<]
TUDelft

Delft University of Technology

Towards teleoperation with human-like dynamics
Human use of elastic tools

Aiple, M.; Schiele, A.

DOI
10.1109/WHC.2017.7989896

Publication date
2017

Document Version
Accepted author manuscript

Published in
Proceedings of the 2017 IEEE World Haptics Conference - WHC 2017

Citation (APA)

Aiple, M., & Schiele, A. (2017). Towards teleoperation with human-like dynamics: Human use of elastic
tools. In M. Harders, M. Otaduy, & E. Ruffaldi (Eds.), Proceedings of the 2017 IEEE World Haptics
Conference - WHC 2017 (pp. 171-176). IEEE. https://doi.org/10.1109/WHC.2017.7989896

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/WHC.2017.7989896
https://doi.org/10.1109/WHC.2017.7989896

Towards Teleoperation with Human-like Dynamics: Human Use of
Elastic Tools

Manuel Aiple', Student Member, IEEE, and André Schiele'

Abstract— Variable stiffness actuators undergo lower peak
force in contacts compared to their rigid counterparts, and are
thus safer for human-robot interaction. Furthermore, they can
store energy in their elastic element and can release it later
to achieve human-like dynamic movements. However, it is not
clear how to integrate them in teleoperator systems so that
they can be controlled intuitively by a human. We performed
an experiment to study human use of elastic tools to determine
how a teleoperator system with an elastic slave would need to be
designed. For this, we had 13 untrained participants hammer
with an elastic tool under different stiffness conditions, asking
them to try to find the best timing for a backward-forward
swing motion in order to achieve the strongest impact. We found
that the participants generally executed the task efficiently
after a few trials and they converged to very similar solutions.
The stiffness influenced the performance slightly, a stiffness
between 2.3 Nm/rad and 4.1 Nm/rad showing the best results.
We conclude that humans intuitively know how to efficiently use
elastic tools for hammering type tasks. This could facilitate the
control of teleoperator systems with elastic slave manipulators
for tasks requiring explosive movements like hammering.

I. INTRODUCTION

Teleoperation promises to combine the advantages of a
human operator in terms of flexibility and planning with
the benefits of a robot in terms of robustness to harsh
environments (e.g., radioactively contaminated areas, subsea,
space). Extensive research has been done to find methods and
technologies to efficiently couple the motion of the operator
on the master side with the motion of the robot on the slave
side, addressing issues like stability [1], transparency, time-
delay [2], sharing of control [3]. However, with the robots
and input devices of today, the operator is mostly limited to
slow motions with low dynamics.

Series Elastic Actuators (SEAs) and variable stiffness ac-
tuators (VSAs) have increasingly become a topic of interest
over the last years. Vanderborght et al. give a good overview
of the existing systems [4]. Unlike active compliance, which
emulates a spring effect by force measurement and control,
SEAs and VSAs are equipped with a physical spring on the
output of the actuator. For SEAs with constant stiffness,
this is a mechanical spring, whereas VSAs incorporate a
mechanism to change their effective stiffness. This gives
SEAs and VSAs true mechanical compliance and higher
admittance at high frequencies than actuators with active
compliance, resulting in reduced forces in highly dynamic
situations. In particular, they are more robust to impacts and
safer for humans to interact with.

IM. Aiple and A. Schiele are affiliated with the Department of BioMe-
chanical Engineering, Delft University of Technology, Delft, The Nether-
lands.

{m.aiple,a.schiele}@tudelft.nl.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/

Furthermore, SEAs and VSAs can store energy in the
spring element to release it again later. Previous studies
focused on how to exploit this to make autonomous robots
more energy efficient in high dynamic tasks like walking
and throwing [5][6]. Our research aims at developing meth-
ods and technologies for teleoperation of dynamic real-life
human tasks, like hammering, jolting, throwing, etc., using
VSAs. But, for teleoperation with elastic tools, there are
competing objectives between following the human input
accurately to achieve maximum transparency and achieving
the best task performance by following an optimal control
strategy. In order to resolve this conflict, knowledge about
human task performance using flexible tools is required. If
humans have an intuitive understanding of how to optimally
use elastic tools, teleoperator systems should be optimized
for maximum transparency also for teleoperation with flex-
ible tools. On the other hand, if human performance is bad
with elastic systems, a shared control approach based on
optimal control of the slave might be better.

