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a b s t r a c t

We propose a computational procedure to assess size effects in nonfunctionalized single-walled carbon
nanotube (CNT)-polymer composites. The procedure upscales results obtained with atomistic simula-
tions on a composite unit cell with one CNT to an equivalent continuum composite model with a large
number of CNTs. Molecular dynamics simulations demonstrate the formation of an ordered layer of
polymer matrix surrounding the nanotube. This layer, known as the interphase, plays a central role in the
overall mechanical response of the composite. Due to poor load transfer from the matrix to the CNT, the
reinforcement effect attributed to the CNT is negligible; hence the interphase is regarded as the only
reinforcement phase in the composite. Consequently, the mechanical properties of the interface and the
CNT are not derived since their contribution to the elastic response of the composite is negligible. To
derive the elastic properties of the interphase, we employ an intermediate continuum micromechanical
model consisting of only the polymer matrix and a three-dimensional fiber representing the interphase.
The Young's modulus and Poisson's ratio of the equivalent fiber, and therefore of the interphase, are
identified through an optimization procedure based on the comparison between results from atomistic
simulations and those obtained from an isogeometric analysis of the intermediate micromechanical
model. Finally, the embedded reinforcement method is employed to determine the macroscopic elastic
properties of a representative volume element of a composite with various fiber volume fractions and
distributions. We then investigate the role of the CNT diameter on the elastic response of a CNT-polymer
composite; our simulations predict a size effect on the composite elastic properties, clearly related to the
interphase volume fraction.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The diameter of carbon nanotubes (CNTs) can induce size effects
in the structural and mechanical properties of CNT-polymer com-
posites [1e7]. Due to the high aspect ratio of CNTs, these size effects
can only be assessed using computational multiscale procedures.
To this end, we present a computational procedure to upscale
nanoscale information, obtained with atomistic simulations, to a
continuum micromechanical model at the composite scale for the
lagù), m.goudarzi@tudelft.nl
@unife.it (E. Benvenuti), a.

Ltd. This is an open access article u
analysis of the size-dependent elastic properties of a non-
functionalized single-walled CNT-polymer composite. In the
following, the term “continuum” indicates a volume where a
continuous distribution of material replaces the atomistic
structure.

Diameter-induced effects were first noticed by means of pull-
out tests that showed a decrease of the interfacial shear strength
between a CNT and the polymer matrix around it with increasing
nanotube diameter [2,6]. Although a limited number of experi-
mental results is available [2,6], the observed trend for the inter-
facial shear strength has been confirmed by means of atomistic
simulations [3,5,8]. This size effect was attributed to the increasing
number of non-bonded interactions between polymer and CNT
atoms with decreasing nanotube diameter [4]. It is however
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recognized that another phase in CNT-polymer composites con-
tributes to the overall mechanical response beside the CNT-
polymer interface.

Several works (see Refs. [9,10] for an extensive review) indicate
that the formation of an ordered layer of polymer matrix around a
nanotube is relevant for the enhancement of the mechanical
properties of the composite. Such a layer, usually referred to as the
interphase, has been identified in a wide class of CNT-polymer
composites [9]. In particular, Coleman and coworkers [11,12] sug-
gested that the reinforcement observed in CNT-polyvinyl alcohol
composites was mainly provided by the interphase while the load
transfer from the matrix to the CNT was poor. Similar results,
emphasizing the reinforcement effect of the interphase and the soft
interface in nonfunctionalized CNT-polymer composites have been
experimentally observed with various polymer matrices [13e18].

The characterization of the interphase is usually performedwith
computer simulations since they enable a detailed analysis of the
polymer chain structure. Using molecular dynamics (MD) simula-
tions, Falkovich et al. [19] showed that the ordering of the inter-
phase in CNT-polyimide composites increases with the nanotube
diameter. Similar results were also achieved with a generic amor-
phous polymer model [20]. The mechanical properties of the
interphase are typically assessed through a continuum model that
is mechanically equivalent to an atomistic reference model
[21e24]. In an alternative approach, proposed by Choi et al. [7], the
stiffness of the interphase in CNT-epoxy composites is studied
through a reverse engineering procedure by comparing the elastic
response of the MD systemwith that of an intermediate continuum
micromechanical model. Results showed that the interphase stiff-
ness increases by decreasing the CNT diameter. However, their
atomistic model considered periodic infinitely long nanotubes.
Consequently, once the simulation cell is loaded in tension along
the CNT axis direction, matrix and nanotube are equally stretched
while in reality the CNT should deform according to the stresses
transferred to it from the matrix through the interface.

The multiscale procedure employed in this contribution for the
Fig. 1. Objectives of the multiscale procedure for the characterization of size effects induced
intermediate micromechanical model and the micromechanical model, only the bulk poly
nanotube and the interface on the elastic response of the composite are negligible.
characterization of size effects in the elastic properties of the CNT-
polymer composites is summarized in Fig. 1. As proposed in pre-
vious works [7,21,22,24], we employed (a) atomistic simulations to
investigate structural and mechanical features of CNT-polymer
composites at the nanoscale, (b) an intermediate continuum
micromechanical model to estimate the mechanical properties of
the reinforcement phase (i.e., the Young's modulus and Poisson's
ratio of the interphase region), and (c) a continuum micro-
mechanical model to asses the macroscopic elastic moduli of the
composite.

As shown in Fig. 1a, the atomistic models consider a short
uncapped nonfunctionalized single-walled CNT of finite length
fully embedded into the simulation box. This setup enables load
transfer from a coarse-grained amorphous monodisperse
polyethylene-like polymermatrix [20] to the nanotube. Rather than
characterizing size effects for a specific composite, we aim to
explore the influence of the CNT diameter for a wider range of
polymer matrices using a simple yet representative model for the
polymer chains. CNT-polymer composites with nanotubes of
different diameter are generated in the molecular dynamics setting
described in Section 2.1. The equilibrated configurations are
examined in Section 2.2 to characterize the geometry of CNT,
interface, interphase and bulk polymer matrix. The roles of these
four phases in the elastic response of the composite are explored
through uniaxial tensile tests performedwith molecular mechanics
(MM) in Section 2.3. At the same time, MM uniaxial tensile tests are
also performed on a pure polymer matrix to calculate the elastic
properties of the polymer. As discussed in Section 2.4, and observed
in the literature [11e18] for real CNT-polymer composites, the
interphase is the true reinforcement phase in the composite while
the effect of the embedded CNT on the elastic response of the
composite is negligible.

To take into account the effect of the interphase in a computa-
tionally feasible manner at the composite level with a realistic
number of CNTs, we have defined an equivalent fiber. The approach
consists in the definition of an intermediate continuum
by the nanotube diameter d on the CNT-polymer composite elastic properties. In the
mer matrix and the interphase have been considered since the contributions of the
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micromechanical model that, as shown in Fig. 1b, contains the bulk
polymer and a three-dimensional domain referred to as equivalent
fiber to model the interphase. Due to the soft interface, both the
interface and the CNT are not considered in the intermediate
micromechanical model and their elastic properties are not inves-
tigated. The geometry of the equivalent fiber coincides with that of
the interphase derived in Section 2.2 in the atomistic model. Its
Young's modulus and Poisson's ratio are determined through a
parameter estimation procedure by comparing the mechanical re-
sponses of the one-fiber composite obtained with the atomistic
model and the intermediate micromechanical model in Section 3.
In particular, isogeometric analysis is employed to obtain the me-
chanical response of the micromechanical continuum model as
detailed in Section 3.1.

With the interphase and bulk polymer mechanical properties at
hand, a micromechanical analysis of the CNT-polymer composite
shown in Fig. 1c is conducted. Elastic properties of several repre-
sentative volume elements (RVEs) with unidirectional and
randomly oriented CNTs are derived by means of FEM simulations
(see Section 4) to assess diameter effects at different nanotube
volume ratios. Akin to the intermediate continuummodel in Fig.1b,
only the bulk polymer and equivalent continuum fibers (the in-
terphases) are considered. Due to the high aspect ratio of real
nanotubes and to their large number in an RVE, each equivalent
continuum three-dimensional fiber is modeled as a one-
dimensional fiber by means of the embedded reinforcement
method [25] described in Section 4.1. The results of the FEM ana-
lyses are finally compared with those obtained with classical
micromechanical models in Section 5.

The proposed computational procedure is not only intended for
the assessment of size effects. It also provides a strategy to un-
derstand the role played by the different phases in the composite, a
relevant question about CNT-polymer composites and other
nanocomposite materials [26,27]. Despite the approximations of
the polymer model at the atomistic level, the results of our simu-
lations are qualitatively comparable with literature findings using
real polymers as discussed in Section 6.

The standard notation ðn;mÞ to describe single-walled CNTs [28]
is adopted throughout the paper. Moreover, the notation
ðn;mÞ-polymer is used to denote a polymer matrix reinforced with
ðn;mÞ single-walled CNTs.

2. Atomistic modeling of CNT-polymer composites

Atomistic simulations of representative CNT-polymer compos-
ites are performed to characterize the nanoscale features required
to establish the intermediate continuummodel in Section 3. To this
end, four composites embedding uncapped nanotubes of different
diameter are generated through MD simulations as detailed in
Section 2.1. Here, we considered CNT-polymer composites with the
same nanotube volume fraction to explore the effects induced by
the CNT diameter. In particular, the effect on the interphase volume
fraction and the elastic properties of the CNT-polymer composites
are investigated (see Sections 2.2 and 2.3, respectively). Further-
more, based on the results obtained fromMM uniaxial tensile tests,
the roles of the CNT and the interphase in the mechanical response
of the composite are discussed in Section 2.4.

