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Abstract
A growth of the railway transportation demand is forecasted in the next decades which
needs an increase of network capacity. Where possible, infrastructure upgrading can release
extra capacity, although in some cases this is not enough to satisfy the entire transportation
demand unless optimised timetabling is performed. We propose a heuristic approach to
develop a stable and timetable which maximise the satisfaction of transportation demand in
situations where network capacity is limited. In case the demand cannot be fully satisfied,
the model relaxes the given line plan and timetable design parameters. In addition, the aim
is to maximize the satisfied demand by keeping as many train services as possible. We
develop the mixed integer programming (MIP) model for minimizing cycle time to find an
optimal stable timetable for the given line plan. The heuristic iteratively solves the MIP
model and applies relaxation measures. We tested the model on the Dutch network. The
results showed that the model can generate stable timetables by removing train services from
the critical circuit, and also, higher transportation demand can be satisfied by additionally
relaxing timetable design parameters.
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1 Introduction

A significant increase in the demand of passenger and freight transportation is expected
to load railway networks in the near future. In this context, infrastructure managers strive
to find operational and/or infrastructural solutions to allow higher traffic volumes running
on the network to satisfy the forecasted transportation demand. The set of train services
designed to meet the expected transportation demand is called target line plan. In order to
meet the demand, railway planners have the objective to design a timetable that possibly
runs all trains in the target line plan within a scheduling period T , called as nominal cycle
time, usually coinciding with one hour. In railway planning, it is usual to have train services
repeating every period T in a so called periodic timetable. Network capacity is, however, not
always sufficient and infrastructure upgrades are often necessary to accommodate a denser
train service plan. The possibility of installing additional tracks, platforms and/or flyovers
in bottleneck areas such as stations and junctions, is mostly restricted by budget constraints
and the lack of physical space, especially for those stations/junctions located in densely built
urban areas. A more convenient and sustainable alternative would instead be upgrading the
conventional signalling system with technologies suitable for running High-Capacity High-
Speed (HCHS) railway traffic, such as the European Train Control System (ETCS) [28].
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For instance, the UK railway infrastructure manager Network Rail is currently opting for
these types of improvements with the delivery of the Digital Railway programme [7]. The
Digital Railway aims at deploying advanced technologies in the area of control, command
and signalling (e.g., optimal timetabling tools, driver advisory systems, traffic management
systems, automatic train operation, ETCS signalling) in order to meet a 40% increase in
transportation demand forecasted to load the UK network within the next 30 years.

Installation of advanced control and signalling systems, however, is not going to be suffi-
cient if train services are not planned effectively to maximise the utilisation of the additional
capacity enabled by these new technologies. In this context, enhanced timetabling models
are necessary to be applied to laid out the target line plan smoothly on the network under the
control of advanced HCHS control and signalling technologies. In case the target line plan
is incompatible with the residual capacity of the network (i.e., not all planned train services
can actually run on the network within period T ), such timetabling models shall be able to
fit in as many train lines as possible while providing smooth running and a mitigation of
delay propagation. In other words, timetabling shall focus on maximising utilisation of in-
frastructure capacity while providing robustness versus stochastic disturbances. We define
the minimum cycle time λ as the minimum amount of time during which all train events in
the target line plan can be scheduled without conflicts. According to Heidergott et al. [11]
and Goverde [8], network-level capacity occupation (stability) of a periodic timetable can
be expressed by the minimum cycle time λ of the timetable. A timetable that satisfies the
condition λ < T is called stable [8]. Planners always aim to identify a stable timetable
which can accommodate the entire target line plan within the nominal cycle time so to sat-
isfy the forecasted demand. Instead, the questions is how to tackle scheduling problems
where a stable timetable cannot be found because the increased demand is higher than the
additional capacity gained with the deployed enhanced control and signalling systems? In
such a situation, additional timetabling solutions and/or measures shall be considered so to
minimise penalties for partially satisfying the transportation demand, i.e., minimise devia-
tions from the target line plan. Therefore, is it necessary to cancel some of the train services
in the target plan? If needed, how to cancel services while minimizing the impact on level
of service?

In this paper, we propose a mathematical model for resolving timetable instability λ ≥ T
caused by an overly ambitious target line plan. In particular, the model finds optimal stable
timetable (structure) that satisfies the transportation demand as much as possible. To do
so, a heuristic approach has been developed that integrates an optimization model and re-
laxation rules to minimize necessary corrections to the target line plan. We design a mixed
integer programming (MIP) model for solving a timetabling problem that minimizes the
cycle time λ for a given line plan. This MIP model finds an optimal timetable structure,
which uses the network capacity minimally. If the optimal timetable structure is unstable,
λ > T , then the line plan is relaxed. Three relaxation measures are proposed to adjust the
target line plan and timetable design parameters. The latter include relaxing synchronization
constraints and relaxing train-related constraints, and former reducing the line frequencies.
The iterations between the minimal cycle time optimization and relaxations are repeated
until the optimal stable timetable structure has been found. When a stable timetable (struc-
ture) is obtained, time allowances can be optimally allocated to maximize robustness versus
stochastic disturbances. An application of the proposed approach is performed for a part
of the Dutch railway network and for an assumed increased transportation demand. Re-
sults show that presented model produces a stable timetable that minimise impacts on the
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transportation demand to satisfy.
The main contribution of the paper is that it presents the first timetabling model that

tackles timetable instability. For our model, we do not assume that all train lines from the
given line plan can be scheduled. This provides the model more flexibility to find a sta-
ble solution and allows a wider application in railway timetable planning. In particular,
such model could be used in the dense networks where the capacity use (i.e., minimum
cycle time) is already becoming critical, λ = T , and also, to evaluate infrastructure im-
provements projects. Second, the proposed procedure for computing an initial solution and
stronger upper bound for λ in MIP significantly reduced its computation time. Third, nat-
ural measures to relax the given line plan were successfully implemented and contributed
to creating stable timetable structures. Fourth, the algorithm for resolving instability shows
the importance of relaxing train lines that are part of the critical circuit opposed to relaxing
random train lines. These extensions to timetabling model make it a very useful support
tool for timetable planning in areas with high demand and/or scarce infrastructure capacity
and can help in finding an maximal set of train lines to satisfy (most of) the transportation
demand.

