
 
 

Delft University of Technology

Nuclear norm-based recursive subspace identification for wind turbine flutter detections

Navalkar, Sachin; van Wingerden, Jan-Willem

DOI
10.1109/TCST.2017.2692751
Publication date
2017
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Control Systems Technology

Citation (APA)
Navalkar, S., & van Wingerden, J.-W. (2017). Nuclear norm-based recursive subspace identification for
wind turbine flutter detections. IEEE Transactions on Control Systems Technology, 26 (May 2018)(3), 890-
902. https://doi.org/10.1109/TCST.2017.2692751

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TCST.2017.2692751
https://doi.org/10.1109/TCST.2017.2692751


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Nuclear Norm-Based Recursive Subspace
Identification for Wind Turbine Flutter Detection

Sachin T. Navalkar and Jan-Willem van Wingerden

Abstract— Commercial wind turbine blades are progressively
becoming longer and more flexible; in order to achieve load
reduction, the use of shape modifying devices is currently under
research. While such modifications facilitate cost reduction, they
also render the blade susceptible to the unstable aeroelastic
phenomenon of flutter. To be able to detect the onset of flutter,
and to modify the load control algorithm accordingly, it is
desirable to perform online identification of system dynamics.
In this paper, a recursive subspace identification algorithm is
augmented with a nuclear norm-based cost function for the
rapid identification of changes in the dominant system behavior.
The time-consuming singular value thresholding step involved in
the identification is replaced by a fast randomized algorithm. The
method developed is used to identify the changes in the dynamics
of an experimental wind turbine equipped with shape-modifying
actuators, and operated under controlled conditions in a wind
tunnel. The proposed identification method shows high sensitivity
to changes in system dynamics, and is shown capable of stably
and rapidly identifying the onset of aeroelastic flutter.

Index Terms— Nuclear norm, randomized singular value
decomposition (SVD), recursive identification, wind energy.

I. INTRODUCTION

W IND TURBINES have over the past decades succes-
sively grown in size, in an effort to minimize the

production and operation cost of wind energy, especially in
the challenging offshore environment. Current wind energy
research is attempting to synthesize and validate approaches
to minimize wind turbine blade loading, which has a direct
impact on the costs of the entire structure, as well as on the
longevity of the turbine. One of the approaches toward load
control is the use of individual pitch control [1], whereby
the blades are pitched cyclically along their longitudinal axes,
with a view toward mitigating the cyclic blade loads. While
this approach is effective, the large blade inertia ensures that
only low-frequency loads can be mitigated. Furthermore, this
approach induces a large increase in pitch activity and a
concomitant degradation of pitch subsystem reliability.

An alternative approach to blade load control is afforded by
trailing edge flaps, located radially outboard along wind tur-
bine blades [2]. Such devices typically have higher bandwidth
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and can mitigate a larger part of the blade spectrum, while pos-
sessing the ability to respond to localized wind disturbances.
Although trailing edge flaps have not yet been deployed on
commercial machines, their load reduction potential has been
demonstrated experimentally in the wind tunnel [3] and in the
field [4]. However, it is observed that the control authority of
trailing edge flaps is typically lower than that of full-span pitch
control. In an attempt to remedy this shortcoming, the concept
of the free-floating flap, as described in [5] was introduced,
which uses aerodynamic levering to enhance actuator stroke
in the frequency range of interest. This concept was recently
demonstrated experimentally on a scaled wind turbine in a
wind tunnel [7]. In both of these references, it is seen that
the system behavior is linear-parameter-varying in that it
varies strongly with the ambient wind speed. Furthermore,
the dynamic behavior of wind turbines is typically complicated
by the presence of periodic exogenous loads arising out of
azimuthally varying effects such as wind shear, tower shadow,
and rotationally sampled turbulence.

It has been postulated in [8] and demonstrated experimen-
tally by [9] that modern pitch-controlled wind turbines exhibit
classical flutter through the aeroelastic coupling of bending
and torsion modes. Field experience has shown that flutter
does not occur during ordinary operation; however, off-design
operating conditions such as overspeed or misaligned flow can
induce flutter. Furthermore, with the increasing flexibility of
wind turbine blades, the flutter speed is expected to reduce
further. The use of trailing-edge flaps has the effect of further
increasing the flexibility of the blades. Specifically, free-
floating flaps, which show increased control authority with
high bandwidth, have been shown experimentally to induce a
low wind-speed form of flutter [5] on a fixed wing suspended
in a wind tunnel. It should be noted that these flaps, described
in further detail in the following section, introduce a new
rigid-body blade mode, which couples aeroelastically with the
flexible blade flapwise mode to cause instability. As such [6],
this instability is distinct from the phenomenon of classical
flutter, which typically involves the aeroelastic coupling of two
flexible blade modes (usually bending and torsion). However,
since the unstable behavior of the free-floating flaps has also
been referred to in the literature [5], [6] as flutter, the same
word is used in this paper. It should be noted that the methods
described for identifying actuator-blade flutter in this paper can
also be used for identifying classical flutter in wind turbine
blades [10].

At this point, it is important to emphasize the objective of
the trailing edge flaps [6]. They are, in the literature, primarily
aimed at reducing blade flapwise loading; with other forms of
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cyclical loads forming a secondary load reduction objective.
Classical overspeed-induced bending-torsion flutter may be
another possible application, but this has not been exhaustively
studied so far. However, the increase in blade flexibility caused
by such devices, specifically by free-floating flaps, may induce
another low wind speed form of actuator-blade flutter, which is
also required to be identified and stabilized. This paper devotes
its attention exclusively to this form of flutter.

In order to ensure structural integrity and load control
performance in the event that the wind turbine enters the
flutter regime, it would be necessary to track the evolution
of system dynamics over time. System identification can
be performed online for this purpose. Although paramet-
ric models and neural network-based models can also be
identified [11], [12], this paper focuses on subspace iden-
tification. This is because subspace identification requires
minimal system knowledge and typically involves a convex
minimization, which is amenable to an online implementation.
For the application of flexible wind turbines, due to the
high modeling complexity arising out of the intercoupling
of aerodynamics, structural dynamics, and control, subspace
identification has been considered an attractive option for the
synthesis of controller-relevant plant models. Linear system
identification at multiple wind speeds has been performed
by [13]. To account for the wind speed-varying nature of the
plant, [14] describes the identification of turbine vibrational
dynamics as an LPV system, while [15] uses subspace identi-
fication to model a wind turbine as a Hammerstein system.
Such approaches to identification yield more accurate and
globally valid models that have greater flexibility to describe
the nonlinear behavior of the turbine. However, from the point
of view of computational complexity and a limited availability
of data, it is considered in this application more appropriate
to investigate recursive linear identification.