2.1. Method

The atomistic model for the CNT-polymer composite is identical
to that used in Reference [20]. Fully-atomistic uncapped non-
functionalized single-walled CNTs are modeled with the modified
Morse potential [29e31] while the amorphous monodisperse
polyethylene-like polymer is modeled with the coarse-grained
Finite Extensible Nonlinear Elastic (FENE) potential [32]. This al-
lows for the analysis of CNT diameter-induced effects as well.
Polymer chemistry-specific effects are therefore avoided to explore
the influence of the nanotube in awide range of single-walled CNT-
polymer composite as previously proposed in References [20,33].

The use of the modified Morse potential was motivated by its
effectiveness in the analysis of fully-atomistic CNTs with molecular
dynamics, molecular mechanics and molecular structural me-
chanics simulations as demonstrated by Belytschko et al. [29] and
more recently by Malagù et al. [20,31]. Moreover, in small defor-
mation studies as those considered in this paper, the mechanical
response of CNTs predicted with the modified Morse potential is
closely comparable to that obtained with the widely used, and
more computationally demanding, second-generation reactive
empirical bond order (REBO) potential [34].

The polymer matrix is modeled as a coarse-grained amorphous
monodisperse polyethylene-like system. Each polymer chain is
defined by 300 identical monomeric units (referred to as beads)
covalently bonded through the FENE interatomic potential
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where r is the distance between two beads. The constants K and R0
are the stiffness and the maximum elongation of the polymer
bonds, while εp and sp are the beads characteristic length and
energy constants. According to 32, for a monodisperse
polyethylene-like polymer model system, εp ¼ 5:1 Å,
sp ¼ 0:8903 kcal/mol, K ¼ 30sp=ε2p and R ¼ 1:5sp. The model
employed for the nanotubes is detailed in Ref. [29]. Between
polymer beads and CNT atoms only non-bonded Lennard-Jones
interactions defined by the potential
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are allowed. The constants εpc and spc are calculated with the
Lorentz-Berthelot rules

spc ¼ 1
2
�
sp þ sc

	
and εpc ¼ ffiffiffiffiffiffiffiffiffi

εpεc
p

; (3)

where sc and εc are the Lennard-Jones constants for single-walled
CNT carbon atoms [35].

To explore diameter effects in CNT-polymer composites with the
same nanotube volume fraction yCNT, four different nano-
composites with yCNT z 0:6% but with nanotubes of different
diameter were generated. Since the variation of carbon nanotube
weight fraction in the generated CNT-polymer composites is small
[20], we can assume that the trend for the mechanical properties
observed in the next sections is mainly caused by the changes in the
nanotube diameter. Effects induced by the nanotube chirality are
not investigated because assumed to be negligible: as observed by
Ref. [20], chirality does not influence the atomic structure at the
CNT-polymer interphase that determines the mechanical proper-
ties of the composite (later explained in Section 3.2). Here, only
armchair ((6,6), (8,8), (10,10) and (12,12)) single-walled CNTs are
considered. As shown Fig. 2a, the nanotubes, centered at x ¼ 0 Å,
are aligned along the x-axis. The length of the simulation box in the
x-direction (Lx z 180 Å) is larger than that of the nanotubes
(lz 100 Å). This allows for the assessment of the interface prop-
erties and the load transfer mechanism between polymer matrix
and CNT. The dimension of the unit cell in the y- and z-direction (Ly
and Lz, respectively) is such that the interphase region is
completely embedded in the simulation box, hence to avoid any



Fig. 2. (a) Snapshot of the atomistic model of an (8,8)-polymer composite (monomer beads in blue, single-walled CNT carbon atoms in gray). Part of the polymer matrix has been
removed to reveal the embedded nanotubes. (b) Cross sectional view of the (8,8)-polymer composite. On the right half of the image, colored regions denote the composite phases:
CNT (gray), interface (green), interphase (red) and bulk matrix (blue). These figures have been adapted from Reference [20]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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contact or intersection of the interphase with its periodic image. To
fully assess the nanotube reinforcement effects, a pure polymer
matrix was also generated.

Seeking for the elastic properties under quasi-static deforma-
tion through molecular mechanics (MM), CNT-polymer composite
and pure polymer matrix systems are investigated in glassy state
where the vibrational part of the free energy is negligible [36,37].
Therefore, all simulations have been performed on atomistic con-
figurations below the glass transition temperature (Tg z 200 K
[20]), specifically at 100 K. For each system, three different initial
configurations were generated and the corresponding results were
averaged. The Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) software package was used [38]. Newton's
equations of motion were integrated with the velocity
Verlet algorithm using a time step of 1 fs. The Nos�e-Hoover ther-
mostat and barostat were used. Energy minimization was per-
formed with the conjugate gradient method. In all simulations,
periodic boundary conditions in the three directions were applied.
LAMMPS input scripts to generate the results discussed in the next
sections are available for download at the authors' web-page.
2.2. Single-walled CNT and interphase volume fractions

In this section, the geometry of the phases in the CNT-polymer
composite, required for the development of the intermediate con-
tinuum micromechanical model in Section 3, is determined. The
corresponding volume fractions are also provided since they play a
significant role in the macroscopic elastic properties discussed in
Section 4.

Fig. 2b shows the cross section of an (8,8)-polymer composite
and highlights the different phases characterizing single-walled
CNT-polymer composites. Visual examination reveals four distinct
regions. The first (in gray), with a cylindrical shape, represents the
effective nanotube volume, also indicated as the effective rein-
forcement according to the model proposed by Pipes et al [39,
Fig. 2]. and adopted by many others [40e42]. Here, the nanotube
and the empty region inside it are replaced by an effective solid
cylinder. A nanotube is therefore considered as a solid beam of
length l and circular cross section of diameter d with volume

VCNT ¼ p
d2

4
l: (4)

The diameter of the effective reinforcement related to an ðn;mÞ
single walled CNT is given in Reference [39]:

d ¼
acc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
�
n2 þm2 þ nm

	q
p

þ t; (5)

where acc ¼ 1:421 Å is the carbon-carbon bond length and
t ¼ 3:42 Å is the separation distance of graphene sheets [43].

The second region (in green) is the interface. Its thickness tif is
defined as the average equilibrium distance between the CNT sur-
face and the first layer of polymer atoms [39]. The thickness tif can
be determined from the analysis of the radial density profile rðrÞ,
where r is the distance from the nanotube surface (i.e., at t=2 from
the CNT atoms), obtained from atomistic simulations. Here, tif has
been assumed as the distance between the CNT surface (r ¼ 0 Å)
and the first peak in rðrÞ. As illustrated in Fig. 3a, the interface
thickness, insensitive to the nanotube diameter, is approximately
equal to 4.5 Å. This estimate is in line with literature results ob-
tained from MD models of CNTs embedded in real polymers
[5,44e46]. Analogously, examination of the density profile along
the axis of the CNT (i.e. in the x-direction) provides the length of the
interface. As shown in Fig. 3b, the peaks in rðrÞ quickly decay after
the end of the nanotube (i.e. at jxj � l=2), and the interface length
is assumed equal to that of the nanotube. Thus, the interface vol-
ume is calculated as

V if ¼ p

�
dþ 2tif

�2 � d2

4
l: (6)

The third region (in red) consists of the ordered layer of polymer
matrix surrounding the nanotube, the interphase. Its thickness and
length are derived by comparing the density profile in the CNT-
polymer composite with that of the pure polymer matrix as pre-
viously done for real CNT-polymer composites in Refs. [23,47]. Due
to statistical noise in rðrÞ, it is difficult to provide a precise estimate
of the interphase thickness tip. Nevertheless, as depicted in Fig. 3a,
for r � 30:0 Å the oscillations in the density profiles for all CNT-
polymer composites resemble those in the pure polymer matrix.
Therefore, tip has been assumed 25.5 Å irrespective of the nanotube
diameter. The independence of the interphase thickness from the
size of the inclusion was observed in atomistic models of CNTs
embedded in real polymers [19,37] and other nanocomposite sys-
tems [48,49]. It is however worth mentioning that tip shows a
temperature dependence as shown in [20, Fig. 6]; in this work tip



Fig. 3. (a) Density profile in the polymer matrix and in (n,n)-polymer composites at 100 K as a function of the distance r from the nanotube surface. All curves have been normalized
with respect to the average density of the polymer matrix rm ¼ 0:818 g/cm3 (this figure is adapted from Reference [20]). (b) Density profile in the polymer matrix and in an (8,8)-
polymer composites evaluated at different position along the longitudinal axis of the nanotube (i.e. x-axis).

Fig. 4. CNT volume fraction yCNT and interphase volume fraction yip calculated with (9)
and (7), respectively, for four different (n,n)-polymer composites.
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has been estimated at T ¼ 100 K. Fig. 3b shows that the interphase
length can be set equal to l, thus yielding the interphase volume

V ip ¼ p

�
dþ 2tif þ 2tip

�2 � �dþ 2tif
�2

4
l: (7)

Fig. 3a shows that nanotubes with bigger diameter lead to
highest peaks in the interphase density profile. As thoroughly
discussed in Refs. [19,20], this indicates that the ordering of the
interphase atomic structure increases with the diameter of the
embedded CNT.

Finally, the fourth region (in blue) corresponds to the amor-
phous bulk polymer whose structure is not affected by the CNT.
Knowing the volume of theMD unit cell Vcell (the dimensions of the
CNT-polymer composite unit cell at this temperature are in Table 1),
the volume of amorphous polymer is

Vbulk ¼ Vcell �
�
VCNT þ V if þ V ip

�
: (8)

From the volume of the aforementioned regions, the corre-
sponding volume fractions are easily calculated dividing (4)e(8) by
Vcell. For the particular case of the nanotube and the interphase
volume fractions we have

yCNT ¼ VCNT

Vcell
¼ p

d2l
4Vcell

(9)

and

yip ¼ V ip

Vcell
¼ yCNT

V ip

VCNT ¼ yCNT
�
4tip

	2 þ 4dtip þ 8tiptif

d2
; (10)

respectively. As a direct consequence, Fig. 4 shows that when
composites with the same CNT volume fraction yCNT but different
CNT diameter are considered, the volume fraction of the interphase
Table 1
Dimensions of the (n,n)-polymer composites at 100 K.

