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SUMMARY

In the last decades, Micro-Electro-Mechanical Systems (MEMS) have drawn immense
attention due to their potential use in a wide variety of modern applications, includ-
ing micro-mechanical sensors and actuators. MEMS are devices combining mechan-
ical and electrical components between 1 and 100 micrometers, all integrated into a
single chip. The performance of these devices hinges on the deflection and move-
ment of these micro-mechanical components and clearly, improvement and inno-
vation of MEMS require a comprehensive knowledge and in-depth understanding of
the nonlinear mechanics of these components.

In spite of the simple geometry of common micro-mechanical components, mod-
eling the mechanics of micro-mechanical sensors and actuators is rather complex.
In particular, the mechanics of micro-plates in electrostatic MEMS is entangled with
two influential sources of nonlinearity namely, geometrical nonlinearity and the non-
linearity due to the presence of the electric field. These sources of nonlinearity are of-
ten the origin of instability and failure in MEMS devices, but might also be exploited
to achieve, for example, higher sensitivity in the device. In either way, such nonlin-
earities shall be incorporated in the modeling and design of these micro-mechanical
components.

This thesis provides an investigation on nonlinear mechanics of micro-plates in
electrostatic MEMS devices. Based on the proposed models, we are able to predict
some phenomena in micro-plates that have not been noticed before and to study
these aspects in a detailed level which was not possible previously. In particular,
based on total potential energy and a Lagrangian approach, the nonlinear mechan-
ics and stability of a clamped circular micro-plate in interaction with an electrostatic
field is studied. The effects of different loading conditions (i.e. static and dynamic
electric potential, and with or without presence of a differential pressure) on the sta-
bility of such a system are addressed.

The results of this study suggest that in presence of a differential pressure the
steady state motion of an electrically actuated micro plate can be bi-stable or even
multi-stable. In fact, a differential pressure can cause additional limit points and an
unstable solution branch in the —static or dynamic— steady state solutions of the
system. Saddle-node and period doubling bifurcations are repeatedly observed in
the results and are recognized as main mechanisms of pull-in. Furthermore, one
newly observed critical point in static loading is shown to be highly sensitive to the
applied differential pressure suggesting the possibility of employing this limit point
for sensing applications.

In addition, this thesis provides a study on analyzing nano-plates within the frame-
work of continuum mechanics. In this regard, the nonlinear vibrations of an electri-
cally actuated graphene resonator is modeled and a methodology is proposed for

ix



x SUMMARY

characterization of its mechanical properties. In addition, the possibility of captur-
ing the scaling effects in mechanical behavior of nano-plates by employing a non-
local continuum theory is addressed. As a results, two modification factors for the
extensional and bending stiffness of nano-plates are presented to account for the ef-
fect of thickness in the nonlocal elasticity formulations.

Finally, the mechanical performance and instability of a micro-plate as a trans-
ducer in surface stress sensing is investigated and an optimized design for such a sen-
sor is proposed. It is shown that using the proposed optimized design, the sensitivity
and overall reliability of such capacitive surface stress sensors can be significantly
improved.

The proposed techniques for modeling the mechanics of micro-plates in MEMS
devices, are simple and computationally efficient. They can provide in-depth insight
into MEMS behavior and can be useful for designing MEMS with plate-like microme-
chanical components.



SAMENVATTING

De afgelopen decennia is er veel interesse voor Micro-Elektromechanische Systemen
(MEMS) vanwege hun potentie in verscheidene moderne toepassingen, zoals micro-
mechanische sensoren en actuatoren. MEMS integreren mechanische en elektrische
componenten, variërend van 1 tot 100 micrometers, in één enkele chip. Het functi-
oneren van deze systemen hangt sterk samen met de vervorming en beweging van
de micro-mechanische componenten. Het moge duidelijk zijn dat een uitgebreide
kennis en diepgaand inzicht in de niet-lineaire mechanica van deze componenten
vereist is voor verbetering en innovatie van MEMS.

Het modelleren van het gedrag van micro-mechanische sensoren en actuatoren
is, ondanks de eenvoudige geometrie van gangbare micro-mechanische componen-
ten, tamelijk complex. Om precies te zijn is het mechanisch gedrag van microscha-
len in elektrostatische MEMS gekoppeld aan twee bronnen van niet-lineariteit, te
weten geometrische niet-lineariteit en niet-lineariteit veroorzaakt door de aanwe-
zigheid van het elektrisch veld. Deze twee bronnen van niet-lineariteit zijn vaak de
oorzaak van instabiliteit en falen in MEMS, maar kunnen ook worden ingezet om bij-
voorbeeld hogere gevoeligheid te bereiken. In beide gevallen is het belangrijk derge-
lijke niet- lineariteiten op te nemen in het modelleren en ontwerpen van deze micro-
mechanische componenten. In dit proefschrift wordt de niet-lineaire mechanica
van microplaten in elektrostatische MEMS onderzocht. Op basis van de ontwikkelde
modellen kunnen we enkele, tot noch toe niet eerder ontdekte verschijnselen in mi-
croplaten voorspellen, en deze aspecten bestuderen tot op een detailniveau dat niet
eerder werd behaald. Op basis van de totale potentiële energie en een Lagrange be-
nadering bestuderen we de niet-lineaire mechanica van een ingeklemde cirkelvorige
microplaat die in interactie is met een elektrostatisch veld. Ook worden de effecten
van verschillende belastingcondities (d.w.z. een statisch en dynamisch elektrische
potentiaal, met of zonder aanwezigheid van een differentiële druk) op de stabiliteit
van een dergelijk systeem behandeld. De resultaten van deze studie suggereren dat
bij aanwezigheid van een differentiële druk het dynamisch evenwicht van een elek-
trisch geactueerde microplaat bi-stabiel of zelfs meervoudig stabiel kan zijn. Een
differentiële druk kan extra limietpunten en een onstabiele oplossing in de — sta-
tische of dynamische — stabiele oplossingen van het systeem veroorzaken. Zadel-
punt en periodeverdubbeling bifurcaties worden herhaaldelijk waargenomen in de
resultaten en worden aangewezen als hoofdmechanismen van elektrostatische pull-
in. Ook blijkt dat een niet eerder waargenomen kritisch punt bij statische belasting
zeer gevoelig is voor de verschildruk, wat de mogelijkheid geeft om dit limietpunt te
benutten in een sensor.

Daarnaast levert dit proefschrift een studie over het analyseren van nano-platen
in het kader van continuümmechanica. De niet-lineaire trillingen van een elektrisch
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geactiveerde grafeen-resonator worden gemodelleerd met behulp van continuüm-
mechanica, en er wordt een methodologie voorgesteld voor de karakterisering van
de mechanische eigenschappen. Tevens wordt de mogelijkheid behandeld om de
schaal effecten in het mechanisch gedrag van nano-platen te omschrijven door mid-
del van niet-lokale continuümtheorie. Als resultaat worden twee veranderingsfacto-
ren voor de rek- en buigstijfheid van nano-platen voorgesteld om rekening te houden
met het effect van dikte in de niet-lokale elasticiteitsformuleringen. Tot slot wordt de
mechanische prestatie en de instabiliteit onderzocht van een microplaat als trans-
ductor in een oppervlaktespanningssensor. Een geoptimaliseerd ontwerp voor een
dergelijke sensor wordt voorgesteld. Het wordt aangetoond dat de gevoeligheid en
betrouwbaarheid van dergelijke capacitieve oppervlakspanningssensoren aanzien-
lijk kunnen worden verbeterd. De voorgestelde technieken voor het modelleren van
de mechanica van microplaten in MEMS-apparaten zijn eenvoudig en snel in reken-
tijd. Ze kunnen diepgaand inzicht geven in MEMS gedrag en kunnen nuttig zijn voor
het ontwerpen van MEMS met plaatachtige micro-mechanische componenten.



  چكيده
 

 در دهه هاي گذشته، سيستم هاي ميكرو الكترومكانيكي (MEMS)  به دليل كاربرشان در طيف وسيعي
ازسنسورها و كنترل كننده ها، موضوع بسياري از پروژه هاي تحقيقاتي قرار گرفته اند. سيستم هاي 

ميكرومتر كه همه  10تا  1بين اي ميكروالكترومكانيكي تركيبي هستند از اجزاي مكانيكي و الكتريكي با اندازه 
گيرند. عملكرد اين سيستم ها وابسته به تغيير شكل وحركت اين قطعات  آنها در يك تراشه كوچك قرار مي

ها نياز به دانش جامع و درك عميق از مكانيك  ميكرو مكانيكي مي باشد و به وضوح، براي بهبود و نوآوري آن
 .اشدمي ب تغيير شكل وحركت اين اجزاءغيرخطي 

كنترل كننده هاي  ها و سازي مكانيك سنسور به رغم هندسه ساده اغلب اجزاي مكانيكي، معمولا مدل
الكترومكانيكي بسيار پيچيده است. به طور خاص، مكانيك ميكرو ورق ها هنگامي كه تحت بار الكترواستاتيك قرار 

الكتريكي) همراه مي شود. اين منابع (ناشي از غيرخطي هندسي و همچنين ميدان غيرخطي گيرند با رفتار  مي
شوند. در عين حال،   MEMS اغلب مي توانند منشا عدم پايداري و در نهايت خرابي در دستگاه هايغيرخطي 

براي ايجاد حساسيت بيشتر در سنسورها بهره برد. طبيعتاً اين چنين رفتار غيرخطي مي توان از اين رفتار 
 .در مدلسازي و طراحي اجزاي ميكرو مكانيكي در نظر گرفته شود مي بايستغيرخطي 

تحقيق  "الكترواستاتيكي  MEMSدر دستگاه هايها مكانيك و پايداري ميكرو ورق "با عنوان اين پايان نامه 
. در اين مدل ها، بر اساس رويكرد لاگرانژي و اصل ارائه مي دهدميكرو ورق ها  اينجامعي در مورد مدلسازي 

تاتيك مورد بررسي قرار ي پتانسيل، مكانيك و پايداري يك ميكرو ورق دايره اي در تعامل با ميدان الكترواسانرژ
اثرات شرايط بارگذاري مختلف (به عنوان مثال پتانسيل الكتريكي ايستا يا پويا و با حضور فشار) بر گرفته است. 

  .پايداري چنين سيستمي مطالعه شده است

پايدار - دو  مي تواند شان مي دهد كه در حضور فشار مكانيكي، حركت حالت پايدار ميكرو ورقنتايج اين مطالعه ن
)bi‐stableپايدار (-) يا حتي چندmulti‐stable باشد. در واقع، فشار مي تواند باعث پديدار شدن يك يا چند (

ط حدي و پريود دابلينگ در نقطه بحراني جديد در حل معادلات حالت پايدار سيستم (ايستا يا پويا) شود. نقا
عدم پايداري شناخته مي شوند. شايان ذكر  نتايج به دست آمده به طور مكرر مشاهده و به عنوان مكانيسم اصلي

است كه يكي از نقاط بحراني جديد مشاهده شده در بارگذاري استاتيك به شدت به فشار حساس است و قابليت 
 .استفاده در اندازه گيري فشار را دارد

ورق ها را در چارچوب مكانيك پيوسته ارائه مي  نانوتجزيه و تحليل باره اين، اين پايان نامه مطالعاتي درعلاوه بر 
سازي شده و روشي براي توصيف خواص  يك رزوناتور گرافيني مدلغيرخطي دهد. در اين راستا، ارتعاش 

مكانيكي آن پيشنهاد شده است. علاوه بر اين، رفتار مكانيكي نانو ورق ها با استفاده از يك نظريه الاستيسيته 
شده و در نتيجه، دو عامل اصلاح براي سختي كششي و خمشي نانو ورق ها براي محاسبه وابستگي  مدلنانلوكال 

 .به ضخامت آنها ارائه شده استرفتار الاستيك اين ورق ها 

xiii



در نهايت، عملكرد و پايداري يك ميكرو ورق به عنوان يك سنسور در اندازه گيري استرس سطحي مورد 
 مي       بررسي قرار گرفته و يك طراحي بهينه براي چنين سنسوري پيشنهاد شده است. اين تحقيق نشان

حساسيت و قابليت اطمينان كلي چنين سنسورهايي به طور دهد كه با استفاده از طراحي بهينه پيشنهاد شده، 
 .قابل توجهي بهبود مي يابد

ساده و كارآمد هستند.   MEMSمدل هاي پيشنهادي براي مدل سازي مكانيك ميكرو ورق ها در دستگاه هاي 
با   MEMSتوانند براي طراحي  ارائه دهند و مي  MEMSاين مدل ها مي توانند بينش عميقي نسبت به رفتار

 .قرار گيرنداجزاي ميكرومكانيكي مشابه ورق مفيد 
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2 INTRODUCTION

1.1. MOTIVATION

Micro-Electro-Mechanical Systems (MEMS) play a key role in a wide variety of mod-
ern applications, including micro-mechanical sensors and actuators. Nowadays, com-
mercial micro-actuators can be found in ink-jet printers, microphones, digital micro-
projectors and many more devices. Micro-mechanical sensors, like pressure sensors,
accelerometers and gyroscopes, started their successful advance in the late 1990’s
and now, hundreds of millions of these devices are sold annually, mainly for medi-
cal and automotive applications, of which many are invisible to the public [1]. Up
till now, many industries have continued to invest in research and development to
explore new designs and applications of MEMS.

MEMS are typically devices that range from a couple of micrometers to one mil-
limeter in size. Generally, they combine mechanical and electrical components be-
tween 1 and 100 micrometers, all integrated into a single chip. Figure 1.1 shows an
example of a micro-electro-mechanical sensor with a simple mechanical and elec-
trical setup. In this device, for example, the mechanical component is a micro di-
aphragm, and the electrical components are the piezo-resistors, bond-pads, and the
metal conductors. These components serve as miniaturized transducers that trans-
form one form of energy (mechanical or electrical) into another.

The performance of MEMS devices is often based on the movement and deflec-
tion of their micro-mechanical components, such as cantilevers, double clamped
beams, or plates. Among different types of micro-mechanical components, a thin
plate, with a thickness of less than a micro meter, is a highly suitable candidate for
many applications. For instance, a micro-plate can provide the required separation
in differential pressure or acoustic sensors. Moreover, a micro-plate as the sensing
component can provide an insulation between the electric setup on one side and the
measurand on the other side. This insulation allows for application of these sensors
in liquid environment which, otherwise, could hinder the electric performance of the
device.

Improving the performance of MEMS requires a comprehensive knowledge and
in-depth understanding of the mechanics of their micro-mechanical components
(i.e. their compliance and sensitivity, the stability condition and the critical thresh-
old for exhibiting instability, and their dynamic characteristics). In this regard, accu-
rate mathematical models are valuable tools for obtaining this knowledge and theo-
retically characterizing the performance of these devices. Such models can provide
insight into the energy transformation process, which sometimes cannot be compre-
hended in any other way.

In spite of the simple geometry of micro-mechanical components, the underlying
physics of micro-mechanical sensors and actuators is rather complex. Aspects, such
as surface stress, which are simply negligible on larger scales become significant on
a micro-scale [3–5]. Gravity completely loses relevance and instead, electrostatic ef-
fects become influential [6, 7]. Insufficient attention to these aspects not only hinders
the further development of these devices, but also diminishes their performance, re-
liability, and consequently, decelerates commercialization.

The underlying physics of MEMS devices is treated in numerous publications
scattered throughout the literature. In particular, studies have concentrated on the-
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Figure 1.1: A) A commercial piezo-resistive differential pressure sensor, B) optical image of the chip in a
piezo-resistive pressure sensor [2], and C) a simplified schematic of a pressure transducer in the pressure
sensor. The Micro-Electro Mechanical System combines micro-electrical components (i.e. the piezoresis-
tors and Bond-pads, metal conductors), and micro-mechanical components (i.e. the diaphragm) into a
single chip.

oretically characterization and simulation the mechanical behavior of micro- me-
chanical components in interaction with electric fields. Some reviews of these stud-
ies can be found in References [6, 8, 9]. Likewise, the mechanics of clamped micro-
plates in electrostatic MEMS devices has drawn great attention in recent years due
to their potential for applications in MEMS sensors and actuators [10, 11]. It should
be mentioned that this topic has remained a challenging topic due to the presence of
different sources of nonlinearity in their physics.

In modeling deflections and movements of micro-plates in electrostatic MEMS,
two sources of nonlinearity are most important: geometrical nonlinearity (often re-
ferred to as membrane effects) and the nonlinearity due to the presence of the elec-
tric field. The latter is a so-called “strong” source of nonlinearity and is the origin
of the electrostatic instability (known as pull-in) in electrostatic MEMS devices [12–
15]. For these nonlinear problems, exact analytical solutions do not exist and the
models to simulate them are typically based on numerical methods. Several studies,
therefore, have relied on these methods to study different aspects of mechanics and
electrostatic instability of micro-plates in MEMS application [6, 16–19].

Numerical methods such as finite elements, however, are generally time con-
suming and computationally expensive. Moreover, in nonlinear analysis, numerical
simulations with a large number of degrees of freedom present huge computational
problems with possible divergence of the solution [20]. In addition, these methods
generally present the unstable solution branches laboriously. Hence, in analysis of
nonlinear dynamics of electrically actuated micro-plates for instance, they simply
fail to present the solution in the entire loading range.

On the other hand, semi-analytical approaches, such as Rayleigh-Ritz variational
method, have been shown to be suitable tools to analyze the nonlinear mechanics
of beams and resonators with much less computational costs [7, 21]. In employ-
ing these methods in mechanics, for instance, the motion of the component is ap-
proximated with a minimum number of shape functions which satisfy the boundary
conditions and are still capable of describing the correct nonlinear mechanics of the
system. Then, a semi-analytical scheme based on the total potential energy can be
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employed, and as a result, the nonlinear partial differential equations to be solved
are simplified to a large extent.

Rayleigh-Ritz variational methods can be potentially used to model the highly
nonlinear mechanics of clamped micro-plates in MEMS applications. Based on such
a method, the performance and stability of these components can be characterized.
In comparison to finite element method, it deals with very few degrees of freedom
and due to its semi-analytical approach, it provides a better insight to the physics
of the problem. However, although very promising, a comprehensive study on non-
linear mechanics and particularly stability of electrically driven micro-plates using
these methods is not available in the literature.

1.2. RESEARCH OBJECTIVES

The main aims of this research are to investigate the mechanical performance and
stability of micro-plates in electrostatic MEMS devices, to provide an in-depth un-
derstanding of their mechanical behavior, and to propose techniques to characterize
them in a fast and robust manner. The objectives of this thesis which are seen as an
approach on how to achieve the main goal are:

• To explore the nonlinear mechanics and stability of a circular micro-plate in
electrostatic MEMS devices

For this purpose, the static deformation of a clamped micro-plated subjected
to a DC electrostatic load is formulated. A stability analysis is performed to
characterize the electrostatic instability and pull-in of such a system. More-
over, the effects of a differential pressure on the stability of the micro-plates
are studied, and the possibility of employing the electrostatic instability as a
sensing mechanism for pressure measurements is investigated.

• To investigate the nonlinear dynamics of an electrically actuated circular micro-
plate in electrostatic MEMS devices

The nonlinear dynamic behavior of clamped micro-plate when subjected to
DC and AC voltages is studied, and the steady state motion of the micro-plate
and its stability are investigated. The instability mechanism in different load-
ing conditions are explored and the effect of sequence of the loads (DC and
AC voltage, as well as the excitation frequency) on the unstable configurations
are studied. Moreover, the effects of a differential pressure on the nonlinear
dynamics and stability of an electrically actuated micro-plate are investigated.

• Exploring the mechanical behavior of plates with nano-scale thickness

Considering that Nano-Electro-Mechanical Systems (NEMS) are basically the
next miniaturization step from MEMS devices, the mechanical characteriza-
tion of plates with nano-scale thickness is also discussed in this thesis. For this
purpose, the nonlinear dynamics of an electrically actuated Graphene nano-
resonator is studied both theoretically and experimentally. Moreover, the pos-
sibility of capturing the scaling effects of the mechanical behavior of plates
within the scheme of continuum theories is explored.
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• To characterize the mechanical behavior and sensitivity of micro-plates in sur-
face stress electromechanical sensors

Surface stress based sensing is one of the current matters of interest in nano-
mechanical sensing community [22]. In these sensors the deflection of the mi-
cro plate due to a change in its surface stress is detected either directly (by
optical instruments) or via capacitive measurements. In this thesis, a method-
ology is presented to formulate and ultimately optimize the performance of
such a sensor. Furthermore, the sensitivity of the electrostatic instability of the
sensor to the surface stress changes, as a potential readout mechanism, is in-
vestigated.

To achieve the objectives, this thesis provides some novel techniques to model the
behavior of micro-plates in MEMS applications. Using these techniques, we are able
to predict some phenomena in micro-plates that have not been noticed before. In
addition, the provided techniques allow us to study these aspects in detail which was
previously not possible. Based on this study, the performance and stability of associ-
ated MEMS can be improved, and new MEMS devices can be developed.

1.3. APPROACH OF THE RESEARCH

In this thesis, theoretical techniques are employed to study the nonlinear mechan-
ics of micro-plates in electrostatic MEMS devices. Rayleigh-Ritz variational method
is employed to approximate the deflection/motion of the micro-plate and to model
its nonlinear mechanics. Using this method, in fact, a given variational problem is
projected to a limited subspace of shape functions. The crucial point in this method
is that the selected subspace should still be able to describe, at least approximately,
certain aspects of the real problem.

In the static analysis, this approximation converts the nonlinear partial differen-
tial equations to a system of nonlinear equations with unknown parameters which
can be solved analytically. In dynamic problems, the nonlinear partial differential
equations defining the mechanics of the component are reduced to a set of ordinary
differential equations. Then, using a continuation method, the resulting equations
are solved and the stability of the solution can be studied.

Next, to verify the accuracy of the proposed model for characterization of dynam-
ics of nano-membranes, the nonlinear dynamics of an electrically actuated Graphene
nano-resonator is obtained. The effects of DC and AC voltages on the nonlinear res-
onance of the membrane are investigated, and the results are compared to experi-
mental data.

Since the effective elastic properties of nano-structures have been shown to be
strongly size-dependent, as a part of this thesis, a nonlocal elasticity formulation has
been employed to capture the scaling effect in plates with relatively small thickness.
Using a strong nonlocal theory, a formulation is presented which can reflect these
scaling effects in the stiffness matrices as a function of the thickness of the structure.

Finally, to study the sensitivity of a surface stress capacitive sensor, an analytical
approximation and a finite element model are employed to describe its electrome-
chanical behavior. Using this approach, we can optimize the design of the sensor to
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obtain the maximum capacitive sensitivity. Using the finite element simulation, we
study the effect of this optimization on accuracy and precision of the system in sur-
face stress sensing. Moreover, the sensitivity of the electrostatic instability of such a
sensor to surface stress changes is obtained using the finite element model.

1.4. OUTLINE OF THE THESIS

This thesis is a collection of articles either published or submitted to peer reviewed
journals and conferences. Since the articles are related to each other to some ex-
tent, the reader might find some repetition in introduction and methodology sec-
tions. The chapters of this thesis are structured as follows.

Chapter 2 studies the mechanical behavior and the stability of a circular flexible
electrode, while loaded with an electrostatic and a differential hydrostatic pressure.
This analysis is based on both an approximate analytical solution using the principle
of minimization of total potential energy, and a finite element simulation. As a result
of this study, the critical voltages and deflections of the system can be detected and
the possible post-instability behavior of the system are discussed.

Chapter 3 presents a simple method to model the dynamic behavior and instabil-
ity of an electrically actuated circular micro-plate. This method is based on an energy
approach and a pseudo arc-length continuation and collocation technique. Steady
state motion of a micro-plate subjected to a DC and AC voltage and its instability
mechanisms are investigated and discussed.

Chapter 4 presents a method to perform a stability analysis on an electrically
actuated circular micro-plate, while it is loaded with a hydrostatic pressure. The
methodology in this chapter is similar to that of Chapter 3. Based on the proposed
method, we explore how the instability of the system is influenced by the load param-
eters, namely DC and AC driving voltages, the driving frequency, and the hydrostatic
pressure. In the proposed method, the effect of an initial in-plane residual stress is
also taken into account.

In Chapter 5, the nonlinear dynamics of an electrically actuated Graphene res-
onator is studied. The methodology in this chapter is similar to the method which
was employed in Chapters 3 and 4, however, the Graphene is modeled using an equiv-
alent membrane without any bending stiffness. The validity of the proposed solution
is evaluated by comparing the theoretical results to experimental data.

In Chapter 6, using nonlocal elasticity theory, we aim to capture the size- de-
pendent effects of plate structures within the framework of continuum theory. In
this chapter, the fundamentals of Eringen’s nonlocal elasticity theory, some impor-
tant considerations and the basis of conventional nonlocal plate theory are reviewed.
Furthermore, this chapter investigates how a strong three dimensional nonlocal for-
mulation can incorporate the plate thickness in nonlocal plate theories.
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Chapter 7 presents a design for a membrane-based capacitive sensor for surface
stress measurements. In this chapter, using an analytical approximation, we formu-
late and optimize the design of such a sensor with a circular clamped plate /mem-
brane as its sensing component. Moreover, using a finite element model, we study
the effect of the shape and position of the agglomeration of target molecules on the
ultimate response and accuracy of these types of sensors.

In Chapter 8, the electrostatic instability of the conceptual surface stress sensor,
discussed in Chapter 7, is investigated. In particular, using a FEM model, the sensi-
tivity of such instability to the surface stress is obtained and the effect of a differential
pressure on this sensitivity is discussed.

In Chapter 9, the conclusions of this research are outlined and a discussion on
the advantages and disadvantages of the employed methodology is presented. In
addition, some limitations of this study, and recommendations for further research
will be presented.
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2
STATIC STABILITY OF

ELECTRICALLY LOADED

MICRO-PLATES

Electrostatic load is generally the main driving parameter in MEMS applications, and
electrostatic instability is one of the main features of many electrostatic MEMS and
NEMS devices. In this chapter, we aim to find an analytical approximation to formu-
late the micro-plate’s static response when subjected to an electrostatic and a differen-
tial pressure. We investigate how the characteristics of the electrostatic instability of
a micro-plate can be affected, due to presence the differential pressure. The results of
this study indicate that the differential pressure can have a significant influence on the
equilibrium path, the number and position of unstable points, and the post instabil-
ity behavior of such a structure. As a result, while the system is loaded and unloaded
with the electric potential, the electrostatic instability might coincide with a snapping
behavior. This behavior makes the system very appealing for sensing and actuating
applications. This analysis is based on both an analytical framework and finite ele-
ment simulations.

Parts of this chapter have been published in Applied Physics Letters [1] and submitted to the International
Journal of Mechanical Sciences.
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2.1. INTRODUCTION

Electrostatic instability (and bi-stability) is an important feature of many electro-
static MEMS devices, sensors and actuators [2–4]. A solid understanding of the elec-
trostatic instability is essential to improve the performance such MEMS/NEMS de-
vices and to obtain new designs for new applications.

Electrostatic MEMS devices essentially consist of a simple parallel plate capaci-
tor with at least one flexible electrode. When an electric potential is applied to the
capacitor, an attractive electrostatic load is induced between its electrodes. This load
depends on the applied electric potential, the local distance between the electrodes,
and the dielectric constant of the medium separating them [5]. The electrostatic load
leads to deformation of the flexible electrode(s) to maintain the balance between
electrostatic and elastic potentials. Thus, any small change in the electric poten-
tial can generate mechanical movement of the flexible plate, which can be used for
actuation [6].

Instability of an electrostatic MEMS device occurs mainly due to the nonlinearity
in the electrostatic potential [7]. When the system becomes unstable, any pertur-
bation could lead to failure or “pull-in” of the flexible electrode. This stability phe-
nomenon appears as a ‘fold’ or a ‘limit point’ in the equilibrium curve of the sys-
tem [8].
In certain electrostatic MEMS devices, e.g. microphones and pressure sensors or ac-
tuators, it is essential to avoid ‘pull-in’ effects, since the contact between the two elec-
trodes induces failures, including short circuit, stick, wear, dielectric changing, and
breakdown [7, 9]. On the other hand, pull-in is a feature of MEMS/NEMS devices [3]
which can also provide information on the mechanical and physical characteristics
of the system. Therefore, it has been introduced as a robust mechanism for mea-
suring the mechanical properties of nano-structures [10], or sensing the adsorbate
stiffness in nano-mechanical resonators [11].

In order to avoid or employ the pull-in effect, an in-depth knowledge of the sta-
bility behavior and an accurate determination of the pull-in voltage of the structure
is critically required. In engineering applications, to approximate the critical defor-
mation of the electrode and to predict the pull-in voltage, a simple 1-D spring-mass
model is commonly used (see Figure 2.1). In such a model, the instability occurs
when due to the deformation of the flexible electrode, the gap between the two elec-
trodes becomes two thirds of the initial gap [8, 12, 13]. This simplified model is com-
monly referred to as the ‘1/3 air gap rule’.

In practice, however, a membrane/plate structure is different from a simple spring

Figure 2.1: Simple 1-D model typically used to approximate the critical deformation of the electrode in
order to predict the pull-in voltage.



2.1. INTRODUCTION

2

13

mass model. It is a 2D structure which incorporates Poisson ratio effects, and mem-
brane stiffening effects. In addition, if the plate-like electrode deforms, the electro-
static load is no longer uniform. The 1/3 air gap model inherently does not account
for any of these effects. However, the critical gap being equal to two-thirds of the ini-
tial gap size, is proved as the most conservative critical gap in MEMS capacitors [12].

The pull-in of circular clamped plate-like electrodes has been investigated and
formulated in many studies [9, 12, 14]. These studies are based on simplifying as-
sumptions, such as small and one-dimensional deformation of the plate, or unifor-
mity of the electrostatic load. Ultimately, finite-difference and finite-element meth-
ods have been applied to solve the resulted equations [9, 15, 16]. Different amounts
of critical deformation were proposed for circular clamped electrodes, from 41.5% [9]
or 41.6-45.6% [15] to 72-75% [16] depending on the thickness of their structures and
their simplifying assumptions. However, a comprehensive analytical solution for
pull-in voltage of a circular clamped plate considering the nonlinear membrane ef-
fects and non-uniformity of electrostatic load is missing in the literature.

The pull-in voltage and critical deflection of cantilever-, beam- or plate-like elec-
trodes depend on the stiffness of the flexible component, as well as the initial dis-
tance between the electrodes. A mechanical load applied to the component can di-
rectly affect both parameters, and consequently, influences the electrostatic insta-
bility of the system. The sensitivity of electrostatic instability to a mechanical load is
the concept behind using pull-in instability as a mechanism for sensing, for example,
temperature [17], surface-stress [5], or residual stresses in clamped structures [8].
Furthermore, MEMS sensors and actuators are frequently designed to operate under
a mechanical load, e.g., capacitive pressure sensors. Sometimes, the additional me-
chanical load in these devices is undesired, but also inevitable, e.g., thermal loads or
residual stresses in clamped structures. Therefore, an in-depth knowledge about the
effect of these mechanical loads on the stability of the micro mechanical component
is paramount.

The dependency of the pull-in voltage of MEMS devices to external mechanical
loads, such as a uniform transverse, or, in-plane load, has been investigated in the
literature [8, 13, 18, 19]. The effect of a uniform differential pressure on the electro-
static instability of a circular micro plate has been studied as well [20]. The later,
using a numerical continuation scheme, calculated the combination of pressure and
voltage which can lead to the instability of the system. This study considers the dif-
ferential and the electrostatic pressure to be in the same direction and it shows that
the differential pressure always causes the system to be more prone to instability. It
should be noticed that the proposed numerical method, even if highly accurate, is
an expensive tools, and, for each new set of design parameters (radius or thickness)
the simulation has to be repeated. An accurate analytical model –if available– could
provide a closed form solution for approximating the pull-in voltage and the critical
deformation almost without any time cost. In addition, it provides more insight to
the problem which is favored for design purposes.