This paper examines how humans interact with elastic
tools for maximum output velocity tasks. Maximum output
velocity tasks are tasks like throwing and hammering, aimed
at giving the most kinetic energy to an object with as little
input energy as possible. We picked this class of tasks for this
experiment as it makes use of SEAs’ advantage compared to
rigid actuators, their capacity to store energy in their spring
when switching from a backward motion to forward motion
and then releasing it as kinetic energy. Optimal control
strategies have been proposed for SEAs and VSAs executing
maximum output velocity tasks [7], and output velocities of
272% of the maximum motor speed have been measured
with VSAs [8].

We took one step back from the teleoperation scenario to
exclude effects coming from the teleoperator system (e.g.,
time-delay, missing fidelity in force-feedback rendering, dy-
namic constraints of the slave) and performed an experiment
with direct use of an elastic tool, asking participants to hit
a target as hard as possible with an elastic hammer (section
I). We analyzed the task performance as a function of the
stiffness of the elastic hammer, the number of trials and the
motion profile (section III). Our results suggest that humans
can intuitively use an elastic hammer exploiting the spring
effect (section IV). We conclude that this might be beneficial
for future teleoperation systems with VSAs (section VI) .

II. METHOD

For this experiment, we modified the one degree of free-
dom teleoperator system designed by Rebelo et al. [2] for
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Fig. 1. Experimental setup. The motion is constrained to rotation around

one axis. The extension can be exchanged to allow for different stiffness of
the hammer. The movement of the suspended mass shows to the participants
how hard they hit the target.

direct interaction with an elastic tool. Fig. 1 shows a diagram
of the setup. We used only one unit and decoupled the motor
from the output axis by removing the wire from the capstan
gear. We replaced the original end-effector by a handle and
a hammer. The hammer had two parts: the hammer head and
an interchangeable extension. The latter could be completely
rigid, in which case the tool was a rigid hammer, or a flexible
extension realized with a leaf-spring, in which case the tool
was an elastic hammer.

We mounted the hammer hanging down, so that the spring
was stable in neutral position with the handle in vertical
position. Participants could execute hammering motions by
moving the handle with their right hand. The setup con-
strained the motion to one degree of freedom. Therefore, the
motion was quite different from the hammering participants
might have been accustomed to. In addition, the backswing
was a pushing motion for the participants and the forward
swing a pulling motion. Although one might consider this
as making the experimental setup unrealistic, we thought
that this was beneficial as it reduced possible effects from
previously acquired skills of participants. We assumed that
participants had a general understanding of elastic tools, but
no knowledge about the setup in particular.

We asked 13 participants (8 male, 5 female, 12 right-
handed, 1 ambidextrous, age 21-41) to perform a hammering
task on the setup. The participants were told that the goal
of this experiment was to study how intuitive it is for
humans to interact with an elastic tool. The participants were
instructed to hit the target with the hammer by executing
one backward swing followed by a forward swing. Before
every hit, the hammer should be in the resting position
with the hammer head slightly touching the target in order
to ensure the hammer head was at rest before the motion.
The hammer should hit the target only once per movement
and not repeatedly. Comfortable and similar effort should
be used for all hits, focusing on the timing for switching

from backward swing to forward swing (related to the input
frequency explained below) to achieve the maximum impact.
The experiment was approved by the human research ethics
committee of TU Delft and all participants gave written
informed consent before participation.

