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Junzi Sun, Joost Ellerbroek, Jacco Hoekstra
Control and Simulation, Faculty of Aerospace Engineering

Delft University of Technology
Delft, The Netherlands

Abstract—Open access to flight data from ADS-B (Automatic
Dependent Surveillance Broadcast) has provided researchers
more insights for air traffic management than aircraft tracking
alone. With large quantities of trajectory data collected from a
wide range of different aircraft types, it is possible to extract
accurate aircraft performance parameters. In this paper, a set of
more than thirty parameters from seven distinct flight phases
are extracted for common commercial aircraft types. It uses
various data mining methods, as well as a maximum likelihood
estimation approach to generate parametric models for these
performance parameters. All parametric models combined can
be used to describe a complete flight that includes takeoff, initial
climb, climb, cruise, descent, final approach, and landing. Both
analytical results and summaries are shown. When available,
optimal parameters from these models are also compared with
the Base of Aircraft Data and Eurocontrol aircraft performance
database. This research not only presents a comprehensive set of
methods for extracting different aircraft performance parameters
but also provides a first part of open-source parametric perfor-
mance models that is ready to be used by the ATM community.

Keywords - Aircraft performance; Maximum likelihood estima-
tion; ADS-B; Data mining

NOMENCLATURE

to Aircraft takeoff phase
ic Aircraft initial climb phase
cl Aircraft climb phase
cr Aircraft cruise phase
de Aircraft descent phase
fa Aircraft final approach phase
ld Aircraft landing phase

a∗ Acceleration or deceleration m/s2

d∗ Distance (takeoff or landing) km
Vh,∗ Vertical speed m/s
Vcas,∗ Calibrated air speed m/s
R∗ Flight range km
M∗ Mach number -
H∗ Aircraft altitude km

I. INTRODUCTION

Aircraft performance models (APM) for ATM researches
are commonly built based on manufacturer performance re-
ports and/or recorded flight data. However, it is difficult for
each researcher to obtain flexible access to these models and
related data, as they are either costly or have certain license
limitations. Even the most commonly used APM, Base of
Aircraft Data family 3 (BADA3), has its license limitations
[1]. BADA family 4 comes with even more strict license
agreements, which make it very difficult to perform studies

that can be easily reproduced and compared within the research
community.

Thanks to the ICAO mandates on aircraft ADS-B equipment
installation by 2020, an increasing number of commercial
aircraft are being equipped with this capability. At the same
time, many ground receivers are being installed around the
world. Open flight data has become more and more accessible
for every ATM researcher. Certain flight data such as posi-
tion, altitude, velocity, and vertical speed of common aircraft
types are broadcast and received constantly around the world
by these ground receiver networks. These large amounts of
scatted flight data provide us a new way of modeling aircraft
performance.

By using carefully designed data mining algorithms and
statistical analyses, operational performance and limitation
parameters of aircraft can be obtained from ADS-B flight
data. In this paper, we are focusing on extracting complete
operational and limitation models solely based on this open
data approach.

However, the biggest challenge is how to make use of these
large quantities of data. As an aircraft performs differently in
each flight phase, flight data need to be segmented accordingly.
Machine learning and data mining methods, as proposed by
Sun et al., have provided some efficient ways to process these
loosely connected data points into organized segments based
upon trajectory and respective flight phases [2]. As a continu-
ation of this research, output data generated is further divided
into detailed segments according to the model definitions that
are proposed in this paper.

In real flights, none of the two trajectories are identical. In
every aircraft type, different levels of performance deviations
are always present, and these values are often differ, even
within the same phase of a flight. The main causes include
aircraft mass, thrust settings, wind, and flight procedures.
Errors in data can also contribute to these deviations. However,
there is an underlying statistical model that can be used to
describe these performance parameters. To identify the best
mode, maximum likelihood estimators can be employed.

The remainder of this paper is structured as follows. Section
two introduces the model parameters, definitions, and max-
imum likelihood estimations for three different distribution
functions. Section three explains the data and pre-processing
methods. Section four is focused on methods and algorithms
for constructing parameters of each flight phase. Detailed
results on a single aircraft type and summaries of 17 different
aircraft types are shown in section five. Finally, discussions



and conclusions are addressed in sections six and seven.

II. MODEL DEFINITIONS

A. Parameters

Similar to the flight phase definitions from ICAO Common
Taxonomy Team [3], this research aims to derive performance
parameters from the following flight phases: takeoff, initial
climb, climb, cruise, descent, final approach, and landing. The
significance of the performance indicators differs from one
flight phase to another. For example, vertical velocity is only
of interest during climb and descent, while during takeoff
and landing, the runway distance, acceleration, and boundary
velocities are of interest. Specifically, during the climb (or
descent) phase, a constant CAS/Mach profile is extracted.
Throughout the paper, the following parameters, shown in
Table I, are defined and obtained accordingly.