In Section 2, we give the literature review. Section 3 introduces periodic event schedul-
ing problem (PESP) and the model for minimizing cycle time based on PESP, PESP-λ.
Section 4 defines first the assumptions and priority rules and then, the heuristic algorithm
for resolving instability and improvements for PESP-λ are presented. Section 7 gives the
computation results of proposed heuristic for two tested scenarios on the Dutch network.
Finally, Section 6 gives the conclusions and main observations.

2 Literature review

Target line plan defines a set of requested train lines with its origin and destination, stopping
stations and its frequency in number of train services. A timetable consists of event times
such as arrival and departure times in stations and processes between events like running,
dwelling and transfer times. Process times also include infrastructure constraints (i.e., head-
ways) between events that guarantee safe operations. In periodic timetabling, a cycle time
T is given and all events are selected in the interval between 0 and T . A timetable struc-
ture of a considered timetable gives a train order and feasible event times. Process times
tend to equal the minimal times, and extended only to allow all events to become feasible.
The timetable structure corresponds to the computed minimum cycle time λ, all events are
between 0 and λ and represents the compressed timetable.

Timetable feasibility is the ability that a timetable exists for a given line plan and all
train- and passenger- and safety-related constraints. Timetable stability is the ability of a
timetable to absorb initial and primary delays, so that delayed trains return to their scheduled
train paths without rescheduling.

Periodic railway timetabling problem are often presented as a periodic event scheduling
problem (PESP) introduced by Serafini and Ukovich [26]. Afterwards, a significant amount
of research have been assigned to solving timetabling based on PESP. For solving PESP,
Schrijver and Steenbeek [25] applied constraint programming to find a feasible timetable,
while Kümmling et al. [14] used SAT solvers to the same problem. By adding an objective
function to the PESP formulation, then the timetabling problem can be solved using mixed
integer programming (MIP) techniques [22]. Other papers that further developed PESP-
based models for timetabling are [15], [18], [16], [20].
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Most of the models for solving timetabling problems (PESP) assume that it is possible
to schedule all services from the line plan. Only recently, Kümmling et al. [13], Polinder
[24] and Bešinović et al. [3] presented approaches for solving problems of local infeasi-
bility in periodic timetabling problems. Polinder [24] resolves conflicts reported by the
planning model DONS [25] and tries to resolve them by relaxing neighbouring processes.
Kümmling et al. [13] proposed a similar approach to support the planning model TAKT [14].
Differently, Bešinović et al. [3] proposed an iterative micro-macro approach for designing
(microscopically) conflict-free, stable and robust timetables. The macro model computes a
timetable, which has been evaluated on microscopic conflict-freeness and (local) stability.
Here, stability is defined at the local (station or corridor) level as the time share that has
to be free, i.e., not used by running trains. If a timetable is recognized as locally unsta-
ble, then running times have been relaxed and the macroscopic model rerun. Even these
three models assume that all train services will be possible to schedule after applying small
adjustments to the process times. Thus, more general timetabling models for dealing with
potential instability should be considered.

The idea of minimizing the cycle time for measuring stability was introduced by Bergmann
[1] for a single-track line and homogeneous fleet. Heydar et al. [12] extended this model
to a single-track unidirectional line that adheres to a cyclic timetable and considered two
types of trains. The objective was to minimize the capacity occupation and minimize the
total dwelling time of local trains at all stations. Sparing and Goverde [27] developed an
extension to the PESP model that minimizes the cycle time and train running times which
is applicable to both lines and networks. Petering et al. [23] extended the model of Heydar
et al. [12] to allow selection of stop platform in a station and schedule train overtakings.
Output of these models is an (near) optimal timetable structure, i.e., a compressed timetable
and not a final one.

In order to translate a timetable structure to an actual timetable, Bešinović and Goverde
[4] proposed a two-stage model for computing a stable and robust timetable. In particular,
the first stage solved minimal cycle time problem, while the second stage distributed time
allowances to improve the timetable robustness. In addition, several objective functions
were proposed and tested for the second stage.

The concept of timetable stability is often unrecognised in the literature on railway
timetabling which is partly due to the common assumption that a given line plan naturally
provides a stable structure. Therefore, it is crucial to make a distinction between timetable
stability and timetable feasibility when minimizing cycle time. In general, a model for min-
imizing cycle time may find a feasible (or optimal) timetable structure for a given input.
However, such feasible (or optimal) timetable structure may not be acceptable if λ > T ,
meaning that all trains cannot be scheduled within the desired nominal cycle time. Thus,
even though a feasible solution exists, a timetable structure may be unstable. The only way
to make a timetable that can be operated is to have λ smaller T which could be done only
by relaxing certain input constraints. In this paper, we extend the approach of Sparing and
Goverde [27] and define a more general approach to resolve timetable instability and design
optimal stable timetables. Finally, we limit ourselves to finding an optimal stable timetable
structure, while the final timetable can be generated by applying [4].
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3 Model formulation

3.1 Periodic event scheduling problem (PESP)

The timetabling approach is based on a periodic event-activity network (PEAN) represented
by a directed graph N = (E,A, T, l, u), which is associated with a target line plan Q. A
train line q ∈ Q defines a requested periodic train service characterized by its origin and
destination, stopping pattern and frequency fq within a given nominal cycle time T . In
addition, if fq > 1, then line q consists of fq train services. The set E of events consists of
periodic arrival, departure and pass-through events for each train line in Q in each station
along its route. This means that if an event i is scheduled at time πi then it will also occur at
times πi + k · T for k = 1, 2, . . .. For each event, we determine the event time in the basic
period πi ∈ [0, T ).