The mass of the hammer head and its distance to the center
of rotation were constant at 115 g and 150 mm. We used five
different extensions: the rigid extension and four leaf-springs
of different thickness and stiffness: 0.4 mm (0.62 Nm/rad),
0.6 mm (2.3 Nm/rad), 0.8 mm (4.1 Nm/rad), and 1.0 mm
(11 Nm/rad). In the following we will use “Rigid” or the
spring thickness as names for the experiment conditions.
As a first approximation, the combination of leaf-spring and
hammer head can be modeled as a mass-spring system. Its
resonance frequency f depends only on the rotational spring
constant x and the moment of inertia of the hammer head
I according to the following equation: fy = %\/? . If the
input excitation through the handle is close to the resonance
frequency, mechanical resonance occurs. In this case, the
hammer head velocity amplitude is greater than the handle
velocity amplitude. Thus, for each condition, the participants
needed to adapt to the resonance frequency of the elastic
tool to achieve a high peak output velocity with a low peak
input velocity corresponding to a high impact with little
effort. However, besides the instructions explained above,
the participants were not taught a specific input profile, but
had to adjust in the way they deemed the best for moving
the suspended mass compared to the effort they put into the
strike.

For every condition, the participants had a learning phase
of approximately 100 trials and a performance phase of
approximately 20 trials. During the learning phase, the
participants were asked to try to improve their performance
by experimenting with different timings (i.e., executing the
motion at different speeds). During the performance phase,
the participants were asked to use the timing which they had
found to be the best during the learning phase. We chose 100
trials, as experience from the pilot experiments showed that
this was a trade-off allowing enough time to get used to a
condition without getting tired. After every phase there was
a short interruption to download the measurement data, and
between every condition there was a short break to change
the hammer extension. We chose a different sequence of
conditions per participant in order to compensate for learning
effects from one condition to the next.

We measured the handle position and the hammer position
using a Vicon motion capture system running at a frame rate
of 1 kHz. For this we attached passive reflective markers
on an extension to the handle and at the hammer head (cf.
Fig. 2).

III. ANALYSIS

The markers fixed to the handle and the hammer head
defined two positions in the motion capture system: position
E, coupled to the handle, and position H, coupled to the
hammer head. We converted the Cartesian coordinates z,
y, z measured by the motion capture system into polar



Fig. 2. Participant holding the handle of the setup. The reflective markers
on the handle and on the hammer head allow position tracking with the
motion capture system.

C z
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Fig. 3. Mapping from motion capture system coordinates x,y,z in the
reference frame R to rotation angles of the handle 6. and the hammer
head 6;, around the rotation axis center C. The points £ and H are the
positions of the objects defined by the markers on the handle extension and
the hammer head, respectively.

coordinates 0, and 6; by mapping them to two circles
around a common center C' and lying in the same plane
(cf. Fig. 3). This produced two one-dimensional signals for
analysis. We segmented the time sequences to isolate the
individual hammer strikes and synchronized the segments to
have the impact with the suspended mass at time O s. For
the following calculations, we cropped the segments to the
time -425 ms up to O s. For every segment, we calculated the
gain G defined by the peak hammer head velocity 0 44
divided by the peak handle velocity ée,mm, and estimated
the input frequency f from the half period between minimum
and maximum handle velocity (cf. Fig. 4).

As explained above, we modeled the elastic hammer as
a mass-spring system with the handle velocity as input
and the hammer head velocity as output. We extracted the
second-order transfer function for the different extensions
through system identification to determine the resonance
frequency fy, and damping ratio ¢ (table I). For the system
identification we used a separate measurement with manual
input at different frequencies with the hammer head able
to move freely (suspended mass removed). Based on this
transfer function, we calculated the reference gain G,y with
a theoretical reference velocity profile input, which was a
bang-bang type profile with half a period of back-swing
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Fig. 4. Typical velocity profile for one hammer strike with the metrics used
for analysis, showing the handle velocity 6. (thin line), the hammer velocity
O, (thick line), the peak velocities Oc maz and O}, a4, and the half-period
of the input velocity % from minimum to maximum of the handle velocity.