TABLE I
PERFORMANCE MODEL PARAMETERS

Flight phase Performance parameters

Takeoff Vlof , dtof , ātof

Initial Climb Vcas,ic, Vh,ic

Climb Rtop,cl, Vcas,cl, Mcl, Hcas,cl, Hmach,cl,
Vh,pre-cas,cl, Vh,cas,cl, Vh,mach,cl

Cruise Rcr , Rmax,cr , Hcr , Hmax,cr , Mcr , Mmax,cr

Descent Rtop,de, Mde, Vcas,de, Hmach,cl, Hcas,cl,
Vh,mach,de, Vh,cas,de, Vh,post-cas,de

Final Approach Vcas,fa, Vh,fa

Landing Vapp, dbrk , ābrk

B. Estimation method

The maximum likelihood estimation (MLE) [4] is used to
estimate the best unbiased value of a parameter (or a vector
of parameters) based on observations. First, N observations
X : {x1, x2, . . . , xn} are drawn from an unknown probability
distribution function p(·) and characterized by a parameter
vector φ, denoted {p(·|φ), φ ∈ Φ}. Then, assuming the sample
observations are independent, the joint probability density, also
known as the likelihood function of φ, denoted L(φ; ·), is
expressed as follows:

L(φ ; x1, . . . , xn) = p(x1, x2, . . . , xN |φ) =

N∏
i=1

p(xi|φ) (1)

The maximum likelihood estimate of φ, denoted φ̂MLE, is
the φ vector that maximizes the likelihood. To simplify the
calculation, the log-likelihood function is used:

φ̂MLE = arg max
φ∈Φ

N∏
i=1

p(xi|φ)

= arg max
φ∈Φ

[
log(

N∏
i=1

p(xi|φ))

]

= arg max
φ∈Φ

N∑
i=1

log[p(xi|φ)] (2)

C. Probability distribution functions

Three continuous probability distribution functions (PDF)
are assumed for each of the performance parameters, which are
Normal, Gamma, and Beta distributions. Then MLE is applied
to obtain the best estimates φ̂MLE for each PDF from sample
data.

1) Normal distribution: For a Normal distribution, the
density function is expressed:

p(x|φ) =
1√

2σ2π
e−

(x−µ)2

2σ2 (3)

where the unknown PDF parameters φ : (µ, σ2) represent the
mean and variance. The MLE estimator φ̂MLE can easily be
found for a Normal distribution, with the mean and variance
as the observation data:

µ̂ = X̄ (4)

σ̂2 =
1

n

n∑
i=1

(xi − X̄)2 (5)

2) Gamma distribution: For a standardized Gamma distri-
bution with y ∈ (0,+∞), the density function is expressed:

p(y|φ) =
1

Γ(α)
yα−1e−y (6)

where the α (α > 0) represents the shape of the distribution.
In a general form where x ∈ (−∞,+∞), the location (µ)

and scale (k) parameters are introduced:

p(y|φ) =
1

k · Γ(α)
yα−1e−y

y =
x− µ
k

(7)

The MLE estimator φ̂MLE : (α̂, µ̂, k̂) does not have a close
form solution, but it can be solved numerically [5].

3) Beta distribution: For a standardized Beta distribution
with 0 < x < 1, the density function is:

p(x|φ) =
1

B(α, β)
xα−1(1− x)β−1 (8)

where B(α, β) is defined as:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(9)

In a general form where x ∈ (−∞,+∞), the location (µ)
and scale (k) parameters are also introduced:

p(y|φ) =
1

k ·B(α, β)
yα−1(1− y)β−1

y =
x− µ
k

(10)

Similar to Gamma distribution, it also does not have a close-
form solution for the optimal φ̂MLE : (α̂, β̂, µ̂, k̂), which needs
to be solved numerically [6].



4) Model fitness evaluation: After all possible optimal
probability distribution models are computed, the best model
of all three need to be identified. The Kolmogorov-Smirnov
(KS) Test [7] is applied to obtain such a model. This test
compares the cumulative distribution function (CDF) of a
statistical model, denoted F (x), against the empirical distri-
bution function (EDF) from the data, denoted Fn(x), and then
generates the KS statistic D:

D = max
x
|Fn(x)− F (x)| (11)

which represents the largest distance between F (x) and Fn(x).
Of all three KS statistics DN , DΓ, and DB , the probability
distribution that yields the minimum D will be selected. In
practice, simple Normal distribution is always more favorable
than Gamma or Beta distribution, due to its simplicity. Thus,
a small margin is applied to prefer DN over DΓ or DB .

An example data set of one parameter (takeoff acceleration)
is shown in Fig. 1,

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Parameter values

0.0

0.2

0.4

0.6

0.8

1.0

D
es

ns
it

y

data
norm (D: 0.04)
gamma (D: 0.06)
beta (D: 0.03)

Fig. 1. Comparison of three CDF with data EDF

where the CDF of all three models obtained from MLE are
displayed against the EDF computed from the data. The best
model (beta) is obtained by comparing D. The final selected
PDF are illustrated in the third plot of Fig. 9.