Set A represents process times (i, j) ∈ A, where i and j are two consecutive events and
can interpret various rules and restrictions. Running times are the times needed for a train
to run between two timetabling points. A lower bound l for the running time represents the
nominal running time, which is the minimum running time increased by a certain percentage
to satisfy stochastic train behaviour. The upper bound u is the maximum running time
extension with respect to the passenger quality of service. The set of running processes is
denoted as Arun. Dwell times are the durations of a train stop in a station. The minimum
represent a time needed to board and alight the train, while the upper bound u limits the
waiting time for passengers. The set of dwell processes is denoted as Adwell. A passenger
connection is a transfer of passengers from a feeder to a connecting train in a station. The
minimum transfer time l defines the necessary time to alight from the first train, walk to the
departure platform, and board the second train. A set of connection processes is denoted
as Aconn. Safety constraints between two trains based on the given signalling system are
defined as Ainfra. Formally, these constraints can be written as:

πj − πi + zijT ∈ [lij , uij ], ∀(i, j) ∈ Arun ∪Adwell ∪Aconnection ∪Ainfra.

Variable zij represents a modulo parameter that determines the order of events i and j within
a period T for given bounds [lij , uij ] and equals 1 if πj < πi or 0, otherwise.

We also define subsets of events and processes for each train line Eq and Aq , respec-
tively. When fq = 1, each train line q ∈ Q consists of a sequence of process times
a = (i, j), where i and j are two consecutive events. When fq > 1, events and pro-
cesses of a train line q are replicated fq times and depict a given train service qi where
i = {1, . . . , fq}. In order to secure the synchronised scheduling of train services of the
same line, meaning that services qi are equally separated in time, we introduce synchroniza-
tion constraints Async. These constraints are defined between services of one line, where
i and j are events of two following services. Time separation between such two services
equal to T/fq and can be written as:

πj − πi + zijT = T/fq, ∀q ∈ Q,wherefq > 1, (i, j) ∈ Async.

Finally, subsets of events i assigned to the train service qi are defined as Eqi and subsets of
processes (i, j) asAqi . Figure 1 gives an small example of a periodic event-activity network
with two trains stopping at a station.
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Figure 1: An extract of a periodic event-activity network for two trains arriving (a) and departing
(d) a station with running (dashed line), dwell (full), transfer (dotted) and headway (dash-dotted)
constraints

PESP is originally a feasibility problem, and we adopt the common mathematical for-
mulation as:

(PESP ) lij ≤ πj − πi + zijT ≤ uij , ∀(i, j) ∈ A (1)
0 ≤ πi < T, ∀i ∈ E (2)
zij ∈ {0, 1}, ∀(i, j) ∈ A (3)

Constraint (1) defines bounds on the process times. Constraint (2) gives the periodicity
of the events and schedules them in the interval [0, T ). Constraint (3) defines a modulo
constraint as a binary decision variable.

3.2 PESP for minimizing cycle time

The model aims at finding the optimal timetable structure over N by minimizing the cycle
time λ. The minimum cycle time is the shortest time duration in which all the events sched-
uled in the timetable (within the nominal cycle time) are feasible for all precedence con-
straints such as minimum running times, dwell and connection times and minimum head-
way times required by the infrastructure. A circuit is a sequence of events in N . We focus
only at elementary circuits, i.e., circuits in which no vertex (i.e., events) but the first and last
appears twice. We refer to a circuit that builds the minimum cycle time as to the critical
circuit Cλ1.

The difference between minimum and nominal cycle time defines the available time al-
lowances (time supplements and buffers). Therefore, the computed optimal timetable struc-
ture gives the train order that uses the infrastructure in the most optimal way and therefore,
leaves the most time allowances. Note that time allowances may be ’negative’ if λ > T .
This means that although the model finds the optimal structure for the given line plan, it
cannot be scheduled within the nominal cycle time T , and thus, the timetable structure is
unstable.

The problem of finding the optimal timetable structure is formulated by considering
the cycle time T as variable and substituting it with λ, and then solving the problem of
minimizing the cycle time. In addition, we use minimization of journey times as a secondary
objective term with a small weight α to prevent an excessive extension of journey times. The
new MIP formulation of minimizing cycle time is then the following:

(PESP − λ) Minimize λ+ α
∑

(i,j)∈A

τij(πj − πi + yij) (4)

1In theory, multiple circuits with the cycle time equal to λ may occur; however, in practice, the critical circuit
is most often unique due to the great dependency between events in N .
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subject to

lij ≤ πj − πi + yij ≤ uij , ∀(i, j) ∈ A \Async (5)
πj − πi + yij = T/fq, ∀(i, j) ∈ Async,∀q ∈ Q (6)

0 ≤ πi < λ, ∀i ∈ E (7)
0 < λ ≤ λmax (8)
0 ≤ yij ≤ λ (9)

yij ≥ λ−M(1− zij) (10)
yij ≤Mλ (11)

The objective function (4) is minimizing the cycle time and total journey times. Here τij
defines a process type dependent weights, and may, for instance, differ for running and dwell
times. Constraint (5) defines bounds on the process times. Constraint (6) synchronizes train
services of train lines. Constraint (7) sets the events in a periodic interval [0, λ). Constraint
(8) defines λ to be strictly positive and smaller that the given upper bound λmax. Since the
nominal cycle time T from (1)-(2) is substituted with a decision variable λ, the constraint (1)
would become nonlinear because of the new nonlinear term zijλ. Hence, this is linearized
by introducing new variables yij = zijλ and constraints (9)-(11) according to [27]. Here,
M is a suitable upper bound for the objective value λ. In particular, M is equal to the the
upper bound of λ, M = λmax. In the remainder of the paper, we refer to the model for
minimizing cycle time as PESP-λ. The output of PESP-λ is the minimum cycle time λ
and the timetable structure (π, z) where πi are event times for all i ∈ E and zij modulo
parameters for each arc (i, j) ∈ A.

4 Resolving timetable instability

4.1 Assumptions

To determine a most constraining events in the network, we compute and analyse the critical
circuit Cλ. If an event i is in Cλ, we refer to it as a critical event and include it in the set
Eλ. Events on the critical circuit identify the critical processes in the network. In addition,
we make a set of critical services Qλ and qi is in Qλ if it has at least one event in Eλ.

