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ABSTRACT 
The scattering matrix is a fundamental tool to quantitatively describe the properties of resonant systems. In 
particular, it enables the understanding of many photonic devices of current interest, such as photonic 
metasurfaces and nanostructured optical scatterers. In this contribution, we show that the scattering matrix of a 
photonic system is completely determined by its quasinormal modes, i.e., the self-sustaining electromagnetic 
excitations at a complex frequency. On the basis of temporal coupled-mode theory, we derive an expression for 
the expansion of the scattering matrix on quasinormal modes, which is directly applicable to an arbitrary number 
of modes and input/output channels. Our theory does not require any ad-hoc assumptions, such as the fitting of 
an additonal nonresonant background. 
We validate and discuss the theoretical formalism with some illustrative examples. This demonstrates that the 
theory represents a powerful and predictive tool for calculating the highly structured spectra of resonant 
nanophotonic systems, and, at the same time, a key for unravelling the physical mechanisms at the heart of such 
intricate spectral structures. 
Keywords: scattering matrix, quasinormal modes, resonant states, theoretical photonics, photonic crystals. 

1. INTRODUCTION 
The scattering matrix constitutes an important tool in multiple fields of science, such as nuclear physics, 
electronic transport, or classical electrodynamics [1,2]. In particular, it plays an essential role in helping us to 
understand intriguing optical phenomena, such as Fano resonances in optical systems [3] or scattering dark states 
[4], and to tailor the properties of novel photonic devices, like photonic metasurfaces [5] or hybrid plasmonic-
photonic nanoresonators [6]. 

These electromagnetic systems typically display a highly structured spectral response, with multiple 
resonances in the spectrum. The resonances are associated with quasinormal modes (also called resonant states), 
i.e., complex-frequency solutions of Maxwell's equations with outgoing-wave boundary conditions [7-9]. In 
order to decipher, understand, and engineer the behaviour of complex optical systems, it is vital to unravel the 
connection between the scattering matrix and the underlying quasinormal modes. 

In this contribution, we develop a rigorous and general theory for the expansion of the scattering matrix of 
electromagnetic systems on quasinormal modes. The method is based on the framework of temporal coupled-
mode theory for optical resonators [3,10]. Such framework has been effectively used to study the transmission of 
gratings and photonic-crystal structures [3,10-12] and the scattering cross section of nanoparticles [4]. However, 
in these applications, coupled-mode theory has been usually restricted to only one or two modes of the optical 
system, with the residual spectral response being taken into account with a slowly varying frequency-dependent 
background, fitted from independent simulation data [3,10,11]. Our theory provides a direct and general relation 
between the coefficients of the scattering-matrix expansion and the values of the complex modal field at the 
input-output ports of the system. Therefore, the theory is directly applicable to any number of multiple 
overlapping modes, without any restriction on the width or decay rate, and to an arbitrary configuration of input-
output channels. These characteristics make it especially suitable for a first-principle description of complex 
photonic systems. Notably, since the formalism is based on general coupled-mode theory, its range of 
applicability goes beyond that of classical electrodynamics. 

2. THEORY 
The starting point for our theory is the formalism of temporal coupled-mode equations [3,10]. We assume that 
the incoming electromagnetic field of an optical system is expanded on a set of m input ports: 𝑬𝑖𝑖 =
 ∑ 𝑠+𝛼𝑬𝛼

(+)
𝛼 . The incoming field is dynamically coupled to a number n of quasinormal modes. In vector notation, 

this fact can be expressed in terms of the m×n coupling matrix D: 
𝑑
𝑑𝑑
𝒂 = 𝑖 (Ω + 𝑖 Γ)𝒂 + 𝐷𝑇𝒔+, 

(1) 

where the vectors a and s+ contain the coefficients of the expansion of the field in terms of quasinormal modes 
and input channels, respectively. 