D. Parameter expression

For each parameter in Table I, the following expression is
constructed:

{ψ̂, ψmin, ψmax, ∗pdf} (12)

where the first three values are the optimal, minimum, and
maximum values of such a parameter. The min and max
values are obtained from a confidence intervals: 0.8 for most
of the velocity parameters, 0.98 for range parameters, and
0.9 for other parameters. The probability density functions are
provided as ∗pdf for the cases where parameter values need
to be drawn from a probability distribution. Depending on the
KS test, optimal ∗pdf is expressed as follows:

∗pdf =


[′norm′, µ, σ] for x ∼ N
[′gamma′, α, µ, k] for x ∼ Γ

[′beta′, α, β, µ, k] for x ∼ B
(13)

For deterministic calculations, ψ̂ is recommended. However,
any value from the interval [ψmin, ψmax] is also applicable.
For simulations that study the uncertainties, multiple values of
a parameter can be drawn from the distribution, which would
resemble the real world air traffic situation.

It is important to note that certain errors may be present in
flight data, such as inaccurate estimated wind speed or errors
contained in GPS positions. Trajectory data need to be well
processed in the first place.

III. DATA PREPARATION

A. Data source

For this research, the input data are primarily based on ADS-
B messages that are broadcast by airplanes through Mode-
S transponders. However, even with good installation and
placement, a single ground based receiver only has a maximum
reception range of around 250nm (∼ 500km). Considering
Mode-S line-of-sight availability, it is not possible to capture
large quantities of completed flight data with a single ground
station. It is especially challenging when dealing with long
range aircraft. Thanks to networks of ADS-B ground receivers,
such as FlightRadar24 [8], it is possible to gain access to a
much larger scale of flight data collected from other ground
stations from contributors around the world.

It is also worth noting that in addition to ADS-B data,
using the same receiver setup, aircraft positions, and velocities
can be obtained from multiple ground stations using Mode-
S multilateration. The technology is also deployed by some
ground receivers within the FlightRadar24 network. It is useful
for those aircraft that are not yet equipped with ADS-B out
equipment. However, the availability is limited to areas where
ATC is presented and not useable when aircraft are close to
the ground.

B. Trajectory data process

Data collected from ADS-B are usually scattered. Previous
machine learning methods in [2] have made it possible to
extract flight trajectory easily. However, this method can only
segment flights into four different phases: on-ground, climb,
cruise, and descent.

For the research needs of this paper, further processing
of those segments is employed. Firstly, an altitude threshold
is applied on the climb and descent trajectory to extract
initial climb and final approach. Secondly, a cruise buffer is
introduced to distinguish the level-flight segments in climb or
descent phases from cruise. Lastly, an evaluation process is
used to examine the data of all flight segments, ensuring a
certain level of completeness and continuity in the given time
series data.

The ground velocity information from ADS-B measure-
ments are also integrated with meteorological data using inter-
polation models described in [2] to produce the true airspeed
(TAS) of aircraft at any given location. TAS is then converted
to calibrated airspeed (CAS) and Mach number under standard
atmospheric conditions.

IV. MODEL CONSTRUCTION METHODS

After these flight trajectories are sorted and segmented by
proper flight phases, they are ready to be used for constructing



desired model parameters. For each aircraft type, at least
five thousand trajectories are used to give a good level of
confidence in the model. This section discusses in detail the
methods for extracting these parameters from the trajectory
data.

A. Takeoff

During the takeoff phase, the parameters of most interest
are takeoff distance (dtof ), average acceleration (ātof ), and
lift-off speed (Vlof ). To overcome large noise in velocity
measurements during the takeoff, a spline filter is applied to
obtain a smoothed velocity sample set.

After the smoothed time series data is computed, distance
parameters can be derived from aircraft surface position at the
starting and ending positions of the takeoff, using the spherical
law of cosines:

dtof = d1,N

= R · arccos[sin γ1 · sin γN
+ cos γ1 · cos γN · cos(λN − λ1)]

(14)

where γ and λ represent the latitude and longitude in radians.
Average acceleration ātof can be obtained accurately from

velocity measurements:

ā = argmin
ā

N∑
i=1

(ā · (ti − t0)− vi)2 (15)

Compared to the previous two parameters at takeoff, lift-off
speed is more complicated to estimate, due to the low data
update rate. There is usually a gap of several seconds between
the last on-ground data and the first in-air data.

t0 tlof t1

{V0, alof}

{h1, Vh1}

Fig. 2. Estimate the lift-off moment

To estimate the exact moment of lift-off, as shown in Fig. 2,
a bi-directional extrapolation is used. Firstly, the vertical rate
Vh and time stamp at the first in-air data are used to estimate
the time of lift-off tlof . Combining this result with previously
calculated ātof , the lift-off speed can be obtained as follows:

tlof = t1 −
h1

Vh1

(16)

Vlof = V0 + ātof · (tlof − t0) (17)

B. Initial climb

The initial climb phase is defined as the segment from
35 ft until the aircraft reaches around 1500 ft. There are
several major configuration changes (landing gear and flaps)
during this short period of time that can affect the performance.
However, the initial climb segment lasts for a short time in
respect to the entire flight path. Thus, it suffers from relatively
low data samples comparable to the takeoff phase.