TABLE I
SYSTEM IDENTIFICATION RESULTS
FOR THE TRANSFER FUNCTION

_ 0n _ 1
H(S) - 96 1+%s+%32
“0
Condition  fo = 52 ¢
0.4 mm 298 Hz 23-1073
0.6 mm 482 Hz 32-1073
0.8 mm 6.93Hz 40-10—3
1.0 mm 989 Hz 17-103

followed by half a period of forward swing according to
Haddadin et al. [7].

Figs. 5 to 7 show the qualitative difference between the
velocity profiles and system responses. Fig. 5 shows the
measured input (handle) and output (hammer head) velocity
profiles after normalization and taking the median of all
participant performance phase trials. The median velocity
profile is suitable as a representation of a typical velocity
profile as the participants adopted very similar profiles at
the end of the learning phase. Fig. 6 visualizes the simulated
system response to the human input velocity profile, showing
a good match between simulation and measurement data
compared to Fig. 5. Fig. 7 shows the results of the simulated
system response to the reference input velocity profiles. We
can see that the difference in timing is more prominent
for the reference profiles than for the human input profiles.
The reference profiles have much shorter back swing and
forward swing phases for stiffer springs than for softer
springs whereas the human input profiles are fairly similar
(this is detailed quantitatively in the results section).

We used the following metrics to evaluate the performance
of the participants:

1) The peak hammer velocity 0.h7mm shows which con-
dition gives the best results overall.

2) The gain G shows which condition is the most efficient
in terms of output per input.

3) The relative gain n = % indicates how well the
participants performed compared to the bang-bang type

input profile.
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Fig. 5. Median normalized velocity profiles of input (handle) and output
(hammer head) for the performance phase trials of the different conditions
(1 = peak input velocity of the respective trial). Thin lines represent the
respective input velocity and thick lines the output velocity. For the rigid
condition, input and output velocity are identical. The input velocity profile
is similar for the different conditions but executed slower for softer springs
and faster for stiffer springs.
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Fig. 6. Simulated system response to a human input profile. Thin lines are
used for the input and thick lines for the output velocity (1 = peak input
velocity of the respective trial).
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Fig. 7. Simulated system response to a square input profile of an ideal

velocity source for reference gain calculation. Thin lines are used for the
input and thick lines for the output velocity.

4) The estimated input frequency f shows how the par-
ticipants adapted to the stiffness of the hammer for
the different conditions (values closer to the resonance
frequency meaning better adaptation).

5) The relative frequency error e = ! _Of 0 indicates
how close to the resonance frequency the participants
excited the mass-spring system for the different con-
ditions.
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Fig. 8. Peak hammer velocity by condition. The thin lines connect the
median of the performance trials of each subject. The thick line connects
the medians of the medians of all subjects. Superscript numbers identify
pairs of conditions with statistically significant difference at the 0.5%-level.

IV. RESULTS

For the following results, we only considered the trials
of the performance phase. We calculated the median per
participant for each condition and used Friedman’s test to
check for column effects after adjusting for possible row
effects (a« = 5%, row effects: subject-dependent variations,
column effects: condition-dependent variations). We then
used Wilcoxon’s signed-rank test for pairwise testing of
the conditions (o = ﬁ - 5%, with k the number of
conditions). With two participants, not all conditions could be
performed for organizational reasons (participant 3 missing
1.0 mm condition and rigid condition, participant 6 missing
0.4 mm condition and 0.6 mm condition). Therefore, the
results of these participants were excluded from Friedman’s
test (n = 11) and the concerned conditions were excluded
from the pairwise testing (n = 12 for the tests including
one of the conditions mentioned above, n = 11 for the tests
including two of the conditions mentioned above). Fig. 8
shows the achieved peak output velocity results, ranging
from 10.69 rad/s to 46.06 rad/s median per participant per
condition. The column effects after adjusting for possible row
effects are different at the 5%-level (Friedman’s test: x? =
25.60, n = 11). The peak output velocity is significantly
higher at the 0.5%-level with the 0.6 mm, 0.8 mm and
1.0 mm leaf-springs compared to the rigid extension. The
increase of median peak output velocity is more than 63%
from the rigid extension to the 0.6 mm and 0.8 mm leaf-
springs (rank-biserial correlation for 0.6 mm vs rigid: 0.97,
rank-biserial correlation for 0.8 mm vs rigid: 1.00, rank-
biserial correlation for 1.0 mm vs rigid: 1.00).