Composite d [Å] Lx [Å] Ly [Å] Lz [Å]

(6,6)-polymer 8.14 66.9 66.9 181.2
(8,8)-polymer 10.86 91.9 91.9 175.9
(10,10)-polymer 13.57 114.7 114.7 177.9
(12,12)-polymer 16.28 136.3 136.3 181.7
yip decreases with increasing d. This result has a considerable
impact on the composite mechanical properties discussed in Sec-
tion 5. Moreover, as indicated in eq. (10), yip increases linearly with
the CNT volume fraction as observed experimentally 11.
2.3. Uniaxial tensile test simulations

Mechanical properties of CNT-polymer composites under uni-
axial quasi-static loading are determined with MM simulations.
After each strain increment, consisting in a small uniaxial defor-
mation applied in the direction of the nanotube axis (i.e., the x axis),
the total potential energy of the system is minimized. More spe-
cifically, making use of the Voigt notation, the strain increment
defined by the macrostrain tensor

ε ¼ ½εxx 0 0 0 0 0�T ¼ ½0:01% 0 0 0 0 0�T; (11)

with the superscript T denoting transpose, is applied to the periodic
unit cell (in (11) and throughout this work a bar above a symbol
indicates a macroscopic quantity). Afterwards, the total potential
energy of the system is minimized keeping the size of the box fixed
[50e52]. This procedure is repeated until the total axial strain is



Table 2
Normalized value of the strain energy contributions at εxx ¼ 5 %.

PCNT=Ptotal [%] Pif=Ptotal [%] Pip=Ptotal [%] Pbulk=Ptotal [%]

l ¼ 10nm 1.55 1.40 24.15 72.60
l ¼ 40nm 1.15 1.14 24.90 72.81
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equal to 5% since MM simulations on glassy polymers can be per-
formed only under small deformation since the adopted inter-
atomic potentials are not suitable to model the nonlinear response
of the material.

The first significant insight concerning the deformation mech-
anism in CNT-polymer composite is provided by the analysis of the
strain energy contributions during deformation. Here, the total

strain energyPtotal is decomposed into the contribution of the CNT

(PCNT), the interface (Pif ), the interphase (Pip), and the bulk

(Pbulk). As shown in Fig. 5a for an (8,8)-polymer composite,Pip and

Pbulk are the major contributions to Ptotal while Pif and PCNT are
negligible. However, since in classical short fiber composites the
reinforcement efficiency and, consequently, the axial strain in the
fiber increases with its length, we repeated thesemeasurements for
a composite embedding an ð8;8Þ CNT four times longer (l ¼ 40
nm). Nevertheless, as shown in Fig. 5b, the corresponding results
are analogous to those obtained with the shorter nanotube (see
Table 2 for a comparison of the strain energy contributions at εxx ¼
5 %). This indicates that, due to poor adhesion with the polymer
matrix, negligible deformation occurs in the CNT. Thus, the me-
chanical response of the composite can be determined to a good
approximation by just considering interphase and bulk polymer. An
analogous conclusion has been reached by Coleman and coworkers
[11,12] in their experiments on real CNT-polymer composites.

The results obtained from the MM uniaxial tensile tests have
been used to estimate the effect of the reinforcement induced by
the inclusion of a nanotube into a polymer matrix. Since the
nanotubes are aligned along the x-direction, the generated CNT-
polymer composites are transversely isotropic and the elastic
constitutive relations are expressed by

2
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Fig. 5. Analysis of the total strain energyPtotal and its separate contributions from CNT (PCN

polymer composites with an ð8;8Þ nanotube of length (a) 10 and (b) 40 nm.
where Cc
ij and sij are the components of the elasticity tensor and the

macroscopic stress tensor in matrix form, respectively. The elas-
ticity matrix Cc in (12) is defined by five independent elastic con-
stants. In this work, however, we will determine only Cc

xx and Cc
xy

since, as shown in Section 3, the other components are not relevant
for the mechanical characterization of the interphase. Substituting
(11) into (12), we obtain

Cc
xx ¼

sxx
εxx

and Cc
xy ¼ syy

εxx
¼ szz

εxx
; (13)

where sxx, syy and szz were derived from the MM simulations.
Similarly, the elastic properties were determined for the pure

polymer matrix. As expected, tensile tests in all three directions
yielded an isotropic response. Its stress-strain relations is expressed
as

2
6666664

sxx
syy
szz
sxy
sxz
syz

3
7777775
¼

2
6666666666666666664

Cm
xx Cm

xy Cm
xy 0 0 0

Cm
xy Cm

xx Cm
xy 0 0 0

Cm
xy Cm

xy Cm
xy 0 0 0

0 0 0
Cm
xx�Cm

xy

2
0 0

0 0 0 0
Cm
xx�Cm

xy

2
0

0 0 0 0 0
Cm
xx�Cm

xy

2

3
7777777777777777775

2
6666664

εxx
εyy
εzz
εxy
εxz
εyz

3
7777775
; (14)

where the superscript m identifies the elastic components of the
polymer matrix. In particular, Cm

xx ¼ 5:14 GPa and Cm
xy ¼ 2:90 GPa.

As shown in Fig. 6, Cc
xx is always higher than Cm

xx while the opposite
is observed comparing Cc

xy and Cm
xy. Therefore, as shown in previous

works on real CNT-polymer composites [7,22,37], the presence of a
CNT yields higher elastic constants in the axial direction compared
to those of the pure polymer matrix.
T), interface (Pif ), interphase (Pip) and bulk (Pbulk) during uniaxial tension of two CNT-



Fig. 6. Normalized elastic components (a) Cc
xx and (b) Cc

xy of four (n,n)-polymer composites. The results have been normalized with respect to the elastic components of the polymer
matrix Cm

xx ¼ 5:14 GPa and Cm
xy ¼ 2:90 GPa.
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2.4. Interface versus interphase

Results from MM suggested that the reinforcement in the
nonfunctionalized CNT-polymer composites is merely determined
by the interphase. The role of the nanotube, due to the weak atomic
interactions at the interface, is limited to the nucleation of the
interphase layer.

Although there is no consensus [26] about the reinforcement
offered by the CNT through the interactions at the interface and the
interphase, some experimental results on nonfunctionalized CNT-
polymer composites support our findings. For instance, Coleman
and coworkers [11,12] associated the reinforcement in CNT-
polyvinyl alcohol composites to the formation of an ordered poly-
mer layer around the nanotubes. Fitting their experimental results
with micromechanical models, the authors deduced that the stress
transfer between nanotubes and polymer matrix was poor. Hegde
et al. [18], comparing results from different amorphous polymer
matrix reinforcedwith CNTs, found that the elastic properties of the
composite increase only when nanotubes nucleate crystallization.
Watts and Hsu [15] investigated the strength of the interface
through examination of the surface fracture in an MPC-DEA poly-
mer matrix reinforced with CNTs. TEM images at the crack surface
showed that the surface of the pulled-out nanotubes was clean (i.e.
no polymer particles were attached to them) denoting poor adhe-
sion between CNTs and matrix. Similar results were also reported
for CNTs embedded in polystyrene [17] and epoxy [13,14] matrices.
Using Raman spectroscopy, Wang et al. [16] suggested that the
variation in the Young's modulus of CNT-epoxy composites induced
by different degrees and types of functionalization groups on the
nanotubes surface was caused by changes of the interfacial mo-
lecular structure.

However, it is worth mentioning that other authors reported
strong atomic interactions between polymer matrix and non-
functionalized nanotubes. Qian and coworkers [53,54] observed
fractured nanotubes at the crack surface in CNT-polystyrene com-
posites suggesting a good load transfer between CNTs and polymer
matrix. By using pull-out tests, good adhesion was also reported in
CNT-epoxy composites [55] and CNT-polyethylene butane com-
posites [2]. However, in these cases the pull-out force was not al-
ways parallel to the nanotube axis. Thus, the possible sliding of the
embedded part of the nanotube along the interface surface during
pull-out might have induced an overestimation of the interfacial
properties [15]. Moreover, the elastic mechanical properties of the
interface were not compared to those of the interphase.

Therefore, we limit the present study to nonfunctionalized CNT-
polymer composites where the CNT-matrix adhesion is poor and
CNTs nucleate a highly ordered region of polymer matrix. At the
same time, this study allows for the assessment of the effect of the
interphase on the composite elastic properties.

2.5. Size effect

As shown in Fig. 6, the component Cxx of the elasticity tensor,
characterizing the stiffness of the composite in the axial direction,
decreases by increasing the nanotube diameter. A similar trend
was observed with atomistic simulations of CNTs embedded in
polypropylene [22], polyvinyl chloride [37] and EPON 862® epoxy
resin 7. Here, the size effect is solely determined by the interphase
as the only component of the CNT-polymer composites having a
reinforcement effect. In particular, the variation of Cc

xx and Cc
xy

with respect to the CNT diameter d can be motivated by the trend
of the interphase volume fraction yip with respect to d (this will
be discussed in further details in Section 3). As shown in
Figs. 3e4, by increasing the diameter d, despite the increased
ordering of the interphase atomic structure, the volume fraction
of the interphase (i.e. the reinforcement phase) decreases and,
consequently, also the stiffness of the composite in the x-direc-
tion: the lower the interphase volume fraction, the softer the
reinforcement.