Subspace methods have been used for online recursive fault
identification [16] and for the online synthesis of adaptive
control laws [17]. In these references, recursive identification
is shown capable of detecting the variation in system dynamics
over time. Furthermore, a certain class of predictor-based
subspace identification techniques, such as PBSIDopt [18], can
also be used to perform identification in the closed loop, as is
clearly required in order to identify an unstable plant, such as
a wind turbine in flutter.

The method PBSIDopt has been implemented recursively,
as in [19] using projector tracking. However, in this case,
the estimates do not necessarily converge to the same state
basis. In order to circumvent this problem, [10] uses a prop-
agator method to arrive at the instantaneous Markov para-
meters of the underlying plant. However, recursive subspace
identification methods typically involve a variance-adaptivity
tradeoff. In effect, in order to achieve stable system parameter
estimates, it is necessary to utilize forgetting factors close to
unity; unfortunately high forgetting factors cause a reduction in
the responsiveness of the identification algorithm to changes in
system dynamics. As shown in [10], where recursive PBSIDopt
is used to detect flutter, a high forgetting factor can produce a
delay in the detection of the point at which the system becomes
unstable.

Recent research in identification techniques has focussed
on exploiting the low-rank nature of the data matrices by
augmenting the traditional optimisation criterion with the
nuclear norm [20]. For small-size data batches, nuclear norm-
based methods [21] reduce the variance of system parame-
ter estimates at the cost of introducing an estimate bias.
While originally developed for open-loop batch identifica-
tion, the method has been extended to recursive closed-loop
identification [22]. In order to optimize a nuclear norm-based
cost function recursively and online, the alternating direction
method of multipliers (ADMM) [23] can be considered suit-
able. An ADMM approach can also be expected to be able
to handle constraints in the optimization problem. With the
addition of the nuclear norm, the estimate variance reduces,
allowing the user to reduce the forgetting factor and enable
rapid detection of system parameter changes, such as the onset
of flutter.

One of the drawbacks of incorporating a nuclear-norm in the
cost function is the need for singular value thresholding (SVT)
at every ADMM iteration. If a full singular value decompo-
sition (SVD) of the data matrix is computed at every step in
the ADMM [23], then the computational cost for a recursive
algorithm can easily become prohibitively expensive for a real-
time implementation. Cheaper alternatives for SVT have been
explored in the literature. For instance, Cai [24] explores SVT
without computing an SVD. Instead, a polar decomposition
of the argument is followed by projection for norm shrinkage;
with reported reductions in computation time of up to 50%.
In [25], a nuclear-norm based cost criterion is minimized,
replacing the full SVD with an SVD of a reduced randomly
sampled full-rank matrix. If, as in our application, the range
of the full-rank matrix remains approximately the same across
iterations, the computations can be further simplified via a
method that the authors term as “range propagation.” In [25],
the algorithm has been applied to image processing, and
significant advantages are observed in comparison with the
nonregularized variant. However, this approach has not yet
been applied for online system identification.

The contributions of this paper are thus threefold: first, it can
be considered as an extension of the conference paper [22],
where a closed-loop subspace identification method is aug-
mented with a nuclear-norm cost criterion so as to enhance
its robustness to noise, and to enable the responsiveness to
changes in system dynamics. In order to make it tractable in
real time, use is made of a fast randomized version of SVT,
and structure is exploited to reduce computational complexity
through the use of range propagation. Since the application
is the identification of wind turbine flutter, the designed
identification method is extended to compensate for exogenous
periodic disturbances typically observed in wind turbine load-
ing data. Finally, the use of the method will be demonstrated
for the detection of flutter on an experimental setup of a wind
turbine operating in time-varying wind tunnel conditions.

This paper is organized as follows: in Section II,
the experimental setup and operating conditions are
described. Section III describes the theoretical framework
for the online nuclear norm-based identification of system
dynamics. Section IV presents the results obtained from the
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Fig. 1. Photograph of the wind turbine located close to the open jet of the wind tunnel. The rotor diameter is 2 m.

experimental data. Finally, in Section V, conclusions are
drawn from the presented results.

II. EXPERIMENTAL SETUP

The experimental setup consists of a scaled two-bladed
wind turbine operated under controlled wind conditions in a
wind tunnel. The wind turbine blades are each equipped with
one free-floating flap close to the blade tip. The objective
of this flap is to modify air flow in order to achieve blade
load reductions. However, the additional degree of freedom
causes aeroelastic flutter just outside the turbine operational
envelope. A detailed discussion on the design and control of
the wind turbine with free-floating flaps can be found in [7].
In Sections II-A–II-C, a brief overview of the experimental
setup and operating conditions is given.

A. Open Jet Facility

The open jet facility of the Delft University of Technology
is an open-jet wind tunnel with a hexagonal jet outlet, with an
effective cross-sectional diameter of 3 m. The fan driving the
wind flow in the wind tunnel is rated at 500 kW, with the
maximum wind speed achievable 35 m/s. The experiments
are conducted at wind speeds between 4 and 7 m/s. The
turbulence intensity in the wind tunnel is less than 0.5% at
these wind speeds, although it can, in principle, be raised
through the use of turbulence screens or gust generators.
However, for the present of experiments, since it was more
desirable to understand the behavior of the setup and the
algorithm under deterministic loading conditions, such flow
modifiers were not used. Since the wind tunnel is of the closed-
circuit type, it is equipped with a series of heat exchangers to
regulate the temperature of the air flow. The wind tunnel is
used for the testing of wind turbines under controlled wind
conditions, and it has been used for the testing of wind
turbine identification and load control validation in the recent
past [3], [17]. On account of the dimensions of the open jet
flow, wind turbine prototypes tested in this wind tunnel cannot
exceed a size of 2-m rotor diameter.

