

Delft University of Technology

Decentralized Reinforcement Learning of robot behaviors

Leottau, David L.; Ruiz-del-Solar, Javier; Babuška, Robert

DOI
10.1016/j.artint.2017.12.001
Publication date
2018
Document Version
Accepted author manuscript
Published in
Artificial Intelligence

Citation (APA)
Leottau, D. L., Ruiz-del-Solar, J., & Babuška, R. (2018). Decentralized Reinforcement Learning of robot
behaviors. Artificial Intelligence, 256, 130-159. https://doi.org/10.1016/j.artint.2017.12.001

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.artint.2017.12.001
https://doi.org/10.1016/j.artint.2017.12.001

Decentralized Reinforcement Learning

of Robot Behaviors

David L. Leottaua,∗, Javier Ruiz-del-Solara, Robert Babuškab

aDepartment of Electrical Engineering, Advanced Mining Technology Center,
Universidad de Chile, Av. Tupper 2007, Santiago, Chile

bCognitive Robotics Department, Faculty of 3mE, Delft University of Technology,
2628 CD Delft, The Netherlands and CIIRC, Czech Technical University in Prague,

Czech Republic

Abstract

A multi-agent methodology is proposed for Decentralized Reinforcement Learn-
ing (DRL) of individual behaviors in problems where multi-dimensional ac-
tion spaces are involved. When using this methodology, sub-tasks are learned
in parallel by individual agents working toward a common goal. In addition
to proposing this methodology, three specific multi agent DRL approaches
are considered: DRL-Independent, DRL Cooperative-Adaptive (CA), and
DRL-Lenient. These approaches are validated and analyzed with an ex-
tensive empirical study using four different problems: 3D Mountain Car,
SCARA Real-Time Trajectory Generation, Ball-Dribbling in humanoid soc-
cer robotics, and Ball-Pushing using differential drive robots. The experi-
mental validation provides evidence that DRL implementations show better
performances and faster learning times than their centralized counterparts,
while using less computational resources. DRL-Lenient and DRL-CA al-
gorithms achieve the best final performances for the four tested problems,
outperforming their DRL-Independent counterparts. Furthermore, the bene-
fits of the DRL-Lenient and DRL-CA are more noticeable when the problem
complexity increases and the centralized scheme becomes intractable given
the available computational resources and training time.

Keywords: Reinforcement Learning, multi-agent systems, decentralized
control, autonomous robots, distributed artificial intelligence.

∗Corresponding author. E-mail: dleottau@ing.uchile.cl

Preprint submitted to Artificial Intelligence November 10, 2017

© 2017 Manuscript version made available under CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

Reinforcement Learning (RL) is commonly used in robotics to learn com-
plex behaviors [43]. However, many real-world applications feature multi-
dimensional action spaces, i.e. multiple actuators or effectors, through which
the individual actions work together to make the robot perform a desired
task. Examples are multi-link robotic manipulators [7, 31], mobile robots
[11, 26], aerial vehicles [2, 16], multi-legged robots [47], and snake robots
[45]. In such applications, RL suffers from the combinatorial explosion of
complexity, which occurs when a Centralized RL (CRL) scheme is used [31].
This leads to problems in terms of memory requirements or learning time
and the use of Decentralized Reinforcement Learning (DRL) helps to allevi-
ate these problems. In this article, we will use the term DRL for decentralized
approaches to the learning of a task which is performed by a single robot.

In DRL, the learning problem is decomposed into several sub-tasks, whose
resources are managed separately, while working toward a common goal. In
the case of multidimensional action spaces, a sub-task corresponds to con-
trolling one particular variable. For instance, in mobile robotics, a common
high-level motion command is the desired velocity vector (e.g., [vx, vy, vθ]),
and in the case of a robotic arm, it can be the joint angle setpoint (e.g.,
[θshoulder, θelbow, θwrist]). If each component of this vector is controlled indi-
vidually, a distributed control scheme can be applied. Through coordination
of the individual learning agents, it is possible to use decentralized methods
[7], taking advantage of parallel computation and other benefits of Multi-
Agent Systems (MAS) [42, 5].

In this work, a Multi-Agent (MA) methodology is proposed for modeling
the DRL in problems where multi-dimensional action spaces are involved.
Each sub-task (e.g., actions of one effector or actuator) is learned by a sepa-
rate agent and the agents work in parallel on the task. Since most of the MAS
reported studies do not validate the proposed approaches with multi-state,
stochastic, and real world problems, our goal is to show empirically that the
benefits of MAS are also applicable to complex problems like robotic plat-
forms, by using a DRL architecture. In this paper, three Multi-Agent Learn-
ing (MAL) algorithms are considered and tested: the independent DRL, the
Cooperative Adaptive (CA) Learning Rate, and a Lenient learning approach
extended to multi-state DRL problems.

The independent DRL (DRL-Ind) does not consider any kind of cooper-
ation or coordination among the agents, applying single-agent RL methods

2

to the MA task. The Cooperative Adaptive Learning Rate DRL (DRL-CA)
and the extended Lenient DRL (DRL-Lenient) algorithms add coordination
mechanisms to the independent DRL scheme. These two MAL algorithms
are able to improve the performance of those DRL systems in which complex
scenarios with several agents with different models or limited state space ob-
servability appear. Lenient RL was originally proposed by Panait, Sullivan,
and Luke [35] for stateless MA games; we have adopted it to multi-state
and stochastic DRL problems based on the work of Schuitema [39]. On the
other hand, the DRL-CA algorithm uses similar ideas to those of Bowling
and Veloso [3], and Kaisers and Tuyls [19] for having a variable learning rate,
but we are introducing direct cooperation between agents without using joint
actions information and not increasing the memory consumption or the state
space dimension.

The proposed DRL methodology and the three MAL algorithms consid-
ered are validated through an extensive empirical study. For that purpose,
four different problems are modeled, implemented, and tested; two of them
are well-known problems: an extended version of the Three-Dimensional
Mountain Car (3DMC) [46], and a SCARA Real-Time Trajectory Generation
(SCARA-RTG) [31]; and two correspond to noisy and stochastic real-world
mobile robot problems: Ball-Dribbling in soccer performed with an omnidi-
rectional biped robot [25], and the Ball-Pushing behavior performed with a
differential drive robot [28].

In summary, the main contributions of this article are threefold. First,
we propose a methodology to model and implement a DRL system. Second,
three MAL approaches are detailed and implemented, two of them includ-
ing coordination mechanisms. These approaches, DRL-Ind, DRL-CA, and
DRL-Lenient, are evaluated on the above-mentioned four problems, and con-
clusions about their strengths and weaknesses are drawn according to each
validation problem and its characteristics. Third, to the best of our knowl-
edge, our work is the first one that applies a decentralized architecture to
the learning of individual behaviors on mobile robot platforms, and com-
pares it with a centralized RL scheme. Further, we expect that our proposed
extension of the 3DMC can be used in future work as a test-bed for DRL
and multi-state MAL problems. Finally, all the source codes are shared at
our code repository [23], including our custom hill-climbing algorithm for
optimizing RL parameters.

This remainder of this paper is organized as follows: Section 2 presents
the preliminaries and an overview of related work. In Section 3, we propose

3

a methodology for modeling DRL systems, and in Section 4, three MA based
DRL algorithms are detailed. In Section 5, validation problems are specified
and the experiments, results, and discussion are presented. Finally, Section 6
concludes the paper.

2. Preliminaries

This section introduces the main concepts and background based on the
works of Sutton and Barto [43], and Busoniu, Babuska, De-Schutter, and
Ernst [6] for single-agent RL; Busoniu, Babuska, and De Schutter [5], and
Vlassis [52] for Multi-Agent RL (MARL); Laurent, Matignon, and Fort-Piat
[22] for independent learning; and Busoniu, De-Schutter, and Babuska [7] for
decentralized RL. Additionally, an overview of related work is presented.

2.1. Single-Agent Reinforcement Learning

RL is a family of machine learning techniques in which an agent learns
a task by directly interacting with the environment. In the single-agent
RL, studied in the remainder of this article, the environment of the agent is
described by a Markov Decision Process (MDP), which considers stochastic
state transitions, discrete time steps k ∈ N and a finite sampling period.

Definition 1. A finite Markov decision process is a 4-tuple 〈S,A, T,R〉
where: S is a finite set of environment states, A is a finite set of agent
actions, T : S × A× S → [0, 1] is the state transition probability function,
and R : S × A× S → R is the reward function [5].

The stochastic state transition function T models the environment. The
state of the environment at discrete time-step k is denoted by sk ∈ S. At each
time step, the agent can take an action ak ∈ A. As a result of that action,
the environment changes its state from sk to sk+1, according T (sk, ak, sk+1),
which is the probability of ending up in sk+1 given that action ak is applied in
sk. As an immediate feedback on its performance, the agent receives a scalar
reward rk+1 ∈ R, according to the reward function: rk+1 = R(sk, ak, sk+1).
The behavior of the agent is described by its policy π, which specifies how
the agent chooses its actions given the state.

This work is on tasks that require several simultaneous actions (e.g., a
robot with multiple actuators), where such tasks are learned by using sepa-
rate agents, one for each action. In this setting, the state transition proba-
bility depends on the actions taken by all the individual agents. We consider

4

on-line and model-free algorithms, as they are convenient for practical im-
plementations.

Q-Learning [53] is one of the most popular model-free, on-line learning
algorithms. It turns Bellman equation into an iterative approximation pro-
cedure which updates the Q-function by the following rule:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′∈A
Q(s′, a′)−Q(s, a)

]
(1)

with α ∈ (0, 1] the learning rate, and γ ∈ (0, 1) the discount factor. The
sequence of Q-functions provably converges to Q∗ under certain conditions,
including that the agent keeps trying all actions in all states with non-zero
probability.

2.2. Multi-Agent Learning

The generalization of the MDP to the multi-agent case is the stochastic
game.

Definition 2. A stochastic game is the tuple 〈S,A1, · · · , AM , T, R1 . . . RM〉
with M the number of agents; S the discrete set of environment states;
Am,m = 1, · · · ,M the discrete sets of actions available to the agents, yielding
the joint action set A = A1 × · · · × AM ; T : S × A × S → [0, 1] the state
transition probability function, such that, ∀s ∈ S,∀a ∈ A,

∑
s′∈S T (s, a, s′) =

1; and Rm : S × A × S → R,m = 1, · · · ,M the reward functions of the
agents [5, 22].

In the multi-agent case, the state transitions depend on the joint action of
all the agents, ak = [a1

k, · · · , aMk], ak ∈ A, amk ∈ Am. Each agent may receive
a different reward rmk+1. The policies πm : S ×Am → [0, 1] form together the
joint policy π. The Q-function of each agent depends on the joint action and
is conditioned on the joint policy, Qπ

m : S ×A → R.
If R1 = · · · = RM , all the agents have the same goal, and the stochas-

tic game is fully cooperative. If M = 2, R1 = −R2, and they sum-up to
zero, the two agents have opposite goals, and the game is fully competi-
tive. Mixed games are stochastic games that are neither fully cooperative
nor fully competitive [52]. In the general case, the reward functions of the
agents may differ. Formulating a good learning goal in situations where the
agents’ immediate interests are in conflict is a difficult open problem [7].

5

2.2.1. Independent Learning

Claus and Boutilier [8] define two fundamental classes of agents: joint-
action learners and Independent Learners (ILs). Joint-action learners are
able to observe the other agents actions and rewards; those learners are
easily generalized from standard single-agent RL algorithms as the process
stays Markovian. On the contrary, ILs do not observe the rewards and actions
of the other learners, they interact with the environment as if no other agents
exist [22].

Most MA problems violate the Markov property and are non-stationary.
A process is said non-stationary if its transition probabilities change with
the time. A non-stationary process can be Markovian if the evolution of its
transition and reward functions depends only on the time step and not on
the history of actions and states [22].

For ILs, which is the focus of the present paper, the individual poli-
cies change as the learning progresses. Therefore, the environment is non-
stationary and non-Markovian. Laurent, Matignon and Fort-Piat [22] give an
overview of strategies for mitigating convergence issues in such a case. The
effects of agents’ non-stationarity are less observable in weakly coupled dis-
tributed systems, which makes ILs more likely to converge. The observability
of the actions’ effects may influence the convergence of the algorithms. To
ensure convergence, these approaches require the exploration rate to decay as
the learning progresses, in order to avoid too much concurrent exploration.
In this way, each agent learns the best response to the behavior of the others.
Another alternative is to use coordinated exploration techniques that exclude
one or more actions from the agent’s action space, to efficiently search in a
shrinking joint action space. Both approaches reduce the exploration, the
agents evolve slower and the non-Markovian effects are reduced [22].

2.3. Decentralized Reinforcement Learning

DRL is concerned with MAS and Distributed Problem Solving [42]. In
DRL, a problem is decomposed into several subproblems, managing their
individual information and resources in parallel and separately, by a collec-
tion of several agents which are part of a single entity, such as a robot. For
instance, consider a quadcopter learning to perform a maneuver: each ro-
tor can be considered as a subproblem rather than an entirely independent
problem; each subproblem’s information and resources (sensors, actuators,
effectors, etc) can be managed separately by four agents; so, four individual
policies will be learned to perform the maneuver in a collaborative way.

6

One of the first mentions of DRL is by Busoniu, De-Schutter, and Babuska
[7], where it was used to differentiate a decentralized system from a MAL sys-
tem composed of individual agents [34]. The basic DRL architecture is shown
in Figure 1 where M individual agents are interacting within an environment.
According to Tuyls, Hoen, and Vanschoenwinkel [49], single-agents working
on a multi-agent task are able to converge to a coordinate equilibrium un-
der certain parameters and for some particular behaviors. In this work we
validate that assumption empirically with several problems in which multi-
dimensional action spaces are present. Thus, a methodology for modeling
those problems by using a DRL scheme is a primary contribution of this
work.

Agent1

Agentm

AgentM

M M

action at
m

state stm

reward rt
m M

rt+1m

st+1m ENVIRONMENT

Figure 1: The basic DRL architecture.

2.3.1. Potential Advantages of DRL

One of the main drawbacks of classical RL is the exponential increase
of complexity with the number of state variables. Moreover, problems with
multi-dimensional action spaces suffer from the same drawback in the ac-
tion space, too. This makes the learning process highly complex, or even
intractable, in terms of memory requirements or learning time [31]. This
problem can be overcome by addressing it from a DLR perspective. For in-
stance, by considering a system with M actuators (an M -dimensional action
space) and N discrete actions in each one, a DRL scheme leads to evaluating
and storing N ·M values per state instead of NM as a centralized RL does.
This result in a linear increase with the number of actuators instead of an

7

exponential one. A generalized expression for memory requirements and a
computation time reduction factor during action selection can be determined
[39]. This is one of the main benefits of using DRL over CRL schemes, ex-
pressed by the following ratio: ∏M

m=1 |Nm|∑M
m=1 |Nm|

, (2)

where actuator m has |Nm| discrete actions.
In addition, the MAS perspective grants several potential advantages if

the problem is approached with decentralized learners:

- Since from a computational point of view, all the individual agents in
a DRL system can operate in parallel acting upon their individual and
reduced action spaces, the learning speed is typically higher compared
to a centralized agent which searches an exponentially larger action
space N = N1 × · · · ×NM , as expressed in (2) [39].

- The state space can be reduced for an individual agent, if not all the
state information is relevant to that agent.

- Different algorithms, models or configurations could be used indepen-
dently by each individual agent.