3. Interphase as an equivalent continuum 3-D fiber

In this section we define a continuum model that is mechani-
cally equivalent to the discrete atomistic model shown earlier.
This allows the estimation of the elastic properties (i.e, Young's
modulus and Poisson's ratio) of the interphase, here modeled
through an equivalent 3-D fiber, that are required for the micro-
mechanical modeling of the nonfunctionalized CNT-polymer
composites in Section 4. Moreover, CNT diameter-induced size
effects on the elastic properties of the interphase are discussed in
Section 3.2.

The previous MM simulations showed that only the interphase
provides reinforcement. Due to weak non-bonded interactions
between polymer matrix and CNT atoms, the contribution of the
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CNT is negligible. Therefore, as shown in Fig. 1b, the proposed in-
termediate continuummicromechanical model consists only of the
bulk polymer, assumed as homogeneous, and an equivalent con-
tinuum 3-D fiber (representing the interphase region) with ho-
mogeneous properties while interface and CNT are not taken into
account. Accordingly, only the Young's modulus and Poisson's ratio
of the bulk polymer matrix and the three-dimensional fiber,
employed to represent the interphase, are estimated in this section.

The Young's modulus Em and the Poisson's ratio nm of the bulk
polymer matrix are derived from the estimated Cm

xx and Cm
xy. Since

the matrix is isotropic, following [56],

Em ¼ Cm
xxC

m
xx þ Cm

xxC
m
xy � 2Cm

xyC
m
xy

Cm
xx þ Cm

xy
and

nm ¼ Cm
xy

Cm
xy þ Cm

xx
:

(15)

Accordingly, Em and nm resulted equal to 3.04 GPa and 0.36,
respectively, values in the typical range for glassy polymers [57].

As illustrated in Fig. 1b, the interphase is modeled by an
equivalent continuum solid fiber shaped as a hollow cylinder. Its
dimensions coincide with those of the interphase region: the
length is equal to that of the embedded nanotube (l) while inner
radius ri ¼ d=2þ tif and outer radius rf ¼ d=2þ tif þ tip. Since in
Section 4 we model the reinforcement provided by the interphase
through one-dimensional elements, the equivalent continuum fi-
bers are assumed isotropic and the mechanical properties are
averaged through the thickness.

Young's modulus Ef and Poisson's ratio nf of the equivalent
continuum solid fiber are determined through an identification
procedure where the axial stiffness of the atomistic model and that
of the intermediate continuum micromechanical model are
compared. This problem is formulated as
Fig. 7. (a) NURBS isogeometric model of the equivalent continuum (only an eight of the c
continuum fiber in red. Quantities ri and rf refer to the inner and outer radius of the equiv
Schematic of the applied boundary conditions (u⊥ denotes displacements orthogonal to the c
five NURBS patches and numbering of the different NURBS patches. (For interpretation of th
this article.)
find min
p

f ðpÞ; (16)

with p ¼ ½Ef ; nf � the vector of unknown parameters and f ðpÞ the
cost function

f ðpÞ ¼ 1
2

X
i¼x;y

0
@Cc

xi � ~C
c
xi

�
Ef ; nf

�
Cc
xi

1
A

2

; (17)

where Cc
xi are the elastic components of the CNT-polymer com-

posites derived from the MM simulations (Section 2.3) and ~C
c
xi

those from the corresponding continuum models in Fig. 1b. The
least-square problem (16) was solved using the Gauss-Newton al-
gorithm [58]. This iterative procedure was terminated when both
f ðpÞ and the infinity norm of the gradient Vpf ðpÞ were lower than
10-10.

3.1. Numerical solution

The elastic components ~C
c
xx and ~C

c
xy of the continuum model

in Fig. 1b have been derived with isogeometric analysis. Due to
the hollow cylindrical shape of the equivalent continuum three-
dimensional fiber, isogeometric finite elements [59] were
employed. Cubic Non-Uniform B-spline (NURBS) basis functions
were used to exactly represent the equivalent continuum fiber
and bulk matrix geometries, and at the same time to approxi-
mate the corresponding displacement fields. As for the MM
tensile tests, periodic boundary conditions in all directions
together with the macrostrain tensor (11) have been enforced.
Due to symmetry with respect to planes xy, xz and yz, only an
eight of the full model (see Fig. 7a) is considered and the cor-
responding boundary conditions are depicted in Fig. 7b (see
Appendix A for details).
omposite is considered due to symmetry). The bulk matrix is in blue, the equivalent
alent continuum fiber, respectively, l its length and Lx and B denote the RVE size. (b)
onsidered face of the model). (c) Exploded view of the isogeometric model showing the
e references to colour in this figure legend, the reader is referred to the web version of



Table 3
Number of knots along x, h and z (denoted by mx, mh and mz, respectively) for the
five NURBS patches used in the estimation of the Young's modulus Ef and Poisson's
ratio nf of the equivalent continuum fiber.

Patch mx mh mz

1 21 8 8
2 21 8 8
3 8 8 8
4 8 8 8
5 8 8 8
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A NURBS multi-patch code [59,60] was employed to generate
the isogeometric model. As illustrated in Fig. 7c, the model is
defined by five patches: one for the equivalent continuum fiber and
four for the bulk polymer matrix. According to Hughes et al. [59],
the geometry of each patch is defined by

Sðx;h; zÞ ¼
Xnx

i¼1

Xnh

j¼1

Xnz

i¼k

Ni;pðxÞMj;qðhÞLk;rðzÞBi;j;k; (18)

where x, h and z are coordinates in the so-called parameter space,
Ni;pðxÞ,Mj;qðhÞ and Lk;rðzÞNURBS basis functions of degree p, q and r,
respectively, and Bi;j;k the control points (the reader is referred to
Hughes et al. [59] for more details on NURBS geometries and iso-
geometric analysis). NURBS basis functions Ni;pðxÞ, Mj;qðhÞ and
Lk;rðzÞ are defined by the knot vectors X ¼ ½x1; x2; …; xnxþpþ1�,
H ¼ ½h1; h2; …; hnhþqþ1� and Z ¼ ½z1; z2; …; znzþrþ1�, respec-
tively. Parameters nx, nh and nz indicate the number of basis
functions Ni;pðxÞ, Mj;qðhÞ and Lk;rðzÞ. Moreover, each control point
Bi;j;k is associated to a weight wi;j;k. Therefore, each NURBS patch is
defined by a set of knot vectors, control points and weight. The full
data structure is provided in Appendix B.

The k-refinement approach [59] has been employed to increase
the degree of the NURBS basis functions to cubic and insert new
knots along the x, h and z directions until convergence in the values
of Ef and nf (see Fig. 8). In particular, knots were inserted such that
the knot vectors were uniform (i.e. evenly spaced knots) and the
dimensions of the elements in the three directions close to each
others. The final number of knots along x, h and z is reported in
Table 3 (the same discretization has been used for all the CNT-
polymer composites).
3.2. Size effects

Fig. 9 shows the Young's modulus Ef and the Poisson's ratio nf of
the equivalent continuum fiber obtained from the parameter esti-
mation procedure described in the previous section. The CNT
diameter influences both Ef and nf . The Young's modulus increases
with the diameter d of the embedded nanotube while the Poisson's
ratio decreases. Therefore, the overall stiffness of the interphase
increases with d. This was expected as higher ordering in the
interphase was observed when increasing the nanotube diameter
[19,20].
Fig. 8. Convergence of the estimated (a) Ef and (b) nf with respect to the
Although the stiffness of the equivalent continuum fiber in-
creases with the CNT diameter, the opposite trend was observed
in Section 2.3 for the components of the elasticity tensor of the
composite: the bigger the d, the softer the CNT-polymer com-
posite. Nevertheless, this is a consequence of the decreasing
volume fraction of interphase yip in the composites reinforced
with nanotubes of bigger diameters (see Fig. 4). Therefore, the
results in Figs. 4 and 9 indicate that yip plays a central role in the
value of the mechanical properties of the CNT-polymer
composites.

4. Micromechanical models for CNT-polymer composites

Having defined the elastic properties of bulk polymer and
equivalent continuum fiber, we can investigate the macroscopic
mechanical response of CNT-polymer composites. Due to the
negligible effect of the CNT on the mechanical response of the
composite, the micromechanical model for the CNT-polymer
composite considers only the polymer matrix and the interphase
as in the continuum model studied in the previous section. More-
over, with reference to real composites, the equivalent continuum
fiber can be modeled as a one-dimensional fiber due to the high
aspect ratio of the real nanotubesethroughout the rest of the paper
the term “fiber” is used to refer to the one-dimensional equivalent
continuum fiber. To model CNT-polymer composites with realistic
nanotube volume fractions, thus with a high number of fibers as
shown in Fig. 1c, the Embedded Reinforcement Method (ERM) is
adopted. This numerical procedure is employed in the analysis of
periodic RVEs with different CNT volume fractions and to investi-
gate CNT diameter-induced effects. The numerical results are then
compared to estimate from various analytical micromechanical
models in Section 5.
number of degrees of freedom ndofs for an (8,8)-polymer composite.



Fig. 9. (a) Young's modulus Ef and (b) Poisson's ratio nf of the equivalent continuum fiber in (n,n)-polymer composites as a function of the nanotube d. Results have been normalized
with respect to the polymer Young's modulus Em ¼ 3:04 GPa and Poisson's ratio nm ¼ 0:36. Since the ordering of the interphase atomic structure increases with the CNT diameter
[20], Ef increases with d while the opposite trend is observed for nf .