TABLE I

PARAMETER COMPARISON OF THE SCALED TURBINE

B. Wind Turbine and Blade Design

The scaled turbine used for experiments in the wind tunnel
is shown in Fig. 1. The main aeroservoelastic characteristics
of the turbine, relevant for blade load control design, have
been compared against the 10-MW INNWIND reference tur-
bine [26] in Table I. Since the objective of the experiment is
to achieve blade load control, the tip speed ratio was limited
to 5.35, which is lower than its optimal value of 7.86, but
does not alter the aerodynamic performance significantly. The
ratio of the first flapwise frequency of the blade to the rotor
speed (1P) was kept as close as possible to the reference value
of 3.5. This ratio describes the relation between the primary
load forcing frequency, 1P, to the control authority peak, which
occurs at the blade structural eigenfrequency.

The detailed aerodynamic design of the blades is given
in [7]. Principally, the blades were designed as per [3]. Each
blade has a length of 750 mm, with a root chord length
of 200 mm that tapers to a tip chord length of 120 mm.
The total twist over the blade is 12°. The cross-sectional
aerofoil is of type DU96-W180, with 18% thickness. The
basic aerodynamic shell was 3-D printed using the material
PC-ABS, with a vertebral carbon-fibre layup of external spars
to tune the structural strength and stiffness of the blade. The
surface was then polished using sandpaper. The blades can
be visualized in Figs. 2 and 3. An MFC strain sensor was
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Fig. 2. Blade CAD model.

Fig. 3. Photograph of Blade.

affixed to the top and bottom at the root of each blade, in order
to measure the blade loads. Actuation was facilitated by the
free-floating flaps located at the tip of each blade. The design
rotational speed was 230 rpm, yielding a Reynold’s number
of roughly 200 000.

For typical wind tunnel experiments for scaled turbine
identification and load control, Reynold’s scaling is practically
infeasible, and was not attempted. The scaling objective was
to achieve a reasonable tip speed ratio to replicate aerody-
namic behavior, and eigenfrequency scaling to achieve similar
structural behavior.

The turbine is fixed rigidly on the wind tunnel table.
The tower is able to yaw freely about its base, this degree
of freedom is, however, constrained for the duration of the
experiments. The turbine is oriented such that the rotor is
upwind and its plane is perpendicular to the direction of wind
flow. The nacelle is fixed rigidly to the top of the tower and
contains a generator and a rotating hub, connected directly
without a gearbox. The connecting shaft is instrumented with
a torque transducer and speed encoder. Also mounted on the
shaft are slip rings that transfer power and control signals from
the stationary part of the nacelle to the rotating hub and the
blades. The blades are connected to the hub through pitch
motors, thus they are able to pitch longitudinally along their
axes. However, for the duration of the current experiments,
the blade pitch is kept at fine, i.e., set to the maximal power
production angle. Further details can be found in [17], which
utilizes the same nacelle and tower.

Fig. 4. Cross section of free-floating flap.

C. Actuator Design and the Control System

Blade load control is achieved by using the free-floating
flaps located at the blade tips to modify the air flow around
the blade. As can be seen in the cross-sectional drawing Fig. 4,
the flap is free to move without any resistance about a hinge
axis. The flap consists of a thin sheet of metal (spring steel),
on the top and bottom of which one MFC piezobender each is
bonded. In response to an imposed voltage, the MFC actuator
causes the flap to bend either upward or downward. This
camberline deformation causes rigid-body rotation of the flap
around its hinge axis, producing an aerodynamic force that
can be used to counteract blade loading. In order to ensure
good aerodynamic behavior while maintaining deformability,
the flap is faired to the rest of the blade using low-stiffness
foam, and encapsulated in a low-rigidity casing.

As seen in Figs. 2 and 4, the designed chord length is
unchanged at the outboard section where the free-floating flap
is located. Such a design is typical for this application, and has
been shown in the literature to demonstrate adequate control
authority. Ensuring a smoothly varying chord length over the
span of the blade is also desirable from an aerodynamic
point of view. However, out of practical considerations, and to
provide a safety margin for the demonstration of free-floating
flap load reduction control authority, the chord length at the
location of the flap was increased by 20% for the experimental
blade [see Fig. 3]. In future work, as for scaled-up versions
of this concept, it is expected that such a chord extension will
not be deemed necessary nor desirable.

The angle through which the free-floating flap can freely
rotate is limited by using angle limiters, and the rotational
angle is measured with the help of a contactless angle encoder
that is aligned with the free hinge shaft. Since the open-loop
system can become unstable due to the phenomenon of flutter,
this collocated sensor is used to provide feedback to a simple
loop-shaped PID controller that keeps the closed-loop system
stable.

The control input and output signals are transferred through
the slip rings to the stationary subsystem, and fed into an
NI-DAQ data acquisition system, which is connected to a
real-time PC running MATLAB-Simulink xPCTarget. The
generator power is transferred to an electronic dump load.
The dump load resistance can be controlled to regulate
the turbine torque and speed. However, for the duration
of the experiments, the load resistance is kept constant.
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In constant-resistance operation, the rotational speed of the
turbine varies linearly with the ambient wind speed, thus
this corresponds to the below-rated operational regime of a
commercial wind turbine.

As described in Section I and in [7], the experimental
blade manifests a low wind-speed form of flutter, which is
caused by the coupling of flap rigid-body motion and blade
flapwise motion. This paper seeks to identify the onset of
this form of flutter. As such, instrumentation is included to
obtain a measure of both forms of motion: the blade root
strain gauges measures its flexible deflection, while the angle
encoder measures flap rigid-body motion. Load control is the
ultimate objective of employing the free-floating flaps, but
this paper focuses purely on identification. Feedback from the
angle encoder is used to stabilize the system in the unstable
operating regime.

This experimental setup serves as a test bench for inves-
tigating the online nuclear-norm-based identification strategy
developed in Section III.

III. RECURSIVE PBSID WITH THE NUCLEAR NORM

In this section, the algorithm for online system identification
and flutter detection is developed. First, the closed-loop PBSID
algorithm is augmented with a nuclear norm-based cost func-
tion for the identification of low-order systems, while retaining
convexity. Then, a recursive implementation of this algorithm
is described. Finally, the time-consuming SVD step of the
identification algorithm is replaced by a lower-dimensional
version to facilitate online implementation.