In this chapter, we propose an analytical approximate methodology to study the
stability and pull-in behavior of a circular flexible electrode, while, loaded with elec-
trostatic and differential pressure. In this analysis, the direction of the pressure is not
predefined. Instead, it is considered to be a differential pressure positive when op-
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Figure 2.2: Schematic of (a) a capacitor with flexible, circular electrode subjected to a differential pressure,
its cross section in (b) undeformed and (c) deformed configurations due to the electrostatic load and the
differential pressure.

posing the electrostatic load, and negative otherwise. The non-linear stretching of
the thin plate and the non-uniformity of electrostatic load due to deflection of the
flexible plate, are incorporated in this solution. In addition, in order to verify the
results of the analytical solution, a finite element model is employed [21].

Using the proposed solutions, first, the instability and pull-in behavior of the
electrode and its dependency on the electrode’s thickness and radius are discussed.
The accuracy of the proposed analytical approximation is evaluated with a compar-
ison to the finite element simulations. Next, we explore how a differential pressure
and its direction would affect equilibrium, stability, and the critical voltages and de-
flections. In addition, the post-instability behavior of the system and possible snap-
ping behavior will be discussed.

2.2. ANALYTICAL FORMULATION

The analytical model proposed here is based on a parallel plate capacitor with a very
thin, circular, fully clamped plate as one electrode, while the other is fixed and rigid.
The shape of the capacitor is chosen to be circular, since the MEMS devices with a
circular plate generally yield better structural flexibility as compared to rectangular
plates. In addition, they have no corners or sharp edges which may induce high resid-
ual stresses during fabrication process [15]. The schematic of the assumed model is
shown in Figure 2.2.

The radius of the flexible electrode is R and its thickness is h. It is modeled with a
linear elastic, homogeneous and isotropic material model. The Young’s modulus and
Poisson ratio of the plate are denoted E and ν, respectively. The plate is suspended
over the grounded electrode with similar radius and the initial gap between the elec-
trodes is d . The plate is loaded with a differential pressure P , and an electric potential
V is applied to the electrodes.

The plate is modeled with von Kárḿan’s plate theory, which accounts for finite
deflection but moderate rotations and is adequate for thin plates [22]. The loads are
conservative, which implies that first, to estimate the deflection in the equilibrium
state, approximations based on minimizing the total potential energy can be applied,
and second, no dynamic consideration is required to assess stability.
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Minimizing the total potential energy is a variational problem and its solution can
be estimated using Ritz’s method. In this method a parametrized displacement field
satisfying the clamping boundary condition is considered, whereas the unknown pa-
rameters are calculated by requiring the total potential energy to be stationary.

Due to the axisymmetric condition in the problem at hand, the only appearing
displacement components are the radial (u) and transverse (w) components. Al-
though, the nonlinearity might cause the symmetry to break up, we consider the
symmetry to maintain during deformation. This assumption has been verified us-
ing a finite element model which will be described in the next section. The clamping
boundary condition forces the displacement components and also the first deriva-
tive of the transverse displacement with respect to the radial coordinate to be equal
to zero at the boundaries. We adopt Timoshenko’s simple approximate displacement
field for uniformly loaded circular plates [23], to approximate the radial (u) and trans-
verse (w) displacements:

w =C1d(1−ρ2)2,

u = Rρ(1−ρ)(C2 +C3ρ),
(2.1)

where ρ = r
R is the non-dimensional radial coordinate and, Ci , (i =1–3,) are the pa-

rameters to be calculated. Next, the associated total potential energy is evaluated.
The total potential energy consists of four terms namely, the electrostatic potential
(Ue ), the potentials associated with elastic deformation due to the bending (Ub) and
the stretching (Us ) of the plate, and the potential associated with the mechanical
pressure (W ):

U =Ue +Ub +Us −W. (2.2)

Assuming the parallel-plate capacitor theory, the electrostatic potential follows as [3]:

Ue =−πεV 2R2
∫ 1

0

ρdρ

d +w
, (2.3)

where ε is the electric permittivity of the dielectric between the electrodes. Notice
that the local distance between the electrodes (d + w) is employed to calculate the
electrostatic potential. Thus, the non-uniformity of the electrostatic load due to the
deflection of the flexible electrode has been incorporated.

Next, considering von Karman’s plate theory (moderate rotations), the potentials
associated with elastic deformation due to the bending (Ub) and the stretching (Us )
of the plate are [22]:

Ub =πD

R2

∫ 1

0

((
∂2w

∂ρ2

)2

+
(

1

ρ

∂w

∂ρ

)2

+
(

2ν

ρ

∂w

∂ρ

∂2w

∂ρ2

))
ρdρ, (2.4a)

Us = πEh

(1−ν2)

∫ 1

0

((
u

ρ

)2

(2.4b)

+
(
∂u

∂ρ
+ 1

2R

(
∂w

∂ρ

)2)2
2νu

ρ

(∂u

∂ρ
+ 1

2R

(
∂w

∂ρ

)2))
ρdρ,

(2.4c)
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where D = Eh3

12(1−ν2)
is the bending stiffness of the flexible plate. Notice that nonlinear

membrane effects have been incorporated in the elastic potential.
As the rotations in the plate due to mechanical and electrostatic loads are small,

the pressure is assumed to be always perpendicular to the undeformed surface. There-
fore, the potential associated with the pressure can be calculated as:

W = 2πPR2
∫ 1

0
wρdρ. (2.5)

By substituting Equation 2.1 into Equations 2.3–2.5, an approximation for the total
potential energy can be derived analytically. The analytical expression of the integral
in Equation 2.3, depends on the sign of the parameter C1. We calculate the total
potential energy and solve the problem for C1 < 0 and C1 > 0, separately:

U =−εV 2πR2

2d

(
z(C1)

)−P
πR2d

3
C1

+ 32πd 2

3R2 DC 2
1 +

EhR2π

(1−ν2)

(
α1C 2

2

+α2C 2
3 +α3C2C3 −α4C 2

1C2
d 2

R2

+α5C3C 2
1

d 2

R2 +α6C 4
1

d 4

R4

)
,

(2.6)

where,αi is introduced for compactness, withα1 = 0.250,α2 = 0.117α3 = 0.300,α4 =
0.068,α5 = 0.055,α6 = 0.305. These parameters are determined by the selected basis-
functions, and represent the linear and nonlinear stretching stiffness components in
the strain energy. Moreover,

z(C1) = atanh
p−C1p−C1

if C1 < 0, (2.7a)

z(C1) = 1 if C1 = 0, (2.7b)

z(C1) = atan
p

C1p
C1

if C1 > 0. (2.7c)

Notice that z(x) is a continuous and smooth function around zero.
Next, the stationary points of total potential energy (U ) can be found by equating

its derivative to the unknown parameters (Ci ) to zero,

∂U

∂C1
= ∂U

∂C2
= ∂U

∂C3
= 0. (2.8)

Solving Equation 2.8 for parameters C2 and C3, leads to a relation between the stretch-
ing of the electrode and its transverse deflection, independent of the applied loads,
V and P . As a matter of fact, C2 and C3 can be calculated as a function of C1 and sub-
stituted into Equation 2.6. Hence, the degrees of freedom can be reduced to C1 only,
while incorporating the in-plane deformation, as well. Then, equilibrium requires:

∂U

∂C1
= 0, (2.9)
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which leads to:

−εV 2πR2

2d

(
1

2C1(1+C1)
− z(C1)

2C1

)
+ 64π

3
(

d

R
)

2

D

(
C1 +0.488(

d

h
)

2

C 3
1

)
−P

πR3

3

d

R
= 0.

(2.10)

It is worth to note that in Equation 2.10, two sources of nonlinearity are incorpo-
rated: (1) the cubic term due to the geometrical nonlinearity and, (2) the nonlinearity
of electrostatic load. Due to the presence of nonlinearity, multiple equilibrium states
might be found for one load case (P and V). Therefore, the equilibrium path might
exhibit one or even more bifurcations, at which solution branches meet. The stability
of the solution can be defined by the sign of the second derivative of the total poten-
tial energy with respect to the only degree of freedom left (C1). In fact, the system is
stable, when the second derivative is positive, and unstable, if it is negative.

The critical point(s) can be calculated by equating the second derivative of the
total potential energy with respect to the only degree of freedom to zero. This, from
a physics point of view, means that the system would have no stiffness in the direc-
tion of the subjected degree of freedom. Therefore, the second derivative of the total
potential energy at the critical points can be calculated as:

∂2U

∂C1
2 =

−εV 2πR2

2d

(
− 5C1 +3

4(C1 +1)2C1
2
+ 3z(C1)

4C1
2

)
+ 64πd 2

3R2 D

(
1+α7

(
d

h

)2

C1
2
)
= 0.

(2.11)

where α7 = 1.464.
Recall that at the critical points, the system is still in equilibrium. Thus, Equa-

tions 2.10 and 2.11 should be solved simultaneously in order to calculate the critical
deflection(s) and voltage(s). The critical value of voltage and deflection are denoted
with superscribe cr . With such an analytical solution, one can accurately approx-
imate the voltage level(s) at which instability occurs as a function of the material
properties, the geometrical parameters, and the applied differential pressure. It is
worth noting that since Equations (2.10) and (2.11) are both highly nonlinear in C1,
solving these equations numerically is relatively difficult. Therefore, as an alterna-
tive, one can simply solve these equations for P and V for a feasible range of critical
C cr

1 (e.g. -0.99 to +1). This approach will result in obtaining C cr
1 as a numeric function

of P and V .

2.3. FINITE ELEMENT ANALYSIS

To verify the results of the analytical estimation, a 3D capacitor with circular elec-
trodes was modeled using finite elements (COMSOL Multiphysics [21]. In the model,
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one electrode is considered to be flexible, clamped on the edge, and suspended over
the grounded electrode. The medium was discretized with solid elements using free
tetrahedral meshing. The material properties and specifications of the model, that
are used for the test case for this solution, are: E = 80Pa, ν = 0.2, d = 2µm, and
ε= 8.854×10−12 m−3kg−1s4A2. To study the effect of the dimensions of the electrode,
different combinations of thickness and radius have been studied.

In order to calculate the equilibrium path for this structure, the differential pres-
sure and average deflections of the plate are prescribed. Then, the required electric
potential to maintain the equilibrium of the plate in such a configuration is calcu-
lated. To solve the highly nonlinear equations, the Newton method was employed.
This calculation is repeated over a range of average deflections and as a result, the
equilibrium path of the system is achieved. The critical voltage(s) is then found by
tracing the limits of electric potential.

It should be noticed that in the finite element model the displacement field and
its symmetry is not imposed to the system. However, the displacement field ap-
pear to be completely symmetric for both the resulting stable and unstable solution
branches. The results from this model is compared with the proposed analytical so-
lution in the “Results and Discussion” section.

2.4. RESULTS AND DISCUSSION

In this section, the influence of a uniform pressure on the critical deflection and volt-
age of a parallel plate capacitor with a circular flexible electrode, will be studied. The
results of the proposed analytical approximation will be discussed and compared
with finite element simulations. For this purpose, normalized load parameters are
introduced as:

normalized voltage: V ′ =V

√
12εR4(1−ν2)

d 6E
,

normalized pressure: P ′ = P
1−ν2

E
.

(2.12)

In addition, the maximum deflection of the plate is normalized with the initial gap
size d .

First, consider the case with no pressure (P ′ = 0). The corresponding deflection
deformation is modeled as expressed by Equation 2.1. The maximum deflection oc-
curs at the midpoint (ρ = 0), and is equal to C1d .

Figure 2.3 shows how the midpoint deflection varies with the applied voltage. The
presented curves are determined analytically for different thicknesses of the flexible
electrode. The results of the finite element simulations are also shown, and as can
be observed, they confirm the accuracy of the approximate analytical solution. The
error between these two solutions in worst case (h/d = 0.1) occurs at the limit point
and is less than 8%. In fact, the accuracy of the analytical solution is better for thicker
electrodes.

As Figure 2.3 indicates, the deflection of the midpoint of the flexible electrode in-
creases monotonically with the applied voltage until the system reaches a limit point
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Figure 2.3: The equilibrium path of the midpoint of the circular flexible electrode for different thicknesses,
and radius R = 100µm. —— stable equilibrium, - - - - unstable equilibrium, and finite element
simulations (COMSOL Multiphysics).

Figure 2.4: The normalized critical deflection at the midpoint of a circular plate with radius R = 100µm, as
a function of its normalized thickness h/d .

or saddle-node bifurcation. At this critical point, the system becomes unstable, and
if the voltage is increased, it leads to pull-in.

It can be observed from Figure 2.3 that the critical defection depends on the thick-
ness of the structure. In fact, solving Equations 2.10 and 2.11 for P = 0, results in a
critical deflection ( wcr

d =C cr
1 ) which is only a function of h/d . This function is shown

in Figure 2.4. The critical deflection calculated with the proposed method varies be-
tween 51-71% of the initial gap between the electrodes and is always higher than 1/3
of the initial gap which is calculated with a simple 1D spring model. This, as men-
tioned before, is because modeling the elastic restoring forces with a linear spring
does not account for the non-uniform electrostatic force on the plate after deflec-
tion, and, the nonlinear stiffening effect of the flexible electrode. The latter effect is



2

20 STATIC STABILITY OF ELECTRICALLY LOADED MICRO-PLATES

Figure 2.5: The normalized pull-in voltage of a circular plate with radius R = 100µm, as a function of its
normalized thickness h/d calculated with different methods.

more pronounced for thinner plates, causing wcr

d to be larger.
The critical voltage of the system, depends on the material properties and the

dimensions of the capacitor. Solving Equations (2.10) and (2.11) for P = 0 shows
that the pull-in voltage is proportional to 1/R2, which is in agreement with the ex-
perimental results presented by Osterberg [24]. The normalized critical voltage as
defined using Equation (2.12), only depends on the normalized thickness, see Fig-
ure 2.5. For comparison, the finite element results and the results of a simple solution
based on 1/3-air-gap theory with uniform electrostatic load (as explained in [12]), are
also shown. It is worth to note that the results presented in this graph are closely sim-
ilar (5% different) to the classical limit provided by Ansari et al. [25]. In the latter, the
authors have employed couple stress and strain gradient elasticity theory to obtain
the size dependent pull-in characteristics for a micro-plate with h/d = 0.83. How-
ever, since the geometric nonlinearity is not considered in the mentioned article, the
obtained critical deflections are significantly different.

For thinner plates where the nonlinear stiffening effect is more significant, the
simple 1D linear spring model (1/3-air-gap rule) predicts a significantly lower critical
voltage as compared to the finite element solution; while, the approximate analytical
solution presented here can predict very precise results. However, although the crit-
ical voltage calculated with the 1D linear spring model is inaccurate for the circular
membranes, it provides a conservative approximation for the critical deflection.

Next, consider the case where a differential pressure, positive in opposing direc-
tion of the electrostatic load, is applied (P ′ 6= 0). This time, two load parameters, i.e.
pressure and electrostatic load are involved in the stability analysis. In order to cal-
culate the limit voltage we preserved the pressure and consider the voltage as the
varying load parameter. The midpoint deflection of the electrode as a function of
applied voltage is shown for three different differential pressures in Figure 2.6.

In fact, pressurizing the flexible electrode can significantly affect the shape of the
equilibrium path: first of all, a mechanical pressure leads to an initial deflection in
the plate when V = 0. This initial deflection depends on the amount and direction
of the applied pressure. Second, a differential pressure might influence the position
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Figure 2.6: The midpoint deflection of the circular flexible electrode with thickness h = 0.2µm and radius
R = 100µm as a function of applied voltage, for differential pressures in different directions. —— stable
equilibrium, - - - - unstable equilibrium.

and/or number of limit points.
As Figure 2.6 shows, when a negative (downward in Figure 2.2) pressure is ap-

plied, the pull-in voltage drops and the critical deflection slightly increases. This
is because a negative differential pressure decreases the average initial distance be-
tween the electrodes. Though, the overall shape of the equilibrium path remains the
same.

For positive pressures, however, the shape of the equilibrium path might differ
significantly (see P ′ = 2×10−9 in Figure 2.6). In such a case, the system exhibits one
or three saddle-node bifurcations in its equilibrium path [22]. One limit point (Point
C in Figure 2.6) is close to the limit point in an unloaded system, i.e. P ′ = 0. Only,
due to the initial deflection of the plate and the associated additional geometrical
stiffness, this limit point occurs at a slightly different voltage and deflection. We refer
to this critical point as the “ultimate” limit point. Another limit point occurs earlier
when the deflection of the plate is still in the positive direction (Point A in Figure 2.6).
We shall refer to this point as the “primary” limit point. The other limit point is a
local minimum in the applied voltage (Point B). If we ramp up the voltage on the
upper stable branch around Point A, or, ramp down the voltage on the lower stable
branch around Point B, the system might jump from one stable configuration to the
other.

Similar bi-stability behavior has been observed for shallow arched structures [26].
These structures may exhibit two different stable configurations under the same ap-
plied electrostatic load and they can snap from one to the other. For the problem
at hand, the pressure is causing the initially flat flexible electrode to behave like an
arched structure.

In order to verify the analytical approximate, the equilibrium path calculated by
the finite element model is provided in Figure 2.7. The results of the numerical solu-
tion confirm the accuracy of the approximate analytical solution. The error between
these two solutions appears to be the most at the ultimate limit point (less than 4%).
Similar to the case of no pressure, the accuracy of the analytical solution is better for
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Figure 2.7: The midpoint deflection of the circular flexible electrode with thickness h = 0.2µm and radius
R = 100µm as a function of applied voltage, when P ′ = 2×10−9.

Figure 2.8: The midpoint deflection of the circular flexible electrode with thickness h = 0.2µm and radius
R = 100µm as a function of applied voltage, for different positive pressures. —— stable equilibrium, - - - -
unstable equilibrium

thicker electrodes.

After the system passes the primary limit point, the post-instability behavior de-
pends on the applied pressure. Figure 2.8 shows the midpoint deflection as a func-
tion of applied voltage, for different positive pressures. It can be observed that the
primary limit point can only be noticed if the pressure is higher than a certain thresh-
old. If the applied pressure is too small (see P ′ = 0.6×10−9 in Figure 2.8), then, the
shape of the equilibrium path changes slightly, and the primary instability is not ob-
served. For higher pressure, though, the primary limit point exists.

For moderate pressures, the primary limit voltage is lower than the ultimate limit
voltage. Therefore, the instability leads to the snapping behavior discussed before
(see P ′ = 2.4× 10−9 in Figure 2.8). For larger pressures, the primary critical voltage
exceeds the ultimate pull-in voltage and thus, a small perturbation may lead to pull-
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Figure 2.9: The critical voltages for a test case with thickness h = 0.2µm and radius R = 100µm, as a func-
tion of the applied mechanical pressure.

in of the flexible electrode (see P ′ = 4.8× 10−9). For larger pressures, the so-called
secondary and ultimate limit points totally vanish.

If during the electrostatic loading, a snap-trough occurs from the upper stable
branch to the lower branch (e.g. for P ′ = 2.4×10−9 in Figure 2.8), the unloading of the
system can also lead to a snap-back from the lower stable branch to the upper one.
However, the snap back occurs at a lower voltage at the secondary limit point. This
limit point is only observed for the pressure range that both primary and ultimate
limit points are present.

Clearly, the critical voltage(s) and limit deflection(s) depend on the applied me-
chanical pressure. The variation of the limit voltage(s) versus the applied mechanical
pressure is shown in Figure 2.9. As can be seen, the results of analytical and finite ele-
ment simulations are in good agreement, which again demonstrates the accuracy of
the approximate solution.

In Figure 2.9, for negative pressures, only one limit point is observed which is
associated with the ultimate limit point or the pull-in of the flexible electrode. In
this region (P ′ < 0), there is a near-linear relation between the pull-in voltage and the
applied pressure. The pull-in voltage monotonically decreases with increasing the
amplitude of the pressure in negative (downward) direction.

For positive pressures, three different regions can be observed. First, for very
small pressures, only the ultimate limit point is observed. This is associated with the
limit point for P ′ = 0.6×10−9 in Figure 2.8. Then, there is a region in which the system
exhibits all three limit points. The examples of P ′ = 2.4×10−9,4.8×10−9 and 7.2×10−9

in Figure 2.8 belong to this region. Depending on the value of the applied pressure,
the primary limit voltage might be less or more than the ultimate limit voltage. This
defines the post-instability behavior of the system. The final region in Figure 2.9 is
the pressure range at which again the system exhibits only one limit point, which is
associated with the so-called primary limit point. The example of P ′ = 9.6×10−9 in
Figure 2.8 belongs to this region.

Figure 2.10 shows how the critical deflections vary with the applied mechanical
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Figure 2.10: The critical deflections of the test case with thickness h = 0.2µm and radius R = 100µm, as a
function of the applied mechanical pressure.

pressure. It can be observed that the primary critical deflection varies between 0-
50% of the initial gap size in the positive direction. At the ultimate pull-in point, the
deflection of the plate is 65-73% of the initial gap size.

The snapping of the flat flexible electrode, when sweeping the applied voltage
up and down, is an interesting phenomenon that could be used in electrostatically
driven switches, sensors and actuators. However, as explained, only a certain range
of pressure allows for existence of this behavior. The range of pressures allowing for
snapping mainly depends on the mechanical properties of the flexible electrode and
its dimensions (thickness and radius).

It should be noticed that snap-through is a dynamic process and when the flexi-
ble plate is snapping from an unstable to a stable state, it has nonzero velocity. How-
ever, since the load system is conservative, no dynamic consideration is required to
assess stability. Instead, the total potential energy is a good criteria to ensure that
the dynamic process does or does not lead to failure: If the total potential energy at
the primary limit point exceeds the potential at the ultimate limit point, the exceeding
energy appears as kinetic energy causing an overshoot to occur.

Figure 2.11 illustrates the required combination of differential pressure and thick-
ness of the plate, in order to observe the snap-through phenomena. This graph is de-
termined using both analytical and FEM solutions for the test case at hand. The good
agreement between the solutions again demonstrates the accuracy of the analytical
approximate.

As Figure 2.11 shows, if the pressure is too low, the primary limit point is not ob-
served; and if the pressure is too high, then the primary limit voltage exceeds the
ultimate limit voltage and the system would fail after reaching the first instability.

If the pressure is high enough, the ultimate and secondary limit points vanish and
snap-back behavior will not be observed either. However, one can conclude from
Figures 2.8 and 2.9 that the pressure range for having snap-through in loading is a
subset of the range for having the snap-back in unloading. In fact, if the snapping in
loading is observed, the occurrence of snap-back in unloading is certain.
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Figure 2.11: The pressure range in order to trigger the primary limit point and the snap-through, as a
function of thickness of the flexible electrode, with R = 100µm.

Figure 2.12 shows the admissible combinations of the applied pressure and thick-
ness for existence of snapping, for different radii of the electrode. As can be observed
for smaller radii of the electrode (for example, R/d = 40 in Figure 2.12) a wide range
of pressures might result in snap-through behavior. However, for larger electrodes
the range of admissible pressures drops. It is interesting that the required thickness,
resulting in snap-through, is always less than 33% of the gap size. For a thicker elec-
trode, the primary instability, if observed, leads to direct pull-in.

Although the snap-through has been illustrated for constant pressures and a vary-
ing voltage, a similar behavior will be observed if the voltage is preserved and the
pressure is varied. The midpoint deflection of the electrode as a function of the ap-
plied pressure, for different voltages, is provided in Figure 2.13. It can be observed
from Figure 2.13 that for any voltage larger than zero, at least one limit point exists in

Figure 2.12: The pressure range in order to trigger the primary limit point and the snap-through, as a
function of thickness of the flexible electrode, for different radii.
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Figure 2.13: The midpoint deflection of the circular flexible electrode with thickness h = 0.2µm and radius
R = 100µm as a function of the applied pressure. —— stable equilibrium, - - - - unstable equilibrium

the equilibrium path (e.g. Point A for V’=0.45). However, for larger voltages, two other
limit points might appear. For example, in Figure 2.13, in the curve corresponding to
V’=0.45, if we vary the pressure around Point B or C, the system snaps from a posi-
tive to a negative deflection, or vice versa. For very large voltages, on the other hand,
varying the pressure over the limit points leads to pull-in of the system.

It is worth to point out that the compliance of the system to a differential pressure
is minimum in case no voltage is applied to the capacitor. With a voltage increase the
stiffness of the system drops, and finally at a critical voltage, the system allows for
snap-through behavior. When snap-through occurs, the system has zero stiffness.

The snap-through and bi-stable behavior noticed for pressurized clamped elec-
trodes, can be employed in sensing and actuation applications. This phenomenon
can benefit from high sensitivity due to low compliance, and robustness and sim-
plicity of pull-in voltage measurements.

Finally, we would like to note that the effective elastic properties of structures at
nano scales are known to be strongly size-dependent. The classical continuum the-
ory is inherently size in-dependent and hence, it cannot provide a good prediction
for very small scales. For such length scales, size-dependent continuum theories that
account for these scale effects should be utilized [27–31]. In this study, however, the
hypothetical properties that are utilized for illustrating the results of the model are
close to those of gold or aluminum thin films. For these two materials, scale effects
are not significant at the thicknesses used in the present study [32–35]. Therefore,
provided that we restrict the material to aluminum and gold or other similarly be-
having materials, the classical continuum theory still can be employed. In order to
use this formulation for design purposes for other materials, one should consider a
thickness range at which the elastic coefficients for bulk materials can still be em-
ployed.
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2.5. CONCLUSIONS

In this chapter, an analytical model was proposed for a circular flexible electrode in
a parallel plate capacitor, while it is loaded with a differential pressure. Using this
approximate solution, a stability analysis was performed on the effect of pressure
on the critical voltage and deflection. In the proposed model, the geometrical non-
linearity of the flexible electrode was taken into account.

The results suggest that a pressure can trigger additional limit points and an un-
stable solution branch to occur. The post-instability behavior after reaching the first
limit point, depends on load parameters, thickness and radius of the electrode and
the air gap. After the primary limit point, the system might snap to a new stable con-
figuration, or, exhibit pull-in.

It is worth to mention here that when snap-through occurs, the system has very
small stiffness, and is mechanically very compliant. This condition makes the sys-
tem very suitable for sensing applications. In particular, the sensitivity of the limit
voltages to the pressure can be employed to measure the pressure. To employ the
primary limit point in sensing pressure, two techniques can be envisaged. The first is
to subject the sensor to the measurand pressure and then ramp up the voltage to the
primary limit voltage. This voltage can be detected by the sudden change in capaci-
tance, and then the corresponding pressure can be calculated. The second possible
method would be a binary mechanism for detecting a certain differential pressure.
In this method, the voltage is kept close to the primary (or secondary) limit voltage
of the target pressure. Then, if the pressure drops (or inclines) to less (or more) than
the target pressure the system snaps. In this way, a very precise binary mechanism
for pressure measurement will be achieved.

However, we stress here that even without observation of instability, the combi-
nation of positive pressure and electrostatic load on the flexible electrode results in
a high compliance of the system, which may be very appealing for sensing applica-
tions.

Using the primary instability of pressurized electrodes in sensing or actuation can
benefit from the robustness and simplicity of pull-in, and in addition, it can benefit
from the snap-through behavior which prevents the system from failure.

It is emphasized, that the present study was based on the assumption of static
loading of the capacitor. In actuation applications, however, an AC voltage might be
applied to the system. Then, the frequency and amplitude of this AC voltage will also
influence the bifurcation parameters. The effect of pressure on the dynamics of a
circular micro electrode and instability analysis of such a structure will be studied in
our future work.
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3
NONLINEAR DYNAMICS OF

ELECTRICALLY ACTUATED

MICRO-PLATES

Characterization of nonlinear behavior of the micro-mechanical components in MEMS
plays an important role in their design process. Static deflection and stability of a
micro-plate subjected to an electrostatic load was studied in the previous chapter. In
this chapter, the nonlinear dynamic behavior and pull-in mechanisms, of an electri-
cally actuated circular micro-plate are investigated. In order to study the periodic solu-
tions, detect bifurcations and follow branches of the solution, the non-linear equation
of motion is derived using a Lagrangian approach, and solved by a pseudo arc-length
continuation and collocation technique. It is shown that, in the frequency response
of the an electrically actuated micro-plate, both hardening and/or softening nonlinear
responses could emerge depending on the applied DC voltage. The results indicate that
the critical load parameters, namely DC and AC voltages and the excitation frequency,
have a major influence on the pull-in characteristics of the micro-plate. In addition,
they accurately show the decrease of the pull-in voltage due to dynamic loading.

Parts of this chapter have been published in the proceeding of ASME 2016 International Mechanical En-
gineering Congress and Exposition [1].
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3.1. INTRODUCTION

In recent years, Micro-Electro-Mechanical Systems (MEMS) have received significant
attention in diverse engineering applications due to their light weight, low produc-
tion cost, and low energy consumption [2, 3]. Electrically actuated MEMS devices,
typically employ a parallel-plate capacitor, in which one plate is actuated electrically
and its motion is detected by capacitive changes [4, 5]. When an electric potential is
applied to the capacitor, an attractive electrostatic load is induced between the two
conductive electrodes, leading to deformation of the flexible electrode. When the
potential fluctuates with time, a forced dynamic motion is induced in the system.

In the analysis of the motion of the flexible electrode, the electrostatic force is
nonlinearly dependent on the deformation of the electrode. In addition, due to the
deflection and rotation which might occur in the electrode, geometrical nonlinearity
is also present in the elastic response of the structure. Therefore, the system might ex-
hibit nonlinear global or local softening in its amplitude-frequency response curves.
Particularly, at a critical combination of load parameters, i.e. DC and AC voltages
and excitation frequency, the motion of the flexible electrode becomes unstable and
it collapses on the stationary one. This phenomenon is known as pull-in [6, 7].

In most electrostatic MEMS devices, e.g. microphones or actuators, it is essential
to avoid pull-in, since the contact between the two plates may cause failure [2, 7].
However, in sensing applications, pull-in is a unique characteristic of the sensor that
can provide information on the mechanical and physical characteristics of the sys-
tem [8–10]. In either way, in order to avoid or use the pull-in effect, an in-depth
knowledge of the instability behavior and an accurate determination of the pull-in
voltage of the structure is critically required.

Many studies have addressed the pull-in phenomenon and presented analytical
or numerical estimation to predict the critical voltage at which this phenomenon oc-
curs [6, 7, 11]. In static loading, this stability phenomenon appears as a ‘fold’ or a
‘limit point’ in the equilibrium curve of the system [10]. For dynamic loading, for ex-
ample for micro-beam resonators, it has been shown that the dynamic pull-in can be
triggered with dynamic instabilities due to nonlinear resonance. Therefore, it might
occur at much smaller voltages as compared to static pull-in [12]. The dynamic pull-
in instability of the micro-beam resonators might result from different mechanisms.
For example, a cyclic fold in the frequency response function due to nonlinearities of
the system, or, a transient jump between two or more coexisting stable branches of
solutions due to a disturbance in the AC voltage can lead to pull-in [6].

A plate resonator, on the other hand, is a 2D structure which incorporates Pois-
son ratio effects and membrane stiffening effects. The static pull-in phenomenon
of circular clamped plate-like electrodes has been investigated and formulated in
many studies [7, 13, 14]. These studies are based on simplifying assumptions, such
as small and one-dimensional deformation of the plate, or uniformity of the elec-
trostatic load. However, to the best of our knowledge, there is no comprehensive
solution which can model the static and dynamic pull-in of a circular plate with any
thickness or radius.