- Memory and computing time requirements are smaller.

- Parallel or distributed computing implementations are suitable.

There are various alternatives to decentralize a system performed with a
single robot, for example, task decomposition [54], behavior fusion [17], and
layered learning [44]. However, in this work we are proposing the multi-
dimensional action space decomposition, where each action dimension is
learned-controlled by one agent. In this way, the aforementioned potential
advantages can be exploited.

2.3.2. Challenges in DRL

DRL also has several challenges which must be resolved efficiently in or-
der to take advantage of the benefits already mentioned. Agents have to
coordinate their individual behaviors toward a desired joint behavior. This
is not a trivial goal since the individual behaviors are correlated and each in-
dividual decision influences the joint environment. Furthermore, as pointed

8

out in Section 2.2.1, an important aspect to deal with is the Markov property
violation. The presence of multiple concurrent learners, makes the environ-
ment non-stationary from a single agent’s perspective [5]. The evolution of
its transition probabilities do not only depend on time, the process evolution
is led by the agents’ actions and their own history. Therefore, from a single
agent’s perspective, the environment no longer appears Markovian [22]. In
Section 4, two MAL algorithms for addressing some of these open issues in
DRL implementations, are presented: the Cooperative Adaptive Learning
Rate, and an extension of the Lenient RL algorithm applied to multi-state
DRL problems.

2.4. Related Work

Busoniu et al. [7] present centralized and multi-agent learning approaches
for RL, tested on a two-link manipulator, and compared them in terms of
performance, convergence time, and computational resources. Martin and
De Lope [31] present a distributed RL architecture for generating a real-time
trajectory of both a three-link planar robot and the SCARA robot; exper-
imental results showed that it is not necessary for decentralized agents to
perceive the whole state space in order to learn a good global policy. Prob-
ably, the most similar work to ours is reported by Troost, Schuitema, and
Jonker [48], this paper uses an approach in which each output is controlled by
an independent Q(λ) agent. Both simulated robotic systems tested showed
and almost identical performance and learning time between the single-agent
and MA approaches, while this last one requires less memory and computa-
tion time. A Lenient RL implementation was also tested showing a significant
performance improvement for one of the case studied. Some of these exper-
iments and results were extended and presented by Schuitema [39]. More-
over, the DRL of the soccer ball-dribbling behavior is accelerated by using
knowledge transfer [26], where, each component of the omnidirectional biped
walk (vx, vy, vθ) is learned by separate agents working in parallel on a multi-
agent task. This learning approach for the omnidirectional velocity vector
is also reported by Leottau, Ruiz-del-Solar, MacAlpine, and Stone [27], in
which some layered learning strategies are studied for developing individual
behaviors, and one of these strategies, the concurrent layered learning in-
volves the DRL. Similarly, a MARL application for the multi-wheel control
of a mobile robot is presented by Dziomin, Kabysh, Golovko, and Stetter
[11]. The robotic platform is separated into driving module agents that are
trained independently, in order to provide energy consumption optimization.

9

A multi-agent RL approach is presented by Kabysh, Golovko, and Lipnickas
[18], which uses agents’ influences to estimate learning error among all the
agents; it has been validated with a multi-joint robotic arm. Kimura [20]
presents a coarse coding technique and an action selection scheme for RL in
multi-dimensional and continuous state-action spaces following conventional
and sound RL manners; and Pazis and Lagoudakis [38] present an approach
for efficiently learning and acting in domains with continuous and/or mul-
tidimensional control variables, in which the problem of generalizing among
actions is transformed to a problem of generalizing among states in an equiva-
lent MDP, where action selection is trivial. A different application is reported
by Matignon, Laurent, and Fort-Piat [32], where a semi-decentralized RL
control approach for controlling a distributed-air-jet micro-manipulator is
proposed. This showed a successful application of decentralized Q-learning
variant algorithms for independent agents. A well know related work was
reported by Crites and Barto [9], an application of RL to the real world
problem of elevator dispatching, its states are not fully observable and they
are non-stationary due to changing passenger arrival rates. So, a team of RL
agents is used, each of which is responsible for controlling one elevator car.
Results showed that in simulation surpass the best of the heuristic elevator
control tested algorithms. Finally, some general concepts about concurrently
agents are presented by Laurent, Matignon, and Fort-Piat [22], by provid-
ing formal conditions that make the environment non-Markovian from an
independent (non-communicative) learner’s perspective.

3. Decentralized Reinforcement Learning Methodology

In this section, we present a methodology for modeling and implementing
a DRL system. Aspects such as what kind of problem is a candidate for
being decentralized, which sub-tasks, actions, or states should or could be
decomposed, and what kind of reward functions and RL learning algorithms
should be used are addressed. The 3D mountain car is used as an example
in this section. The following methodology is proposed for identifying and
modeling a DRL system.

3.1. Determining if the Problem is Decentralizable

First of all, it is necessary to determine if the problem addressed is de-
centralizable via action space decomposition, and, if it is, to determine into

10

how many subproblems the system can be separated. In robotics, a multi-
dimensional action space usually implies multiple controllable inputs, i.e,
multiple actuators or effectors. For instance, an M -joint robotic arm or an
M -copter usually has at least one actuator (e.g., a motor) per joint or ro-
tor, respectively, while a differential drive robot has two end-effectors (right
and left wheels), and an omnidirectional biped gait has a three-dimensional
commanded velocity vector ([vx, vy, vθ]). Thus, for the remainder of this ap-
proach, we are going to assume as a first step that:

Proposition 1. A system with an M-dimensional action space is decentral-
izable if each of those action dimensions are able to operate in parallel and
their individual information and resources can be managed separately. In this
way, it is possible to decentralize the problem by using M individual agents
learning together toward a common goal.

This concept will be illustrated with the 3DMC problem. A basic de-
scription of this problem is given below, and it will be detailed in depth in
Section 5.1.

3-Dimensional mountain car: mountain car is one of the canonical RL
tasks where an agent must drive an under-powered car up a mountain to
reach a goal state. In the 3D modification originally proposed by Taylor and
Stone [46], the mountain’s curve is extended to a 3D surface as is shown
in Figure 2. The state has four continuous state variables: [x, ẋ, y, ẏ]. The
agent selects from five actions: {Neutral,West, East, South,North}, where
the x axis of the car points toward the north. The reward is −1 for each
time step until the goal is reached, at which point the episode ends and the
reward is 0.

This problem can also be described by a decentralized RL modeling. It
has a bi-dimensional action space, where {West, East} actions modify speed
ẋ onto the x axis (dimension 1), and {South,North} actions modify speed
ẏ onto the y axis (dimension 2). These two action dimensions can act in
parallel, and they can be controlled separately. So, Proposition 1 is fulfilled,
and 3DMC is a decentralizable problem by using two RL separate agents:
Agentx and Agenty.

3.2. Identifying Common and Individual Goals

In a DRL system, a collection of separate agents learn, individual policies
in parallel, in order to perform a desired behavior together to reach a common
goal.

11

Figure 2: 3D mountain car surface. Figure adopted from Taylor and Stone [46].

A common goal is always present in a DRL problem, and for some cases it
is the same for all the individual agents, especially when they share identical
state spaces, similar actions, and common reward functions. But, there are
problems in which a particular sub-task can be assigned to a determined
agent in order to reach that common goal. To identify each agent’s individual
goal is a non-trivial design step, that requires knowledge of the problem. It is
not an issue for centralized schemes, but it is an advantage of a decentralized
architecture because it allows addressing the problem more deeply.

There are two types of individual goals for DRL agents: those which are
intrinsically generated by the learning system when an agent has different
state or action spaces with respect to the others, and those individual goals
which are assigned by the designer to every agent, defining individual reward
functions for that purpose. For the remainder of this manuscript, the concept
of individual goals and individual reward functions will refer to those kinds
of goals assigned by the designer.

At this time, there is no general rule for modeling the goals system of
a DRL problem, and still it is necessary spending time in designing it for
each individual problem. Since individual goals imply individual rewards,
it is a decision which depends on how specific the sub-task performed by
each individual agent is, and to what extent the designer is familiar with the
problem and each decentralized sub-task. If there is only a common goal,
this is directly related with the global task or desired behavior and guided by

12

the common reward function. Otherwise, if individual goals are considered,
their combination must guarantee to achieve the common goal.

For instance, the common goal for the 3DMC problem is reaching the
goal state at the north-east corner in the Figure 2. Individual goals can be
identified, Agentx should reach the east top, and Agenty should reach the
north top.

3.3. Defining the Reward Functions

The number of decentralized agents has already been decided, as well as
whether or not individual goals will be assigned to some of those agents.
Based on this information, we can now define the reward functions.

If no individual goals have been assigned in Stage 3.2, this step just
consists of defining a global reward function according to the common goal
and the desired behavior which the DRL system is designed for. If this is
not the case, individual reward functions must be designed according to each
individual goal.

Design considerations for defining the global or each individual reward
function are the same for classical RL systems [43]. This is the most im-
portant design step requiring experience, knowledge, and creativity. A well-
known rule is that the RL agent must be able to observe or control every
variable involved in the reward function R(S,A). Then, the next stage of
this methodology consists of determining the state spaces.

In the centralized modeling for the 3DMC problem, a global reward func-
tion is proposed as: r = 0 if the common goal is reached, r = −1 otherwise.
In the DRL scheme, individual reward functions can be defined as: rx = 0 if
East top is reached, rx = −1 otherwise, for the Agentx, and ry = 0 if north
top is reached ; ry = −1 otherwise, for the Agenty. In this way, each single
sub-task is more specific.

3.4. Determining if the Problem is Fully Decentralizable

The next stage in this methodology consists of determining if it is nec-
essary and/or possible to decentralize the state space too. In Stage 3.1 it
was determined that at least the action space will be split according to its
number of dimensions. Now we are going to determine if it is also possible to
simplify the state space using one separate state vector per each individual
agent. This is the particular situation in which a DRL architecture offers the
maximum benefit.

13

Proposition 2. A DRL problem is fully decentralizable if not all the state
information is relevant to all the agents, thus, individual state vectors can be
defined for each agent.

Some fully decentralizable problems allow excluding non-relevant state
variables from the state vector of one or more agents. Thus, the state space
can be reduced as well, potentially increasing learning speed since this par-
ticular individual agent searches an exponentially smaller state space. This
is one of the advantages of the DRL described in Subsection 2.3.

If a system is not fully decentralizable, and it is necessary that all the
agents observe the whole state information, the same state vector must be
used for all the individual agents, and will be called a joint state vector.
However, if a system is fully decentralizable, the next stage is to determine
which state variables are relevant to each individual agent. This decision
depends on the transition function Tm of each individual goal defined in
Stage 3.2, as well as on each individual reward function designed in Stage
3.3. For example, for a classical RL system, the definition of the state space
must include every state variable involved in the reward function, as well as
other states relevant to accomplishing the assigned goal.

Note that individual reward functions do not imply individual state spaces
per agent. For instance, the 3DMC example can be designed with those
two individual rewards (rx and ry) defined in Stage 3.3, observing the full
joint state space [x, ẋ, y, ẏ]. Also, note that state space could be reduced for
practical effects, Agentx could eventually work without observing ẏ speed,
as well as Agenty without observing ẋ speed. So, this could be also modeled
as a fully decentralized problem with two individual agents with their own
independent state vectors, Sx = [x, ẋ, y], Sy = [x, y, ẏ]. Furthermore, we
have implemented an extreme case with incomplete observations in which
Sx = [x, ẋ], Sy = [y, ẏ]. Implementation details as well as experimental
results can be checked in Section 5.1.

3.5. Completing RL Single Modelings

Once the global DRL modeling has been defined and the tuples state,
action, and reward [Sm, Am, Rm] are well identified per every agent m =
1, · · · ,M , it is necessary to complete each single RL modeling. Implemen-
tation and environmental details such as ranges and boundaries of features,
terminal states, and reset conditions must be defined, as well as RL algo-
rithms and parameters selected. If individual sub-tasks and their goals are

14

well identified, modeling each individual agent implies the same procedure
as in a classical RL system. Some problems can share some of these design
details among all or some of their DRL agents. This is one of the most
interesting aspects of using a DRL architecture: flexibility to implement
completely different modelings, RL algorithms, and parameters per each in-
dividual agent; or the simplicity of just using the same scheme for all the
agents.

An important design issue at this stage, is choosing the RL algorithm
to be implemented per each agent properly. Considerations for modeling a
classical RL single agent are also applicable here. For instance, for a discrete
state-action space problem it could be more convenient to use algorithms like
tabular Q-Learning [53] or R-MAX [4]; for a continuous state and discrete ac-
tion space problem, a SARSA with function approximation [43] might more
convenient; for a continuous state-action space problem, a Fuzzy Q-Learning
[13] or an actor critic scheme [15] could be more convenient. These cases
are only examples to give an idea about the close relationship between mod-
eling and designing classical RL agents versus each individual DRL agent.
As already mentioned, differences are based on determining terminal states
separately, resetting conditions, and establishing environment limitations,
among other design settings, which can be different among agents and must
be well set to coordinate the parallel learning procedure under the joint en-
vironmental conditions. Of course, depending on the particular problem, the
designer has to model and define the most convenient scheme. Also note that
well-known RL algorithms can be used, no codifications or synchronization or
communication protocols are needed, and in general, no extra considerations
are taken into account in designing and modeling a DRL with this approach.
Thereby, a strong background in MAS and/or MAL is not necessary.

3.6. Summary

A methodology for modeling and implementing a DRL system has been
presented in this section by following a five stage design procedure. It is
important to mention that some of these stages must not necessarily be
applied in the same order in which they were presented. That depends on
the particular problem and its properties. For instance, for some problems it
could be necessary or more expeditious to define the state spaces in advance
in Stage 3.4 rather than to determine individual goals in Stage 3.2. However,
this is a methodology which guides the design of DRL systems in a general
way. A block diagram of the proposed procedure is shown in Figure 3.

15

M: Number of dimensions of the action space

NO END

Problem is decentralizable
Set: Agent1, ... , AgentM

Determine the common goal

YES

Set: S(joint state)
State space is
decentralizable

Set: S1, ..., SM

YESNO

Set environment details and choose a RL algorithm for:
Agent1, ..., AgentM

YESNO

Define Individual goals
and rewardsDefine Global reward

Set: R (S) Set: R1(S1), ..., RM(SM)

M>1

Fully Decentralizable

Individual goals
are identified

Figure 3: Proposed procedure for modeling a DRL problem.

4. Multi-Agent Learning Methods

In this section, we examine some practical DRL algorithms to show that
the benefits of MAS are also applicable to complex and real-world problems
(such as robotic platforms) by using a DRL architecture. For this, we have

16

implemented and tested some relevant MAL methods from state-of-the-art
which accomplish the three basic requirements of our interest: (i) no prior
coordination, (ii) no teammates models estimation, and (iii) non-exponential
increasing of computational resources when more agents are added. A brief
note on preliminary results from the selected methods is provided below:

(a) Distributed Q-Learning [21]: asymptotic convergence was not observed,
which can be explained by the stochasticity of the studied scenarios.

(b) Frequency Adjusted Multi-Agent Q-Learning [19]: it exposed poor per-
formance since parameter β is too sensitive and thus it was difficult
to adjust; however, the idea of an adjustable learning rate from the
Boltzmann probability distribution is of relevant interest.