The parameters to be studied are aircraft calibrated airspeed
(Vcas,ic) and vertical rate (Vh,ic). Both parameters can be
computed directly from ADS-B data.

C. Climb

The climb segment starts when the aircraft reaches clean
configuration and lasts until the moment when it reaches cruise
altitude. As a common practice, aircraft first accelerate to a
target CAS and then fly according to this constant CAS. As the
altitude of an aircraft increases, the speed of sound decreases,
which results in an increasing Mach number. When a certain
Mach number is reached, an aircraft will fly according to this
constant Mach number until its cruising altitude. During the
Mach climb segment, a decreasing CAS will be observed due
to the decreasing air density. The climb CAS profile can be
generalized in Fig. 3.
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The challenge is to identify the crossover of this constant
CAS/Mach climb. Knowing the general profile of CAS and
Mach number during the climb, it is possible to design a two-
step and two-piecewise estimator for extracting this feature
from CAS and Mach number profiles.

The estimator consist of two parts: an increasing (quadratic
or linear) segment and a constant segment. The quadratic
increasing part is designed so that it resembles the general
observation of velocity increase with a decreasing acceleration.
The constant segment approximates constant CAS or Mach
values. The estimator is expressed as follows:

fmach(t) =

{
k1 · (t− tmach)2 + ymach t ≤ tmach
ymach t ≥ tmach

(18)

fcas(t) =

{
−k2 · (t− tcas)2 + ycas t ≤ tcas
ycas tcas ≤ t ≤ tmach

(19)

To illustrate this knowledge retrieving process, this two step
piecewise least squared fitting can be described in the diagram
of Fig. 4.

The entire climbing phase in terms of Mach number can
be divided in two parts (increasing and constant). The first
estimator applies on the entire climb data and uses the least-
square fitting to extract the best CAS/Mach transition time
tmach and constant Mach climb number ymach.

The second estimator uses tmach as cutoff time, fitting
the remainder of the time series where Mach number is
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Fig. 4. Constant CAS/Mach climb identification process

increasing. This similarly structured estimator is used to obtain
the constant CAS speed ycas and its starting time tcas.

The final validation step takes into account k1, k2, and all
four output parameters: tcas, ycas, tmach, and ymach to ensure
the following boundary conditions:

t0 < tcas < tmach < tN

CASmin < ycas < CASmax

Machmin < ymach < Machmax

k1 > 0

k2 > 0 (20)

To illustrate this entire process, this method is applied on
one flight and shown in Fig. 5. The green and red colors
represent the Mach and CAS profile during the climb, both
with a constant part that has been identified by the model.
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Fig. 5. Constant CAS/Mach climb identification example

After tcas and tmach are determined, transition altitudes
Hcas,cl, Hmach,cl, at which the constant CAS and constant
Mach climbing commence can be obtained. Vertical rates
Vh,pre-cas,cl, Vh,cas,cl, Vh,mach,cl that correspond to these three
segments can also be computed. In addition, range from takeoff
to the top of climb Rtop,cl is calculated.

D. Cruise

Aircraft generally cruise at selected optimal altitudes. Pa-
rameters that are of interest for performance are extracted from
the trajectories, such as the standard cruise altitude Hcr and
Mach number Mcr. The limitations of aircraft such as cruise
ceiling Hmax,cr and maximum cruise Mach number Mmax,cr

can also be found. In addition, typical cruise range Rcr is
extracted as an operational reference parameter.

Since aircraft rarely flight directly between original and
destination airports, the flight range cannot be calculated as
the great circle distance between origin and destination. On
the other hand, due to the measurement noise inherited from
on-board GPS receivers, position reports in ADS-B can contain
errors. When integrating positions along the trajectory, the
accumulated error grows even larger. Hence, a filter is first
implemented, and then the entire trajectory is re-sampled for
integrating the cruise range. Such a process can be illustrated in
Fig. 6, where the filtered trajectory is shown in red as compared
to real position reports in blue and the direct path in dashed
black line.
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Fig. 6. Cruise range spline filtering

E. Descent

The descent phase of the aircraft is comparable to the
climb phase. From the top of descent, the aircraft undergoes
a constant Mach and constant CAS descent segment before
reaching the approach altitude, as illustrated in Fig. 7.
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Const.
Mach

Const.
CAS

Final Approach

Fig. 7. Standard descent profile



The essential parameters to be modeled are: range from top
of descent to destination Rtod,de, constant Mach vmach,de, con-
stant CAS vcas,de, crossover altitudes Hmach,de and Hcas,de,
and vertical speed Vh,mach,de, Vh,cas,de, and Vh,post-cas,de.