In this chapter, the pull-in behavior of an electrically actuated circular micro-
plate is studied. A simple shape function with three degrees of freedom is assumed
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Figure 3.1: Schematic of the cross section of the capactor with flexible, circular electrode.

for the forced vibration of the plate, and an energy approach based on Rayleigh-Ritz
method is used to derive the approximate equation of motion. The obtained equa-
tion of motion accounts for geometrically nonlinear membrane effects of the flexible
electrode. The non-uniformity of the electrostatic load due to the deformation of the
electrode is another source of nonlinearity which is considered in this analysis.

In order to investigate the branches of periodic solutions and detect instabili-
ties, a pseudo arc-length continuation and collocation technique are utilized. The
results of this study show that both hardening and/or softening nonlinear responses
could emerge, depending on the applied DC voltage. Also, the results indicate that
the applied load parameters can significantly affect the pull-in characteristics of the
micro-plate.

3.2. PROBLEM FORMULATION

A parallel plate capacitor with a very thin, circular, fully clamped plate as the flexible
electrode is considered. The schematic model of this system is shown in Fig. 3.1. The
radius of the plate is R and its thickness is h. The Young’s modulus, Poisson ratio
and the density of the plate are denoted to be E , ν and µ, respectively. The plate is
suspended over a grounded electrode with similar radius and the initial gap between
the two electrodes is d . An electric potential V consisting of a DC bias voltage VDC ,
and an alternating AC voltage VAC is applied to the electrodes:

V =VDC +VAC sin(Ωt ), (3.1)

whereΩ is the excitation frequency.
Due to the alternating electrostatic field caused by the AC voltage, a forced dy-

namic motion is induced in the flexible electrode. The equations of motion for such a
system can be obtained by using Hamilton’s principle. In order to introduce the suit-
able global modes, the following simplifying assumptions are considered: First of all,
the plate is modeled using von Kármán nonlinear plate theory which can account for
moderate rotations and small deformations. Consequently, the displacement field is
only derived for the mid-plane of the flexible plate, and, extended for other points.
Second, due to radial symmetry in the geometry and the loads, the problem is as-
sumed to be axisymmetric, i.e. displacement field and therefore, the global modes
are only functions of radial coordinate r . In addition, we assume that the plate is ex-
cited around its fundamental frequency and therefore, the higher modes (including
in-plane modes and the modes which would violate the axisymmetry) are not ex-
cited. Thus, the only appearing displacement components are radial (u) and trans-
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Figure 3.2: The normalized proposed global mode in comparison with the first mode shape of the clamped

circular plate calculated with classical plate theory (J0(κρ)− ( J0(κ)
I0(κ) )I0(κρ),κ= 3.19625).

verse (w) components.
The clamping boundary condition forces these displacement components, and,

also the first derivative of transverse displacement in the radial direction, to be equal
to zero at the boundary. With these assumptions, the Timoshenko’s approximate dis-
placement field for uniformly loaded circular plates [15], is proposed to present radial
(u) and transverse (w) displacement fields:

w = q(t )d(1−ρ2)2,

u = ξ1(t )Rρ(1−ρ)+ξ2(t )Rρ2(1−ρ),
(3.2)

where ρ = r /R is the normalized radial coordinate, and, q(t ), ξ1(t ) and ξ2(t ) are di-
mensionless generalized coordinates, and unknown functions of time.
Notice that these shape functions can only mimic the first mode shape of a circular
clamped plate (see Figure 3.2). Therefore, the proposed solution can only be ap-
plied if the system is excited around its fundamental frequency, and if that mode is
not involved in an internal resonance with other modes of vibration. If such condi-
tion preserves, then other modes accidentally excited will decay with time due to the
presence of damping [16].

Next, the total potential energy of the system can be calculated. The potential en-
ergy of the system consists of three terms concerned with the electrostatic potential
(Ue ), the potential associated with elastic deformation due to the bending (Ub) and
the stretch (Us ) of the plate:

U =Ue +Ub +Us . (3.3)

Assuming the parallel-plate capacitor theory, the electrostatic potential can be for-
mulated as [4]:

Ue =−πεV 2R2
∫ 1

0

ρdρ

d +w
. (3.4)

where ε is the electric permittivity of the dielectric between the electrodes. Notice
that in formulating the electrostatic potential (Ue ), the local distance between two
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electrodes (d +w) is employed and therefore, the formulation incorporates the non-
uniformity of the electrostatic field due to the deflection of the flexible electrode.

Next, considering von Kármán’s plate theory (moderate rotations), the potential
associated with elastic deformation due to the bending (Ub) and the stretch (Us ) of
the plate can be approximated [17]:

Ub =πD

R2

∫ 1

0

((
∂2w

∂ρ2

)2

+
(

1

ρ

∂w

∂ρ

)2

+
(

2ν

ρ

∂w

∂ρ

∂2w

∂ρ2

))
ρdρ, (3.5a)

Us = πEh

(1−ν2)

∫ 1

0

((
u

ρ

)2

+
(
∂u

∂ρ
+ 1

2R

(
∂w

∂ρ

)2)2

(3.5b)

+ 2νu

ρ

(∂u

∂ρ
+ 1

2R

(
∂w

∂ρ

)2))
ρdρ.

where D = Eh3

12(1−ν2)
is the bending stiffness of the flexible plate. Notice that nonlinear

membrane effects have been incorporated in the elastic potential. The kinetic energy
of the system, neglecting in-plane inertia effects, is expressed as:

T =πµR2h
∫ 1

0
ẇ2ρdρ. (3.6)

Hence, by substituting the displacement field from Eqn. 3.2 into Eqn. 3.4 - 3.6, the
Lagrangian of the system, L = T −U , can be expressed in terms of generalized coor-
dinates L(q,ξ1,ξ2, q̇, t ):

L = 1

10
πµR2hd 2(q̇(t ))2 + πR2

2d
ε(V (t ))2z(q(t ))−

32πd 2

3R2 D(q(t ))2 − 12πR2

h2 D
(
α1ξ

2
1 +α2ξ

2
2 +α3ξ1ξ2−

α4ξ1(q(t ))2 d 2

R2 +α5ξ2(q(t ))2 d 2

R2 +α6(q(t ))4 d 4

R4

)
,

(3.7)

where, α1 = 0.25, α2 = 0.1167, α3 = 0.3, α4 = 0.0677, α5 = 0.0546, α6 = 0.3053, and,

z(q(t )) = atanh
√−q(t )√−q(t )

if q(t ) < 0, (3.8a)

z(q(t )) = atan
√

q(t )√
q(t )

if q(t ) > 0. (3.8b)

It is worth to notice that although z(q) has a discontinuous definition, it is math-
ematically continuous and smooth around zero. Next, Hamilton’s principle, can be
reduced to Lagrange equations and can be written as:

∂L

∂q
= d

d t
(
∂L

∂q̇
), (3.9a)

∂L

∂ξ1
= ∂L

∂ξ2
= 0. (3.9b)
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By solving Eqn. (3.9b) for ξ1 and ξ2, one can find the following expressions analyti-
cally:

ξ1(t ) = 1.185
d 2

R2 q(t )2,

ξ2(t ) =−1.750
d 2

R2 q(t )2.

(3.10)

In fact, Eqn. (3.10) describes the relation between the stretch of the plate and its
transverse deflection, independent of the applied load. As a matter of fact, ξ1(t ) and
ξ2(t ) from Eqn. 3.10 can be substituted into Eqn. 3.2. Hence, the degrees of free-
dom can be reduced to q(t ) only, while incorporating the in-plane deformation, as
well. Next, the equation governing the transverse motion of the micro-plate can be
obtained from Eqn. (3.9a):

1

5
µR2hq̈(t )+ 64

3
(

1

R
)

2

D

(
q(t )+α7(

d

h
)

2

q(t )3
)

−ε(V (t ))2 R2

2d 3

(
1

2q(t )(1+q(t ))
− z(q(t ))

2q(t )

)
= 0,

(3.11)

where,α7 = 0.488. Equation 3.11, as a matter of fact, describes the undamped motion
of a circular clamped plate, electrically actuated around its fundamental frequency.
In practice, however, the systems possesses some kind of energy dissipation mecha-
nism or damping. By assuming a modal damping in the system, equation of motion
can be augmented as:

q̈(t )+2ζω0q̇(t )+ω2
0q(t ) =

−α8(
d

R
)

4 E

µ(1−ν2)
q(t )3 +α9

ε(V (t ))2

µdh

(
1

2q(t )(1+q(t ))
− z(q(t ))

2q(t )

)
.

(3.12)

where, α8 = 4.337 and α9 = 2.5. The parameter ω0 = 10.328
R2

√
D
µh is the natural fre-

quency of the plate, and ζ is the assumed damping ratio. It is worth to note that the
natural frequency ω0 calculated with the proposed mode shape has only 1.1% error
with respect to exact natural frequency of the plate calculated with classical plate
theory, which shows the suitability of the proposed 4th global modes.

Equation 3.12, describes the damped motion of a circular clamped plate, elec-
trically actuated around its fundamental frequency. In the right-hand side of this
equation, two sources of nonlinearity are incorporated: (1) the cubic term due to the
geometrical nonlinearity and, (2) the nonlinearity of electrostatic load.

Finally, Eqn. (3.12) will be solved for steady state periodic solutions. The numer-
ical technique to solve this equation will be briefly described in the next section.

3.3. NUMERICAL SOLUTION OF THE EQUATION OF MOTION

In this section the numerical techniques to solve the equation of motion are outlined.
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First, the highly nonlinear term in Equation 3.12, which appears due to the non-
linearity of electrostatic field, is approximated with a polynomial. This approxima-
tion is performed with a method of polynomial regression:(

1

2q(t )(1+q(t ))
− z(q(t ))

2q(t )

)
'O (q(t )n). (3.13)

If the admissible region of (−0.95,0.5) is considered for q(t ), the results converge
when n > 11. Using this fit, the discontinuity in the definition of z(q(t )) is elimi-
nated from the equations.

Then, in order to obtain the periodic solutions and perform bifurcation analysis,
a pseudo arc-length continuation and collocation scheme have been utilized [18].
In particular, a bifurcation analysis is carried out in three steps: (i) the continuation
starts at zero AC and DC voltage, and considers the DC voltage as the first contin-
uation parameter; (ii) Once the desired DC voltage is reached, the AC voltage is in-
troduced as the second continuation parameter. The frequency is fixed far from the
resonance. The AC voltage is incremented from the statically deflected configuration
(due to the DC voltage) to a chosen AC voltage level. (iii) Finally, the bifurcation con-
tinues by considering the excitation frequency as the third continuation parameter
to obtain frequency-amplitude responses.

The stability of the solution branches is determined using the Floquet multipli-
ers. Floquet multipliers (λi ) are analogous to the eigenvalues of Jacobian matrices
of equilibrium points in static analysis and provide all the necessary information on
the stability of the periodic solution. In fact, the periodic solution is stable only if all
Floquet multipliers |λi | < 1, and unstable otherwise [17].

It is worth noting that in the absence of VAC , there would be no dynamic load ap-
plied to the system and therefore, the static pull-in could be analyzed simply by tak-
ing the second derivative of the total potential energy with respect to q , and equating
it to zero.

3.4. RESULTS AND DISCUSSION

The procedure outlined in the previous section has been applied to a micro-plate
with the following properties: E = 169GPa, ν = 0.17, µ = 2.328gcm−3, h = 0.6µm,
R = 100µm and d = 2µm. Moreover, a damping ratio of ζ= 0.004 is considered in the
numerical simulation.

Here, three different test cases are studied: First, only a DC bias voltage is applied,
i.e. VAC = 0. As a result, the static pull-in is detected. In the second case, the flexible
electrode is excited with a very small AC voltage, e.g. VAC = 0.01V , together with
a DC bias voltage. Third, a relatively small DC bias voltage and a large AC voltage
are applied. As a result, the dynamic pull-in mechanisms in last two cases can be
investigated and compared.

3.4.1. STATIC PULL-IN (VAC = 0)
First, assume that the electric potential V only consists of a DC bias voltage. For this
case, the equilibrium path of the midpoint of the flexible electrode is shown in Fig.
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Figure 3.3: The deflection of the midpoint of the flexible electrode normalized with initial gap size (d) as a
function of DC voltage,—— stable solution, - - - - unstable solution.

3.3. The presented curves are obtained by using three different methods: analytical
solution of Eqn. (3.12), the numerical solution described in Section 3.3 consider-
ing VAC = 0, and discretization of the full 3D problem using the commercial finite
element software COMSOL. As can it be seen, the axisymmetric 3 DOF solution pre-
sented in this chapter is in a good agreement with the detailed FEM analysis of the
problem.

It can be observed that the midpoint deflection of the flexible electrode mono-
tonically increases with the applied DC voltage until the system reaches a saddle-
node bifurcation. At this point, the system becomes unstable, and a small pertur-
bation leads to total failure or pull-in. The static pull-in voltage of this test case is
V S

P =47.93 V and the critical deflection of the mid-point is 0.68 of the gap size. Con-
sequently, to ensure the stability, the circular micro-plate should be designed to oper-
ate below this voltage. It is worth noting that the proposed solution allows for calcu-
lation of the critical displacement as a function of the specifications of the capacitor.

3.4.2. DYNAMIC PULL-IN (VAC <<VDC )
Next, a fixed AC voltage of 0.01 V is applied and the effect of different DC voltages
is studied. The frequency response curves of the forced vibrations of the electrode
around its first resonant frequency are shown in Fig. 3.4. These curves are obtained
for different applied DC voltages. As it can be observed in Fig. 3.4-a, for relatively
small DC voltages (i.e. VDC < 40 V) the vibrations are almost linear, i.e. no nonlin-
ear hardening or softening is observed in the resonance and the frequency response
function of the system. However, the resonance frequency of the system has a shift
(global hardening) due to the geometrical stiffness caused by the static deflection of
the electrode.

For larger DC Voltages, on the other hand, the frequency response curves exhibit
a nonlinear behavior (see Fig. 3.4-b). When approaching the static pull-in voltage
(V → 47.93 V), both global and local nonlinear softening behaviors are observed in
the system and finally, the resonance frequency of the system tends to zero. At this
situation, the system becomes unstable and pull-in occurs.

The change of the frequency associated with the peak in nonlinear resonance
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Figure 3.4: The amplitude of vibrations normalized with initial gap size (d) for VAC = 0.01 V, and DC volt-
age of A) below the static pull-in voltage and B) close to static pull-in voltage, —— stable solution, - - - -
unstable solution.

Figure 3.5: The frequency associated with the peak in nonlinear resonance normalized with the funda-
mental frequency as a function of DC voltage for VAC = 0.01 V. —— stable solution, - - - - unstable solution.

versus the applied DC voltage is shown in Fig. 3.5. This figure indicates initially a
hardening which changes to softening, down to complete failure (i.e. zero resonance
frequency at critical DC voltage).

It is worth remarking that, when a relatively high DC voltage is applied to the sys-
tem, an unstable solution branch emerges in its frequency response curve. There-
fore, at points where the stable and unstable solution branches coincide (e.g. points
A and B for VDC = 47 V in Fig. 3.4-b), a saddle point bifurcation is noticed. If we sweep
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the frequency over the saddle points, the system will most probably jump from one
stable branch to the other one. However, it might also become unstable, leading to
pull-in [6]. Indeed in such cases, the transient dynamics of the system would deter-
mine whether the system settles at a stable orbit, or it fails, i.e. pulls in.

3.4.3. DYNAMIC PULL-IN (VDC <<V S
P )

In this case, a fixed and relatively small DC voltage of 30 V is applied, and the dynamic
behavior of the system with different AC voltages is studied. The frequency response
curves of the flexible electrode around its first resonance are shown in Fig. 3.6.
Notice that the applied DC voltage leads to a static deflection of the plate, and this
induces a geometrical stiffness. Therefore, even when actuating with a small AC volt-
age, a shift or a global hardening is noticed in the frequency response curves of the
system (see VAC = 0.01 V in Fig. 3.6-a).

Exciting this system with a small AC force leads to a stable periodic motion around
the static configuration. However, when the AC voltage is increased, the vibration
of the electrode allows for lower geometrical stiffness and therefore, a local nonlin-
ear softening is observed (see VAC = 0.10 V in Fig. 3.6-a). If the AC voltage is in-
creased further, both nonlinear softening and hardening can emerge in the system
(see VAC = 0.25 V in Fig. 3.6-a). In the case of nonlinear softening or hardening, one
or more unstable solution branches are observed in the frequency response curve of
the system. Similar to the previous case, sweeping the actuation frequency over the
saddle points where the stable and unstable solution branches coincide, might result
in an instability leading to pull-in.

If the AC voltage is increased further (see VAC = 0.35 V in Fig. 3.6-b), in addition
to critical saddle-node bifurcations (e.g. A, B, C, D and E), the solution goes through
a period-doubling bifurcation (e.g. point F). This bifurcation is detected using the
Floquet multipliers. When any of the Floquet multipliers has only a real value of –1,
a period doubling bifurcation takes place. In such a bifurcation, a new limit cycle
emerges from an existing limit cycle, and the period of the new limit cycle is twice
that of the old one. This phenomenon usually leads to a transition to chaos and at
the end, failure of the system. In Fig. 3.6-b, if we sweep over point F from right to left,
the system loses stability upon continuously passing through bifurcation points and,
finally, fails.

The change of the frequency associated with the peak in nonlinear resonance
as a function of the applied AC voltage is shown in Fig. 3.7. As can be seen in Fig.
3.7, for very small AC voltages, the resonance frequency of the system is shifted with
respect to the natural frequency of the system. This shift, as mentioned before, is
due to the geometric stiffness caused by the static deflection. At higher AC voltages,
the resonance frequency changes due to large amplitudes and the nonlinear vibra-
tion around the static deflection. Finally, at higher AC voltages (VAC > 0.35 V), af-
ter the occurrence of the period doubling, the resonance frequency suddenly drops.
The resonance of the system after period doubling is located in an unstable solution
branch, and therefore, is physically unreachable.
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Figure 3.6: The amplitude of vibrations normalized with initial gap size (d) for VDC = 30 V, A) relatively low
AND B) relatively high AC voltages. —— stable solution, - - - - unstable solution.

Figure 3.7: The frequency associated with the peak in nonlinear resonance normalized with the fun-
damental frequency, as a function of AC voltage for VDC = 30 V. —— stable solution, - - - - unstable
solution.—— stable solution, - - - - unstable solution.

3.5. CONCLUSION

In this study, the dynamic pull-in behavior of an electrically actuated circular micro-
plate has been studied. To describes the dynamic motion of the device, using an
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energy approach, a one DOF equation of motion in the transverse direction has been
established. It should be reminded that the proposed method incorporates shape
functions which can only mimic the first mode shape in the clamped plate. There-
fore, this solution can only be applied if the system is excited around its fundamental
frequency.

Moreover, three different examples of electrostatic loading of a circular micro-
plate were studied. The results revealed distinct mechanisms of electrostatic in-
stability which should be taken into account in the design of MEMS actuators and
switches. The critical load parameters, DC and AC voltages and also the excitation
frequency, have a major influence on the pull-in characteristics of the micro-plate.

The first mechanism, or static pull-in, is a saddle point bifurcation in equilib-
rium path of the system. After this point, the system loses stability and static pull-in
occurs. The second mechanism of pull-in occurs when a system is excited with a
small AC load. In such case, the pull-in occurs at a critical combination of load pa-
rameters, namely when the summation of DC and AC voltages approaches the static
pull-in voltage. Then the resonance frequency of the system, due to global and local
softening, tends to zero, and, the system fails.

The third mechanism of pull-in occurs when a system is excited with a relatively
low AC and DC. In that case, nonlinear softening and hardening might emerge in
frequency response curves of the system which lead to the presence of unstable so-
lution branches. When the system approaches saddle points, where the stable and
unstable solution branches coincide, it might lose stability leading to pull-in. Finally,
the last mechanism occurs when a system is excited with a relatively high AC. In that
case, the system might exhibit a period doubling bifurcation, which leads to symme-
try breaking (which cannot be detected by the proposed method) and failure.

In conclusion, all different mechanisms of dynamic pull-in phenomenon, which
might be noticed in circular MEMS devices and resonators, should be taken into ac-
count in their design. The proposed approximate solution can be used to predict
the unstable voltages or frequencies prone to pull-in. Although the proposed global
modes have a limitation in describing the displacement of the plate, this solution is
simple, computationally fast and very robust for detecting the instabilities.
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4
EFFECTS OF PRESSURE ON

STABILITY OF ELECTRICALLY

ACTUATED MICRO-PLATES

In previous chapters, the nonlinear static and dynamic response of an electrically ac-
tuated micro plate was addressed. Moreover, the effects of a differential pressure on
this nonlinear response was studied in Chapter 2. In this Chapter, the effect of a dif-
ferential pressure on nonlinear dynamics and the stability of an electrically actuated
circular micro-plate is studied. For this purpose a reduced order model based on an
energy approach is employed to analyze the motion of the micro-plate. The results of
this study indicate that dynamics of an electrically actuated micro-plate, in the pres-
ence of differential pressure, significantly differ from those under purely electrostatic
loads. In addition, it is shown that the presence of a differential pressure can have a
major influence on the stability of the micro-plate which should be taken into account
in the design process.

Parts of this chapter have been submitted to Journal of Nonlinear Dynamics.
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4.1. INTRODUCTION

Electrically actuated Micro-Electro-Mechanical Systems (i.e. MEMS) are increasingly
being used in diverse engineering applications, such as sensors and actuators [1, 2].
Electrostatic instability is one of the main features of these devices, which for many
applications is considered as a failure, and thus, avoided. Though, in electrostatic
switches and sensors, for example, electrostatic instability is often employed as the
main driving mechanism and therefore, it is intentionally triggered [3–5]. In either
way, in order to avoid or to exploit the electrostatic instability, a good understanding
of this phenomena is essential to obtain a high performance MEMS device.

Electrically actuated micro devices typically employ a parallel-plate capacitor, in
which at least one electrode is flexible. When an electric potential is applied to the ca-
pacitor, an attractive electrostatic load is induced between the two electrodes, lead-
ing to the deformation of the flexible one. When the potential fluctuates with time, a
forced dynamic motion is induced in the system, which can be detected by capacitive
changes of the system [6, 7].

The electrostatic load driving the motion of the flexible electrode is a function of
the applied bias (DC) and alternating (AC) voltages, and the distance between the two
electrodes. Consequently, it also depends nonlinearly on the electrode deflection. In
case of finite defections of the electrode, geometrical nonlinearity also appears in the
elastic potential of the structure. As a result, the system might exhibit nonlinear soft-
ening or hardening. Particularly, at a critical combination of DC and AC voltages and
also the excitation frequency, the motion of the flexible electrode becomes unstable,
and then, the micro-plate fall on to the stationary one. This phenomenon is known
as pull-in [8, 9].

If the applied electric potential is a static DC voltage, the deformation of the elec-
trode is static as well. In that case, the only load parameter in assessment of stabil-
ity is the applied DC voltage, and the critical stability appears as a ‘fold’ or a ‘limit
point’ in the response of the system. Many studies have addressed the static pull-in
phenomenon, and proposed analytical or numerical methods to estimate the pull-in
voltage [7, 9–13]. A literature survey on this topic has been carried out in Ref. [6]. It
has been shown that the critical voltage and deflection of the flexible electrode de-
pend on the material properties, geometry and dimensions of the flexible electrode,
and the initial gap size between the two electrodes. Particularly, for circular plate-like
electrodes, the critical deflection in static pull-in varies between 51-71% of the initial
gap between the electrodes, depending only on the thickness of the structure [14].

In electrostatic actuators, in which the applied electric potential includes a dy-
namic AC component, the deflection of the electrode will be dynamic as well. In
studying the stability of such a system, in addition to the DC voltage, the frequency
and the amplitude of the AC voltage play influential roles. Many studies have ad-
dressed the dynamic pull-in phenomenon, and proposed analytical or numerical
methods to estimate the pull-in voltage [8, 9, 15]. It has been reported that for mi-
cro resonators, the dynamic pull-in can be triggered by dynamic instabilities, and
therefore, it might occur at much lower voltages compared to the static pull-in volt-
age [16]. The dynamic pull-in can be triggered by different mechanisms [8]: (i) a
cyclic fold in the frequency response function due to nonlinearities of the system, (ii)
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a transient jump between two or more coexisting stable solution branches due to a
disturbance in the AC voltage or, (iii) a period-doubling bifurcation.

The dynamic pull-in threshold (i.e. the critical deflection, and the critical combi-
nation of DC and AC voltages) are shown to be highly influenced by any mechanical
load applied to the micro-mechanical component. For example, the effects of van
der Waals or Casimir forces between the electrodes on the dynamic behavior and
stability of the micro/nano plates have been reported [17–20]. Moreover, the effect
of a uniform differential pressure on the linear resonance frequency of an electrically
actuated circular micro-plate has been observed [21]. In practice, the additional me-
chanical loads, such as a differential pressure, are very common in MEMS applica-
tions, and insufficient attention for the effect of these factors on pull-in threshold
can result in decreasing the reliability of the MEMS device. Therefore, in this chapter,
we investigate nonlinear vibrations and stability of an electrically actuated circular
micro-plate when subjected to a differential pressure. The pressure is considered to
be positive when opposing the electrostatic load, and negative otherwise.

A Lagrangian approach is used to obtain a reduced-order model and to derive
the approximate equations of motion. In the proposed model, nonlinear stretching,
and non-uniformity and nonlinearity of the electrostatic load due to finite deflec-
tion of the flexible plate are considered. It shall be mentioned that reduced-order
modeling of electrically actuated micro-plates has been performed in the literature
following different approaches [22–26]. However, the distinguishing feature of the
present model is its simplicity while maintaining the accuracy. In this study, as a
consequence of using a proper set of polynomials as the basis functions, a simple
and yet accurate equation of motion is obtained which is more versatile for perform-
ing bifurcation analysis as compared to the alternative available models.

In order to investigate the branches of periodic solutions and detect instabilities,
a pseudo arc-length continuation and collocation technique are utilized. Based on
the proposed solution, the effects of load parameters, namely DC and AC driving
voltages, the excitation frequency, and particularly the differential pressure on the
stability of the system are explored. The results of this study show that the applied
load parameters, can significantly affect the dynamic characteristics, resonance fre-
quency, and the pull-in mechanisms of a micro-plate. The method presented in this
chapter is shown to be simple, easy to use, fast, and accurate enough to be used as a
design tool for MEMS devices.

4.2. PROBLEM FORMULATION

In this section we propose a model for the harmonic motion of a parallel plate ca-
pacitor with a very thin, circular, fully clamped plate as the flexible electrode. The
schematic model is shown in Figure 4.1. The radius of the plate is R and its thickness
is h. The plate is isotropic and homogeneous and its Young’s modulus, Poisson’s ratio
and density are E , ν andµ, respectively. The plate is suspended over a grounded elec-
trode having the same radius, and the initial gap between the two electrodes is d . An
electric potential V consisting of a DC bias voltage and an alternating AC voltage is
applied to the electrodes. The flexible electrode is loaded with a differential pressure
P , positive outward (in the opposing direction the electrostatic load).
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Figure 4.1: Schematic of (a) a capacitor with flexible, circular electrode subjected to a differential pressure,
its cross section in (b) undeformed and (c) deformed configurations due to the electrostatic load and the
differential pressure.

Due to the alternating electrostatic field induced by the AC voltage, a forced dy-
namic motion is induced in the system. We use a reduced-order model and a La-
grangian approach to obtain the equations of motion for such a system. In order to
introduce suitable global modes, the following simplifying assumptions are consid-
ered: first, the plate is modeled by nonlinear von Kármán plate theory for thin plates,
which accounts for finite deflections and moderate rotations [27]. Second, due to
radial symmetry in the geometry and the loads, the problem is assumed axisymmet-
ric [28]. In fact, we assume that the plate is excited around its fundamental frequency,
and the first mode is not involved in an internal resonance with other modes of vi-
bration. Hence, other modes (including the anti-symmetric modes), even if acciden-
tally excited, will decay with time due to the presence of damping [29]. Therefore,
the only existing displacement components are radial (u) and transverse (w) com-
ponents, which are functions of the radial coordinate (r ), only.

Considering that the plate is clamped around its circumference, the following ap-
proximate displacement field is used to present the radial (u) and the transverse (w)
displacements:

w = q(t )dΦ0(ρ), (4.1)

u =
N∑

i=1
ξi (t )RΦi (ρ), (4.2)

where ρ = r /R is the normalized radial coordinate, and, the functions Φ0(ρ) and
Φi (ρ) are the global modes and are defined as follows:

Φ0(ρ) = (1−ρ2)2, (4.3)

Φi (ρ) = ρi (1−ρ), (i = 1, ..., N ). (4.4)

The function Φ0(ρ) is a 4th order polynomial representation of the first linear mode
shape of the plate (see Figure 4.2), and Φi (ρ) are capable of reflecting the associated
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Figure 4.2: The normalized proposed global mode in comparison with the first linear mode shape of a

clamped circular plate calculated with classical plate theory (J0(κρ)− ( J0(κ)
I0(κ) )I0(κρ),κ= 3.19625).

in-plane displacement [30]. The functions q(t ) and ξi (t ) are dimensionless, time-
dependent generalized coordinates, and q(t ) is physically restricted to−1 < q(t ). The
proposed displacements are admissible functions satisfying the geometric boundary
conditions:

w = u = ∂w

∂ρ
= 0 at ρ = 1, (4.5)

the continuity condition of Φi = 0 at ρ = 0, and the finitude of the resulted Cauchy
strain components at ρ = 0. The validity and accuracy of the chosen mode shapes
will be discussed in Section 4.4.

The total potential energy of the system consists of four terms: the potential asso-
ciated with elastic deformation due to bending (Ub) and stretching (Us ) of the plate,
the electrostatic potential (Ue ), and finally, the potential associated with the mechan-
ical pressure (W );

U =Ub +Us +Ue −W. (4.6)

The potential associated with elastic deformation can be approximated by (Ub +
Us ) [27]:

Ub =πD

R2

∫ 1

0

((
∂2w

∂ρ2

)2

+
(

1

ρ

∂w

∂ρ

)2

+
(

2ν

ρ

∂w

∂ρ

∂2w

∂ρ2

))
ρdρ, (4.7)

Us = πEh

(1−ν2)

∫ 1

0

((
u

ρ

)2

+
(
∂u

∂ρ
+ 1

2R

(
∂w

∂ρ

)2)2

+ 2νu

ρ

(∂u

∂ρ
+ 1

2R

(
∂w

∂ρ

)2))
ρdρ,

where D = Eh3

12(1−ν2)
is the bending stiffness of the flexible plate.

Since the deflection of the plate due to mechanical and electrostatic loads is very
small compared to its lateral dimensions, the loads on the plate are assumed to be
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always perpendicular to its un-deformed surface [31]. This is, in fact, consistent with
the moderate rotation assumption. Therefore, the parallel-plate capacitor theory can
be employed and the electrostatic potential can be formulated as [6]:

Ue =−πεV 2R2
∫ 1

0

ρdρ

d +w
, (4.8)

where ε is the electric permittivity of the dielectric between the electrodes. Notice
that in formulating the electrostatic potential (Ue ), the local distance between the
electrodes (d + w) is employed to calculate the electrostatic potential. Finally, the
potential associated with the pressure can be calculated as follows:

W = 2πPR2
∫ 1

0
wρdρ. (4.9)

Recall that the in-plane displacement and its time derivative are much smaller
than the transverse displacement and velocity. Hence, in calculating the kinetic en-
ergy, the contribution of the in-plane velocity is in orders of magnitude lower than
the transverse velocity (ξ̇i (t )2 ¿ q̇(t )2) and thus, it can be neglected. Consequently,
the kinetic energy of the system can be expressed as:

T =πµR2h
∫ 1

0
ẇ2ρdρ. (4.10)

By substituting Equations (4.1) and (4.2) into (4.8)–(4.10), the Lagrangian of the sys-
tem can be obtained analytically and expressed in terms of the generalized coordi-
nates L(q,ξi , q̇, t ).