To obtain a stable timetable, the timetable must be operated with a nominal cycle time
λ < T . In order to tackle instability of the timetable, i.e., reduce λ, we need to make
changes (at least) on the critical circuit Cλ and in particular, relax critical lines. Otherwise,
undertaking any relaxation measure on a random train line, i.e., not being part of the critical
circuit, may not impact the the stability of the whole system, i.e., value of λ would stay
unchanged. For example, removing a train service in a low-dense network area which events
are not part of the critical circuit may result in unchanged (in)stability of the timetable.

When relaxing the target line plan Q, we want to choose a most suitable train line (one
or more) q ∈ Qλ to relax, such that affects the least transportation demand. Thus, after
discussions with planners, we introduce a set of priority rules and assumptions which would
allow to incorporate the unsatisfied demand implicitly. Such rules suggest which train line
should be better to adjust first and are based on the train line characteristics.

Before generating the rules, we made the underlying assumptions. First, all train lines
of the same service type have the same passenger load (passenger capacity) between two
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stops and are treated as equally important. Second, as a consequence of previous, overall
transport capacity of a train line differ when changing the number of stations, i.e., a longer
train line of the same service type transports more passengers; hence, it is more important
to maintain train lines that stop at more stations. Third, intercity trains have higher capacity
than regional trains. Fourth, each train line should be maintained in the timetable, meaning
that the frequency for any given line q ∈ Q may be relaxed at most to fq = 1.

We selected four train line characteristic for determining their priorities that are the
covered distance from origin to destination, line type, number of stops and line frequency.
In general, the goal is to relax the train line that would affect less passengers in the network.
Hence, we define four lexicographic rules that should be followed in the given order: first,
choose the line with less significant type (i.e., local before intercity); second, choose a line
that covers the shortest distance; third, choose the line that has the least number of stops and
fourth, choose a line with the highest frequency. The first rule defines that we choose first the
local line over the intercity line given the assumption that the former has significantly less
passengers and thus, imposes lower demand dissatisfaction. For the second rule, removing
lines covering shorter distances is preferred as it is more probable that passengers can find
alternative travel options such as bus, taxi or car. The third rule suggests that by opting
for the line with lesser stops, we will affect lesser number of passengers. The fourth rule
suggests that by reducing a frequency of the most frequent trains, we may still provide an
overall high-frequency service to all passengers. Finally, if two (or more) lines have all
criteria equal, then the one is selected randomly.

These assumptions and priority rules could be easily extended or substituted with real-
istic passenger loads, representing either current or expected transportation demand. How-
ever, such data were not available and thus, out of the scope for this research. Note that
priority of a line q is translated to corresponding train services qi.

4.2 Measures for resolving timetable instability

Relaxation measures that are considered in this paper are relaxing the given line plan and
timetable design parameters. In particular, we propose the following measures: relax train
line frequency (M1), relax synchronisation constraints (M2), and relax train-related con-
straints (M3).

Measure M1 reduces the frequency of a train line while guarantees that at least one
service of each train line is maintained. Using M1 essentially lowers the total number
of trains in the network and provides more possibility to fit trains in the timetable. It is
important to tackle train lines/services that exist on the critical circuit and not a random
one. Otherwise, if a random train service has been selected, then it may happen that the
critical circuit remains the same and does not affect the cycle time λ. Since the target
line plan represents the transportation demand, we want to ensure that the least number of
train services is removed and thus, have a limited unsatisfied demand. The critical circuit
Cλ may contain only a few events of two trains lines, but often includes (one or more)
events of multiple train lines. Corresponding processes in the critical circuit can be running,
dwell, connection or headway processes. Figure 2 gives an example of a critical circuit that
comprises six arrival and departure events over four train lines.

We first choose a critical service from Qλ with the lowest priority based on the defined
rules and refer to it as qcrit. Then, all events and processes of qcrit, i ∈ Eqcrit and (i, j) ∈
Aqcrit , are removed from the E and A, respectively. Additional constraints like headways,
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Figure 2: Example of a critical circuit including six arrival (a) and departure (d) events of four
different train lines. (Line types are the same as in Figure 1)

connections and synchronizations related to qcrit are also removed from A. Finally, the train
line frequency is updated (i.e., reduced) in the priority list.

Target level of service of the timetable can be achieved by setting a given set of timetable
design parameters (i.e. a given amount of transfer times, as well as a maximum rate of
running and dwell time supplements) . Hence, apart from relaxing line frequencies, relaxing
timetable design parameters can provide a smaller λ for the same size of the line plan. Even
more, relaxed timetable design parameters may allow that less train services need to be
removed. This is highly important since having as much as possible train services is always
the first priority.

Synchronization constraints allow regular intervals between trains of the same train line.
For example, a train line with f = 3 and for T = 60 minutes has three synchronized ser-
vices every 20 minutes. Initially, synchronization constraints restrict the separation of train
services of a line exactly to T/fq . However, by allowing some degree of freedom to these
constraints, we may achieve a stable timetable with less reduction in line frequencies. In-
stead of having exact 20-minute services, we may allow a small deviation of this synchro-
nization value. Thus, measure M2 introduces a relaxation parameter S, which is defined
as a certain flexibility time that relaxes the synchronization constraints. Constraints (6) are
extended to:

T/fq − S ≤ πj − πi + yij ≤ T/fq + S, ∀(i, j) ∈ Async,∀q ∈ Q.

Another timetable design parameter that can influence timetable stability are maximum
allowed running time supplements. For a train running between events i and j, a running
time bound uij represent the sum of technical minimal running time and the maximum time
supplements, where the later is often defined as a certain rate of the former. In essence, uij
prevents that too excessive time is scheduled that would lead to inefficient service and thus,
lower quality of service. Both lij and uij are timetable design parameters, their values are
decided by timetable planners and may have a significant impact on λ.

