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Abstract: The Caprivi basin in Namibia has been affected by severe flooding in recent years resulting
in deaths, displacements and destruction of infrastructure. The negative consequences of these floods
have emphasized the need for timely, accurate and objective information about the extent and location
of affected areas. Due to the high temporal variability of flood events, Earth Observation (EO) data at
high revisit frequency is preferred for accurate flood monitoring. Currently, EO data has either high
temporal or coarse spatial resolution. Accurate methodologies for the estimation and monitoring
of flooding extent using coarse spatial resolution optical image data are needed in order to capture
spatial details in heterogeneous areas such as Caprivi. The objective of this work was the retrieval of
the fractional abundance of water (γw) by applying a new spectral indices-based unmixing algorithm
to Medium Resolution Imaging Spectrometer Full Resolution (MERIS FR) data using a minimum
number of spectral bands. These images are technically similar to the OLCI image data acquired by
the Sentinel-3 satellite, which are to be systematically provided in the near future. The normalized
difference wetness index (NDWI) was applied to delineate the water surface and combined with
normalized difference vegetation index (NDVI) to account for emergent vegetation within the water
bodies. The challenge to map flooded areas by applying spectral unmixing is the estimation of
spectral endmembers, i.e., pure spectra of land cover features. In our study, we developed and
applied a new unmixing method based on the use of an ensemble of spectral endmembers to capture
and take into account spectral variability within each endmember. In our case study, forty realizations
of the spectral endmembers gave a stable frequency distribution of γw. Quality of the flood map
derived from the Envisat MERIS (MERIS) data was assessed against high (30 m) spatial resolution
Landsat Thematic Mapper (TM) images on two different dates (17 April 2008 and 22 May 2009) during
which floods occurred. The findings show that both the spatial and the frequency distribution of the
γw extracted from the MERIS data were in good agreement with the high-resolution TM retrievals.
The use of conventional linear unmixing, instead, applied using the entire available spectra for each
image, resulted in relatively large differences between TM and MERIS retrievals.

Keywords: remote sensing; spectral unmixing; flood mapping; NDWI; coarse resolution; mixed pixel;
fractional vegetation
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1. Introduction

Flooding is a natural hazard that causes more damage than any other natural hazard [1–3]. Flood
plains are often densely populated and most vulnerable to flood events. Flood monitoring in such areas
is consequently required to mitigate the effects of flood disasters and to assess inundation damages.
Floodplain mapping and flood risk assessment are frequently assessed using one-dimensional (1-D)
and two-dimensional (2-D) hydraulic models [1,4,5]. A key element for the reliability of such
model-based analyses is the accurate setup of the river model, which is primarily related to the
representation of the topography and of the land surface hydraulic properties [6–8]. Earth observation
by satellites has been shown to be helpful in this respect. The estimation and mapping of hydraulic
roughness by [9], who used Radarsat-2 and Landsat Thematic Mapper (TM) images for spatial
parameterization of Manning’s roughness coefficient, is a good example. These authors emphasized the
challenges of constructing an accurate estimator of hydraulic roughness. Accordingly, the opportunity
of calibrating directly the model—estimated flooded area versus time against satellite retrievals of
fractional water abundance, as proposed in this study, is a very promising approach to improve
model accuracy and reliability. To reduce uncertainties in the parameters used, hydraulic models also
require flow data or inundated areas for calibration purposes. Obtaining flow data is often challenging
because many of the river systems that are prone to flooding are ungauged, inadequately gauged,
or have gauges that are unreliable due to poor maintenance [5,6]. For hydrological data-scarce and
spatially extensive floodplains in remote regions, earth observation is the only viable and cost-effective
alternative for mapping inundated areas [2,3]. The lack of available flow data, augmented by restricted
access, leads to data gaps that make effective and timely monitoring of river basins difficult.

Frequent and accurate quantitative mapping of inundated area using EO data is receiving much
interest within the field of flood damage assessment and management [10–12]. Recent literature
documents noticeable efforts of investigating the potential of flood inundation maps, derived from
optical and radar image data, to calibrate and validate hydrological models in sparsely gauged or
ungauged areas [13]. In particular, in [13] used flood maps derived from multispectral images and a
distributed hydrologic model to characterize the spatial extent of flooding and associated hazards over
sparsely gauged or ungauged basins. These studies demonstrated the utility of flood spatial extent
obtained from satellite data to calibrate and evaluate hydrologic models.

Several methods have been proposed to delineate inundated areas using remotely sensed data.
These methods make use of: (a) reflected solar radiation [3,14]; (b) emitted thermal radiation [15];
and (c) microwave backscatter and/or emission [11,16]. Reflected solar radiation methods are effective
for assessing seasonal patterns of inundation in areas that have minimum vegetation and cloud
cover [4,17]. These methods are based on the principle that water strongly absorbs NIR radiation.
Inundated areas can be mapped by thresholding NIR reflectance or by classifying normalized ratios of
NIR, red, green, short-wave infrared, or middle infrared bands. Thermal radiation methods delineate
water on the principle that land and water have different thermal inertia and emission properties.
Passive microwave methods rely on the large difference in the emissivity of water and land area.
For texample, in [15] differentiated land and water using AMSR-E brightness temperature (Tb) values,
which are normally much lower for water than for land (Tb,land > Tb,water). Conversely, [18] used a
simplified radiative transfer model and linear model to retrieve the fractional area of water saturated
soil (WSS) and standing water from the polarization difference brightness temperature (PDBT) at
37 GHz measured by the Special Sensor Microwave Imager (SSM/I). Active microwave methods are
based on the assumption that calm water acts as a specular reflector, returning low backscatter to
the sensor. The water features will appear darker in the image as compared to non-water features.
For instance, authors in [16] successfully (accuracy > 85%) delineated floods by combining very
high-resolution Radarsat-2 (C-band, HH polarization) data with flood return period data estimated
for each point of the floodplain from a digital elevation model (DEM). SAR has become an important
source of data to map flooded areas as the land surface can be observed regardless of the cloud
cover, and during day or night. However, SAR data has been shown to be less effective in inundated



Remote Sens. 2017, 9, 1013 3 of 24

areas with emergent vegetation or when waves are present (e.g., in windy conditions) [17]. Woody
vegetation is particularly problematic as its relatively rough surface leads to the radar signal being
scattered diffusely, with flooded vegetated areas appearing bright on the image [17]. The effect of
rough surfaces is reduced when very high spatial resolution SAR data is used, but such data—acquired
frequently and over large areas—remains costly.