L = T − (Ue +Ub +Us −W ) (4.11)

Next, Lagrange equations can be employed:

d

d t
(
∂L

∂q̇
)− ∂L

∂q
= 0, (4.12)

∂L

∂ξi
= 0 i = 1, ..., N . (4.13)

Equation (4.13) yields a set of N nonlinear algebraic equations in terms of ξi (i =
1, ..., N ) and q . By solving this set of equations for ξi , one can find all ξi analytically
as:

ξi (t ) = ξi (q(t )) i = 1, ..., N . (4.14)

In fact, Equation (4.14) would describe the relation between the plate stretching and
its transverse deflection, independent of the applied loads. Hence, the degrees of
freedom can be reduced to q(t ) only, while incorporating the in-plane displacement
and its associated stiffness which is a major contributor to nonlinearity. This simple
form appears as a result of neglecting the contribution of ξ̇i (t ) in the inertia. Next, the
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equation governing the transverse motion of the micro-plate can be obtained from
Equation (4.12):

q̈(t )+2ζω0q̇(t )+ω2
0q(t ) =

−α1Dq(t )3

+α2V (t )2
(

1

2q(t )(1+q(t ))
− z(q(t ))

2q(t )

)
−α3P,

(4.15)

It should be reminded here that in practice, the system will have energy dissipation,
and ζ is the modal damping that has been added to the equation of motion to ac-
count for this dissipation. Furthermore,

z(q(t )) = atanh
√−q(t )√−q(t )

if q(t ) < 0,

z(q(t )) = 1 if q(t ) = 0,

z(q(t )) = atan
√

q(t )√
q(t )

if q(t ) > 0.

(4.16)

Note that at q(t ) = 0, the function z(q(t )) is described as unity to maintain the conti-
nuity and smoothness of this function at zero. The parameter α1 is the coefficient of
geometric nonlinearity, and its convergence and accuracy is determined by in-plane
degrees of freedom N in Equation (4.2). The parameter α2 is the coefficient of the
nonlinear electrostatic force, and parameter α3 is the projection of the pressure to
the assumed mode shape in transverse direction:

α2 = 2.50
ε

µhd 3 ,

α3 = 1.67
1

µhd
.

(4.17)

The parameter ω0 is the natural frequency of the circular clamped plate and is equal

to 10.32
R2

√
D
µh . It is worth noting that this amount is less than 1% different from the

natural frequency of the plate calculated with classical plate theory.

The electric potential V (t ) in Equation (4.15) consists of a DC bias voltage VDC ,
and an alternating AC voltage VAC with the excitation frequencyΩ:

V =VDC +VAC sin(Ωt ). (4.18)

Thus, equation (4.15) describes the nonlinear axi-symmetric motion of a circular
clamped plate, loaded with a uniform differential pressure and electrically actuated
by its fundamental mode.
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Figure 4.3: Approximation of the nonlinear electrostatic load (G(q)). A polynomial of order 12 has a good
match with the exact function.

4.3. SOLUTION METHODOLOGY

In order to solve Equation (4.15), first, the nonlinear term associated with the elec-
trostatic field is approximated by a polynomial function:

G(q) =1− (q +1)z(q)

2q(1+q)

'
n∑

i=0
Ai q i +O (qn+1), if q 6= 0,

G(q) =− 1

3
if q = 0,

(4.19)

where coefficients Ai are obtained by using the least squares technique (polynomial
regression) for −1 < q < 1. Similar to z(q), G(q) is described at q = 0 in a manner to
maintain its continuity. Figure 4.3 shows the comparison between the exact function
and approximate ones (for n = 4 and n = 12). It can be seen that with a polynomial of
order 12 the exact function could be very well approximated.

Next, in order to investigate the periodic solutions and perform bifurcation anal-
ysis, a pseudo arc-length continuation and collocation scheme have been used [32,
33]. In this analysis in particular, a bifurcation analysis is carried out in two essential
steps: (i) The continuation starts at a trivial steady state solution, zero AC and DC
voltages, and zero pressure. In turn, three out of the four parameters (VAC , VDC , Ω
and P ) are taken as the continuation parameters. The unstable solution branches are
avoided in this step. (ii) Bifurcation analysis is performed by using the remaining pa-
rameter, whereas the other three parameters are fixed. In this step, the continuation
is performed over the entire physical range. The stability of the solution branches is
determined using Floquet theory. The obtained solution is stable only if all Floquet
multipliers are inside the unit circle [27].
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4.4. RESULTS AND DISCUSSION

The procedure outlined in previous the sections has been applied to a Silicon micro-
plate with the following properties: E = 169GPa, ν= 0.17,µ= 2328kgm−3, h = 0.6µm,
R = 100µm and d = 2µm. The electric permittivity of ε= 8.854×10−12 F/m has been
considered for the gap between the electrodes. Hence, the coefficients in Equa-
tion (4.15) are obtained as: α1 = 4.139 × 1021, α2 = 1.981 × 109, α3 = 5.978 × 108,
ω0 = 1.545×106 rad/sec, D = 3.132×10−9 Nm. Moreover, a damping ratio of ζ= 0.004
is used in the simulations. In the graphs provided in this section, the amplitudes of
vibrations and the deflections are normalized with the initial gap between the elec-
trodes (d).

A convergence analysis has been performed to find the minimum number of in-
plane degrees of freedom able to capture the nonlinear motion of the plate accu-
rately. Figure 4.4 shows the frequency response curves of the micro-plate while sub-
jected to a relatively large load equivalent to VAC = 8V, while VDC = 0 and P = 0,
and by using different numbers of degrees of freedom for the in-plane displacement.
It should be noticed that in Equation (4.15), if VDC = 0, the actuation load is pro-
portional to (VAC sin(ωt ))2, which means the actual excitation frequency is equal to
(2Ω). Therefore, resonance is observed at Ω/ω0 = 0.5. Figure 4.4 shows that conver-
gence of the solution can be obtained by only three degrees of freedom (one trans-
verse and two in-plane), and therefore, considering two in-plane degrees of freedom
is sufficiently accurate to be used in the reduced-order model. Moreover, the pa-
rameter α1 (the coefficient of geometric nonlinearity in Equation (4.15)) converges

to α1 = 52.04 d 2

µh3R4 for two in-plane degrees of freedom.

It is worth to note that a convergence study is only reliable if the shape of the
displacement field is representative of the motion. Therefore, in order to verify the
accuracy of the proposed 4th order mode shape, we compare the hardening effects
—as a result of the differential pressure and the high AC voltage— to two other meth-
ods. First, the frequency associated with the maximum amplitude in the nonlinear
resonance peak is calculated using the proposed model and compared to those ob-

Figure 4.4: Normalized amplitude of vibrations of the system (
wmax−wmi n

2d ) with an electrostatic load
equivalent to VAC = 8V, as a function of excitation frequency, while VDC = 0 and P = 0. The graphs are
obtained with one transverse degree of freedom and different numbers of in-plane degrees of freedom.
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Figure 4.5: Normalized nonlinear resonance frequency as a function of the AC voltage using the propose
mode shape and the first linear mode shape of a clamped circular plate calculated with classical plate

theory (J0(κρ)− ( J0(κ)
I0(κ) )I0(κρ),κ= 3.19625).

Figure 4.6: Normalized resonance frequency as a function of the differential pressure, while VDC = 0V.

tained using the exact linear mode shape of a circular plate (both previously shown
in Figure 4.2) as Φ0. Figure 4.5 shows the obtained frequency of the peak amplitude
normalized with respect to the natural frequency (ω0), as a function of the applied
AC voltage. The graphs in this figure are both derived using two in-plane degrees of
freedom (N = 2). The proposed 4th order mode shape is capable of predicting the
change in resonance frequency with less than 1.5% difference from the model with
the exact linear mode shape of a circular plate.

Then, to verify the efficiency of the proposed model for capturing the geometri-
cal stiffness, an eigen-frequency analysis has been performed in a 3D finite element
model built in COMSOL Multiphysics and discretized with fine tetrahedral solid ele-
ments. To perform this analysis, the plate is subjected to a differential pressure, and
the eigen-frequency of the deflected system is obtained while incorporating the geo-
metrical stiffness in the stiffness matrix.

Figure 4.6 shows the linear resonance frequency (normalized with the natural fre-
quency ω0), as a function of the applied differential pressure, obtained by the pro-
posed 4th order mode shape, and the finite element model. As shown in Figure 4.6,
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the proposed model is capable of predicting the change in resonance frequency and
is in good agreement with the finite element solution (with less than 3.6% difference).
This verifies the suitability of the global modes, for expressing the displacements of
the plate, and for capturing the eigenfrequency of the deflected system linearized
around its static equilibrium point.

Next, in order to perform a thorough bifurcation analysis, four different sequences
of loading have been applied. In each case, three out of four load parameters (VDC ,
VAC ,ω and P ) are preserved and one is varied. The associated dynamic pull-in mech-
anisms of different sequences of loading are investigated.

4.4.1. SWEEP OVER DC VOLTAGE

In this section, the solution branches over the full possible range of DC voltage are
investigated while the differential pressure, AC voltage, and its frequency are kept
constant. In order to investigate the nonlinear dynamic behavior of the micro-plate
in the bi-stable regime discussed in Chapter 2, we set the differential pressure to P =
3300Pa. Moreover, the excitation frequency is set at the natural frequency of the non-
pressurized plate (Ω/ω0 = 1).

Figure 4.7 shows the variation of the average deflection of the center of the plate
(i.e. static deflection) as a function of the applied DC voltage. The graphs are ob-
tained for different AC voltages. When no AC voltage is applied (see VAC = 0V in
Figure 4.7), three saddle-node bifurcations (P1, P2, and P3) appear which we refer to
as the primary, secondary and ultimate limit points. These limit points are equiva-
lent to static instabilities discussed in Chapter 2. Sweeping the DC voltage over these
limit points leads to a snap-through behavior or failure of the system.

The primary and secondary limit points only appear if the differential pressure is
in opposite direction of the electrostatic pressure. The snap-through which occurs
while loading the plate over Point P1 (or the snap-back which will be observed while
unloading the system over Point P2) is only observed in a limited pressure range. This
pressure range is a function of the thickness, radius, and material properties of the
plate.

When the plate is dynamically actuated, it goes through a nonlinear resonance
for a certain combinations of load parameters (see VAC = 0.1V in Figure 4.7). There-
fore, unstable branches emerge in the solution and at the points where the stable
and unstable solution branches coincide, a saddle node bifurcation is noticed (see
points P4 and P5). Increasing the DC voltage around P4 (or similarly decreasing the
DC voltage around P5) would result in jump from a stable solution to a second stable
branch.
When a relatively large AC voltage is applied (see VAC = 0.3V in Figure 4.7), the res-

onance occurs with a highly nonlinear behavior. In that case, in addition to critical
saddle-node bifurcations, a period-doubling (PD) bifurcation appears in the solu-
tion. This type of bifurcation is a consequence of one of the Floquet multipliers leav-
ing the unit circle through -1. As a result, a new limit cycle with a period twice the
period of the excitation frequency will be generated. This phenomenon usually leads
to a transition to chaos and at ultimately, failure of the system [33, 34].

It is worth to note that although the period doubling bifurcation is in the solution
of the system, the prominent form of instability is still the saddle node (i.e. the static
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Figure 4.7: The normalized average (static) deflection of the micro-plate as a function of applied DC volt-
age, while P = 3300Pa, Ω/ω0 = 1. ——stable solution, - - - - unstable solution. P1,P2 and P3 indicate
primary, secondary and ultimate limit points, while PD demonstrates period-doubling bifurcation.

Figure 4.8: The normalized amplitude of vibrations of the micro-plate (
wmax−wmi n

2d ) as a function of ap-
plied DC voltage, while P = 3300Pa, Ω/ω0 = 1. ——stable solution, - - - - unstable solution. P1,P2 and P3
indicate primary, secondary and ultimate limit points, while PD demonstrates period-doubling bifurca-
tion.

pull-in). In fact, the period doubling bifurcation can be only reached through several
loadings and unloadings.

Figure 4.8 shows the amplitude of vibration (i.e. around the static deflection) as
a function of the applied DC voltage. The critical points marked in Figure 4.7 are
illustrated in this figure, as well. As it can be observed, the vibration has the highest
amplitude just before the period doubling bifurcation.

4.4.2. SWEEP OVER EXCITATION FREQUENCY
Next, we study the frequency response curves of the micro-plate, while maintaining
other parameters. In this way, we can detect the nonlinear resonance frequencies,
and hardening/softening responses for different cases.
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Figure 4.9 shows the frequency response curves of the micro-plate subjected to a
small AC voltage of 0.01 V and a differential pressure P = 3300Pa. The graphs in this
figure are determined for different values of DC voltage. The excitation frequency in
this graph is normalized with respect to the natural frequency (undeformed configu-
ration). The applied differential pressure (when VDC is small) leads to a static deflec-
tion and therefore, a stretch in the micro-plate. This induces a geometrical stiffness
and as a result, a shift (static hardening) in resonance frequency of the system to
1.97ω0 (see VDC = 2V in Figure 4.9-A) .

As Figure 4.9 shows, when a DC voltage below the static pull-in is applied to the
system (e.g. 50 V), the vibration of the system is approximately linear. Therefore, no
nonlinear hardening or softening is observed in the resonance and the frequency re-
sponse of the system. However, the applied DC voltage relaxes the static deflection
and as a result, a shift (static softening) is observed. In higher DC voltages though,
both global and nonlinear softening appear in the frequency response of the system
(see VDC = 54V and 54.6 V in Figure 4.9-A). As a result, an unstable solution branch
emerges in the frequency response curve. At points where the stable and unstable
solution branches coincide, a saddle point bifurcation is noticed. If the frequency
is swept over the saddle points, the system will jump from one stable branch to the
other one. However, it might also become unstable, leading to pull-in. Indeed in such
cases, the transient dynamics of the system would determine whether the system set-
tles at a stable orbit, or fails [8]. Finally, when the voltage gets close to primary limit
point (i.e. P1 in Figure 4.7), the system loses stability and therefore, the resonance

Figure 4.9: The frequency response function of the micro-plate; the normalized amplitude of vibrations
(

wmax−wmi n
2d ) as a function of excitation frequency, while P = 3300Pa, and VAC = 0.01V. ——stable solu-

tion, - - - - unstable solution. PD indicates period doubling bifurcation.
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frequency of the system tends to zero (see VDC = 54.7V in Figure 4.9-A), passing a
period doubling bifurcation.

Figure 4.9-B shows the frequency response curves of the system for higher DC
voltages. These frequency response curves are equivalent to the lower stable branch
(i.e. from P2 to P3) of Figure 4.7. As it can be observed, increasing the DC voltage in-
creases the resonance frequency (see VDC = 55.5V and 56.5 V in Figure 4.9-B). When
the DC voltage approaches the ultimate limit point (i.e. P3 in Figure 4.7), the fre-
quency response function exhibits a nonlinear softening and finally, loses stability
through period doubling (see VDC = 57V in Figure 4.9-B).

Figure 4.10 illustrates the feasible path taken by the system when sweeping up
and down the frequency, when VDC = 54.7V. As it can be observed when the fre-
quency is increased, the system either jumps between the stable solution branches
(Figure 4.10-A), or the transient behavior ends up in pull-in. In either case, the pe-
riod doubling instability would not be noticed. On the other hand, by decreasing
the frequency, the system exhibits a first period doubling bifurcation and as a re-
sult, the plate oscillates with a period twice the period of the excitation frequency
(Figure 4.10-B). By slightly decreasing the frequency, a second period doubling bifur-
cation is detected (Figure 4.10-C). In fact, this shows that the system could be sus-
ceptible to losing stability upon continuous period doubling bifurcations. For the
present load combination, sweeping down the frequency is a sufficient condition for
observation of the dynamic pull-in.

The phase portrait, Poincaré section, and the time response of the system just
before and after the period doubling (for VDC = 54.7V) are illustrated in Figure 4.11.
Before the bifurcation (see Figure 4.11-A), a stable periodic solution with frequency
Ω, and a closed loop in the phase plane can be observed. After the bifurcation (see
Figure 4.11-B), the only stable solution is a bifurcated branch with frequency Ω/2,
and a single close curved with two loops in the phase plane.

In Figure 4.9 it was clearly observed that the frequency of the nonlinear resonance
peak has a strong dependence on the applied DC voltage. This dependence is ex-
plicitly shown in Figure 4.12, when the micro-plate is under the action of combined

Figure 4.10: The normalized amplitude (
wmax−wmi n

2d ) as a function of excitation frequency observed in
A) sweeping up, B) sweeping down the frequency, and C) after the period doubling (zoom-in), while P =
3300Pa, VDC = 54.7V, and VAC = 0.01V. ——stable solution, - - - - unstable solution. PD indicates period
doubling bifurcation.
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Figure 4.11: The phase portrait, the Poincaré section (the blue dot) and time response of the plate in A)
just before period doubling Ω/ω0 = 0.1765 and B) after period doubling with the new limit cycle Ω/ω0 =
0.17585, while P = 3300Pa, VDC = 54.7V, and VAC = 0.01V.

Figure 4.12: The frequency at which the maximum amplitude in the nonlinear resonance peak is obtained
as a function of the applied DC voltage. ——stable solution, - - - - unstable solution

pressure and DC voltage. For comparison, the resonance frequency of a similar sys-
tem without differential pressure is also shown in this figure. For P = 3300Pa, the
results indicate initially a global hardening (due to presence of differential pressure),
which changes to softening when increasing the DC voltage, down to zero resonance
frequency at the primary critical DC voltage. Increasing the DC voltage above 54.7V
stabilizes the system, and finally at the ultimate limit point the system becomes un-
stable and fails.
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Figure 4.13: The frequency response function of the micro-plate; the normalized amplitude of vibrations
(

wmax−wmi n
2d ) as a function of excitation frequency, while P = 3300Pa, and VDC = 30V. ——stable solu-

tion, - - - - unstable solution

Figure 4.13 shows the dynamic response of the micro-plate subjected to differ-
ent AC voltages and relatively small DC voltage (i.e VDC = 30V). Exciting the system
with a small AC voltage leads to an approximately linear periodic motion around the
static configuration (VAC = 0.01V in Figure 4.13-A). When the AC voltage is increased,
the vibration of the electrode allows for lower geometrical stiffness and therefore, a
dynamic nonlinear softening is observed (VAC = 0.20V). If the voltage is further in-
creased, the softening behavior turns into hardening at VAC = 0.60V, and turns back
to softening at VAC = 0.65V (in Figure 4.13-B) which would lead to dynamic pull-in
through period doubling bifurcation. A similar behavior was also reported in Ref. [8]
for micro-beam resonators. However, this bifurcation will be observed only through
several steps of sweeping up or down the frequency. In fact, when a relatively small
DC is applied, the system is very robust to frequency sweep and therefore, not prone
to dynamic pull-in.

4.4.3. SWEEP OVER AC VOLTAGE

In this section, we study the stability of the micro-plate by varying VAC , and other
parameters are preserved. Figure 4.14 shows the variation of amplitude of vibrations
as a function of the applied AC voltage. The graphs in this figure are calculated for
P = 3300Pa, VDC = 30V, and different driving frequencies. Due to the presence of the
differential pressure and DC voltage, the plate has an initial upward static deflection
of ∼ 0.37d . This static deflection induces a geometrical stiffness and therefore, the
resonance frequency of the system (when the AC voltage is relatively small) has a
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Figure 4.14: A) The normalized amplitude of vibrations (
wmax−wmi n

2d ) as a function of the AC voltage,
while P = 3300Pa, and VDC = 30V. ——stable solution, - - - - unstable solution

Figure 4.15: The static normalized deflection of the micro-plate ( w
d ) as a function of pressure. ——stable

equilibrium, - - - - unstable equilibrium

shift with respect to its fundamental frequency (Ω/ω0 = 1.75).
When the driving frequency is much lower than the resonance frequency of the

pressurized system (Ω/ω0 = 1 in Figure 4.14), the AC voltage can be increased even
to 24.7V and the system would be stable. Finally, in a critical AC voltage the system
loses stability upon a period doubling bifurcation and fails. At this critical point, the
maximum voltage V = VDC +VAC is very close to the primary limit point for static
loading (Figure 4.7).

4.4.4. SWEEP OVER PRESSURE
At a higher driving frequency Ω/ω0 = 1.4, three saddle node bifurcations appear in
the graph. When increasing (or decreasing) the AC voltage over Point P6 (or P7), the
system will snap from one stable solution branch to another. However, increasing
the voltage over the other critical point (i.e. P8) will always lead to failure of the sys-
tem. When the driving frequency is close to the resonance of the pressurized system
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Ω/ω0 = 1.75, a small AC voltage can cause a relatively high amplitude of vibrations.
In this case, also, the pull-in occurs via a saddle-node bifurcation (i.e. Point P9).

Finally, we study the vibration of the micro-plate by varying the differential pres-
sure as the bifurcation parameter, while keeping all other parameters constant. Fig-
ure 4.15 shows the static deflection of the micro-plate while loaded by pressure and
DC voltage (i.e. VAC = 0). As it can be observed, for voltages larger than zero, at least
one limit point exists in the equilibrium path of the flexible electrode (e.g. Point P11
in VDC = 30V). At this point, if the amplitude of the pressure increases in the nega-
tive direction (similar to electrostatic load), or any other perturbation is introduced
to the system, pull-in occurs. For larger voltages, two other limit points appear in the
equilibrium path. For example, in the curve corresponding to VDC = 58V, if we sweep
down the pressure around Point P11, the system snaps from a positive to a negative
deflection.

Next, we preserve the DC voltage at 30V and introduce a small AC voltage to the
system. The driving frequency is fixed atΩ/ω0 = 1. In Figure 4.16-A, a comparison is
made between the maximum deflection in case of static (i.e. VAC = 0V) and dynamic
loading (i.e. VAC = 0.05V). As it can be noticed, when a small AC voltage is applied
to the system, the overall shape of the equilibrium path does not change. However,
in certain combination of load parameters, the system goes through nonlinear reso-
nance. In this case, the resonance occurs in two configurations, at which the system
has very similar deformations though in opposite directions.

Figure 4.16-B shows the maximum deflection of the micro-plate while actuated
with different AC voltages, in the pressure range which leads to the nonlinear reso-
nance of the system. As it can be observed, by increasing the AC voltage, unstable
solution branches might emerge in the response of the system (see VAC = 0.10V).
Therefore, sweeping the pressure over these points would result in resonance and fi-
nally, a jump to another stable solution branch. Increasing the AC voltage further
leads to combination of nonlinear resonances into one stable region (e.g. VAC =
0.30V). As a matter of fact, when sweeping over pressure, the stability of the micro-
plate is increased when a higher AC voltage is applied to the system. Overall, when
sweeping the pressure, the main mechanism of pull in remains similar to the static
pull-in. However, due to the dynamic motion of the micro-plate, the pull-in occurs
at a different voltage and deflection.

4.5. CONCLUSIONS

The nonlinear dynamics and stability of an electrically actuated micro-plate sub-
jected to a differential pressure has been addressed. Using an energy approach a
reduced-order model was obtained, and then solved numerically. As a consequence
of employing proper polynomials as the basis functions, we have been able to cal-
culate the electrostatic load analytically and to obtain a reduced-order model for in-
vestigating the nonlinear dynamic behavior of circular micro-plates. The obtained
equation incorporates dominant sources of complexities such as geometric and elec-
trostatic nonlinearities and the non-uniform distribution of the electrostatic pres-
sure and is versatile for performing bifurcation analysis. The bifurcation analysis was
particularly performed considering pressure, DC and AC voltages and the excitation
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Figure 4.16: The normalized deflection of the micro-plate (its minimum over time
wmi n

d ) as a function of
pressure, while VDC = 30V, for A) whole pressure range and, B) the pressure range with nonlinear reso-
nance ——stable solution, - - - - unstable solution

frequency.
The results of this study reveal the different possible failure mechanisms depend-

ing on the order of the loading applied to the micro-plate. Saddle-node and period
doubling bifurcations were repeatedly observed in the analysis and therefore, are rec-
ognized as the dominant mechanisms of failure. Moreover, this study shows that in
the presence of pressure, increasing the DC or AC voltages could surprisingly help
to stabilize the motion of the micro-plate. This is while, in the absence of pressure,
increasing the voltage always deteriorated the stability. In addition, in the presence
of pressure, the motion of the micro-plate can be bi-stable or multi-stable.

The proposed description is potentially useful for designing sensing mechanisms
relying on nonlinear dynamics (e.g. micro-mechanical mass sensors), as well as elec-
trical actuators (such a inkjet printer head, RF switches, and vacuum resonators).
The presented method in this chapter is simple and fast, and it provides a great in-
sight into the nonlinear dynamics of clamped circular micro-plates. Such an insight
is necessary for improving the performance of existing MEMS devices, as well as de-
velopment of new applications.
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5
NONLINEAR VIBRATIONS OF

ELECTRICALLY ACTUATED

2D NANO-MEMBRANES

In this chapter, the frequency response curves of graphene resonators is introduced as
tools for extracting graphene’s equivalent Young’s modulus. For this purpose, vibra-
tions of an electrically actuated circular graphene membrane are studied both exper-
imentally and numerically. The experiments reveal the dependency of the linear and
nonlinear resonance frequency of an electrically actuated graphene nano-resonator
on the driving DC and AC voltages. A numerical model, similar to Chapters 4 and
3, is proposed based on nonlinear membrane theory, and by fitting the numerically
calculated change in resonance frequency due to DC voltage to those of experimental
observations, the Young’s modulus of the membrane is determined. It is shown that by
using the obtained equivalent Young’s modulus, the numerical model can accurately
describe the nonlinear dynamics of the graphene membrane in other sets of measure-
ments.

Parts of this chapter have been accepted for publication in the Journal of Applied Physics [1].
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5.1. INTRODUCTION

The exceptional mechanical properties of graphene have made it a promising candi-
date for the next generation of two dimensional (2D) nano-resonators. Potential ap-
plications of these resonators are, among others, pressure, gas and mass sensors [2–
6]. In this class, electrostatically actuated 2D nano-resonators have a superior ad-
vantage for the potential integration and packaging in commercial Nano-Electro-
Mechanical Systems (NEMS) [7–11]. In these devices, typically, a parallel-plate ca-
pacitor is formed between a fixed bottom electrode and a suspended flexible single or
multi-layer graphene membrane. When an alternating (AC) electric potential is ap-
plied, a dynamic attractive electrostatic load is induced between the electrodes, lead-
ing to deformation and and high-frequency excitation of the membrane. In this work
a methodology is outlined by which the dependency of the resonance frequency on
the DC voltage is used to determine the mechanical properties of graphene mem-
brane.

The conventional method for determining mechanical properties of suspended
2D materials is Atomic Force Microscopy (AFM) [12]. Based on AFM measurements, a
large range of elastic moduli (0.1–1.1 TPa) has been reported for suspended graphene
ribbons and drums [13–15]. AFM requires mechanical contact between a sharp tip
and the membrane, which might potentially lead to large stresses and adhesion ef-
fects near the tip causing possible membrane fracture [16]. However, a non-contact
tool for estimation of the elastic properties of 2D materials, such as presented in this
work, can avoid these problems.

In principle, the contact between the sharp tip of AFM cantilever with the mem-
brane could be avoided if a non-contact load (e.g. electrostatic load) is employed
to induce the deflection in the suspended graphene membrane. In this regard, the
static load-deflection curves of an electrostatically loaded graphene membrane have
been utilized to extract its Young’s modulus [13, 17]. In this method, the pressure is
distributed over the surface, and hence, the membrane is not in contact with a sharp
tip applying non-uniform stress.

Another non-contact method for extracting the material properties of graphene
membranes is an identification based on nonlinear resonances of the system [18].
Generally, nano-scaled resonators easily reach the nonlinear vibration regime [19–
21]. In particular, for graphene, Duffing-type nonlinear responses have been reg-
ularly observed [7, 9, 22]. Moreover, in electrostatically actuated nano-resonators,
the electrostatic load is also nonlinearly dependent on the deflection [23]. These
sources of nonlinearities, which in practice emerge as hardening or softening effects
in the frequency response of the system, are potentially beneficial for identification
of the stiffness. In this regard, in a recent study, Davidovikj et al. [18] have introduced
a method for determining the effective Young’s modulus of 2D-materials by fitting
the forced nonlinear Duffing response of large amplitude vibrations to experimental
data.

In the present study, an alternative approach for characterization of suspended
graphene membranes is proposed which is based on their voltage dependent reso-
nance frequencies. In this approach, low amplitude vibrations are employed for ma-
terial characterization. The natural frequency of an unloaded graphene membrane
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is a function of its pretension only [24]. However, when the membrane is subjected to
a DC electrostatic load, it will deform, and this deformation, being a function of the
Young’s modulus, induces geometrical stiffness in the membrane that consequently,
leads to a shift in the resonance frequency. Hence, the resonance frequency of the
membrane around its deformed configuration will be a function of both Young’s
modulus and DC voltage. By tracking the change in the resonance frequency as a
function of DC voltage one can obtain the Young’s modulus.

For this purpose, the vibrations of a circular graphene resonator, electrostatically
actuated around its first resonance, are studied both experimentally and theoreti-
cally. First, in order to unveil the dynamic characteristics of a graphene resonator, we
perform a series of measurements on a graphene membrane subjected to simultane-
ous DC and AC electrostatic loads. Based on these experiments, the stretching of the
graphene resonator due to high DC voltage and the shift in the resonance frequency
are investigated.

Next, the vibration of graphene is modeled using an equivalent continuous mem-
brane. The numerical model is based on a Lagrangian approach and total poten-
tial energy. In the model, both the nonlinear stretching of the membrane and the
non-uniformity of electrostatic load due to deflection of the membrane are incorpo-
rated. To the best of the authors’ knowledge, despite earlier experimental and the-
oretical studies on the dynamics of electrostatically actuated graphene resonators
[3, 18, 25, 26], there is no model which accounts for in-plane degrees of freedom,
geometric and electrostatic nonlinearity in a nano-drum, and yet verified with ex-
periments..

Finally, the equivalent elastic modulus is determined by fitting the theoretically
calculated shift in the resonance frequency due to DC voltage, to the experimental re-
sults. It should be mentioned that, unlike the method proposed in [18], we utilize the
tuning of the linear resonance frequency due to high DC voltages rather than Duffing
nonlinearity which appears due to high AC voltages. In this way, (i) the Young mod-
ulus is obtained in a non-contact manner, (ii) only the resonance frequency of the
system is traced, and (iii) the inaccuracy in the calibration of the amplitude around a
deformed configuration will be non-influential. The validity of the proposed method
is evaluated by comparing the numerical results to the experiments with high ampli-
tude vibrations as suggested by [18].

5.2. EXPERIMENTS AND DEVICE FABRICATION

To create a platform for the electrostatic 2D nano-resonator, we start with a silicon
wafer with a d = 285nm thick layer of thermal silicon dioxide (SiO2). The schematic
of the fabrication process is shown in Figure 5.1. Electrical contacts, circular cav-
ities and bonding pads are patterned on the wafer using e-beam lithography. The
electrical contacts consist of a layer of Ti/AuPd, which is physically deposited (via
evaporation) providing contact to the graphene membrane, together with a Cr layer
which is used as a hard mask for the subsequent etching step (RIE). After etching,
the Cr layer is removed using a wet etchant, resulting in cavities with a final depth of
d = 385nm and a radius of R = 2.5µm.
Next, flakes of graphene are exfoliated from natural crystals and transferred on top
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Figure 5.1: The schematic of the fabrication process of the electrical contacts, circular cavities and bonding
pads.

of the cavities using a dry transfer method [27]. The thickness of the graphene flakes
are determined by AFM measurement and are equal to h = 5nm, which is approxi-
mately equivalent to 15 layers of graphene. The sample is then mounted in a vacuum
chamber. The schematics of the sample and the measurement setup are illustrated
in Figure 5.2-A.

