

Delft University of Technology

Support-Free Hollowing

Wang, Weiming; Liu, Yong-Jin; Wu, Jun; Tian, Shengjing; Wang, Charlie; Liu, Ligang ; Liu, Xiuping

DOI
10.1109/TVCG.2017.2764462
Publication date
2018
Document Version
Accepted author manuscript
Published in
IEEE Transactions on Visualization and Computer Graphics

Citation (APA)
Wang, W., Liu, Y.-J., Wu, J., Tian, S., Wang, C., Liu, L., & Liu, X. (2018). Support-Free Hollowing. IEEE
Transactions on Visualization and Computer Graphics, 24(10), 2787 - 2798. Article 8082529.
https://doi.org/10.1109/TVCG.2017.2764462

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TVCG.2017.2764462
https://doi.org/10.1109/TVCG.2017.2764462

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Support-Free Hollowing
Weiming Wang, Yong-Jin Liu, Senior Member, IEEE, Jun Wu, Shengjing Tian,

Charlie C.L. Wang∗, Senior Member, IEEE, Ligang Liu, and Xiuping Liu

Abstract—Offsetting-based hollowing is a solid modeling operation widely used in 3D printing, which can change the model’s physical
properties and reduce the weight by generating voids inside a model. However, a hollowing operation can lead to additional supporting
structures for fabrication in interior voids, which cannot be removed. As a consequence, the result of a hollowing operation is affected
by these additional supporting structures when applying the operation to optimize physical properties of different models. This paper
proposes a support-free hollowing framework to overcome the difficulty of fabricating voids inside a solid. The challenge of computing a
support-free hollowing is decomposed into a sequence of shape optimization steps, which are repeatedly applied to interior mesh
surfaces. The optimization of physical properties in different applications can be easily integrated into our framework. Comparing to
prior approaches that can generate support-free inner structures, our hollowing operation can reduce more volume of material and thus
provide a larger solution space for physical optimization. Experimental tests are taken on a number of 3D models to demonstrate the
effectiveness of this framework.

Index Terms—shape optimization, support-free, hollowing, topology variation, 3D printing.

F

1 INTRODUCTION

THE popularity of 3D printers has reduced the barrier
to fabricate complex models. This fact motivates a

lot of research in the computer graphics community. To
achieve specific functions of fabricated models, a widely
used strategy is to optimize the material distribution in
the interior of the given 3D model, leading to inner voids
in different forms. These carving operations extend the
conventional offsetting-based hollowing operation in solid
modeling. The hollowing method is found to be effective for
a variety of physical objectives regarding mass properties
(e.g., [1], [2], [3]) and the mechanical strength (e.g., [4], [5],
[6]). However, a largely neglected aspect is that the interior
voids give rise to a critical problem for fabrication – that is,
additional support structures in such cavities are inevitably
needed for some layer-based 3D printing processes such as
SLA (Stereolithography Apparatus) and FDM (Fused Deposition
Modeling).

Support structures are usually added below overhang
regions to prevent the collapse of material during the fab-
rication (ref. [7], [8], [9]), which lead to additional mate-
rial usage and give rise to problems such as difficulty of
removal, surface damage and a prolonged printing time.
Supports located in enclosed voids cannot be accessed and
thus are difficult to take out. This is unlike exterior supports
which can be removed manually or automatically if they are
made of dissolvable material. Keeping interior supports in a
fabricated model counteracts the objectives from the results

• W. Wang, S.Tian and X. Liu are with School of Mathematical Sciences,
Dalian University of Technology, Dalian, China.

• Y.-J. Liu is with the TNList, Department of Computer Science & Technol-
ogy, Tsinghua University, Beijing, China.

• J. Wu and C.C.L. Wang are with Department of Design Engineering,
Delft University of Technology, Delft, The Netherlands.

• L. Liu is with School of Mathematical Sciences, University of Science and
Technology of China, Hefei, China.

• Corresponding Author: C.C.L. Wang (Email: c.c.wang@tudelft.nl).

Final manuscript submitted on October 16, 2017.

of interior shape optimization. For instance, the additional
supports shift the center of mass from the desired location
and decrease the strength-to-weight ratio. To eliminate such
supports, the optimized shape is typically printed in parts
and glued together [10]. This treatment however leaves
visual and mechanical defects.

To overcome the problem of adding
interior support structures, our idea
is to make all facets on the interior
surface self-supported – i.e., the an-
gle between its normal vector n and
the printing direction d, denoted by
6 (n,d), is less than α + 90◦, with α
being called the maximal self-supporting
angle (see the right inset). Here α is a
physical coefficient related to the type
of 3D printing processes and materials
used in fabrication. For example, an angle of 45◦ is com-
monly used for FDM, while an angle of less than 30◦ is safe
for SLA. When every facet on an interior void is support-free
and no edge/vertex overhang is found (see [8] for a detail
discussion for different types of overhangs), its surface is
defined as self-supported.

In this work we propose a novel hollowing framework
to generate support-free interior voids. Following the layer-
upon-layer fabrication process, we decompose the 3D hol-
lowing problem into a set of planar non-uniform offsetting
problems. This boils down the challenge of support-free
hollowing into computing non-uniform offsetting values in
all layers, where support-free is formulated by geometric
constraints on offsetting values in neighboring layers. The
support-free hollowing operator can be used as an inte-
gral component for different applications. For instance, we
demonstrate its effectiveness in interior shape optimization
for reducing the material usage (see Fig. 1 for an example)
and for optimizing the center of mass (e.g., Fig. 13), both
resulting in interior voids that require no additional support

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 1. Different from (a) conventional hollowing that needs a large number of additional supporting structures and (b) the rhombic infill structure [11]
that can only reduce 38.0% material usages, the hollowing operation developed in our framework can be repeatedly applied to a model for generating
highly sparse interior structures and optimizing different physical properties – the result shown in (c) with 69.9% less material used than the original
solid model. Our hollowing framework generates interior voids with self-supported surfaces – no supporting structure is needed for 3D printing. (d)
The histograms of the angles between surface normals of interior voids and the printing direction comparing (a) and (c).

structures. Our technical contributions include:

• A support-free hollowing operator with layer-based
formulation which generates offset surfaces that are
free of additional inner supports.

• A strategy of repeatedly applying the operation to
generate inner voids with topology different from an
input model, which enlarges the solution space of
physical optimization.

• A demonstration of the hollowing framework for de-
signing application-specific and support-free interior
material layout.

The rest of this paper is structured as follows. After re-
viewing related work in Section 2, we illustrate the pipeline
of the proposed support-free hollowing in Section 3. The
optimization problem is presented in Section 4 with its
constraints for support-free detailed in Section 5, solution
space analyzed in Section 6, and the repetitive strategy for
enlarging the solution space explained in Section 7. Exten-
sive numerical and physical tests are presented in Section 8,
and the paper is concluded in Section 9.