Fig. 10. (a) A hexahedral finite element with one embedded fiber: degrees of freedom (blue circles) are located only at the nodes of the embedding element. (b) Global coordinate
system (x, y, z) and fiber local axis s (local displacements as1 and as2 at the fiber endpoints in green). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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4.1. The embedded reinforcement method

The embedded reinforcement method [25,61] allows to effi-
ciently incorporate fibers into a discretized continuum without
actually meshing them as shown in Fig. 10awhere a discrete fiber is
embedded into a 3-D element. Although this model can be modi-
fied to incorporate fiber slip [62,63], here fibers are perfectly
bonded to the matrix since there is no relative displacement be-
tween interphase and surrounding polymer.

For completeness, the derivation of the discrete set of equations
governing the mechanical response of an element with one
embedded fiber is reported next. We consider an elastic body with
total volume U subdivided into matrix (Um) and fiber (Uf ) parts. In
the absence of the external load, the principle of virtual work can be
written asZ
Um

Vsdum : Cm : Vsum dUm

þ
Z
Uf

�
duf;s

�
Ef � Em

�
uf;s
�
dUf ¼ 0;

(19)
where Cm is the elasticity tensor of the bulk polymer (see (14)), Ef

and Em are the equivalent continuum fiber and bulk polymer elastic
moduli derived in Section 3, Vs is the symmetric-gradient operator,
d denotes variation, and we used subscript notation for differenti-
ation (a derivative with respect to the fiber local axis is indicated by
the subscript “; s”). We exclude bulk material in the fiber domain by
using the effective elastic moduli ðEf � EmÞ in the second term of
(19). The displacement components um of a bulk element with n
nodes (for trilinear hexahedral elements, n is equal to 8) can be
discretized at any arbitrary point x through

umðxÞ ¼
Xn
i¼1

Nm
i ðxÞuiðxÞ (20)

with Nm
i the shape functions of the bulk element and ui the cor-

responding degrees of freedom. Thus, the discretized displace-
ments and strains can be written in matrix form as

umðxÞ ¼ Nmu and (21a)
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ε
mðxÞ ¼ Bmu; (21b)

respectively, where Nm and Bm are matrices containing shape
functions and corresponding derivatives, and u is the element
displacement vector. The scalar fiber displacement uf along the fi-
ber local axis s is approximated using one-dimensional linear
Lagrangian shape functions as

uf ðsÞ ¼ Nf
s1ðsÞas1 þ Nf

s2ðsÞas2 ; (22)

where Nf
s1 and Nf

s2 are the shape functions attributed to the fiber
end points s1 and s2, respectively, while as1 and as2 are the corre-
sponding local displacements (see Fig. 10b). The fiber displacement
is transferred from the local fiber coordinate system (s) to the global
coordinate system (x, y, z) by means of

uf ðsÞ¼
h
Nf
s1 cos

�
qsx
	
Nf
s1 cos

�
qsy

�
Nf
s1 cos

�
qsz
	

Nf
s2 cos

�
qsx
	
Nf
s2 cos

�
qsy

�
Nf
s2 cos

�
qsz
	i"uf

s1

uf
s2

#
(23)

with uf
si ¼ ½afxi ; afyi ; afzi �T the global displacement vector at fiber

endpoints and qsi (with i ¼ x, y, z) the fiber orientation angles. The
derivatives of (23) with respect to the fiber axis are expressed as

uf;sðxÞ ¼ BfHu; (24)

with

Bf ¼
h
Nf
s1 ;scos

�
qsx
	
Nf
s1;scos

�
qsy

�
Nf
s1;scos

�
qsz
	

Nf
s2;scos

�
qsx
	
Nf
s2;scos

�
qsy

�
Nf
s2;scos

�
qsz
	i (25)

and

H¼

2
6666664

Nm
1 ðs1Þ 0 0 / Nm

n ðs1Þ 0 0
0 Nm

1 ðs1Þ 0 / 0 Nm
n ðs1Þ 0

0 0 Nm
1 ðs1Þ / 0 0 Nm

n ðs1Þ
Nm
1 ðs2Þ 0 0 / Nm

n ðs2Þ 0 0
0 Nm

1 ðs2Þ 0 / 0 Nm
n ðs2Þ 0

0 0 Nm
1 ðs2Þ / 0 0 Nm

n ðs2Þ

3
7777775
; (26)

where H is the transformation matrix mapping fiber displace-
ments uf

si into bulk element displacements u, while s1 and s2 are
the coordinates of the fiber endpoints in the bulk element co-
ordinate system. Finally, introducing the discretized in-
terpolations of matrix (21b) and fiber (24) derivatives into the
weak form of the momentum equation (19) yields the stiffness
matrix

K ¼
Z
Um

BmTCmBm dU þ Af
Z
lf

HTBf T
�
Ef � Em

�
BfH ds (27)

of an element with an embedded fiber where, since a uniform
cross sectional area Af is assumed for the fiber, the fiber volume
integral in (19) is replaced by an equivalent line integral over the
portion of fiber lf embedded in the solid element. In the case of
multiple fibers embedded in a single element, the total stiffness
matrix
K ¼
Z
Um

BmTCmBm dU

þ
Xnf

i¼1

Af
i

Z
lfi

HT
i B

fT
i

�
Efi � Em

�
Bf
iHi dsi;

(28)

inwhich nf is the number of fibers in the solid element. As shown in
(27) and (28), the total stiffness matrix of a solid element for the
composite material is given by the sum of the stiffness matrix of the
bulk polymer matrix and the stiffness contribution(s) of the
embedded one-dimensional fiber(s).

4.1.1. Effective mechanical properties and periodic boundary
conditions

The macroscopic elastic properties of the CNT-polymer com-
posite are derived through computational homogenization. For a
generic RVE, Hooke's law is expressed as2
6666664

sxx
syy
szz
sxy
sxz
syz

3
7777775

¼

2
6666664

Cc
11 Cc

12 Cc
13 Cc

14 Cc
15 Cc

16
Cc
21 Cc

22 Cc
23 Cc

24 Cc
25 Cc

26
Cc
31 Cc

32 Cc
33 Cc

34 Cc
35 Cc

36
Cc
41 Cc

42 Cc
43 Cc

44 Cc
45 Cc

46
Cc
51 Cc

52 Cc
53 Cc

54 Cc
55 Cc

56
Cc
61 Cc

62 Cc
63 Cc

64 Cc
65 Cc

66

3
7777775

2
6666664

εxx
εyy
εzz
εxy
εxz
εyz

3
7777775
; (29)

where the parameters Cc
ij are the components of the homogenized

effective elasticity tensor for the composite material. These are
determined imposing the six sets of boundary conditions in Table 4
(the full set of constraint equations to be imposed on RVE faces,
edges and vertices are listed in Appendix A). Then, for each
boundary condition, the corresponding local stress field s in the
composite is determined using the ERM described in Section 4.1.
Consequently, the macrostrain tensor s is calculated as

s ¼ 1
V

Z
V

sdV ; (30)

where V is the volume of the RVE. Hence, knowing the macrostrain
and macrostress tensors ε and s, respectively, the effective elas-
ticity tensor components Cc

ij are derived from (29).
Once the effective mechanical properties in (29) are known, we

can provide an estimate of the engineering constants (Young's
modulus, shear modulus and Poisson's ratio). For composites with
perfectly aligned CNTs along the x axis, the RVE is transversely
isotropic and the elastic constitutive matrix is

Cc ¼

2
666666664

Cc
xx Cc

xy Cc
xy 0 0 0

Cc
xy Cc

yy Cc
yz 0 0 0

Cc
xy Cc

yz Cc
yy 0 0 0

0 0 0 2Gc
xy 0 0

0 0 0 0 2Gc
yz 0

0 0 0 0 0 2Gc
yz

3
777777775
: (31)

Two of the five independent constants, the shearmoduli Gc
xy and

Gc
yz, are known from (31) and, following 64, the remaining three are

expressed according to

Ecxx ¼ Cc
xx � 2Cc

xyC
c
xy

Cc
yy þ Cc

yz
; (32a)



Table 4
Macrostrain tensor and derived components of Cc for uniaxial tension and trans-
verse shear boundary condition.

Boundary condition Macrostrain tensor ε Derived components of Cc

Uniaxial tension ½0:1; 0; 0; 0; 0; 0�T Cc
i1

½0; 0:1; 0; 0; 0; 0�T Cc
i2

½0; 0; 0:1; 0; 0; 0�T Cc
i3

Transverse shear ½0; 0; 0; 0:1; 0; 0�T Cc
i4

½0; 0; 0; 0; 0:1; 0�T Cc
i5

½0; 0; 0; 0; 0; 0:1�T Cc
i6
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Ecyy ¼
�
Cc
yy � Cc

yz

��
Cc
yyC

c
xx þ Cc

yzC
c
xx � 2Cc

xyC
c
xy

�
Cc
yyCc

xx � Cc
xyCc

xy
; and (32b)

ncxy ¼ Cc
xy

Cc
yy þ Cc

yz
: (32c)

For randomly oriented fibers, the RVE is isotropic and the elastic
constitutive matrix is expressed as

Cc ¼

2
6666664

lc þ 2mc lc lc 0 0 0
lc lc þ 2mc lc 0 0 0
lc lc lc þ 2mc 0 0 0
0 0 0 mc 0 0
0 0 0 0 mc 0
0 0 0 0 0 mc

3
7777775
; (33)

where lc and mc are the Lam�e parameters. The corresponding
Young's modulus and shear modulus are

Ec ¼ mc
�
3lc þ 2mc

	
lc þ mc

and Gc ¼ mc; (34)

respectively.
4.1.2. RVE generation
The ERM has been used for the analysis of cubic periodic RVEs

with equally long and randomly distributed fibers, here repre-
senting the interphases, either perfectly aligned along the x di-
rection or randomly oriented. The method used for the generation
of the RVEs, implemented in Matlab®, followed the Random
Sequential Adsorption algorithm [65e67]. Accordingly, fibers are
added consecutively to the RVEs until a specific volume fraction is
reached. In unidirectional fiber composites, all fibers are aligned
along the x-axis while in randomly oriented fiber composites the
orientation of each fiber is determined using the Matlab® function
rand. For both unidirectional and randomly oriented fiber com-
posites, the rand function is used to define the coordinates of one
of the end points of a fiber. As the fiber length is a known
parameter, the coordinates of the second end of a fiber can be
easily derived. If this point lies outside the RVE, the exceeding part
of the fiber is cut and shifted to the opposite boundary to enforce
periodicity. To avoid fiber overlap, when a new fiber is added to
the RVE we check that the distance between its axis and that of
the exiting fibers is larger than twice the radius of the fibers (i.e.,
the outer radius of the interphase). If this condition is not satisfied,
the fiber is removed and a new one is created. This process is
repeated until the requirement for the minimum distance be-
tween fibers is fulfilled.