A. PBSIDopt With the Nuclear Norm

In conventional PBSIDopt, the first step involves the syn-
thesis of an extended vector autoregressive with exogenous
inputs (VARX) model, using the input and output data. The
parameters of this model, also called the Markov parameters of
the system, are identified optimally in a least-squares sense.
On the basis of this model, the second step involves state
estimation and the construction of the state-space matrices.
In the first step, the identified VARX model can be forced
to be low rank by adding a nuclear norm-based term to the
optimization cost function, with a view toward reducing the
effect of noise on the estimate variance.

Let us consider that the turbine blade system, from flap input
to load output, be represented by linear time-invariant (LTI)
dynamics for a given wind speed. In the predictor form,
the system description is as follows:

xk+1 = Axk + Buk + K yk (1)

yk = Cxk + Fdk + ek . (2)

As typically considered in the subspace identification litera-
ture [18], xk ∈ R

n is a nonphysical state vector, the dimension
n of which is unknown. The state may or may not correspond
directly to the flapwise deflection of the blade. The input
uk ∈ R is the control input to the system, which is the
flap voltage, while the output of the system is yk ∈ R,
the flapwise blade load measured by the strain sensor located
at the root (in volts). Although coupled in principle, the two

blades are considered to have no influence on each other, and
the system from uk to yk is treated as an SISO system. The
state-space matrices A, B , C , and K have the appropriate
dimensions. The disturbance consists of two parts: the periodic
signal dk ∈ R

4, overlaid with white noise ek . The periodic
signal arises out of rotational effects on the turbine, such as
rotor imbalance, wind shear, tower shadow, and the sampling
of turbulent structures. The dominant frequency content of this
signal occurs at frequencies 1P (rotor speed) and 2P (two times
rotor speed). As such, the signal dk can be replaced by

dk =

⎡
⎢⎢⎣

sinψk

cosψk

sin 2ψk

cos 2ψk

⎤
⎥⎥⎦ (3)

where ψk is the rotor azimuth. The signal dk is shaped by the
unknown matrix F to obtain the correct phase and magnitude
of the periodic disturbance.

The effect of the state on the output can be expressed in
terms of the past input–output data using an ARX approxima-
tion, as is commonly done in PBSID algorithms

yk ≈ CK(s)zk + ek (4)

where the data vector zk ∈ R
2s+4 is given, for a past window

size of s, as

zk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk−s

yk−s

uk−s+1
yk−s+1
...

uk−1
yk−1
dk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

In the predictor equation (4), the unknown quantity CK(s) is
defined as �, the Markov parameters of the system, which in
terms of the state-space matrices, can be described as

� = [�1 �2 · · · �2s �F ] (6)

= [C As−1B C As−1K · · · C B C K F]. (7)

Thus, (4) becomes

yk = �zk + ek . (8)

The unknown terms � can be estimated in a least-squares
sense. However, in order to ensure that high-frequency dynam-
ics in the noise are not estimated, it is desirable that the order
of the identified system is minimized. To exploit this low-order
nature, the data is stacked in the following manner:

Yk,s,N = Os Xk,1,N + Tu,sUk,s,N + Ty,sYk,s,N

+ F̄ Dk,s,N + Ek,s,N . (9)

In this expression, the data is arranged in Hankel matrices in
the form

Yk,s,N =

⎡
⎢⎢⎢⎣

yk yk+1 · · · yk+N−s−1
yk+1 yk+2 · · · yk+N−s
...

...
. . .

...
yk+s−1 yk+s−2 · · · yk+N−2

⎤
⎥⎥⎥⎦ (10)
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with similar expressions for xk , uk , dk , and ek . The term Os

is the extended observability matrix, defined as

OT
s = [CT (C A)T · · · (C As−1)T ]. (11)

Since the window size s is typically chosen to be much larger
than the order of the system n, the term Os Xk,1,N is low
rank. This property will be made use of in regularizing the
least squares solution. In terms of the past input–output data,
the state matrix can be estimated as

Xk,1,N = K(s)[zk zk+1 · · · zk+N−1] (12)

Xk,1,N = K(s)Zk,1,N . (13)

The unknown Toeplitz matrix Tu,s in (9) is defined as

Tu,s =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
C B 0 0 · · · 0

C AB C B 0 · · · 0
...

...
...

. . .
...

C As−2 B C As−3 B C As−4 B · · · 0

⎤
⎥⎥⎥⎥⎥⎦

(14)

with a similar expression for Ty,s , replacing B by K . Fur-
thermore, the matrix F̄ is a block diagonal matrix with the
unknown matrix F along its diagonal. The data equation (9)
can herewith be restated purely in terms of the collected input-
output data as

Yk,s,N = OsK(s)Zk,1,N + Tu,sUk,s,N

+ Ty,sYk,s,N + F̄ Dk,s,N + Ek,s,N . (15)

As mentioned previously, the term OsK(s)Zk,1,N has low rank.
This low-rank structure can be exploited by adding a rank
minimization term to the identification cost function. However,
the rank function is nonconvex. So, in order to convexify the
optimization function, the rank penalty is approximated by
penalizing the nuclear norm of OsK(s)Zk,1,N . The nuclear
norm, defined as the sum of singular values of a matrix, has
been used as a proxy for rank minimization [20] in system
identification [21].

Thus, with the addition of the nuclear norm to regularize the
estimation of the system Markov parameters, the identification
cost criterion can be stated as

min
�

‖OsK(s)Zk,1,N ‖∗ + λ

N

N∑
i=1

‖yi −�zi‖2
2. (16)

It can be observed that the first term OsK(s)Zk,1,N depends
on �, and it is not an independent variable to be minimized.
It can be restated as a function of � in the following manner:
OsK(s)Zk,1,N

=

⎡
⎢⎢⎢⎣

C As−1 B C As−1K · · · C B C K
0 0 · · · C AB C AK
...

...
. . .

...
...