Similar to climb, the constant Mach/CAS descent perfor-
mance can be modeled by piecewise estimators. It is possible
to use the same process as described in Fig. 4. The Mach
profile is described using two linear pieces. The CAS profile
consists of a linear and quadratic piece due to the high non-
linearity in speed at the final approach segment. The model
can be described as follows:

fmach(t) =

{
ymach t ≤ tmach
−k1 · (t− tmach) + ymach t ≥ tmach

(21)

fcas(t) =

{
−k2 · (t− tcas)2 + ycas t ≤ tcas
ycas tcas ≤ t ≤ tmach

(22)

Similarly, the result of such model as applied on one flight
is shown in Fig. 8.
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Fig. 8. Constant CAS/Mach descent identification example

During descent, it is common for aircraft to follow a certain
Continuous Descent Approach (CDA), eliminating level-flight
segments so as to reduce fuel consumption and engine noise.
Such an approach affects the result of descent performances.
This factor is discussed in section VI-C in this paper.

F. Final Approach

Due to different control procedures at each airport, it is not
easy to generalize the entire approach segment solely based on
flight data. However, the final approach segment from around
1000 ft until landing can be modeled.

The segment of final approach represents the end of a
descent, where aircraft operate at a constant airspeed and rate
of descent. The approaching speed vcas,fa and Rate of descent
vh,fa are modeled.

G. Landing

The landing model is comparable with the take-off model.
Parameters such as: approaching velocity Vapp, braking dis-
tance dbrk, and deceleration abrk of the aircraft are modeled
similar to the takeoff phase. Approaching speed Vapp can

be observed from the last in-air velocity. Similar to takeoff,
breaking distance can be calculated using Equation 14, and
average deceleration can be calculated from Equation 15.

V. RESULTS

A set of 17 common aircraft types are studied in this
research. Sufficient data are collected for all aircraft. For each
aircraft type, around 5000 sets of data per flight phase are
considered. In order to better illustrate the modeling of each
individual parameter, detailed results from a single aircraft type
(Airbus A320) are described according to the previous model
specification. Results for other aircraft types are shown in a
combined table.

A. Airbus A320

For each parameter, all three probability density functions
(Normal, Gamma, and Beta) are applied using MLE. The best
model is chosen and represented by different colors in all
figures, shown in red, green, and blue respectively. ψ̂, ψmin,
and ψmax are also marked in each of the plots accordingly.

1) Take-off: Three performance parameters dtof , Vlof , and
ātof are shown in Fig. 9, where the optimal values of these
parameters are 1.68km, 84m/s (∼ 163kt), and 1.88m/s2.

1.08 1.68 2.28

dtof

Takeoff dist. (km)

70.4 85.3 96.9

vlof

Liftoff speed (m/s)

1.40 1.95 2.28

ātof

Mean accelaration (m/s2)

Fig. 9. Take-off parameters

2) Initial climb: Two performance parameters Vcas,ic and
Vh,ic of the initial climb, up to the altitude of 1500ft, are shown
in the first two plots of Fig. 10, where the most likely values
are 81m/s (∼ 157kt) and 12.4m/s (∼ 2440fpm)

70 81 92

Vh,ic

Mean airspeed (m/s)

8.72 12.78 15.72

Vcas,ic

Mean vertical rate (m/s)

0.37 5.13

0.77 Vh,std,ic

Std. of airspeed (m/s)

0.50 5.40

1.60 Vcas,std,ic

Std. of vertival rate (m/s)

Fig. 10. Initial climb parameters

The evidence for quasi-constant airspeed and vertical rate
assumption can be seen from the standard deviations per
trajectory, shown in the last two plots. It should also be noted
that, in general, the vertical rate has larger variances. This is
due to the fact that data sources for vertical rate commonly
contain certain level of uncertainties as suggested in [9].



3) Climb: Within the climb phase, the objective is to model
the constant CAS/Mach climbing profile, as well as the vertical
rates in each of the segments of the profile. All parameters
are shown in Fig. 11. Before the aircraft accelerates to a
constant calibrated airspeed of 153 m/s (295 kt), it has a
mean climbing rate of 10.32 m/s (2000 fpm), once reaching
the transition altitude of approximately 4.8 km (16k ft). The
aircraft then climbs at 8.5 m/s (1670 fpm) until reaching the
constant Mach number 0.77 at an altitude of 7.7 km (25k ft).
After that, the aircraft climbs at 5.44 m/s (1060 fpm) until
reaching the cruise altitude. The flight range of the climb
phase is also shown in the last plot, which is typically around
246 km.