(c) Adaptations of the Infinitesimal Gradient Ascent algorithm (IGA) [41]
and the Win or Learn Fast (WoLF) principle [3]: not a trivial imple-
mentation in the case of more than two agents and non competitives
environments; however, a cooperative and variable learning rate is a
promising approach.

(d) Lenient Frequency Adjusted Q-learning (LFAQ) [1]: it exposed poor
performance due to both the tabular nature to handle lenience, and
the high complexity to adjust individual FA parameters.

(e) Independent Multi-Agent Q-Learning without sharing information (e.g.,
the one reported by Sen, Sekaran, and Hale [40]): it mostly showed
asymptotic convergence but poor final performances.

(f) Lenient Multi-Agent Reinforcement Learning [35]: it showed asymp-
totic convergence when applied to multi-state DRL problems.

From the above, in the present study we have decided to use the follow-
ing three methods: (i) Independent DRL (DRL-Independent), similar to
(a) but implemented with SARSA; (ii) Lenient Multi-Agent Reinforce-
ment Learning (DRL-Lenient), as in (d) but extended to multi-state DRL
problems; and (iii) Cooperative Adaptive Learning Rate (DRL-CA) al-
gorithm, our proposed approach, inspired by (b) and (c). These approaches
will be addressed in detail in the following subsections, and the corresponding
performance will be discussed in Section 5.

4.1. DRL-Independent

This scheme aims for applying single-agent RL methods to the MARL
task, and it does not consider any of the following features: cooperation or

17

coordination among agents; adaptation to the other agents; estimated models
of their policies; special action-selection mechanisms, such as communication
among agents, prior knowledge, etc. The computational complexity of this
DRL scheme is the same as that for a single RL agent (e.g., a Q-Learner).

According to the MAL literature, a single-agent RL can be applicable to
stochastic games, although success is not necessarily guaranteed as the non-
stationarity of the MARL problem invalidates most of the single-agent RL
theoretical guarantees. However, it is considered a practical method due to
its simplicity, and it has been used in several applications to robot systems
[7, 33, 28]. The implementation of this scheme is presented in Algorithm 1,
which depicts an episodic MA-SARSA scheme for continuous states with
Radial Basis Function (RBF) approximation [37], and ε-greedy exploration
[43], where a learning system is modeled with an M − dimensional action
space and M single SARSA learners acting in parallel.

Algorithm 1 is described for the most general case of a fully-decentralized
system with individual rewards, where states and rewards are annotated as
sm and rm respectively, but it is also possible to implement a joint state vector
or common reward DRL systems. In addition, note that RL parameters could
have been defined separately per agent (αm, γm), which is one of the DRL
properties remarked in Section 2.3, but in Algorithm 1 they appear unified
just for the sake of simplicity.

4.2. DRL-Lenient

Originally proposed by Panait et al. [35], the argument of lenient learning
is that each agent should be lenient with its teammates at early stages of the
concurrent learning processes. Later, Panait, Tuyls, and Luke [36] suggested
that the agents should ignore lower rewards (observed upon performing their
actions), and only update the utilities of actions based on the higher rewards.
This can be achieved in a simple manner if the learners compare the observed
reward with the estimated utility of an action and update the utility only if
it is lower than the reward, namely, by making use of the rule

if (Ua∗ ≤ r) || urnd < 10−2 + κ−βτa∗ then Ua∗ ← αUa∗ + (1− α)r, (3)

where urnd ∈ [0, 1] is a random variable, κ is the lenience exponent coeffi-
cient, and τ(a∗) is the lenience temperature of the selected action. Lenience
may be reduced as learning progresses and agents start focusing on a solu-
tion that becomes more critical with respect to joint rewards (ignoring fewer

18

Algorithm 1 DRL-Independent: MA-SARSA with RBF approximation and
ε-greedy exploration

Parameters:
1: M . Number of decentralized agents
2: α . Learning rate ∈ (0, 1]
3: γ . Discount factor ∈ (0, 1]
4: Φm . Size of the feature vector φm of agentm, where m = 1, · · · ,M

Inputs:
5: S1, · · · , SM . State space of each agent
6: A1, · · · , AM . Action space of each agent
7: Initialize ~θm arbitrarily for each agent m = 1, · · · ,M
8: procedure for each episode:
9: for all agent m ∈M do

10: am, sm ← Initialize state and action
11: end for
12: repeat for each step of episode:
13: for all agent m ∈M do
14: Take action a = am from current state s = sm

15: Observe reward rm, and next state s′ = s′m

16: urnd← a uniform random variable ∈ [0, 1]
17: if urnd > ε then
18: for all action i ∈ Am(s′) do

19: Qi ←
∑Φm

j=1 θ
m
i (j) · φms′ (j)

20: end for
21: a′ ← argmaxiQi

22: else
23: a′ ← a random action ∈ Am(s′)
24: end if
25: Qas =

∑Φm

j=1 θ
m
a (j) · φms (j)

26: Qas′ =
∑Φm

j=1 θ
m
a′ (j) · φms′ (j)

27: δ ← rm + γ ·Qas′ −Qas
28: θma ← θma + α · δ · φms
29: sm ← s′, am ← a′

30: end for
31: until Terminal condition
32: end procedure

19

of them) during advanced stages of the learning process, which can be in-
corporated in Eq. (3) by using a discount factor β each time that action is
performed.

Lenient learning was initially proposed in state-less MA problems. Ac-
cording to Troost et al. [48] and Schuitema [39], a multi-state implementation
of Lenient Q-learning can be accomplished by combining the Q-Learning up-
date rule (i.e. Eq. (1)) with the optimistic assumption proposed by Lauer
and Riedmiller [21]. Accordingly, the action-value function is updated op-
timistically at the beginning of the learning trial, taking into account the
maximum utility previously received along with each state-action pair vis-
ited. Then, lenience toward other agents is refined smoothly, returning to
the original update function (this is, Eq. (1)):

Q(st, at)←
{
Q(st, at) + αδ, if δ > 0 or urnd > `(st, at),
Q(st, at), otherwise,

(4)

with the state-action pair dependent lenience `(st, at) defined as

`(s, a) = 1− exp(−κ · τ(s, a)),

τ(s, a)← β · τ(s, a),

where κ is the lenience coefficient, and τ(s, a) is the lenience temperature of
the state action pair (s, a), which decreases with a discount factor β each
time the state-action pair is visited.

In our study, we implement lenient learning by adapting the update rule
(4) to multi-state, stochastic, continuous state-action DRL problems, as re-
ported by Troost et al. [48] and Schuitema [39] . The DRL-Lenient algorithm
presented in Algorithm 2, which is implemented by replacing traces, incor-
porates a tabular MA-SARSA(λ) method, and uses softmax action selection
from Sutton and Barto [43].

In Algorithm 2, individual temperatures are managed separately by each
state-action pair. These temperatures (line 20) are used to later compute
the Boltzmann probability distribution Pa (line 26), which is the basis for
the softmax action selection mechanism. Note that only the corresponding
temperature τ(st, ai) is decayed in line 29 after the state-action pair (st, ai)
is visited. This is a difference with respect to the usual softmax exploration
which uses a single temperature for the entire learning process. Value func-
tion is updated only if the learning procedure is either optimistic or lenient,
otherwise it is not updated. It is either optimistically updated whenever the

20

Algorithm 2 DRL-Lenient: SARSA(λ) with softmax action selection
Parameters:

1: M . Number of decentralized agents
2: Nm . Number of actions of agentm, where m = 1, · · · ,M
3: λ . Eligibility trace decay factor ∈ [0, 1)
4: κ . Lenience coefficient
5: β . Lenience discount factor ∈ [0, 1)

Inputs:
6: S1, · · · , SM . State space of each agent
7: A1, · · · , AM . Action space of each agent
8: for all agent m ∈M do
9: for all (sm, am) do

10: Initialize:
11: Qm(sm, am) = 0, em(sm, am) = 0, and τm(sm, am) = 1
12: end for
13: Initialize state and action sm, am

14: end for
15: repeat
16: for all agent m ∈M do
17: Take action a = am from current state s = sm

18: Observe reward rm, and next state s′ = s′m

19: em(s, a)← 1

20: minτ ← κ · (1−
Nm

min
action i=1

(τm(s, ai)))

21: maxQv ← Nm

max
action i=1

(Qm(s, ai))

22: for all action i ∈ Am(s′) do
23: V qai ← exp(minτ · (Qm(s, ai)−maxQv))
24: end for
25: Pa = [Pa1, · · · , PaNm] . Define probability distribution per-action at state s

26: Pa← V qa∑Nm

i=1 V qai
27: Choose action a′ = ai∗ ∈ {1, · · · , Nm} . at random using probability

distribution [Pa1, · · · , PaNm]
28: δ ← rm + γ ·Qm(s′, a′)−Qm(s, a)
29: τm(s, a)← β · τm(s, a)
30: `(s, a) = 1− exp(−κ · τm(s, a))
31: if δ > 0 —— urnd > `(s, a) then
32: for all (s, a) do
33: Qm(s, a)← Qm(s, a) + αδem(s, a)
34: end for
35: end if
36: em ← γ · λ · em
37: sm ← s′; am ← a′

38: end for
39: until Terminal condition

21

last performed action increases the current utility function, or leniently up-
dated if the agent has explored that action sufficiently. Since lenience (line
30) is also computed from temperature, every state-action pair has an indi-
vidual lenience degree as well. The agent is more lenient (and it thus ignores
low rewards) if the temperature associated with the current state-action pair
is high. Such a leniency is reduced as long as its respective state-action pair
is visited; in that case, the agent will tend to be progressively more critical
in refining the policy.

In order to extend DRL-Lenient to continuous states, it is necessary to
implement a function approximation strategy for the lenient temperature
τ(s, a), the eligibility traces e(s, a), and the action-value functions. Fol-
lowing a linear gradient-descent strategy with RBF-features, similar to that
presented in Algorithm 1, function approximations can be expressed as:

ea ← ea + φs, (5a)

τ(s, a) =
Φ∑
j=1

τa(j) · φs(j), (5b)

τa ← τa − (1− β) · τ(s, a) · φs, (5c)

δ ← r + γ ·
Φ∑
j=1

θa′(j) · φs′(j)−
Φ∑
j=1

θa(j) · φs(j), (5d)

~θ ← ~θ + α · δ · ~e, (5e)

~e← γ · λ · ~e, (5f)

where Φ is the size of the feature vector φs. Equations (5a), (5c), (5d), (5e)
and (5f) would approximate lines 19, 29, 28, 33 and 36, respectively. For
practical implementations, τa must be set between (0, 1).

4.3. DRL-CA

In this paper, we introduce the DRL Cooperative Adaptive Learning
Rate algorithm (DRL-CA), which mainly takes inspiration from the MARL
approaches with a variable learning rate [3], and Frequency Adjusted Q-
Learning (FAQL) [19]. We have used the idea of a variable learning rate
from the WoLF principle [3] and the IGA algorithm [41], in which agents
learn quickly when losing, and cautiously when winning. The WoLF-IGA
algorithm requires knowing the actual distribution of the actions the other

22

agents are playing, in order to determine if an agent is winning. This re-
quirement is hard to accomplish for some MA applications in which real-time
communication is a limitation (e.g., decentralized multi-robot systems), but
it is not a major problem for DRL systems performing single robot behav-
iors. Thus, DRL-CA uses a cooperative approach to adapt the learning rate,
sharing the actual distribution of actions per-each agent. Unlike the original
WoLF-IGA, where gradient ascent is derived from the expected pay-off, or
unlike the current utility function from the update rule [3], DRL-CA directly
uses the probability of the selected actions, having a common normalized
measure of partial quality of the policy performed per agent. This idea is
similar to FAQ-Learning [19], in which the Q update rule

Qi(t+ 1)← Qi(t) + min

(
β

Pai
, 1

)
α[r + γ ·max

j
Qj(t)−Qi(t)] (6)

is modified by the adjusted frequency parameter (min(β/xi, 1)). In our DRL-
CA approach, we replace such term by a cooperative adaptive factor ς defined
as

ς = 1−
M

min
agent m=1

Pa∗,m. (7)

The main principle of DRL-CA is supported on this cooperative factor
that adapts a global learning rate on-line, which is based on a simple estima-
tion of the partial quality of the joint policy performed. So, ς is computed
from the probability of selected action (Pa∗), according to the “weakest”
among the M agents.

A variable learning rate based on the gradient ascent approach presents
the same properties as an algorithm with an appropriately decreasing step
size [41]. In this way, DRL-CA shows a decreasing step size if a cooperative
adaptive factor ς such as (7) is used. We refer to this decremental variation as
DRL-CAdec. So, an agent should adapt quickly during the early learning
process, trying to collect experience and learn fast while there is a mis-
coordinated joint policy. In this case, we have that ς → 1 and the learning
rate tends to α. Once the agents progressively obtain better rewards, they
should be cautious since the other players are refining their policies and,
eventually, they will explore unknown actions which can produce temporal
mis-coordination. In this case, we have ς → 0 and a decreasing learning rate,
while better decisions are being made. Note that DRL-CAdec acts contrarily
to the DRL-Lenient principle.

23

We also introduce the DRL-CAinc, a variation in which a cooperative
adaptive factor increases during the learning process if a coordinated policy
is learned gradually. This variation uses

ς =
M

min
agent m=1

Pa∗,m (8)

instead of (7). Here, a similar lenient effect occurs, and the agents update
their utilities cautiously during the early learning process, being lenient with
weaker agents while they learn better policies. In this case, ς starts from the
lowest probability among all the agents, making the learning rate tend to a
small but non-zero value. Once the agents are progressively obtaining better
rewards, they learn and update from their coordinated joint policy. Then, in
this case, ς → 1 and the learning rate tends toward a high value.

DRL-CAdec and DRL-CAinc show opposite principles. A detailed anal-
ysis of their properties is presented in Section 5. The common principle
behind both variants is the cooperative adaptation based on the current
weakest learner’s performance. We also have empirically tested other co-
operative adaptive factors, but they resulted in no success: (i) based on
individual factors, ςm = Pa∗,m for each agentm; (ii) based on the best
agent, ς = maxm Pa

∗,m; and (iii) based on the mean of their qualities,
ς = meanmPa

∗,m.
The chosen approach (based on the weakest agent) coordinates the learn-

ing evolution awaiting similar skills among the agents. This is possible since ς
comes from a Boltzmann distribution, which is a probability always bounded
between [0, 1], and thus it is possible to consider ς as a measure of the cur-
rent learned skill by an agent. This is desirable for the cooperation among
the agents, and is an advantage over methods based on the Temporal Dif-
ference (TD) or instant reward, in which their gradients are not normalized
and extra parameters must be adjusted. Concerning DRL-CAinc, the most
skilled agents wait for the less skilled one, showing leniency by adapting the
learning rate according to the current utility function of the weakest learner.
This makes sense because the policy of the most skilled agents could change
when the less skilled one improves its policy, so the agents should be cau-
tious. Once all the agents have similar skills, the learning rate is gradually
increased for faster learning while the joint policy is improved. In the case
of DRL-CAdec, the less-skilled agents motivate their teammates to extract
more information from the joint-environment and joint-actions, in order to
find a better common decision which can quickly improve such a weak policy.

24

Algorithm 3 presents the DRL-CA implementation for multi-state, stochas-
tic, continuous state-action DRL problems. It is an episodic MA-SARSA(λ)
algorithm with RBF approximation and softmax action selection. The incre-
mental cooperative adaptive factor (Eq. (8)) is calculated in line 32, and the
decremental cooperative adaptive factor (Eq. (7)) is calculated in line 34.