2 RELATED WORK

Geometric modeling and optimization for 3D printing has
received a lot of attention in recent years. The approaches
closely related to our work are reviewed below in the cat-
egories of self-supporting structures design, offset surface
generation, and shape optimization.

Self-supporting structures An intrinsic way for solving
the problem of interior support is to produce self-supporting
interior surface during the hollowing process. The term self-
supporting has been used in different contexts. In architec-
tural geometry it refers to a structure (i.e., an arrangement of
blocks such as bricks, stones) which is in a static equilibrium
configuration [12], [13], [14]. In this paper, self-supporting is
a geometric property concerning overhang angles. Recently,
Reiner and Lefebvre [15] proposed an interactive modeling

tool to design self-supporting models. Wu et al. [11] intro-
duced rhombic structures as a special self-supporting infill
for 3D printing. The rhombic structure is adaptively refined
according to an analysis of physical properties such as the
center of mass and the stress distribution. The hollowing
operator presented in this paper generates even sparser
structures. For example, adaptive rhombic structures can
only reduce 38.0% of the material volume for the dragon
model, but our method can reduce up to 69.9% volume
when using the same thickness of walls (see Fig. 1). This
actually provides a larger solution space for optimizing
different application-specific physical properties. We also
note that Xie and Chen [16] recently proposed a method
to generate support-free interior cavities. However, their
method is voxel-based and then results in staircase-like
inner surfaces.

Offset surface generation The conventional way of hollow-
ing for reducing the material usage in 3D printing is based
on the offsetting operator in solid modeling. Most of recent
work focuses on how to efficiently compute the offsetting,
e.g., using distance-field [17], [18], ray-rep [19] and parallel
computing [20]. When fabricating the hollowed voids gener-
ated by uniform offsetting, supporting structures cannot be
avoided. Non-uniform offsetting with varying thickness has
been recently employed to design the physical properties
of printed models in different aspects. For example, the
static and dynamic stability is improved in [3]. Non-uniform
offsetting is also used to control the elastic deformation
in [21] and [22]. However, the problem of avoiding interior
supporting structures has not been tackled in any of these
prior approaches.

Shape optimization A lot of effort has been made to
reduce the usage of materials in 3D printing by shape
optimization. Wang et al. [4] proposed a skin-frame struc-
ture and designed an optimization method to minimize
the frame volume subject to various constraints such as
stiffness, stability and printability. Lu et al. [5] proposed a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 2. Pipeline for computing the support-free hollowing on a solid model. From left to right, an input model, the surface after uniform offsetting, the
sliced contours for hollowing, the grouping result by topology analysis for voids generation (slices in different groups, A-D, are displayed in different
colors), and the optimized interior voids that are support-free. The support-free hollowing can be repeatedly applied until no more void can be
formed – see the rightmost figure as the result with 39 voids.

honeycomb-cells structure and developed an optimal tessel-
lation of this structure to maximize the porosity meanwhile
sustaining the interior strength of a printed model. Wu et
al. [6] presented a high-performance system for performing
structural optimization using an efficient finite element anal-
ysis, building on the topology optimization method from
mechanics [23]. Interior cavities have been introduced to
improve both the static and the dynamic (i.e., spinning)
stability for 3D printed models. This concept has been used
in [1] to improve the static stability of a printed model, by
using a voxel representation. Extensions along this line in-
clude alternative geometric discretizations for efficient com-
putation (e.g., the adaptive octree [2], truss structures [24],
ray-reps [25]), as well as various static/dynamic behaviors
(e.g., spinning [2], floating [26], swinging [27]). In these
approaches, support structures for a carved interior void
cannot be avoided. Christiansen et al. added uniform infill
patterns to support the interior void [28]. In this paper, we
propose a new framework of support-free hollowing, which
can be used as an operation to tackle different optimization
applications of 3D printed models. On the other aspect,
we also use the static stability problem as an example to
demonstrate the flexibility of our framework.

3 PIPELINE

The pipeline of the proposed support-free hollowing frame-
work is illustrated in Fig. 2 by using the kitten model as an
example. It consists of four essential steps:

1) Given a solid model represented by a 2-manifold
mesh surfaceM, we first uniformly offset it with a
user specified thickness t to get an inner surface M̃
by uniform offsetting [29].

2) Slicing the newly generated inner surface M̃ into
a set of cross-sections, by using either a uniform
thickness or a curvature-dependent adaptive thick-
ness [30]. Note that, depending on the topology of
the 3D model, it is possible that on the same layer
there are multiple and disjoint contours.

3) According to the topology changes in successive
layers, the cross-sections are clustered into groups,
each of which represents a void, indicated sep-
arately by ‘A’-‘D’ in Fig. 2. Neighboring cross-
sections in the same group are connected by a strip
triangulation algorithm [31].

4) The shape of each void obtained from the previous
step is then optimized according to different appli-
cations, together with layer based support-free con-
straints. As a result, self-supported interior surfaces
can be generated by using numerical optimization
for all voids.

These four steps are repeatedly applied to a model to further
optimize the application-specific objective function. The ef-
fect of repetition is shown as the right of Fig. 2. Different
physical properties (e.g., total weight, static stability, etc.)
can be incorporated into this framework as objectives of
optimization.

4 FORMULATION

Our framework aims at minimizing different application-
specific objective functions, while ensuring that the interior
voids can be fabricated without additional inner support
structures. The support-free constraint is formulated on a
layer-based representation of the 3D model. The decom-
position of a 3D model into a set of layers, which has the
same process as layered fabrication, allows us to effectively
evaluate the overhang angle, and thus to formulate the
constraints in a compact form.