136 155 170

Vcas,cl

Constant CAS (m/s)

0.68 0.77 0.86

Mcl

Constant Mach (-)

2.2 4.8 7.4

Hcas,cl

Trans. alt. cst.-CAS (km)

5.4 7.8 9.7

Hmach,cl

Trans. alt. cst.-Mach (km)

7.71 10.32 12.93

Vh,precas,cl

Mean RoC, pre-CAS (m/s)

5.56 8.60 11.65

Vh,cas,cl

Mean RoC, cst.-CAS (m/s)

3.87 5.44 7.32

Vh,mach,cl

Mean RoC, cst.-Mach (m/s)

169 246 391

Rtop,cl

Climb range (km)

Fig. 11. Climb parameters

4) Cruise: During the cruise phase, cruise speed Vcas,cr,
Mach number Mcr, altitude Hcr, and cruise range Rcr are
shown in Fig. 12 respectively. Maximum cruise Mach num-
ber Mmax,cr and maximum cruise altitude Hmax,cr can be
obtained as the maximum value of Mcr and Hcr.
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Mean cruise Mach (-)
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Hcr

Mean cruise altitude (km)

473 3819

932 Rmax,cr

Cruise range (km)

Fig. 12. Cruise parameters

Unlike other performance parameters, the cruise range Rcr
is spread very widely, where 98% of flights globally range from
473 km to 3819 km. This can reflect the wide ranging usage
of the A320. However, most common flights cruise with range
around 1000 km operationally. The maximum range presented

in the dataset is around 4700 km, which is closer to its claimed
maximum flight range (6500km) if taking into account climb,
descent range, and fuel reserves.

5) Descent: Similar to climb, the descent phase can also be
modeled as a constant Mach descent segment and a constant
CAS descent segment. The parameters are shown in Fig. 13.
The aircraft starts initial descent at constant Mach number
0.77 and vertical rate −6.3 m/s (−1240 fpm) until reaching
an altitude of 9.4km (31k ft). It then starts a constant CAS
descent of 150 m/s (290 kt) and vertical rate of −9.7 m/s
(−1900 fpm) until reaching the altitude 5.3km (17k ft).
Then, the aircraft descends with a vertical rate at −5.9m/s
(−1160 fpm) until final approach. The last plot shows the
range from top-of-descent to destination, typically around
230km.
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Fig. 13. Descent parameters

It is worth taking into consideration that the results obtained
from the dataset contain both CDA and non-CDA descent
approaches.

6) Final Approach: At final approach, airspeed Vcas,fa and
vertical rate Vh,fa are shown in Fig. 14, which are 69 m/s
(134 kt) and −3.54 m/s (−700 fpm) respectively. The last
two plots show the variance of these two parameters within
each trajectory. Similar to the initial climb, the quasi-constant
airspeed and vertical rate assumption is still valid.

7) Landing: At the final flight landing phase, approach
speed Vapp, breaking distance dbrk, and mean deceleration
ābrk are shown in Fig. 15, with values of 68 m/s (132 kt),
1.2 km, and −1.07m/s2. Breaking distance shows a large
variance, ranging from around 600 meters to 3km. Different
factors such as aircraft weight, wind direction, and runway
conditions would all cause such large deviations.

B. Multiple aircraft types

The same methods and analysis are applied on a much
larger dataset that contains multiple aircraft types. Due to the
complexity of displaying all distribution and models from each
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Fig. 14. Final approach parameters
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Fig. 15. Landing parameters

parameters per aircraft type, the optimal parameter values of
17 aircraft types are shown in Table II.

VI. VALIDATIONS AND DISCUSSIONS

A. Validation of performance parameters

The performance parameters described in this paper are all
derived from large numbers of flight data, which resemble the
best estimates of how aircraft truly perform. There are a few
existing performance models that can be used as references to
examine the validity of the estimated parameters.

Within the BADA family 3 [10], similar performance pa-
rameters are contained in the OPF (Operational Performance
File) and APF (Airline Procedure File). The difference between
BADA and our model on ten performance parameters (from
14 aircraft types) are shown in Fig. 16.
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Fig. 16. Comparison with BADA

It can be observed that most parameters from different
aircraft types are very close to what is presented in BADA,

with the exception that takeoff distance (Vtof ) is around 20%
lower than for BADA. This is likely due to the maximum
takeoff weight assumed in the BADA model. If the maximum
values of the parameter Vlof |max from this paper are used, the
result becomes comparable with BADA.

In a similar fashion, the Eurocontrol Aircraft Performance
Database [11] can also be used as a source of comparison. It
provides more performance parameters that are used primarily
for training purposes on a wide range of commercial and
military aircraft. A total of 17 parameters from 14 aircraft
that exist in both models are compared. The result is shown
in Fig. 17:
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Fig. 17. Comparison with Eurocontrol Aircraft Performance Database

The parameters that are displayed with large bias are vertical
rates during the descent phase. In the Eurocontrol database, it
is common that the second descent segment has much higher
vertical rate. However, this trend is not significant in the flight
data as observed. It can also be the case that the transition
altitudes obtained from data in this paper are different from
the fixed transition altitude from the Eurocontrol database.

Furthermore, compared to both BADA and the Eurocontrol
database, the models obtained in this paper also include the
minimum value, maximum value, and a parametric model
for each parameter. This accuracy comes as an additional
advantage for large-scale ATM simulators such as BlueSky
simulator [12].