Spectral band ratioing has been the basis for formulating indices such as the Normalized Difference
Water Index (NDWI) for mapping water bodies [14]. NDWI has been used in many studies for mapping
seasonal or long-term changes in water surfaces [10,14]. Authors in [10] found that NDWI produced
the best results compared to single-band (NIR) density slicing and Tasselled Cap wetness for mapping
flood-affected areas in India using Landsat Thematic Mapper (TM) and IRS LISS III data. In [19], NDWI
was first used to enhance water features, then a histogram segmentation method was applied on a
re-defined NDWI based on a pixel-wise distance from the highest value of the NDWI.

Given the temporal variability of flooding, very high temporal resolution data is required for flood
monitoring. However, the spatial resolution of current multispectral data products acquired at high
(e.g., daily) temporal resolution is low (250 m or lower) which negatively affects the performance of
algorithms for accurately delineating inundated areas. In addition, although NDWI thresholding has
been shown to be successful in mapping flood extent, it is not suitable in highly heterogeneous areas,
especially when emergent or partly submerged vegetation is present [20]. This is attributed to the
sensitivity of NDWI to vegetation water content [21] and to the strong reflectance of vegetation in the
NIR band (which is a component of the NDWI). The presence of mixed pixels, mostly at the edges of
inundated areas, but in some situations also within flooded areas increases the sensitivity of NDWI
to vegetation.

Pixels in satellite images usually contain mixed spectral information due to the high variability in
the distribution of land cover components. In its simplest representation, many areas include three
land cover types, namely water, soil and vegetation. These types are likely to be mixed within observed
targets, even at the relatively high spatial resolution (30 m) of the TM sensor. The spectral signal of a
mixed pixel can be represented as a combination of the component spectral signals. The reflectance
of a pixel in a particular spectral band may be represented as the sum of the reflectance values of
all subpixel components (endmembers) in that band, weighted by the fractional abundance of each
component [22–24]. To deal with the mixed pixel challenge, several approaches such as spectral
unmixing [25], fuzzy c-means (FCM) and possibilistic c-means (PCM) [26], and Bayesian unmixing
models [27] have been developed to attribute the fractions of each pixel to classes.

Spectral unmixing (SU) is one of the most popular techniques used for analyzing mixed pixels
and has been used in studies to derive flood maps in areas where water was partly covered by
vegetation [20,23,25]. SU is the procedure by which the measured spectrum of a pixel is decomposed
into a collection of spectral endmembers and a set of corresponding fractional abundances within the
pixel [22,24,28]. Generally, SU results are highly dependent on the quality of spectral endmembers. As a
rule, the endmembers must be fewer than the number of spectral bands, and all of the endmembers
in the image must be specified. A method to improve the selection of endmembers by an adaptive
procedure was presented by [25]. This method improved flood mapping on three different sets of
Landsat TM images of three different flood events in Australia. SU can be classified into linear and
nonlinear unmixing approaches. In linear SU (LSU) it is assumed that the combination of spectral
signatures (endmembers) is linear, meaning that incident radiation only interacts with each component
independently, unlike nonlinear unmixing that considers the multiple scattering between different
components [24]. More importantly, in linear unmixing it is also assumed that each endmember has a
unique reflectance spectrum, equal for all pixels of the endmember Linear approaches are preferred
because they are simple and flexible. Although only a few studies have applied SU for flood mapping,
it has provided successful outcomes. For instance, LSU provided a relatively successful (R2 = 0.79)
overall estimate of the water area in the Senegal River Valley when it was applied to unmix just two
endmembers, land and water, using NOAA-AVHRR bands 4 and 5 and Landsat TM data [29]. With the



Remote Sens. 2017, 9, 1013 4 of 24

exception of [30], relatively little research has been done on unmixing MERIS data to map land cover
and none specifically to delineate flooded areas. In one example, authors in [30] applied linear unmixing
on MERIS data in order to extract subpixel land-cover composition in the fragmented landscape of the
Netherlands. This study addressed a rather different problem than ours, since it relied on fractional
abundances of land—cover classes determined from land cover data at high spatial resolution.

When LSU is infeasible [31], nonlinear SU (NLSU) can be implemented. For instance NLSU
was applied for surface water mapping by [32] using Landsat 8 OLI to detect wet pixels in a highly
heterogeneous urban environment. A quantitative accuracy assessment showed that the applied
method gave the best performance in water mapping with a mean user’s accuracy of 92% for test
regions. A comparison of linear and nonlinear unmixing was done by [33] and the study concluded
that nonlinear approaches deal better with complex and mixed vegetation surfaces. For the sake of
brevity, the reader is referred to [25,28,33,34] for an overview, examples and comparison of SU methods.
Although both linear and nonlinear approaches have achieved significant progress in decomposing
mixed spectral signals, a robust technique does not yet exist, leaving end-users with the difficult task
of selecting the most appropriate approach [24].

In this study, we propose and evaluate nonlinear SU of NDWI observed with MERIS data to map
flood extent in the highly heterogeneous Caprivi region. The proposed method relies on the estimation
of fractional abundance of water (γw) by incorporating the fractional abundance of vegetation (γv)
and three endmembers (soil, vegetation and water) in the NDWI equation. NDVI is used to estimate
γv which gives the fraction of emergent vegetation within water bodies. The main objective of this
work is to assess the methodology for mapping complex vegetated flooded areas using MERIS FR
data at 300 m spatial resolution and to evaluate its performance by comparing the results against high
(30 m) spatial resolution reference data obtained from Landsat TM imagery. The results are interpreted
in the context of extending the method to data supplied by the recently launched Sentinel-3/OLCI
imaging spectrometer, which has a similar spatial resolution and spectral configuration to MERIS
FR. The proposed application to Ocean and Land Color Instrument (OLCI) on board Sentinel 3 data
will permit the monitoring of flood events at daily temporal resolution over large areas. Accordingly,
the opportunity of calibrating directly the model-estimated flooded area versus time against satellite
retrievals of fractional water abundance, as ours, is a very promising approach to improve model
accuracy and reliability. The study also addressed a secondary objective by comparing the proposed
method with the conventional LSU.