0 0 · · · C As−1 B C As−1K

⎤
⎥⎥⎥⎦

× Zk,1,N

=

⎡
⎢⎢⎢⎣

�1 �2 · · · �2s−1 �2s

0 0 · · · �2s−3 �2s−2
...

...
. . .

...
...

0 0 · · · �1 �2

⎤
⎥⎥⎥⎦ Zk,1,N = A(�).

The cost criterion to be minimized for system identification
can hence be written as

min
�

‖A(�)‖∗ + λ

N

N∑
i=1

‖yi −�zi‖2
2. (17)

Once the optimal system Markov parameters �∗ have
been obtained by minimizing this cost function, the standard
PBSIDopt procedure can be followed to arrive at a state-space
realization of the underlying system. In order to facilitate rapid
online system identification, the above-mentioned methodol-
ogy has to be reformulated such that identification can be
performed recursively and online.

B. Recursive PBSID With Nuclear Norm

The procedure for performing closed-loop identification
with PBSIDopt in a recursive and online manner has been
delineated in [10]. This reference uses a 2-norm minimiza-
tion criterion for identifying the system Markov parame-
ters, which can be done efficiently using a recursive least-
squares (RLSs) approach. Since the minimization criterion
defined in Section II-A includes a penalty on the nuclear
norm, direct RLS cannot be used. However, the nuclear norm
is convex and differentiable in variables, so as long as the
condition on the persistency of excitation holds, it is still
possible to obtain a unique solution in an efficient manner.
Due to the mixture of norms used, an ADMM [23] is used
here to solve the minimization problem.

Initially, to separate the norms in the cost criterion, (17) is
rewritten as

min
X ,�

‖X‖∗ + trace((�−�(0))C(�−�(0))T ) (18)

s.t. X = A(�). (19)

Here, the term �(0) is the RLS solution to the 2-norm
minimization of

∑N
i=1 ‖yi − �zi‖2

2. In a batchwise sense, its
value is given by

�(0) = Yk,1,N Z†
k,1,N (20)

where the † represents the Moore–Penrose pseudoinverse.
Furthermore, the weighting matrix in the cost criterion (18)
can be worked out to be C = λZk,1,N Z T

k,1,N . To solve (18)
using the ADMM, the saddle point of its Langrangean is
sought, i.e., the new optimization criterion is given by

max
Z

min
X ,�

‖X‖∗ + trace((�−�(0))C(�−�(0))T ) (21)

+ ZT (X − A(�))+ t

2
‖X − A(�)‖2

F . (22)

Each of the decision variables can be iteratively optimized
to converge to the required optimal value of the Markov
parameters, �∗. Here, t is the constant penalty parameter that
determines the tradeoff between the primal and dual residuals;
and can be tuned for achieving the desired rate of convergence.
The ADMM procedure is given in the following.

1) Initialize the variables �, X , and Z to zero. Alterna-
tively, assuming that the system dynamics do not change
drastically, these variables can be initialized to the values
from the previous time instant to facilitate a warm start.
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2) Update the Markov parameters by setting the gradient
with respect to � to zero

� = (C + t M)−1Aadj(tX − Z + C�(0)). (23)

Here, Aadj(.) is the adjoint of A(.) and Aadj(A(�)) =
M�.

3) Next, the terms involving X are minimized by SVT

Udiag(σ )V T = A(�)+ Z/t (24)

X = Udiag(max(0, σ − 1/t)V T . (25)

This step is defined using the SVT operator

X = S(A(�)+ Z/t). (26)

4) The Lagrange variable can be updated linearly

Z = Z + t (A(�)− X ). (27)

5) The procedure is repeated until the primal and dual
residuals are acceptable.

For the given definition of A(.), its adjoint Aadj(.) and
the matrix M depend on the input–output data and can be
synthesized as follows:

Aadj(X ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑s

j=1
x̄ j z̄

T
k, j∑s−1

j=1
x̄ j z̄

T
k, j+1

...

x̄1 z̄T
k,s

⎤
⎥⎥⎥⎥⎥⎥⎦

(28)

M = [mij ] (29)

mij =
2s−i+ j∑

p=i

ξp(p+i− j , i ≥ j (30)

m ji = mij , i < j. (31)

Here, the matrices X and Zk,1,N are partitioned into block
row vectors as

X T = [
x̄ T

1 · · · x̄ T
s

]
(32)

Z T
k,1,N = [

z̄T
k,1 · · · z̄T

k,N

]
. (33)

Furthermore, the matrix Zk,1,N Z T
k,1,N is partitioned into 2×

2 blocks such that each block is ξi j ∈ R
2×2

[ξi j ] = Zk,1,N Z T
k,1,N . (34)

Hereby, with the ADMM, it is possible to recursively
identify the nuclear norm-regularized Markov parameters of
the system. The subsequent steps of the recursive PBSIDopt
procedure as in [10] can be followed in order to obtain online
the required state-space realization of the system.

It has been assumed here that the available data from the
measurement system is ideal in the sense that there is no
missing input–output data. Furthermore, the sensor failures
have not been considered. The robustness of the identification
algorithm can be further improved by optimizing an H∞ crite-
rion as in [27] in order to ensure that the model approximation
is robust to these forms of uncertainties.

It should be noted that this ADMM procedure for recursive
identification requires a SVT step, which is computationally

expensive and may not be tractable for flutter detection in real
time. This issue is addressed by replacing the SVD step by a
fast randomized variant.

C. Fast Singular Value Thresholding

1) Randomized Singular Value Thresholding : Since the
bottleneck in the online implementation of the ADMM is the
SVT step, an attempt is made to reduce the computational
complexity through a randomized variant [25]. The procedure
described in the previous step requires the SVT of a large
matrix (A(�)+Z/t) ∈ R

s×(N−s). To ease the computational
requirements, use can be made of the fact that this matrix is
low rank. The matrix can be sampled by a random Gaussian
matrix � ∈ (N − ∼)× � to obtain a smaller dimensional
matrix

Y = (A(�)+ Z/t)�, Y ∈ R
s×�. (35)

As per [28], as long as the rank of the matrix n is smaller than
the chosen column size � of the Gaussian matrix, the range
of the matrix Y will coincide with that of (A(�)+Z/t) and
the following holds:

S(Y) ≈ S(A(�)+ Z/t). (36)

The approximation error decays exponentially as � grows, and
is practically insignificant for an �− n value of more than 5.
Furthermore, if the underlying system is LTI, the SVT solution
ergodically approaches the true value. Herewith, the SVT of a
large matrix is replaced by the SVT of a much smaller matrix,
and the computational time reduces proportionately [25].