In order to actuate the membrane, a combination of AC and DC voltage is applied
to the bonding pads using a bias-tee (BT), and the silicon substrate is grounded. The
drum’s motion is probed by a Helium-Neon laser. The intensity variations caused
by the interfering reflections from the moving membrane and the fixed silicon sub-
strate underneath are detected by a photodiode [9]. The detection is done in a homo-
dyne scheme, using a Vector Network Analyser (VNA), that outputs the AC voltage in
a combination with a DC voltage source. All measurements were performed using a
low laser power (< 1mW) to reduce heating effects that would influence the mechan-
ical properties of the drum. To relate the measured amplitude to the actual motion
of the membrane, a calibration measurement of the drum’s Brownian motion is per-
formed [7]. Therefore, the calibration is the most accurate around a non-deformed
configuration (i.e. for small DC voltages).

Figure 5.2: Schematics of A) device description and measurement setup with an interferometric laser
setup to read out the motion of the membrane, and B) the circular multilayer graphene membrane sus-
pended above a grounded silicon substrate.
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5.3. THEORETICAL FORMULATION

In this section, we propose a model for the harmonic response of the electrostatically
actuated membrane, around its first resonance frequency. Since the scaling effect
on the dynamics of graphene membranes appear at much smaller membrane radii,
we use classical continuum to obtain our model [28]. Moreover, the bending en-
ergy of the graphene membrane is orders of magnitude smaller than the energy from
in-plane strain [12]. Hence, the graphene can be modeled as a membrane, without
bending stiffness. This membrane is assumed to be isotropic and homogeneous [22].

The radius of the membrane is R and its thickness is h. The Young’s modulus,
Poisson ratio and the mass density of the membrane are E , ν and µ, respectively. The
membrane is suspended over a grounded electrode, and the initial gap between the
two electrodes is d . The schematic model of this system is shown in Figure 5.2-B.
An electric potential V consisting of a DC bias voltage (VDC ) and an alternating AC
voltage (VAC ) is applied to the membrane.

The alternating electrostatic field induces an alternating electrostatic load, which
causes a dynamic motion in the membrane. Considering that the electrostatic load is
symmetric, and the membrane is excited around its fundamental frequency, the non-
axisymmetric modes will not be excited. In fact, even if the non-axisymmetric modes
are accidentally excited they will decay with time due to the presence of damping
[29]. For the axisymmetric modes, the only relevant displacement components are
the radial (u) and transverse (w) components. We use a reduced-order model and
a Lagrangian approach to obtain the equations of motion for such a system. In this
approach, the displacement components are approximated by a superposition of a
finite number of suitably chosen basis functions:

w(ρ, t ) =
N∑

i=1
qi (t )dΦi (ρ), (5.1a)

u(ρ, t ) = ξ0Rρ+
n∑

i=1
qi+N (t )RΨi (ρ), (5.1b)

where ρ = r /R is the normalized radial coordinate, and, qi (t ) are dimensionless gen-
eralized coordinates. The parameter ξ0 models the initial strain due to the pretension
N0 in the membrane:

ξ0 = N0(1−ν)

Eh
. (5.2)

The functions Φi (ρ), and Ψi (ρ) are basis-functions satisfying the boundary condi-
tions. Here, axisymmetric linear mode shapes of a clamped membrane are utilized
as the transverse basis-functions:

Φi (ρ) = Jm(λmiρ), i = 1...N , (5.3)

where, Jm is the mth order Bessel function of the first kind. In fact, m is the number of
nodal circles, and λmi is the i th positive root of Jm . Figure 5.3 shows the first three as-
sociated mode-shapes. The in-plane basis-functions (Ψi ), satisfying continuity and
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Figure 5.3: The first three axi-symmetric mode-shapes of a membrane with clamped contour, indexed by
i and m.

symmetry at ρ = 0, are:

Ψi (ρ) = ρi (1−ρ), i = 1...n. (5.4)

Next, the strain components of the membrane are calculated as

εr = 1

R

∂u

∂ρ
+ 1

2R2 (
∂w

∂ρ
)2, (5.5a)

εθ =
1

R

u

ρ
, (5.5b)

εrθ = 0. (5.5c)

The total potential energy of the system consists of two terms: the electrostatic po-
tential (Ue ), and the potential associated with elastic deformation due to the stretch-
ing (Us ) of the membrane;

U =Us +Ue . (5.6)

The elastic potential (Us ) can be approximated by [30]:

Us = EhR2

2(1−ν2)

∫ 2π

0

∫ 1

0

(
ε2

r +ε2
θ+2νεr εθ+

1−ν
2

ε2
rθ

)
ρdρdθ, (5.7)

and the electrostatic potential, assuming parallel-plate capacitor theory, can be eval-
uated as [31]:

Ue =−(1−α)
1

2
εV 2R2

∫ 2π

0

∫ 1

0

ρ

d +w
dρdθ. (5.8)

The constant ε is the electric permittivity of the dielectric between the electrodes and
V is the applied voltage. Moreover,α provides a global correction for the electrostatic
load, and is the ratio between the actual load applied to the membrane and that of
the ideal parallel plate capacitor. This factor is dominated by the fringing field effects
which in our setup are mainly due to the electrostatic field between the silicon sub-
strate and the side edge of Ti/AuPd layer in the cavity. However, it can also account
for the nano-scale effects that can change the capacitance of the system [32, 33]. This
factor can vary for different setups between 0 to 1, depending on the configuration
of the capacitor and hence, it should be calibrated for each experimental setup, sep-
arately. In this study, we have obtained this parameter using the experimental results
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in the low amplitude vibrations. For simplicity, we assume that α does not depend
on the deflection of the membrane.

Notice that in formulating the electrostatic potential (Ue ), the local distance be-
tween the electrodes (d +w) is used, where w can be expressed as in (5.1a). When
the membrane is excited around the first resonance, the dominant shape of the mo-
tion can be mimicked with the first mode shape, and therefore, the effect of higher
modes in the electrostatic load can be neglected. Hence, the electrostatic potential is
simplified to:

Ue =−(1−α)πεV 2R2
∫ 1

0

ρdρ

d +d q1(t )Φ1(ρ)
. (5.9)

To calculate the energy associated with the electrostatic potential, the function in-
side the integral in Equation (5.9) is written as a Taylor series expansion in terms of
q1(t ) around the undeformed configuration (q1(t ) = 0). The electric potential V (t )
in Equations (5.8) and (5.9) consists of a DC bias voltage VDC , and an alternating AC
voltage with a root-mean-square (RMS) of VAC and excitation frequencyΩ, thus:

V =VDC +p
2VAC sin(Ωt ). (5.10)

Next, the kinetic energy of the system can be expressed as:

T =πµR2h
∫ 1

0
(ẇ2 + u̇2)ρdρ, (5.11)

where overdot indicates differentiation with respect to time. Employing the relations
given in Equations (5.1a)–(5.11), the Lagrangian of the system L = T −U can be ex-
pressed in terms of generalized coordinates L(qi , q̇i , t ). Then, the Lagrange equations
can be employed to obtain the equations of motion:

∂L

∂qi
= d

dt
(
∂L

∂q̇i
). (5.12)

As a result, N +n equations governing the motion of the nano-membrane can be
obtained. It should be noted here that in practice, the system will possesses some
kind of energy dissipation or damping. Assuming modal damping, Equation (5.12)
gives a system of nonlinear ordinary differential equations:

¯̄Mq̈+ ¯̄Cq̇+ [ ¯̄K(N0)+ ¯̄N2(q)+ ¯̄N3(q,q)]q = F̄(q), (5.13)

where ¯̄M is the mass matrix, and ¯̄C is the damping matrix which is added to the equa-
tions of motion to describe dissipation. ¯̄K is the stiffness matrix and is a function
of the pretension [24], and it determines, together with the mass of the membrane,
the natural frequency of the un-loaded configuration. ¯̄N2 and ¯̄N3 are matrices which
are linear and quadratic functions of the generalized coordinates, respectively, and
when multiplied by q, they cause quadratic and cubic (Duffing) nonlinearities in the
equations. These matrices are functions of the Young’s modulus of the membrane, as
well, and are a consequence of adopting nonlinear (von Kármán) membrane theory.
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Figure 5.4: The nonlinear electrostatic potential is approximated by a polynomial function with different
orders. The resulted approximated electrostatic load converges when a 5th order polynomial is employed.

¯̄N2 and ¯̄N3 Moreover, F̄ is the nonlinear generalized electrostatic force vector whose
components are expressed as:

Fi (t ) =−1

2
εV 2(1−α)

πR2

d 2 z(q1) i = 1,

Fi (t ) = 0 i > 1.
(5.14)

The function z(q1) is a polynomial which captures the nonlinearity of the electro-
static load and its nonuniform distribution on the deflected membrane. The accu-
racy of the function z(q1) depends on the truncation of the Taylor series employed
for approximating the integral in Equation (5.9). Figure 5.4 shows different approxi-
mations of functionz and it indicates that by using a Taylor series of fifth order, good
convergence will be achieved.

In order to perform numerical integration, Equation (5.13) is multiplied by the in-
verse of the mass matrix and then, recast into first-order ordinary differential equa-
tions by introducing the dummy vector y, as follows

q̇ = y,

ẏ =− ¯̄M
−1 ¯̄Cy− ¯̄M

−1
[ ¯̄K(N0)+ ¯̄N2(q)+ ¯̄N3(q,q)]q+ ¯̄M−1F̄(t),

(5.15)

where ¯̄M
−1 ¯̄C is the dissipation term, which is assumed to be diagonal based on the

assumption of modal damping, and is expressed as:

[ ¯̄M−1 ¯̄C]ij = 2ωiξi i = j

[ ¯̄M−1 ¯̄C]ij = 0 i 6= j
(5.16)

In Equation (5.16), ωi are the natural frequencies obtained from the characteristic
equation of the system (i.e. det[ω2

i
¯̄M− ¯̄K] = 0), and ξi are the corresponding modal

damping ratios of each generalized coordinate.
To study the periodic solutions and the frequency response of the system, a pseudo

arc-length continuation and collocation scheme have been used [34]. In particular, a
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continuation is carried out in three steps: (i) The continuation starts at a trivial steady
state solution, zero AC and DC voltages, with a small excitation frequency much be-
low the resonance. (ii) In the second step, the load parameter VDC is chosen as the
continuation parameter. Once the desired parameter value is reached, VAC is intro-
duced as the continuation parameter, until the desired value is reached. Unstable
solution branches are avoided in this step. (iii) The rest of the analysis is performed
by considering the excitation frequency Ω as the continuation parameter. In this
step, the continuation is performed around the first resonance of the system and the
stability of the solution branches is determined using the Floquet theory [35].

5.4. EXTRACTING THE EQUIVALENT YOUNG’S MODULUS

In this section, we demonstrate the concept of extracting Young’s modulus from the
fundamental frequency of a pre-tensioned membrane subjected to a high DC voltage
and low AC. For this reason, we obtain the static deflection of the membrane due to
the applied DC voltage and linearize the equation of motion (i.e. Eq. 5.13) around
this configuration. While solving Equation (5.13), the force vector can be split into a
static and dynamic components:

F̄ = F̄s + F̄d, (5.17)

where, if VAC <<VDC , the dynamic force is much smaller than the static force. Simi-
larly, the solution can be split into two parts:

q = qs +qd, (5.18)

where qs and qd are the static and dynamic solutions, respectively. The static deflec-
tion, qs, can be estimated by letting F̄d = 0 and q̈ = q̇ = 0, leading to:

[ ¯̄K(N0)+ ¯̄N2(qs)+ ¯̄N3(qs,qs)]qs = F̄s. (5.19)

The solution of this algebraic set of equations provides qs as a function of DC volt-
age and elastic modulus. A relatively small AC voltage will lead to a linear vibration
around this static configuration. The dynamic analysis in such a configuration shall
be performed for determining the final state of vibration by adding an incremental
dynamic solution qd to the static solution qs. By subtracting Equation (5.19) from
(5.13), and neglecting the higher order terms in qd, the following system of linear
ordinary differential equations is obtained:

¯̄Mq̈d + ¯̄Cq̇d + [ ¯̄K(N0)+ ¯̄N′
2(qs)+ ¯̄N′

3(qs,qs)]︸ ︷︷ ︸
¯̄K′(qs,E , N0)

qd = F̄d. (5.20)

In this equation, ¯̄N′
2 and ¯̄N′

3 are associated with nonlinearities in qs. Equation (5.20)
describes the linear vibrations of the membrane subjected to a relatively small AC
voltage around a static configuration (qs). The resonance frequencies (ω′) can be
obtained from the characteristic equation of this new dynamic system, as a function
of the static deflection qs , pretension N0 and the Young’s modulus:

|ω′2 ¯̄M− ¯̄
K′(qs,E , N0)| = 0. (5.21)
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Recall that the static deflection qs has been obtained as a function of DC voltage from
(5.19). With Equation (5.21), the experimental value of ω′ can be used to determine
the equivalent Young’s modulus E , if N0 and qs are known.

In order to extract the equivalent Young’s modulus from the experimental data,
four fundamental steps are taken:
(I) The pretension (N0) is determined by matching the fundamental frequency of the
system in the unloaded configuration (VDC = 0) to that of experimental results (ω0):

|ω2
0

¯̄M− ¯̄K(N0)| = 0. (5.22)

(II) The damping ratio of the first resonance frequency (ξ1) is obtained by fitting the
low amplitude response curves (down point method) [36].
(III) The force correction factor (α) is determined by matching the numerical ampli-
tude of the system (A0) in low-amplitude vibrations, to the calibrated experimental
data [7]. For small DC and AC voltages, one can simply ignore the geometric and
electrostatic nonlinearity, and assume harmonic oscillations. Therefore [37],

A0 = (1−α)z(0)
επR2

d 2

VAC VDC

2ξ1
¯̄K11

. (5.23)

(IV) Using the obtained quality factor, pretension and force correction factor, the fun-
damental frequency (ω′) of the system is obtained numerically for a range of nonzero
DC voltages (Equation (5.21)). The equivalent Young’s modulus of the membrane is
then achieved by fitting the voltage dependent shift in resonance frequency (ω′) to the
experimental results.

5.5. RESULTS AND DISCUSSION

In this section, the results of the experiments and theoretical studies are reported,
and the suitability of the proposed numerical model as a tool for characterization of
the graphene membrane and analyzing its nonlinear vibrations is investigated.

5.5.1. EXPERIMENTS

Figure 5.5 shows a set of experimental forced vibration responses around the fun-
damental frequency while varying the driving DC and AC voltage. The deflection
was measured at the center of the membrane, where the fundamental mode shape
presents the largest amplitude. In the first set, the AC voltage is kept fixed (with low
RMS value of 4.5mV) and the change in the linear resonance of the system is traced
by varying the DC voltage. The natural frequency (i.e. when VDC = 0V) was obtained
to be 13.4MHz. This frequency has been used to obtain the pretension in the mem-
brane. The resonance frequency slightly decreases when a small DC voltage is ap-
plied to the system, e.g. at VDC = 0.5V, the resonance occurs at 13.36MHz. The fre-
quency response of the system at this configuration is used to obtain the force correc-
tion factor. When a higher DC voltage is applied, the resonance frequency increases
(see Figure 5.5-A). This change in resonance frequency is due to electrostatic (soft-
ening) and then the geometrical (hardening) nonlinearity. However, the frequency
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Figure 5.5: The measured amplitude of the motion as a function of excitation frequency, A) with a small
AC voltage of VAC = 4.5mV, and different DC voltages, and B) with different AC voltages and a DC voltage
of VAC = 3V. The measurements are taken at the center of the drum.

response function of the membrane remains linear.
It should be noticed that the maximum amplitude of the vibrations at the reso-

nance varies with the applied DC voltage, as well. As a matter of fact, the maximum
amplitude is defined by the stiffness of the system and the dynamic load, both of
which depend on the DC voltage. This dependence causes the maximum amplitude
to increase with the DC voltage due a larger dynamic load, and later decrease due to
higher geometrical stiffness induced in the membrane and higher damping.

Figure 5.5-B shows the experimentally obtained frequency response curves ob-
tained by keeping the DC voltage constant at 3V and varying the AC voltage from
0.001V to 0.013V. As can be observed, at AC voltages above 0.004V, the system ex-
hibits nonlinear hardening behavior. At VAC = 0.013V, the system shows a clear in-
stability and therefore a jump right after the resonance.

5.5.2. VALIDATION OF THE NUMERICAL MODEL

To validate the model (Equation (5.13)) numerically, its convergence is tested and it
is compared to finite element methods in this section. The procedure outlined in
Section 5.3 has been applied to a membrane with the following properties: ν= 0.165,
µ = 2.2388g/cm3, h = 5nm, R = 2.5µm and d = 385nm. Moreover, a relatively low
damping ratio (ξi = 0.002) is considered in the following numerical results. In the
validation of the numerical model, the effects of force correction factor are ignored
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Figure 5.6: Deflection of the membrane when E = 1150GPa, N0 = 0.085N/m, VAC (RMS) = 0V, calculated
with different numbers of degrees of freedom. The solution converges at 5 degrees of freedom (N=2 and
n=3).

Figure 5.7: Root-mean-square amplitude of the membrane when E = 1150GPa, N0 = 0.085N/m, ξ= 0.002,
VAC (RMS) = 0.02V and VDC = 1V, numerically calculated with A) different numbers of in-plane degrees
of freedom and B) transverse degrees of freedom. The solution around the first resonance converges at 5
degrees of freedom (N=2 and n=3).

(α = 0). In the Lagrangian approach, basis functions are employed to approximate
the exact solution of the problem, and therefore, a convergence analysis is required
to confirm the accuracy of the described deflection. In order to find the minimum
number of degrees of freedoms required to accurately model the motion of the mem-
brane (N and n), two convergence analyses (static and dynamic) have been per-
formed. In both analyses the Young’s modulus of pristine graphene (i.e. E = 1150GPa
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Figure 5.8: Time response of A) the deflection at the center of the membrane and B) the first two mode
shapes, and two-dimensional projection of the phase portrait of C) first, and D) second modes, slightly
before the resonance (Ω = 16.5GHz), using E = 1150GPa, N0 = 0.085N/m, ξ = 0.002, VAC (RMS) = 0.02V
and VDC = 1V.

[38]) is considered, to impose the highest possible geometrical nonlinearity in Equa-
tion (5.13). The static deflection of the membrane as a function of the applied DC
voltage, when considering different numbers of degrees of freedom, is shown in Fig-
ure 5.6. The DC voltage is varied from 0–10V in the absence of VAC . As can be ob-
served, the static solution converges when 5 degrees of freedom are used in the nu-
merical model (with two transverse and three in-plane basis functions).

In the dynamic convergence analysis, the membrane is assumed to be subjected
to a DC voltage of VDC = 1V and a high AC voltage with the root-mean-square (RMS)
of 0.025V. The steady state solution of the membrane is calculated in a frequency
range around the first resonance. Figure 5.7 shows the nonlinear frequency responses
of the membrane when considering different numbers of degrees of freedom. In par-
ticular, Figure 5.7-A shows the effect of additional in-plane basis functions on the
nonlinear dynamic response and Figure 5.7-B shows the effect of additional trans-
verse basis functions. It can be observed that the dynamic solution also converges
with five degrees of freedom (with two transverse and three in-plane mode-shapes).
Therefore, all the following numerical results are obtained by using a model includ-
ing these five degrees of freedom.

Recall that in calculating the electrostatic potential in Equation 5.9, the contribu-
tion of higher modes was neglected assuming q1 >> qi for i > 1. In order to check
the validity of this assumption, the time response and phase portrait of the first two
transverse modes of the system, right before the nonlinear resonance (15.6MHz) are
shown in Figure 5.8. The graphs in this figure are obtained using the same parameter
values as in Figures 5.6 and 5.7. As can be noticed, the maximum amplitude and time
derivative of the second mode are an order of magnitude smaller than the amplitude
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Figure 5.9: The numerical resonance frequency of the excited membrane as a function of the applied DC
voltage obtained by different models, using E = 1150GPa, N0 = 0.085N/m, ξ= 0.002, VAC (RMS) = 4.5mV.

and time derivative of the first mode.
Finally, to verify the efficiency of the proposed model, an eigen-frequency analy-

sis has been performed for a 3D finite element model built in COMSOL Multiphysics
and compared to the present model. In the COMSOL model, the membrane is mod-
eled with the same characteristics as in the convergence analysis and is discretized
with fine mesh consisting of shell elements. The surface of the membrane is loaded

with a nonlinear electrostatic load ε
−V 2

dc
2(d+w)2 , where w is the transverse displacement

field of the outer surface of the membrane, and Vdc is a parameter representing the
DC voltage. The eigen-frequency of the deflected system for a range of Vdc is ob-
tained while incorporating the geometrical stiffness.

Figure 5.9 shows the obtained linear resonance frequency, as a function of the
applied voltage. For comparison the graphs obtained by the proposed model, finite
element model, and also the approximate model proposed by Ref. [26] are shown.
As can be observed, the proposed model is perfectly matching the results of the FEM
solution, while the single degree of freedom model of Ref. [26] diverges from these
two solutions. This figure demonstrates the accuracy of the proposed method in cap-
turing the effect of DC voltage on the resonance frequency of the membrane.

5.5.3. EXTRACTING THE EQUIVALENT YOUNG’S MODULUS

As mentioned in Section 5.4, the change in resonance frequency of the deflected
membrane due to the applied DC voltage is an indication of the Young’s modulus. In
order to find the accurate equivalent Young’s modulus, we compare the experimen-
tally observed change in the resonance frequency to the numerical results. Based
on the experimental results, a range of damping ratios (0.0038−0.0040) and a force
correction factor ofα= 0.25 are obtained and employed for extracting the equivalent
Young’s modulus.

Figure 5.10 shows the obtained resonance frequency as a function of the applied
DC voltage. A pretension of N0 = 0.0857N/m matches the natural frequency at zero
DC voltage to the experiments. For illustrating the effect of employing different elas-



5.5. RESULTS AND DISCUSSION

5

81

tic moduli, the numerical results for E = 210GPa, E = 560GPa, and that of pristine
graphene (E = 1150GPa [38]) are shown. It can be observed that the numerical re-
sults for E = 560GPa are in good agreement with the experimental observations. In
other words, the proposed model with this Young’s modulus is able to capture the
nonlinear hardening of the electrostatically actuated graphene membrane.

In order to verify the accuracy of the obtained Young’s modulus, the trend of non-
linearity by varying the AC voltage is compared with the associated experimental data
[18]. Figure 5.11 presents the amplitude of vibration at the center of the graphene
membrane for a constant DC voltage (3V) and different AC voltages, as expressed in
Equation (5.13). As can be observed, a very good agreement is found between the
experimental and numerical results for different applied dynamic loads. The numer-
ical results in Figure 5.11 show that there are two bifurcation points associated with
jump up and down in the vibration amplitude. However, such hysteresis cycle is not
evident from the experimental data, because the experiments were performed by for-
ward frequency sweeps only.

It is worth to mention that the nonlinear hardening observed in the frequency
response of the excited membrane, is induced by the quadratic and cubic terms in
Equation (5.13) which appear in N2, N3 and F(q). Therefore, not only the Young’s
modulus, but also the applied DC voltage have an influence on the nonlinearity,
which if neglected, might be mistaken with Duffing type nonlinearity.

The nonlinear resonance frequency of the system (the peaks in Figure 5.11) varies
with the applied AC voltage. This change is illustrated more specifically in Figure 5.12.
Due to presence of the static DC voltage, the resonance frequency of the system has
a shift with respect to the free-vibration fundamental frequency (13.6MHz), and by
increasing the dynamic load (AC voltage) the system exhibits a nonlinear hardening
and the resonance frequency increases further. The overall trend of the hardening
of the system obtained numerically with E = 560GPa is in good agreement with the
experiments, which confirms the accuracy of the obtained Young’s modulus.

Finally, we shall stress that the correct evaluation of the force correction factor
employed in Equation (5.8) is a crucial aspect in characterization of the Young’s mod-

Figure 5.10: The measured resonance frequency of the excited membrane as a function of the applied DC
voltage, while VAC (RMS) = 4.5mV, and the corresponding curve obtained numerically using E = 210GPa,
E = 560GPa, and E = 1150GPa when N0 = 0.0857N/m and α= 0.25.
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Figure 5.11: Measured traces (black scatter plot) and the corresponding curves obtained numerically (solid
curves) using E = 560GPa, and a modal damping ratio of ξ= 0.004 while VDC = 3V.

Figure 5.12: The measured resonance frequency of the excited membrane as a function of the applied AC
voltage, while VDC = 3V, and the corresponding curve obtained analytically using E = 560GPa.

ulus. Figure 5.13-A shows the obtained Young’s modulus which matches the voltage
dependent frequency shift as a function of this factor. As can be observed an inac-
curate estimation of this factor can result in incorrect characterization of the Young’s
modulus. If this correction factor is neglected, the corresponding elastic modulus
will be obtained as 310GPa. As shown in Figure 5.13-B, if an inaccurate correction
factor is employed to obtain the Young’s modulus, the numeric results will not match
the high amplitude vibrations.

5.6. CONCLUSIONS

Resonance frequency tuning of an electrostatically actuated multi-layer graphene
membrane with a DC voltage has been introduced as a tool for evaluation of its equiv-
alent Young’s modulus. For this purpose, using an energy approach based on a La-
grange formulation, the equations of motion were derived, and solved numerically.
The proposed model extends the earlier work on electrostatically actuated graphene
membranes [26], by including not only transverse, but also radial displacements of
the graphene. Moreover, based on a comparison to a detailed finite elements solu-
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Figure 5.13: A) The matching Young’s modulus as a function of the force correction factor (1−α), and B)
measured traces (black scatter plot) and the corresponding curves obtained numerically with different
force correction factors, while VDC = 3V and VAC = 17.8mV.

tion, it has been shown that the proposed model can capture the effect of DC voltage
on the frequency response, accurately.

In this study, experiments were performed to explore the linear and nonlinear vi-
brations of an electrostatically actuated graphene membrane. As a result, the shift in
resonance frequency and nonlinear hardening and softening behavior, due to geo-
metrical and electrostatic nonlinearities, have been investigated. It was shown that
by comparing the model to experimental data, the pretension, the force correction
factor, and the Young’s modulus of the graphene can be determined. The obtained
Young’s modulus also closely matched the non-linear dynamics of the membrane,
providing evidence for suitability of this method for extracting the Young’s modulus
of the 2D-nano resonators.

Moreover, it was found that the accurate estimation of the electrostatic load is one
of the most crucial factors in this method of characterization of the Young’s modulus.
For a parallel plate capacitor, the fringing fields effects can be calculated theoretically.
However, the fringing field, although probably the most dominant, is one out of many
other factors influencing the electrostatic load [32, 33]. Therefore, it is most efficient
to extract this factor directly from the experimental results.

It should be mentioned that the obtained value of the Young’s modulus (E =
560GPa) is lower than the reported value in literature for pristine graphene. This
difference which has been repeatedly reported in other experimental studies [39], is
hypothesized to be the result of wrinkles, ripples or defects in the graphene. Defects
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such as wrinkles and ripples [13, 15], or grained size of the polycrystalline [39, 40],
may affect the elasticity of the graphene to a large extent.

The proposed method for extracting the Young’s modulus is non-contact and
non-destructive, and it does not require calibration of the amplitude of vibrations
in high DC voltages. In addition, this method is simple to implement and is compu-
tationally efficient.
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6
CAPTURING SIZE-DEPENDENT

BEHAVIOR OF PLATES WITH

NONLOCAL THEORY

In spite of the advances in scaling the MEMS down to nano-scales, many of the funda-
mental issues related to the mechanics at such a scale remain unresolved. The effective
elastic properties of nano-structures are shown to be strongly size- dependent. Thus,
classical continuum theory fails to give a good prediction of the mechanical behav-
ior for such length scales. In this chapter, using nonlocal elasticity theory, we aim to
capture the size-dependent effects of plate structures as a function of their thickness.
This, however, is hindered by a more fundamental problem, namely, the confining
of the nonlocal kernel in the near-boundary regions of a finite domain. Therefore,
we study two different types of nonlocal kernels, one bounded in the finite domain
of the structure and the other, non-bounded. The results show that by using a three-
dimensional nonlocal formulation, we can capture the non-classical influence of the
structure’s thickness on its bending stiffness. and this influence, highly depends on the
bounding of the nonlocal kernel in the finite domain.

Parts of this chapter have been published in International Journal of Solids and Structures [1].
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6.1. INTRODUCTION

Micro and nano electro-mechanical-systems (MEMS and NEMS) play key roles in
a wide variety of modern applications, including nano-mechanical sensors, actua-
tors, and many electronic devices. The performance of these devices is based on
movements and deformations of their micro/nano mechanical components, such as
cantilevers, double clamped beams or plates. Obviously, the further development
of these devices requires a thorough understanding and modeling of their mechan-
ical behavior. However, devices at nano-meter scale may exhibit mechanical prop-
erties not noticed at the macro-scale. Many theoretical methods such as molecular
and atomistic simulations and size-dependent continuum theories are being devel-
oped to analyze this behavior. Molecular and atomistic simulations are generally
time consuming and computationally expensive. Alternatively, continuum models
offer superior computational efficiency.

Classical continuum mechanics is size independent and it cannot provide a good
prediction for small scales. Therefore, size-dependent continuum theories have been
introduced to account for these scaling effects [2, 3]. In an attempt to account for
atomistic effects, these theories embed an internal material length scale. This makes
it possible to qualify the size of a structure as “large” or “small” relative to its mate-
rial length scale [2, 4, 5]. If “large”, then these theories should converge to classical
continuum theory, and, otherwise, they should reflect the size-dependence.

One of the best-known size-dependent continuum theories is non-local contin-
uum theory, initiated in a general notation by Piola in 1846 [6, 7]. In nonlocal contin-
uum theory, a material point is influenced by the state of all points of the body. The
mathematical description of this theory relies on the introduction of additional con-
tributions in terms of “gradients” or “integrals” of the strain field in the constitutive
equations. This, respectively, leads to so-called “weak” or “strong” non-local models
[8–10]. Although both models have been found to be largely equivalent [11], the weak
(gradient) formulation requires stronger continuity on the displacements gradients.
In addition, in cases that a well-defined spatial interaction exists in the material, the
strong (integral) approach is preferred, because it models the nonlocality in a more
transparent way [11].

In strong nonlocal theories, particularly formulated by Kröner in 1967 [3], and
then by Eringen in 1977 [2, 5], the point-to-point relationship between stresses and
strains does not hold anymore. Instead, the stress in each point is influenced by the
strain of all points of the body. This influence is captured by a spacial integral over
the body. The integral is weighted with a decaying kernel, which is designed to incor-
porate the long-range interaction between atoms in the continuum model. With the
spacial integral, the dimensions of the body are brought into the constitutive equa-
tions, and thus, the constitutive equations will be size-dependent.

It is worth to mention here that closely related to strong nonlocal theory, the peri-
dynamics theory has been developed by Silling [10]. In fact, in peridynamics, instead
of spatial differential operators, integration over differences of the displacement field
is used to describe the existing, possibly nonlinear, forces between particles of the
solid body [10, 12]. However, in contrast to the peridynamic theory, the strong non-
local theories rely on spatial integrations. The present study mainly focuses on the
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commonly used strong formulation given by Eringen.

The strong nonlocal theory has been used in many studies for modeling micro-
or nano-mechanical devices. In these studies, mechanical components such as thin-
film elements and plate-like structures have been modeled with so-called two- di-
mensional non-local formulations, also known as “nonlocal plate theories” [13–15].
In these theories, the plate-like structures are generally modeled as a two-dimensional
domain. In this way, the nonlocal contribution of the strain field in the transverse
direction is ignored. Therefore, the size of a plate is only defined by its lateral dimen-
sions, and thus, its thickness is not incorporated in its size-dependent behavior.

