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Part I:  Isogeometric Analysis and Shock 

Physics 

Chris Long1, Mikhail Shashkov2, Ido Akkerman4,  

Guglielmo Scovazzi5, David Benson3, Yuri Bazilevs3 
1Los Alamos National Laboratory, T-3 Fluid Dynamics and Solid Mechanics 

2Los Alamos National Laboratory, XCP-4 Methods and Algorithms 
3University of California, San Diego, Structural Engineering 
4TU Delft, Mechanical, Maritime, and Materials Engineering 

5Duke University, Civil and Environmental Engineering 

 

 



Cylindrical Shocks: 

Numerical Issues 

 Plot taken from: 

V.A. Dobrev, T.E. Ellis, T.V. Kolev, R.N. 

Rieben, High-Order curvilinear finite 

elements for axisymmetric Lagrangian 

hydrodynamics, Computers & Fluids, 2012 

 

 

 Discretization errors lead to 

Rayleigh-Taylor type 

instabilities and loss of 

symmetry 

 Can be difficult to distinguish 

true physics from numerical 

instability 



Isogeometric Analysis 

 Use spline functions to define surface geometry 

and as the basis functions for finite element 

analysis 

 Allows for modeling complex shapes with no 

geometric error 

 Is a natural extension of (Non-Uniform Rational B-

Spline) NURBS 

  T-Splines and other bases may be used as well 



Rayleigh-Taylor and 

Richtmyer-Meshkov Instabilities 

 Small perturbations on a fluid interface are 

shocked or accelerated by body forces 

 Vorticity is deposited on interface and 

perturbation grows 

– Can be physical or due to discretization error 

 Hypothesis: 

– The exact nature of NURBS-based 

discretization can help to reduce this source 

of error 



Equations and Formulation 

We use a Lagrangian framework, where the 
following equations hold: 

 



Formulation 

We can relate the equations using the 
following assumptions: 

 

 

 

 

 

 

Where “mu” is an artificial shock viscosity 
that is dependent on known flow 
parameters 



Formulation 

Classical definition of shock viscosity has 
linear and quadratic term: 



Formulation 

 The weak formulation with homogeneous 
boundary conditions is then: 
 

 

 

 

 For the axisymmetric case, we can 
formulate this in cylindrical coordinates: 
 

 

 

 



Axisymmetry 

 The factor of “2pi” cancels to get: 
 

 

 

 

 The energy and continuity equations are 
similarly modified.  The continuity 
equation becomes: 

 

 We should also note that due to 
axisymmetry, the gradient operator is 
modified. 
 

 



Time Integration 

 We solve the coupled system using an 
RK2 scheme in time. 

 Each ½ time step fluid solve is solved 
using IGA and a conjugate gradient 
method to solve the resulting linear 
system. 

 The energy update is performed.   
 Total energy is preserved exactly 

 Energy is an element level value, and updated gauss point values may 
be reevaluated with respect to a lower dimensional value.  

 Proof and details available in: Bazilevs, Akkerman, Benson, Scovazzi, 
Shashkov Isogeometric Analysis of Lagrangian Hydrodynamics, JCP, 2012 

 

 

 
 



Time Integration 

 Time step size depends on the acoustic 
and viscous conditions: 

 

 

 RK2 time integration is carried out in two 
stages as follows: 

 

 
 



Time Integration 

 Step 1 of the RK2 scheme adapted for 
this problem is follows: 

 

 

 

 

 

 Step 2 is analogous to Step 1 

 

 
 



Problems 

 2-D Cartesian 

 Sedov 

 Noh 

 RZ 

 Coggeshall 

 Noh 

 Multi-Material Problem 

 Sedov 

 

 
 



Sedov ‘Blast’ Problem 

 Initial condition: 

 Energy source is deposited at the 

origin in an area of uniform pressure 

and density 

 Radial expansion occurs 

 An exact solution exists for comparison 

 



2-D Sedov 

 Computations on C0 and C1 continuous 
IGA meshes 

 
 

   C1 (traditional IGA)            C0 (quadratic FEM) 

 
 



2-D Sedov 

 Solution: Use mixed C0/C1 continuous 
boundaries 

 
 



2-D Sedov 



2-D Sedov 



Internal Energy 

 Energy is cell-level quantity, not 
represented in the function space 

 Redistribute energy inside the cell while 
respecting the cell-level quantity  

 
 



Internal Energy 

 For a 2-D element, this is accomplished 
as shown:  

 
 