4.1 Notations and Variables
Following the common practice of 3D printing, we assume
that the given model M with hollowed inner surfaces (de-
noted byMH) is fabricated layer-by-layer along a printing
direction d with the thickness h for each layer. BothM and
MH are sliced into a set of cross-sections perpendicular to
d. With the help of topology analysis taken on the sliced
contours (details can be found in Section 7.1), contours are
classified into different groups. As the outer surface M
is unchanged during the optimization, we only consider
the contours generated from the inner surfaces MH in
the rest of this paper. Contours in the same group will
have simple topology as circles. The group of contours in
different slices is denoted by Θ = {Pi}. Here Pi represents
a planar domain at the i-th slice onMH . The optimization
is performed on each group of contour. Different groups can
thus be optimized in parallel. For simplicity, we restrict our
discussion to one group in the following. Extending it to
include all groups is straightforward.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

For a planar contour
P ∈ Θ, we assume its
boundary ∂P consists of
n vertices {vj}nj=1, linked
by ordered line segments
(i.e., clockwise as it de-
scribes a hole). In our
framework, the resulting
optimized contour P ′ lo-
cates within the contour P
since the contour shrinks

inwards during the optimization process. The shrunk con-
tour P ′ is obtained by shifting each vertex in ∂P along
an inward direction rj , with a distance value lj to be
determined by the optimization algorithm, that is

v′j = vj + ljrj , j = 1, 2, · · · , n. (1)

The offsetting distance lj represents the design variable in
our optimization. They are iteratively updated during the
optimization processing. Performing offsetting on our layer-
based formulation significantly simplifies the problem of
avoiding intersection, which is notorious while offsetting a
general triangle mesh (ref. [32], [33]). In Section 6 we will
discuss the techniques to ensure that the resulting mesh
is free of self-intersection and is manufacturable. Specif-
ically, these desired properties are ensured by imposing
lower/upper bounds for each lj , and by properly determin-
ing shifting directions of vertices.

4.2 Optimization Problem
Generally, by using the notation and variables introduced
above, objective functions can be defined according to dif-
ferent applications as

min
{lj}

F ({P ′i}, {Pi}, h) (2)

for all shifting distances {lj} on all contours {Pi} in the
same group Θ, where h is the thickness of a layer.

The optimal offsetting values are subject to a set of
constraints regarding manufacturability and application-
specific functions. In summary, the constraints can be classi-
fied into two categories:

1) Support-free: The support-free constraints ensure
the overhangs on the generated surfaces of interior
voids are self-supported (see Section 5).

2) Geometric correctness: The geometric correctness
means that the resulting mesh shall be free of self-
intersection, and shall maintain a minimum thick-
ness for manufacturability (see Section 6).

The optimization problem is solved by the classic interior-
point algorithm [34] which shows a fast convergence rate.
More discussions can be found in Section 8.4.

5 CONSTRAINTS FOR SUPPORT-FREE

The support-free constraints are formulated as the relation-
ship between the contours on neighboring layers in the same
group,Pi andPi+1, representing the holes on cross-sections.
The analysis for adding supports is taken by the projection
Π(·) of Pi+1 onto Pi. Based on the working principles used

Fig. 3. An illustration for the projection based condition for supporting
structures – when the region of Ω (the yellow region) is not empty,
supporting structure needs to be added on the surface connecting Pi

and Pi+1. Note that, the projection is taken on the contours of an inner
void.

Fig. 4. Self-supported property is not automatically preserved on a
convex edge of the inner mesh surface (see left) even when its left face
and its right face are self-supported, but it is preserved on a concave
edge (see right).

in the industry of additive manufacturing [35], supports
are added in the regions where Pi is outside Π(Pi+1). The
region enclosed by Pi and outside Π(Pi+1) is denoted by Ω
(see also the illustration shown in Fig. 3). When considering
the self-supporting property of materials, this condition is
converted to only add supports at the places with large
feature size in Ω when Ω 6= ∅ (ref. [9]). This support-free
condition can be converted into constraints imposed on
the slope of surface connecting Pi+1 and Pi, which can be
further broken down into the following constraints for faces,
edges and ceilings.

5.1 Face Constraint
The inner surface is obtained by a strip triangulation con-
necting neighboring polygonal contours. For all triangle
faces, according to the definition of overhang angle, the
following constraint applies,

(nfj · d) ≥ cos(
π

2
+ α), (3)

where nfj is the face normal of the j-th face, fj , of the inner
void mesh, d is the printing direction, and α is the maximal
self-supporting angle.

5.2 Edge Constraint
Controlling the overhang angles of faces is not sufficient for
the support-free of the whole inner surface since it cannot
prevent the generation of edge overhangs. See Fig. 4 (left)
for a 2D illustration. While the normal vectors of an edge’s
left and right faces, nl and nr, satisfy the angle constraint
in Eq.(3), the edge itself is not supported from beneath. In
fact, overhang is prevented on a concave edge on the mesh
surface of an inner void automatically by the face constraint,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 5. An illustration for support-free constraint between two neighbor-
ing layers, where the dash lines illustrate the mesh generated by strip
triangulation [31], [36].

but can still exist on a convex edge. Distinguishing these
two cases in the numerical optimization framework leads
to a formulation with a variant number of constraints as a
convex edge can be deformed into a concave edge during
the shape optimization, and vice versa. Therefore, to make
a simpler formulation, the support-free constraint is applied
to all edges connecting to different slices. We exclude edges
whose endpoints are located in the same slice, since in this
case the edge will always have one neighbor-face above and
the other neighbor-face below the slice, which means that it
does not form a convex shape as shown in the left of Fig. 4.
Note that, when such an convex edge is shown on the shape
resulted from uniform offsetting before optimization, it will
be eliminated by the topology analysis of contour grouping.
Specifically, the left and the right cavities will be clustered
into different groups – e.g., see the groups A, B and C in
Fig. 2.

Mathematically, to prevent forming edge overhang dur-
ing the optimization, we formulate the support-free con-
straint on an edge across two neighboring slices, P ′i and
P ′i+1 as the relative displacement of vertices. The relevant
notations are shown in Fig. 5. Specifically, the vertices of
P ′i+1 and P ′i should satisfy

‖(Π(v′j)− qj)‖ < h · tan(α), (4)

where v′j is a vertex of P ′i+1, qj on ∂P ′i is the endpoint of
an edge that connects with v′j , and h is the layer thickness.
However, adding this constraint to the facing-up edges will
lift up them and the adjacent faces to form an upward
surface, which reduces the volume of an inner void and
therefore also the solution space. To solve this problem, a
sign function is added in the formulation below to avoid
over-constraining those facing-up edges. And the constraint
is re-formulated into a quadratic form to achieve a faster
convergence in optimization.

−sgn(ne · d)‖(Π(v′j)− qj)‖2 < h2 tan2(α) (5)

Here ne is the normal vector of the edge v′jqj , which is
evaluated by the average of the edge’s left and right face-
normals. This classifier of sign function follows the method
of Deuss et al. [14] to detect edge overhangs. As a result, the
edge constraint is only applied to those edges with facing-
down normals.

5.3 Ceiling Constraint
While the face constraint Eq.(3) modifies inclined faces to a
satisfactory slope, the uppermost and horizontal faces at the

ceiling have their normals constantly pointing downwards.
To satisfy self-supporting constraint for such faces, our idea
is to shrink these faces such that each of them degenerate
into either a point or an edge, supported by the faces below
it. This is realized by restricting the area of the uppermost
slice to be infinitesimal as

A(Puppermost) < ε, (6)

where ε is a parameter to control the area of the uppermost
slice in a group (i.e., ε = 10−5 is used in our implementation
and all examples shown in this paper).