2. Materials and Methods

2.1. Study Area

The study area (Figure 1) comprises the Caprivi floodplain, which is about 3200 km2 in size and
is located between 17◦30′S and 18◦05′S and 24◦15′E and 25◦15′E. The Caprivi flood plain receives an
annual rainfall of about 900 mm, of which most occurs during the summer months (November to
April) [11]. Summer is characterized by high temperatures, averaging 30 ◦C during the day and 15 ◦C
during the night. During the dry winter season (June to September) the mean temperature during the
day is 25 ◦C and 2 ◦C at night [35] .
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The Zambezi River, which is one of the largest rivers in Africa, flows along the border between 
Namibia’s Caprivi region and Zambia. The region is densely populated because it receives more rain 
than the other more arid regions of Namibia. Flooding is mainly caused by high rainfall in the upper 
Zambezi River Catchment area in Southern Congo, Angola’s Lunda Plateau and North Eastern 
Zambia. Flooding is a regular occurrence in the Caprivi, with the most devastating floods 
experienced in March 2004, April 2008 and 2009. During the April 2008 flood event, the Zambezi 
River spilled over its banks, leaving a large area inundated. Authors in [36] reported that in April 
2009, the Caprivi region of Namibia experienced the worst flooding in decades after heavy torrential 
rains across Angola, Namibia, and Zambia increased water levels in the Chobe, Kwando and 
Zambezi rivers. The impact was substantial since the Caprivi region is home to approximately 60 
percent of the Namibian population. Infrastructure, agricultural land, conservancies, livestock and 
homes were washed away during April 2009. About 2500 to 3000 people living in the area were 
evacuated to higher ground [37]   

Storm hydrographs and daily water levels at the Katimo Mlilo gauge (Figure 1) for the period 
from 2008 to 2011 are shown in Figure 2. The dotted lines show the flood threshold for the water level 
and discharge as provided by the Namibian Meteorological Department. 

Figure 1. Location of the study area.

The Caprivi Basin is flanked by four rivers, namely the Zambezi, Linyanti, Chobe and Kwando.
The Zambezi River, which is one of the largest rivers in Africa, flows along the border between
Namibia’s Caprivi region and Zambia. The region is densely populated because it receives more
rain than the other more arid regions of Namibia. Flooding is mainly caused by high rainfall in
the upper Zambezi River Catchment area in Southern Congo, Angola’s Lunda Plateau and North
Eastern Zambia. Flooding is a regular occurrence in the Caprivi, with the most devastating floods
experienced in March 2004, April 2008 and 2009. During the April 2008 flood event, the Zambezi
River spilled over its banks, leaving a large area inundated. Authors in [36] reported that in April
2009, the Caprivi region of Namibia experienced the worst flooding in decades after heavy torrential
rains across Angola, Namibia, and Zambia increased water levels in the Chobe, Kwando and Zambezi
rivers. The impact was substantial since the Caprivi region is home to approximately 60 percent of
the Namibian population. Infrastructure, agricultural land, conservancies, livestock and homes were
washed away during April 2009. About 2500 to 3000 people living in the area were evacuated to higher
ground [37].

Storm hydrographs and daily water levels at the Katimo Mlilo gauge (Figure 1) for the period
from 2008 to 2011 are shown in Figure 2. The dotted lines show the flood threshold for the water level
and discharge as provided by the Namibian Meteorological Department.
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flooding events considered in this study. 
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time (apart from the second TM image, which was acquired a day before the MERIS image), we 
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Figure 2. Yearly cycle of Zambezi river: (a) Discharge hydrograph; and (b) Water level for the period
from 2008 to 2011. The dotted line shows the flood threshold whereas the black circles point out the
flooding events considered in this study.

2.2. Remote Sensing Data

There were 16 TM and 88 MERIS cloud free/low cloud cover images for the study area during
the flood season March to May and from 2008 to 2011. Among these, only two matching pairs of
high (Thematic Mapper, TM) and low (MERIS) spatial resolution data products were available for
testing the proposed method. Landsat 5 is a sun-synchronous, near-polar orbit satellite operating at an
altitude of 705 km, with a revisit time of 16 days. The TM sensor is a whiskbroom scanner with three
visible, three infrared and one thermal bands with 185 km imaging swath. The bands have central
wavelengths of approximately 0.49, 0.56, 0.66, 0.83, 1.67, 11.5 and 2.24 µm, respectively. MERIS is a
push broom imaging spectrometer operating in the visible and near infrared (VNIR) spectral range
from 400 to 900 nm with a spatial resolution of 300 m. MERIS has a three-day revisit time and fifteen
spectral bands, programmable in position and bandwidths by ground command, which were set by
default to nominal center wavelengths of 0.413, 0.443, 0.490, 0.510, 0.560, 0.620, 0.665, 0.681, 0.708,
0.753, 0.762, 0.779, 0.865, 0.885 and 0.9 µm with typical bandwidths of 10 nm.

The image dates (Table 1) were selected to coincide with the flood events. The choice of the image
pairs was primarily based on the shortest interval between acquisition dates, and secondarily on their
coverage of the study area. Given that the image pairs were acquired at more or less the same time
(apart from the second TM image, which was acquired a day before the MERIS image), we assumed
similar cloud, haze and water surface roughness (due to wind) conditions. We considered the MERIS
imagery to be the primary source of observations, while the higher-resolution TM data were used as
reference. According to [38], high-resolution imagery can be used as reference for land cover mapping,
as long it has a ten times higher spatial resolution compared to the imagery being assessed. The 30 m
TM images consequently met this requirement for the 300 m MERIS images.

Table 1. A summary of EO data used in this study.