In plane stress problems, which are inherently two dimensional —such as the
stress analysis near the crack tip in a thin plate [5]— ignoring the nonlocal effects in
transverse direction is within reason. Also, for structures whose thickness is much
smaller than the material length-scale, such as a monolayer graphene, the non-local
effect in transverse direction is in fact meaningless [16]. However, modeling a plate as
a two- dimensional domain and ignoring the nonlocal contribution in the transverse
direction is not always valid. First of all, from a physical point of view, a nonlocal
theory is supposed to incorporate the interaction between atoms in a continuum
model and so its effect should exist in all directions [17]. Second, since the thickness
of a plate is significantly smaller than its lateral dimensions, the length scale at which
classical elasticity breaks down appears in the transverse direction first. Moreover,
in problems in which there is a uniform strain field in the tangential directions, the
nonlocal stress as a function of weighted average of strain in tangential directions
is simply equal to the classical stress. This means the two-dimensional formulation
fails to reflect any size-dependency. In such a case, it is likely that transverse non-
locality would have a more pronounced size-dependence contribution.

In this chapter, we particularly investigate how the strong three dimensional non-
local formulation can incorporate the plate thickness. Moreover, we study the effect
of thickness in the predicted size dependence of the overall flexural rigidity and elas-
tic modulus of the plate.

It is worth to note that in nonlocal elasticity, as a consequence of including con-
tributions of integrals of the strain field in the constitutive equations, the differential
order of the governing equations changes. This results in additional boundary condi-
tions which should physically reflect the surface properties of the material/structure.
The latter, however, has not been discussed rigorously in literature so far and in-
stead, the boundaries are often avoided in the respective analyses. When a three
dimensional nonlocal formulation is employed in the analysis of plates, these extra
boundary conditions should be defined on the upper and lower surface of the plate.
In order to investigate the significance of these boundary conditions, two different
treatments of the boundaries will be addressed.

This chapter is structured as follows. In Section 6.2, the fundamentals of Eringen’s
nonlocal elasticity theory, some important considerations and the basis of conven-
tional nonlocal plate theory are reviewed. In Section 6.3, we will use a three dimen-
sional nonlocal formulation to solve an example of uniformly deformed plate. For
this purpose two types of boundary conditions will be applied for the nonlocal for-
mulation. The results of this analysis will be discussed and compared to classical
plate theory in Section 6.4. In the last section, the conclusions of this study will be
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presented.

6.2. NONLOCAL ELASTICITY THEORY

In linear nonlocal elasticity, the stress tensor (t) for a homogenous and continuous
domain is determined as [2, 18]:

ti j (x) =
∫

Vb

α
(|x−x′|,e0a

)
Ci j klεkl (x′)dV (x′)

=
∫

Vb

α
(|x−x′|)σi j (x′)dV (x′)

(6.1)

where εkl (x′) are the classical Cauchy’s strain components at the point x′ and Ci j kl

are the components of the elasticity tensor. Index k and l are the dummy index in
Einstein’s summation convention, and Cartesian coordinates have been assumed.
The product of these two terms can be simply substituted with classical stress com-
ponentσi j (x′), as in the second line. Then, Vb is the volume of the body at hand. The
function α(|x−x′|,e0a) is the non-local kernel representing the effect of long-range
interactions [10] . This radial kernel reflects the nonlocal contribution of strain in all
points x′ of the body. The nonlocal kernelα is also a function of parameters a and e0.
The parameter a is the material characteristic length scale (e.g. atomic distance, lat-
tice parameter, granular distance) [13], and e0 is a constant for adjusting the model
to match experiments or other models [5, 14, 17]. Other properties of the nonlocal
kernel α will be discussed later in this section.

It should be stressed that the proof of existence of Cauchy’s stress tensor is based
on the equilibrium of contact forces with a force which is assumed to be continuous
in space. We may use a similar assumption as well (as proposed in [6, 7]). Moreover,
in strain gradient nonlocal theories, the constitutive equations are much more than
one stress-strain relationship. Instead, so-called double or hyper stress components
are defined associated to higher order strain gradients [19]. In the strong nonlocal
theory, however, the basic equations for an isotropic solid can be expressed in its
simplest form as in Equation 6.1 [2, 3, 8–11].

Accordingly, the nonlocal strain energy is expressible as [5]:

Unonlocal =
1

2

∫
Vb

ti jεi j dV . (6.2)

Please note that this formulation of internal energy is a particular case of the formu-
lation given by Kröner [3], provided that the kernel α reflects the local (short-range)
as well the nonlocal (long-range) effects. The equilibrium equations in the nonlocal
continuum theory are the same as for classical continuum theory, but represented in
terms of the nonlocal stresses (ti j ) rather than the local stresses (σi j ).
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6.2.1. NONLOCAL KERNEL
The function used as the nonlocal kernel (α(|x−x′|,e0a)) needs to have the following
characteristic properties;

1- To reflect the properties of atomistic long term interactions correctly, it acquires
its maximum at x = x′ and monotonically decreases with |x−x′|.

2- To ensure that classical elasticity is included in the limit of a vanishing internal
characteristic length, it must tend to Dirac’s delta function when e0a → 0. [18], i.e.

lim
e0a→0

α
(|x−x′|,e0a

)= δ(|x−x′|) . (6.3)

3- The stress at x should have the same contribution to the stress at x′ as vice versa,
thus, the nonlocal kernel is symmetric in its arguments x′ and x, i.e. α(x,x′) =α(x′,x).

4- According to Eringen’s nonlocal continuum theory [2], the function α is normal-
ized in the volume of the body (Vb):

∫
Vb

α(|x−x′|)dV (x′) = 1. (6.4)

This property assures that a uniform local strain field should also result in a uniform
nonlocal stress field (See Equation 6.1), provided that the material is isotropic and
homogeneous [20]. If the domain of the body at hand is large enough to be consid-
ered as an infinite domain, then this feature implies that α is always normalized on
such an infinite domain. It should be noted that nonlocal kernels have an effective
influence zone, Ve , centered around x and an effective cut-off length, Le [17, 18]. Out-
side this influence zone, the function α(x − x ′) practically vanishes and, thus, it can
be assumed that

∫
Ve

α(|x−x′|)dV (x′) '
∫

V∞

α(|x−x′|)dV (x′) = 1. (6.5)

Many kernels have been suggested in literature with the above mentioned prop-
erties, and in general, all these kernels qualitatively lead to similar results [18, 21].
However, for a kernel with these properties, in points closer than its cut-off length
(Le ) to the boundary, the influence zone of the kernel exceeds the boundary. Conse-
quently, it only collects the nonlocal influence of the points x′ inside the body (see
Figure 6.1-a). Thus, the normalization condition would not be satisfied anymore.

To satisfy the normalization condition, either the analysis domain should be far
from boundaries [2], and then we can use the common kernels; or, a modified bounded
nonlocal kernel should be used. The shape of such a kernel is modified near bound-
aries such that it satisfies the normalization condition based on all material points
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Figure 6.1: A schematic representation of one-dimensional kernels at two points within the body (x1) and
near the boundary region (x2): (a) Gaussian density function, normalized on an infinite domain; (b) A
bounded kernel which adapts its shape when the effective influence zone includes a boundary.

available (Figure 6.1-b) [4, 11, 22, 23]. It is worth noting that the kernel function in
such an expression cannot not be a function of |x−x′| any more, but x and x′.

It should be noted that bounding the nonlocal kernel in the finite domain of the
body, results in bringing the dimensions and perhaps the shape of of the body into
the definition of the nonlocal kernel. In order to introduce this modification to the
nonlocal kernel mathematically, we first need to specify the final property of the ker-
nel α.

5- The final feature of the function α, is an assumption, and physically speaking it
is not really required [18]. It is assumed that the kernel α is the Green’s function of
an operator L. In other words, it is supposed that an operator L can be found for any
kernel α where:

Lα(|x,x′|) = δ(|x,x′|). (6.6)

The later, as a matter of fact, is an assumption to convert integral equations to differ-
ential equations. Such an operator L can be used to relate the non-local stress to the
local stress. Applying L to Equation 6.1 would yield:

Lti j =σi j . (6.7)

Therefore, a choice of kernel implicitly defines a differential operator which trans-
forms the non-local stress to the local one [20]. Equation 6.7 is commonly used in-
stead of the definition given in Equation 6.1.

As a matter of fact, for solving Equations 6.7, one has to impose boundary condi-
tions on ti j . It should be reminded that Green’s function of a boundary value prob-
lem should also satisfy the boundary conditions of the problem. Therefore, these
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boundary conditions are actually the tools to change the shape of the kernel in the
near-boundary regions, as schematically shown in Figure 6.1-b.

In literature, most of the suggested operators L are second-order operators [18].
For the resulted second-order differential equation, the required boundary condi-
tions involve either the zeroth- or first-order derivatives of the function. Thus, as an
appropriate boundary condition for Equation 6.7, either the value of nonlocal stress
components, their derivatives, or a linear combination of these two must be defined
on the boundary. Fixing the stress components (ti j ) on the boundaries does not have
any physical motivation. Hence, homogeneous or inhomogeneous boundary condi-
tions on the first derivative of the stress components (e.i. Neumann B.C.) shall be
employed.

Although the boundary conditions on the nonlocal kernel, which indicate the ex-
tra boundary conditions on the stress derivatives, are key elements in nonlocal elas-
ticity, they are discussed in very few studies. In most publications, non-bounded
kernels are used; and the boundary effects (like in Fig. 6.1-a,) are justified by the
surface effects [4]. In a few studies, a homogeneous Neumann boundary condition
is applied on the nonlocal kernel [4, 11, 23]. However, there is no discussion on the
connection between the suggested mathematical boundary conditions and the un-
derlying physics.
It should be mentioned that the added boundary conditions are a challenging prob-
lem in so-called weak nonlocal or higher order elasticity theories, as well. In strain
gradient elasticity, for example, these boundary conditions automatically appear ei-
ther for the second order gradient of the displacement components or associated
double stress (i.e. the partial derivative of energy density to strain gradients) [19]. Al-
though a clear interpretation of the mentioned boundary conditions is not provided
in this theory either, it has been shown that the strain gradient and nonlocal formu-
lation are largely equivalent if the appropriate boundary conditions are employed for
the nonlocal kernel [11].

It is the authors’ opinion that the boundary conditions on the nonlocal kernel
should reflect the surface properties of the material/structure. From a physics point
of view, the nonlocal kernel is supposed to incorporate the long range interactions of
atoms into continuum mechanics. Hence, if its shape is varying near boundaries, it
should result from the rearrangement of atoms near the surface of the pristine mate-
rial. In addition, there are fewer possibilities for interaction between atoms near the
surface, and this should also be reflected in the model.

We should keep in mind that the extra boundary conditions become very relevant
in applying nonlocal elasticity to a plate. In such a case, the relevant boundaries are
the lateral surfaces, for which the additional boundary conditions on the stress or the
kernel should be defined. In this chapter, we investigate the difference between the
predicted mechanical response of the plate, when applying a non-bounded kernel
(Fig. 6.1-a), or, a bounded one using a homogeneous Neumann boundary condition
(Fig. 6.1-b). This is done for an example of uniform deformation of a plate.

6.2.2. CONVENTIONAL NONLOCAL PLATE THEORIES

In nonlocal elasticity, as described above, all formulations are three-dimensional.
The points x and x′ are arbitrary points in space and the integrals in Equations 6.1–6.2
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involve the entire volume of the body. The kernel function α is a three-dimensional
kernel, i.e. it reflects the nonlocal contribution of the strain field in all directions and
its dimension is m−3.

For thin plates, however, many studies have modeled the plate as a two- dimen-
sional domain. In such models, the points x and x′ are arbitrary points of the mid-
plane of the plate and the integrals are taken over the surface area of the plate. The
nonlocal kernel in such a model is a two-dimensional function, ignoring the compo-
nents with respect to the transverse direction (z) [13–15, 24–26]. The dimension of a
two-dimensional kernel is m−2 and it is normalized over the the area of the plate.

With above mentioned assumptions in the nonlocal plate theory, the nonlocal
stress is defined as [15]:

t i j (x) =
∫
A

α
(|x−x′|)σi j (x′)d A(x′), (6.8)

where A is the surface area of the plate and i and j denote the in-plane coordinates.
The over-line is employed specifically for vector form indication of the nonzero com-
ponents of the second order tensors of stress and strain in the plate. The tangential
resultants of stress (Nnl) are then calculated by integrating the nonlocal stress com-
ponents along the transverse direction (z) in the limits of plate thickness (h). Consid-
ering that α

(|x′−x|) is not a function of z and, thus, it does not affect any integration
in transverse direction, the tangential stress resultants and tangential stress couples
can be written as:

Nnl =
∫
h

td z

=
∫
h

(
∫
A

α
(|x−x′|)σ(x′)d A(x′))d z

=
∫
A

(
∫
h

α
(|x−x′|)σ(x′)d z)d A(x′)

=
∫
A

α
(|x−x′|) (

∫
h

σ(x′)d z)d A(x′)

=
∫
A

α
(|x−x′|)Ncl(x′)d A(x′),

(6.9)

and similarly the tangential stress couples (Mnl) can be calculated as:

Mnl =
∫
h

tzd z

=
∫
A

α
(|x−x′|)∫

h

σ(x′)zd zd A(x′)

=
∫
A

α
(|x−x′|)Mcl(x′)d A(x′).

(6.10)
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Figure 6.2: deflection of the plate with thickness h and surface area A.

In these equations Ncl and Mcl are the tangential stress resultant and couples from
the classical plate theory. The equations of motion are then identical as for the classi-
cal Kirchhoff plate theory, but based on the nonlocal tangential stress resultants and
couples.

Notice that based on Equations 6.9 and 6.10, in nonlocal plate theories, the non-
local tangential stress resultants and couples do not have any nonlocal contributions
from the transverse direction. Therefore, the thickness of the plate does not have any
influence on the size-dependency of the result. Considering that the kernel function
is normalized over the area, if Ncl and Mcl are uniform in the plate, there would be no
difference between the nonlocal and classical tangential stress resultants and cou-
ples, and therefore, the two solutions (classical and nonlocal) would predict similar
mechanical responses.

This model is valid for inherently two dimensional plane-stress problems, where
there is no variation of the classical stress field through the thickness. Otherwise, it
cannot be motivated on the basis of the fundamentals of nonlocal theory or physics.
However, it has been the basis of nonlocal plate theory which is commonly used for
solving many other problems related to plates, where the stress varies through the
thickness, as well.

6.3. EFFECTS OF THICKNESS IN NONLOCAL PLATE THEORY

In this section, using an example of a plate with both a uniform stretch and a uni-
form curvature, the effect of thickness in nonlocal plate theory is studied. In fact,
we use a three-dimensional nonlocal formulation in order to calculate the tangential
resultant stresses and couples induced by such a deformation in the plate. With this
solution we shall study the effect of thickness of the plate on its mechanical response
as predicted by nonlocal elasticity theory. Moreover, we will compare the results with
the classical plate theory. The solution discussed here can be extended to a plate with
non-uniform deformation, as well.

Assume a plate with a uniform thickness h, and lateral area A (Figure 6.2). The
lateral dimensions of the plate are much larger than its thickness. The mid-plane of
the plate is subjected to both a uniform curvatureκ and stretch γ (Figure 6.2). Using
classical plate theories (based on plane-stress assumptions), the tangential strain ε
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at the interior of the plate, i.e. sufficiently far away from the edges, is described as

ε=
 εxx

εy y

2εx y

=
 γxx

γy y

2γx y

− z

 κxx

κy y

2κx y

 , (6.11)

where x and y denote the tangential coordinates. The transverse coordinate is z, and
the midplane coincides with z = 0. Using classical linear constitutive equations, the
classical tangential stresses follow as

σ=
σxx

σy y

σx y

= Qε, (6.12)

where Q represents the elasticity tensor for a homogeneous and isotropic material
and in a plane-stress problem:

Q = E

1−ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (6.13)

where E is the Young’s modulus and ν is the Poisson ratio of the material. As a result,
the nonlocal stress can be calculated:

t =
∫
V

α
(|x−x′|)Q(γ− z ′κ)d v(x′). (6.14)

It is worth noting that the classical plane-stress assumption (σzz = 0) as adopted in
classical plate theory, now has directly lead us to a plane-stress condition for the non-
local stresses as well (tzz = 0). In particular, we can employ Equation 6.1 to explicitly
prove this case:

t zz (x) =
∫

Vb

α
(|x−x′|)σzz (x′)dV (x′)

=
∫

Vb

α
(|x−x′|) (0)dV (x′) = 0.

(6.15)

In addition, we stress here that imposing the plane-stress assumption on the nonlo-
cal stresses (tzz = 0) will also result in plane-stress condition for the classical stress
components (σzz = 0), provided that the kernel α is a positive definite function.

For deriving t in Equation 6.14, the appropriate nonlocal kernel α(|x′−x|) should
be chosen. Here, a three-dimensional Gaussian function is chosen as the nonlocal
kernel α(|x′−x|):

α
(|x−x′|)= 1

(π(e0a)2)
3
2

exp

(
−|x−x′|2

(e0a)2

)
. (6.16)
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This function has been reported to show an excellent agreement with the atomic
dispersion curves of crystalline materials [2, 17]. The Gaussian density function is
Green’s function of the diffusion (or heat) equation in an infinite domain:

∇2t − ∂t

∂τ
= 0, (6.17)

where, τ= (e0a)2

4 . We can also derive Green’s function of the mentioned equation in a
bounded domain by applying appropriate boundary conditions as discussed in Sec-
tion 6.2.1. Here, both solutions with bounded and unbounded kernels are presented
for the example at hand.

6.3.1. GAUSSIAN KERNEL
To begin with, we neglect the nonlocal boundary effects in all boundaries of the plate
and consider the unbounded kernel as in Equation 6.16. Without the boundary ef-
fects, the shape of the nonlocal kernel would be similar in all material points in dif-
ferent positions. A one-dimensional schematic of this kernel is shown in Figure 6.1-a.
As this figure shows, the kernels are similar at the point x = x1 within the body, and at
x = x2 where the influence length of the kernel exceeds the boundary. By using Equa-
tions 6.14 and 6.16, and by decoupling between in-plane and transverse directions,
the nonlocal in-plane stress can be expressed as:

t =
∫
A

h/2∫
−h/2

α
(|x−x′|)Q(γ− z ′κ)d z ′d A′

=
∫
x

∫
y

exp
(
− (x−x′)2+(y−y ′)2

(e0a)2

)
(p
πe0a

)2 d x ′d y ′×

h/2∫
−h/2

Q(γ− z ′κ)
exp

(
− (z−z ′)2

(e0a)2

)
(
p
πe0a)

d z ′

(6.18)

Notice that the function inside the first integral is a two-dimensional Gaussian kernel
itself and is normalized on an infinite area. As mentioned before, the lateral geome-
tries of the plate are considered to be much larger than its thickness and the plate
dimensions can be assumed as infinite. In other words, near-boundary regions in
these two directions can be ignored relative to the their dimensions. Therefore, the
first integral equals to unity almost everywhere in the plate, and nonlocal stress can
be simplified to the second integral only:

t '
h/2∫

−h/2

Q(γ− z ′κ)
exp

(
− (z−z ′)2

(e0a)2

)
(
p
πe0a)

d z ′. (6.19)

In fact, this result is valid in the points sufficiently far away from the edges. Note
that due to the assumed uniformity of curvature and stretch, in-plane dimensions
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vanish from the equations and only the integration in transverse direction remains.
Of course, for non-uniform deformation (i.e. κ(x, y) and γ(x, y)), the in-plane non-
locality would also remain in the formulations. The nonlocal stress can be solved and
simplified to

t = Qγ
(

1

2

(
erf(

z +h/2

e0a
)−erf(

z −h/2

e0a
)

))
−Qκ

(
1

2
z

(
erf(

z +h/2

e0a
)−erf(

z −h/2

e0a
)

)
− 1

2

e0ap
π

(
exp

(
− (z −h/2)2

(e0a)2

)
−exp

(
− (z +h/2)2

(e0a)2

)))
,

(6.20)

where erf is the error function. Notice that the choice of not normalizing the kernel
function α results in a non uniform in-plane stress over the thickness even for the
case of a uniform stretch (i.e., κ = 0). Next, we can calculate the tangential stress
resultants and couples in the plate:

Nnl =
h/2∫

−h/2

td z

= hQγ
(
erf(η)+ 1

η
p
π

(
exp(−η2)−1

))
,

(6.21)

Mnl =
h/2∫

−h/2

tzd z =

h3

12
Qκ

(
erf

(
η
)− 1p

π

( 2

η
exp(−η2)

+ (3η−1 −2η−3)(1−exp(−η2))
))

.

(6.22)

The parameter η = h
e0a , which is the thickness normalized with the internal length

scale of the material is introduced to simplify the formulations. Equations 6.21 and
6.22 can also be written as:

Nnl =λAγ, (6.23)

Mnl =βDκ. (6.24)

Here, λ and β are introduced as the nonlocal modification factors on classical exten-

sional (or membrane) stiffness matrix (A = hQ) and bending stiffness matrix D = h3

12 Q,
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respectively. These factors can be explicitly defined using the following equations:

λ= 1

h

h/2∫
−h/2

h/2∫
−h/2

α(|z − z ′|)d z ′d z

= 1

η
p
π

(
exp(−η2)−1

)+erf(η),

(6.25)

and,

β=12

h3

h/2∫
−h/2

h/2∫
−h/2

−z ′zα(|z − z ′|)

=erf
(
η
)− 1p

π

( 2

η
exp(−η2)

+ (3η−1 −2η−3)(1−exp(−η2))
)
.

(6.26)

Note that a thickness of a plate that is large relative to the internal length scale (i.e.,
when η→∞,) results in nonlocal modification factors that converge to 1 and there-
fore, nonlocal theory converges to classical plate theory. This result will be discussed
in the Section 6.4 (Results and Discussion).

The nonlocal modification factors λ and β were calculated assuming a uniform
deformation of the plate. If a non-uniform stretch γ(x, y) and curvature κ(x, y) are
assumed in Equation 6.11, the in-plane strain terms can also be expressed by ε(x, y).
Using a similar formulation to Equations 6.12 to 6.22, to describe the nonlocal elas-
ticity, results in nonlocal stress resultants and stress couples like:

Nnl =
∫
A

Aγ(x, y)
exp

(
− (x−x′)2+(y−y ′)2

(e0a)2

)
(p
πe0a

)2 d x ′d y ′

× 1

h

∫
Z

∫
Z

exp
(
− (z−z ′)2

(e0a)2

)
(
p
πe0a)

d z ′d z,

(6.27)

Mnl =
∫
A

−Dκ(x, y)
exp

(
− (x−x′)2+(y−y ′)2

(e0a)2

)
(p
πe0a

)2 d x ′d y ′

× 12

h3

∫
Z

∫
Z

exp
(
− (z−z ′)2

(e0a)2

)
(
p
πe0a)

z ′zd z ′d z

(6.28)

The stress resultants, as well as stress couples, consist of two terms; the first term
is due to in-plane non-locality, which resembles Equations 6.9 and 6.10 and can be
treated using existing nonlocal plate theories. The second terms in both equations
are created by out of plane non-locality, and resemble the modification factor λ and
β from Equations 6.25 and 6.26. This suggests that the same modification factors
on the extensional and bending stiffness matrices can be introduced to conventional
nonlocal plate theories, to argument them by a dependency on the plate thickness.
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6.3.2. BOUNDED KERNEL
In Section 6.3.1, it was shown that only transverse non-locality has a dominant con-
tribution in the nonlocal stress state in a uniformly deformed plate. For simplicity
in this part, we use a one-dimensional nonlocal formulation in transverse direction
only.

As mentioned before, the nonlocal kernel should be normalized in the volume
of the structure at hand. Most kernels suggested in literature are derived for infinite
domains. Therefore, these kernels are not normalized anymore in the near-boundary
regions, where their influence zone exceeds the boundary. As an alternative solution,
to ensure that Equation 6.4 holds everywhere in the body, one can benefit from the
operator L mentioned in Equation 6.6. Particularly, the Green’s function of such an
operator in a boundary value problem is always normalized in the solution domain,
and thus, it can still be employed as the nonlocal kernel [4, 11].

Similar to previous section, the Green’s function of the diffusion equation (Equa-
tion 6.17) is chosen as the nonlocal kernel. As mentioned in Section 6.2.1, the homo-
geneous natural boundary condition (Neumann) is applied on Equation 6.17, and
consequently, on its Green’s function. This boundary condition is applied to the top
and bottom surfaces of the plate (z = h

2 and z = −h
2 ):

∂αh( h
2 , z ′)

∂z ′ = ∂αh(−h
2 , z ′)

∂z ′ = 0, (6.29)

where αh is the kernel bounded in [−h
2 , h

2 ]. The solution of such a boundary value

problem for any z and z ′ in [−h
2 , h

2 ] is [27]:

αh(z, z ′) =
∞∑

n=−∞

(
α(z − z ′−2nh)

+α(z + z ′− (2n −1)h)
)
,

(6.30)

where α is unbounded Green’s function of the diffusion equation in an infinite do-
main, which is the Gaussian density function given by Equation 6.16.

The bounded kernel αh is plotted in Figure 6.3 for three different locations with
respect to the boundaries. As shown in Figure 6.3, the shape of the function αh

changes in regions near the boundaries such that the function remains normalized
inside the volume of the structure. In other words: for any point z in [−h

2 , h
2 ], the

following condition is satisfied:

h
2∫

− h
2

αh(z, z ′)d z ′ = 1. (6.31)

By substituting the kernel given in Equation 6.30, into Equation 6.14, the nonlocal
stress terms are calculated. Consequently, the nonlocal tangential stress resultants
and stress couples in the plate can be determined. As a result, a similar nonlocal
modification factor λh and βh on the extensional and bending stiffness matrices can
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Figure 6.3: The Green’s function of bounded diffusion equation for different locations and, for the case
h = 5e0a. The shape of the kernel varies so that it satisfies the boundary conditions and stays normalized.

be determined. Due to similarity of the procedure to the previous section, we avoid
to repeat the whole calculations here. Accordingly, λh andβh can be calculated using
the following equations:

λh = 1

h

∫
Z

∫
Z ′

−αh(z, z ′)d z ′d z = 1, (6.32)

βh = 12

h3

∫
Z

∫
Z ′

−αh(z, z ′)z ′zd z ′d z. (6.33)

Notice that normalizing the kernel function results in a modification factor for the
stress resultant that is equal to 1, and the stress resultant Nnl is similar to that of the
classical plate theory. This will be discussed and compared to the result of the calcu-
lations with a Gaussian kernel, in “Results and Discussion”. It should be mentioned
that the Green’s function of the three dimensional diffusion equation in a finite do-
main is not separable, i.e. it cannot be decoupled mathematically in-plane and out-
of-plane terms, as for the Gaussian kernel. Therefore, the effect of out-of-plane and
in-plane non-locality cannot be separated anymore. Considering that for plates with
semi-infinite geometry in tangential directions, the kernel needs to be bounded only
in z direction. Thus, we introduce a new three-dimensional kernel:

α′
h(x,x′) =

exp
(
− (x−x′)2+(y−y ′)2

(e0a)2

)
(
p
πe0a)2 ×

∞∑
n=−∞

(
α(z − z ′−2nh)+

α(z + z ′− (2n −1)h)
)
.

(6.34)

The new kernel is only bounded in transverse direction. Using the same process
mentioned in the previous section, the new type of kernel can be employed to calcu-
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Figure 6.4: Normalized in-plane stress due to one dimensional stretch, corresponding to the nonlocal
solutions for two different kernels and two different thicknesses h = 10e0a and h = 5e0a. The transverse
coordinate is normalized by the material length scale.

late the modification factor for the stiffness matrices (λh andβh). These modification
factor can be used to correct for the effects of thickness in the existing nonlocal plate
theories, in problems with nonuniform deformations.

6.4. RESULTS AND DISCUSSION

In Section 6.3, using the strong nonlocal formulation, also known as Eringen’s non-
local theory, the tangential stress resultants and stress couples were calculated in a
plate with a uniform deformation. In order to consider the non-locality in all direc-
tions, this calculation was performed with a three-dimensional kernel. It was shown
that for a very thin plate, of which the lateral geometries are much larger than its
thickness, the only remaining terms of the kernel are the ones expressing non-locality
in transverse direction. It is emphasized that existing nonlocal beam or plate theories
only account for in-plane non-locality in their formulation[14, 15, 24–26]. As men-
tioned in the Introduction, the reason for this common omission is that the nonlocal
plate theories were initially introduced for inherently plane-stress problems, where
the strain variation is the most significant in in-plane directions. As a result, the non-
locality along the thickness could be ignored. In bending of plates, however, the
strain gradient in the transverse direction is substantial. Consequently, this makes
the effect of non-locality significant in that direction.

In this section, the effect of including the transverse non-locality on the stress
and effective stiffness of the plate is discussed. First, consider a simple example of
one-dimensionally stretched plate (i.e., γ = [

γ 0 0
]
, κ = [

0 0 0
]
). Figure 6.4

shows the distribution of the tangential nonlocal stress in transverse direction for
this example. Both solutions in Figure 6.4 (with bounded and non-bounded kernels)
are normalized by the uniform stress as calculated by classical plate theory. As men-
tioned before, if the kernel is bounded and normalized in the domain, it ensures that
a uniform strain field introduces a uniform stress field in the domain. Therefore,
the nonlocal stress as calculated by a bounded kernel is uniformly distributed in the
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Figure 6.5: Normalized in-plane stress due to cylindrical bending, corresponding to the nonlocal solutions
for two different kernels and two different thicknesses h = 10e0a and h = 5e0a. The transverse coordinate
is normalized by the material length scale.

thickness and is similar to the classical stress.
The nonlocal stress, as calculated with non-bounded kernel, is not uniform in the

transverse direction. On the contrary, it has a sharp decrease near the surfaces of the
plate. This sharp decrease of the lateral stress in the two surfaces of the structure
is independent of the thickness and it always reduces to half of the classical stress.
This is because for z = h/2 and z = −h/2, half of the nonlocal kernel exceeds the
boundary and the other half is collecting the influence of the uniform strain inside
the body. This behavior does not indeed describe physics or fundamentals of surface
elasticity, and supports the reason behind the principle of normalization of the kernel
in nonlocal theory.

Figure 6.5 shows the distribution of the tangential nonlocal stress in transverse
direction, in a simple example of cylindrical bending of a plate (i.e., κ = [

κ 0 0
]
,

γ = [
0 0 0

]
). Both solutions (with bounded and non-bounded kernels) are nor-

malized by the maximum stress as calculated by classical plate theory.
As can be observed in Figure 6.5, the nonlocal in-plane stress does not vary lin-

early in the thickness of the plate as it does in the classical solution. The nonlocal
stress in the near-boundary region is lower than the classical stress. This difference
increases when the thickness of the plate gets smaller. However, inside the body,
i.e. far enough from the boundaries, the difference between classical and nonlocal
solutions vanishes. The length of the boundary region in which this difference is sig-
nificant, is very close to the effective cut-off length of the kernel (2e0a). Including the
transverse nonlocality in the formulation, allows us to indicate some surface effects
in elasticity of the structure.

There is a considerable difference between the nonlocal solutions with a non-
bounded kernel and with a bounded kernel. When using a non-bounded kernel, the
in-plane stress shows a sharp reduction near the surface which does not reflect a
physical behavior. In contrast, the in-plane stress derived with a bounded kernel has
a smooth increase near the surface.