Assessment of fibers orientation distribution. Fiber
orientation has a strong influence on the mechanical properties of
the composite. Therefore, after the RVEs were created, the overall
orientation of the fibers, also known as the orientation distribution,
has been characterized. The orientation distribution was measured
through the second order tensor of fiber orientation [68,69]. With
reference to Fig. 11a, the orientation of a single fiber is defined by
the unit vector p with components

p1 ¼ sinq cosf; (35a)

p2 ¼ sinq sinf; and (35b)

p3 ¼ cosq; (35c)

where q is the angle between the fiber axis and the z-axis, and f is
the angle between the projection of the fiber on the xy-plane and
the x-axis. Accordingly, the second order tensor a of fiber order
orientation is calculated as

a ¼ aij ¼ 1
nCNT

XnCNT

k ¼ 1

pki p
k
j ¼

2
4 a11 a12 a13
a12 a22 a23
a13 a23 a33

3
5 (36)

with nCNT the number of fibers in the RVE. Only six of the nine
components of aij are independent due to its symmetry. Fig. 11b
and c shows the second order tensor a for composites with fibers
perfectly aligned along the x-axis and randomly oriented,
respectively.

For an (8,8)-polymer composite with 6915 randomly oriented
fibers, later used in our simulations,

aij ¼
2
4 0:330 �0:003 �0:003
�0:003 0:339 �0:003
�0:003 �0:003 0:331

3
5: (37)

The second order tensor in (37) is very close to that in Fig. 11c,
indicating that fibers can be considered as evenly oriented in the
three directions. Analogous results were derived for all the RVEs
used in our simulations. The second order tensor of fiber orienta-
tion was calculated also for RVEs with unidirectional fibers and it
coincided with that in Fig. 11b.

4.1.3. RVE dimensions
The size of the RVE should be sufficiently large to be statistically

representative of the macroresponse of the composite and such
that its mechanical properties do not depend on the dimensions of
the inclusions [70e72]. In this case it seems reasonable to require
that the RVE size should at least be larger than the nanotube length,
typically in the range of some micrometers [14e55]. However, this
would imply large RVEs with a very high number of CNTs due to
their high aspect ratio and, consequently, a prohibitive computa-
tional effort.

To avoid this issue, before defining the size of the RVE, we
determined the minimum length of the embedded fibers above
which the elastic properties of the RVEs do not change. This al-
lows for the generation of smaller RVEs with a lower number of
fibers and, at the same time, avoids length effects in the me-
chanical properties of the composites (in this work we focus only
on diameter-induced effects). Fig. 12 shows that Cc

xx can be
assumed constant for lf � 200 nm as previously observed
through multiscale simulations on CNT-polyimide composites
[21].

Then, using lf ¼ 200 nm we investigated the effects induced
by the RVEs size. This was performed through the analysis of Cc

xx



Fig. 11. (a) Definition of angles q and f used to calculate the orientation of a CNT (thick solid line) through the unit vector p with components p1, p2 and p3. Composites with CNTs
perfectly aligned along the x-axis (b) and randomly oriented CNTs (c).
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changing the size L of the cubic RVE. For each value of L, four
different RVEs were created and the standard deviation from the
mean value of Cc

xx was calculated. This procedure was performed
for CNT-polymer composites with yCNT equal to 0.6 and 1.5%. As
shown in Fig. 13a and b, the dispersion is always lower than 2%
and decreases when increasing L similarly to the results in
Reference [73]. For L=lf ¼ 2, standard deviation further decreases
and the averaged values of Cc

xx are more in line with those ob-
tained for larger RVEs. Therefore, in our simulations the size of the
RVE was assumed twice the length of the embedded fibers (i.e.,
400 nm) as also suggested in other works on short fiber reinforced
composites [66,74].
4.1.4. Meshing the RVEs
As mentioned in Section 4.1 the RVEs are discretized using

hexahedral finite elements. Since the fibers are uniformly
0

Fig. 12. Variation of Cc
xx with the length lf of the embedded fibers. These results,

normalized with respect to Cm
xx ¼ 5:14 GPa, were derived with the ERM for different

(n,n)-polymer composites with fibers aligned along the x direction and yCNT ¼ 1:5%.
Similar results were observed for Cc

xy.
distributed in the matrix and because of the modest stress con-
centration at the fiber ends, we employed uniform meshes for all
the RVEs.

The size of the cubic hexahedral elements Le ¼ L=nsub, where
nsub is the number of subdivisions per RVE side, was determined
from the variation of the RVE elastic properties while refining the
mesh. This analysis was performed on the RVE with the highest
number of embedded fibers, a (6,6)-polymer composite with yCNT

equal to 2% (12293 CNTs). The length of the fibers and that of the
RVE side were set equal to 200 and 400 nm according to the results
in the previous section.

Fig. 14 shows that the difference between the estimated Ec and
Gc with respect to the values obtained with the finer mesh (i.e.,
nsub ¼ 30) is negligible when nsub � 20. Therefore, for all the
simulations we adopted a uniform mesh with cubic hexahedral
elements of size Le equal to L=20.

5. Elastic properties of the nanocomposite

In this section, we assess the influence of the reinforcement
provided by the interphase on the macroscopic properties of the
CNT-polymer composites. As shown in Table 5, we employed values
of yCNT between 0.2 and 2.0% [17,18,53] to avoid intersections be-
tween different fibers (i.e., the interphase regions). Accordingly, the
number of embedded fibers in the generated RVEs ranges from 307
to 12293 for both unidirectional and randomly oriented CNTs (see
Fig. 15a and b, respectively). Three different RVEs were created for
each configuration and results were averaged.

The elastic properties of the composites are derived through the
modeling approach in Section 4 and some analytical micro-
mechanical models discussed in the next section.

5.1. Analytical micromechanical models

Analytical micromechanical models are commonly used to es-
timate the mechanical properties of fiber reinforced materials.
Some of the most frequently used micromechanical models are
briefly summarized below. In the next sections, their predictions



Fig. 13. Variation of Cc
xx with the side L of cubic RVEs for (n,n)-polymer composites with yCNT equal to (a) 0.6% and (b) 1.5%. The values of Cc

xx and L have been normalized with
respect to Cm

xx ¼ 5:14 GPa and the fiber length lf ¼ 200 nm, respectively. For each case, four different samples were considered. Error bars indicate standard deviations from the
mean values of Cc

xx denoted by the symbols.

Fig. 14. Numerical convergence of Ec and Gc for a (6,6)-polymer composite with yCNT ¼ 2% (corresponding to 12293 CNTs).

Table 5
Number of embedded fibers in the RVEs.

vCNT ¼ 0.2% vCNT ¼ 0.6% vCNT ¼ 1.0% vCNT ¼ 1.5% vCNT ¼ 2.0%

(6,6)-polymer 1229 3688 6146 9220 12293
(8,8)-polymer 691 2074 3457 5186 6915
(10,10)-polymer 443 1328 2213 3319 4425
(12,12)-polymer 307 922 1537 2305 3073
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are compared with numerical results obtained with the embedded
reinforcement method presented in Section 4.1.

Shear lag models [75] are typically employed to provide an
analytical solution for the stress distribution in short fiber com-
posites and an estimate of their mechanical properties. The classical
formulation proposed by Cox [76] examines the axial stress along a
single short fiber embedded in a continuous solid matrix. The
matrix, assumed void free, is considered elastic and isotropic. The
load is transferred from the matrix to the fiber through shear
stresses at their interface where matrix and fibers are perfectly
bonded. Based on the results from Ref. [76], for a composite rein-
forced with unidirectional perfectly aligned and equally spaced
short fibers, with equal length and stiffness, the Young's modulus in
the fibers direction (the x-axis in this work) is estimated through
the modified rule of mixture

Ecxx ¼ hly
fEf þ

�
1� yf

�
Em: (38)

The variable yf is the fiber volume fraction (here coinciding with
yip) and the coefficient hl, which takes into account the aspect ratio



Fig. 15. Periodic RVEs of (8,8)-polymer composites with (a) unidirectional and (b) randomly oriented nanotubes with yCNT ¼ 1% (i.e., 3457 CNTs).
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of the fibers [76], is calculated as

hl ¼ 1 � tanhðbl=2Þ
bl=2

with b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Gm

Ef
�
rf
	2ln�R�rf	

s
; (39)

where Gm is the matrix shear modulus, R is half the distance be-
tween the axis of the fibers [75], and rf is their radius. For randomly
oriented fibers of equal length, Krenchel [77] proposed a modified
version of (38):

Ec ¼ 1
5
hly

fEf þ
�
1� yf

�
Em: (40)

The Halpin-Tsai model [64] is based on the same assumptions of
the shear lag model and provides the following equation for the
Young's modulus in the direction of the fibers:

Ecxx ¼ Em
1þ xPhy

f

1� hyf
(41)

with

h ¼
Ef
.
Em � 1

Ef
�
Em þ x

and x ¼ 2l
.
df : (42)