2) Recursive Randomized SVT: Further reduction in compu-
tational complexity can be achieved by using range propaga-
tion [25]: i.e., considering that the range of Y does not change
significantly over iterations. The randomly sampled matrix Y
can be decomposed in the following manner:

Y = QB (37)

where Q has orthonormal columns. Based on the knowledge
of Y and Q, B can be determined as B = QTY . In this case,
the SVT operation becomes

S(A(�)+ Z/t) = S(Y) = QS(B). (38)

Knowledge of the term Q(i−1) from the previous iteration
can be used to synthesize Q(i) at the current iteration, assum-
ing that the range of the matrix Y is almost the same. The
new vectors Yp are sampled such that

Yp = (A(�)+ Z/t)�p, � ∈ R
s×p (39)

where p is a small number that depends on the extent to which
the range space is expected to evolve. The term Q(i) can
be obtained by updating its previous value in the following
manner [25]:

Q̃(i) = PartialOrthogonalisation([Q(i) Yp]) (40)

Q(i) = Normalisation(Q̃(i)). (41)

The term B can be updated based on the new value of Q,
and the SVT operation can be carried out as before.
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For the original ADMM approach to recursive nuclear
norm-based PBSID, performing SVD on the data matrix is
the most computationally expensive step, and it is required
to be performed at each iteration. Since the computational
complexity scales linearly with the column size N − s of this
matrix, postmultiplication by a randomized matrix of column
size � reduces computation time by a factor of (�/N − s).
The second computational complexity saving is achieved by
range propagation, which reduces a full SVD operation to a
reduced QR-update operation.

Hereby, using the ADMM with fast randomized SVT, it is
possible to obtain the system Markov parameters online in
a recursive manner. These identified parameters can then be
manipulated to obtain an estimate of the state-space model of
the system.

D. Recursive PBSID With Nuclear Norm: Algorithm

In order to obtain estimates of the state-space matrices based
on the estimated Markov parameters, two further RLS prob-
lems are required to be solved. For each of the RLS problems,
a forgetting factor 0 < f ≤ 1 and a covariance estimate P of
the appropriate dimensions is required to be initialized. The
full algorithm from input–output data to model estimation is
given in Algorithm 1.

With this algorithm, it is possible to obtain an estimate of
the A, B , C , and K matrices at every instant of time. For
rapid variations in system dynamics, it is desirable to have a
low value of forgetting factor f (1) so that the changes in the
Markov parameters can be tracked rapidly. However, reducing
the value of f (1) makes the RLS solution more sensitive to
noise. As has been shown in [21] and [22], the augmented cost
function including the nuclear norm reduces the sensitivity
of the Markov parameter estimate to the effect of noise
and allows for the lowering of the forgetting factor. Hereby,
the identification process can be made more sensitive to
changes in system dynamics without affecting the variance
of the estimates.

Experimental data-driven identification, using the method-
ology developed in this section, is demonstrated in Section IV.

IV. RESULTS

Experiments are conducted on the setup described in
Section II. The two-bladed upwind turbine is operated at a
number of different wind speeds in the wind tunnel, and
trailing edge flap actuation is used to investigate the effect
on the blade loads. The pitch motors are used to keep the
blade pitch fixed at fine, while the rotor speed is controlled by
constant load generator operation. Constant load implies that
the rotor speed varies linearly with the ambient wind speed;
rated operation at 230 rpm occurs at a wind speed of 4.5 m/s.
The turbine blades display flutter at a wind speed of 6 m/s,
which corresponds to a rotor speed of 315 rpm.

As mentioned in Section I, this form of flutter is distinct
from ordinary wind turbine flutter, which typically involves
an aeroelastic coupling of the torsional and bending modes of
the blade, and typically manifests itself in fault cases such
as high wind/rotor speeds in the presence of a grid fault.

Algorithm 1 Recursive Identification With the Nuclear Norm

The form of flutter observed in the wind tunnel is caused by
a coupling of the rigid-body flap motion with the first flexible
bending mode of the blade; this also occurs under overspeed
conditions. Flutter was physically observed in the wind tunnel
by a limit-cycling of flap motion, constrained by the flap angle
limiters, and an unbounded increase in the loads measured
by the strain gauges, at a frequency equal to the calculated
blade bending frequency. Open-loop experiments at such high
speeds had to be terminated rapidly to avoid structural damage
to the system, but it was possible herewith to gain approximate
knowledge of the flutter speed, which occurred at a rotor speed
of 315 rpm. The rotor and generator speed are measured at all
time instants using a speed sensor located in the wind turbine
nacelle.
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Fig. 5. Blade load spectrum at the preflutter speed of 230 rpm.

The trailing edge flap actuators are designed to reduce
the blade loads (in the stable and unstable operating range),
as measured by the blade root load sensors. The dominant
frequencies in the blade load spectrum [see Fig. 5] are the
1P and 2P frequencies, which correspond to the rotor speed
and its first harmonic. These loads are caused by exogenous
forcing agents, such as rotor imbalance and tower shadow.
These frequencies are accounted for by considering a sinu-
soidal periodic signal dk in the recursive algorithms described
in Section III, where

dk =

⎡
⎢⎢⎣

sinψk

cosψk

sin 2ψk

cos 2ψk

⎤
⎥⎥⎦ (42)

with ψk the rotor azimuth measured by the rotor shaft angle
encoder in the nacelle. Since the azimuth is directly measured,
the signal dk is always phase locked with the load peaks
1P and 2P, irrespective of the wind speed. So, the same signal
can be used for operating conditions where the wind speed,
and hence the rotor speed, vary with time.

The objective of the recursive identification is to estimate
the aeroelastic plant between the actuators and the blade load
sensor. Blade angle encoders form an auxiliary collocated
sensing element. A stabilizing flap controller is used in a
closed loop that acts on feedback received from the collocated
sensors and issues flap deflection commands. The design of
the controller is described in [7]. Thus, for identification of
the underlying system from flap actuation to blade loads, it is
necessary to operate in a closed loop and this motivates the
use of a closed-loop identification scheme like RPBSID.