The aim in timetabling is to have efficient train services, meaning that trains could run as
fast as possible and scheduled with only small running time supplements. This may create
a significant speed difference between trains lines of different types. For example, if two
train lines, a faster and slower (eg., intercity and local), on a corridor are scheduled with
minimal time supplements, then the speed difference between the two will be significant
and two trains together would need more infrastructure capacity to run over. On the other
hand, if a faster train is allowed to run slower and thus, allow more homogeneous service,
then less capacity will be used [10].
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Figure 3: Effect of speed on the minimum cycle time

Figure 3 shows the influence of heterogeneity on the minimum cycle time. It gives
minimum cycle times of two train lines with the frequency of two in period T running over
a single track. The dashed line is the first train repeated in the next period. Figure 3a (3b)
represents a heterogeneous (homogeneous) services with minimum cycle time λht (λho).
The speed difference between train services in Figure 3a is evident, while running times
of fast service in Figure 3b are extended. Clearly, λho is smaller than λht due to smaller
necessary headways between train services. Thus, allowing more time supplements to fast
trains, may result in smaller minimum cycle time for the whole network. To provide more
flexibility and use more time supplements when needed, we increase available running time
supplements.

A higher maximum running time that may indeed result in reduced timetable efficiency,
but could also provide a more demand to be satisfied. Thus, we introduce the relaxation
parameter for running times supplements W and apply to all upper bounds in Arun. The
parameter W presents the multiplication factor for maximum allowed running times. Con-
straints (5) become:

lij ≤ πj − πi + yij ≤ uij ·W, ∀(i, j) ∈ Arun.

In general, measure M1 implies that the total number of train services will be reduced
and transport demand may not be completely satisfied. Measures M2 and M3 suggest slight
reduction in the service quality by relaxing planning rules. However, these two measures
are always more acceptable and easier to implement than reducing the line frequencies.
Based on the experts experience, we determined a quantitative value of measures M1-M3
and applied them when developing the algorithm for resolving timetable instability. In
particular, it is always preferable to relax first synchronization constraints, then running
time constraints and if no other options, then eventually train line frequencies.

4.3 Algorithm for resolving λ > T

Minimizing cycle time is an NP-hard problem and solving PESP-λ once for the given line
plan may result in high and even unacceptable running times. Due to this, Sparing (2016)
proposed an algorithm to dynamically adjust bounds on λ during the optimization run to
speed up the computation times. Even with these improvements, the computations times for
some bigger instances were several hours. However, in our paper, the considered problem
has additional degree of freedom being that is unknown whether the given line plan even
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provides a stable solution. And if not, the model would need to be extended with additional
decision variables and constraints to allow defined measures such as reducing line frequen-
cies and relaxing constraints. This could make a PESP-λ significantly more complex and
possibly unsolvable even for small instances. Another difficulty may be to dynamically re-
assigned priorities of train lines. Therefore, we propose a heuristic approach that iteratively
solves PESP-λ and applies the most appropriate relaxation measure. In general, we refer to
the output of PESP-λ as an optimal timetable structure, and only if λ < T , then the output
is referred as an optimal stable timetable structure. Algorithm 1 gives the workflow of the
proposed heuristic for resolving instability in timetabling problem and finding an optimal
stable timetable structure.

The algorithm takes as an input the target line plan Q, the train process times and cor-
responding headways are represented as N , nominal cycle time To, synchronisation and
running relaxation parameters like initial values for S and W , relaxation steps, and maxi-
mum values for each measure. It also initializes λ to an infinitely large value, and S and W
to the minimum values. The output of the algorithm is the optimal stable timetable structure
(π, z), λ and statistics on applied measures like individual use of each measure and their
final values. In each iteration, PESP-λ is solved first and the solution (π, z, λ) is obtained.
Then, the choice of an applied measure has been made based on the size of λ. In general, if
λ� T , then no relaxations on synchronization nor train running times can provide a stable
solution. So, the algorithm opts for the measure M1 in this case. The critical circuit Cλ
is computed (getCriticalCycle) for (π, z, λ) and sets of critical events and critical lines are
determined, Ecrit and Qcrit, respectively. Then, we choose a train service with the lowest
priority qcrit and remove the corresponding events and processes from N . If S and/or W
reached their maximum values, then we reset them to the minimum ones. This allows the
algorithm to use again one of these two measures in following iterations.

In the first iteration, the upper bound for the minimum cycle time λmax is set to infinity,
while in every other iteration, the λmax takes the value of λ from the previous iteration.
Since a current iteration includes some relaxation of the input (from the previous one), then
it holds that a solution for (π, z) and λ also exists. In this way, by giving a solution computed
in the previous iteration, we make PESP-λ more computationally efficient. Exceptionally,
when the algorithm returns from exploring M2 (or M3) (i.e., reached maximum values)
to using M1 again, an initial solution (π, z) and λ for PESP-λ is assigned from the last
iteration in which measure M1 has been previously applied. This is to prevent obtaining an
infeasible solution after resetting S and W to stricter (non-relaxed) values. For example,
after i-th iteration using M1 the solution (πi, zi) and λi is generated. Then, the algorithm
continues to apply M2 and M3 in consequent iterations while synchronisation and running
times constraints are being relaxed eventually to Smax and Wmax and in j-th iterations
creates (πj , zj) and λj . Here, πi and πj have the same number of events, λi ≥ λj and S
and W for j are relaxed. In the iteration j + 1, the algorithm uses the (πi, zi) and λi for
initial solution, while S and W are reset.

On the other hand, if λ is not significantly bigger T , but still λ ≥ T , then we apply
one of the two remaining measures in a strictly defined order. The algorithm first chooses
to relax synchronization constraints (M2) and applies it in subsequent iterations until S
reaches Smax. Once S = Smax, then the algorithm relaxes running constraints (M3) and it
may be also repeated in several consecutive iterations until W reaches Wmax. Algorithm 1
terminates when λ < T is found.