Fig. 9 shows the achieved gain results, ranging from 1.04
to 3.76 median per participant per condition (the gain for
the rigid extension is always 1). After adjusting for possible
row effects, the column effects are different at the 5%-
level (Friedman’s test: x2 = 30.84, n = 11). The gain
is significantly higher at the 0.5%-level with the flexible
extension compared to the rigid extension. The increase in
median gain is more than 100% from the rigid extension
to the 0.6 mm leaf-spring (rank-biserial correlation of all
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Fig. 9.  Gain by condition. The thin lines connect the median of the
performance trials of each subject. The thick line connects the medians of
the medians of all subjects. Superscript numbers identify pairs of conditions
with statistically significant difference at the 0.5%-level.
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Fig. 10. Relative gain by condition. The thin lines connect the median of the
performance trials of each subject. The thick line connects the medians of
the medians of all subjects. Superscript numbers identify pairs of conditions
with statistically significant difference at the 0.83%-level.

flexible conditions vs the rigid condition: 1.00).

Fig. 10 shows the achieved relative gain results, rang-
ing from 28.05% to 103.82% median per participant per
condition (the latter being an unusual subject as the others
achieved at most 68.36% for this condition). After adjusting
for possible row effects, the column effects are different at
the 5%-level (Friedman’s test: x2 = 14.67, n = 11). The
relative gain is significantly higher at the 0.83%-level for
the 0.6 mm leaf-spring compared to the 0.4 mm and the
1.0 mm leaf-spring (rank-biserial correlation for 0.6 mm
vs 0.4 mm: 0.97, rank-biserial correlation for 0.6 mm vs
1.0 mm: 0.97). There is no significant difference between
the 0.6 mm and the 0.8 mm leaf-spring.Fig. 11 shows the
estimated input frequency results, ranging from 1.57 Hz to
7.27 Hz median per participant per condition. After adjusting
for possible row effects, the column effects are different
at the 5%-level (Friedman’s test: x> = 24.87, n = 11).
The estimated input frequency is significantly lower at the
0.83%-level for the 0.4 mm leaf-spring compared to all other
conditions (rank-biserial correlation for 0.4 mm vs 0.6 mm:
-1.00, rank-biserial correlation for 0.4 mm vs 0.8 mm: -0.97,
rank-biserial correlation for 0.4 mm vs 1.0 mm: -1.00, rank-
biserial correlation for 0.4 mm vs rigid: -1.00).

Fig. 12 shows the relative frequency error results, ranging
from -64.51% to 26.49% median per participant per con-

Input frequency (Hz)
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Condition (-)
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Fig. 11. Input frequency by condition. The thin lines connect the median
of the performance trials of each subject. The thick line connects the
medians of the medians of all subjects. Superscript numbers identify pairs
of conditions with statistically significant difference at the 0.5%-level.
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Fig. 12. Relative frequency error by condition. The thin lines connect the
median of the performance trials of each subject. The thick line connects
the medians of the medians of all subjects. Superscript numbers identify
pairs of conditions with significant difference at the 0.83%-level.

dition. After adjusting for possible row effects, the column
effects are different at the 5%-level (Friedman’s test: x? =
27.76, n = 11). The relative frequency error is significantly
better at the 0.83%-level for the 0.4 mm and 0.6 mm leaf-
spring compared to the 0.8 mm and 1.0 mm conditions
(rank-biserial correlation for 0.4 mm vs 0.8 mm: 0.97, rank-
biserial correlation for 0.4 mm vs 1.0 mm: 1.00, rank-
biserial correlation for 0.6 mm vs 0.8 mm: 1.00, rank-biserial
correlation for 0.6 mm vs 1.0 mm: 1.00).