Note that, for practical implementations in which agents have different
numbers of discrete actions, each Pa∗m must be biased to Pa∗m

′
in order to

have equal initial probabilities among the individual agents, i.e. Pa∗1
′

s=0 =
· · · = Pa∗M

′
s=0 , and then Pa∗m

′
= Fbias(Pa∗m), where ∀ Pa∗m′ ∈ [0, 1]. A sim-

ple alternative to calculate this is by computing Pa∗m
′
= max(1/Nm, Pa∗m),

or

Pa∗m
′
= Pa∗m −

[
(NmPa∗m − 1)

(Nm(1−Nm))
+

1

Nm

]
(9)

which is a more accurate approach. This bias must be computed after line
28, and then σ in line 32 must be computed by using Pa∗m

′
instead of the

non-biased Pa∗m.
Note that both Algorithms 2 and 3 have been described with a softmax

action selection mechanism. Other exploration methods such as ε-greedy can
be easily implemented, but it must be taken into account that both methods
DRL-Lenient and DRL-CA are based on the Boltzmann probability distri-
bution, Pa, which must bee calculated as well. However, this only requires
on-line and temporary computations, and no extra memory consumption.

5. Experimental Validation

In order to validate MAS benefits and properties of the DRL schemes,
four different problems have been carefully selected: the 3DMC, a three-
Dimensional extension of the mountain car problem [46]; the SCARA-RTG,
a SCARA robot generating a real-time trajectory for navigating towards a
3D goal position [31]; the Ball-Pushing performed with a differential drive
robot [28]; and the soccer Ball-Dribbling task [25]. The 3DMC and SCARA-
RTG are well known and are already proposed test-beds. The Ball-Dribbling
and Ball-Pushing problems are noisy and stochastic real-world applications
that have been tested already with physical robots.

The problem descriptions and results are presented in a manner of in-
creasing complexity. 3DMC is a canonical RL test-bed; it allows splitting
the action space, as well as the state space for evaluating from a centralized

25

Algorithm 3 DRL-CA: MA-SARSA(λ) with RBF approximation and Soft-
max action selection

Parameters:
1: M . Decentralized agents
2: Nm . Number of actions of agentm, where m = 1, · · · ,M
3: τ0 . Temperature
4: dec . Temperature decay factor
5: Φm . Size of the feature vector φm of agentm, where m = 1, · · · ,M

Inputs:
6: S1, · · · , SM . State space of each agent
7: A1, · · · , AM . Action space of each agent
8: for each agent m = 1, · · · ,M do
9: Initialize: ~θm = 0, ~em = 0, τ = τ0, and ς = 1

10: end for
11: for episode = 1, · · · ,maxEpisodes do
12: Initialize state and action sm, am for all agent m ∈M
13: repeat for each step of episode:
14: for all agent m ∈M do
15: Take action a = am from current state s = sm

16: Observe reward rm, and next state s′ = s′m

17: ea ← ea + φs
18: δ ← rm −

∑Φm

j=1 θ
m
a (j) · φms (j)

19: Qi ←
∑Φm

j=1 θ
m
i (j) · φms′ (j) for all action i ∈ Am(s′)

20: maxQv ← Nm

max
action i=1

Qi

21: V qai ← exp

(
(Qi −maxQv)

(1 + τ)

)
for all action i ∈ Nm

22: Pa = [Pa1, · · · , PaNm] . probability distribution per-action at state s

23: Pa← V qa/
∑Nm

i=1 V qai
24: Choose action a′ = ai∗ ∈ {1, · · · , Nm} . at random using probability

distribution [Pa1, · · · , PaNm]
25: δ ← δ + γ ·Qi∗

26: ~θm ← ~θm + ς · α · δ · ~e m

27: ~e← γ · λ · ~e
28: Pa∗m ← Paa′ . Boltzmann probability of the selected action
29: sm ← s′; am ← a′

30: end for
31: τ = τ0 · exp(dec · episode/maxEpisodes)

32: ς =
M

min
agent m=1

(Pa∗m) . CAinc variation

33: if CAdec variation then
34: ς = 1− ς
35: end if
36: until Terminal condition
37: end for

26

system, up to a fully decentralized system with limited observability of the
state space. The Ball-Pushing problem also allows carrying out a perfor-
mance comparison between a centralized and a decentralized scheme. The
best CRL and DRL learned policies are transferred and tested with a physi-
cal robot. The Ball-Dribbling and SCARA-RTG problems are more complex
systems (implemented with 3 and 4 individual agents respectively). Ball-
dribbling is a very complex behavior which involves three parallel sub-tasks
in a highly dynamic and non-linear environment. The SCARA-RTG has four
joints acting simultaneously in a 3-Dimensional space, in which the observed
state for the whole system is only the error between the current end-effector
position, [x, y, z], and a random target position.

Some relevant parameters of the RL algorithms implemented are opti-
mized by using a customized version of the hill-climbing method. It is carried
out independently for each approach and problem tested. Details about the
optimization procedure and the pseudo-code of the implemented algorithm
can be found in Appendix A. Finally, 25 runs are performed by using the best
parameter settings obtained in the optimization procedure. Learning evolu-
tion results are plotted by averaging those 25 runs, and error bars show the
standard error. In addition, the averaged final performance is also measured:
it considers the last 10% of the total learning episodes.

A description of each problem tested and some implementation and mod-
eling details are presented in the next sub-sections, following the methodol-
ogy described in Section 3. The experimental results and analysis are then
discussed. All the acronyms of the implemented methods and problems are
listed in Table 1. We used the following terminology: CRL means a Central-
ized RL scheme; DRL-Ind is an independent learners scheme implemented
without any kind of MA coordination; DRL-CAdec, DRL-CAinc, and DRL-
Lenient are respectively a DRL scheme coordinated with Decremental Co-
operative Adaptation, Incremental Cooperative Adaptation, and a Lenient
approach. In the case of the 3DMC, CRL-5a and CRL-9a are Centralized
RL schemes implemented with 5 actions (the original 3DMC modeling [46])
and 9 actions (our extended version) respectively. ObsF and ObsL are Full
Observability and Limited observability of the joint state space respectively.
In the case of the Ball-Pushing problem, DRL-Hybrid is a hybrid DRL-Ind
scheme implemented with a SARSA(λ) + a Fuzzy Q-Learning RL algorithm
without any kind of MAS coordination (please see a detailed description in
subsection 5.2). In the case of the Ball-Dribbling problem, DRL-Transfer is
a DRL scheme accelerated by using the NASh transfer knowledge learning

27

approach [26]; RL-FLC is an implementation reported by Leottau, Celemin,
and Ruiz del Solar [25], which combines a Fuzzy Logic Controller (FLC) and
an RL single agent; and eRL-FLC is an enhanced version of RL-FLC (please
see their detailed descriptions in Subsection 5.3).

5.1. Three-Dimensional Mountain Car

Mountain car is one of the canonical RL tasks in which an agent must
drive an under-powered car up a mountain to reach a goal state. In the 3D
modification originally proposed by Taylor and Stone [46], the mountain’s
curve is extended to a 3D surface as is shown in Figure 2.

Centralized Modelings

CRL-5a: The state has four continuous state variables: [x, ẋ, y, ẏ]. The
positions (x, y) have the range of [−1.2, 0.6] and the speeds (ẋ, ẏ) are con-
strained to [−0.07, 0.07]. The agent selects from five actions: {Neutral,
West, East, South, North}. West and East on ẋ are modified by -0.001
and +0.001 respectively, while South and North on ẏ are modified by −0.001
and +0.001 respectively. On each time step ẋ is updated by 0.025(cos(3x))
and ẏ is updated by −0.025(cos(3y)) due to gravity. The goal state is
x ≥ 0.5and y ≥ 0.5. The agent begins at rest at the bottom of the hill.
The reward is −1 for each time step until the goal is reached, at which point
the episode ends and the reward is 0. The episode also ends, and the agent
is reset to the start state, if the agent fails to find the goal within 5000 time
steps.

CRL-9a: The original centralized modeling (CRL-5a) [46] limits the agent’s
vehicle moves. It does not allow acting onto both action dimensions at the
same time step. In order to make this problem fully decentralizable, more
realistic, and challenging, we have extended the problem, augmenting the ac-
tion space to nine actions (CRL-9a), adding {NorthWest, NorthEast, South-
West, SouthEast} to the original CRL-5a. Since the car is now able to move
on x and y axes at the same time, ẋ, and ẏ updates must be multiplied by
1/
√

2 for the new four actions because of the diagonal moves.

Proposed Decentralized Modelings

We are going to follow the methodology proposed in Section 3, resuming
and extending the 3DMC DRL modeling:

Stage 3.1 Determining if the problem is decentralizable: since CRL-9a
modeling is decentralizable because of its bi-dimensional action space (ẋ, ẏ),

28

Table 1: Experiment’s acronyms and their optimized parameters

Acronym Optimized Parameters

3DMC

CRL-5a α = 0.25, λ = 0.95, ε = 0.06

CRL-9a α = 0.20, λ = 0.95, ε = 0.06

DRL-ObsF-Ind α = 0.25, λ = 0.80, ε = 0.06

DRL-ObsF-CAdec α = 0.15, λ = 0.90, ε = 0.05

DRL-ObsF-CAinc α = 0.20, λ = 0.80, ε = 0.06

DRL-ObsF-Lenient α = 0.10, λ = 0.95, ε = 0.04, κ = 3.5, β = 0.8

DRL-ObsL-Ind α = 0.20, λ = 0.95, ε = 0.06

DRL-ObsL-CAdec α = 0.15, λ = 0.95, ε = 0.05

DRL-ObsL-CAinc α = 0.30, λ = 0.95, ε = 0.02

DRL-ObsL-Lenient α = 0.15, λ = 0.95, ε = 0.10, κ = 3, β = 0.75

Ball-Pushing

CRL α = 0.50, λ = 0.90, τ0 = 2, dec = 7

DRL-Ind α = 0.30, λ = 0.90, τ0 = 1, dec = 10

DRL-CAdec α = 0.40, λ = 0.95, τ0 = 1, dec = 10

DRL-CAinc α = 0.30, λ = 0.95, τ0 = 5, dec = 13

DRL-Lenient α = 0.30, λ = 0.95, κ = 1, β = 0.7

DRL-Hybrid α = 0.30, λ = 0.95, greedy

Ball-Dribbling

CRL α = 0.50, λ = 0.90, ε = 0.3, dec = 10

DRL-Ind α = 0.50, λ = 0.90, τ0 = 70, dec = 6

DRL-CAdec α = 0.10, λ = 0.90, τ0 = 20, dec = 8

DRL-CAinc α = 0.30, λ = 0.90, τ0 = 70, dec = 11

DRL-Lenient α = 0.10, λ = 0.90, κ = 1.5, β = 0.9

DRL+Transfer Final performance taken from Leottau et al. [26]

RL-FLC Final performance taken from Leottau et al. [25]

eRL-FLC Final performance taken from Leottau et al. [27]

SCARA-RTG

DRL-Ind α = 0.3, ε = 0.01

DRL-CAdec α = 0.3, ε = 0.01

DRL-CAinc α = 0.3, ε = 0.01

DRL-Lenient α = 0.3, ε = 0.01, κ = 2.0, β = 0.8

29

a decentralized approach can be adopted by selecting two independent agents:
Agentx which action space is {Neutral,West, East}, and Agenty which ac-
tion space is {Neutral, South,North}.

Stages 3.2 and 3.3 Identifying individual goals and defining reward func-
tions: individual goals are considered, reaching east top for Agentx and
reaching north top for Agenty. In this way, individual reward functions are
defined as: rx = 0 if east top is reached, rx = −1 otherwise; and ry = 0 if
north top is reached, ry = −1 otherwise.

Stage 3.4 Determining if the problem is fully decentralizable: one of the
goals of this work is evaluating and comparing the response of an RL system
under different centralized-decentralized schemes. Thus, splitting the state
vector is also proposed in order to have a fully decentralized system, and
a very limited state observability for validating the usefulness of coordina-
tion of the presented MA DRL algorithms (Lenient and CA). In this case,
agentx only state variables [x, ẋ] can be observed, as well as agenty only
[y, ẏ]. This corresponds to a very complex scenario because both agents have
incomplete observations, and do not even have free or indirect coordination
due to different state spaces, decentralized action spaces, and individual re-
ward functions. Moreover, the actions of each agent directly affect the joint
environment, and both of the agents’ next state observations.

A description of the implemented modelings is shown below, in which X
can be CAdec, CAinc, or Lenient, and RBF cores are the number of Radial
Basis Function centers used per state variable to approximate action value
functions as continuous functions. Please see Table 1 for the full list of
acronyms.

- CRL Original Modeling (CRL-5a):
Actions: {Neutral,West, East, South,North};
Global reward function: r = 0 if goal, r = −1 otherwise. Joint state
vector: [x, ẋ, y, ẏ], with [9, 6, 9, 6] RBF cores per state variable respec-
tively;

- CRL Extended Modeling (CRL-9a):
Actions: {Neutral,West,NorthWest,North,
NorthEast, East, SouthEast, South, SouthWest};
Global reward function: r = 0 if goal, r = −1 otherwise. Joint state
vector: [x, ẋ, y, ẏ], with [9, 6, 9, 6] RBF cores;

- DRL Full Observability (DRL-ObsF-X):

30

Actions agentx: {Neutral,West, East},
Actions agenty: {Neutral, South,North};
Individual reward functions: rx = 0 if x ≥ 0.5, rx = −1 otherwise, and
ry = 0 if y ≥ 0.5, ry = −1 otherwise.
Joint state vector: [x, ẋ, y, ẏ], with [9, 6, 9, 6] RBF cores;

- DRL Limited Observability (DRL-ObsL-X):
Actions agentx: {Neutral,West, East},
Actions agenty: {Neutral, South,North};
Individual reward functions: rx = 0 if x ≥ 0.5, rx = −1 otherwise, and
ry = 0 if y ≥ 0.5, ry = −1 otherwise.
Individual state vectors: agentx = [x, ẋ], with [9, 6] RBF cores; agenty =
[y, ẏ], with [9, 6] RBF cores;

Stage 3.5 Completing RL single modelings: this is detailed in the follow-
ing two subsections. Implementation and environmental details have been
already mentioned in the centralized modeling description, because most of
them are in common with the decentralized modeling.

Performance Index

The evolution of the learning process is evaluated by measuring and aver-
aging 25 runs. The performance index is the cumulative reward per episode,
where −5, 000 is the worst case and zero, though unreachable, is the best
case.

RL Algorithm and Optimized Parameters

SARSA(λ) with Radial Basis Function (RBF) approximation with ε-
greedy exploration [43] was implemented for these experiments. The ex-
ploration rate ε is decayed by 0.99 at the end of each learning episode. The
following parameters are obtained after the hill-climbing optimization pro-
cedure: learning rate (α), eligibility traces decay factor (λ), and exploration
probability (ε). These parameters are detailed in Table 1 for each scheme im-
plemented. The number of Gaussian RBF cores per state variable were also
optimized: 9 cores to x and y, 6 cores to ẋ and ẏ, and a standard deviation
per core of 1/2 · |featuremax− featuremin|/nCores. For all the experiments
γ = 0.99.

31

Figure 4: 3DMC learning evolution plots: centralized vs. decentralized approaches (top);
centralized vs. decentralized approaches with full observability of the joint state space
(middle); centralized vs. decentralized approaches with limited observability (bottom).