The outgoing field is similarly expanded on a basis of output ports, 𝑬𝑜𝑜𝑜 =  ∑ 𝑠−𝛼𝑬𝛼
(−)

𝛼 . The amplitude of 
each outgoing wave is the result of two different contributions: a direct channel (accounted for by a m×m matrix 
C) and a resonance mediated channel: 

𝒔− = 𝐶 𝒔+ + 𝐷 𝒂. (2) 
Using the same notation, quasinormal modes are the solutions of the eigenproblem for the non-Hermitian 
Maxwell operator H = Ω + iΓ (Ω and Γ being Hermitian operators) with the complex eigenfrequencies 𝜔�𝑗: 

(Ω + 𝑖 Γ) 𝒂�𝒋 =  𝜔�𝑗 𝒂�𝒋. (3) 
We also define the scattering eigenvectors 𝒃𝑗 = 𝐷 𝒂�𝑗, i.e., the expansion coefficients of the modal field of the 
quasinormal modes on the output ports of the system. In practice, quasinormal modes can be computed by 
numerically solving the eigenproblem for Maxwell equations with outgoing boundary conditions. The scattering 
eigenvectors depend only on the far-field behaviour of the resonant states, and, for this reason, they can be 
obtained without computing the full spatial distribution of the electromagnetic field of the corresponding 
quasinormal modes. 

The scattering matrix of the system connects the coefficients of the outgoing field with the coefficients of the 
incoming field and, in the frequency domain (assuming the frequency dependence 𝑒𝑖𝑖𝑜), it can be written as: 

𝑆 = 𝐶 − 𝑖𝐷 (𝜔 − Ω − 𝑖Γ)−1 𝐷𝑇 . (4) 
Using the biorthogonal properties of quasinormal modes [13], the scattering matrix can be recast in the form 

𝑆 = 𝐶 + 𝑖 �
𝜆𝑗

𝜔 −  𝜔�𝑗
𝒃𝑗𝒃𝑗𝑇

𝑗

. (5) 

In the following, we will briefly discuss how to derive the values of the expansion coefficients 𝜆𝑗. In order to 
do so, we have to recall some additional relations among the quantities in Eqs. (1) and (2), which were originally 
demonstrated in Refs. [3] and [10] on the basis of electromagnetic reciprocity and time-reversal symmetry 
considerations: 

Γ = 1
2
 𝐷†𝐷        and       𝐶𝐷∗ =  −𝐷. (6) 

It can be shown that these equations imply the additional relation 
�𝐶 𝒃𝑖∗ 𝑄𝑖𝑗∗ −1 −  𝜆𝑗𝒃𝑗 = 0 
𝑖

, (7) 

with the matrix Q defined as: 𝑄𝑖𝑗 = 𝑖 𝒃𝑖
†𝒃𝑗 (𝜔�𝑗 − 𝜔�𝑖∗)� . Equation (7) can be solved in a least-square sense as a 

function of 𝜆𝑗 . The solution, then, allows us to obtain the values of the coefficients in Eq. (5) and to carry out the 
quasinormal expansion of the scattering matrix. The least-square solution of Eq. (7) is 

λj =   
∑ 𝑄𝑖𝑗−1𝑄𝑘𝑗∗ −1𝒃𝑖𝑇𝐶†𝐶 𝒃𝑘∗𝑖𝑘

∑ 𝑄𝑖𝑗−1𝑖 𝒃𝑖𝑇𝐶†𝒃𝑗
. (8) 

This last equation, together with Eq. (5), represents the main result of the present contribution. The 
quasinormal-mode expansion of the scattering matrix that we derive in Eq. (5) is similar to the Breit-Wigner 
formula of nuclear physics [2]. However, there is a fundamental difference in the expression of the expansion 
coefficients (Eq. 7): the coefficient of each resonant term in the expansion depends on the frequencies and the 
amplitudes of all the other modes via the specifically introduced coupling matrix Q. This matrix accounts for the 
effective interaction among different quasinormal modes that originates from the coupling to a common external 
environment.  This characteristic reflects in the fact that, whereas the Breit-Wigner formula is restricted to the 
case of non-overlapping resonances, no such limitation applies to the present theory. Thus, the theory can be 
used in a straightforward way to model systems characterized by an arbitrary number of closely spaced resonant 
states. 

