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Abstract. An important problem in wind turbine design is the prediction of the 50-year load, as set by the
IEC 61400-1 Design Load Case (DLC) 1.1. In most cases, designers work with limited simulation budgets and
are forced to use extrapolation schemes to obtain the required return level. That this is no easy task is proven
by the many studies dedicated to finding the best distribution and fitting method to capture the extreme load
behavior as well as possible. However, the issue that is often overlooked is the effect that the sheer uncertainty
around the 50-year load has on a design process. In this paper, we use a collection of 96 years’ worth of extreme
loads to perform a large number of hypothetical design problems. The results show that, even with sample sizes
exceeding N = 103 10 min extremes, designs are often falsely rejected or falsely accepted based on an over-
or underpredicted 50-year load. Therefore, designers are advised to be critical of the outcome of DLC 1.1 and
should be prepared to invest in large sample sizes.

1 Introduction

Wind turbine designers are confronted with the IEC 61400-1
Design Load Case (DLC) 1.1 (IEC, 2005). This evaluates the
structural integrity of the major load-carrying components on
the basis of a 50-year return level, plus safety factors. As
prescribed by Appendix F of the standards, a minimum of
300 min of time series – distributed over the relevant wind
speeds – will have to be evaluated and followed by an extrap-
olation scheme to obtain the 50-year return level. Such ex-
trapolations produce notoriously uncertain estimates, which
is why the Design Load Case 1.1 is often avoided or at least
greatly simplified in early stages of the design. However, in
cases where DLC 1.1 is design-driving (e.g., for foundations
and controllers), dealing with this uncertainty is unavoidable.

Many past efforts to reduce this uncertainty have focused
on trying out different sampling methods (Fogle et al., 2008;
Agarwal and Manuel, 2009), new modeling techniques (Mo-
riarty et al., 2004; Bos and Veldkamp, 2016), or finding the
best distribution type to match the extreme load behavior
(Pandey and Sutherland, 2003; Genz et al., 2006; Freudenre-
ich and Argyriadis, 2007; Ragan and Manuel, 2007; Natara-
jan and Holley, 2008; Peeringa, 2009; Lott and Cheng,

2016). Yet, because most studies deal with relatively small
sample sizes (e.g.,� 1 year), the actual uncertainty that sur-
rounds the 50-year return level is often underexposed. With a
63-year data set, Barone et al. (2012b) were able to establish
the 90 % confidence interval around the 50-year load for sam-
ple sizes up to N = 2000 10 min maxima. This revealed not
only that the 50-year levels are clouded by high uncertainty
but also that they suffer from a considerable bias. Inevitably,
this has an effect on the choices made during design.

The aim of this paper is to demonstrate this with a simple
exercise, using a collection of 96 years’ worth of 10 min load
maxima released by Barone et al. (2012a). The uncertainty
distribution is constructed by repeatedly sampling subsets of
this data set and obtaining the 50-year loads through an au-
tomated extrapolation scheme. We then simulate a problem
where a hypothetical designer has to choose between two or
more concepts and record how often this uncertainty leads to
wrong choices. The results of this paper should help design-
ers to estimate the required sample sizes for their problem
but also to form a critical attitude concerning the quality and
reliability of extrapolated 50-year loads.
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Figure 1. The data set, containing over 5 million 10 min extreme
overturning moments between the cut-in and cut-out wind speeds.
The box plots indicate the scatter per 1 m s−1 bin, where the boxes
mark the 25th and 75th percentiles, the whiskers mark the 2.5th and
97.5th percentiles, and the bar is the median.

2 Methodology

Since the focus of this work is on the impact of uncertainty,
rather than on obtaining the highest possible quality result,
the workflow is kept as simple as possible. Loads were ex-
tracted by drawing a random sample from a large set of crude
Monte Carlo results and the 50-year return period is found by
a graphical fit.

2.1 Loads data set

The data set that was used for this study was generated by
Barone et al. (2012a). It features the onshore version of the
NREL 5 MW reference wind turbine, operating for 96 years
in an IEC class 1B climate (IEC, 2005).1 Ten-minute mean
wind speeds were randomly drawn from a Rayleigh distri-
bution, bounded by the cut-in and cut-out wind speeds of 3
and 25 m s−1, respectively. Turbulent wind fields were gen-
erated by TurbSim on a 20×20 grid with a width and height
of 137 m and were fed to the FAST v7 aeroelastic code. Ev-
ery simulation ran for 11 min, of which the first minute was
discarded to avoid any start-up transients. More details can
be found in the original paper.