32

Results and Analysis

Figure 4 (top) shows a performance comparison between: the original
implementation of 3DMC, CRL-5a; the extension of that original problem
in which 9 actions are considered, CRL-9a; a decentralized scheme with full
observability of the joint space state, DRL-ObsF-Ind; and a decentralized
scheme with limited observability, DRL-ObsL-Ind. Please remember that
the performance index starts from −5, 000 and it improves toward zero.
Table 2 shows averaged final performances. Our results for CRL-5a con-
verge considerably faster than the results presented by Taylor and Stone
[46], which could be due to parameter optimization, and because we have
implemented an RBF approach instead of CMAC for continuous state gener-
alization. CRL-9a converges more slowly than the original one, as is expected
because of the augmented action space. Note that DRL-ObsF-Ind speeds-up
convergence and outperforms both centralized schemes. On the other hand,
DRL-ObsL-Ind achieves a good performance quickly but is not stable during
the whole learning process due to ambiguity between observed states and
lack of coordination among the agents. However, it opens a question about
potential benefits of DRL implementations with limited or incomplete state
spaces which is discussed below.

Regarding computational resources, from the optimized parameters def-
inition presented above, the DRL-ObsF-Ind scheme uses two Q functions
which consume 2 · 9 · 6 · 9 · 6 · 3 = 17496 memory cells, versus the 9 ·
6 · 9 · 6 · 9 = 26244 of its CRL-9a counterpart; and DRL-ObsF-Ind con-
sumes 1/3 less memory. Moreover, we measured the elapsed time of both
learning process along the 25 performed runs, and founds that the DRL
took 0.62 hour, while the CRL took 0.97 hour. We also measured only the
action-selection+Q-function-update elapsed times, obtaining an average of
306.81 seconds per run for the DRL, being 1.43 times faster than the CRL
scheme, which took 439.59s. These times are referential; experiments with an
Intel(R)Core(TM)i7-4774CPU@3.40Ghz with 4GB in RAM were performed.
Note than even for this simple problem with only two agents, there are con-
siderable memory consumption and processing time savings.

Figure 4 (middle) shows a performance comparison between schemes im-
plemented considering full observability (ObsF) of the joint space state,
these schemes are: the same response of CRL-9a presented in Figure 4
(top); once again the DRL-ObsF-Ind; a Decremental Cooperative Adap-
tive DRL-ObsF-CAdec scheme; an Incremental Cooperative Adaptive DRL-

33

ObsF-CAinc scheme; and, a DRL-ObsF-Lenient implementation. As noticed
in Figure 4, all the DRL schemes accelerate the asymptotic convergence con-
siderably and outperform the CRL one. Note also that all the DRL schemes
show similar learning times, while in Table 2, DRL-ObsF-CAdec shows the
best performance, overcoming the −200 performance threshold with DRL-
ObsF-Lenient.

Figure 4 (bottom) shows a performance comparison between schemes im-
plemented considering limited observability (ObsL) of the joint space state,
these schemes are: CRL-9a; DRL-ObsL-Ind; a Decremental Cooperative
Adaptive DRL-ObsL-CAdec scheme; an Incremental Cooperative Adaptive
DRL-ObsL-CAinc scheme; and a DRL-ObsL-Lenient implementation. Ben-
efits of proposed Lenient and CA algorithms are more noticeable in these
experiments, in which the DRL-ObsL-Ind scheme without coordination did
not achieve a stable final performance. With the exception of DRL imple-
mentation (green line), all the DRL schemes have dramatically accelerated
convergence times regarding the CRL scheme. This is empirical evidence of
proposed MAS based algorithm benefits (CAdec, CAinc, and Lenient), even if
incomplete observations are used. These benefits are not evident for those ex-
periments with full observation, in which convergence time and performance
are similar to the DRL-Ind scheme. DRL-ObsL-Lenient indirectly achieves a
coordinated policy. Although for this particular case leniency is not directly
involved in the ε-greedy action-selection mechanism, it is involved during the
action-value function updating, which of course, affects the action-selection
mechanism afterwards. On the other hand, DRL-ObsL-CAdec collects ex-
perience and, while a coordinated policy is gradually reached, the learning
rate is decreased and the action-value function updates have progressively
less weight. It just avoids the poor final performance of the DRL-ObsL-Ind
scheme. Also DRL-ObsL-CAinc achieves a good performance; it has a similar
effect to that of the Lenient scheme. Also, note in Table 2 that DRL-ObsL-
CAinc and DRL-ObsL-Lenient outperform the −200 threshold, even beating
its DRL-ObsF counterparts, and beating the DRL-ObsF-Ind as well. This
is an interesting result, taking into account DRL-ObsL schemes are able to
reach similar performance as the DRL-ObsF-CAdec and DRL-ObsF-Lenient,
the best schemes implemented with full observability.

5.2. Ball-pushing

We consider the Ball-Pushing behavior, a basic robot soccer skill similar
to that studied by Takahashi and Asada [44] and Emery and Balch [12]. A

34

Table 2: 3DMC performances (these improve toward zero)

Approach Performance

DRL-ObsF-CAdec -190.19

DRL-ObsF-Lenient -196.00

DRL-ObsF-Ind -207.35

DRL-ObsF-CAinc -216.64

DRL-ObsL-CAinc -186.59

DRL-ObsL-Lenient -197.12

DRL-ObsL-CAdec -231.30

DRL-ObsL-Ind -856.60

CRL-9a -219.72

CRL-5a -217.58

differential robot player attempts to push the ball and score a goal. The
MiaRobot Pro is used for this implementation (See Figure 5). In the case of
a differential robot, the complexity of this task comes from its non-holonomic
nature, limited motion and accuracy, and especially the highly dynamic and
non-linear physical interaction between the ball and the robot’s irregular
front shape. The description of the desired behavior will use the following
variables: [vl, vw], the velocity vector composite by linear and angular speeds;
aw, the angular acceleration; γ, the robot-ball angle; ρ, the robot-ball dis-
tance; and, φ, the robot-ball-target complementary angle. These variables
are shown in Figure 5 at the left, where the center of the goal is located in
⊕, and a robot’s egocentric reference system is considered with the x axis
pointing forwards.

The RL procedure is carried out episodically. After a reset, the ball is
placed in a fixed position 20cm in front of the goal, and the robot is set at a
random position behind the ball and the goal. The successful terminal state
is reached if the ball crosses the goal line. If the robot leaves the field, it
is also considered a terminal state. The RL procedure is carried out in a
simulator, and the best learned policy obtained between the 25 runs for the
CRL and DRL-Ind implementations is directly transferred and tested on the
MiaBot Pro robot in the experimental setup.

35

Figure 5: Definition of variables for the Ball-Pushing problem (left), and, a picture of the
experimental setup implemented for testing the Ball-Pushing behavior (right).

Centralized Modeling

For this implementation, proposed control actions are twofold [vl, aw], the
requested linear speed and the angular acceleration, where
Aaw = [positive, neutral, negative]. Our expected policy is to move fast and
push the ball toward the goal; that is, to minimize ρ, γ, φ, and to maximize
vl. Thus, this centralized approach considers all possible action combinations
A = Avl · Aaw and the robot learns [vl, aw] actions from the observed joint
state [ρ, γ, φ, vw], where [vw = vw(k−1) + aw]. States and actions are detailed
in Table 3.

Decentralized Modeling

Stage 3.1 Determining if the problem is decentralizable: the differential
robot velocity vector can be split into two independent actuators: right and
left wheel speeds [vr, vl], or linear and angular speeds [vl, vw]. To keep parity
with the centralized model, our decentralized modeling considers two indi-
vidual agents for learning vl and aw in parallel as is shown in Table 3.

Stage 3.2 Identifying common and individual goals: the Ball-Pushing
behavior can be separated into two sub-tasks, ball-shooting and ball-goal-

36

Table 3: Description of state and action spaces for the DRL modeling of the Ball-Pushing
problem

Joint state space: S = [ρ, γ, φ, vw]T

State Variable Min. Max. N.Cores

ρ 0 mm 1000 mm 5

γ -45deg 45deg 5

φ -45deg 45deg 5

vw -10deg/s 10deg/s 5

Decentralized action space: A = [vl, aw]

agent Min. Max. N.Actions

vl 0 mm/s 100 mm/s 7

aw -2 deg /s2 2 deg /s2 3

Centralized action space: A = [vl · aw]

NT = N vl ·Naw = 5 · 3 = 15 actions

aligning, which are performed respectively by agentvl and agentaw .
Stage 3.3 Defining the reward functions: a common reward function is

considered for both CRL and DRL implementations, as is shown in Expres-
sion (10), where max features are normalization values taken from Table
3.

R(s) =

{
+1 if goal

−(ρ/ρmax + γ/γmax + φ/φmax) otherwise
(10)

Stage 3.4 Determining if the problem is fully decentralizable: the joint
state vector [ρ, γ, φ, vw] is identical to the one proposed for the centralized
case.

Stage 3.5 Completing RL single modelings: one of the main goals of this
work is also validating DRL scheme benefits. And an interesting property
of those kinds of schemes is the flexibility to implement various algorithms
or modelings independently by each individual agent. In this way, we have
implemented a hybrid DRL scheme (DRL-Hybrid) with a Fuzzy Q-Learning
(FQL) to learn vl, in parallel with a SARSA(λ) algorithm to learn aw. This

37

is a good example for depicting Stage 3.5 of the proposed methodology. The
continuous state but discrete actions RBF SARSA(λ) is adequate for learning
the discrete angular acceleration. Meanwhile, the continuous state-action
FQL algorithm is adequate for learning the continuous linear speed control
action of the agent vl. For simplicity, the DRL-Hybrid scheme is implemented
with a greedy exploration policy, the same previously mentioned joint state
vector, and 3 bins in the action space. It is also important to mention that
any kind of MA coordination or algorithm (e.g., DRL-Lenient or DRL-CA)
is implemented for this scheme.

In summary, we have the following implemented schemes for the Ball-
Pushing problem: CRL, DRL-Ind, DRL-CAdec/CAinc/Lenient, and DRL-
Hybrid. Please see Table 1 for the full list of acronyms. Other details about
Stage 3.5 are detailed in the next two subsections. Implementation and envi-
ronmental details have been already mentioned in the centralized modeling
description, because most of them are common with the decentralized mod-
eling.

Performance index

The evolution of the learning process is also evaluated by measuring and
averaging 25 runs. The percentage of scored goals across the trained episodes
is considered as the performance index:
%ofScoredGoals = scoredGoals/Episode, where scoredGoals are the num-
ber of scored goals until the current training Episode. Final performance
is also measured by running a thousand episodes again with the best policy
(among 25) obtained per each scheme tested.

RL algorithm and optimized parameters

An RBF SARSA(λ) algorithm with softmax action selection is imple-
mented for these experiments. The Boltzmann exploration temperature is
decayed as: τ = τ0 · exp(−dec · episode/maxEpisodes), where episode is the
current episode index and maxEpisodes = 1000 trained episodes per run.
Thus, the following parameters are optimized: the learning rate (α), the
eligibility traces decay factor (λ), the Boltzmann exploration initial temper-
ature (τ0), and the exploration decay factor (dec). For the particular case
of Lenient RL, the gain (κ) and decay factor (β) are optimized instead of
τ0 and dec respectively. Obtained values after optimizations are listed in
Table 1. Additionally, the number of discrete actions for the linear velocity

38

are optimized obtaining N vl = 5 for the CRL scheme, and N vl = 7 for the
DRL-Ind. For all the experiments γ = 0.99.

Physical setup

An experimental setup is implemented in order to test learned policies
onto a physical setup, which is shown in Figure 5 (right). The Miabot Pro is
connected wirelessly to a central computer close to the robot soccer platform
which measures 1.5m× 1m. A web camera above the platform provides the
positions and orientations of the robot, ball, and goal. The state observation
is processed from the vision system, while the speed of the wheels is trans-
mitted through Bluetooth from the computer. These speeds are computed
from the Q tables by using a greedy search policy.

Results and analysis

Figure 6 presents learning evolution plots and Table 4 shows the best
policy final performances. All the DRL schemes implemented improved the
%ofScoredGoals of the centralized one as in the learning evolution traces
(Figure 6), as well as in the final performance test (Table 4). Except from the
Incremental Cooperative Adaptive implementation, DRL-CAinc, the DRL
implementations accelerated the learning time of the CRL scheme. Although
DRL-CAinc achieves better performances than CRL after episode 500, the
slower learning of the DRL-CAinc can be explained by taking the incremen-
tal cooperative adaptation effect into account, which updates the Q func-
tion conservatively during early episodes in which the agents do not have
good policies. The hybrid SARSA+Fuzzy-Q-Learning decentralized imple-
mentation, DRL-Hybrid, shows the fastest asymptotic convergence, evidenc-
ing the feasibility of using decentralized schemes with various algorithms
and/or modelings for each individual agent, which means flexibility, prop-
erty indicated in Section 2.3 and described in Stage 3.5. The Decremental
Cooperative Adaptive implementation, DRL-CAdec, obtains the best final
performance and the second fastest asymptotic convergence, followed closely
by the DRL-Lenient scheme, and the independent and no coordinated DRL-
Ind implementation. Note that coordinated DRL schemes (CA and Lenient)
do not show considerable outperforming or accelerating with respect to the
DRL-Ind implementation. This is an interesting point to analyze and discuss
in the following sections, taking the previous results of the 3DMC problem
into account, and the fact that this particular problem also uses two agents
with full observability of the joint state space.

39

As was mentioned in Section 5.2, the number of discretized actions for the
linear velocity was optimized, obtaining N vl = 5 for the CRL scheme, and
N vl = 7 for the DRL-Ind. So, total discrete actions are: NT = N vl ·Naw = 15
for the CRL scheme, and NT = 7 + 3 for the DRL-Ind. Note that the DRL-
Ind implementation allows a finer discretization than the CRL. For the CRL,
increasing the number of actions of vl from 5 to 7 implies increasing the joint
action space from 15 to 21 actions, taking into account Naw = 3 (please
check Table 3), which implies an exponential increase in the search space
that could increase learning time, thus affecting the final performance since
only 1000 episodes were trained. Although the DRL-Ind scheme uses more
discrete actions for vl, its search space is still smaller than the CRL com-
bined one. This is one of the interesting properties of decentralized systems,
which is validated by these optimization results. Since the agents are inde-
pendent, separate modelings or configurations can be implemented per agent.
Additionally, in order to perform a fair comparison of computing time, we
have also carried out a second evaluation, implementing and testing a DRL
scheme withN vl = 5 actions. Once again, we have measured simulation times
and action-selection+Q-function-update times, obtaining 59.63s for the CRL
(12.47% of the global time), and 59.67 for the DRL scheme (15.11% of the
global time). However the DRL five actions final performance was 68.97%,
still higher than the 57.14% of its CRL counterpart, although lower than the
75.28% of the DRL with N vl = 7 actions.

The best CRL and DRL-Ind learned policies are transferred and tested
in the experimental setup. The results from experiments with the physical
robot are also presented in Table 4, in which performance is presented in
percentages of success at scoring a goal within the seventy attempts. Cases
where the mark of the robot was lost in the vision system were disregarded.