6 GEOMETRIC CONSTRAINTS AND BOUNDS

In our layer-based formulation, the optimization problem is
solved in an interlaced manner. The shifting directions of
vertices in each layer are resolved inside the layer, and the
values of displacements in shifting are determined globally
by solving the minimization problem in Eq.(2). For every
given contour P , the shifting direction ri for each vertex vi

is expected to:

1) let P ′ be homeomorphic to P and also have similar
shapes,

2) avoid self-intersection on P ′, and
3) provide relative large space for shifting.

These expectations are in fact coupled with each other. In
general a larger displacement li for every vi is more likely to
cause self-intersections. Furthermore, small displacements
on all vertices of P ′ lead to a shape similar to P .

The range of variables (i.e., the displacements of shifting
on all vertices) must be controlled for the following reasons:

• intersection-free – if the bounds of shifting are not
specified, the newly generated polygon P ′ on each
layer can easily intersect with other polygons or be
self-intersected;

• shape control – when the neighboring vertices on
P have significantly different displacements, sharp
corners which result in mechanical weakness can be
formed on P ′;

• manufacturability – printing materials will fail to
accumulate at the regions with thin-walls.

The right inset illustrates the case that leads to sharp corners
when the factor of shape control is not considered. To
fulfill these expectations, we set lower and upper bounds
of displacements for points on P ′,

lLj ≤ lj ≤ lUj . (7)

and use Voronoi Diagram to generate shifting directions.
The lower bound lLj

prevents generating thin
shells. The manufactura-
bility regarding a mini-
mum thickness can natu-
rally be satisfied by using
the shape of uniform off-
setting as the lower bound
of shifting. Specifically, as
the initial position of all

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Fig. 6. Computing the shifting directions and the upper bounds of shifting points on a complex contour: (a) initial contour P ′ can be uniformly
sampled into points, (b) Voronoi diagram is constructed for the sample points, (c) shifting directions (the black arrows) are determined with the help
of Voronoi diagram’s poles, and (d) intersections points (the blue points) at the boundaries of Voronoi cells give the upper bounds of optimization.

vertices on P are com-
puted from the surfaces of inner voids generated by uniform
offsetting, we assign the lower bounds of all points on P ′ as
zero, that is

lLj = 0.

The upper bound lUj is introduced to avoid self-
intersection. For a cross-section with inner holes, we first
uniformly sample it into a set of points (see Fig. 6(a)). A
Voronoi diagram can be generated for these points (see
Fig. 6(b)). Poles of a Voronoi diagram’s cells were used in
[37] to determine the normal vectors of a surface represented
by dense 3D sample points. Here the pole of each Voronoi
cell C(vj) (∃vj ∈ P ′), p(C(vj)), as the normal of a planar
curve at vj is computed to determine the shifting direction
of vj as

rj = ± vj − p(C(vj))

‖vj − p(C(vj))‖
(8)

with the sign determined by letting rj be consistent with the
orientations of an initially determined inner void. Suppose
the ray along rj with origin at vj intersects the boundary of
C(vj) at a point q(C(vj)) (see the blue points in Fig. 6(d)),
the upper bound of optimization applied to vj is assigned
as

lUj = ‖vj − q(C(vj))‖ (9)

to ensure an intersection-free hollowing. To have a better
shape control, a truncated Laplacian smoothing as

lUj = min{lUj ,
1

2
(lUj−1 + lUj+1)} (10)

can be applied to the upper bounds on all vertices, where
−1 and +1 denotes the predecessor and the successor of the
j-th vertex on the same loop of a contour.

It is worth noting that, at the place of complex contours
with many geometric details, the shifting directions and the
upper bounds calculated by the above strategy may lead
to a small solution space. Although it rarely happens, the
support-free constraints (Eqs.(3) and (5)) for these contours
are difficult to satisfy. To tackle these cases, we can slightly
smooth their 2D contour from P to P̃ and then compute an
optimized contour from P̃ instead of P . Although this may
make the shape of P̃ different from P , it helps the conver-
gence of the numerical optimization. Moreover, generating
voids with shapes significantly different from an input
model does not affect the visual quality of the hollowed
object.

7 TOPOLOGY ANALYSIS

In this section we present grouping of the contours based on
an analysis of the topology of slices, and propose a repeated
strategy to enlarge the solution space based on an analysis
of the topology of solution space from offsetting.

7.1 Grouping of Contours
Models with complex topology (e.g., with branches or loop
handles) lead to slices with their contours having varying
topology. The contours are clustered into separate groups,
each of which form an interior void with simple topology –
i.e., genus zero). The following rules are applied for grouping:

• Different contours in the same slice cannot belong to
the same group;

• When being projected along the printing direction,
two contours in neighboring slices cannot belong to
the same group if the overlapping area is less than a
certain percentage of any of these two contours’ area
– we choose 50% in all our examples;

• When a contour overlaps with multiple projected
contours in a neighboring slice, it can only be as-
signed to the group of the contour with maximal
overlap.

By using these rules, contours generated on the uniformly
offsetted inner surface are clustered into different groups.
This is implemented by iteratively using a flooding algo-
rithm to group contours on neighboring slices (see Fig. 7
for an example). As a result, interior surfaces with simple
topology can be formed. Note that an overhang with large
area is very likely to happen when the area of a contour
is much larger than the contour above it. The second rule
above is applied to prevent this case. Without this rule
requiring small area-variation, the result of optimization
tends to generate a void with volume much smaller than
the total volume of voids formed by separating the contours
into different groups – see the contour between C and D in
Fig. 8 for an example.

7.2 Topology of Solution Space
The interior void from offsetting generally has the same
topology as the initial model. Fig. 9 shows the optimized
voids for four basic shapes of genus zero. While the shape
of the interior void varies from and depends on the exterior
surface, it shares the same topology as the initial input
model. Due to the overhang constraint, non-uniform off-
setting creates large solid parts on the top of the models,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Fig. 7. Contours on the Buddha model (left) are clustered into seven
different groups, which are displayed in different colors (right). Contours
in each group are connected by strip triangulation to generate an interior
surface with simple topology (i.e., genus zero).

Fig. 8. Without applying the rule of area-variation between neighboring
contours, the group of contours in C and D (see (a)) will be classified into
the same group. This will result in a void (see (b)) with volume 5.14 ×
103mm3. When they are separated into different groups, two voids with
the total volume of 6.27× 103mm3 can be generated as shown in (c).

i.e., the space between the transparent exterior surface and
golden interior surface.