In general, if we consider one line plan Q, determined by total number of services, as a
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search neighbourhood, we may say that the Algorithm 1 first uses M1 as long as the solution
is far from a stable solution and searches for good (and relaxed) neighbourhoods. Once it
reaches a potentially promising solution neighbourhood, it delves into this area and searches
nearby (i.e., the same line plan) solutions by relaxing on M2 and M3. If a solution is found,
then the algorithm terminates and otherwise, continues the search in the new neighbourhood
that has a relaxed line plan. Designing the preferences in applying relaxation measures in a
relatively strict manner closely replicates their priorities determined by planning experts. In
particular, it is more important to preserve running time constraints over the synchronization
constraints. Thus, we always relax on M2 first, and apply train-related relaxation only when
S = Smax. In addition, after initial tests, we accepted λ > 1.3 ·T as a significant difference
between λ and T .

Algorithm 1 Computing a stable timetable

Input: Line requestsQ, N = (E,A, To, l, u), nominal cycle time T , minimum and max-
imum synchronization relaxation Smin and Smax, synchronization step Sstep, minimum
and maximum running relaxation Wmin and Wmax, train relaxation step Wstep
Output: stable timetable structure (π, z), minimum cycle time λ, removed trains R,
synchronisation parameter S, running time parameter W
Initialize: λ← +∞, (π,z)← infeasible, S ← Smin, W ←Wmin

while λ ≥ T do
(π, z, λ)← solve PESP-λ
if λ� T OR (S = Smax AND W =Wmax) then

if S = Smax AND W =Wmax then
Reset relaxation parameters: S ← Smin, W ←Wmin

(π, z, λ)← (π, z, λ) from the last known iteration where M1 was applied
end if
Cλ← getCriticalCycle ((π, z), λ)
M1: Relax train line frequency of a critical service Cλ
Choose qcrit ∈ Qλ
Update events E: E ← E \ Eqcrit

Update processes A: A← A \Aqcrit

Update R: R← R+ 1
else if λ ≥ T then

if S < Smax then
M2: Relax synchronization times S ← S + Sstep

else
M3: Relax running times W ←W +Wstep

end if
end if

end while
return (π, z), λ, R, S, W .

4.4 Computing initial solution for Algorithm 1

The defined PESP-λ model within Algorithm 1 performed well and reported small compu-
tation times in initial tests on smaller instances. However, after applying PESP-λ on the

12



bigger ones, the model had difficulties to find a feasible solution within a reasonable time.
This would lead to a high computation times even for a single run of PESP-λ, which was
not acceptable for our purposes. We then observed that initializing PESP-λ with a feasible
solution (π, z) significantly speeds up computation times. Thus, we proposed a procedure
to find an initial solution for PESP-λ by solving a feasibility problem PESP for a fixed
nominal cycle time, i.e., the original PESP model. PESP is solved multiple times and each
time with an increased value of nominal cycle time T until a solution is found. Algorithm
2 describes the procedure for computing the initial solution for Algorithm 1. The input for
Algorithm 2 is the line plan Q, periodic event activity network N , an initial value for the
nominal cycle time To, and the incremental step for the nominal cycle time δT . The output is
a feasible solution for a certain T . If a feasible solution was not found in the first iteration of
PESP, the stable solution for the given N and To does not exist. Thus, the instability should
be resolved by Algorithm 1. In addition, the obtained T from the last iteration is used to
strengthen the upper bound on λ in Constraint (7), λmax ← T . This new λmax together
with the initial solution (πfeas, zfeas) radically reduced computation times of PESP-λ.

Algorithm 2 Computing an initial solution for PESP-λ

Input: Line requests Q, N = (E,A, To, l, u), δT
Initialize: T ← To, (π,z)← infeasible
while (π,z) infeasible do

solve PESP for given T
if no solution found then

T ← T + δT
end if

end while
out: (πfeas, zfeas), λmax ← T

5 Experimental results

5.1 Scenarios

We evaluate the capabilities of the model for resolving timetable instability on a highly
utilized railway network in the central Netherlands. In particular, the considered network
is bounded by the four main stations Utrecht (Ut), Eindhoven (Ehv), Tilburg (Tb) and Ni-
jmegen (Nm), with a fifth main station s-Hertogenbosch (Ht) in the middle and 20 additional
smaller stations and stops. Four corridors connect Ht to the other main stations. Figure 4
depicts the passenger line plan of this network.
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Figure 4: Line plan

Scenario Notation sc1 sc2
Number of lines |Q| 20 20
Average frequency fq 3 2
Total number of train services

∑|Q|
q=1 fq 60 40

Number of events |E| 456 304
Number of processes |A| 1770 940
Nominal cycle time To 1800 1200
Time step for Algorithm 2 δT 300 100
Upper bound for PESP-λ λmax 3000 1800

Table 1: Input data for tested scenarios

For testing purposes, we used two target line plans that varied in frequencies and planned
nominal cycle times. We applied Algorithm 1 on the realistic lines operating in the Nether-
lands and assumed the increase in their frequencies in order to mimic a possible higher
future demand. Two scenarios, sc1 and sc2, are generated. Table 5.1 defines the character-
istics of sc1 and sc2 giving the number of train lines, average frequency and total number
of trains, number of events and number of processes and the upper bound for PESP-λ. Both
scenarios consist of 20 train lines, while lines in sc1 (sc2) have frequency of three (two).
The nominal cycle time for sc1 and sc2 equal 1800s and 1200s, respectively. For sc2,
To = 1200s would suggest an increase in provided level of service2. The upper bound
λmax was computed using Algorithm 2.

Table 1 defines initial parameters for PESP-λ model and the Algorithm 1 like nominal
cycle time, as well as minimum, step and maximum values for relaxation measures. In
addition, for M1, we chose to remove one critical train service at the time. Values for
relaxing synchronisation (and running time) constraints are defined so to allow up to two
consecutive iterations of each relaxation measure.