In Table 4 it is observed that DRL-Ind performs on average 11.43% bet-
ter than CRL. Simulation and physical setup performances are similar, which
validates the simulation experiments and results. Some experiments for cen-
tralized and decentralized RL were recorded and can be seen online at Leot-
tau’s video repository [50]. In this video actions are a bit abrupt as it can
be seen, due to no smoothing or extrapolation of the discrete actions where
carried out, policies were transferred directly from Q functions to the physi-
cal robot. Also, cases where the mark of the robot or some tracker was lost
in the vision system were disregarded. These aspects should be improved for
future implementations, however, the purpose of this experiments is more fo-
cused on comparing CRL and DRL approaches, than on achieving an optimal

40

Figure 6: Ball-pushing learning evolution plots. Results are averaged across 25 learning
runs and error bars show the standard error.

performance.

5.3. Ball-Dribbling

Ball-dribbling is a complex behavior during which a robot player attempts
to maneuver the ball in a very controlled way, while moving toward a desired
target. In the case of biped robots the complexity of this task is very high,
because it must take into account the physical interaction between the ball,
the robot’s feet, and the ground. Thus, the action is highly dynamic, non-
linear, and influenced by several sources of uncertainty. Figure 7 (left) shows
the RoboCup SPL soccer environment where the NAO humanoid robot [14]
is used. As proposed by Leottau et al. [25], the description of this dribbling
behavior uses the following variables: [vx, vy, vθ], the velocity vector; γ, the
robot-ball angle; ρ, the robot-ball distance; and, φ, the robot-ball-target
complementary angle. These variables are shown in Figure 7 (right), where
the global coordinate system is OG, the desired target (⊕) is located in the
middle of the opponent’s goal, and a robot’s egocentric reference system is
indicated with the xr axis pointing forwards.

Proposed Decentralized Modeling

Stage 3.1 Determining if the problem is decentralizable: since the re-
quested velocity vector of the biped walk engine is [vx, vy, vθ], it is possible to

41

Table 4: Ball-pushing best policy final performances for simulation and physical robot
experiments (in which 100% is the optimal case)

Approach Performance(%)

DRL-CAdec 76.69

DRL-Lenient 75.76

DRL-Ind 75.28

DRL-Hybrid 73.97

DRL-CAinc 71.24

CRL 62.15

DRL-Ind (physical robot) 68.57

CRL (physical robot) 57.14

ϕ

ρ γ γ

ϕ
ρ

C
on

tro
lle

r vx

vy

vθ

xr

xG

yG

oG

yr

Figure 7: A picture of the NAO robot dribbling during a RoboCup SPL game (left), and
definition of variables for dribbling modeling (right).

42

decentralize this 3-Dimensional action space by using three individual agents,
Agentx, Agenty, and Agentθ.

Stage 3.2 Identifying common and individual goals: our expected common
goal is to walk fast toward the desired target while keeping possession of the
ball. That means: to maintain ρ < ρth ; to minimize γ, φ, vy, vθ; and to
maximize vx. In this way, this Ball-Dribbling behavior can be separated into
three sub-tasks or individual goals, which have to be executed in parallel:
ball-turning, which keeps the robot tracking the ball-angle (γ = 0); alignment,
which keeps the robot aligned to the ball-target line (φ = 0); and ball-
pushing, whose objective is for the robot to walk as fast as possible and
hit the ball in order to change its speed, but without losing possession of
it. So, the proposed control actions are [vx, vy, vθ] respectively involved with
ball-pushing, alignment, and ball-turning.

Stage 3.3 Defining the reward functions: the proposed dribbling mod-
eling has three well-defined individual goals, ball-pushing, alignment, and
ball-turning. Thus, individual rewards are proposed for each agent as:

rx =

{
1 if ρ < ρth ∧ γ < γth ∧ φ < φth ∧ vx ≥ vx.max′
−1 otherwise

ry =

{
1 if γ < γth/3 ∧ φ < φth/3
−1 otherwise

(11)

rθ =

{
1 if γ < γth/3 ∧ φ < φth/3
−1 otherwise

where [ρth, γth, φth] are desired thresholds at which the ball is considered to
be controlled, while vx.max′ reinforces walking forward at maximum speed.
Fault-state constraints are set as: [ρth, γth, φth] = [250mm, 15◦, 15◦], and
vx.max′ = 0.9 · vx.max. This is a good example for depicting how and why
to define individual rewards; for instance, since only Agentx involves vx for
the ball-pushing sub-task, Agenty, and Agentθ reward functions do not in-
clude this variable. Since alignment, and ball-turning strongly involve γ and
φ, Agenty and Agentθ rewards consider more accurate thresholds for these
angles, γth/3, φth/3 and ρ is also not considered.

Stage 3.4 Determining if the problem is fully decentralizable: since the
three state variables, [ρ, γ, φ] of the joint vector state are required, this prob-
lem is not considered to be fully decentralizable. So, the proposed modeling
for learning the 3-Dimensional velocity vector from the joint observed state
is detailed in Table 5.

43

Table 5: Description of state and action spaces for the DRL modeling of the Ball-Dribbling
problem

Joint state space: S = [ρ, γ, φ]T

State Variable Min. Max. N.Cores

ρ 0 mm 800 mm 13

γ -60◦ 60◦ 11

φ -60◦ 60◦ 11

Action space: A = [vx, vy, vθ]

Agent Min. Max. N.Actions

vx 0 mm/s 100 mm/s 17

vy -50 mm/s 50 mm/s 17

vθ -45 ◦/s2 45 ◦/s2 17

Centralized Modeling

Since 17 discrete actions per agent are implemented for the DRL scheme,
if an equivalent CRL scheme were implemented, that centralized agent would
search in an action space of 173 = 4913 possible actions, which would be enor-
mous for most of the RL algorithms. Even though we tried to reduce the
number of discrete actions, the performance decreased dramatically. Finally,
the only way to achieve asymptotic convergence was using a noiseless model
in which observations were taken from the ground truth system. Thus, this
CRL implementation is only for academic and comparison purposes. Dis-
crete actions must have been reduced up to five per action dimension, i.e. a
53 = 125 combined action space. The same joint state vector was used and
the global reward function is similar to rx in (11), but using γth/3 and φth/3.

Stage 3.5 Completing RL single modelings: the Ball-Dribbling DRL pro-
cedure is carried out episodically. After a reset, the robot is set in the center
of its own goal (black right arrow in Figure 7 (right)), the ball is placed
ρth mm in front of the robot, and the desired target is defined in the cen-
ter of the opponent’s goal. The terminal state is reached if the robot loses
the ball, if the robot leaves the field, or if the robot crosses the goal line
and reaches the target, which is the expected terminal state. The training
field is 6x4 meters. In order to compare our proposed methods with similar

44

state-of-the-art works, three additional schemes, previously reported in the
literature, are included:

- DRL+Transfer, a DRL scheme accelerated by using the Nearby Action-
State Sharing (NASh) knowledge transfer approach proposed by Leot-
tau and Ruiz-del-Solar [26]. NASh is introduced for transferring knowl-
edge from continuous action spaces, when no information different from
the suggested action in an observed state is available from the source
of knowledge. In the early training episodes, NASh transfers actions
suggested by the source of knowledge but progressively explores its
surroundings looking for better nearby actions for the next layer.

- RL-FLC method introduced by Leottau et al. [25], which proposes a
methodology for modeling dribbling behavior by splitting it in two sub
problems: alignment, which is achieved by using an off-line tuned fuzzy
controller, and ball-pushing, which is learned by using an RL based con-
troller reducing the state vector only to ρ. These strategies reduce the
complexity of the problem making it more tractable and achievable
for learning with physical robots. The RL-FLC approach was the for-
mer dribbling engine used by the UChile Robotics Team [55] in the
RoboCup [51] Standard Platform League (SPL) soccer competition.

- eRL-FLC proposed by Leottau et al. [27], is an enhanced version of
the RL-FLC which learns the ball-pushing sub-task mapping the whole
state space [ρ, γ, φ] by using a Layered RL scheme. It is designed to
improve ball control because the former RL-FLC approach assumes
the ideal case in which the target, ball, and robot are always aligned,
ignoring [γ, φ] angles, which is not the case during a real game situation.
However, as in RL-FLC, the alignment sub-task must still be learned
off-line, resigning optimal performances instead of reducing modeling
complexity.

In summary, for implemented schemes for the Ball-Dribbling problem,
we have: DRL-Ind, DRL-CAdec/CAinc/Lenient, DRL+Transfer, CRL, RL-
FLC, and eRL-FLC. Please see Table 1 for the full list of acronyms. Other
details about Stage 3.5 are detailed in the next two subsections.

Performance Indices

The evolution of the learning process is evaluated by measuring and aver-
aging 25 runs. The following performance indices are considered to measure

45

dribbling-speed and ball-control respectively:

- % of maximum forward speed (%SFmax): given SFavg, the average drib-
bling forward speed of the robot, and SFmax, the maximum forward
speed: %SFmax = SFavg/SFmax. %SFmax = 100% is the best perfor-
mance.

- % of time in fault-state (%TFS): the accumulated time in fault-state
tFS during the whole episode time tDP . The fault-state is defined as the
state when the robot loses possession of the ball, i.e. ρ > ρth ∨ |γ| >
γth ∨ |φ| > φth, then: %TFS = tFS/tDP . %TFS = 0 is the best
performance.

- Global Fitness (F): this index is introduced for the sole purpose of eval-
uating and comparing both performance indices together. The global
fitness is computed as follows: F = 1/2[(100%SFmax) + %TFS], where
F = 0 is the optimal but non-reachable policy.

RL Algorithm and Optimized Parameters

A SARSA(λ) algorithm with softmax action selection is implemented
for these experiments. The Boltzmann exploration temperature is decayed
as: τ = τ0 · exp(decepisode/maxEpisodes), where episode is the current
episode index and maxEpisodes = 2000 trained episodes per run. As a
result, the following parameters are optimized: learning rate (α), Boltzmann
exploration initial temperature (τ0), and exploration decay factor (dec). For
the particular case of Lenient RL, gain (κ) and decay factor (β) are optimized
instead of τ0 and dec respectively. This can be considered as the last stage
of the methodology, Stage 3.5 Completing RL single modelings. For all the
experiments γ = 0.99.

Results and Analysis

Figure 8 shows learning evolution plots for: an independent decentral-
ized learners scheme, DRL-Ind; a Decremental Cooperative Adaptive scheme,
DRL-CAdec; a lenient DRL implementation; and, a DRL scheme accelerated
with transfer knowledge, DRL+Transfer, and a centralized scheme, CRL.
Plots for the Incremental Cooperative Adaptive, DRL-CAinc scheme are not
included because of their poor performance and high standard error bars.
Table 6 shows averaged final performances. Although CRL implementation
was modeled with only 5 actions per dimension, the DRL-ind scheme which

46

uses 17 actions per dimension has been more than 22% faster. Besides,
the CRL has used a noiseless model with ground truth observations, even
so DRL outperforms it by almost 12% using a more realistic model. The
DRL+Transfer implementation uses a source of knowledge with an initial
performance at about 25% (see [26]), achieving a final performance near 16%
after the RL transfer procedure. DRL-Lenient and DRL-CAdec approaches
are able to reach a similar final performance, approximately 18% and 20%
learning from scratch without any kind of previous knowledge. The Lenient
approach presents the best results, the best final performance, and the fastest
asymptotic convergence among the implemented methods with no transfer
knowledge. The DRL-CAdec outperforms the DRL-Ind scheme, and also
takes 201 less episodes to reach the defined time to threshold (35%). Plots
for forward speed and fault performance indexes are also included in order to
follow the same results format as Leottau and Ruiz-del-Solar [26], in which
this dribbling problem was originally proposed based on a DRL architecture.
Note that the main benefit of MAS based algorithms (Lenient and CAdec)
versus the DRL-Ind scheme is to achieve a higher forward speed, keeping a
low rate of faults.

The effectiveness and benefits of the RL-FLC and eRL-FLC approaches
have been pointed out by Leottau et al. [27]. However, significant human
effort and knowledge from the controller designer are required for implement-
ing all the proposed stages. DRL approaches are able to learn the whole
Ball-Dribbling behavior almost autonomously, achieving best performances
compared to those of the RL-FLC and eRL-FLC which require more human
effort and previous knowledge. An advantage of the RL-FLC and eRL-FLC
methods is the considerably lower RL training time, with regard to all the
DRL schemes (Please see time to thresholds in Table 6). The DRL-Lenient
and DRL-CA schemes proposed in this work are able to reduce the learning
time down to 585 and 771 episodes respectively, opening the door to making
future implementations for learning similar behaviors achievable by physical
robots.

Some videos showing the learned policies for dribbling can be seen online
at Leottau’s video repository [24]. Currently the learned policy is transferred
directly to the physical robots, thus, the final performance is dependent on
how realistic the simulation platform is.

47

200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f
m

a
x
.

fo
rw

a
rd

 s
p

e
e

d

0

20

40

60

80

100

200 400 600 800 1000 1200 1400 1600 1800 2000

%
 o

f
ti
m

e
 i
n

 f
a

u
lt
-s

ta
te

0

20

40

60

80

100

DRL-Ind

DRL-CAdec

DRL-Lenient

DRL+Transfer

CRL

Episodes

200 400 600 800 1000 1200 1400 1600 1800 2000

G
lo

b
a

l
F

it
n

e
s
s

0

20

40

60

80

100

Figure 8: Ball-dribbling learning evolution plots.

48

Table 6: Ball-Dribbling performances (in which lower %s are better per-
formances)

Approach Performance(%) Time to Th. (35%)

DRL+Transfer 16.36 356

DRL-Lenient 17.78 585

DRL-CAdec 20.44 771

DRL-Ind 23.29 972

eRL-FLC 27.67 61

RL-FLC 34.40 47

DRL-CAinc 77.43 †

CRL 34.93 1419

† It did not achieve asymptotic convergence before the 2000
trained episodes, because of that its learning evolution plot
is neither included in Fig. 8

5.4. SCARA Real-Time Trajectory Generation

The Selective Compliance Articulated Robot Arm (SCARA) is used ex-
tensively in the industry for assembly tasks and small parts insertion, among
the other uses. It has well-known properties and there is sufficient literature
[29, 10]. This problem has been selected because it is one of the first DRL
applications reported by Martin and De Lope [31]. Its simulation implemen-
tation is available online at Martin’s repository [30] and it can be used as a
test-bed for DRL systems.

A simulated three dimensional robotic manipulator with four joints, in
which the system tried to reach an objective configuration in a 3D space,
was used, while being able to generate an approaching real-time trajectory
when the system was completely trained. A diagram of the physical model
of the SCARA-RTG problem is shown in Figure 9. The Denavit-Hartenberg
parameters, the direct kinematic matrix, and more implementation details
can be checked in the paper of Martin and De Lope [31], and the source files
can be downloaded from Martin’s repository [30].

49

Figure 9: The SCARA robotic manipulator (Figure adopted from Martin and De Lope
[31]).

Decentralized Modeling

Stage 3.1 Determining if the problem is decentralizable: since the SCARA
arm has four joints, we can identify a 4-dimensional action space, and sepa-
rate the problem into four individual agents: Agent1, · · · , Agent4, or Agentm,
with m = [1, .., 4]. Five actions are implemented per agent, among which the
four action spaces are identical, but act independently:
A1 = A2 = A3 = A4 = [−0.02;−0.01; 0.0; 0.01; 0.02]. Selected action
[a1, · · · , a4] modifies the current angle in radians of each joint of the arm
[θ1, · · · , θ4]. Thus, θ(t+ 1)m = θm + am.