Each output channel contains over 5 million 10 min ex-
tremes. In this paper, we will use the tower base overturning
moment, which plays a major role in the design of founda-
tions. Figure 1 shows the entire set of loads at the respective
wind speeds.

1The original paper specifies a class 2B site, but this has been
corrected with the release of the data set (see http://energy.sandia.
gov/?page_id=13173).

2.2 Extrapolation scheme

In many practical situations, a designer does not have
the computational resources available to simulate several
decades of operation. That is when the 50-year load has to
be found by extrapolating.

2.2.1 Aggregation before fitting and fitting before
aggregation

There are several approaches to the extrapolation problem.
One method involves drawing a sample directly from the par-
ent mean wind speed distribution. The cumulative distribu-
tion of extreme loads then follows naturally from ranking a
set of N loads and assigning a plotting position:

F̂ (Mi)=
i

N + 1
. (1)

In this case, however, the wind speeds outside of the operat-
ing range will have to be accounted for:

F̂ (Mi)= 1−
(

1−
i

N + 1

)U cut-out∫
U cut-in

f (U ) dU, (2)

where f (U ) is the mean wind speed distribution. Then, plot-
ting the entire data set yields the return level plot shown
in Fig. 2. Extrapolation is done by using the entire sample,
called aggregation before fitting. With 96 years’ worth of
load data, however, the 50-year return value can be easily
matched with a generalized extreme value (GEV) distribu-
tion (see next subsection), which yields 115.0 MN×m. Re-
peating the process by randomly drawing 96-year samples
from the same data set allows us to estimate the 95 % confi-
dence interval, yielding [113.1, 117.2] MN×m.

Sampling directly from the parent distribution is an exam-
ple of a crude Monte Carlo method, which has the advan-
tage that it gives a raw and unbiased picture of the extreme
loads. However, a clear disadvantage is that the bulk of the
data originates from relatively low wind speeds where the
extremes loads are not expected to lie. In addition, unless a
stratified sampling method is used, the wind speeds in any
small subsample are not always representative of the parent
distribution.

Another method, which is preferred by the IEC guidelines
(IEC, 2005), requires the data to be collected in nwind speed
bins of a certain width, 1U . Data from every bin is then
matched with a distribution function, after which every dis-
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Figure 2. Return level plot of the tower base overturning moment,
with the entire 96-year data set (i.e., aggregation before fitting). A
GEV fit above the threshold given by Eq. (6) yields a 50-year value
of 115.0 MN×m.

tribution is weighted according to

F̂ (M)= 1−

U cut-out∫
U cut-in

f (U ) dU +
n∑
i=1

F (M|U i)

U i+
1
21U∫

U i−
1
21U

f (U ) dU. (3)

This is called fitting before aggregation. It has the advantage
that the data in each wind speed bin have less variation and
match an underlying distribution more closely. However, the
obvious disadvantage is that a factor n fewer data points are
available in each bin to fit (see, e.g., Figs. 3 and 4).

2.2.2 Choice of distribution function

The tail behavior is matched with a distribution function, for
example by least-squares fitting. A good candidate for this is
the generalized extreme value distribution (GEV):

G(M; µ, σ, ξ )= exp

[
−

(
1+ ξ

M −µ

σ

)−1/ξ
]
, (4)

where µ is the location parameter, σ the scale parameter, and
ξ the shape parameter. A possible alternative is to fix ξ = 0,
which produces a two-parameter Gumbel distribution:

G(M; µ, σ )= exp
[
−exp

(
−
M −µ

σ

)]
. (5)

A Gumbel distribution appears as a perfectly straight line
on Gumbel paper (i.e., on a double-logarithmic scale as in
Fig. 2) and is often a good first guess of the tail behavior.

-1

-1

-1

-1-1

-1

Figure 3. Return level plot of some 1 m s−1 wide bins with a GEV
distribution fit after a threshold given by Eq. (6).