These large solid parts can be reduced by repeatedly
applying the hollowing operation, taking the output model
from the last optimization as the input for the next optimiza-
tion. By doing so, more voids (with a smaller volume) can be
generated inside the solid. Porous structures with complex
topology and small total volume can be formed. Fig. 10
shows a sequence of results from this repeated hollowing.
The final model on the rightmost has a much more complex
topology than the initial model. In practice, we repeatedly
apply the hollowing operation until 1) the volumes of all
newly formed voids are less than 8mm3 or 2) the number of
slices is less than two in all newly formed voids.

8 RESULTS AND DISCUSSION

After presenting implementation details at the beginning of
this section, we demonstrate support-free hollowing in two
design applications – lightweight optimization and static
stability optimization. The effectiveness of our approach is
verified on a number of 3D model with varying complexity.

8.1 Implementation Details
Configuration Our algorithm has been implemented in
C++, while using a nonlinear optimization library of Matlab

Fig. 9. The possible basic shapes of a support-free void with genus zero
topology.

Fig. 10. The results obtained by repeatedly applying the support-free
hollowing operation developed in this paper – from left to right, 55.3%,
68.6%, 72.1% and 75.2% of the Kitten model’s volume have been
converted into voids.

(i.e., the Interior Point Algorithm [34]). All the examples
were computed on a standard desktop PC equipped with
an Intel(R) Core(TM) i7-3770 CPU running at 3.40GHz
with 32GB memory. The physical models were fabricated
by a MakerBot 3D printer with a working envelope of
285mm × 153mm × 155mm. The printing thickness is
0.2mm, and PLA plastic is the used as the material of
printing.

Parameters To ensure the manufacturability of a hollowed
model and also provide a relative strong mechanical stiff-
ness, the wall thickness of the initial offsetting is set as
1.0mm and the thickness in the subsequent optimization
is set to 0.8mm. The height of all models are scaled to
50mm ∼ 60mm. A maximal self-supporting angle of 45◦

is used for most models, while other values are also studied
for analyzing the effect of the overhang angle.

Strip triangulation A strip triangulation algorithm [31]
is adopted to construct the inner surface of voids, by con-
necting contours in neighboring slices. Note that, although
the vertices on the inner offset surface locate inside the
input model M, it is possible that edges or faces linking
these vertices intersect with M. We perform an efficient
intersection detection using the OBB-tree based proximity
query [38]. For those triangles intersecting with M, we as-
sign a weighting factor of infinity in the optimal strip trian-
gulation which is generated by dynamic programming [31],
[36]. This effectively ensures a collision-free triangulation
(see Fig. 11 for an illustration). If no intersection-free strip
triangulation can be found (which rarely occurs in our tests),
we separate the upper and the lower contours into different
groups.

Printing direction Our approach assumes a prescribed
printing direction. Integrating the direction as a design
variable into the optimization is currently out of reach. A
practical solution is to test multiple directions, and select

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

Fig. 11. A naı̈ve strip triangulation may lead to intersection between
inner and outer surfaces at the highly curved regions (see the top row),
which can be solved by an optimal triangulation (as the bottom row).

the best outcome.

8.2 Optimization Objective: Lightweight

The objective of minimizing the material volume for making
a lightweight design is equivalent to minimize the area
enclosed by P and P ′. Let A(·) be the area of a closed con-
tour. The objective is to find a set of non-uniform offsetting
distances lj to minimize the solid volume,

min
{lj}

∑
P∈Θ

h(A(P)−A(P ′)). (11)

where h is the thickness of a layer that is assumed to be a
constant value in our current implementation. Applying the
hollowing operation to all groups of contours can signifi-
cantly reduce the volume of an input model by producing
inner voids. We can further reduce the weight of a model
by repeatedly applying the hollowing operation multiple
times. Specifically, the resultant solid of a hollowing op-
eration is utilized as the input model of next round of
hollowing (see the examples shown in Figs.10 and 12).

8.3 Optimization Objective: Static Stability

The objective function in our framework (i.e., Eq.(2)) can
be formulated to tackle a variety of applications with de-
mands on physical-properties, such as static stability [1],
spinning [2], floating [3], [26], [39], and swinging [27]. We
use the static stability as an example to demonstrate how to
optimize the center of mass by our support-free hollowing,
which can be easily extended to other objective functions.

AssumeM will be fabricated by m layers of slices with
thickness h, the mass center of a hollowed modelM′ can be
approximated by

c(M′) =
V (M)c(M)−

∑m
i=1 hA(P ′i)c(P ′i)

V (M)−
∑m

i=1 hA(P ′i)
(12)

where V (·) denotes the volume of an object andA(·) returns
the area enclosed by a planar contour. Here, both V (M) and
c(M) can be pre-computed by the layer-based discretization
(i.e., using {Pi}).

For a given modelM, its static stability can be ensured
if the projection of its center of mass, c(M), along the direc-
tion of gravity falls inside the convex hull of its contacting
points on the ground [1]. Defining c(M′)⊥ as the projection
of c(M′) onto the ground, the criterion of static stability
is c(M′)⊥ ∈ H(M) with H(M) denoting the convex hull

of M’s contact points on the ground, which is constant as
we do not change the outer surface of M′. In practice, we
use an inward-offset of H(M), denoted by H↓r(M), with
the offsetting distance r as half radius of H(M)’s inscribed
circle so that a marginal stand can be avoided.

To make a form easier to be solved in the optimization
framework, the closest point q of c(M′)⊥ on H↓r(M)’s
boundary, denoted by ∂H↓r(M), is employed to define the
objective function as

min
{li}

∑
P∈Θ

‖c(M′)− q‖2 (13)

with
q = arg minp∈∂H↓

r(M)‖p− c(M′)⊥‖. (14)

Figure 13 shows the optimized result of static stability
obtained by our algorithm. As shown in Fig. 13(a), the
initial solid Letter-P model cannot reach static stability.
In this figure, the blue point represents the mass center
c(M′) of a model M′, the red point is its projection on
the ground c(M′)⊥, and the green point is the center of
H(M)’s inscribed circle (i.e., c(H(M))). By applying our
method, the projected center of mass is successfully moved
inside the convex hull of contacting points on the ground
(see Fig. 13(b)).

8.4 Experiments and Comparison
Tests have been conducted on a number of 3D models to
verify the effectiveness of support-free hollowing. In the
following tests, volume reduction is selected as the objective
function.

Self-supporting angle When different 3D printing meth-
ods or different materials are used, a 3D printed model can
have different maximal self-supported angles for overhangs.
As the support-free constraints imposed in our framework
are adaptable to this (i.e., the value of α), hollowing results
according to different values of α can be easily obtained.
Figure 14 shows the support-free hollowing with α = 45◦

(top) and 30◦ (bottom). In general a larger self-support
angle leads a larger hollowed volume, i.e., a lighter model.
Figure 15 shows the results after the first round of hollowing
for reducing a cube model with different self-supporting
angles.