The modification factors λ and β on the extensional and bending matrices stiff-
ness were calculated in Section 6.3. These modification factors only include the ef-
fect of non-locality in the transverse direction. Therefore, they only depend on the
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plate’s thickness h. Figure 6.6 shows the modification factor λ as a function of non-
dimensional thickness η. If the chosen kernel is not bounded in transverse direction,
the extensional stiffness of the plate is influenced by its thickness. Such a formula-
tion predicts a softening when the thickness gets comparable to the material length
scale. When the thickness of the plate is large, then the modification factor tends to
unity which means stiffness will approach the classical limit A = hQ.

On the other hand, the bounded nonlocal kernel results in a constant extensional
stiffness for the plate. As mentioned before, a uniform tensile strain in the plate,
using a bounded kernel would result in a uniform nonlocal tensile stress equal to
the classical stress. Therefore, the nonlocal solution with bounded kernel does not
indicate the effective tensile modulus to change with the thickness.

Figure 6.7 shows the modification factor β for the nonlocal bending stiffness as a
function of non-dimensional thickness η. When the thickness of the plate is relatively
small, it can significantly influence the bending stiffness of a plate, as calculated by
the nonlocal theory. When the thickness of the plate is relatively large, the modifi-
cation factor tends to unity which means the bending stiffness will be equal to its

classical limit D = h3

12 Q. According to these calculations, the thickness at which the
difference between classical and nonlocal solutions gets more than 1% is h = 16e0a.

In the calculation of the modifying factors λ and β, the initial calculation was
based on a uniform deformation in a plate. However, it was shown that if the kernel
can be decoupled in in-plane and out-of-plane directions, such modification factors
can be used for a non-uniform deformation as well. In the latter case, the in-plane
non-locality would have a contribution to the nonlocal stress resultants and stress
couples. This contribution needs to be treated by existing nonlocal plate theories.

The results, as shown in Figures 6.6 and 6.7, suggest that the nonlocal solution
with the bounded kernel reflects the size dependency of the elastic properties at a
relatively smaller length scale. The difference between the two nonlocal solutions
is relatively large, and is almost comparable to their differences with the classical
elasticity. According to Eringen’s nonlocal theory and several other publications [4,
11, 22], the solution with bounded kernel is considered to be the “correct” nonlocal

Figure 6.6: Nonlocal modification factor for extensional stiffness matrix as a function of the thickness of
the plate normalized with internal length scale.
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Figure 6.7: Nonlocal modification factor for bending stiffness matrix as a function of the thickness of the
plate normalized with internal length scale.

Figure 6.8: The normalized bending stiffness of a wide silicon cantilever in cylindrical bending based on
pull-in measurements [28], and calculated with nonlocal theory with three different internal length scales.

solution.
Finally, we briefly discuss an example on how this theoretical approach can be

applied in practice. For this purpose, a comparison is made to an experimental result
provided by Sadeghian, et al. [28]. In that study, the size-dependence of the elastic
behavior in Silicon nano-cantilevers has been experimentally investigated. The em-
ployed cantilevers in this study were 170 to 8 µm long, 20 to 8 µm wide and 1019 to 40
nm thick. Considering the large aspect ratio of the cantilevers they can be modeled
as plates.

Figure 6.8 shows the experimentally obtained bending stiffness of the cantilevers
when subjected to a non-uniform cylindrical bending. The bending stiffness in this

graph is normalized with its classical amount Et 3

12(1−ν2)
. The experimental results clearly

show that the bending stiffness of the cantilevers is a function of their thickness.
For comparison the proposed nonlocal modification factors derived for three dif-

ferent length scales are also shown in this figure. The theoretical results are calculated
using a bounded kernel. The very similar trend to the experiments can be modeled
using the modification factor proposed in this chapter and the best match is achieved
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when e0a = 25 nm. We shall remind here that the internal length scale e0a can be
affected by the Silicon crystal properties as well as all the defects particularly on its
surface. This excellent match between the model and the experimental results shows
the potential for employing the proposed model in mechanical characterization of
nano-structures. The observed scale effect can be captured with nonlocal elasticity
theory effectively, and moreover, it is easy to implement.

6.5. CONCLUSIONS

In this chapter, using a nonlocal elasticity theory, we have presented a formulation
to capture the effect of thickness on size-dependent behavior of plates. We have dis-
cussed some new aspects and challenges of employing the strong three dimensional
nonlocal formulation for analysis of plates. The presented formulation has been em-
ployed for a practical problem and is shown to be capable to describe the size effect
observed experimentally.

Generally, in employing nonlocal elasticity formulation for plate problems, the
non-locality in the constitutive equations is only considered in tangential directions
of the plate. This, in turn, results in predicting a size dependent mechanical behav-
ior which does not reflect any dependence to the plate thickness. This is while ex-
perimental results indicate otherwise [28]. Moreover, if the nonlocal elasticity aims
to capture the long-range interactions between the atoms of the material in a con-
tinuous framework, their impact should be reflected in all directions, including the
transverse direction.

The main problem in capturing non-locality in transverse direction for plates lies
in confining the nonlocal kernel at the two surfaces of the structure. In this study, to
investigate the effects of including the transverse non-locality in analysis of plates,
we have employed two types of nonlocal kernels with bounded and non-bounded
boundaries. In particular, the problem of uniform deformations of a plate has been
studied with both types of kernels. The results show that using the nonlocal formula-
tion with a bounded kernel can reflect the physics of the problem better. In fact, us-
ing a bounded kernel (i) for a given uniform local strain field, a nonlocal formulation
predicts a uniform nonlocal stress field, (ii) stress components near the surface do
not exhibit the sharp reduction, which occurs in case of employing a non-bounded
kernel.

It should be mentioned here that although according to Eringen’s theory of nonlo-
cal elasticity, the solution given by a bounded kernel (finite-scale kernel) is suggested
to provide the “correct” solution, there is no suggestion for a physical interpretation
of the chosen boundary conditions on such a kernel. Thus, there is a definite need
for a thorough study to define the reasoning behind the adaptation of the kernel in
boundary regions. The authors suggest that calculating the suitable boundary con-
dition for the nonlocal kernel in nonlocal elasticity theories (and other higher order
elasticity theories) should be practicable using a molecular dynamics simulation or
another atomistic model. These boundary conditions should not be problem de-
pendent and instead they should reflect the physical properties in the surface of the
structure. Otherwise, the nonlocal continuum theories will not be viable as they have
to be adapted to every single problem.
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Moreover, in practice, defects are in the nature of all materials. In a structure with
a defected surface, the surface properties such as inhomogeneous elasticity should
also be involved in the formulation. Furthermore, the effect of the surface defects
should be reflected in the nonlocal kernel either via the boundary conditions or the
internal length scale.

As a result of this study, two nonlocal modification factors on extensional and
bending stiffness matrices have been presented to account for the effect of thickness
in the nonlocal formulations. These modification factors are valid for any shape of
the plates. Provided that the nonlocal kernel is separable in transverse and tangen-
tial coordinates, they can be used for solutions based on conventional nonlocal plate
theories. The observed scaling effect and a good match to experimental results mo-
tivate future research into clear interpretation of the internal length scale and the
boundary conditions.
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7
APPLICATION OF MICRO-PLATES

FOR SURFACE STRESS

MEASUREMENTS

In previous chapters the characteristics of a micro-plate as a transducer to convert the
electrostatic energy to mechanical energy was studied. In this chapter, we aim to in-
vestigate the opposite practice of the micro-plates. As a matter of fact, in sensing appli-
cations, the micro-plates can serve as transducers to convert the mechanical energy to
an electrical signal. Surface stress based measurement is a relatively new mechanism
in biological and chemical sensing. The viability of this mechanism depends on the
maximum sensitivity, accuracy and precision that can be achieved with these sensors.
In this chapter, an analytical solution and a finite element model are employed to de-
scribe the electromechanical behavior of a surface stress based sensor with capacitive
measurements. Using this approach, we can calculate the optimum design of the sen-
sor to obtain the maximum capacitive sensitivity. Moreover, using the finite element
simulation, we study the effect of this optimization on accuracy and precision of the
system in surface stress sensing. This study shows that the ratio of sensing area to the
whole micro-plate plays a key role in the functionality of such a sensor.

Parts of this chapter have been published in IEEE Sensors Journal [1].
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7.1. INTRODUCTION

The principle of bio-molecular recognition in nano-mechanical sensors is based on
molecular adsorption on one side of a plate-like component [2, 3]. As a consequence,
the surface stress of the component changes and this leads to deformation of the
component. Next, the corresponding deflection of the system can be measured and
used to estimate the surface stress and, thus, the amount of molecular adsorption.

Several types of nano-mechanical components, including doubly clamped beams,
cantilevers, and membranes, are used for biological detection [2, 4, 5]. Cantilevers are
the most commonly used structures in surface stress based measurements. They are
highly compliant as compared to other types of structures and their micro-fabrication
technology is well established and simpler than for membranes [3, 6]. However, when
used in liquid environments, cantilever structures may restrain most types of read-
out techniques. For example, an electrolyte solution around the cantilever allows for
Faradic currents which limit most electric readout techniques. In addition, due to the
high compliance of cantilevers, even a small flow can affect the cantilever’s deflection
to a large extent [7, 8].

Clamped plates and membranes, on the other hand, can provide a separation
between their detection and sensing surfaces. Thus, in liquid environments, they
potentially benefit from a wider range of electric readout techniques [8, 9]. However,
compared to cantilevers, a clamped plate is a relatively stiff structure.This structural
stiffness results from the boundary conditions which restrict both the transverse dis-
placement and its derivatives at the edges. Particularly, in case of a uniform surface
stress loading, it does not show any deformation, and this leads to a poor sensitivity
of the overall sensor [6, 10]. In order to narrow this drawback and to maximize the
sensing signal, the structural parameters of the sensor should be optimized. The de-
sign freedom in such an optimization is mainly restricted to the dimensions of the
plate, the shape and dimensions of the functionalized area.

Based on finite elements simulations, it has been shown that the output signal of
surface stress based capacitive sensors can be improved by adjusting the geometrical
parameters such as the gap between the electrodes and specially, the size of the sens-
ing or functionalized area [11–13]. However, the finite element simulations are only
valid for specific choices of materials and dimensions, and they do not provide any
insight to the problem. In addition, they are generally time-consuming, expensive.
On the other hand, an analytical solution —if available— can provide a closed form
formulation for calculating the sensitivity of a sensor with any dimension or material.
Therefore, analytical solutions are usually preferred for design purposes. In addition,
an analytical solution provides more insight to the mechanics of the device, which is
paramount for its further development. To the best of our knowledge, no analytical
solution is available for calculating the deflection of a fully clamped plate/membrane
arising from surface stress changes on a part of its surface.

Apart from the sensitivity, there are some other parameters which have to be con-
sidered when evaluating the suitability of a sensor, such as linearity, repeatability, ac-
curacy and precision. Accuracy is the degree of closeness of a measured or calculated
quantity to its reference (expected) value. Accuracy is closely related to precision also
called reproducibility. In general, in biological detections, the poor surface coverage



7.2. ANALYTICAL FORMULATION

7

115

of target molecules on the functionalized area (e.g. due to contamination of the sur-
face or poor adhesion), might result in a low accuracy and precision [14–17].

It is commonly assumed that if the surface coverage is uniformly dispersed, the
surface stress induced by the adsorption exhibits a non-linear dependence on the
surface coverage, and it steeply increases when the coverage is near saturation [2, 18,
19]. However, at low concentration of target molecules, or when the target molecules
or proteins are large, the distribution of the coverage might be randomly dispersed
or just accumulated in one area [19, 20]. In which case, the surface coverage is not as
uniform, and the theoretical model will not provide an accurate estimate of the con-
centration. In practice, low precision can be tackled by employing parallel probes in
one measurement. However, still a high reliability of individual sensing components
is favorable.

This chapter aims to find the optimal design of a capacitive surface stress sensor
with a circular clamped plate/membrane as its sensing component. First, an analyti-
cal solution is presented to calculate the deformation of such a plate due to a change
in the surface stress, while this change occurs only on a smaller concentric area of its
surface. Using this study, we can find the optimum size of the functionalized area in
order to create the maximum deflection.

Next, we present a design for a membrane-based capacitive sensor for surface
stress measurements. Using the presented solution, the capacitive sensitivity of this
sensor is obtained analytically. Then, to verify the competence of the approximated
solution, the results will be compared to a detailed finite element solution. Even-
tually, we will discuss the optimized sensitivity of the membrane-shape sensors in
comparison with cantilevers, and the effects of material and geometrical parameters
on this sensitivity.

Moreover, using the finite element model, we study the effect of the shape and
position of the agglomeration of target molecules on the ultimate response of these
types of sensors. We show that by optimizing the size of the functionalized area, in
addition to achieving a better sensitivity, the performance of the sensor with respect
to precision can be improved.

7.2. ANALYTICAL FORMULATION

In micro-mechanical biological and chemical sensing, the bonding of measurand
molecules to the functionalized surface of a plate leads to a change in the surface
stress and as a result to bending of the plate. The surface stress variation for plate-like
structures is usually estimated analytically by applying the famous “Stoney” equa-
tion. The latter provides a linear relationship between the tangential surface stress in
the surface layer and the curvature of the plate [21]. Stoney’s equation, however, was
initially derived for a system composed of a pre-stressed thin film attached to and
fully-covering a relatively thick substrate with free boundary conditions.

There are many extensions and modifications of Stoney’s equation to relax some
of its simplifying assumptions [22–24]. Yet, this equation has not been extended or
modified for a fully-clamped circular plate, up until now. In this section, we shall
derive a closed form approximate solution for calculating the deflection of a clamped
circular plate due to a change in surface stress on a circular and concentric smaller
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Figure 7.1: The thin film and the substrate with different radii, and an equivalent pretension in the thin
film

functionalized area of its surface.
An isotropic and homogeneous clamped circular plate of radius Rs is considered

(Figure 7.1). As a substitute for the functionalized surface layer, a thin film is assumed
to be attached to the substrate. The shape of the film is circular and concentric with
the substrate. The radius of this film is R f and it is subjected to a pretension which
is equivalent to the change in surface stress . The thickness of the thin film and the

substrate are h f and hs , respectively, where
h f

hs
¿ 1. The Young’s modulus and Pois-

son’s ratio of the film and substrate are E f , ν f , Es and νs , respectively. The problem
is considered to be axisymmetric and Kirchhoff plate theory is employed. In all other
parameters to be introduced, the subscripts s and f refer to the substrate and the
thin film, respectively.

The chemical reaction between the functionalized surface and the measurand
bio-molecules introduces a surface stress to the plate. This tangential surface stress
change is modeled with an equivalent tangential stress resultant (σs ) in the thin film.
This stress resultant (σs ) is assumed to be isotropic, i.e. similar in radial and angular
directions, and uniform. In the analysis, we can either consider the tangential stress
resultant in the film, or an equivalent isotropic and uniform in-plane strain εm . This
equivalent strain can be calculated with Hooke’s law giving

εm =σs 1−ν f

E f h f
. (7.1)

If we attach the pre-stressed thin film to the clamped plate, the system will de-
form to relax the stress in the film. We analyze the equilibrium state of the film and
the plate after the relaxation, together as one system.

Let u f and us denote the radial displacements at the mid-plane of the thin film
and substrate after relaxation of the system, and w the out-of-plane displacement
in both. Since the film is relatively thin, the variation of its displacement and stress
components in transverse direction is negligible. The continuity of displacements
across the film/substrate interface requires:

u f = us −
hs +h f

2

d w

dr
. (7.2)

Based on Kirchhoff plate theory, the non-vanishing stress resultant in the thin film
and the substrate (Nr and Nθ in radial and tangential directions) can be calculated



7.2. ANALYTICAL FORMULATION

7

117

as:

Nr f =
E f h f

1−ν2
f

(
du f

dr
+νu f

r
)+σs , (7.3)

Nθ f =
E f h f

1−ν2
f

(ν f
du f

dr
+ u f

r
)+σs , (7.4)

Nr s =
Es hs

1−ν2
s

(
dus

dr
+νs

us

r
), (7.5)

Nθ s =
Es hs

1−ν2
s

(νs
dus

dr
+ us

r
). (7.6)

The tangential stress couples of the substrate in radial and tangential directions (Mr

and Mθ) can be calculated by

Mr s =
Es h3

s

12(1−ν2
s )

(
d 2w

dr 2 + νs

r

d w

dr
), (7.7)

Mθ s =
Es h3

s

12(1−ν2
s )

(νs
d 2w

dr 2 + 1

r

d w

dr
). (7.8)

If we assume the plate and the film, together, as one laminated plate, the non-vanishing
stress resultant in this structure can be calculated for r < R f and R f < r < Rs , as

Nr =
{

Nr f +Nr s r < R f ,

Nr s R f < r,
(7.9)

Nθ =
{

Nθ f +Nθ s r < R f ,

Nθ s R f < r.
(7.10)

In calculating the tangential stress couples of the system, the equivalent moment due
to presence of the thin film should be considered. Hence,

Mr =
{

Nr f
hs+h f

2 +Mr s r < R f

Mr s R f < r,
(7.11)

Mθ =
{

Nθ f
hs+h f

2 +Mθ s r < R f

Mθ s R f < r.
(7.12)
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Figure 7.2: Cross section of a volume element at the edge of the film, including the thin film and the
substrate, and the associated stress resultants and couples.

For the laminated plate, the equilibrium in radial and transverse directions can be
expressed as [25]:

Nr −Nθ+
d Nr

dr
r = 0, (7.13)

Mr −Mθ+
d Mr

dr
r = 0. (7.14)

Using Equations (7.9)–(7.14), we obtain:
Nr f −Nθ f +

d Nr f

dr r +Nr s −Nθ s + d Nr s
dr r = 0 r < R f ,

Nr s −Nθ s + d Nr s
dr r = 0 R f < r,

(7.15)

and 
hs+h f

2 (Nr f −Nθ f +
d Nr f

dr r )+Mr s −Mθ s + Mr s
dr r = 0 r < R f ,

Mr s −Mθ s + d Mr s
dr r = 0 R f < r.

(7.16)

Due to the presence of a discontinuity at r = R f , the equilibrium of forces and mo-
ments for a volume element on the edge of the film should be considered separately:

Nr
−
f +Nr

−
s = Nr

+
s , (7.17)

and,

1

2
(hs +h f )Nr

−
f +Mr

−
s = Mr

+
s . (7.18)

The superscripts − and + denote the limits of the functions in R f from r < R f and
r > R f , respectively (see Figure 7.2). It should be noticed that here, the thin film
stress resultant Nr f includes the driving load σs .

Next, following Equations (7.2)–(7.16), the general solutions for the displacement
components us and w can be calculated. Considering that the displacement should
be finite at r = 0, the general solution of the equilibrium equations is obtained as:

w =
{

C1r 2 +C2 r < R f ,

C3r 2 +C4 lnr +C5 R f < r,
(7.19)
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us =
{

C6r r < R f ,

C7r +C8/r R f < r.
(7.20)

The radial displacement in the thin film (u f ) follows from Equation (7.2). The param-
eters Ci (i =1–8) are the unknown degrees of freedom to be determined by satisfying
continuity and boundary conditions, and the equilibrium at r = R f as expressed by
(7.17) and (7.18). Continuity at the edge of the thin film requires:

u+
s = u−

s , (7.21)

w+ = w−, (7.22)

d w

dr

+
= d w

dr

−
. (7.23)

The clamping boundary condition implies:

us |Rs = 0, (7.24)

w |Rs = 0, (7.25)

d w

dr
|Rs = 0. (7.26)

Hence, the unknown constants (Ci ) can be calculated. Because of their complexity,

the resulting expressions are not shown here. If we assume
h f

hs
¿ 1, and if the stiffness

of the two materials is of the same order of magnitude (thus, higher-order terms of
E f

Es

h f

hs
can be neglected with respect to 1), the solution for the displacement field can

be simplified to:

w =


3σs

h2
s

1−ν2
s

Es
[R2

f ln
R f

Rs
+ (1− R2

f

R2
s

) r 2

2 ] r < R f ,

3σs

h2
s

1−ν2
s

Es
[R2

f ln r
Rs

+ R2
f

2 (1− r 2

R2
s

)] R f < r,

(7.27)

us =


− 1

2
σs

hs

1−ν2
s

Es
(1− R2

f

R2
s

)r r < R f ,

− 1
2
σs

hs

1−ν2
s

Es
(

R2
f

r 2 − R2
f

R2
s

)r R f < r.

(7.28)
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The maximum deflection of the system is at r = 0 and is equal to

∆w = 3
σs

h2
s

1−ν2
s

Es
R2

f ln
R f

Rs
. (7.29)

Equation (7.29) can be looked upon as an extension of Stoney’s formula for a film
and substrate with different radii, with clamped boundary condition. Obviously if
R f → 0, no film is left on the substrate and the deflection equates to zero. Also, if
R f = Rs , the deflection of the plate would vanish completely. This suggests the pos-
sibility of finding the optimum radius for the functionalized area which leads to the
maximum deflection of the substrate. This, in turn, may provide the maximum sen-
sitivity of the sensors (e.g., based on using optical readout techniques). Clearly, the
maximum deflection is achieved when ∂w |r=0

∂R f
=0. By solving this maximization prob-

lem, one can show that the optimum ratio of
R f

Rs
is always

R f

Rs
= 0.606, and the corre-

sponding maximum deflection of the membrane (i.e. its absolute amount) would be

∆wmax =ασ
s

h2
s

1−ν2
s

Es
R2

s , (7.30)

where α= 0.552 (when
E f

Es

h f

hs
¿ 1). This result is comparable to Stoney’s solution for

deflection of a cantilever due to a change in its tangential surface stress, where the
thickness of the cantilever is the same as the membrane and its length is equal to the
membrane radius:

wst = 3
σs

h2
s

1−νs

Es
R2

s . (7.31)

Equations 7.31 and 7.30 imply the maximum deflection of a membrane, in op-
timized configuration, would be 0.184(1+νs ) times that of an equivalent cantilever.
The comparison between the sensitivity of cantilevers and membranes will be dis-
cussed in more detail in the Section “Results and discussion”.

7.3. SENSITIVITY OF THE CAPACITIVE MEMBRANE SENSOR

In this section, the sensitivity of a capacitive sensor for surface stress based measure-
ments is studied. A simplified model of this sensor with a micro-membrane as its
sensing component is considered. A part of its surface is coated with a thin metal
layer which, in fact, plays two roles. First, its surface is functionalized with probe
molecules to adsorb the target molecules and second, it acts as an electrode for ca-
pacitive measurements. The whole structure is suspended over a conductive pad
which is the other electrode for capacitance measurements. This conceptual design
is graphically shown in Figure 7.3. The initial capacitance between two straight and
parallel electrodes, can be calculated by

C0 = εr ε0
Ae

d
, (7.32)



7.3. SENSITIVITY OF THE CAPACITIVE MEMBRANE SENSOR

7

121

Figure 7.3: The schematic of the capacitive sensor for surface stress measurement, before (top) and after
(bottom) the reaction between the probe and target molecules

where ε0 is the vacuum permittivity, εr is the relative permittivity of the material be-
tween the plates, Ae is the electrode surface area, and d is the distance between the
electrodes. The adsorption of target molecules on the metal layer will create a change
in its surface stress which causes the membrane to deflect. After deflection, the ca-
pacitance of the system can be calculated by

C = εr ε0

∫
d Ae

d +w
, (7.33)

where w is the transverse deflection of the thin film (flexible electrode). The sensi-
tivity of the sensor is defined as the relative capacity change to the input parameter,
i.e., change of surface stress in the functionalized area. Using (7.32) and (7.33), the
absolute change in capacitance can be calculated by

∆C = εr ε0π(
R2

e

d
−

∫ Re

0

2r dr

d +w
), (7.34)

which can be approximated using the expression for w in Equation (7.27), and the
electrode radius (Re ) can be replaced by the radius of the thin film subjected to the
change in surface stress (R f ). If the applied surface stress change (σs ) is small, the
response of the sensor can be linearized and therefore, the sensitivity of the sensor
will be proportional to ∆C /σs .

In order to maximize the sensitivity, the dimensions of the sensor shall be opti-
mized. Clearly, a higher sensitivity can be achieved by decreasing the initial distance
between the electrodes (d). However, the electrode radius (Re ) has an optimum size
which can be calculated analytically by equating the first derivative of ∆C with re-
spect to Re (or R f ) to zero:

∂(∆C )

∂Re
= 0. (7.35)

It should be mentioned that Re which optimizes the maximum displacement is
different from the one which maximizes ∆C . The results of this analysis will be dis-
cussed in Section “Results and discussion”.
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Table 7.1: Model parameters

Membrane Electrode Gap
Material Silicon Gold Air
Elasticity Modulus 169 GPa 80 GPa
Poisson ratio 0.2 0.3
Radius 125 µm Re

Thickness 0.5 µm 0.025 µm 2 µm
Relative Permittivity 11.68 1 1.006

7.4. FINITE ELEMENT MODEL

In order to evaluate the accuracy of the presented analytical solution, the simple sen-
sor described in the last section is modeled with finite element software (COMSOL).
The membrane is considered to be Silicon (undoped) which is a very common choice
for MEMS devices. The electrode is chosen to be gold which is one of the most used
materials for immobilizing bio-receptors on nanomechanical systems [2, 10, 11, 26].
The gap between the membrane and the bottom electrode is assumed to be filled
with low pressure air. The mechanical properties of the chosen materials and other
specifications of the model are given in Table 7.1.

The finite element model is 3D, and the mechanics and electrostatics equations
of the system are solved fully coupled. The Silicon membrane and the thin surface
layer are discretized with tetrahedral solid elements and triangular shell elements,
respectively. The air gap is also discretized with tetrahedral elements to calculate the
electrostatic field.

The surface layer of the electrode subjected to the surface stress is modeled with
a very thin membrane, and the surface stress is modeled with a an equivalent pre-
tension in this membrane. A pretension of 10 mN/m, which is a typical surface stress
caused in biological reactions, is applied to the surface layer. Then, the mechanical
and electrical response of the system are calculated. This calculation was performed
for different electrode radii. The results of the FEM calculations and the proposed
analytical solution will be compared in Section 7.6.

7.5. PRECISION OF THE SENSOR

In addition to sensitivity, accuracy and precision are two other sensor parameters
which have to be considered in its design. Precision refers to the closeness of results
of the measurements, for a similar input, to each other. Accuracy is the degree to
which the average result of the measurement, conforms to the reference (expected)
value. These two terms are graphically explained in Figure 7.4.

In surface stress based measurements, in order to function as a sensor, the con-
centration of the target molecules must be related to the surface stress, which in turn
results in different deflections. As mentioned in the Introduction, a low density of
the target molecules in the environment results in a partial coverage of the function-
alized surface. Hence, only a part of the functionalized area will be subjected to the
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surface stress change. Let us denote the ratio between this area to the whole func-
tionalized area as coverage ratio.

Here, we assume that the coverage ratio increases monotonically with the den-
sity of molecules in environment [18, 20]. So, the coverage ratio is equal to 1, if the
concentration of target molecules is high enough and the surface is saturated. Oth-
erwise, the coverage ratio is lower than 1.

When the coverage ratio is less than one, it could imply a patch wise covering due
to the agglomeration of target molecules in one area. The shape and the position of
this agglomeration can influence the ultimate response of the sensor. Therefore, the
output signal is not only a function of the coverage ratio, but also its shape, and this
accordingly reduces the precision.

In Section 7.2 we showed that if the coverage is uniform over the functionalized
area, a full size electrode (Re = Rs ) will result in very poor sensitivity. However, when a
poor coverage is obtained, the size of electrode might seem irrelevant. In this section,
we briefly study the effect of the radius of the functionalized area (thin electrode) on
the performance of the sensor in case of a partial coverage. For this purpose, two
models with different radii of the gold layer, one with maximum sensitivity and one
covering the whole membrane, are considered. The finite element model employed
is similar to that of the previous section.

The shape of the surface layer (modeled with a thin membrane) mimics the shape
of the agglomeration of the molecules. In the finite element model this shape is con-
trolled with a parametrized function as

x = X0Re +Re (Σn
i=0 Ai cos(i s))cos(s),

y = Re (Σn
i=0 Ai cos(i s))sin(s),

(7.36)

where x and y are the Cartesian coordinates and s is a curve parameter from 0 to 2π.
As a matter of fact, Equation 7.36 resembles a Fourier Cosine expansion of the actual
shape of the agglomeration of the molecules. The advantage of the Fourier represen-
tation is the level-of-detail interpretation which is provided by the parameter i . The
low values of this parameter represent the coarse structure of a shape, while higher
values add the details. In Equation 7.36, the parameter X0 is introduced to move the
created area out of the center. To study the effect of the shape of the adsorption area
on the output, this parameter and the parameters Ai (assuming i=1–7) are varied be-
tween 0 to 1 randomly. In addition, if the shape intersects with the perimeter of the

Figure 7.4: A graphic definition of accuracy andprecision of a sensor.
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Figure 7.5: A part of the Comsol model, including the silicon membrane, the flexible electrode covering
the whole membrane, and the thin layer with a random shape mimicking an agglomeration of molecules,
A) before deformation, and B) after deformation due to a positive surface stress change.

functionalized area (
√

x2 + y2 > R f ), only the inner part is subjected to the surface
stress change. Any curve intersecting itself is skipped in the simulation, automati-
cally.

Next, similar to the previous section, a pretension of 10 mN/m is applied to the
surface layer, and deflection and capacitance of the system are calculated. Figure 7.5,
for example, shows one configuration of this model before and after deformation.
Due to different shapes of the adsorption area, a range of capacitance change is ob-
tained for one coverage ratio. In practice, it is desired to restrict the range of the
response in order to achieve a better precision in the sensor. Therefore, using the
COMSOL model, the effect of the size of the functionalized area on the range of the
capacitance changes is studied.

As a result of the FEM simulations, two factors of eccentricity and circularity were
found to be appropriate and influential factors, for discussing the shape of the ag-
glomeration of molecules. Circularity ( fc ) is commonly used in image analysis and
allows us to see how far a shape is from a circle. This shape factor is defined as

fc = 4πA

P 2 , (7.37)

where A is area and P is the perimeter of the related shape. Clearly, this factor is one
for a circle and less than one for any other shape. Eccentricity ( fe ) is defined as the
ratio of the distance between the center of the adsorption area and the center of the
plate, to the radius of the functionalized area. The results of this study are presented
and discussed in Section 7.6.

7.6. RESULTS AND DISCUSSION

To discuss the effect of the size of the functionalized area on the sensitivity of a mem-
brane sensor, we consider the model parameters given in Table 7.1 as a test case.
Considering that Silicon is a relatively stiff material (see Table 7.1), the simplifying as-

sumption
E f

Es

h f

hs
¿ 1 holds and consequently, the solution for the displacement field

is very close to the analytical solution presented by (7.27) and (7.28).
Figure 7.6 shows the deflection for the center of the plate as a function of the

radius of the functionalized area (electrode). The graphs in this figure are obtained
using the approximate analytical solution and the finite element model. It shows that
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Figure 7.6: Deflection of a silicon membrane due to 10 mN/m change in surface stress, as a function of the
normalized radius of the functionalized area.

the results of the two solutions are in close agreement which confirms the accuracy
of the presented approximate solution.

It should be noticed that this problem is solved for a small surface stress of 10
mN/m, which does not cause a large deflection. Therefore, the results of the non-
linear finite element model lead to a slightly lower deflection compared to the lin-
ear approximate solution. Figure 7.6 clearly shows that the maximum deflection of
the membrane occurs when the radius of the electrode is 0.6 of that of the mem-
brane. This optimized radius hardly depends on the choice of parameters, as long as
E f

Es

h f

hs
¿ 1.