Figure 4. Return level plot of the tower base overturning moment
by a weighted sum of the bins shown in Fig. 3 (i.e., fitting before ag-
gregation), using an equivalent 96-year sample size. The weighted
distribution is given by a black dashed line and is overlaid on Fig. 2
for comparison.

2.2.3 Identifying the distribution tail

The tail of the distribution shows a characteristic bend, or
“knee”, that indicates that more than one process is at work.
Indeed, tracing back the wind speeds belonging to the 10 %
highest loads points towards a region well above the rated
wind speed (see Fig. 5). It turns out that this is due to a par-
ticular controller response to negative gust amplitudes (e.g.,
Bos et al., 2015; Bos and Veldkamp, 2016), which also ex-
plains the shape of the scatterplot in Fig. 1.

www.wind-energ-sci.net/2/377/2017/ Wind Energ. Sci., 2, 377–386, 2017



380 S. F. van Eijk et al.: The risks of extreme load extrapolation

-1

-1

Figure 5. Histogram of the sampled wind speeds, where the dashed
line marks the Rayleigh mean wind speed distribution belonging to
an IEC class 1B climate. The light and dark filled areas correspond
to the lowest 90 % and highest 10 % loads, respectively.

To estimate the uncertainty that comes from repeatedly ex-
trapolating different sets of loads, this process has to be au-
tomated. However, the difficult part is then to decide exactly
where the tail starts under varying sample size. A simple so-
lution that seems to work in most cases is to assume that the
tail covers the second half of the distribution when drawn on
Gumbel paper, i.e., above a threshold

− ln
[
− ln

[
F̂
]]
>−

1
2

ln
[
− ln

[
F̂ (M1)

]]
−

1
2

ln
[
− ln

[
F̂ (MN )

]]
. (6)

For the full data set, this means that a distribution is fitted to
the upper 0.07 % of the data. For a GEV fit, this results in the
quantile–quantile (Q-Q) plot shown in Fig. 6.

2.3 Workflow

The different approaches discussed in the previous subsec-
tion are used to set up eight extrapolation cases (see Table 1).
The sampling method describes whether the data are drawn
directly from their parent Rayleigh distribution and fitted to
the entire set (aggregation before fitting) or if they are con-
structed from 1 m s−1 wide bins with an equal number of data
points per bin (fitting before aggregation). Extrapolation is
done by matching the data points with either a Gumbel or
GEV distribution by least-squares fit. The final column states
whether the entire sample is used (No) or only the points that
lie above the threshold given by Eq. (6) (Yes).

These cases are automated for k = 103 sets of loads, which
yields a collection of 50-year return levels, distributed ac-

Figure 6. Q-Q plot, showing how well the empirical tail be-
havior matches a generalized extreme value distribution (µ=
78.2 MN×m; σ = 2.05 MN×m; ξ = 0.026).

cording to f (M̂50 yr):

Table 1. Extrapolation cases.

Sampling method (parent distribution) Distribution fit Fitted only above threshold

(a) Aggregation-before-fitting (Rayleigh) Gumbel No

(b) Aggregation-before-fitting (Rayleigh) Gumbel Yes

(c) Aggregation-before-fitting (Rayleigh) GEV No

(d) Aggregation-before-fitting (Rayleigh) GEV Yes

(e) Fitting-before-aggregation (Uniform) Gumbel No

(f) Fitting-before-aggregation (Uniform) Gumbel Yes

(g) Fitting-before-aggregation (Uniform) GEV No

(h) Fitting-before-aggregation (Uniform) GEV Yes

2.3 Workflow

The different approaches discussed in the previous subsection are used to set up eight extrapolation cases (see Table 1). The

sampling method describes whether the data is drawn directly from its parent Rayleigh distribution and fitted to the entire

set (aggregation-before-fitting), or if it is constructed from 1-m/s wide bins with an equal number of data points per bin

(fitting-before-aggregation). Extrapolation is done by matching the data points with either a Gumbel or GEV distribution by5

least-squares fit. The final column states whether the entire sample is used (No) or only the points that lie above the threshold

given by Equation (6) (Yes).