Since this problem is modeled with four agents and five discrete actions
per agent, a centralized scheme is not implemented for this experiment be-
cause an action-space of 54 = 625 discrete actions is computationally expen-
sive to our current resources and purposes.

Stages 3.2 and 3.3 Identifying individual goals and defining reward func-
tions: the common goal consists of reaching a continuously changing goal po-
sition of the robot end-effector by means of a random procedure. That way,
a global reward function is implemented as Expression (12), where eDist
is the Euclidean distance between the current end-effector position and the
goal position, and θ2 is the joint angle m = 2 in degrees. In Martin’s repos-
itory [30], this Euclidean distance based and continuous reward function is
detailed and its effectively is validated.

50

R(s) =

{
108/(1 + eDist2) if eDist ≤ 1 & penal = 1
−penal · eDist5/104 otherwise

penal =

{
10 + 0.1 · θ2 if θ2 < 0

1 otherwise
(12)

Stage 3.4 Determining if the problem is fully decentralizable: three state
variables compose the joint state vector S = [ex, ey, ez], the error between
the current end-effector position with respect to the 3-Dimensional goal po-
sition point [xg, yg, zg]. Each state variable considers three values [−1, 0, 1],
depending if the error is negative, near to zero, or positive.

Stage 3.5 Completing RL single modelings the learning procedure is de-
fined as follows: goal positions are defined in such a way that they are always
reachable for the robot; thus, the learning process needs to develop an in-
ternal model of the inverse kinematics of the robot which is not directly
injected by the designer; through the different trials, a model of the robot
inverse kinematics is learned by the system; when a goal position is gener-
ated, the robot tries to reach it; each trial can finish as a success episode,
i.e. the robot reaches the target at a previously determined time, or as a
failed episode, i.e. the robot is not able to adopt a configuration to reach
the goal position before 400 time steps; in both cases the system parameters
are updated using the previously defined method and a new goal position is
generated randomly.

In summary, we have the following implemented schemes for the SCARA-
RTG problem: DRL-Ind, DRL-CAdec/CAinc/Lenient. Please see Table 1
for the full list of acronyms. Other details about Stage 3.5 are detailed in
the next two subsections.

Performance Index

Time steps are considered as the performance index, where 400 is the
maximum and worst case, and zero is the best but non-reachable perfor-
mance.

RL Algorithm and Optimized Parameters

As Martin and De Lope [31] report, a SARSA tabular algorithm with ε-
greedy is implemented for these experiments. The following parameters are
optimized: learning rate (α) and exploration (ε), which is multiplied by 0.99
at the end of each learning episode. For the particular case of Lenient RL,

51

Figure 10: SCARA-RTG learning evolution plots.

gain (κ) and decay factor (β) are also optimized. For all the experiments
γ = 1.

Results and Analysis

Figure 10 shows learning evolution plots and Table 7 shows averaged final
performances. The DRL-Lenient scheme shows the fastest asymptotic con-
vergence and the best performance, followed closely by the Incremental Co-
operative Adaptive DRL-CAinc implementation. Those schemes respectively
outperform about 25 and 14 steps with respect to the original implementa-
tion presented by Martin and De Lope [31]. Note that DRL-Lenient reaches
a performance of ≈ 230 in about 10 episodes, and the independent and non
coordinated scheme, DRL-Ind in 16 episodes. Further, due to the leniency
effect during early episodes, which tries to avoid uncoordinated and ambigu-
ous information among the interaction of the four agents, DRL-Lenient keeps
improving its performance until the final episode. There is a similar lenient
effect in the case of DRL-CAinc; reaches the 230 performance threshold in
about 25 episodes, on average 15 and 9 episodes slower than DRL-Lenient
and DRL-Ind respectively. However, DRL-CAinc shows a comparable per-
formance with respect to the Lenient after that and also shows the tendency
to keep improving its performance during the learning procedure.

5.5. Discussion

Our first goal is demonstrating empirically that an independent DRL
scheme is able to achieve similar learning times and comparable or slightly
lower performances (because of lack of coordination) compared to CRL schemes.

52

Table 7: SCARA-RTG performances (these improve toward zero)

Approach Performance(Steps) Standard Error

DRL-Lenient 159.05 18.63

DRL-CAinc 170.70 18.82

DRL-Ind 184.77 23.66

DRL-CAdec 209.57 23.06

Thus, a trade-off between DRL benefits indicated in Section 2.3 and perfor-
mance may be expected. Experiments of 3DMC and Ball-Pushing were the
first presented. Results for those two problems have evidenced surprisingly
that DRL-Ind implementations show better performances and faster learning
times than their CRL counterparts. Only in the case of 3DMC, the DRL-
ObsL-Ind approach shows a lower final performance, which was expected
when taking into account that complex scenario with lack of coordination
and limited observability. Nevertheless, the DRL-ObsL-Ind approach should
be compared with a CRL-ObsL implementation for an equitable comparison;
however, this CRL implementation with limited observability is simply non-
feasible because the CRL scheme does not support incomplete observations.
All the same, as is demonstrated in Subsection 5.1, our proposed MAL al-
gorithms (Lenient and CA) are able to resolve that issue. Furthermore,
implementations with these MAL algorithms also showed better or compa-
rable averaged performances and faster learning times compared with CRL
implementations. Only in the ball-pushing case, DRL-CAinc shows slower
convergence than CRL. This result, however, is because of the nature of CA:
DRL-CAinc and DRL-CAdec can be mutually exclusive in certain cases, as
was introduced in Section 4.3 and discussed below. In short, thirteen different
DRL implementations have been implemented and compared with their CRL
counterparts for these two initially discussed problems: eight for the 3DMC
and five for the Ball-Pushing. Eleven of those thirteen DRL implementations
have evidenced better or comparable averaged performances as well as faster
asymptotic convergences when compared to their CRL counterparts, one has
shown faster convergence but lower final performance, and one has shown
better performance but slightly slower asymptotic convergence.

Two more MA algorithms have been presented, Lenient and Cooperative
Adaptive Learning Rate, which have been considered in order to include

53

a coordination mechanism among decentralized agents learning in parallel.
The effects of these algorithms are mentioned briefly below in general terms:

- For DRL-Lenient, leniency helps the agents to explore and find a par-
tially coordinated joint policy before starting to update the action-value
function. Since no communication among the agents is performed, and
they modify their action-selection mechanisms, a coordinated policy is
achieved indirectly. The agents visit relevant states repetitively, search-
ing for the best individual actions, which accomplishes a desired joint
behavior; meanwhile, action-value functions are updated gradually once
the agents’ visit states are known.

- For DRL-CAinc/dec, a measure of the current quality of each individu-
ally performed action is communicated among the agents; then, a joint
adaptive learning rate is computed according to the “worst” agent. If
the CAinc approach is performed, a similar lenient effect occurs, and
each individual action-value function is updated with that cooperative
adaptive learning rate, thereby increasing the learning rate while a joint
policy is improved during the learning process. Otherwise, if CAdec is
used, the agents try to collect information during the early learning
process, thereby decreasing the learning rate while a joint policy is
learned.

The benefits of the Lenient and CA algorithms are more noticeable in
those implementations of the 3DMC with limited observability, in which the
DRL-ObsL-Ind scheme without coordination did not achieve a stable final
performance. This particular case is highly complex because the actions of
each agent affect the joint environment and next state observation for both
agents directly, and not even free or indirect coordination occurs. However,
Lenient and CA schemes were able to resolve that issue. As was mentioned
in Section 5.1, this 3DMC problem with ObsL presents different state spaces,
decentralized action spaces, and individual reward functions. So, by using
our proposed MA algorithms, with their indirect coordination and commu-
nication among agents of the CA approaches, an equilibria can be found for
every state which is visited along a successful path enough times to achieve
the mountaintop.

Lenient and CA algorithms have evidenced the best averaged final per-
formances for the four tested problems. These methods outperformed their

54

Table 8: Summary of the best methods implemented

Problem Best methods

3DMC Full obs. DRL-CAdec & DRL-Lenient

3DMC Limited obs. DRL-CAinc & DRL-Lenient

Ball-pushing DRL-CAdec & DRL-Lenient

Ball-dribbling DRL-Lenient & DRL-CAdec

SCARA-RTG DRL-Lenient & DRL-CAinc

DRL-Ind counterparts implemented without coordination in all the problems
tested. The two best averaged performances per problem are listed in Table
8. DRL-Lenient is the most recurrent winning approach, appearing in all five
cases. Lenient benefits are particularly remarkable in the Ball-Dribbling and
SCARA-RTG problems, where it achieves both the best performance and
the fastest asymptotic convergence. According to the results, the benefits of
the proposed MAS methods are more noticeable as the problem complexity
increases — such as occurs in the 3DMC ObsL and Ball-Dribbling cases —
in which a CRL scheme was intractable according to our available computa-
tional resources.

Note in Table 8 that DRL-CAdec and DRL-CAinc never appear together
as the best approaches. This verifies that DRL-CAinc and DRL-CAdec can
be mutually exclusive for certain cases due to their inverse variable learning
rates policy. For instance, DRL-ObsF-CAdec is the best, and DRL-ObsF-
CAinc is the worst, in the 3DMC with full observability and Ball-Dribbling
cases; and DRL-CAinc is the second best, and DRL-CAdec is the worst, in
the SCARA-RTG case. As a preliminary and empirical hypothesis about
DRL-CAxxx methods, it can be said that the DRL-CAinc method potenti-
ates its benefits on learning problems implemented with the ε-greedy action-
selection mechanism, but shows poor performances on problems implemented
with softmax action selection. On the other hand, the DRL-CAdec method
potentiates its benefits on learning systems implemented with a softmax
action-selection strategy. Of course this is just an empirical conclusion which
must be validated with more problems in future studies. Also, note in Figures
4-10 that DRL-CAxxx approaches do not usually obtain the fastest asymp-
totic convergences, and as such it is possible to conclude that accelerating
learning is not a strength of those methods.

55

For the sake of simplicity, we have used a unique set of RL parameters for
each of the DRL implemented problems. If we had optimized individual sets
of parameters per each individual agent, results may have been outperformed
for those DRL schemes in which the agents are heterogeneous such as ball-
pushing and dribbling.

6. Conclusions and Future Direction

In this article we addressed the Decentralized Reinforcement Learning
(DRL) of individual behaviors of those problems in which multi-dimensional
action spaces are involved. First, we have promoted and proposed a five-
stages methodology to model and implement a DRL system in which basic
concepts, definitions, and practical implementation issues were presented.
Second, three Multi-Agent Learning (MAL) algorithms were detailed: in-
dependent DRL scheme (DRL-Ind), which does not consider any kind of
cooperation or coordination among the agents; the Cooperative Adaptive
Learning Rate (DRL-CA) approach, an original contribution which adapts
the global learning rate on-line based on a simple estimation of the partial
quality of the policy performed by the “weakest” agent; and DRL-Lenient,
in which the value function is optimistically updated whenever the last per-
formed action increases the current utility function, or it is leniently updated
if the agent has explored that action sufficiently. Particularly DRL-CA and
DRL-Lenient add coordination mechanisms in DRL-Ind systems.

The proposed DRL methodology and the three considered MAL algo-
rithms were validated with an extensive empirical study on four different
problems; two of them are well-known problems: the Three-Dimensional
Mountain Car (3DMC), and a SCARA Real-Time Trajectory Generation
(SCARA-RTG); and two correspond to noisy and stochastic real-world mo-
bile robot problems: Ball-Dribbling in soccer performed with an omnidirec-
tional biped robot, and the Ball-Pushing behavior performed with a differ-
ential robot. Results for 3DMC and Ball-Pushing problems evidenced that
DRL implementations show better performances and faster learning times
than their CRL (centralized RL) counterparts, even with less computational
resources, and non direct coordination mechanisms. On the other hand,
DRL-Lenient and DRL-CA MAL algorithms showed the best final perfor-
mances for the four tested problems, outperforming their DRL-Ind counter-
parts in all the problems.

56

Finally, note that the benefits of the proposed MAL methods were more
remarkable as the problem complexity increased, such as occurs in the 3DMC
ObsL and Ball-Dribbling cases, in which a CRL scheme is infeasible. These
results empirically demonstrate that benefits of MAS are also applicable to
more complex and real world problems like robotic platforms when using a
DRL architecture. Furthermore, the results show DRL as a promising ap-
proach to develop applications with higher dimensional action spaces where
a CRL scheme could not be easily implementable, such as behavior learn-
ing for snake robots, multi-link robotic arms, omnidirectional mobile robots,
multi-rotor aerial vehicles, etc.

As part of our ongoing research agenda, we plan to combine the bene-
fits of both DRL-CAdec and DRL-CAinc, in order to develop a unique and
improved cooperative adaptive method. As a related idea, we are interested
in developing a DRL-CA version in which individual adaptive learning rates
per action-state pair are available, as well as a full adaptive DRL-CA version
where exploration is also dependent on that adaptive parameter.

There are a number of possible directions for future work. For now DRL-
Lenient and DRL-CA have been implemented based on temporal-difference
and discrete action RL methods, and so extending these two methods to
model-based and actor-critic algorithms remains an area for future work.
Another topic for future work is comparing partial observable MDP MAL
algorithms to our DRL-CAdec and DRL-CAinc methods which have shown
good results under limited observation conditions. Finally, an interesting
research direction is that of exploring possibilities for automated sub-task
detection and decomposition. Additionally, since in DRL an agent can be
decomposed into several separate agents, real-time communication and obser-
vation among those individual agents is not an issue unlike many of the MAS.
Thus, sharing information can be the basis for a research line in the field of
distributed artificial intelligence, that has not been sufficiently explored yet,
in which increasingly sophisticated DRL algorithms can be developed, taking
advantage of DRL systems’ properties.

Appendix A. Optimization Procedure

As it was mentioned, RL parameters like learning rate, eligibility traces,
exploration factor, number of discrete actions, number of cores, are optimized
by using a customized version of the hill-climbing method. This is a very
important step in order to guarantee that every scheme tested uses the best

57

parameter settings. In this way our comparisons and evaluations are carried
out based on the best performance potentially achievable by each method,
according to our optimization results. Before each set of optimizations, we
try to achieve a good set of parameters by hand-tuning, such as seed, and
then we determined the quantity of learning episodes empirically procuring
asymptotic convergence for 2/3 of the total trained episodes.

The relative simplicity and fast convergence of hill climbing algorithm
make it one of the most popular algorithms for finding the best set of param-
eters in RL [3, 5, 34, 46]. However, since only local optima are guaranteed, we
have implemented some variants to cure that without evaluating too much
extra trials. In this way three ideas are included: to evaluate more than one
neighbor per parameter dimension; the option of evaluating one neighbor per
dimension or exploring the same dimension until finding the best evaluation;
and to store every evaluated set of parameters in order to avoid repeated
trials. The pseudo-code is detailed in Algorithm 4, where paramListV is an
structure which stores every parameter combination and its respective eval-
uation value. We have used neighbours = 4 and oneDimPerTry enabled
for all the experiments in this work. The source code is also shared on-line
at Leottau’s code repository [23].