Image Pair Sensor Acquisition Date and GMT Spatial Resolution Temporal Resolution

Pair 1
MERIS 17 April 2008 08:09 300 m 3 days

TM 17 April 2008 08:13 30 m 16 days

Pair 2
MERIS 23 May 2009 08:07 300 m 3 days

TM 22 May 2009 08:12 30 m 16 days

2.3. Pre-Processing

Surface spectral reflectance was estimated by performing atmospheric correction of the satellite
Top of Atmosphere (TOA) radiance measurements. MERIS data were atmospherically corrected using
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the SMAC (Simplified Method for Atmospheric Corrections of satellite measurements) algorithm [39]
(Processor 1.5.203) as implemented in the open source software package BEAM 5.0 Brockmann
Consult, Geesthacht, Germany (Basic ERS and Envisat (A)ATSR and MERIS) [39]. The algorithm is a
semi-empirical approximation of atmospheric radiative transfer and takes into account the attenuation
due to atmospheric absorption and scattering.

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) [40], as incorporated
in the ENVI software, was used for converting the TM at-sensor radiance to at-surface reflectance.
FLAASH is an atmospheric correction code based on the MODTRAN (MODerate resolution
atmospheric TRANsmission) radiative transfer model and can be applied to spectral analysis and
atmospheric retrieval methods, such as per-pixel retrievals of precipitable water vapor and aerosol
optical depth. Other applications include estimation of scattering for compensation of adjacency effects,
cloud detection and smoothing of spectral structure resulting from an imperfect atmospheric correction.
FLAASH improves the accuracy of the atmospheric correction by detecting and compensating for
sensor-introduced artifacts such as optical smile and inaccurate spectral calibration. MERIS and TM
image pairs were co-registered using an image-to-image first order polynomial transformation.

2.4. Linear Spectral Unmixing

The performance of the proposed method, described in Section 2.5, was compared to the
conventional LSU method for mapping inundated areas. LSU is a spectral mixture analysis procedure
that decomposes a mixed pixel into various distinct components. Pure components are assumed
to have a unique reflectance spectrum and be uniformly distributed in separate portions within
the field of view. It has been successfully applied for estimating snow-cover fraction of Andes
using TM images [41], forest species abundance in North Pindos National Park, Greece, based on
CHRIS/PROBA images [42], crop yield estimation for a grain sorghum field in south Texas using a
QuickBird imagery [43], and mapping of water turbidity using a HyMap imaging spectrometer [44].
For a given number of endmembers (n), LSU can be expressed as:

ρk =
n

∑
i=1

γi·ρi,k + εk (1)

where ρk is the observed reflectance of a pixel at wavelength (k), ρi,k is the reflectance of endmember
i at wavelength k, γi is the abundance of endmember i and εk is the residual error. The unknown
fractional abundances fi can be estimated with least square fitting of the observed spectra to Equation
(1), if the number of endmembers is smaller than the number of spectral bands. An over-determined
LSU problem was solved using Equation (1) by using the fifteen MERIS bands and six TM bands
(excluding the thermal band) to estimate the fractional abundances of water (γw), vegetation (γv) and
(γs). The result of LSU is a grey scale image for each endmember, with pixel values representing the
abundances (γi) in the range 0–1. The γw image was selected for further analysis.

2.5. Indices-Based Spectral Unmixing

In this study, endmembers were defined as pure components of water, soil, or vegetation and
weighted by their fractional abundance when applying SU. Our new approach relies on the functional
relationship between the γw and spectral indices (NDWI and NDVI). This is done by assuming that
the observed pixel-wise spectral reflectance is a linear combination of the spectral reflectance of soil,
water and vegetation endmembers, then using the pixel-wise spectral reflectance to determine NDWI
and NDVI. The assumption is that the different components in a pixel contribute independently to its
reflectance [45]. The NDWI SU equation for the estimation of γw is rewritten by substituting the (pixel)
spectral reflectance values as linear combinations of the ones of the three endmembers, together with
their abundances, where only γw is unknown and can be determined from observed NDWI. Because
of the use of NDVI to estimate γv the pixel spectral reflectance appears twice in this equation, thus
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introducing the nonlinear SU [46]. The use of NDVI modulates the reflectance spectrum of water in
response to emergent vegetation. The potential advantage of this method, over conventional LSU,
is the reduction of the number of spectral bands for which the endmembers have to be defined and
the estimation of γv from NDVI. This is done by exploiting two main concepts: (1) the evidence of
the strong water absorption in the near infrared and the higher green water reflectance; and (2) the
reliability of using NDVI to estimate γv [47].

Although many spectral indices have been developed for separating water from other land cover
classes in remotely sensed multispectral data, NDWI is the most commonly used [14,19,48]. It has
been used for flood mapping in various studies [3,10,49]. NDWI is a dimensionless quantity used as
an indicator of the surface wetness. The NDWI makes use of the green band because of the higher
green water reflectance. The green band may be substituted by the SWIR or mid NIR spectral bands
to minimize sensitivity to the spectral reflectance of vegetation and maximize the sensitivity to the
reflectance of water. In this study, the original formulation of NDWI [14] was adopted, namely:

NDWI =
ρG − ρNIR
ρG + ρNIR

(2)

where ρg and ρNIR are spectral reflectance in the green and near infrared regions of the spectrum,
respectively. NDWI (Equation (2)) was computed using the TM green and near infrared bands
(i.e., band 2 and 4) centered at 560 nm and 830 nm; while with MERIS it was calculated using bands 5
and 13 centered at 559.7 nm and 864.9 nm, respectively.

NDWI values range from −1 to 1, with soil and terrestrial vegetation features having zero
or negative values owing to their typically higher NIR reflectance compared to the green spectral
reflectance. It has been demonstrated that NDWI thresholds are effective for eliminating exposed soil
and terrestrial vegetation and retain open water features [14,19,48]. Suitable thresholds are influenced
by the proportions of subpixel water/non-water components. Nevertheless, many authors have
applied NDWI >0 as a threshold to detect presence of water [10,14,21].