Table 2: Input parameters for Algorithms 1 and 2

Parameter Notation [unit] Value
M2 minimum Smin [s] 0
M2 step Sstep [s] 60
M2 maximum Smax [s] 120
M3 minimum Wmin 0
M3 step Wstep 0.1
M3 maximum Wmax 0.2

In the following sections, we first explain the effect of single measures on the behaviour
of Algorithm 1. Second, Algorithm 1 is tested with applying only certain relaxation mea-
sures, or all three. Third, we compare effect of applying M1 on the critical line and on a
random one.

2The current Dutch timetable operates with To = 30.
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5.2 Explaining the effect of relaxation measures

We analyse the effect of single measures on computed timetable structure within Algorithm
1. For this purpose, we used scenario sc2 with all three relaxation measures active M1,
M2 and M3. We measured the solution efficiency as the total amount of time supplements
in the iteration. The reported behaviours were observed in other test cases and we use the
following one to show different impacts of relaxation measures to minimal cycle time and
solution efficiency. Figure 5 shows the convergence of a minimal cycle time and changes
in time supplements, i.e., solution efficiency, through iterations until λ < T was satisfied.
Applied measure is denoted in each iteration by a different marker.

We observed that, in the first three iterations, M1 (×marker) is used consecutively since
λ � T . Measure M1 usually provide a reduction of the minimal cycle time λ. Once, λ is
not significantly bigger than T (iter = 4), other measures are considered. Afterwards, re-
laxing frequencies was used again at iteration eight, when other two measures were relaxed
maximally (S = Smax and W = Wmax) and no further improvements was possible. While
doing so, S and W were reset to their initial values Smin and Wmin.

Measure M2 (• marker) started two times in total, that is in iterations four and nine.
The values of Sstep and Smax allowed maximally two consecutive iterations with M2. The
first time applied each time, in iteration four (also holds for nine), M2 generated a solution
with smaller λ and better efficiency. Then, in the following iteration five, no improvement
on λ is reported compared to the previous one, but M2 reduced time supplements and thus
improved the efficiency. On the other hand, in iteration 10, only slight improvement of
λ is achieved. In this case, it negatively affected the solution’s efficiency by generating
more time supplements. Measure M2 does not always provide better λ because the critical
cycle Cλ may not always include synchronization arcs. For example, Cλ may consist of
multiple headways and/or running times only. However, relaxing synchronization times
may positively impact the solutions efficiency.

Measure M3 (N marker) was applied after maximally relaxing synchronization con-
straints, i.e., in iterations six and 11. The Wstep and Wmax allowed maximally two consecu-
tive iterations with M3. The first time M3 was used, i.e., in six, (compared to five) a better λ
is found at the expense of relaxed running times. In iteration six, cycle time was was further
improved, with even greater reduction of efficiency.

For some cases when M3 was applied, we observed that λ may remain unchanged, but
create bettter efficiency. This may be counter-intuitive that by allowing more time supple-
ments we generate more efficient solution. Nevertheless, this can easily be due the the fact
that by allowing more time supplements, only certain and limited number of arcs was re-
laxed (i.e., used more time supplements given), which allowed that other arcs use even less
time supplements and resulted in overall better efficiency. Similarly to M2, Measure M3
does not always provide better λ because the critical circuit Cλ may not always include
running time constraints. For example, Cλ may consist of multiple headways and/or dwell
times only. Finally, M1 may not always provide an improvement to λ, which may be due to
the fact that multiple circuits existed in N with the same cycle time. (Note that this was not
the case in Figure 5).

Overall, measure M1 relaxes the solution more radically and while λ � T , then it is
the only relaxation worth using. Only when λ is closer to T , then Algorithm 1 considers
also measures M2 and M3. After relaxing M2 and M3 to their maximums and still stable
solution was found, the algorithm tries to relax frequencies again while resetting S and
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Figure 5: Results for a single run of Algorithm 1 with M1, M2 and M3 – scenario sc2

W to the strictest values. Measure M3 tend to provide bigger solution improvements than
M2. Also, M3 seems to improve a solution more often, since may be due to the fact that
there are more running arcs compared to sync arcs in N , hence, more possibility to use the
exploit the certain relaxation measure. A solution obtain by relaxing M2 and M3 may both
increase and decrease solution’s efficiency in subsequent iterations. The efficiency is often
increased when the smaller λ is found, while is decreased when λ stayed unchanged. The
latter happens due to more flexibility and bigger search space for PESP-λ, while former is
due to smaller search space imposed by smaller λ.

5.3 Results for considered scenarios

We tested four variants of Algorithm 1 for finding a stable and feasible timetable structure
applying different sets of relaxing measures for both scenarios. In particular, the first set
uses only M1, the second set considers M1 and M2, and the third set uses all three relax-
ations M1, M2 and M3. As a fourth one, we used an alternative version of M1 with updating
a random train line instead of a critical line and refer to this relaxation as M1random, while
M2 and M3 were not applied.

Initially, we also considered a variant that included only measures M2 and M3. For
the two considered scenarios sc1 and sc2, this variant did not generate stable timetable
structures. Instead, the Algorithm 1 terminated when both relaxation parameters S and W
reached their maximum values, i.e., after four iterations. Obtained λ equalled 2723 s and
1405 s for sc1 and sc2, respectively. Thus, the results for his variant were not included in
the further discussion.

Table 3 reports results of the developed algorithm for resolving timetable instability for
the given test network and input data from Table 2. For the considered four combinations
of Algorithm 1, the table gives, for each scenario (Sc) the number of iterations needed for
each λ < T solution (iter), obtained λ in seconds, number of times each measure was
applied (MeasCount), total time supplements (TotalSup) in seconds, average running time
supplements (AvgRTsupp) in %, relaxed sync (S) and running times (W) and computation
times (CPU) in seconds. Three values in column MeasCount depict the number of times
measures M1, M2 and M3 are applied, respectively.