Fig. 13 shows the gain over the cumulative trial count,
independent of the condition, combining learning and per-
formance trials. We normalized the gains so that a value
of 1 corresponds to the median over all trials of the same
condition, and we grouped per ten trials, calculating the
medians per participant and the medians of the medians of
all participants. No significant learning effect can be seen for
most learning phases. In some cases, a small learning effect
can be observed over the first 20 to 30 trials of the learning
phase, and in others, the performance decreases after 60 to
70 trials, perhaps due to participants getting bored.

V. DISCUSSION

The participants were able to use the elastic tool to their
benefit, consistently reaching higher peak output velocities in
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Fig. 13.

Normalized gain over cumulated trial count for all flexible condition trials. A value of 1 corresponds to the median over all trials of the same

condition. Thin lines connect the median gains over ten trials per participant. The thick line connects the median of the medians over ten trials of all
participants. Learning phases, labeled L1 to L4, consist of 100 trials and performance phases, labeled P1 to P4, consist of 20 trials. Vertical bars show the
limits of the phases. After every learning phase (L1, L2, L3, L4) there was a short interruption to download the measurement data; after every performance
phase (P1, P2, P3, P4) there was a short break to change the hammer extension.

the hammering motion in the flexible conditions than in the
rigid condition, exploiting the spring gain. They achieved
this performance after a short learning phase of less than
20 to 30 trials for new stiffness conditions, not showing
significant improvements over the longer learning phase
of 100 trials. Therefore, the participants seem to have an
intuitive understanding of the dynamic system properties.

The participants actively adapted to the system resonance
by adopting higher excitation frequencies for stiffer springs,
consistent with Hatsopoulos et al. [9]. However, the partici-
pants stayed below approximately 6 Hz excitation frequency
(one outlier for the 0.8 mm condition), even for the 0.8 mm
and 1.0 mm conditions that would require higher excitation
frequencies for best performance (resonance frequency of
6.93 Hz and 9.89 Hz). We conclude that human dynamic
limitations only allow input frequencies of up to approxi-
mately 6 Hz for the task used in our experiment. Overall,
the participants achieve around half to two-thirds of the gain
possible with a perfect velocity source (unexplained outliers
achieved a higher gain), another effect of the human dynamic
limitations.

The participants achieved the best results with the 0.6 mm
leaf-spring, obtaining a median gain of 2.04. Although some
participants performed better with the 0.8 mm leaf-spring,
others had more difficulties with the faster motion, resulting
in a bigger spread of results between participants. Therefore,
we observed no statistically significant improvement in the
gain for the 0.8 mm leaf-spring compared to the other flexible
conditions, and the 0.6 mm leaf-spring with a resonance
frequency of 4.82 Hz seems to be the one the participants
could best adjust to.

Although we could show that humans can use elastic tools
intuitively, we cannot yet explain the feedback mechanisms
important for humans to be able to find and excite the system
resonance frequency. We intend to do follow-up experiments
in a teleoperation setup to separate the effects of force and
visual feedback on human performance.

VI. CONCLUSION

This paper studied how humans interact with elastic tools.
We performed an experiment with untrained participants

hammering with an elastic hammer. The participants were
able to intuitively exploit the elastic properties to their
advantage, achieving significantly higher peak output ve-
locities with an elastic hammer than with a rigid hammer.
The participants quickly adapted to the resonance frequency
for different stiffnesses. We conclude that humans should
be able to use series elastic actuators also in teleoperator
systems, if the teleoperator is sufficiently transparent. Our
future research will study the feedback mechanisms used
by humans for dynamic tasks and how to develop dynamic
teleoperator systems that are intuitive to use. With this basis,
a novel class of teleoperator systems can be developed that
allow force amplification for dynamic tasks requiring high
peak forces on the slave side.
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