic performance model

Thanks!

Junzi Sun j.sun-1@tudelft.nl Delft University of Technology