We give a special relevance to the use of NDWI in Equation (6) to estimate the abundance of
water in a pixel. While this index clearly provides an excellent separation of water from land as seen
in [10,14], in this study we unmix pixels based on our assumption that a mixed pixel is composed
of vegetation, soil and water components. Therefore reflectance in green and (ρG) and near infrared
(ρNIR) can be expressed as:

ρG = γwρGw + γvρGv + γsρGs (3)

and
ρNIR = γwρNIRw + γvρNIRv + γsρNIRs (4)

where ρGw, ρGv and ρGs are the reflectance in the green band while ρNIRw, ρNIRv and ρNIRs are the
reflectance values in the NIR band of pure water, vegetation and soil (endmember) pixels respectively;
γw, γv and γs are fractional abundance of water, vegetation and soil respectively. The fractional
abundance of soil γs can be obtained as:

γs = 1− γv − γw (5)

Incorporating Equations (3)–(5) into Equation (2) the γw within a pixel can be expressed as:

γw =
γv × (D− F)− γvNDWI × (E− C) + F− NDWI × E

NDWI × (A− E) + (F− B)
(6)

With coefficients A, B, C, D, E, and F being the sums and differences of the endmembers reflectance:

A = ρGw + ρNIRw B = ρGw − ρNIRw
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C = ρGv + ρNIRv D = ρGv − ρNIRv

E = ρGs + ρNIRs F = ρGs − ρNIRs

γv can be estimated as a function of NDVI as described in Gutman and Ignatov [50]:

γv =
NDVI− NDVI0

NDVIin f − NDVI0
(7)

With NDVI0 and NDVIin f being the NDVI value respectively of a reference pure waterpixels.
We adopted a modification of Equation (7) applied by [37] to estimate the fractional abundance of

aquatic vegetation by setting NDVIin f to be equal to the maximum NDVI value of a pure vegetation
pixel, while NDVI0 was set to the lowest NDVI value of an open (pure) water pixel within the study area.
Selecting the maximum and minimum NDVI values ensures that the derived fractional vegetation cover
values in the range from zero to one, given the characteristics of a spatially heterogeneous flooded area.
Accuracy was evaluated by comparing the fractional abundance estimated with MERIS FR data with
the reference map produced using the TM images. Using γv estimated with Equation (7) in Equation (6)
modulates the pixel reflectance at constant γw, leading to indices based spectral unmixing (IBSU).

2.6. Automatic Selection of Endmembers

As explained above, we identified three endmembers, namely pure water, pure vegetation and
pure soil. The analyses described above, however, documented a significant variability of the reflectance
values within each member, with the consequence that the estimated fractional abundances varied with
the choice of the pixels to determine the reflectance spectrum of each endmember. To obtain robust
estimates of the reflectance spectra of endmembers we devised a two-stage procedure. In Stage 1 a
number of samples for each endmember are selected, applying thresholds on ρG and ρNIR. The threshold
values define typical ranges of the spectral reflectance of water, vegetation and soil. The two thresholds
will vary within each endmember. Stage 2 gives an ensemble estimate of the abundances by random
extraction of spectral samples from the Stage 1 sets, determining N realizations of the fractional
abundances by applying Equation (6) and using the median of the N realizations as final estimate of γw.

At Stage 1 pure water pixels have been defined as the pixels where ρG is greater than ρNIR [14].
Pure vegetation pixels have been identified on the basis of NDVI values. At first a maximum NDVI
value has been evaluated as the 90th percentile of the NDVI values in the image. Then a sample of
pixels within a spectral neighborhood of this maximum value, i.e., within a range of ±0.1 NDVI, was
extracted. Pure soil pixels were at first identified by the following conditions: ρNIR > ρRED > ρGREEN ,
ρNIR < 0.32, ρNIR > 0.16 and NDVI < 0.14 .The thresholds for soil endmembers were adapted by using as
reference the spectral signature of wet and dry soil as found in [51]. This procedure yields a number of
spectral samples for each endmember. A robust estimate of γw is obtained by extracting 40 realizations
of the spectral endmembers, applying the unmixing method described above, (Equations (6) and (7))
to each realization and determining the median γw for each pixel, which yields the final map of γw.

The selection of spectral samples was evaluated with the support of a visual inspection of a true
color composite (R = red G = green and B = blue) of the high-resolution (TM) images. Vegetation, water
and bare soil are clearly visible in this image and we evaluated whether the location of the spectral
samples selected with the criteria described above was correct. Finally, the MERIS and TM reflectance
spectra of a number of samples for each endmember were inspected to evaluate whether the selection
of samples had been correct. Particularly, the SWIR reflectance in the TM bands 5 and 7 was used to
verify the selection based on the reflectance at shorter wavelengths.

In order to evaluate the impact of the choice of endmembers on the results, a sensitivity analysis
was performed. The set of endmember pixels was selected by the automatic procedure. The retrieval
of the water fractional abundance was repeated 40 times, with each iteration using 20 pixels from the
full set of the automatically selected pixels for each endmember. This procedure was repeated three
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times, each time changing randomly one of the endmember, i.e., soil, vegetation or water, and keeping
fixed the remaining endmembers.

NDVI values for full vegetation cover and water were required to solve Equation (7). These values
are estimates of the maximum and the minimum values of NDVI. To mitigate the impact of outliers,
the percentiles 0.5% and 99.5% of the NDVI frequency distribution were used to estimate NDVI0 and
NDVIin f respectively.

2.7. Accuracy Assessment

Accuracy assessment performed in this work mainly relied on the comparison of γw estimated
with MERIS versus TM, which was used as reference since it was the highest spatial resolution product
available on the selected dates. LSU is a widely used method used to map fractional abundance of
land features and we also used it as a reference to evaluate our method. It has to be noted that LSU
was applied using all the fifteen MERIS and 7 TM spectral bands, while our method used only three
spectral bands, which are green, red and near infrared.

Two comparative analyses were performed:

1. Comparison between MERIS versus TM based γw obtained with the IBSU (Equations (5) and
(6)) to evaluate the impact of image spatial resolution on the γw estimated with our method.
To compare the γw estimated with the MERIS data with the one estimated with TM a grid was
constructed with each cell being 1200 m × 1200 m. The mean γw of each cell was calculated for
both data sets and the cell averages compared. The arbitrary 1200 m × 1200 m grid was selected
to sample the same area with both TM and MERIS. Cells of this size included a sufficient number
(sixteen) of MERIS pixels.

2. Comparison between MERIS versus TM γw estimated with Equations (6) and (7) with the γw

obtained with Equation (1).