Reference [7] also describes the batch identification per-
formed on the data collected from the wind turbine, operating
at different fixed wind speeds (and hence different fixed rotor
speeds). The Bode diagrams of the identified systems, from
flap actuation to flap angle deflection and from flap actuation
to blade load measurement, can be seen in Figs. 6 and 7,
respectively. It can be seen that the system varies strongly

Fig. 6. Transfer from flap actuators to flap angle for different wind speeds.

Fig. 7. Transfer from flap actuators to blade root loads for different wind
speeds.

with wind speed (rotor speed). There are two dominant low-
frequency modes that change the system behavior with wind
speed. The flap angle mode, seen in Fig. 6, has a frequency that
rises linearly with wind speed until it reaches a value of 15 Hz
at flutter. This mode becomes progressively more damped at
high wind speeds. On the other hand, the blade flexible mode,
as measured by the blade root sensors in Fig. 7, shows a
constant frequency of 15 Hz with a damping that progressively
becomes smaller until the mode becomes unstable beyond
290 rpm (5.8-m/s wind speed). These results corroborate well
with the numerical results described in [7].

It should be noted that [7] describes the use of two
controllers: a classically designed feedback controller intended
to stabilize the plant in the closed loop and a feedforward
controller that targets load alleviation. In the experiments
reported in this paper, only the stabilizing feedback con-
troller is connected in a closed loop, and load reduction is
not targetted, since our present aim at this point is online
system identification. A persistently exciting random signal is
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superposed on the output of the feedback controller; however,
this does not affect the stability of the closed loop. There is
an increase in blade loads as a result of this random signal.
However, due to low turbulence, a sufficiently high signal-to-
noise ratio is achieved with a low covariance random signal,
so that the load increase is slight.

The persistency of excitation has very little effect on actu-
ator usage. On the other hand, the actuator usage needed
for stabilization increases exponentially with an increase in
ambient wind speed.

Recursive identification is done of this system, based on the
theory of Section III, under constant and variable operating
conditions.

A. Constant Operating Conditions

First, the turbine is operated at a preflutter wind speed
of 4.5 m/s, which corresponds to a rotor speed of 230 rpm.
The stabilizing load controller is switched OFF, and white
noise low-pass filtered through 50 Hz is superposed on the flap
actuator to provide persistency of excitation. Thus, the plant
from flap actuation to blade load sensors is operating in open
loop. The recursive algorithms are cold-started, in other words,
the ADMM and RLS parameters are initialized to 0 at time 0.
For rapid convergence to the steady-state values, a relatively
low forgetting factor of 0.997 is used in the estimation of
the system Markov parameters. Furthermore, the state vector
is considered to have length 4 (on the basis of the modal
analysis [7]), and the past window for state estimation is taken
to have length 20 samples. Although the sampling frequency
of the real-time system is 2000 Hz, identification is done at a
lower frequency of 500 Hz, in order to focus on low-frequency
system dynamics.

The recursive algorithms described in Section III are eval-
uated, and the results are shown in Fig. 8. The damping of
the mode corresponding to the highest system singular values
has been plotted. The damping of the modes corresponding
to the other singular values is significantly noisy, and gives
no additional information. The plots thereof have hence been
omitted. It can be seen that the damping of the poles estimated
by the recursive algorithm reaches the value obtained from
standard batchwise PBSID, within a period of 40 s. The
nuclear norm-enhanced algorithm shows faster convergence
and lowered variance as compared with the standard recursive
algorithm.

Next, the turbine is operated at the postflutter wind speed
of 6.5 m/s, which corresponds to a rotor speed of 340 rpm.
At this wind speed, the turbine cannot be operated in open
loop. The stabilizing controller is switched ON; it commands
the flap actuators based on collocated sensor feedback to
ensure operational stability. The same filtered white noise that
was used earlier for flap actuation is superposed on the flap
control action, in order to provide sufficient persistency of
excitation. As before, the algorithms are cold-started, and a
low forgetting factor is used. The comparison between the
recursive and the batchwise algorithms can be seen in Fig. 9.
The recursive algorithms identify the system correctly to be
unstable, with a negative value of damping. Once again,

Fig. 8. Open-loop tracking of damping of the mode corresponding to the
highest singular values. Preflutter speed and comparison of recursive and batch
algorithm.

Fig. 9. Closed-loop tracking of damping of the mode corresponding to the
highest singular values. Postflutter speed and comparison of recursive and
batch algorithm.

the estimated modal damping converges to its steady-state
value within 40 s. The presence of the nuclear norm speeds up
the convergence to the steady-state value. Furthermore, as seen
before, the variance of the damping estimate is lower due to
the presence of the nuclear norm.

The effect of using the nuclear norm during the identifica-
tion can be seen in Fig. 10, where the Markov parameters
with and without nuclear norm regularization are shown.
It can be seen that, with the nuclear norm, the low-order
Markov parameters C B and C K , are virtually unchanged,
while the higher order ones are attenuated. Since the higher-
order Markov parameters usually correspond to noise or high-
frequency dynamics, it can be appreciated that the use of the
nuclear norm in recursive identification makes the parameter
estimation less sensitive to noise and more responsive to
fundamental changes to low-frequency system behavior.
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Fig. 10. Effect of using the nuclear norm on identified Markov parameters.

Fig. 11. Effect of using the nuclear norm on identified Markov parameters.

In Fig. 11, the variation of the Markov parameters over
time can be observed. The Markov parameter C B relates to
the highest singular values found in the data, while the Markov
parameter C A5 B corresponds to lower singular values, which
are affected to a larger extent by noise in the data. It can be
seen that, while there is a small but clear offset between the
Markov parameters C B when the nuclear norm is used, they
show similar behavior and are relatively unaffected by process
noise. On the other hand, when the nuclear norm is not used,
the Markov parameter C A5 B is extremely sensitive to noise
and varies substantially over time. The utility of the nuclear
norm lies in driving down the value of the higher-order Markov
parameters to an average of zero, and significantly reducing
the variance in their estimation.