These cases are automated for k = 103 sets of loads, which yields a collection of 50-year return levels, distributed according

to f(M̂50 yrs):

rank→

←
se

t

M1,1 ≤ M2,1 ≤ . . . ≤ MN,1 → M̂

M1,2 ≤ M2,2 ≤ . . . ≤ MN,2 → M̂

...
...

...

M1,j ≤ M2,j ≤ . . . ≤ MN,j → M̂

...
...

...

M1,k ≤ M2,k ≤ . . . ≤ MN,k → M̂

↓

f(M̂ )

10

7

50 yr,1

50 yr,2

50 yr,j

50 yr,k

50 yr .

The medians and other quantiles are then estimated by sort-
ing. For example, in case no. 4 (the crude Monte Carlo
method with a GEV fitted above a threshold), the end result
is the situation depicted in Fig. 7, which can be repeated for
different sample sizes.

3 Results

Based on the load set and the extrapolation scheme, we can
estimate how far a single 50-year load prediction would be
off the true value.

Wind Energ. Sci., 2, 377–386, 2017 www.wind-energ-sci.net/2/377/2017/
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Table 1. Extrapolation cases.

Sampling method (parent distribution) Distribution Fitted only
fit above threshold

(a) Aggregation before fitting (Rayleigh) Gumbel No
(b) Aggregation before fitting (Rayleigh) Gumbel Yes
(c) Aggregation before fitting (Rayleigh) GEV No
(d) Aggregation before fitting (Rayleigh) GEV Yes
(e) Fitting before aggregation (Uniform) Gumbel No
(f) Fitting before aggregation (Uniform) Gumbel Yes
(g) Fitting before aggregation (Uniform) GEV No
(h) Fitting before aggregation (Uniform) GEV Yes

Figure 7. Return level plot of the tower base overturning moment,
showing all the k = 103 GEV fits with a sample size of N = 103.
The dot markers belong to one of the 103 samples.

3.1 Uncertainty surrounding the 50-year overturning
moment

Figure 8 shows how the median and confidence intervals
around the 50-year level vary as a function of sample size,N .
Evidently, the larger the sample size, the smaller the error. In
addition, there are some interesting differences between the
eight approaches. Comparing the left column (panels a, c,
e, g) to the right column (panels b, d, f, h), it seems that a
threshold is indeed needed to establish a reliable fit of the
distribution tail. Even when the data points are sampled from
1 m s−1 wide bins, the distributions are often bent and hardly
match with any single distribution. The extreme case is when
the full empirical load distribution of the aggregation-before-
fitting approach (see, e.g., Fig. 2) is fitted to a Gumbel (panel
a), producing errors well in excess of +100 %. In the case
of the GEV (panel c), the fit often takes on strongly negative
values of ξ . This leads to a reversed Weibull distribution with
an upper bound, which produces a negative bias.

The fitting-before-aggregation approach (panels e–h)
tends to suffer from a positive bias. Likely, this is because
most of the partial distributions have a slightly downwardly
curved tail. Such a shape requires a large enough sample size
to fully establish itself. Small sample sizes, on the other hand,
tend to result in a fit with too large a slope that overpredicts
the 50-year load.

The tail of the full data set has a slightly upwardly curved
tail that matches a GEV distribution with a small positive ξ
best (see Figs. 2 and 6). However, the Gumbel distribution is
clearly more forgiving at small sample sizes. A fixed ξ = 0
has the advantage that the fit always stays close to the ideal
value, which is especially helpful if the tail of the empirical
distribution only contains a few data points.

In addition, the root-mean-squared (rms) error provides a
single measure for the quality of the result:

εrms =

√√√√1
k

k∑
j=1

(
M̂50 yr,j −M50 yr

)2
, (7)

where M50 yr is the “true” 50-year level. As shown in Fig. 9,
the aggregation-before-fitting approach with a Gumbel fitted
above a threshold (b) produces the lowest rms error. Most
of the other approaches show a clear improvement with in-
creasing sample size. Ultimately, the rms error of (d) falls
into the classic 1/

√
N rule that is often found with Monte

Carlo methods.
Of course, there are many other approaches to the ex-

trapolation problem that lead to results of differing qual-
ity. In this paper, however, the focus is more on demon-
strating how these errors affect a design process. Out of the
eight approaches presented here, two are selected. The first
is the aggregation-before-fitting approach with a GEV fit
above a threshold (d), which has a relatively small bias but
a large spread. The second is the fitting-before-aggregation
approach with a Gumbel fitted above a threshold (f), which
has a large bias but a smaller spread.

www.wind-energ-sci.net/2/377/2017/ Wind Energ. Sci., 2, 377–386, 2017
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Figure 8. Error in the extrapolated 50-year overturning moment, as a function of sample size.