To summarize, inundation maps were produced for each selected image by following these
four steps: (1) Perform image pre-processing; (2) Calculate NDWI, NDVI and fractional vegetation
cover; (3) Select (automatically) endmembers; and (4) Calculate γw with Equations (6) and (7) using 40
different combinations of endmembers. Accuracy was assessed by comparing the MERIS γw map with
the TM γw map and with the map obtained by applying LSU to the MERIS image data.

3. Results

3.1. Detection of Water and Vegetation Features with MERIS and TM Spectral Indices

To evaluate whether the NDVI and NDWI correctly captured water and vegetation features,
samples of both indices were taken along four arbitrary transects plotted in Figures 3 and 4, where
MERIS data was resampled to the TM spatial resolution (30 m) using a nearest neighbor method. Apart
from one sample in Transect 1 where the higher spatial resolution of TM image allowed the detection
of a narrow water feature (Figure 3c), the MERIS and TM data detected the same water features and
abundant vegetation. Moreover, the NDWI and NDVI values obtained with MERIS and TM were
generally very similar. At a few samples in Transects 3 and 4, taken over prominent water features
Figure 3e,f, the MERIS NDWI values were higher than TM (close to 1). Conversely, the MERIS NDVI
values at the same location (Figure 4e,f) were much lower than in the TM image. This seems to suggest
that, in spite of an increase in mixed pixels due to the lower resolution of MERIS, open water features
were well represented by high NDWI and low NDVI values.

To evaluate the consistency of NDVI and NDWI derived from MERIS versus TM, we extracted a
larger sample of water features and vegetation cover, using as reference a true color TM composite
image (R: Band 4; G: Band 3; and B Band 2). Compared to TM the image, generally water and
vegetation features were better separated by MERIS-based NDWI and NDVI values (Figure 5), due to
the outliers in the distribution of TM NDVI and NDWI of water and vegetation. The latter implies a
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smaller class diameter and larger inter-class distance with MERIS data. In general, there seems to be a
strong agreement, as shown by the large overlap in the scatter plot (Figure 5), between the NDWI and
NDVI values of vegetation features as measured by the two sensors.
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Figure 3. NDWI calculated from (a) TM and (b) MERIS images acquired on 17 April 2008 as sampled 
along four transects (c–f). 
Figure 3. NDWI calculated from (a) TM and (b) MERIS images acquired on 17 April 2008 as sampled
along four transects (c–f).
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Figure 4. NDVI calculated from (a) TM and (b) MERIS images acquired on 17 April 2008 as sampled 
along four transects (c–f). 
Figure 4. NDVI calculated from (a) TM and (b) MERIS images acquired on 17 April 2008 as sampled
along four transects (c–f).
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of MERIS and TM pixels for a given area of interest. The NDWI histograms, particularly the median 
values, are similar, i.e., mixed water features are captured in a comparable way by the two sensors, 
which suggests that the coarser spatial resolution of MERIS is not a major constraint on the retrieval 
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Figure 5. Scatter plot of TM versus MERIS NDVI and NDWI over water and vegetation features.

Finally, we compared the TM and MERIS NDWI and NDVI over the entire study area.
The frequency distributions of NDWI and NDVI, as determined with the MERIS and TM images on
17 April 2008, are shown in Figure 6. The motivation of this analysis was to evaluate whether MERIS
could act as a majority filter when sampling very heterogeneous pixels, assigning to the full pixel the
spectral features of the land cover more abundant within the pixel. Figure 6 clearly shows that the
frequency distributions are comparable, confirming the evidence provided by the smaller samples
analyzed in Figures 3–5. Only relative frequencies can be compared given the very different numbers
of MERIS and TM pixels for a given area of interest. The NDWI histograms, particularly the median
values, are similar, i.e., mixed water features are captured in a comparable way by the two sensors,
which suggests that the coarser spatial resolution of MERIS is not a major constraint on the retrieval of
inundated areas. In contrast, the tails of the frequency distributions clearly show the spatial filtering
effect of the MERIS lower spatial resolution. The TM observations capture both very high and very low
values of NDWI and NDVI due to the higher spatial resolution. This gives a TM frequency distribution
with extended tails not present in the MERIS frequency distribution.
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The small difference in the distributions of NDVI can be accommodated by using different values
for NDVIin f and NDVI0 (Table 3) when estimating vegetation fractional cover with either MERIS or
TM data. Evidence of some small water and vegetation features captured by TM but not by MERIS
(due to its coarser spatial resolution) is noticeable at around NDWI 0–0.2 and NDVI 0–0.1 respectively
(see Figure 6). This can also be due to mixed pixels of two or more land cover classes in a portion
smaller than the pixel resolution.

3.2. Endmember Selection

The accuracy of the novel IBSU approach and of LSU depends on whether suitable spectral
endmembers under dry and wet conditions can be accurately selected. This is particularly challenging
for the soil endmember. It is, however, known that the spectral reflectance of soil varies as a function
of physical, chemical and biological soil characteristics such as soil moisture content, soil texture
(proportion of sand, silt and clay), surface roughness, iron oxide and organic matter content. Spectral
reflectance of the water, vegetation and soil endmembers in the green and NIR bands (Table 2) were
extracted from the MERIS and TM image data using the automatic selection procedure.

Table 2. Mean NIR and green spectral reflectance of the automatically selected water, vegetation and
soil endmembers (standard deviations shown in brackets).

Image Dates *ρGw ρNIRw ρGv ρNIRv ρGs ρNIRs

MIS 0.051
(±0.011)

0.034
(±0.012) 0.060 (±0.08)

0.241
(±0.033)

0.081
(±0.016)

0.198
(±0.043)17 April 2008

TM 0.038
(±0.049)

0.030
(±0.021)

0.060
(±0.011)

0.234
(±0.034)

0.105
(±0.016)

0.252
(±0.026)17 April 2008

MERIS 0.041
(±0.016)

0.023
(±0.012)

0.056
(±0.009)

0.214
(±0.030)

0.071
(±0.018)

0.187
(±0.057)23 May 2009

TM 0.026
(±0.046)

0.020
(±0.017)

0.055
(±0.011)

0.204
(±0.033)

0.090
(±0.019)

0.215
(±0.029)22 May 2009

*ρGw is reflectance in green for pure water pixel; ρNIRw is reflectance in NIR for pure water pixel, ρGv is for
reflectance in green for pure vegetation pixel, ρNIRv Reflectance in NIR for pure vegetation pixel, ρGs reflectance
in green for pure soil pixel and ρNIRs reflectance in NIR for pure soil pixel.