3. APPLICATIONS 
As an illustrative example of the application of the theory, we consider a simple Fabry-Perot resonator made of a 
dielectric slab in air. The refractive index of the dielectric is nd. Since the structure is translationally invariant in 
a two-dimensional plane, we limit ourselves to the subspace of electromagnetic solutions with a fixed in-plane 
wavevector k, and we assume k = 0. The complex eigenfrequencies of the quasinormal modes of the structure 
can be worked out analytically and they have the form 

𝑛𝑑
𝜔�𝑗
𝑐
𝐿 =  𝑗𝑗 − 𝑖 ln (𝑟),          𝑗 = 0, ±1, ±2, … (9) 

where 𝑟 = (𝑛𝑑 − 1)/(𝑛𝑑 + 1) is the reflection coefficient of the air-dielectric interface. The two input-output 
ports correspond to plane waves propagating in the upper and lower region with respect to the slab, respectively. 
The expressions of the scattering eigenvectors can be obtained directly from symmetry considerations, since all 
quasinormal modes are even or odd with respect to the inversion along the axis perpendicular to the slab. It can 



be demonstrated that the expression in Eqs. (5) and (8) for the scattering matrix expansion does not depend on 
the global normalization constant of the scattering eigenvectors. Therefore, we are free to choose the 
normalization constant and we define the scattering eigenvectors 

𝒃𝑗 = �
1
1
� ,    𝑗 even;              𝒃𝑗 = �

1
−1

� ,      𝑗 odd. (10) 

Finally, assuming that the set of quasinormal modes is complete, we take the 2×2 identity matrix as the direct 
coupling matrix, i.e., C = 𝐼2×2. 

Putting together all these ingredients, we can compute the scattering matrix of the system by applying Eq. (5) 
with the coefficients of Eq. (8). The resulting scattering matrix allows us to obtain all the scattering quantities of 
the system, such as the transmission and reflection intensities. As an example, the transmission spectrum 
obtained from the quasinormal-mode expansion is plotted in Fig. 1 and compared with the exact analytical result. 
The agreement between the curves is excellent, and it improves with the increasing of the cut-off for the set of 
quasinormal modes employed in the expansion. Notably, these results clearly prove that it is possible to derive 
the scattering properties on the entire frequency range only from the knowledge of the quasinormal modes of the 
system. 

The validity of the quasinormal-mode expansion of the scattering matrix can be further demonstrated in the 
case of more complex systems. For instance, in Fig. 2 we show the transmission spectrum of a two-dimensional 
period structure of L-shaped air-holes patterned in a high-index dielectric slab. The frequencies and eigenvectors 
of the quasinormal modes have been numerically computed with the finite-element method [14]. Even in this 
case, we assume the identity as the direct coupling matrix C.  The result obtained from the quasinormal-mode 
expansion of the scattering matrix is compared with an independent calculation by the Fourier modal method 
[15]. The agreement between the curves is very good, confirming the validity of the quasinormal-mode 
expansion of the scattering matrix. Moreover, the comparison demonstrates that the first-principle description 
provided by the theory is complete and accurate, without the need for fitting any ad-hoc background response for 
the direct coupling channel. 

4. CONCLUSIONS 
In this contribution, we have illustrated a method to expand the scattering matrix of optical systems on the basis 
of quasinormal modes and we have validated it with benchmark examples. The theory can be applied in a 
straightforward way to systems with an arbitrary number of resonant modes and input-output channels. 
Moreover, it only requires the knowledge of the complex eigenfrequencies and the far-field profiles of the 
quasinormal modes of the system, eliminating the need for introducing a frequency-dependent background 
channel. All these characteristics make the theory a powerful first-principle tool for understanding and tailoring 
the optical properties of complex photonic systems.  

 
 
 
 
 

 
Figure 1: normal-incidence transmission spectrum of a Fabry-Perot resonator made of a dielectric slab with refractive index 
nd = 3.46 in air. Solid and dashed curves: data computed from the quasinormal-mode expansion of the scattering matrix with 

N = 15 and N = 5 modes, respectively. Dotted curve: exact analytical result. 



 
Figure 2: normal-incidence transmission spectrum of a two-dimensional periodic array (a = lattice constant) of L-shaped air 
holes. The structures are partially etched (at half depth) in a dielectric slab (ε = 12.1) of thickness t = 0.5a. The inset shows 
a top view of the unit cell (d = 0.3a). The results from the quasinormal-mode expansion of the scattering matrix (solid line) 

are compared with full-wave simulation data (dotted line). 
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