58

Algorithm 4 Customized Hill Climbing Algorithm
Parameters:

1: x0 . Initial parameter
2: D . Number of dimensions of the parameters space
3: neighbors . Number of neighbors to explore
4: timeLimit . Maximum time available
5: maxIter . Maximum number of iterations desired
6: [paramMin1, · · · , paramMinD] . Lower boundary of the parameter space
7: [paramStep1, · · · , paramStepD] . Step size of the parameter space
8: [paramMax1, · · · , paramMaxD] . Upper boundary of the parameter space
9: goal . Desired value after optimization

10: oneDimPerTry . Enables exploration in one dimension until find the best
evaluation

11: paramListV ← BuildParamList(paramMin, paramStep, paramMax)
12: Initialize:
13: iter ← 1, fval←∞, paramListV ←∞ · paramListV
14: p0 ← GetParamIndex(x0)
15: paramListV (p0)← GetEval(x0)
16: p← p0

17: procedure until (fval ≤ goal or iteration ≥ maxIter or
18: elapsedT ime ≥ timeLimit or ∀ParamListV <∞)
19: for all Parameter Dimension d ∈ D do
20: ymin← −∞
21: while ParamListV (p0) > ymin do
22: p0 ← p
23: x0 ← GetParam(p0)
24: x← x0

25: for neighbor n = 1, · · · , neigbours do
26: xd ← max(xd0 − n · paramStepd, paramMind)
27: p← GetParamIndex(x)
28: if ParamListV (p) ==∞ then
29: ParamListV (p)← GetEval(x)
30: end if
31: end for
32: for neighbor n = 1, · · · , neigbours do
33: xd ← min(xd0 + n · paramStepd, paramMaxd)
34: p← GetParamIndex(x)
35: if ParamListV (p) ==∞ then
36: ParamListV (p)← GetEval(x)
37: end if
38: end for
39: if NOToneDomentionPerTry then
40: p0 ← p
41: end if
42: end while
43: end for
44: if fval ≤ ymin then
45: BREAK
46: end if

fval← ymin
47: end procedure return(fval, x = GetParam(p))

59

Acknowledgments

David L. Leottau was funded by CONICYT under grant CONICYT-
PCHA/Doctorado Nacional/2013-63130183. This research was also partially
funded by FONDECYT Project 1161500 and by the European Regional
Development Fund under the project Robotics 4 Industry 4.0 (reg. no.
CZ.02.1.01/0.0/0.0/15 003/0000470). The authors thank to Aashish Vat-
syayan for the Ball-Pushing experiments with the physical setup, and Jose
Antonio Martin for sharing his RL source codes.

References

[1] D. Bloembergen, M. Kaisers, K. Tuyls, Lenient Frequency Adjusted Q-
learning, in: 22nd Belgium-Netherlands Conf. Artif. Intel., 2010, pp. 19–26.

[2] H. Bou-Ammar, H. Voos, W. Ertel, Controller design for quadrotor UAVs
using reinforcement learning, in: 2010 IEEE Int. Conf. Control Appl., 2010,
pp. 2130–2135.

[3] M. Bowling, M. Veloso, Multiagent learning using a variable learning rate,
Artif. Intell. 136 (2) (2002) 215–250.

[4] M. Brafman, Ronen I. and Tennenholtz, R-max - a general polynomial time
algorithm for near-optimal reinforcement learning, J. Mach. Learn. Res. 3 (1)
(2003) 213–231.

[5] L. Busoniu, R. Babuska, B. De-Schutter, A comprehensive survey of multi-
agent reinforcement learning, Syst. Man, Cybern. Part C Appl. Rev. 38 (2)
(2008) 156–172.

[6] L. Busoniu, R. Babuska, B. D. Schutter, D. Ernst, Reinforcement learning
and dynamic programming using function approximators, CRC Press, Boca
Raton, Florida, 2010.

[7] L. Busoniu, B. De-Schutter, R. Babuska, Decentralized Reinforcement Learn-
ing Control of a Robotic Manipulator, in: Ninth Int. Conf. Control. Autom.
Robot. Vision, ICARCV, Singapore, 2006, pp. 1–6.

[8] C. Claus, C. Boutilier, The dynamics of reinforcement learning in cooperative
multiagent systems, in: Proc. fifteenth Natl. Conf. Artif. Intell. Appl. Artif.
Intell. ’98/IAAI ’98, Madison, Wisconsin, USA, 1998, pp. 746–752.

60

[9] R. H. Crites, A. G. Barto, Improving Elevator Performance Using Reinforce-
ment Learning, in: Adv. neural Inf. Process. Syst. (NIPS), vol.8, Denver,
USA., 1995, pp. 1017–1023.

[10] M. T. Das, L. Canan Dülger, Mathematical modelling, simulation and ex-
perimental verification of a scara robot, Simul. Model. Pract. Theory 13 (3)
(2005) 257–271.

[11] U. Dziomin, A. Kabysh, V. Golovko, R. Stetter, A multi-agent reinforcement
learning approach for the efficient control of mobile robot, in: IEEE Conf.
Intell. Data Acquis. Adv. Comput. Syst., Berlin, Germany, 2013, pp. 867–
873.

[12] R. Emery, T. Balch, Behavior-based control of a non-holonomic robot in
pushing tasks, in: Proc. 2001 ICRA. IEEE Int. Conf. Robot. Autom. (Cat.
No.01CH37164), vol. 3, 2001, pp. 2381–2388.

[13] P. Glorennec, L. Jouffe, Fuzzy Q-learning, in: Proc. 6th Int. Fuzzy Syst.
Conf., vol. 2, Barcelona, 1997, pp. 659–662.

[14] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade,
B. Marnier, J. Serre, B. Maisonnier, Mechatronic design of NAO humanoid,
in: 2009 IEEE Int. Conf. Robot. Autom., Kobe, Japan, 2009, pp. 769–774.

[15] I. Grondman, L. Busoniu, G. A. D. Lopes, R. Babuska, L. Bus, G. A. D. Lopes,
R. Babuska, A Survey of Actor-Critic Reinforcement Learning: Standard and
Natural Policy Gradients, IEEE Trans. Syst. Man Cybern. Part C 42 (6)
(2012) 1–17.

[16] G. C. How, T. Wu, M. Cutler, J. P., Rapid transfer of controllers between
UAVs using learning-based adaptive control, in: Proc. - IEEE Int. Conf.
Robot. Autom., Karlsruhe, Germany, 2013, pp. 5409–5416.

[17] K. Hwang, Y. Chen, C. Wu, Fusion of Multiple Behaviors Using Layered
Reinforcement Learning, Syst. Man Cybern. - Part A 42 (4) (2012) 999–1004.

[18] A. Kabysh, V. Golovko, A. Lipnickas, Influence Learning for Multi-Agent
System Based on Reinforcement Learning, Int. J. Comput. 11 (1) (2012) 39–
44.

[19] M. Kaisers, K. Tuyls, Frequency Adjusted Multi-agent Q-learning, in: 9th Int.
Conf. Auton. Agents Multiagent Syst., Toronto, Canada, 2010, pp. 309–315.

61

[20] H. Kimura, Reinforcement learning in multi-dimensional state-action space
using random rectangular coarse coding and Gibbs sampling, in: IEEE/RSJ
Int. Conf. Intell. Robot. Syst., 2007, pp. 88–95.

[21] M. Lauer, M. Riedmiller, An algorithm for distributed reinforcement learning
in cooperative multi-agent systems, in: Int. Conf. Mach. Learn., Stanford,
CA, USA, 2000, pp. 535–542.

[22] G. J. Laurent, L. Matignon, N. L. Fort-Piat, The world of independent learn-
ers is not markovian, Int. J. Knowledge-based Intell. Eng. Syst. 15 (1) (2011)
55–64.

[23] D. L. Leottau, Decentralized Reinforcement Learning (source code) (2017).
URL https://github.com/dleottau/Thesis-DRL

[24] D. L. Leottau, C. Celemin, UCh-Dribbling-Videos (2015).
URL https://www.youtube.com/watch?v=HP8pRh4ic8w

[25] D. L. Leottau, C. Celemin, J. Ruiz-del-Solar, Ball Dribbling for Humanoid
Biped Robots: A Reinforcement Learning and Fuzzy Control Approach, in:
K. S. Reinaldo A. C. Bianchi, H. Levent Akin, Subramanian Ramamoorthy
(ed.), Rob. 2014 Robot World Cup XVIII - Lect. Notes Comput. Sci. 8992,
Springer Verlag, Berlin, 2015, pp. 549–561.

[26] D. L. Leottau, J. Ruiz-del-Solar, An Accelerated Approach to Decentralized
Reinforcement Learning of the Ball-Dribbling Behavior, in: AAAI Work., vol.
WS-15-09, Austin, Texas USA, 2015, pp. 23–29.

[27] D. L. Leottau, J. Ruiz-del-Solar, P. MacAlpine, P. Stone, A Study of Lay-
ered Learning Strategies Applied to Individual Behaviors in Robot Soccer, in:
L. Almeida, J. Ji, G. Steinbauer, S. Luke (eds.), Rob. Robot Soccer World
Cup XIX, Lect. Notes Artif. Intell., vol. 9513, Springer Verlag, Berlin, 2016,
pp. 290–302.

[28] D. L. Leottau, A. Vatsyayan, J. Ruiz-del-Solar, R. Babuska, Decentralized
Reinforcement Learning Applied to Mobile Robots, in: D. Behnke, S., Sheh,
R., Sariel, S., Lee (ed.), Rob. 2016 Robot World Cup XX, Lect. Notes Artif.
Intell. 9776, Springer Verlag, Berlin, 2017.

[29] C.-K. Lin, A reinforcement learning adaptive fuzzy controller for robots, Fuzzy
Sets Syst. 137 (3) (2003) 339–352.

62

[30] J. Martin, A Reinforcement Learning Environment in Matlab (source code).
URL https://jamh-web.appspot.com/download.htm

[31] J. Martin, H. D. Lope, A distributed reinforcement learning architecture for
multi-link robots, in: 4th Int. Conf. Informatics Control. Autom. Robot.
ICINCO 2007, Angers, Francia, 2007, pp. 192–197.

[32] L. Matignon, G. J. Laurent, N. Le Fort-Piat, Design of semi-decentralized
control laws for distributed-air-jet micromanipulators by reinforcement learn-
ing, 2009 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (2009) 3277–3283.

[33] L. Matignon, G. J. Laurent, N. Le Fort-Piat, Y.-A. Chapuis, Designing Decen-
tralized Controllers for Distributed-Air-Jet MEMS-Based Micromanipulators
by Reinforcement Learning, J. Intell. Robot. Syst. 59 (2) (2010) 145–166.

[34] L. Panait, S. Luke, Cooperative Multi-Agent Learning: The State of the Art,
Auton. Agent. Multi. Agent. Syst. 11 (3) (2005) 387–434.

[35] L. Panait, K. Sullivan, S. Luke, Lenience towards teammates helps in cooper-
ative multiagent learning, in: Proc. Fifth Int. Jt. Conf. Auton. Agents Multi
Agent Syst., Hakodate, Japan, 2006.

[36] L. Panait, K. Tuyls, S. Luke, Theoretical Advantages of Lenient Learners:
An Evolutionary Game Theoretic Perspective, J. Mach. Learn. Res. 9 (2008)
423–457.

[37] S. Papierok, A. Noglik, J. Pauli, Application of Reinforcement Learning in
a Real Environment Using an RBF Network, in: 1st Int. Work. Evol. Reinf.
Learn. Auton. Robot Syst. (ERLARS 2008), Patras, Greece, 2008, pp. 17–22.

[38] J. Pazis, M. G. Lagoudakis, Reinforcement learning in multidimensional con-
tinuous action spaces, in: IEEE Symp. Adapt. Dyn. Program. Reinf. Learn.,
Paris, France, 2011, pp. 97–104.

[39] E. Schuitema, Reinforcement Learning on autonomous humanoid robots,
Ph.D. thesis, Delft University of Technology (2012).

[40] S. Sen, M. Sekaran, J. Hale, Learning to coordinate without sharing informa-
tion, in: Proc. Natl. Conf. Artif. Intell., American Association for Artificial
Intelligence, Seattle, Washington, 1994, pp. 426–431.

[41] S. P. Singh, M. J. Kearns, Y. Mansour, Nash Convergence of Gradient Dy-
namics in General-Sum Games, in: UAI ’00 Proc. 16th Conf. Uncertain. Artif.
Intell., Stanford, CA, 2000, pp. 541–548.

63

[42] P. Stone, M. Veloso, Multiagent Systems: A Survey from a Machine Learning
Perspective, Auton. Robot. 8 (3) (2000) 1–57.

[43] R. Sutton, A. Barto, Reinforcement Learning: An Introduction, MIT Press,
Cambridge, MA, 1998.

[44] Y. Takahashi, M. Asada, Multi-layered learning system for real robot behavior
acquisition, in: V. Kordic, A. Lazinica, M. Merdan (eds.), Cut. Edge Robot.,
Intech, Germany, 2005, pp. 357–375.

[45] I. Tanev, T. Ray, A. Buller, Automated evolutionary design, robustness, and
adaptation of sidewinding locomotion of a simulated snake-like robot, IEEE
Trans. Robot. 21 (4) (2005) 632–645.

[46] M. E. Taylor, G. Kuhlmann, P. Stone, Autonomous Transfer for Reinforce-
ment Learning, in: Auton. Agents Multi-Agent Syst. Conf., Estoril, Portugal,
2008, pp. 283–290.

[47] E. Theodorou, J. Buchli, S. Schaal, Reinforcement learning of motor skills in
high dimensions: A path integral approach, in: 2010 IEEE Int. Conf. Robot.
Autom., 2010, pp. 2397–2403.

[48] S. Troost, E. Schuitema, P. Jonker, Using cooperative multi-agent Q-learning
to achieve action space decomposition within single robots, in: 1st Int. Work.
Evol. Reinf. Learn. Auton. Robot Syst. (ERLARS 2008), Patras, Greece,
2008, pp. 23–32.

[49] K. Tuyls, P. J. T. Hoen, B. Vanschoenwinkel, An Evolutionary Dynamical
Analysis of Multi-Agent Learning in Iterated Games, Auton. Agent. Multi.
Agent. Syst. 12 (1) (2005) 115–153.

[50] A. Vatsyayan, Video: centralized and decentralized reinforcement learning of
the ball-pushing behavior (2016).
URL https://youtu.be/pajMkrf7ldY

[51] M. Veloso, P. Stone, Video: RoboCup robot soccer history 1997-2011, in:
2012 IEEE/RSJ Int. Conf. Intell. Robot. Syst., Vilamoura-Algarve, Portugal,
2012, pp. 5452–5453.

[52] N. Vlassis, A Concise Introduction to Multiagent Systems and Distributed
Artificial Intelligence, vol. 1, Morgan and Claypool Publishers, 2007.

[53] C. J. C. H. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (3-4) (1992) 279–
292.

64

[54] S. Whiteson, N. Kohl, R. Miikkulainen, P. Stone, Evolving Keepaway Soccer
Players through Task Decomposition, in: E. Cantú-Paz, J. Foster, K. Deb,
L. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall,
S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. Potter, A. Schultz,
K. Dowsland, N. Jonoska, J. Miller (eds.), Genet. Evol. Comput. GECCO
2003 SE - 41, vol. 2723 of Lecture Notes in Computer Science, Springer Hei-
delberg, Berlin, 2003, pp. 356–368.

[55] J. M. Yanez, P. Cano, M. Mattamala, P. Saavedra, D. L. Leottau, C. Celemin,
Y. Tsutsumi, P. Miranda, J. Ruiz-del-Solar, UChile Robotics Team Team
Description for RoboCup 2014, in: Rob. 2014 Robot Soccer World Cup XVIII
Preproceedings, Joao Pessoa, Brazil, 2014.

65