3.2 Effect on decision making

How this uncertainty affects the decision making process is
demonstrated here with a very simple example, where the
choice between two designs is based on a stress level. Say
that a new concept is proposed that is an exact copy of the
original NREL 5 MW machine, but with a different wall
thickness at the base of the tower. The second moment of
area then changes according to

Iyy =
π

4

[
r4
− (r − t)4

]
, (8)

where r = 3 m is the base radius and t = 35 mm is the origi-
nal wall thickness (Jonkman et al., 2009). An extreme over-

turning moment would cause a compressive stress of

σz =
Mr

Iyy
+
mg

A
, (9)

where mg = 6.82 MN is the total weight of the wind turbine,
and

A= π
[
r2
− (r − t)2

]
(10)

is the cross-sectional area of the tower base section.
The objective of the exercise is to find a new wall thickness

to reduce the 50-year stress levels, i.e.,

σz,new < σz,old. (11)

This might seem trivial at this point – any thicker wall is
guaranteed to reduce the stresses – but the actual difficulty

Wind Energ. Sci., 2, 377–386, 2017 www.wind-energ-sci.net/2/377/2017/
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Figure 9. Root-mean-squared error in the extrapolated 50-year
overturning moment, as a function of sample size.

is to determine the 50-year moment. Whereas the original
design has already gone through an extensive load analysis
from which the 50-year load level is known, any new concept
has to go through this process again.2

Due to the uncertainty that surrounds this 50-year level,
the new design can be falsely rejected or falsely accepted.
Figure 10, for example, shows how often this happens when
the load analysis is carried out with the aggregation-before-
fitting approach and a sample size ofN = 103. When the wall
thickness is reduced by 10 % to 31.5 mm, the new design will
appear to have lower stresses in 18 % of the cases (i.e., the
false positives). On the other hand, even when the wall thick-
ness is increased by 10 % to 38.5 mm, the new design has a
47 % chance to still be rejected (i.e., the false negatives).

The closer a new design is to the original, the larger the re-
quired sample size (see Fig. 11). In the case of a large positive
bias (see Fig. 12), a new concept is nearly always rejected,
even if it has exactly the same thickness as the original.

Another case is a comparison between several concepts,
where the 50-year stress levels contain the same degree of
uncertainty. Five concepts, from 25 to 45 mm wall thickness,
are ranked against each other, such that

σz,1 ≤ σz,2 ≤ σz,3 ≤ σz,4 ≤ σz,5. (12)

In the ideal case, the 45 mm wall thickness should end up at
rank 1, the 40 mm one at rank 2, etc. However, how often this
ideal ranking happens in practice is shown in Figs. 13 and 14.
This is where a small spread is preferred over a small bias.
As long as the concepts are close to the same mean value,
they can still be effectively compared. After N = 104, the
uncertainty is small enough for the order to be right roughly
100 % of the time in the case of fitting before aggregation

2This may not be the case for something like a new wall thick-
ness but rather for different control schemes or for rigorous changes
to the blade design.

Figure 10. Outcome of a concept selection, where a new wall thick-
ness is either accepted or rejected on the basis of a 50-year stress
level using an aggregation-before-fitting approach with a GEV fit-
ted above a threshold with a sample size of N = 103.

Figure 11. Relative number of times a new wall thickness is
accepted on the basis of a 50-year stress level, predicted with
an aggregation-before-fitting approach with a GEV fitted above a
threshold.

(Fig. 14). For aggregation before fitting (Fig. 13), this is not
until N = 3× 105.