MERIS has slightly higher mean water reflectance in the green band (ρGw) as compared to TM
data. There is no significant difference in the ρGv endmember selection between MERIS and TM.
A slight difference in near infrared reflectance of vegetation endmembers can be observed when
comparing different dates, i.e., the ρNIRv in April 2008 is higher than that of May 2009 for both sensors.
Moreover, ρNIRv is also slightly different if comparing MERIS and TM values in the same date of May
2009, but this is probably related to the different dates and times of the MERIS and TM observations.
In general, MERIS shows much higher reflectance values than TM in both green and NIR for water and
vegetation endmembers for the two dates. However, it is the opposite for soil endmembers on both
dates. Nevertheless, the scatter plot of green versus NIR reflectance (Figure 7) show a good separability
of water, soil and vegetation endmembers. Figure 7 shows that differences in the mean reflectance
of the mean land cover types are significant and the correlation of NIR and green reflectance reduces
the internal diameter of each class, thus improving separability. Water pixels are clustered at the left
bottom corner of the 2D plane (Figure 7) due to water high absorption of the NIR radiation and high
reflectance of the green radiation. The distribution of the MERIS and TM endmembers are comparable.
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images the selected soil endmembers pixels are approximatively selected in the same area as TM 
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Figure 8. Different extents of (a) soil, (b) vegetation and (c) water endmembers selected by the 
automatic procedure explained in Section 2.6 from TM (red shade) and MERIS images (blue shade) 
on 17 April 2008 over TM true color composite (RGB). 

It remains a challenge, however, to select, even manually, sufficiently large targets to yield pure 
spectral endmembers in the MERIS images due to the heterogeneity of the study area. Thus, we 
considered the automatic selection of soil endmembers based on a satisfactory procedure (described 
in Section 2.6) to narrow down the range of possible endmember reflectance, but not sufficient to 

Figure 7. Scatter plot of green versus NIR spectral reflectance of an endmembers sample selected
automatically from (a) TM and (b) MERIS images on 17 April 2008.

The visual inspection of the correspondence of soil, water and vegetation endmembers with the
land cover suggested, in a first instance, a correct identification of pure pixels (Figure 8). In MERIS
images the selected soil endmembers pixels are approximatively selected in the same area as TM
(Figure 8) even if it is clear that most of the pixels are a mixture of different soils at high and low
absorption in NIR, respectively corresponding to wet and dry soils. In a few cases they include a small
amount of vegetation (see Figure 8).
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Figure 8. Different extents of (a) soil, (b) vegetation and (c) water endmembers selected by the
automatic procedure explained in Section 2.6 from TM (red shade) and MERIS images (blue shade) on
17 April 2008 over TM true color composite (RGB).

It remains a challenge, however, to select, even manually, sufficiently large targets to yield pure
spectral endmembers in the MERIS images due to the heterogeneity of the study area. Thus, we
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considered the automatic selection of soil endmembers based on a satisfactory procedure (described
in Section 2.6) to narrow down the range of possible endmember reflectance, but not sufficient to
obtain the final endmembers. However, the high standard deviation of water endmember selected
in TM compared to the other endmembers (Table 2) may impact the γw estimates, so the selection of
endmembers was further refined as described in Section 2.6.

Forty realizations of the endmembers were generated and SU applied (Figure 9). The results
(Figure 9a) show that at the spatial resolution of the TM images, γw cannot be estimated with just one
selection of endmembers, since the variability across the forty realizations remains large. One realization
appears sufficient to select the vegetation and soil endmembers (Figure 9c–f). The final γw map was then
generated taking the median γw for each pixel. As shown in Figure 10 this gives a stable estimate of γw,
since both the median and the interquartile range stabilize after averaging over some twenty realizations.
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Figure 9. Medians (black diamonds) and interquartile range (IQR, red diamonds) of the γw distributions
calculated with the proposed index based spectral unmixing (IBSU) method for the Caprivi study area
from TM and MERIS images on 17 April 2008 by changing randomly water (a,b), vegetation (c,d) and
soil (e,f) endmembers.
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Figure 10. (a) Medians; (b) inter-quartile range of ensemble γw calculated over the study area as
function of runs number included in the ensemble.

As can be seen in Table 3, there is a difference of 0.02 between the NDVIin f of MERIS and TM
NDVIin f for the 17 April 2008 images. However, there is a much larger difference of 0.12 in NDVI0

for the same image pair. The value of NDVIin f for the images used in the study was found to be in the
range of 0.64–0.74.

Table 3. Mean values of NDVIinf and NDVI0 calculated respectively as percentiles 99.5 and 0.5 of NDVI
distribution within the study area.

Image Date NDVIinf NDVI0

MERIS 17 April 2008 0.69 0.17
TM 17 April 2008 0.67 0.05

MERIS 23 May 2009 0.74 0.05
TM 22 May 2009 0.64 0.00

3.3. Spectral Indices-Based Unmixing versus Linear Spectral Unmixing

The γw was estimated for both the MERIS-TM image pairs by applying the procedure explained
in Section 2.5. The resulting γw maps are shown in Figure 11.
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At a glance it seems that there is a good agreement between MERIS and TM γw

retrievals, particularly when the spatial patterns and individual features are visually compared.
The low-resolution images underestimate γw in areas with relatively low γw (e.g., γw < 0.3), particularly
when there is also a large proportion of vegetation mixed with water. MERIS overestimates γw where
γw > 0.3 for 17 April 2008 (Figure 12a). This is also due to fragmentation of pixels, particularly with
vegetation plus water and wet soil, where the lower spatial resolution leads to MERIS sampling to
mimic a majority filter, i.e., to assign the entire footprint to the dominant class. However, when the
frequency distributions (Figure 13a,c) are compared it is evident that the TM and MERIS retrievals are
in good agreement at values of γw between 0.3 and 0.5. MERIS mostly overestimates γw at high and
low values for both IBSU and LSU.
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4. Discussion