Convergence As aforementioned, we solve the numerical
optimization problem by using the interior point algorithm –
a solver provided by Matlab. In practice, the optimization
converges fast. As shown in Fig. 16, our system reduces
the area of non-support-free faces to zero in a small number
of iterations. The numerical optimization is computed on a
hollowed model with contours group by group. Figure 16
shows the optimization on the group with the largest vol-
ume.

More results Figure 17 shows results on six different
models. The dancing children model (f) has a much complex
topology, and shows a large number of internal voids re-
sulting from the repeated optimization. The computational
statistics are summarized in Table 1. Our approach takes
about 17.2 to 59.7 minutes to hollow a model in average,
which is short comparing to the time of 3D printing fabri-
cation. The volume of models can be reduced in the range

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 12. The volume of a Dragon model can be significantly reduced after repeatedly applying the hollowing operation developed in our framework –
inner voids generated in different rounds of hollowing are displayed in different colors. From left to right, the operations result in a volume reduction
of 42.9%, 57.6%, 61.1%, 64.9% and 66.6% respectively.

TABLE 1
Computational statistics of our support-free hollowing approach

Height Input Mesh Output Mesh Reduced Running
Model Figure (cm) # Vertices # Faces Vol. (cm3) # Vertices # Faces Vol. (cm3) Volume (%) Time (min.)

Dragon 12 5.55 15, 045 30, 091 27.35 25, 599 51, 028 9.14 66.56 43.4
Kitten 2 5.00 5, 780 11, 519 15.60 21, 873 43, 569 3.85 75.33 31.3

Buddha 14(a) 5.61 5, 601 11, 224 7.99 20, 016 39, 966 3.05 61.83 39.4
Buddha 14(b) 5.61 5, 601 11, 224 7.99 23, 942 47, 770 3.47 56.58 47.5

Rabbit 17(a) 5.00 10, 075 20, 146 9.46 19, 860 39, 596 2.51 73.47 18.2
Bear 17(b) 5.95 13, 826 27, 648 20.39 20, 150 40, 043 4.79 76.51 24.6

Horse 17(c) 5.60 5, 000 9, 996 33.99 16, 750 35, 222 9.44 72.23 21.2
Duck 17(d) 5.00 5, 344 10, 688 86.11 13, 125 26, 218 20.26 76.35 17.2

Armodino 17(e) 5.83 8, 000 15, 984 10.16 22, 967 45, 441 3.77 62.90 38.4
Children 17(f) 5.33 14, 958 29, 978 27.45 31, 915 63, 445 12.80 53.37 59.7

Fig. 13. The initial projected mass center of the Letter-P model is located
outside the convex hull of its contacting points on the ground (a). With
the optimization of our framework, the model can achieve static stability
by introducing self-supported inner voids (b).

from 53.4% up to 76.5% – voids generated in all hollowed
models are support-free.

Comparison Hollowing by uniform offsetting is a method
widely used in solid modeling to reduce material costs.
However, it cannot guarantee to produce support-free voids.
As can be found in Figs. 1(a) and 18(a), both uniformly
hollowed Dragon and Kitten models need a large number
of additional interior structures to support the overhanging
surfaces. This additional supports will very likely change
the value of an objective function that has been optimized –
for example, adding more weights or moving the center of
mass. To avoid this, an optimized result that is support-free
becomes very important. Recently, Wu et al. [11] proposed
an algorithm to generate optimized infill structures with
self-supporting rhombus. Although the models generated
by their method can be support-freely manufactured, the
specific rhombic structures used in their method limit the
sparsity of inner voids and therefore also the solution space.
The new method presented in this paper is able to generate
support-free inner voids in many other kinds of shapes,

Fig. 14. Progressive results of repeatedly applied support-free hollowing
with different maximal self-supporting angles, α. The resultant hollowing
voids have a total volume of 4.931 × 103mm3 for α = 45◦ (a), and
4.514× 103mm3 for α = 30◦ (b).

as shown in Figs. 1 and 18. The new method can achieve
a larger volume reduction than [11]. Consequently, our
approach has a larger solution space for satisfying design
demands. For example the hand model shown in Fig. 19, a
stable stand cannot be found by using the rhombic infill
since the self-supporting rhombic infill is rather dense.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 15. As the maximal self-supporting angle increases from 20◦ (top
leftmost) to 75◦ (bottom rightmost), the remaining solid volume de-
creases from 6.562× 103 to 2.056× 103 (unit: mm3).

Fig. 16. The convergence curves of computation by our framework
on the Dragon and the Kitten model. To evaluate the performance in
support-free optimization, the change of total areas that need to add
supporting structures is studied.

However, the support-free hollowing successfully computes
a stable configuration with much sparser structures (right).

8.5 Discussion
Our support-free hollowing is based on the commonly used
offsetting operator. Offsetting implicitly restricts the topol-
ogy of the resulting shape, and thus restricts the solution
space. To enlarge the solution space, a repetitive hollowing
strategy is proposed, leading to a further reduction of the
objective value.

Our current implementation is not optimized for speed.
Since each void can be optimized independently, a CPU
parallelization for these tasks is straightforward. Multi-
resolution hollowing can potentially further improve the
speed. A relatively slow numerical computation in our
approach is mainly caused by the large number of variables
to be optimized. The strategy of using a reduced repre-
sentation of shape by linear combination of basis functions
(e.g., [39]) can be employed in our future research to speed
up the computation. We leave this as future work.

It is interesting to compare our result with the infill
structure generated by Christiansen et al. [28], where the
uniform infill structures are automatically added to support
a 3D printed model. Although sparse infill can be generated
by their method, the property of self-supporting cannot be
guaranteed. As illustrated in Fig. 20, the overhang region
formed at the ceiling of inner surface will be damaged
during 3D printing as no supporting infill is added below
it. Our result (see Fig. 20, bottom row) with the same total
volume (i.e., also the same weight) does not have such a
problem, since our method ensures the geometric property
of self-supporting.

Fig. 17. More results generated by our support-free hollowing frame-
work. Models with complex topology such as (f) can be well handled
by our method. The different colors indicate the progressive results of
repeated hollowing.

9 CONCLUSION

In this paper, we have presented a computational frame-
work that is able to generate optimized hollowing models
according to different objective functions. The inner surfaces
of a hollowed model are guaranteed to be support-free. This
eliminates the need of additional supporting structure for
3D printing. The functionality of our approach has been
demonstrated by the applications of lightweight design and
static stability. The effectiveness of our method has been
verified on a number of models.