A modified version of (41), referred to as the Tsai-Pagano
equation [78,79], has been proposed for the calculation of the
Young's modulus of composites with randomly oriented fibers in 3-
D:

Ec ¼ Em

2
43
8

1þ xh
�
1� yf

�
1� hyf

þ 5
8

1þ xh
�
1� yf

�
1� hyf

3
5: (43)

Further, we have considered the micromechanical model pro-
posed by Pan [80] for composite materials with randomly oriented
fibers. Here, the Young's modulus is defined as

Ec ¼ Ef
yf

2p
þ Em

 
1� yf

2p

!
: (44)

Finally, the numerical results have been compared to the
Hashin-Shtrikman bounds [81] derived through variational prin-
ciples for statistically isotropic and nonhomogeneous composite
materials. For the present composites, the lower and upper bounds
(denoted with the superscripts (�) and (þ)) for the bulk and shear
moduli are

Kcð�Þ ¼ Km þ yf

1
K f � Km þ 3ð1 � yf Þ

3Km þ 4Gm

; (45a)

KcðþÞ ¼ Kf þ 1 � yf

1
Km � K f þ 3yf

3K f þ 4Gf

; (45b)

Gcð�Þ ¼ Gm þ yf

1
Gf � Gm þ 6ð1 � yf ÞðKm þ 2GmÞ

5Gmð3Km þ 4GmÞ
and (45c)

GcðþÞ ¼Gf þ 1 � yf

1
Gm �Gf þ 6yf ðK f þ 2Gf Þ

5Gf ð3K f þ 4Gf Þ
; (45d)

respectively. Consequently, the lower and upper bounds for the
composite Young's modulus are

Ecð�Þ ¼ 9Kð�ÞGð�Þ

3Kð�Þ þ Gð�Þ and EcðþÞ ¼ 9KðþÞGðþÞ

3KðþÞ þ GðþÞ : (46)
5.2. Unidirectional reinforcement

Fig. 16aee shows the Young's moduli Ecxx, E
c
yy, the Poisson's ratio

ncxy and the shear moduli Gc
xy and Gc

yz, respectively, as a function of
the CNT volume fraction for composites with CNTs perfectly
aligned along the x direction. Results indicate an overall improve-
ment of the stiffness with increasing CNT volume fraction. As
depicted in Fig. 16aeb, the Young's moduli linearly increase with
yCNT and, due to the unidirectional orientation of the embedded
reinforcements, the major improvements are noticed in Ecxx.
Fig. 16cee shows a neutral reinforcement effect on the Poisson's
ratio and the shear moduli as their value coincides with those of
the polymer matrix. This is due to the modeling of the interphases
as one-dimensional fibers. In analogy with rigid line inclusion so-
lutions under remote in-plane stresses [82,83], a one-dimensional
“rigid” inclusion does not perturb the stress field of the embedding
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matrix undergoing shear deformation parallel to its axis. Therefore,
unidirectional one-dimensional reinforcements aligned along the
x-direction do not change Gc

xy (see Fig. 16d). Worth noting is that
analogous results are found for ncxy and Gc

yz as shown in Fig. 16c and
e, respectively.

In the macroscopic model, unidirectional fibers are randomly
located (i.e., not evenly spaced) in the RVE, in contrast with the
hypothesis of evenly spaced fibers adopted by themicromechanical
models presented in Section 5.1. Nevertheless, as depicted in
Fig. 16a, the values of Ecxx obtained with the numerical simulations
are in good agreement with those provided by the analytical
micromechanical models, and especially with the Halpin-Tsai
model [84]. For the sake of completeness, we generated also RVEs
Fig. 16. Normalized elastic properties (a) Ecxx , (b) Ecyy , (c) ncxy , (d) Gc
xy and (e) Gc

yz for (n,n)-
agreement with those obtained with the Halpin-Tsai (HT) and Cox micromechanical model
with equally spaced unidirectional fibers and the corresponding
results (not shown here) were identical to those reported in
Fig. 16aee.
5.3. Random reinforcement

For the case of randomly oriented CNTs, the out of diagonal
terms in the second order tensor of fibers distribution aij were not
identically equal to zero (see (37)) implying that the corresponding
RVEs are not perfectly isotropic. By way of example, the elastic
constitutive matrix for an (8,8)-polymer composite is
polymer composites with unidirectional CNTs. For the case of Ecx , results are in good
s.



Fig. 17. Normalized elastic properties (a) Ec and (b) Gc for (n,n)-polymer-polymer composites with randomly oriented CNTs. Results for the Young's modulus Ec of the
composite are compared to those obtained with the Krenchel (K), Tsai-Pagano (TP), Pan (P) micromechanical models and the Hashin-Shtrikman upper (HSU) and lower (HSL)
bounds.
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C¼

2
6666664

5:3700 2:9938 2:9939 0:0015 0:0027 0:0046
2:9938 5:3751 2:9943 0:0012 0:0011 0:0032
2:9939 2:9943 5:3747 0:0013 0:0003 0:0011
0:0015 0:0012 0:0013 2:4121 0:0032 0:0003
0:0027 0:0011 0:0003 0:0032 2:4111 0:0014
0:0046 0:0032 0:0011 0:0003 0:0014 2:4114

3
7777775
: (47)

Nevertheless, the off-diagonal terms in the 4th, 5th and 6th
rows and columns are about three orders of magnitude lower than
the other entries. Moreover, since the matrix is symmetric and the
diagonal entries in top-left and right-bottom blocks are close to
each others, it is reasonable to assume that the RVE is isotropic. The
two Lam�e constants are therefore calculated as

lc ¼ Cc
12 þ Cc

13 þ Cc
23

3
and mc ¼ Cc

44 þ Cc
55 þ Cc

66
3

; (48)

and the Young's modulus Ec and shear modulus Gc are derived from
(34).

As shown in Fig. 17aeb, also for RVEs with randomly oriented
CNTs, Ec and Gc linearly increase with yCNT. Compared with the case
where CNTs are perfectly aligned along the x direction, the
improvement in the elastic properties is lower while the opposite is
observed for the shear modulus (similar results were derived
numerically in Ref. [85]). Here, the estimated values of Ec and Gc

provided by the Krenchel and Tsai-Pagano models are far from
those obtained with FEM simulations. Surprisingly, the trend of Ec

obtained with the Krenchel model is the opposite of the expected
one: this is a consequence of the low Young's modulus of the
interphase region (for higher values the usual trend would be
observed). On the contrary, the Pan model provides a good esti-
mate. Moreover, the numerical results are within the Hashin-
Shtrikman bounds.

5.4. Size effects

Fig. 16 shows that in unidirectional CNT-polymer composites an
overall reinforcement effect is noticed decreasing the diameter of
the embedded nanotubes: Ecxx, E

c
yy, G

c
xy and Gc

yz decrease with d. The
opposite trend is observed for ncxy. Similarly, in CNT-polymer com-
posites with randomly oriented fibers (see Fig. 17), Ec and Gc in-
crease by decreasing the diameter of the nanotubes. In both cases,
the reinforcement effect provided by ð6;6Þ CNTs on the mechanical
properties of the pure polymer matrix is typically twice of that
offered by ð12;12Þ CNTs.

Therefore, as discussed in Section 3, the role played by the
interphase volume fraction on the composite mechanical proper-
ties is crucial. Although the stiffness of the interphase increase with
d (Fig. 9), that of the corresponding composites increases by
decreasing d (Figs. 16 and 17).

6. Summary and concluding remarks

The computational procedure proposed in this work hinges on
the characterization of the roles played by the various phases of a
CNT-polymer composite on its mechanical response.

The atomistic simulations of a generic polymer matrix embed-
ding an uncapped nonfunctionalized single-walled CNT in Section 2
have been fundamental for the geometrical characterization of the
different phases (i.e., single-walled CNT, interface, interphase and
bulk polymer) and for the definition of their roles in the mechanical
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response of the composite. This task addressed a crucial issue
concerning nanocomposites: the separate reinforcement effect of
the CNT and the interphase [26]. The results of our simulations
reveals that the reinforcement in the nonfunctionalized CNT-
polymer composites is solely exerted by the interphase. Despite
the simplicity and generality of the atomistic polymer model, our
results are supported by literature findings on some real non-
functionalized CNT-polymer composites obtained through experi-
ments [11,13,15e18] and numerical simulations [7,19,22,37].

This characterization justified the intermediate micro-
mechanical model proposed in Section 3 that, at variance with
previous contributions [7,21,86e88], does not take into account the
embedded CNTand the interface. The elastic properties (i.e, Young's
modulus and Poisson's ratio) of the interphase were determined
through a parameter identification procedure by comparing the
mechanical response of the atomistic model and a mechanically
equivalent intermediate continuum micromechanical model. Not
surprisingly, the stiffness of the interphase increases with the CNT
diameter d since the ordering of the surrounding polymer layer
improves with increasing values of d [19,20].

Finally, the mechanical properties of the composite in Section 5
were calculated through the computational homogenization pro-
cedure described in Section 4. Different RVEs embedding one-
dimensional discrete fibers, representing equivalent continuum
CNT-induced interphases, have been generated. The ERM was
employed to efficiently take into account the high number of fi-
bers in the FEM simulations. The results show that the elastic
properties can significantly increase when the nanotubes diameter
decreases, clearly indicating size-dependent effective elastic
properties.