2-D Sedov 



2-D Sedov 



2-D Noh 

• Initial condition of uniform density, velocity 

field oriented toward origin, 

• Exactly symmetric initial velocity field is 

possible to attain and is unique to an IGA 

approach 

• Exact solution exists 
 



2-D Noh 



2-D Noh 



Coggeshall Problem 

• Adiabatic compression problem with elliptical 

geometry 

• Exact solution exists 

• Initial condition is a sphere with properties of 

the exact solution 
• Use a pressure boundary condition on outer ring 

of sphere to drive problem 
 

L.G. Margolin, M.J. Shashkov, and M.A. Taylor, “Symmetry Preserving Discretizations for Lagrangian Gas Dynamics”, 

Proceedings of the Third European Conference Numerical Mathematics and Advanced Applications, World Scientific. 2000 



Coggeshall Problem 



Noh Implosion Problem 
 

• Initial condition: 

• Velocity approaching origin in the radial 
direction 

• Axisymmetric 3-D problem 

• Has analytic solution for comparison 

• Major computational problem: 

• Symmetry preservation 



Noh Implosion Problem 



Noh Implosion Problem 



Noh Implosion Problem 
 

• Can define symmetric error in terms of scatter 
of computed data on gauss points of same 
radius, r 



Noh Implosion Problem 



Noh Implosion Problem 



Noh Implosion Problem 



Noh Implosion Problem 



Multiple Material Problem 

• Two fluids.  Inner sphere of low density 

(0.05), and outer shell of high density (1.0) 

• Initial condition: 
• Fluids are motionless, with uniform pressure. 

• Dirichlet  boundary condition is imposed  at the 

outer boundary 

• Prescribe a uniform flowrate radially toward origin 

• Shock forms and strikes interface several 

times. 

• High Atwood Number (0.905)  causes fast 

growth of Rayleigh Taylor type instabilities. 



Multiple Material Problem 



Multiple Material Problem 



Multiple Material Problem 
V.A. Dobrev, T.E. Ellis, T.V. Kolev, R.N. Rieben, High-Order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, 

Computers & Fluids, 2012 



Multiple Material Problem 

Radial  

symmetry 

region 

Radial  

symmetry 

region 

Radial  

symmetry 

region 

Considered 

three transitions 

from symmetric to 

non-symmetric 

region. 



Multiple Material Problem 

Symmetry Line at 0.4 

Symmetry Line at 0.8 

Symmetry Line at 0.6 



Multiple Material Problem 
Dobrev, et al 



Sedov ‘Blast’ Problem 



Sedov ‘Blast’ Problem 



Conclusions 

 NURBS-based IGA is a highly promising 

candidate in this field 

 Energy can be preserved exactly 

 Exact symmetry preservation and 

solutions are attainable in some cases, 

and is otherwise ‘best-in-class’. 

 

 



Part II:  Pulsatile Ventricular Assist 

Devices 
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Pulsatile VADs 



Pediatric VADs 

 Thrombus formation is major clinical problem 

 ~22% of pediatric patients experience 

thromboembolic event 

 Survival rate is 63-89% 

 Bridge to recovery usage shows significant 

promise in children 

 Heart is able to repair itself in ways not seen in adults 



How do we simulate this? 

 Problems: 

 Multiple fluids, moving domains 

 Mesh quality issues when mesh is compressed 

 Membrane dynamics are highly nonlinear 

 Tools developed for: 

 Multi-domain, multi-fluid simulations 

 Isogeometric Analysis of structure 

 Ensuring good mesh quality 

 Fast and robust fluid-structure communication 
C.C. Long, A.L. Marsden, Y. Bazilevs, Fluid-structure interaction simulation of 
Pulsatile Ventricular Assist Devices, Computational Mechanics 2013(52) 



Multiple Domains 

 Create two distinct 

numerical meshes, 

one for each fluid 

domain 

 Create an additional 

numerical mesh for 

the membrane 

(NURBS) 

 Create a method for 

transferring boundary 

conditions across 

meshes 



Non-matching discretizations 

 Take normal out of Gauss point and 

define a line along vector path 

 Find shortest distance to the line on plane 

defined by other mesh – store this 

mapping and use repeatedly 



 When mesh becomes highly compressed, 
we lose mesh quality. 

 

 

 Use a “Point in Polygon” 
method for passing mesh 
values 

 Remeshing step takes less 
than 5 minutes 

 

Mesh Quality 

Pause simulation.   
Write out deformed 

mesh and nodal values 
to file. 

Use MeshSim to read 
old surface mesh and 
create a new interior 

mesh. 

Pass old mesh values 
to new mesh and 
restart simulation. 



Non-Linear Membrane Motion 

 Use a Kirchhoff-Love shell solver to solve 

membrane 

 Transverse shear is zero 

 



Fluid Structure Coupling 

 Weak form in FSI case is:  

 Find 𝒖 ∈  𝑆𝑢, 𝒅  ∈  𝑆𝑑, and 𝑝 ∈  𝑆𝑝 such that  

    ∀  𝒘 ∈  𝑉𝑢, 𝒘𝑠  ∈  𝑉𝑑, and 𝑞 ∈  𝑉𝑝:  

 

 

 

Where   
 



FSI 

 These four matrices are difficult to assemble 

 They measure fluid/structural residual response due 

to variations in the structural/fluid domain 

 Have dimensions of “number of fluid nodes x number 

of structural nodes” or vice versa 

 Fluid and structural domains have separate 

discretizations and shape functions. 