B. Point of lift-off and touch-down

During the takeoff and landing phases, due to a low data
update rate, an estimation method in Fig. 2 is used to locate
the most likely lift-off or touch-down moment, from which
related parameters are interpolated.

Statistically, there are relatively large gaps between the last
on-ground data and first in-air data. The time gaps ∆t are
measured from a large number (around 7000 flights) of takeoffs
and landings, as shown in Fig. 18.

Most commonly, the ∆t is about three to nine seconds
during which the aircraft would have flown, climbed, or
descended for a fairly large distance. Thus, when dealing with
such data, using the above method improves the accuracy of
parameter estimations during the phases where fewer samples
are available.

It is also interesting to notice that there is a three-second
time gap in both figures of take-off and landing. This is



TABLE II
PERFORMANCE MODEL FOR VARIOUS COMMERCIAL AIRCRAFT

Phase Param Unit A319 A320 A321 A332 A333 A343 A388 B737 B738 B739 B744 B752 B763 B77W B788 B789 E190

TO vlof m/s 80.8 85.3 89.6 91.2 91.5 86.3 88.1 81.3 85.2 90.7 91.9 88.8 92.7 98.2 89.8 95.6 87.0
dtof km 1.62 1.68 1.84 2.01 2.05 2.27 2.51 1.59 1.75 2.04 2.31 1.72 1.82 2.24 2.16 2.52 1.81
ātof m/s2 1.83 1.95 1.95 1.75 1.73 1.37 1.31 1.71 1.77 1.81 1.64 1.85 1.89 1.87 1.56 1.60 1.79
Vh,ic m/s 77 81 85 85 88 82 87 78 85 90 91 86 88 97 87 91 77
Vcas,ic m/s 12.12 12.78 13.20 12.35 12.19 6.74 5.84 11.62 11.90 12.15 9.52 12.93 14.09 12.95 10.40 10.50 11.20

CL Rtop,cl km 214 246 244 282 291 290 297 209 222 243 232 227 208 221 278 274 226
Vcas,cl m/s 150 155 156 156 158 158 167 150 153 157 171 160 161 170 162 168 143
Mcl - 0.77 0.77 0.77 0.80 0.79 0.78 0.83 0.77 0.78 0.78 0.84 0.80 0.80 0.84 0.84 0.84 0.75
Hcas,cl km 4.8 4.8 5.0 5.1 4.9 5.0 5.1 5.0 5.4 5.2 5.8 5.3 5.8 5.8 5.5 5.5 4.4
Hmach,cl km 8.1 7.8 7.4 8.2 7.8 7.4 7.7 8.2 8.3 7.7 7.6 7.8 7.8 7.9 8.5 8.0 8.5
Vh,precas,cl m/s 11.27 10.32 9.50 9.71 8.94 7.15 8.17 11.90 11.06 10.42 8.87 10.44 10.47 9.45 9.69 9.32 10.64
Vh,cas,cl m/s 10.14 8.60 7.89 8.02 7.65 6.93 7.19 11.44 9.96 8.76 8.72 8.91 9.86 8.80 8.49 8.19 9.27
Vh,mach,cl m/s 6.54 5.44 5.35 5.04 4.93 4.40 5.45 7.21 6.44 5.74 6.65 6.38 7.18 6.23 6.10 5.99 5.13

CR Rmax,cr km 3613 3819 4065 10622 8773 13263 13928 4485 4417 4404 12083 6528 10531 14839 11338 13685 2380
Vcas,cr m/s 129 134 141 133 135 140 139 122 130 139 149 134 140 152 135 140 131
Vcas,max,cr m/s 135 144 151 148 150 160 160 130 142 150 169 147 158 173 153 159 139
Mcr - 0.77 0.78 0.78 0.82 0.82 0.82 0.85 0.77 0.78 0.79 0.85 0.80 0.81 0.85 0.85 0.85 0.78
Mmax,cr - 0.88 0.86 0.88 0.89 0.88 0.89 0.91 0.87 0.86 0.88 0.92 0.88 0.90 0.91 0.92 0.92 0.88
Hcr km 11.5 10.9 10.4 12.0 11.5 11.0 11.6 11.7 11.2 10.5 10.8 11.2 10.8 10.5 12.0 11.6 11.0
Hmax,cr km 11.4 11.1 10.6 12.0 11.8 11.6 12.1 11.9 11.4 10.7 11.3 11.4 11.2 11.0 12.3 12.0 11.2