Figure 7.7 shows the change in the capacitance of the sensor as a function of the
radius of the functionalized area (electrode). It should be mentioned that in our fi-
nite element model, the permittivity of the Silicon membrane and the air gap, and the
fringing electric field around the periphery of the electrodes are all included. These
factors (particularly the permittivity of the Silicon membrane) cause an absolute dif-
ference in capacitance from those predicted analytically. However, the relative ca-

Figure 7.7: The normalized capacitance change of the system and maximum deflection of the curvature
due to a change in surface stress, as a function of the normalized radius of the functionalized area.
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pacitance change is similar for both the FEM and analytical models.
As can be observed from Figure 7.7, the sensitivity is maximum for an optimum

radius of the functionalized area, Re /Rs = 0.76. This optimum radius depends on the
choice of the parameters of the sensor, i.e., materials and dimensions of the sensor.
In order to compare the effect of the electrode radius on the capacitance and deflec-
tion of the system, the normalized deflection of the membrane is also shown in Fig-
ure 7.7. The results clearly show that the optimum radius to maximize the capacitive
sensitivity is different from the one which maximizes the deflection.

This analysis was also performed for other choices of materials, while preserving
other parameters in Table 7.1. The normalized deflection and the change in capac-
itance are shown in Figure 7.8 as a function of the radius of functionalized area and
the Young’s modulus of the membrane. It should be mentioned that for relatively

compliant materials (i.e. smaller Es ), the simplifying assumption
E f

Es

h f

hs
¿ 1 does not

hold and hence, the graphs in Figure 7.8 are obtained by the exact solution of (7.19)-
(7.26).

Clearly, the sensitivity of a mechanical sensor increases if a more compliant mate-
rial is employed for the sensing component. This could also be observed from Equa-

Figure 7.8: A) The maximum deflection of a membranes normalized by the deflection of an equivalent
cantilever and B) the normalized change of the capacitance of the system due a change in surface stress,
vs. Young’s modulus of the membrane and the relative radius of functionalized area. The change in capac-
itance is normalized by (C0) the capacitance of the system if Re = Rs .
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tion (7.30). In the current case, however, the optimized size of the functionalized area
also depends to Es , and hence, so does the parameter α in (7.30). In order to observe
this effect, the maximum deflection of the membrane, ∆w = w |r=0, is normalized by
the deflection of an equivalent cantilever, as given in (7.31).

According to Figure 7.8-A, by optimizing the radius of the functionalized area,
the deflection of a clamped membrane can be optimized to a minimum of 22 per-
cent of an equivalent cantilever. For stiff materials, where Es > 50 GPa (e.g. Si, SiO2,
SiN), the optimum radius is hardly dependent on the material property and the opti-
mum radius to maximize capacity is Re /Rs ≈ 0.76. However, this optimum radius and
the maximum achievable deflection significantly differ for more compliant materials
(e.g., polymers). For instance, for a Young’s modulus of Es = 20 GPa, the optimum
radius changes to Re /Rs = 0.54 and the deflection of the clamped membrane can be
optimized to 29 percent of an equivalent cantilever.

Figure 7.8-B shows the change in capacitance of the system as a function of the
Young’s modulus of the membrane and the radius of the functionalized area. It shows
that the maximum capacitive sensitivity, and the associated optimum radius, strongly
depend on the material of the membrane. The overall capacitive sensitivity of the
sensor is increased by a factor 10 when the compliance of the membrane is decreased
by only a factor 8. In fact, the results shown in Figure 7.8 imply that this optimization
has a better result for materials with lower stiffness.

It should be mentioned here that if the membrane is made of a conductive ma-
terial (like doped Silicon), the whole membrane serves as an electrode (i.e. Re = Rs ).
Then, the gold layer will only provide the functionalized surface (i.e. R f 6= Re ). In this
case, the optimum radius of the functionalized area (R f ) to create the maximum ca-
pacity change will be different and can be calculated based on the solution method
proposed in this chapter. For such a case using the test parameters at hand, the ra-
dius of R f /Rs = 0.71 will maximize the capacitive sensitivity.

It is noteworthy that the other design parameter which has an influence on sensi-
tivity is the slenderness of the membrane (S = Rs

hs
). As Equation (7.30) shows, the de-

flection of the membrane increases monotonically with the aspect ratio of the mem-
brane. This means that by increasing the slenderness, the sensitivity of the sensor
will increase. However, this parameter has no influence on the optimum radius of
the electrode for maximizing the sensitivity of the system.

This analysis was performed based on a full coverage of target molecules on the
functionalized area and a uniform surface stress change. Next, we discuss how the
optimization of the radius of the functionalized area can affect the precision for bi-

Figure 7.9: Three different shape of the surface layer mimicking the agglomeration of molecules on
the functionalized area, with a same coverage ratio of 0.45, and different circularity A) fc = 0.23 and
∆C /Cmax = 2.126×10−4, B) fc = 0.52 and ∆C /Cmax = 1.032×10−4, c) fc = 1 and ∆C /Cmax = 3.021×10−4
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Figure 7.10: The capacity change for A) Re /Rs = 1 and B) Re /Rs = 0.6, as a function of coverage ratio for
different shape-factors of agglomeration of molecules.

ological and chemical detections, if the coverage is not full and uniform. Figure 7.9
shows three differently shaped adsorption areas, though with similar coverage ratios.
Although these examples have hyperbolical shapes, they clearly show how a similar
coverage ratio may result in completely different capacity changes.

Figure 7.10 shows the normalized capacity change as a function of the coverage
ratio, while considering a random circularity (and an eccentricity of zero) of the area
subjected to surface stress. The graphs are obtained for two cases, namely, Re = Rs

(Figure 7.10-A) and Re = 0.6RS (Figure 7.10-B). As can be observed, the maximum
capacity change occurs when the shape of the adsorption is circular, i.e. the shape
factor is equal to one.

When Re = Rs (Figure 7.10-A), the output of the sensor has a strong dependence
on the shape of the agglomeration of molecules and this leads to a significant reduc-
tion in the precision of the sensor. First of all, there is no one-to-one relationship
between the capacity change and the coverage ratio. Second, a similar coverage ratio
may result in a relatively large range of capacity change. Moreover, the maximum
capacity change occurs when the coverage ratio is around 0.58, though, the results
indicate that the precision of the sensor is the worst around this coverage ratio.

When Re = 0.76Rs (Figure 7.10-B), on the other hand, the response of the sys-
tem has a near linear relationship with the coverage ratio and the maximum capacity
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Figure 7.11: The range of the output signal for A) Re /Rs = 1 and B) Re /Rs = 0.76 due to eccentricity of
agglomeration of molecules.

Figure 7.12: The relative range of capacitance changes, due to eccentricity of agglomeration of molecules
for different radii of the functionalized area.

change occurs with the full coverage. Reducing the size of the functionalized area
can strongly confine the dependency of the capacity change to the shape of the ad-
sorption area.

Figure 7.11 shows the range of the capacity change caused by different eccentric-
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ity of the aggregation of molecules. The results of the FEM simulations show that
for any coverage ratio, the maximum signal occurs if the aggregation of molecules is
concentric at the functionalized area (i.e. fe is minimum or equates to zero), and this
signal decreases monotonically with the eccentricity. Therefore, for a similar cover-
age ratio, a large range of output signal might be observed. This is only due to differ-
ent eccentricities which results in a very poor accuracy and precision for the sensor
(see Figure 7.11-A). Clearly, the maximum eccentricity can be confined by reducing
the size of the functionalized area (see Figure 7.11-B). In fact, by reducing the size of
functionalized area, the response of the sensor has a near linear and a one-to-one
relation with the coverage ratio of the target molecules.

In order to clarify the effect of reducing the size of the functionalized area on the
accuracy of the system, the relative range of capacitance change due to the eccentric-
ity of agglomeration of molecules is shown in Figure 7.12. It can be clearly observed
that for any radius of the functionalized area, the poorest accuracy can be expected
for the lowest coverage ratio. For instance, for Re /Rs = 1, when a small cluster of
molecules is adsorbed to the functionalized area, the range of the response of the
sensor is higher than three times its average response.

The range of the capacitive signal for any coverage ratio can be reduced to a large
extent, when the size of the functionalized area is decreased, which, in turn, increases
the accuracy and precision of the sensor. Evidently, this increase in the accuracy and
precision is limited by the inherent signal to noise ratio of the sensor, in practice.
Overall, the results of this study shows that by decreasing the size of the functional-
ized area, not only the sensitivity of the surface stress sensors can be optimized, but
also, the linearity, accuracy and precision of the system can be improved.

7.7. CONCLUSION

This chapter presented an analytical solution for the displacement of a membrane
subjected to a surface stress changes in a part of its surface. Using this solution, we
derived the sensitivity of a membrane-shape capacitive sensor for surface stress mea-
surement. The competence of the proposed solution was verified by a comparison
with a detailed finite element model. The proposed analytical solution presents a
very accurate, fast and robust tool that can be used for design purposes.

The results of this study imply that the relative size of the functionalized area, has
a significant influence on the overall performance of such a sensor. This solution
shows that we can increase the deflection of the circular membrane-shape sensor up
to at least 22 percent of that of an equivalent cantilever shaped sensor. It is important
to emphasize that using membrane sensors, in comparison to cantilevers, allow us
to benefit from capacitive read-out techniques in liquid environments. Although the
absolute amount of capacity change is small, due to the high resolution of capacitive
measurements, the ultimate (optimized) sensitivity may be comparable to —or even
better than— cantilevers.

Furthermore, it was noticed that using the proposed optimized size of the func-
tionalized area, the linearity, accuracy and precision of the system can be signifi-
cantly improved. Consequently, the overall reliability of the system can be increased.
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8
ELECTROSTATIC INSTABILITY:

A MECHANISM FOR SURFACE

STRESS SENSING

In this chapter, we briefly study the stability of the capacitive surface stress sensor as
discussed in Chapter 7. In particular, the sensitivity of the electrostatic instability of a
clamped circular plate to a change in its surface stress is studied and the effect of a dif-
ferential pressure on this sensitivity is investigated. This study shows that limit voltages
of an electrically loaded clamped plate are highly sensitive to a change in surface-stress
and this sensitivity can be further improved by pressurizing the plate and by optimiz-
ing the size of the functionalized area. This suggests the suitability of a pressurized
clamped plate or membrane with electrostatic instability as the readout mechanism
for surface-stress based measurements.

Parts of this chapter have been submitted to Eurosensors-2016 Conference.
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8.1. INTRODUCTION

Surface stress based measurement is a relatively new mechanism in biological and
chemical molecular detection. The principle is based on molecular adsorption on
one side of a plate or cantilever. As a consequence, the surface stress of the compo-
nent changes and the component deforms [1, 2]. The deflection of the system can be
measured and used to estimate the surface stress [3, 4].

The pull-in instability, has been shown to be a sensitive readout technique for
surface stress measurements [5–7]. For such measurements, the sensor is basically
designed as a simple parallel plate capacitor using one flexible electrode as the sens-
ing component. When an electric potential is applied to the capacitor, an attractive
electrostatic load is induced between its electrodes. At a critical voltage the stiffness
of the structure in transverse direction vanishes and the system becomes unstable
and pull-in occurs. The pull-in voltage of a capacitor is influenced by the initial dis-
tance between the electrodes and stiffness of the flexible component, both of which
are affected by a deflection due to a change in surface stress of the system. Therefore,
a change in surface stress directly leads to a change in the limit voltage of the sensor.

In this chapter, we briefly study the sensitivity of the electrostatic instability of
a clamped micro-plate as a readout mechanism for surface stress based measure-
ments. For this purpose, a simplified model of a surface stress sensor, similar to
Chapter 7, is considered. A circular membrane is assumed as the sensing compo-
nent, while only a smaller circular area of its surface is subjected to changes in sur-
face stress. A discretized model of such a sensor is built, and finite element method is
used to study the sensitivity of the critical voltage of the membrane to the changes in
surface stress. Then the optimized radius of functionalized area (i.e. the area loaded
with surface stress) to maximize this sensitivity will be calculated.

In addition, the effect of applying a differential pressure on the flexible electrode
on the sensitivity is studied. As mentioned in Chapter 2, a differential pressure leads
to a significant change in pull-in behavior of the system. As a result, the system ex-
hibits a primary limit point which leads to a snapping behavior, before the ultimate
pull-in occurs. The sensitivity of both critical voltages to a change in surface stress
is studied for different differential pressures and different radii of the functionalized
area. The results of this study suggest that the electrostatic instability of a clamped
plate is highly sensitive to surface stress and the size of the functionalized area can
significantly affect this sensitivity.

8.2. METHODOLOGY

In order to study the sensitivity of critical voltage of a membrane sensor to surface
stress changes, a simplified model of a capacitive surface stress sensor is considered.
The model of the sensor consists of a circular conductive plate, fully clamped along
its circumference. A part of the membrane surface is coated with a thin layer of gold.
This gold layer is functionalized to adsorb the target molecules and thus, it represents
the functionalized area. The membrane is suspended over a grounded electrode and
the initial distance between the electrodes is d. A differential pressure P and an elec-
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Figure 8.1: The conceptual design of a surface stress sensor with a clamped plate as the flexible electrode
and sensing component.

tric potential V are applied to the membrane. This conceptual design is graphically
shown in Figure 8.1.

The commercial finite element software COMSOL [8] has been used to model the
electrostatics and mechanics of such a system. The material properties and specifi-
cations employed in the finite element model are given in Table 8.1. The details of
the model can be found in Section 7.4.

Table 8.1: Model parameters

Membrane Functionalized film Gap
Material doped Silicon Gold Air
Elasticity Modulus 169 GPa 80 GPa
Poisson ratio 0.2 0.3
Radius Rs =125 µm R f

Thickness 0.5 µm 0.025 µm d = 2 µm
Relative Permittivity 11.68 1 1.006

In order to calculate the equilibrium path for this structure, the differential pres-
sure and average deflections of the plate are prescribed. Then, the required electric
potential to maintain the equilibrium of the plate in such a configuration is calcu-
lated. To solve the highly nonlinear equations, the Newton method was employed.
This calculation is repeated over a range of average deflections and as a result, the
equilibrium path of the system is achieved. The critical voltages can be found by
tracing the limits of the electric potential.

To model the effects of the surface stress, a compressive stress resultant of 10 N/m,
which is typical of biological reactions, is applied on the thin layer of gold, and the
simulations are repeated. The simulations are repeated for different radii of the thin
film and different differential pressures. As a result, the optimized radius of the func-
tionalized area to maximize the sensitivity of the sensor can be obtained.

8.3. RESULTS AND DISCUSSION

In this section, the results of the proposed finite element model are discussed and the
sensitivity of the critical voltages of the membrane sensor to surface stress changes
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Figure 8.2: The change in pull in voltage (∆Vp ) and the deflection of the membrane (w) due to a 0.01 N/m

change in surface stress as a function of the normalized radius of the functionalized area
R f
Rs

.

is investigated. First, we consider a case where no differential pressure is applied to
the system (i.e. P=0). In this case the equilibrium solution has only one limit point
(pull-in) and the critical voltage at this limit point is Vp = 15.5 V. By applying the
surface stress, the flexible electrode deforms and consequently, the critical voltage
and deflection at this limit point slightly decrease. Figure 8.2 shows the change of
pull-in voltage (∆Vp ) due to a 0.01 N/m change in surface stress in its functionalized
area. The deflection in the center of the membrane (w) is also shown in the this figure.

As it can be observed in Figure 8.2, if the functionalized area covers the whole

surface of the membrane (i.e.
R f

Rs
= 1), the deflection of the membrane due to surface

stress changes is zero. Furthermore, there is an optimum radius of the functionalized
area which leads to the maximum deflection of the sensor. This optimum radius
depends on the materials and geometry of the sensor, as well as the surface stress
changes.

It should be noticed that the maximum sensitivity of pull-in voltage does not
necessarily coincide with the maximum deflection. For instance, for the model de-

Figure 8.3: The deflection of the membrane as a function of the applied voltage. Pressurizing the micro-
membrane leads to emergence of more limit points in the equilibrium solution of the system.



8.3. RESULTS AND DISCUSSION

8

137

Figure 8.4: The change of the primary and ultimate limit voltages (∆Vp ) to a 0.01 N/m change in surface
stress as a function of the normalized radius of the functionalized area R f .

scribed here, the radius of the functionalized area to create the maximum deflection
is R f /Rs = 0.6 and the optimum radius to create the maximum change in the pull-in
voltage is R f /Rs = 0.85.

Next, the effect of pressurizing the sensor on its sensitivity is studied. As men-
tioned before, if a differential pressure (in opposing direction of the electrostatic
load) is applied on the membrane, the system might exhibit new limit points in its
equilibrium solution (see Figure 8.3); one critical point is close to the limit point in
an unloaded system, only at a slightly different voltage and deflection. We refer to
this point as the ultimate limit point. The other critical point occurs earlier, and it
only happens if the pressure is higher than a certain amount. We refer to this point
as the primary limit point. These limit points and the threshold of their existence
have been extensively discussed in Chapter 2.

Figure 8.5: The change of the critical voltages of the system due to a 0.01 N/m change in surface stress as
a function of the applied pressure, for two different radii of functionalized area.
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The observed primary limit voltage is highly sensitive to surface stress changes in
the functionalized area. Moreover, the sensitivity of the primary limit and ultimate
pull-in voltage to the surface stress changes are functions of the size of the function-
alized area, as well as the applied differential pressure. The changes of primary and
ultimate limit voltage of the system, due to the change in surface stress on function-
alized area, are shown in Figure 8.4. For comparison, the change of the limit voltage
for two cases (i.e. when P=0 and P=800 Pa) are included. As can be observed, apply-
ing a differential pressure slightly improves the maximum sensitivity of the ultimate
limit voltage (at R f /Rs 0.85). The primary limit voltage, however, appears to be signif-
icantly more sensitive to the surface stress changes as compared to the ultimate limit
voltage. It should be noted that the optimum sensitivity for the test case at hand is
more than 15 mV for 0.01 N/m change in the surface stress.

Figure 8.5 shows the change of the critical voltages as a function of the applied
pressure. This figure is obtained for two cases, namely R f /Rs = 0.6 and R f /Rs = 0.85.
As can be observed, the sensitivity of the pull-in voltage can be improved by apply-
ing a positive pressure. The sensitivity of the primary limit voltage is generally higher
than the sensitivity of pull-in voltage. However, this sensitivity decreases monotoni-
cally with the pressure. Therefore, the optimum pressure to maximize the sensitivity
is the minimum pressure which allows for occurrence of the primary limit point.

8.4. CONCLUSIONS

A finite element analysis was performed to study the sensitivity of the electrostatic
instability of a membrane based capacitive sensor to the surface stress changes. The
electrostatic instability has been shown to be a sensitive readout mechanism for sur-
face stress-based measurements. The sensitivity of the critical voltages to surface
stress depends on the size of functionalized area. Hence, this size can be optimized
to maximize this sensitivity.

In addition, it was shown that applying a differential pressure on the micro- mem-
brane allows for observation of a so-called primary limit point which is significantly
more sensitive to surface stress changes. As the results of this study indicate, an op-
timization of two design parameters, namely, the pressure and the size of the func-
tionalized area, can remarkably improve the sensitivity.
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9
OVERVIEW, CONCLUSIONS AND

RECOMMENDATIONS

In this chapter, a brief summary and relevant conclusions arising from the performed
research are presented. Moreover, some reflections on the limitations of the chosen ap-
proaches and recommendations for continuation of this research are provided.
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9.1. OVERVIEW AND CONCLUSIONS

The main aim of this research was to provide theoretical techniques to study and
characterize the mechanical performance and stability of micro-plates in electro-
static MEMS devices. The provided techniques allow us to investigate the mechanical
behavior minutely, which is paramount for improving the performance of associated
MEMS devices, as well as development of MEMS with new application.

For this purpose, first, the nonlinear mechanics and stability of a micro-plate in
interaction with an electrostatic field has been investigated in Chapter 2. An analyt-
ical solution has been proposed to approximate the deformation, the pull-in voltage
and the critical deflection of the flexible electrode. The proposed method is sim-
ple and computationally inexpensive and still, provides very good agreement with
equivalent detailed finite elements solutions.

The results of this study suggests that the nonlinear geometrical stiffness of a
clamped micro-plate —often referred to as membrane effect— plays an important
roll in its nonlinear response to an applied electric potential. Hence, the pull-in volt-
age and deflection obtained by a conventional engineering solution (which is typi-
cally based on parallel plate electrodes with a linear spring constant), is somewhat
irrelevant for a real capacitor with clamped electrodes. Nevertheless, when no com-
pressive in-plane stress emerges in the system, the results of the engineering model
are often highly conservative and safe to be used for design.

The effect of a differential pressure on the stability of a clamped micro plate in
interaction with an electrostatic field has been addressed in Chapter 2. The results
of this study indicate that in presence of a differential pressure, the flexible electrode
is prompted to exhibit a primary instability and a snapping behavior, before elec-
trostatic pull-in occurs. As a matter of fact, the pressure can cause additional limit
points and an unstable solution branch in the equilibrium solution of the system.

The newly observed critical point (which we refer to as primary limit point) is
highly sensitive to the applied differential pressure. Thus, the possibility of employ-
ing the sensitivity of the limit voltage to pressure for sensing applications has been
discussed, and particularly, two different methods for employing this limit point for
pressure measurements have been suggested. Although electrostatic instability as a
sensing mechanism does not allow for continuous sensing methods, using the pri-
mary limit point can benefit from the advantages of high sensitivity, robustness of
pull-in measurements, and avoiding contact failure. In addition, still the device can
be fabricated with standard flat electrodes.

The pressure range in which the primary limit point emerges in the solution can
be calculated using the proposed method in Chapter 2. It is evident that when the
micro-plate becomes unstable, right at the critical points, the stiffness of the system
equals to zero. However, in a pressure range that the primary instability does not ex-
ist, still the combination of pressure and electrostatic load lead to a very low stiffness
in the system. This phenomenon is, in particular, very appealing for sensing applica-
tions.

It should be mentioned that employing a system close to its unstable configura-
tion makes it sensitive to imperfections. However, it has been shown that a small ini-
tial deflection (similar to plate’s first two buckling modes) only leads to a shift in the
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required range of pressure for existence of the primary instability and snap-through.
If the initial deflection is relatively large, the micro-plate will behave bistable even if
not loaded electrically.

Recall that in actuation applications, an AC voltage will be applied to the system,
and therefore, the frequency and amplitude of this AC voltage will also influence the
voltage and deflection of the limit points. In fact, other types of instabilities (rather
than limit points) might emerge in the solution branches of the system. Hence, the
nonlinear steady state response of an electrically actuated micro-plate and its stabil-
ity have been studied in Chapters 3 and 4. A Lagrangian approach has been utilized
to derive the approximate equation of motion. In order to investigate the branches
of periodic solutions and detect instabilities, a pseudo arc-length continuation and
collocation technique have been employed.

Based on the proposed scheme, the effects of load parameters, namely DC and
AC driving voltages, the excitation frequency, and also differential pressure on the
instability of the system have been explored. The proposed method is simple and
computationally efficient and it allows for analysis of highly nonlinear settings, which
would have been significantly expensive to investigate with any other computational
method.

The results indicate that in presence of a differential pressure the steady state
motion of an electrically actuated micro plate — similar to its equilibrium in static
loading— can be bi-stable or even multi-stable. This, in first place, means that the
response of the system depends on its initial conditions. Moreover, different se-
quences of loading lead to different instability mechanisms. Saddle-node and pe-
riod doubling bifurcations were repeatedly observed in the results and therefore, are
recognized as the main mechanisms of failure. In addition, it was found that in the
presence of pressure, increasing the DC or AC voltages could surprisingly help to sta-
bilize the motion of the micro-plate. This is while, in the absence of pressure, a higher
voltage only can aggregate the stability.

Considering that NEMS are the ultimate miniaturization step from MEMS de-
vices, we studied the possibility of analyzing nano-plates (with a thickness in the
order of 10−9m) within the framework of continuum mechanics. First, in order to ex-
amine the validity of the proposed model in Chapters 3 and 4, we employed a similar
methodology to analyze the nonlinear vibration of an electrically actuated Graphene
nano-resonator in Chapter 5. The method has been shown to be particularly benefi-
cial for extracting the Young’s modulus of the Graphene membrane.

In fact, the Young’s modulus of a single layer Graphene is claimed to be 1.15TPa
in literature. However, in the study performed in Chapter 5, the Young’s modulus
matching the theoretical results with the experiments is obtained 560GPa. If this
Young’s modulus is employed in the simulations, the effects of geometrical and elec-
trostatic nonlinearities could be accurately captured by the proposed method. The
mismatch between the expected Young’s modulus and the experimental results might
originate from the inherent imperfections in the Graphene membrane, such as rip-
ples and wrinkles. The results of this study support the argument that these imper-
fections do not have any global effect on the first vibration modes. However, they can
affect the overall Young’s modulus of the material.

Next, we have briefly studied the possibility of capturing the scaling effects in
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mechanical behavior of nano-plates by employing a nonlocal continuum theory. In
particular, in Chapter 6, a model has been proposed for capturing the effects of thick-
ness on the size-dependency of the mechanics of plates. A strong three dimensional
nonlocal formulation has been employed, and the effect of thickness on the flexural
rigidity and effective elastic modulus of the plate has been studied. Based on this
research, two modification factors for the extensional and bending stiffness matri-
ces were presented to account for the effect of thickness in the nonlocal elasticity
formulations.

In nonlocal elasticity, as a consequence of including contributions of integrals of
the strain field in the constitutive equations, additional boundary conditions are re-
quired. These boundary conditions define the shape of the nonlocal kernel at the
boundaries. Although in literature, the solution given by a bounded kernel is sug-
gested to provide the “correct” solution, there is no clear physical interpretation of
the chosen boundary conditions. Presumably, these boundary conditions should re-
flect the surface material property of the structure. Therefore, the suitable boundary
conditions for the nonlocal kernel shall be obtained using molecular dynamics sim-
ulations or other atomistic models.

Finally, in Chapters 7 and 8, the mechanical performance and instability of a
micro-plate as a transducer in surface stress sensing have been investigated. A design
has been presented for a membrane-based capacitive sensor for surface stress mea-
surements. An analytical solution has been presented to calculate the mechanical
response of such a sensor. Using this model, the optimum size of the functionalized
area in order to create the maximum sensitivity can be found. Furthermore, using
a finite element model, the effect of the shape and position of the agglomeration of
target molecules on the ultimate response of these types of sensors have been inves-
tigated.

In fact, a uniform surface stress change does not induce any deflection in a fully
clamped circular micro-plate. However, its deflection can be increased if a smaller
area of its surface is subjected to the surface stress changes. Therefore, the relative
size of the functionalized area has a significant influence on the sensitivity of the
surface stress sensor. Based on the performed study, the maximum deflection of a
circular micro-plate occurs when the radius of the functionalized area is 0.6 times
the plate radius. In that case, the deflection is at least 22 percent of an equivalent
cantilever with similar thickness and a length equal to the plate radius.

Notice that a clamped plate as a surface stress transducer has an advantageous
insulating property in comparison to cantilevers, and therefore, it can benefit from
capacitive read-out techniques in liquid environments. Although the deflection of a
clamped plate is smaller than cantilevers, the high resolution of the capacitive mea-
surements yields to signal to noise ratio comparable to —or even better than— can-
tilevers. The results of this study suggest that using the proposed optimized size of
the functionalized area, the overall reliability of the capacitive surface stress sensors
can be increased.

In Chapter 8, the electrostatic instability of a membrane-based capacitive sensor
and its sensitivity to surface stress has been investigated. The electrostatic instability
has been shown to be a promising readout mechanism for surface stress measure-
ments. Particularly, when the micro-plate is loaded with a differential pressure, the
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observed primary limit point is remarkably sensitive to the surface stress changes.
Similar to the concept of employing electrostatic instability as a mechanism for pres-
sure measurements, this system can benefit from the high sensitivity and robustness
of pull-in measurements, and still avoids contact failure.

The techniques proposed in this thesis are simple and computationally efficient.
They can provide in-depth insight into the problems and have made it possible to
analyze some phenomena exhibited by micro-plates that were not feasible other-
wise. The methodology and the results presented in this thesis can be useful to many
MEMS settings with plate-like micromechanical components.

9.2. LIMITATIONS AND RESEARCH OUTLOOK

This thesis has provided some models for characterization of micro-plates in elec-
trostatic MEMS devices. Evidently, all theoretical models, including those proposed
here, rely on some simplifying assumptions which confine their competence. How-
ever, it has been nicely quoted by Henri Poincaré in another context: “Perhaps we
ought to wait, and not look for a solution until have patiently assembled all the el-
ements, but if we were so reasonable, if we were curious without impatience, it is
probable we would never have created science and we would always have been con-
tent with a trivial existence [1].”

There are several aspects excluded in the present research, which might be of
particular importance for the nonlinear behavior and stability of the device. A couple
of these aspects which have not been investigated in this thesis and remain as open
questions for future research projects are outlined here.

9.2.1. IMPERFECTIONS ANALYSIS

In fabrication processes of MEMS devices or during their operation, unexpected load-
ings or defects might emerge in the system which can influence the mechanics of the
micro-component and ultimately affect the performance of the device. In this thesis,
we have discussed the effect of a differential pressure and we have included a uni-
form in-plane residual stress in the models. However, some imperfections such as
small holes or cracks, anisotropy of material, or non-uniform residual stress can all
be influential to the nonlinear behavior of the component. For example, in the anal-
ysis in Chapter 2, a small defect can break the symmetry and therefore, the proposed
mode shapes to describe the displacement fields need to be adapted to account for
those a-symmetric shapes. In dynamic analysis in Chapters 3 and 4, a defect changes
the resonance frequencies of the plate, which, in turn, might result in internal reso-
nance or other nonlinear effects. Studying the effects of defects and imperfections
on nonlinear mechanics of micro plates is an interesting research topic by its own.

Furthermore, at small scales, imperfections such as cracks, holes or slight rip-
ples can affect the effective material properties of the component. Earlier in this
chapter, in the discussion on the nonlinear dynamics of Graphene resonators, we
mentioned the hypothesis of the effect of imperfections on the Graphene material
properties. As a mater of fact, if such hypothesis holds, it can be of great interest
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in nondestructive identification of imperfections in Graphene membranes. A non-
contact method for concurrent estimation of Young’s modulus and imperfections of
2D nano-materials, by exploiting their nonlinear dynamics response is an interesting
research topic which can be perused as a continuation of this research.

9.2.2. POST-INSTABILITY ANALYSIS

Another interesting research question arising from this thesis is the behavior of the
micro-plates in electrostatic MEMS devices, after it reaches its critical configuration.
In this study, the stable and unstable solution branches in steady state motion of
the micro-plate have been discussed and based on that, the post-instability behavior
of the plate has been determined. However, to study post-instability phenomena
rigorously, a full transient analysis is required.

Using a transient analysis one can determine if during the snapping the symme-
try of the system breaks, or, if a period doubling bifurcation leads to a chaos. It should
be noticed that such analysis is strongly influenced by the imperfections. A transient
analysis can be particularly important in design of actuators. As a matter of fact, the
actuator can be designed in a way so that chaos is avoided in its operating frequency
range. Furthermore, this transient analysis is required for designing a feedback con-
troller for the actuator.

9.2.3. EXPERIMENTAL VERIFICATION

The present study has been mainly focused on analytical and computational meth-
ods. In order to employ these methods in engineering applications and design, the
validity of their results needs to be evaluated and calibrated by experiments. In Chap-
ters 5 and 6, comparisons were made with experimental results. However, the dis-
cussion on stability of micro-plates in interaction with electric fields remains to be
verified experimentally. Without further research into experimental stability calibra-
tion, and verification of bi-stable behavior of flat micro-plates, it will not be possible
to employ the proposed results in practice.

It is the author’s opinion, however, that the theoretical solutions are not only to
solve one existing problem, but also to present an in-depth insight, letting the scien-
tist to dream and then, to make those dreams happen in practice.
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