 



Matrix Free Method 

 Must approximate         (   ) some other way. 

 Use the definition of a derivative to achieve this: 

 

 Mathematically very simple! 

  Downside: Requires assembly of right hand 

side vectors at each Krylov iteration. 



Results 



Results 



Quantifying Thrombotic Risk 

 How can we use simulation 

results to make informed 

design choices? 
 Must have a means of computing clinically 

relevant risk factors based off flow 

 



Coagulation Chemistry 

 Coagulation is result of complex set of 
chemical reactions in blood 

 This area is an active field of research, and 
many have solved ODEs governing 
coagulation in blood flow 

 Most research focuses on vessel wall injury as 
catalyst for coagulation 

 Intrinsic or ‘contact’ pathway not well studied or 
modeled 

 Meaningful implementation is difficult at this 
time 

 
 



Flow risk factors 

 Other flow parameters must be extracted 
from simulations for evaluation 

 Flow stagnation and particle residence 
time are well-known to correlate with 
increased risk of thrombosis 

 Several definitions of “residence time” are 
possible 

 Esmaily-Moghadam developed two 
definitions designed to measure residence 
time for thrombotic risk 



Residence Time 

 RT1 and RT2  are computed on a moving 
domain as: 

 

 

 

 

 

Where 𝜏 is the nodal residence time, which 
is advected through the flow. 
C.C. Long, M. Esmaily-Moghadam, A.L. Marsden, Y. Bazilevs, Computation of residence time 
in the simulation of pulsatile ventricular assist devices, Computational Mechanics 2013  



Advection-Diffusion Solver 

 For residence time computations, 𝜏 is 
initialized to 0 

 We solve the advection-diffusion equation as 
shown, using computational results from 
simulations: 

 

 

 

 Use a stabilized finite-element based 
implementation 



Results 



Results 

𝑅𝑇1 =
1

𝑇
 𝜏 𝑑𝑡
𝑁𝑇

𝑁−1 𝑇

 𝜏 =  
1

𝑉𝑡
 𝜏 𝑥, 𝑡 𝑑Ω 



Dye Injection 



Dye Injection 



Design Space Parameterization 

• Design space is created automatically based 

on the input of 4 key parameters 



Cost Function 

• Optimization requires a “cost” function, J: 

 

 

 

• Evaluation of J requires a full PVAD simulation 

• Should correlate with thrombotic risk 

 

 

 

• Post-processing of results is fully automated. 

 

 

𝐽 =
𝑅𝑇1 + 𝑅𝑇2 +max 𝜏

3
∙ 𝑇95 



SMF Framework 

• Cost function evaluations are expensive! 

(~20,000 CPU hours)  

 

• Surrogate Management Framework (SMF)  

• Surrogate function intersects known cost 

function evaluations in the design space 

• Used to predict new cost function minimum 

• Design space is seeded with initial 

computations of J 



Flowchart 

Initialization (LHS) 

Seed Surrogate 

Search 

Use Surrogate to 

Predict Minimum 

Poll 
(OrthoMADS) 

Stop 

New Minimum 

Found? 

No 

Yes 

New Minimum 

Found? 
Yes 

Mesh resolution 

below tolerance? 

No 

Yes 

No 

Refine design space 

mesh 



Results 

• 37 models were created over 5 Search/Poll 

sequences and 2 design space mesh 

refinements. 

• Optimization scheme almost immediately 

settles on vertical arm orientation. 

 

 

 

 
 

C.C. Long, A.L. Marsden, Y. Bazilevs, Shape optimization of pulsatile ventricular assist 

devices using FSI to minimize thrombotic risk, Computational Mechanics 2013 

 

 



Results 



Conclusions/Future Work 

• Model creation, simulations, and post-processing are 

automated and robust 

• Simple optimization with reduced number of variables 

suggests thrombotic risk reduction is possible 

• Vertical arms are demonstrably superior in terms of 

residence time 

 

• Improve cost function by implementing new risk 

factors – OSI, WSS are possible contributors 

• Validation with experiments 

• Run optimization with larger set of design parameters 



Non-spatial Parameters 

• Additional parameters that do not require 

physical changes to the device may also be 

used 

• Constrain that a desired flowrate, Q, is 

achieved 

• Stroke volume, beat frequency, shape of 

flowrate time curve 

• Length of fill/expel phases 

• Exponent of sin function 