The initial cycle time computed by Algorithm 2 equalled 3000 and 1800 s for sc1 and
sc2, respectively. M1random in both scenarios needed the most iterations, 22 and 18, re-
spectively. It was clearly outperformed by all other variants that consider applying M1 on
the critical circuit. The stable timetable structure for the first three variants was obtained
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Table 3: Results for combination of used measures for resolving the timetable instability

Sc Measures To iter λ MeasCount TotalSup AvgRTsup S W CPU
sc1 M1 3000 16 1705 16 / 0 / 0 7537 2,44 0 0 4900
sc1 M1+M2 3000 20 1618 11 / 8 / 0 15604 8,27 120 1,3 6100
sc1 M1+M2+M3 3000 18 1450 10 / 4 / 3 19900 15,18 120 1,4 5500
sc1 M1random 3000 22 1705 21 / 0 / 0 11545 6,46 0 1,3 6700
sc2 M1 1800 8 1165 7 / 0 / 0 7480 5,50 0 1,3 2500
sc2 M1+M2 1800 10 1147 3 / 6 / 0 10192 6,04 120 1,3 3100
sc2 M1+M2+M3 1800 11 1113 3 / 4 / 3 14517 11,38 120 1,4 3400
sc2 M1random 1800 18 1139 17 / 0 / 0 3837 2,44 0 1,3 5500

in at most 20 and 10 iterations. Even though M1 needed less iterations (and CPU time),
it relaxed more train lines than the other two variants, M1+M2 and M1+M2+M3. This is
due to the fact that the first one relaxes lines in each iteration, while the other may relax
also synchronisation and running time constraints. Total time supplement, i.e., solutions ef-
ficiency is the smallest for the the first variant, when no other relaxation is possible. On the
other hand, when timetable design parameters were relaxed, average running time supple-
ments for M1+M2 reach 8.27% and 6.04% and for M1+M2+M3 they extend to 15.18% and
11.38%. These results are easy to understand, since the stable solutions are obtained with
S = Smax, and for variants M1+M2+M3, additionally withW = 1, 4. Finally, computation
times were proportional to the number of iterations and ranged from 2500s to 6700s over
all cases.

Figure 6 shows the improvements of λ through iterations for four variants of Algorithm
1. For sc1, M1random clearly performed the worst and during iterations, it reported un-
changed λ over multiple iterations. This is caused by the random choice of train line to
relax. On the other hand, variant with M1 improves λ in (almost) every new iteration. This
proves the benefits of considering critical circuit and lines on it when selecting a candidate
line.

For scenario sc1, we observe a similar behaviour of all three variants in the first 12
iterations while λ � T . Also, some iterations without improvement of λ could be due
to multiple critical circuits of the same length, and by fixing only one train line in each
iteration, the other one, still remains unchanged. However, small variations in iterations
1 to 12 may occur due to random parameter for choosing a critical train line (the critical
line is chosen randomly if more than two lines have the same observed priorities). Once
λ becomes smaller than 1.3 · T then other relaxation measures are used in M1+M2 and
M1+M2+M3 variants, and solution improvements gets different patterns. It seems that
W = Wmax generates a significant improvement (’drop’) of the solution which can be
clearly seen in (at least) the last iterations of M1+M2+M3. For scenario sc2, M1random
again underperformed and was dominated by all other variants. Here, we see that initial
solution (equal for all variants) is much closer to the nominal cycle time T , and so, measure
M2 (and M3) was applied for the first time in the third iteration. Again, M1+M2+M3 reports
a significant drop of λ in seventh iteration for relaxed S and W to Smax and Wmax. Since
a stable solution was not found, S and W were reset to Smin and Wmin and another critical
train line was relaxed in the next iteration.

Measure M1 shows only strictly decreasing behavior as by relaxing a frequency on a
critical line, the resulting λ in the following iterations may only be smaller (or equal due to
multiple critical circuits). Since only measure M1 was applied, each iteration has exactly
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Figure 6: Results for combination of used measures for resolving the timetable instability for sc1
(left) and sc2 (right)

one train service less than the previous one, and the number of iterations equals the number
of removed train services qcrit. On the other hand, combinations M1+M2 and M1+M2+M3
have ’drops’ in values of λ, i.e., local improvements. This is due to local searches of M2 (and
M3) for the same line plan by only relaxing synchronization (and running) constraints. Also,
the latter combination that includes M3 has bigger drops as it observes more significant
improvements due to additional use of M3. By applying M2 (and M3), we may find a final
solution in less iterations. Finally, M1random has the similar behavior as M1 but a slower
improvement, which was expected as we applied M1 on a random train line.

6 Conclusions

The paper proposed a new approach for resolving instability in railway timetabling prob-
lems. We developed an heuristic that relaxes the target line plan and timetable design param-
eters. The heuristic integrates a mixed integer programming model for minimizing the cycle
time PESP-λ and applies different combinations of relaxation measures. The algorithm runs
until a stable solution is found and an optimal stable timetable structure is retrieved.

We observed that if a transport demand is significantly bigger than what infrastructure
capacity can handle, then it is necessary to relax some line frequencies. Even more, it is
important to determine and relax train lines that occur in the critical circuit. Relaxing syn-
chronization constraints does not always generate a better solution, while relaxing running
times seems more effective than relaxing synchronization constraints. By relaxing synchro-
nisation and running time constraints, we may need more iterations to find a stable solution.
More importantly, such a solution may have less train services removed due to more flexi-
bility of the PESP-λ. Therefore, it would be preferable to use all available measures in order
to generate a stable timetable structure and minimize the unsatisfied demand.

Future research could be addressed in several directions. First, current or forecasted
transport demand can be considered in the timetabling problem. Second, identifying addi-
tional combinations of constraint relaxation measures could improve further satisfaction of
transport demand. Third, developing more robust heuristics with a more advanced searching
technique that integrate multiple measures within each iteration could reduce computation
times. Second, we may try additional relaxation measures, such as shortening or splitting
train lines, which could result in less relaxed line frequencies and better demand satisfac-
tion. Third, a more robust heuristic that integrates multiple measures in each iteration and
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more advanced search techniques could be developed. These improvements would make the
model a very useful support tool in timetable planning for areas with high demand and/or
scarce infrastructure capacity and can help in finding a stable timetable that maximises sat-
isfaction of transport demand.
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