How often each rank is assigned to each concept is shown
in Figs. 15 and 16. Clearly, the 45 mm wall thickness does not
always appear the best and the 25 mm wall thickness does
not always appear the worst. In fact, there are cases where
the 45 mm wall thickness ends up being the worst of the five
concepts (see Fig. 15 for N = 102).

www.wind-energ-sci.net/2/377/2017/ Wind Energ. Sci., 2, 377–386, 2017
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Figure 12. Relative number of times a new wall thickness is ac-
cepted on the basis of a 50-year stress level, predicted with a fitting-
before-aggregation approach with a Gumbel fitted above a thresh-
old.

Figure 13. How often five concepts, ranging from 25 to 45 mm
wall thickness, are ranked in the right order from lowest stress to
highest using an aggregation-before-fitting approach with a GEV
fitted above a threshold.

4 Discussion

The uncertainty around the 50-year level clearly has a very
large impact on decision making. In this paper, we have fo-
cused on wall thickness in order to produce results that are
counterintuitive. This is to demonstrate that extrapolated 50-
year values can be misleading and can easily trick the de-
signer into making bad choices. In this case, the bad choices
are obvious. However, they can be very difficult to spot in
many other cases, for example, when choosing between dif-
ferent foundation types, tuning the gain settings for a con-
troller, or even deciding whether DLC 1.1 is driving over
other IEC load cases. The positive bias that is often present in

Figure 14. How often five concepts, ranging from 25 to 45 mm
wall thickness, are ranked in the right order from lowest stress to
highest using a fitting-before-aggregation approach with a Gumbel
fitted above a threshold.

extreme load extrapolations (e.g., Barone et al., 2012b; van
Eijk, 2016) makes it particularly difficult to prove that new
designs are capable of reducing 50-year levels. However, it
will take an immense computational effort to completely re-
move the uncertainty from the design process. It is therefore
very important that the designer is skeptical enough of their
own results.

Situations where good designs are wrongly discarded or
where bad designs are wrongly accepted have a high chance
of occurring when the sample sizes are small, especially
during the initial design phases. In any case, we can con-
clude that the bare minimum of 300 min of time series, as
prescribed in Appendix F of the standards (IEC, 2005), is
not sufficient to produce any reasonable 50-year estimate (at
least not when using one of the eight approaches in this pa-
per). One should instead aim for sample sizes larger than
N = 104, and preferably larger than N = 105. The effects of
changes in wall thickness in the order of more than 10 % are
then easily recognizable.

The most obvious solution to reduce the uncertainty is to
use high-performance computers in order to run extensive
simulation campaigns (e.g., Barone et al., 2012a, b). An al-
ternative remedy is to rely on importance sampling, which is
a well-known variance reduction method that allows the user
to allocate the computational resources for the most severe
conditions (e.g., Bos et al., 2015; Bos and Veldkamp, 2016).

5 Conclusions

The goal of this paper was to demonstrate the effects of
the uncertainty around extrapolated 50-year loads. It showed
that, unless very large sample sizes are used, DLC 1.1 is a
very unreliable measure for the performance of a design. This

Wind Energ. Sci., 2, 377–386, 2017 www.wind-energ-sci.net/2/377/2017/
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Figure 15. Ranking of five wall thicknesses on the basis of a 50-year stress level using an aggregation-before-fitting approach with a GEV
fitted above a threshold with different sample sizes.

Figure 16. Ranking of five wall thicknesses on the basis of a 50-year stress level using a fitting-before-aggregation approach with a Gumbel
fitted above a threshold with different sample sizes.

uncertainty has a pronounced effect on early phases of the
design, when computational resources are often scarce.

One should always take into account that it is very time-
consuming to prove that concepts are able to reduce the 50-
year load, unless the design changes are very radical. In one
example using an aggregation-before-fitting approach, where
the bottom tower wall thickness of the NREL 5 MW refer-
ence turbine was varied, a 10 % increase in wall thickness
was identified as a way to reduce the stress in only 53 % of
the cases with a sample size of N = 103. In fact, more than
105 simulations were required to decrease the probability of
a false rejection to 10 %. Using a fitting-before-aggregation
approach instead led to a strong positive bias and a rejection
of the new concept in most cases.

These results show that a critical attitude is required when
judging extrapolated extreme loads. When DLC 1.1 is not the
design driver, it might be best to avoid it altogether in early
phases of the design. Otherwise, using high-performance
computing or importance sampling methods will be the best
approach.
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tional Laboratories) and can be accessed at http://energy.sandia.gov/
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