B. Varying Operating Conditions

The objective of the recursive identification algorithm is to
be able to track the variation in dynamics as the wind turbine
is subject to variations in operating conditions; specifically,

Fig. 12. Changes in the rotor speed as a consequence of varying the wind
speed in a stepwise manner in the wind tunnel.

the changes in dynamics occurring due to wind speed varia-
tions. In order to validate the response of the recursive algo-
rithm developed previously to such varying wind conditions,
the wind speed in the tunnel is increased in a stepwise manner
from the preflutter wind speed of 4.5 m/s to a postflutter wind
speed of 7 m/s. Correspondingly, the rotor speed changes from
240 to 360 rpm, as shown in Fig. 12. The rotor enters into
flutter at a rotor speed of 290 rpm, as indicated by the broken
vertical line, at a time instant of 220 s.

Since the wind turbine is expected to operate in the preflutter
as well as the postflutter regime, the stabilizing controller is
operational throughout the experiment. As such, the recursive
algorithm uses closed-loop data for system identification. As in
the previous experiments, the control signal is perturbed by a
noise signal of low amplitude to ensure adequate persistency
of excitation. Furthermore, at time t = 0, the ADMM and the
RLS parameters are initialized to zero. However, in the course
of the experiment, as the wind evolves, these parameters are
not reinitialized and in effect, the RPBSID algorithms are
warm-started for different wind speeds over the course of the
experiment.

The results of the recursive identification algorithm can be
seen in Fig. 13. It can be seen that, for the same operating
wind speeds, the algorithm converges temporarily to the same
steady-state values of the modal damping at the fixed operating
conditions found in Section IV-A. Thus, the system is in
principle not just time-varying, but parameter-varying, and its
dynamics can be uniquely determined by the current operating
wind speed.

It should be noted here that the varying operating conditions,
in this section, refer to a stepwise increase in wind speed
generated in the wind tunnel. Such a wind field realization
is unlikely to occur in practice; however, the tests give insight
into the behavior of the different identification algorithms.
Due to practical considerations, however, a more realistic wind
field could not be generated consistently in the wind tunnel.
For a true turbulent wind field realization, the wind speed
will vary arbitrarily: it is expected that the algorithms will,
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Fig. 13. Closed-loop tracking of damping of the mode corresponding to the
highest singular values. Stepwise increase in ambient wind speed.

with some lag, be able to follow the trend in the changing
system dynamics with a relatively good degree of fidelity;
while ignoring high-frequency spikes in wind speed variation
that contribute little or nothing to wind turbine dynamic
behavior. Furthermore, it is expected that, as in the wind
tunnel, the nuclear norm-enhanced version of the algorithm
[recursive PBSID with nuclear norm (RPBSID-NN)] will be
more responsive: it converges faster and with lower variance
to the correct value of modal damping. In the experiments,
the RPBSID-NN has been able to detect the onset of flutter
within 32.4 s, much sooner than the standard algorithm, which
takes 60.8 s to report that the system has become unstable.

V. CONCLUSION

The experimental setup that has been designed for the
advanced load control of wind turbines using trailing-edge
free-floating flaps shows dynamics that vary strongly with
wind speed, with the system becoming open-loop unstable at
wind speeds beyond the flutter point. In order to track the
operating point of the wind turbine, and to adjust the controller
accordingly, it may become necessary to perform online iden-
tification. Since instability may occur during operation, it is
necessary, from the point of view of safety, to operate the
turbine at all times in closed loop with a stabilizing controller.
As such, a closed-loop online identification algorithm was
devised in order to detect changes in system dynamics.

The recursive version of the closed-loop PBSIDopt algo-
rithm (RPBSID) was used to perform system identification
of the experimental setup. Since the setup is subject to
exogenous periodic disturbances at the 1P and 2P frequencies,
the recursive algorithm was extended to include the estimation
of the effect of the external forcing on the system output.

Since the plant dynamics can also change rapidly with
a change in the ambient wind conditions, it was found
desirable to keep the forgetting factor as low as possible.
In the batchwise sense, this is the same as reducing the size
of the dataset; it produces a bias in the estimation of the
parameters. Furthermore, due to the increased sensitivity to
noise, the variance of the estimates also increases.

In order to overcome these drawbacks, the RPBSID
cost function was augmented with a nuclear norm
term (RPBSID-NN). While the optimization problem
to be solved for parameter estimation remains convex,
an ADMM technique for iterating to the solution was
developed. The ADMM involves an SVT step; this step was
made computationally tractable by replacing the SVD of
a large matrix by a smaller matrix obtained by randomly
sampling the columns of the large matrix. Furthermore, use
was made of the fact that the range of the characteristic
system matrices does not change drastically across time
instants, in order to speed up the ADMM process.

It was seen that the addition of the nuclear norm regularizes
the identified Markov parameters by reducing the value and
variance of the higher-order parameters. As these higher-order
parameters are typically associated with noise and high fre-
quency, RPBSID-NN is able to identify the system parameters
with a lower bias and variance than the conventional RPBSID
version. The algorithm is shown to work on both preflutter
and postflutter data, while operating in both open and closed
loops, with damping estimates close to those predicted by
the batchwise version of PBSID. As such, the proposed algo-
rithm is suitable for the application actuator-induced instability
detection, and can be used for both fault detection as well as
adaptive control.

In comparison with a neural network-based identification
method [11], [12], where a direct least-squares method has
been used, the method described in this paper has higher
computational complexity, and is not suitable for highly non-
linear systems. However, the experiments show that for a plant
such as the experimental wind turbine, with slowly varying
dynamics, the method is able to track the system behavior with
a relatively high degree of fidelity. Furthermore, the method
yields a state-space system descriptor that can be readily used
for online adaptive control.

For the case with a varying wind speed, where the sys-
tem crosses the stability boundary and becomes unstable,
the RPBSID-NN algorithm is shown to correctly track the
system model damping throughout the duration of operation.
The onset of flutter is detected almost twice as fast as with the
conventional RPBSID algorithm. In conclusion, for a scaled
wind turbine in realistic operating conditions, the developed
algorithm is able to stably and accurately track system para-
meters, and identify the manifestation of system instability,
such as flutter, within a short period of its occurrence.
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