ACKNOWLEDGMENTS

This work is partially supported by the Natural Sci-
ence Foundation of China (61725204, 61702079, 61432003,
61628211, 61661130156, 61370143), China Postdoctoral Sci-
ence Foundation (2016M601308), and Fundamental Re-
search Fund (DUT16RC(3)061). C.C.L. Wang would also
thank the support of Hong Kong RGC GRF Grant (14207414)
and the Open Research Fund of Key Laboratory of High
Performance Complex Manufacturing at Central South Uni-
versity, China.

REFERENCES

[1] R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung,
“Make it stand: balancing shapes for 3d fabrication,” ACM Trans.
Graph., vol. 32, no. 4, p. 81, 2013.

[2] M. Bächer, E. Whiting, B. Bickel, and O. Sorkine-Hornung, “Spin-
it: Optimizing moment of inertia for spinnable objects,” ACM
Trans. Graph., vol. 33, no. 4, pp. 96:1–96:10, Jul. 2014.

[3] P. Musialski, T. Auzinger, M. Birsak, M. Wimmer, and L. Kobbelt,
“Reduced-order shape optimization using offset surfaces,” ACM
Trans. Graph., vol. 34, no. 4, pp. 102:1–102:9, Jul. 2015.

[4] W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong,
J. Deng, F. Chen, and X. Liu, “Cost-effective printing of 3d objects
with skin-frame structures,” ACM Transactions on Graphics (TOG),
vol. 32, no. 6, p. 177, 2013.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 18. Comparison of the results generated by different methods on the Kitten model – both the computational results and the 3D printed models
are shown here: (a) the result of uniform hollowing needs interior supporting structures for fabrication, (b) the result with rhombic infill structures [11]
(with 45.5% volume reduced), and (c) the result of support-free hollowing presented in this paper (with 75.3% volume reduced).

Fig. 19. An input hand model (left) can hardly be made static-stable by
using the self-supporting rhombic infill [11] (middle), while our method
is able to compute sparse support-free voids to achieve this goal (right).
The vertical lines indicate the projection of the center of mass.

[5] L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye,
C. Tu, D. Cohen-Or, and B. Chen, “Build-to-last: Strength to weight
3d printed objects,” ACM Transactions on Graphics (TOG), vol. 33,
no. 4, p. 97, 2014.

[6] J. Wu, C. Dick, and R. Westermann, “A system for high-resolution
topology optimization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 22, no. 3, pp. 1195–1208, March 2016.

[7] J. Dumas, J. Hergel, and S. Lefebvre, “Bridging the gap: Auto-
mated steady scaffoldings for 3d printing,” ACM Trans. Graph.,
vol. 33, no. 4, pp. 98:1–98:10, Jul. 2014.

[8] J. Vanek, J. A. G. Galicia, and B. Benes, “Clever support: Effi-
cient support structure generation for digital fabrication,” Comput.
Graph. Forum, vol. 33, no. 5, pp. 117–125, 2014.

[9] P. Huang, C. C. L. Wang, and Y. Chen, “Algorithms for layered
manufacturing in image space,” in ASME Advances in Computers
and Information in Engineering Research, 2014, pp. 377–410.

[10] X.-R. Wei, Y.-H. Zhang, and G.-H. Geng, “No-infill 3d printing,”
3D Research, vol. 7, no. 3, p. 24, 2016.

[11] J. Wu, C. C. Wang, X. Zhang, and R. Westermann, “Self-supporting
rhombic infill structures for additive manufacturing,” Computer-
Aided Design, vol. 80, pp. 32–42, 2016.

[12] E. Vouga, M. Höbinger, J. Wallner, and H. Pottmann, “Design of
self-supporting surfaces,” ACM Trans. Graph., vol. 31, no. 4, pp.
87:1–87:11, Jul. 2012.

Fig. 20. Top row: A model with infill structure generated by the method
of Christiansen et al. [28] – the total volume is 3, 894mm3. Bottom row:
A model generated by our method with a volume of 3, 872mm3. The
results of fabrication produced by a FDM printer are given on the right.

[13] Y. Liu, H. Pan, J. Snyder, W. Wang, and B. Guo, “Computing self-
supporting surfaces by regular triangulation,” ACM Trans. Graph.,
vol. 32, no. 4, pp. 92:1–92:10, Jul. 2013.

[14] M. Deuss, D. Panozzo, E. Whiting, Y. Liu, P. Block, O. Sorkine-
Hornung, and M. Pauly, “Assembling self-supporting structures,”
ACM Trans. Graph., vol. 33, no. 6, pp. 214:1–214:10, Nov. 2014.

[15] T. Reiner and S. Lefebvre, “Interactive modeling of support-free
shapes for fabrication,” in Proceedings of Eurographics 2016 - Short
Papers, 2016.

[16] Y. Xie and X. Chen, “Support-free interior carving for 3d printing,”
Visual Informatics, vol. 1, no. 1, pp. 9–15, 2017.

[17] D. Pavic and L. Kobbelt, “High-Resolution Volumetric Compu-
tation of Offset Surfaces with Feature Preservation,” Computer
Graphics Forum, 2008.

[18] S. Liu and C. C. Wang, “Fast intersection-free offset surface
generation from freeform models with triangular meshes,” IEEE
Transactions on Automation Science and Engineering, vol. 8, no. 2, pp.
347–360, 2011.

[19] Y. Chen and C. C. L. Wang, “Uniform offsetting of polygonal
model based on layered depth-normal images,” Computer-Aided
Design, vol. 43, no. 1, pp. 31–46, 2011.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

[20] C. C. L. Wang and D. Manocha, “GPU-based offset surface compu-
tation using point samples,” Computer-Aided Design, vol. 45, no. 2,
pp. 321–330, 2013.

[21] B. Bickel, P. Kaufmann, M. Skouras, B. Thomaszewski, D. Bradley,
T. Beeler, P. Jackson, S. Marschner, W. Matusik, and M. Gross,
“Physical face cloning,” ACM Trans. Graph., vol. 31, no. 4, pp.
118:1–118:10, Jul. 2012.

[22] X. Zhang, X. Le, Z. Wu, E. Whiting, and C. C. Wang, “Data-driven
bending elasticity design by shell thickness,” Computer Graphics
Forum, vol. 35, no. 5, pp. 157–166, 2016.

[23] O. Sigmund, “A 99 line topology optimization code written in
matlab,” Struct. Multidiscip. Optim., vol. 21, no. 2, pp. 120–127,
Apr. 2001.

[24] D. Yamanaka, H. Suzuki, and Y. Ohtake, “Density aware shape
modeling to control mass properties of 3d printed objects,” in
SIGGRAPH Asia 2014 Technical Briefs. ACM, 2014, p. 7.