Remote sensing holds much potential for flood monitoring, but because floods can occur rapidly
and affect large areas, sensors with frequent revisit times and large swath widths are required. Most
existing optical sensors with these characteristics have relatively coarse spatial resolution. Mapping
water surfaces with such imagery has been shown to be challenging [22], mainly due to the inability
of lower spatial resolution imagery to adequately characterize pixel fragmentation, i.e., the so-called
mixed pixel effect. This effect is augmented in vegetated floodplains [52] where the spectral response
of vegetation weakens water signatures. For instance, in this study, it was found that NDWI and
NDVI derived from low (300 m) MERIS images were generally higher over water surfaces than those
generated from high-resolution (30 m) TM images. This finding is in accordance with [45], who found
that MERIS had higher reflectance values over water surfaces in the green band compared to TM.
Most studies [53–55] that make use of coarse-resolution optical imagery for flood mapping do not
adequately account for the effects of mixed pixels.

SU has been shown to reduce the effect of mixed pixels, as the measured spectrum of a pixel
is decomposed into a collection of spectral endmembers and a set of corresponding fractional
abundances within the pixel. However, the success of SU is highly dependent on the quality of spectral
endmembers. Selecting pure endmembers in vegetated floodplains is particularly difficult [25,30].
This is demonstrated in Figure 14a,b, where both the low (MERIS) and high-resolution (TM) data
contain γw, even in the areas with dense vegetation. Our proposed IBSU method reduces this effect
and produced consistent water fraction maps, as evident in Figure 14b,d. However, in Figure 11b,c
it is clear that the γw derived from MERIS included larger areas with high values of water fraction.
Lake Liambezi (south west of the flood plain) did not flood in April 2008, but did flood in May 2009.
This result is supported by [34], which confirmed that Zambezi water will push back into the Chobe
River causing floods in the southern part of the flood plain during late May. Homogeneous areas, such
as the Zambezi River and Lake Liambezi, generally agreed well with the reference data. When the
frequency distributions (Figure 13a,c) are compared it is evident that the TM and MERIS retrievals are
in good agreement at γw values between 0.3 and 0.5. MERIS mostly overestimated γw at high and low
fractions for both IBSU and LSU. These results show that detection accuracy of water may vary with
the portion of the pixel occupied with water.

Authors in [30,56] argued that the best endmember selection method must consider both spatial
and spectral information. We adopted this principle in estimating the fractional abundance of water
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by automatically selecting an ensemble of endmembers (Figure 8) to a produce more complete and
robust unmixing results based on only three bands (red, green and NIR). This is in contrast to [57] in
which a spectral library was derived based on all bands of all pixels. Spectral bands are also often
highly correlated leading to spectral information redundancy [24]. In addition, materials of different
physical composition may exhibit similar spectral properties in a given wavelength range or have
spectral properties that cannot be mathematically defined by a linear combination [24]. Our proposed
IBSU allows the type and number of endmembers to vary within each pixel, which yields more
accurate fractional information than conventional unmixing methods. IBSU is straight forward and
relatively easy to implement because it integrates only two well-known indices, namely NDWI and
NDVI. Despite of its simplicity, it was able to successfully model the complex flooded and vegetated
landscape of the Caprivi region.

Although the results clearly demonstrate the advantages of using the proposed IBSU method,
the accuracy of the results in this study were estimated by using higher-resolution (30 m) TM images
as reference. This is not ideal as such imagery also contains some degree of mixed pixels. Ideally,
in situ data should have be used for verification purposes, but given the temporal nature of flood
events and the difficulty in accessing flooded areas, such an approach will in most cases be ineffective.
It would thus be of great value if the proposed method can be compared against synchronous, very
high-resolution (<10 m) imagery, such as the image data acquired by the Multi Spectral Imager onboard
the Sentinel 2 satellites, to get a better sense of how well the unmixing procedures are performing.

5. Conclusions

Timely and frequent observations of flood plains can provide information needed to mitigate
the social, economic and environmental impacts of floods. While it is advisable to use finer
spatial resolution image data to accurately map flood plains, coarse-resolution products remain
best suited for flood monitoring, since they have more frequent revisits and better coverage.
It is necessary to understand which remote sensing techniques work best for flood mapping with
coarse-resolution products, especially in heterogeneous environments. In this study, we described and
demonstrated a new method, called IBSU, to map inundated areas in heterogeneous environments
using coarse-resolution MERIS image data and TM as reference. The method mitigates the mixed
pixel effect of coarse-resolution imagery and has the advantage of using fewer bands. A new method
was developed and applied to obtain ensemble estimates of spectral endmembers and of fractional
abundances. Moreover, the combination of NDWI and NDVI into the same equation (Equation (6))
yielded a nonlinear relationship between γw and endmember spectral reflectance.

The results demonstrate that inundated areas can be adequately monitored by coarse-resolution
data such as MERIS FR. Notwithstanding the complexity and fragmentation of the Caprivi Basin
landscape, the proposed IBSU method produced results that are comparable to those generated using
high-resolution TM data. The method, as it stands now, can be used to monitor the floodplain by
using the data acquired by OLCI on-board Sentinel 3. LSU shows, instead, relatively large differences
between TM and MERIS retrievals, detecting larger spatial variability when compared to the retrievals
by the MERIS IBSU method.

Considering the recent launch of the Sentinel-3 satellite, which offers daily revisit frequency,
300 m spatial resolution and MERIS-like spectral sampling by OLCI, we conclude that the proposed
inundation detection technique is a useful method to quickly identify the extent of flooding in large
and heterogeneous river basins with a fully automated procedure. More work is needed, however,
to investigate how the technique can be used for operational (automated) inundation monitoring.
Ideally, inundated areas mapped using SAR data should be incorporated into monitoring systems,
especially in areas with persistent cloud coverage. Although some constellations of commercial
high-resolution satellites are capable of providing frequent observations (through tasking), the cost of
such acquisitions is often prohibitively expensive, especially over large floodplains. Therefore, our
study focused on using freely available data.
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