DE Rtop,de km 239 234 239 285 294 282 321 254 249 247 264 255 245 262 298 304 242
Mde - 0.76 0.77 0.77 0.80 0.81 0.80 0.82 0.77 0.76 0.76 0.81 0.77 0.79 0.82 0.82 0.83 0.75
Vcas,de m/s 148 150 151 153 152 154 155 147 147 149 152 151 153 157 154 156 147
Hcas,de km 9.5 9.4 8.7 10.1 9.5 9.3 10.1 9.8 9.7 9.4 9.8 9.0 9.1 9.1 10.4 10.3 8.9
Hmach,de km 5.1 5.3 5.9 5.5 5.8 5.5 5.8 5.4 5.5 6.1 6.1 6.0 6.3 6.1 6.5 6.4 5.0
Vh,cas,de m/s -5.81 -6.30 -5.46 -7.51 -6.00 -6.32 -7.25 -6.96 -7.39 -6.16 -5.89 -6.16 -6.63 -6.57 -8.12 -7.77 -6.90
Vh,mach,de m/s -9.59 -9.73 -9.14 -9.12 -8.65 -9.17 -8.21 -9.03 -9.71 -8.81 -8.97 -9.31 -9.66 -9.12 -9.34 -8.92 -9.19
Vh,postcas,de m/s -5.79 -5.88 -5.89 -5.43 -5.53 -5.38 -5.22 -5.71 -6.03 -5.73 -6.07 -5.89 -6.00 -6.04 -5.88 -5.87 -5.77

FA Vcas,fa m/s 64 69 72 70 72 72 71 68 75 76 78 68 75 77 74 76 68
Vh,fa m/s -3.42 -3.54 -3.68 -3.61 -3.63 -3.64 -3.65 -3.57 -3.82 -3.92 -3.89 -3.42 -3.73 -3.98 -3.89 -4.08 -3.57

LD Vapp m/s 62.2 68.1 69.9 68.9 72.1 70.8 68.1 66.1 73.5 74.7 77.3 65.8 73.0 75.5 70.6 74.4 64.7
dbrk km 1.66 1.20 1.76 1.66 1.63 1.71 2.25 2.22 1.38 1.64 1.92 1.26 1.60 1.62 2.11 2.51 1.90
ābrk m/s2 -0.77 -1.07 -1.04 -1.08 -1.11 -1.03 -0.94 -0.76 -1.32 -1.23 -1.14 -0.98 -1.05 -1.26 -1.03 -1.02 -0.94

0 3 6 9 12 15 18 21 24 27
∆t at takeoff

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

D
en

si
ty

(-
)

0 3 6 9 12 15 18 21 24 27
∆t at landing

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

(-
)

Fig. 18. Time gap of data at takeoff and landing

likely due to the update rate of aggregated ADS-B data from
FlightRadar24 that is used in this paper. When using raw ADS-
B data, this gap can be reduced to around one second when
receivers are in good visibility of an aircraft.

C. CDA

To maximize the fuel efficiency and when it is allowed by
air traffic controllers, aircraft often perform continuous descent

approaches (CDA) in order to save fuel and reduce noise.
However, as modeling the performances, CDA has an impact
on some parameters during the entire descent phase.

To study the influence of this factor, a similar number of
CDA and non-CDA flights (around 3000 flights each) are
used. All parameters related with descent are computed and
compared in parallel. As shown in Fig. 19, eight parameters
in CDA and non-CDA flights are shown. Transitional altitudes
and velocities of constant Mach/CAS descent do not change
between these two approaches, but other parameters show
large differences. In the first sub-figure, it is clear that CDA
decreases the range of top-of-descent drastically. From sub-
figure six to eight, it is also apparent that the descent rates are
all increased under CDA. All of these differences are indeed
aligned with the definition of CDA.

D. Data and models

Models from this paper describe the operational perfor-
mances and limitations of aircraft. Compared to BADA, ele-
ments such as thrust, fuel, and drag polars need to be developed
with aid from other open data in future research projects. Some
of these parameters may also not be completely independent,
and indeed, weak correlations are likely to exist among certain
parameters, which could be caused by factors such as the
aircraft weight or flight strategy. Further research will also be
conducted to study this effect.
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Fig. 19. Comparing descent parameters during CDA and Non-CDA

ADS-B data are not distributed equally per aircraft type.
The same amount of data from most common aircraft types
such as Airbus-320 and Boeing-737 can be collected within
a week, while for other less common aircraft types such as
Airbus-380 and Boeing-777, this process may take several
months. While completing this research, a total of 1.6 million
flights have been captured during a period of five months
for around 30 commercial aircraft types. Models are being
continuously improved with new data. All models from this
paper are published under the GNU v3 open source license.

VII. CONCLUSIONS

Based on an improved version of previously developed
flight phase identification methods, this paper utilizes large
amounts of ADS-B data to construct accurate aircraft para-
metric performance models. From these flight data, maximum
likelihood estimations on different distribution functions are
used to calculate the best models to describe each parameter.
In addition to detailed model construction methods along the
flight trajectory, a total of 32 parameters per aircraft are
presented, covering most common aircraft types. The results
for 17 aircraft types are summarized in this paper. In addition,

these detailed models are published under open-source license.
Comparison studies are also performed against existing models
such as BADA and the Eurocontrol Aircraft Performance
Database. Finally, this paper provides a starting point for
comprehensive open source aircraft performance models for
the ATM research community.
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