[25] J. Wu, L. Kramer, and R. Westermann, “Shape interior modeling
and mass property optimization using ray-reps,” Computers &
Graphics, vol. 58, pp. 66 – 72, 2016.

[26] L. Wang and E. Whiting, “Buoyancy optimization for computa-
tional fabrication,” Computer Graphics Forum (Eurographics 2016),
2016.

[27] H. Zhao, C. Hong, J. Lin, X. Jin, and W. Xu, “Make it swing,”
Comput. Aided Geom. Des., vol. 43, pp. 226–236, 2016.

[28] A. N. Christiansen, R. Schmidt, and J. A. Brentzen, “Automatic
balancing of 3d models,” Computer-Aided Design, vol. 58, no. 0, pp.
236–241, 2015.

[29] C. C. Wang and Y. Chen, “Thickening freeform surfaces for solid
fabrication,” Rapid Prototyping Journal, vol. 19, no. 6, pp. 395–406,
2013.

[30] W. Wang, H. Chao, J. Tong, Z. Yang, X. Tong, H. Li, X. Liu, and
L. Liu, “Saliency-preserving slicing optimization for effective 3d
printing,” Computer Graphics Forum, vol. 34, no. 6, pp. 148–160,
2015.

[31] D. Meyers, S. Skinner, and K. Sloan, “Surfaces from contours,”
ACM Trans. Graph., vol. 11, no. 3, pp. 228–258, 1992.

[32] M. Campen and L. Kobbelt, “Polygonal boundary evaluation of
minkowski sums and swept volumes,” Computer Graphics Forum,
vol. 29, no. 5, pp. 1613–1622, 2010.

[33] Y. Chen and C. C. L. Wang, “Uniform offsetting of polygonal
model based on layered depth-normal images,” Computer-Aided
Design, vol. 43, no. 1, pp. 31–46, 2011.

[34] J. Nocedal and S. Wright, Numerical Optimization, 2nd ed.
Springer, 2006.

[35] L. Liu, A. Shamir, C. Wang, and E. Whitening, “3d printing
oriented design: Geometry and optimization,” in SIGGRAPH Asia
2014 Courses, 2014.

[36] C. C. L. Wang and K. Tang, “Optimal boundary triangulations of
an interpolating ruled surface,” Journal of Computing and Informa-
tion Science in Engineering, vol. 5, no. 4, pp. 291–301, 2005.

[37] N. Amenta, S. Choi, and R. K. Kolluri, “The power crust,” in
Proceedings of the Sixth ACM Symposium on Solid Modeling and
Applications. ACM, 2001, pp. 249–266.

[38] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierar-
chical structure for rapid interference detection,” in Proceedings
of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’96, 1996, pp. 171–180.

[39] P. Musialski, C. Hafner, F. Rist, M. Birsak, M. Wimmer, and
L. Kobbelt, “Non-linear shape optimization using local subspace
projections,” ACM Transactions on Graphics, vol. 35, no. 4, 2016.

Weiming Wang is currently a lecturer in Dalian
University of Technology, Department of Mathe-
matical Sciences. He received his B.S and PhD
degrees in 2010 and 2016 from Dalian University
of Technology. His research interests are Com-
puter Graphics and 3D Printing.

Yong-Jin Liu is currently an associate profes-
sor with the TNList, Department of Computer
Science and Technology, Tsinghua University,
China. He received his B.Eng degree from Tian-
jin University, China, in 1998, and the PhD de-
gree from the Hong Kong University of Science
and Technology, Hong Kong, China, in 2004.
His research interests include computational ge-
ometry, computer graphics and computer-aided
design. He is a senior member of the IEEE and
a member of ACM.

Jun Wu is an Assistant Professor at the De-
partment of Design Engineering, Delft Univer-
sity of Technology, The Netherlands. Prior to his
current position, he was a H.C. Ørsted postdoc
fellow at the Technical University of Denmark. He
received a PhD in Computer Science in 2015
from the Technical University of Munich, Ger-
many, and a PhD in Mechanical Engineering in
2012 from Beihang University, Beijing, China.
His research is focused on geometric and phys-
ical modeling, with applications in surgical simu-

lation and computational fabrication.

Shengjing Tian is currently a graduate student
in Dalian University of Technology. His research
interests are scene reconstruction.

Charlie C.L. Wang is currently a Professor and
Chair of Advanced Manufacturing in the De-
partment of Design Engineering at Delft Uni-
versity of Technology, The Netherlands. Prior to
this position, he was a Professor of Mechan-
ical and Automation Engineering at the Chi-
nese University of Hong Kong (CUHK), where
he started his academic career in 2003. Prof.
Wang received a few awards from professional
societies including the ASME CIE Excellence in
Research Award (2016), the Best Paper Awards

of ASME CIE Conferences (twice in 2008 and 2001 respectively), and
the NAMRI/SME Outstanding Paper Award (2013). He serves on the
editorial board of a few journals, including Computer-Aided Design
and IEEE Transactions on Automation Science and Engineering. His
research interests are geometric computing, computer-aided design,
advanced manufacturing, and computational physics.

Ligang Liu is a Professor at the School of
Mathematical Sciences, University of Science
and Technology of China. His research interests
include digital geometric processing, computer
graphics, and image processing. He serves as
the associated editors for journals of IEEE Trans-
actions on Visualization and Computer Graph-
ics, IEEE Computer Graphics and Applications,
Computer Graphics Forum, Computer Aided Ge-
ometric Design, and The Visual Computer. He
served as the conference co-chair of GMP 2017

and the program co-chairs of GMP 2018, CAD/Graphics 2017, CVM
2016, SGP 2015, and SPM 2014. His research works could be found at
his research website: http://staff.ustc.edu.cn/∼lgliu

http://staff.ustc.edu.cn/~lgliu

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Xiuping Liu is currently a Professor in Dalian
University of Technology, Department of Math-
ematical Sciences. She received her B.S. and
M.S. degrees from Jilin University in 1987 and
1990, and PhD degree from Dalian University of
Technology in 1999. Her research interests are
computational geometry and computer graphics

	Introduction
	Related Work
	Pipeline
	Formulation
	Notations and Variables
	Optimization Problem

	Constraints for Support-free
	Face Constraint
	Edge Constraint
	Ceiling Constraint

	Geometric Constraints and Bounds
	Topology Analysis
	Grouping of Contours
	Topology of Solution Space

	Results and Discussion
	Implementation Details
	Optimization Objective: Lightweight
	Optimization Objective: Static Stability
	Experiments and Comparison
	Discussion

	Conclusion
	References
	Biographies
	Weiming Wang
	Yong-Jin Liu
	Jun Wu
	Shengjing Tian
	Charlie C.L. Wang
	Ligang Liu
	Xiuping Liu