Due to the generality of the model for the polymer chains, it is
difficult, and beyond the scope of the paper, to quantitatively
compare the estimated macroscopic elastic properties with
Fig. 18. (a) Schematic representation of a three-dimensional R
literature findings on real CNT-polymer composites. Neverthe-
less, similarities with experimental results on composites
showing CNT-nucleated crystallization can be found. For
instance, Coleman and coworkers [11,12] observed that Young's
modulus and crystallinity in CNT-polyvinyl alcohol linearly in-
crease with yCNT as observed in the present study. Hegde et al.
[18] also noticed a linear increase in the Young's modulus with
the CNT diameter d. Moreover, some experiments on CNT-
polymer composites [12,18,89] showed that the stiffness does
not increase after a certain value of yCNT. This might suggest full
crystallization of the polymer matrix and supports, as discussed
in Section 2.4, the relevant role of the interphase beside the
negligible one of the interface for composites with non-
functionalized CNTs.
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Appendix

A Periodic boundary conditions for three-dimensional RVE

For the RVE in Fig. 18 with dimensions Lx, Ly and Lz, the periodic
boundary conditions [90] can be stated as
VE and numbering of (b) faces, (c) edges and (d) vertices.
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uki � uli ¼ εijLj (49)

where uki and uli are the displacements in i-direction on the two
opposite boundaries denoted by indexes k and l while εij is the
imposed macrostrain tensor. Therefore, with reference to
Fig. 18bed, the periodic boundary conditions for a generic macro-
strain can be explicitly written for all faces:

u1x ¼ u3x þ εxxLx; (50a)

u1y ¼ u3y þ εyxLx; (50b)

u1z ¼ u3z þ εzxLx; (50c)

u2x ¼ u4x þ εxyLy; (51a)

u2y ¼ u4y þ εyyLy; (51b)

u2z ¼ u4z þ εzyLy; (51c)

u6x ¼ u5x þ εxzLz; (52a)

u6y ¼ u5y þ εyzLz; (52b)

u6z ¼ u5z þ εzzLz; (52c)

edges:

u2x ¼ u3x þ εxxLx; (53a)

u2y ¼ u3y þ εyxLx; (53b)

u2z ¼ u3z þ εzxLx; (53c)

u3x ¼ u4x þ εxyLy; (54a)

u3y ¼ u4y þ εyyLy; (54b)

u3z ¼ u4z þ εzyLy; (54c)

u1x ¼ u4x þ εxxLx; (55a)

u1y ¼ u4y þ εyxLx; (55b)

u1z ¼ u4z þ εzxLx; (55c)

u6x ¼ u7x þ εxxLx; (56a)

u6y ¼ u7y þ εyxLx; (56b)

u6z ¼ u7z þ εzxLx; (56c)
u7x ¼ u8x þ εxyLz; (57a)

u7y ¼ u8y þ εyyLz; (57b)

u7z ¼ u8z þ εzyLz; (57c)

u5x ¼ u8x þ εxxLx; (58a)

u5y ¼ u8y þ εyxLx; (58b)

u5z ¼ u8z þ εzxLx; (58c)

u11x ¼ u10x þ εxzLz; (59a)

u11y ¼ u10y þ εyzLz; (59b)

u11z ¼ u10z þ εzzLz; (59c)

u11x ¼ u12x þ εxyLy; (60a)

u11y ¼ u12y þ εyyLy; (60b)

u11z ¼ u12z þ εzyLy; (60c)

u12x ¼ u9x þ εxzLz; (61a)

u12y ¼ u9y þ εyzLz; (61b)

u12z ¼ u9z þ εzzLz; (61c)

and vertices:

u2x ¼ u1x þ εxyLy; (62a)

u2y ¼ u1yεyyLy; (62b)

u2z ¼ u1z þ εzyLy; (62c)

u3x ¼ u2x þ εxzLz; (63a)

u3y ¼ u2y þ εyzLz; (63b)

u3z ¼ u2z þ εzzLz; (63c)

u3x ¼ u4x þ εxyLy; (64a)

u3y ¼ u4y þ εyyLy; (64b)

u3z ¼ u4z þ εzyLy; (64c)



Table 7
Control points and weights for the five NURBS patches in Fig. 7.

Patch j k B1;j;k w1;j;k B2;j;k w2;j;k

1 1 1 ð0;B;0Þ 1 ðl=2;B;0Þ 1
2 1 ð0;B=2;B=2Þ 1 ðl=2;B=2;B=2Þ 1
3 1 ð0;0;BÞ 1 ðl=2;0;BÞ 1
1 2 ð0; rf ;0Þ 1 ðl=2; rf ;0Þ 1

2 2 ð0; rf cosp=4; rf sinp=4Þ 1/ffiffiffi
2

p ðl=2
ffiffiffi
2

p
; rf cosp=4; rf sinp=4Þ 1/ffiffiffi

2
p

3 2 ð0;0; rf Þ 1 ðl=2;0; rf Þ 1

2 1 1 ð0; rf ;0Þ 1 ðl=2; rf ;0Þ 1

2 1 ð0; rf cosp=4; rf sinp=4Þ 1/ffiffiffi
2

p ðl=2
ffiffiffi
2

p
; rf cosp=4; rf sinp=4Þ 1/ffiffiffi

2
p

3 1 ð0;0; rf Þ 1 ðl=2;0; rf Þ 1

1 2 ð0; ri;0Þ 1 ðl=2; ri;0Þ 1

2 2 ð0; ricosp=4; risinp=4Þ 1/ffiffiffi
2

p ðl=2
ffiffiffi
2

p
; ricosp=4; risinp=4Þ 1/ffiffiffi

2
p

3 2 ð0;0; riÞ 1 ðl=2;0; riÞ 1
3 1 1 ðl=2;B;0Þ 1 ðLx=2;B;0Þ 1

2 1 ðl=2;B=2;B=2Þ 1 ðLx=2;B=2;B=2Þ 1
3 1 ðl=2;0;BÞ 1 ðLx=2;0;BÞ 1
1 2 ðl=2; rf ;0Þ 1 ðLx=2; rf ;0Þ 1

2 2 ðl=2
ffiffiffi
2

p
; rf cosp=4; rf sinp=4Þ 1/ffiffiffi

2
p ðLx=2

ffiffiffi
2

p
; rf cosp=4; rf sinp=4Þ 1/ffiffiffi

2
p

3 2 ðl=2;0; rf Þ 1 ðLx=2;0; rf Þ 1

4 1 1 ðl=2; ri;0Þ 1 ðLx=2; ri;0Þ 1

2 1 ðl=2
ffiffiffi
2

p
; ricosp=4; risinp=4Þ 1/ffiffiffi

2
p ðLx=2

ffiffiffi
2

p
; ricosp=4; risinp=4Þ 1/ffiffiffi

2
p

3 1 ðl=2;0; riÞ 1 ðLx=2;0; riÞ 1
1 2 ðl=2; rf ;0Þ 1 ðLx=2; rf ;0Þ 1

2 2 ðl=2
ffiffiffi
2

p
; rf cosp=4; rf sinp=4Þ 1/ffiffiffi

2
p ðLx=2

ffiffiffi
2

p
; rf cosp=4; rf sinp=4Þ 1/ffiffiffi

2
p

3 2 ðl=2;0; rf Þ 1 ðLx=2;0; rf Þ 1

5 1 1 ðl=2;0;0Þ 1 ðLx=2;0;0Þ 1
2 1 ðl=2

ffiffiffi
2

p
; 0; 0Þ 1/ffiffiffi

2
p ðLx=2

ffiffiffi
2

p
;0;0Þ 1/ffiffiffi

2
p

3 1 ðl=2;0;0Þ 1 ðLx=2;0;0Þ 1
1 2 ðl=2; ri;0Þ 1 ðLx=2; ri;0Þ 1
2 2 ðl=2; ricosp=4; risinp=4Þ 1/ffiffiffi

2
p ðLx=2

ffiffiffi
2

p
; ricosp=4; risinp=4Þ 1/ffiffiffi

2
p

3 2 ðl=2;0;0Þ 1 ðLx=2;0;0Þ 1
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u7x ¼ u8x þ εxyLy; (65a)

u7y ¼ u8y þ εyyLy; (65b)

u7z ¼ u8z þ εzyLy; (65c)

u7x ¼ u6x þ εxzLz; (66a)

u7y ¼ u6y þ εyzLz; (66b)

u7z ¼ u6z þ εzzLz; (66c)

u6x ¼ u5x þ εxyLy; (67a)

u6y ¼ u5y þ εyyLy; (67b)

u6z ¼ u5z þ εzyLy; (67c)

u4x ¼ u8x þ εxxLx; (68a)

u4y ¼ u8y þ εyxLx; (68b)

u4z ¼ u8z þ εzxLx: (68c)

If the RVE is symmetric with respect to the xy, xz and yz planes,
displacements on opposite faces are such that

u1x ¼ �u3x ; (69a)

u2y ¼ �u4y ; and (69b)

u5z ¼ �u6z : (69c)

Substituting (69a)-(69c) in (50a), (51a) and (52a), respectively,
for ε ¼ ½εxx0 0 0 0 0�T yields

u1x ¼ �u3x ¼ εxx
Lx
2
; (70a)

u2y ¼ u4y ¼ 0; and (70b)

u5z ¼ u6z ¼ 0: (70c)

This implies that the displacements orthogonal to faces 4, 6, 2
and 5 are null. Therefore, with reference to the equivalent contin-
uum model in discussed in Section 3, derivation of the boundary
conditions in Fig. 7b is straightforward.
Table 6
NURBS degree and knot vectors used for the five NURBS patches in Fig. 7.

Direction Degree Knot vector

x p ¼ 1 X ¼ ½0; ;1;1�
h q ¼ H ¼ ½0;0;0;1;1;1�
z r ¼ 1 Z ¼ ½0;0;1;1�
B Control data for the NURBS continuum equivalent model

The knot vectors and control points required for the multi-patch
NURBS solid shown in Fig. 7 are reported in Tables 6 and 7,
respectively.
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