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ABSTRACT ARTICLE HISTORY
This paper presents an integrated modelling framework to capture Received 6 June 2016
pedestrian walking behaviour in congested and uncongested condi- Accepted 7 September 2017

tions. The framework is built using a combination of concepts from KEYWORDS

the Social Force model (basic one-to-one interaction), behavioural Integrated microscopic
heuristics (physiological and cognitive constraints), and materials model; pedestrian walking
science (multi-body potential concept). The approach is ultimately behavior; trajectory data;
designed to capture pedestrian interactions in transit stations. Due to transit stations

the lack of available trajectory data of pedestrians within transit sta-

tions, the model is calibrated using pedestrian trajectory data from

narrow bottleneck and bidirectional flow experiments provided by

the Delft University of Technology. These two scenarios were cho-

sen due to the frequency with which they occur in transit stations.

The integrated modelling framework reproduced similar trajectory

patterns observed in the experiments which encouraged a transit

station simulation in an environment similar to that at the Foggy-

Bottom METRO station in Washington, D.C.

1. Introduction and motivation

Pedestrians play an increasingly important role in the traffic scenes of the modern world.
This role is particularly important in urban areas, such as Washington D.C., where pedestri-
ans often dominate the traffic flow (District of Columbia Department of Transportation). By
accurately modeling pedestrian behavior, design of civil infrastructures may be improved
while increasing the number of pedestrians who can safely flow through the correspond-
ing geometric components (i.e. pedestrian infrastructure capacity). Of particular interest is
the flow of pedestrians through public transit stations (Daamen 2004; Zhang et al. 2009;
Hanseler et al. 2013). Transit stations must be able to hold large numbers of travelers while
also allowing pedestrians to move safely and efficiently from one location to another. Accu-
rately modeling pedestrian behavior through transit stations allows identifying areas with
critical densities that might be dealt with through changing the corresponding geometric
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features or through offering some level of control (pre-timed or real-time). Many mod-
els of pedestrian behavior have been previously suggested, however a relatively recent
review of crowd models conducted in 2013 by Duives et al. suggested that model usabil-
ity is highly dependent on the application for which the model was originally developed
(Duives, Daamen, and Hoogendoorn 2013). In this paper, the model is intended to be
used for crowd management and control for the Washington, DC METRO system. As such,
the model must be able to accurately show high density situations, run in real-time, and
consider the complex nature of human decision-making. Some existing computationally
efficient models have been developed; however, these models frequently capture one-
to-one interactions and fail to consider the complexities of decision-making that occur
in crowded conditions (Tao and Jun 2009; Jian et al. 2014). Other models such the Opti-
mal Reciprocal Collision Avoidance Model (Van Den Berg et al. 2011), the hybrid Zanlungo,
lkeda, and Kanda (2011) Social Force (SF) model, and Crociani and Lammel’s model (2016)
are both computationally efficient and consider complex decision-making dimensions such
as learning. This paper does not intend to criticize such models but to offer an alternative
that might have flexibility for the addition of modules that capture crowd interactions at
transit stations.

Accordingly, the objective of this paper is to accurately and efficiently model pedes-
trian operational behavior (focusing on walking behavior), using a combination of the
Social Force model (Helbing and Molnar 1995), the behavioral heuristics model (Moussaid,
Helbing, and Theraulaz 2011), and concepts from materials science such us multi-body
potential molecular interactions (Gniewek et al. 2011). The motivation behind such ‘inte-
gration’ is the hope that the resulting ‘integrated model’ (IM) will benefit from the attrac-
tion/repulsive force concepts offered by the social force models (offering realistic one-to-
one interactions), the flexibility of the behavioral heuristics (incorporating multiple psycho-
logical and physiological pedestrian characteristics), and the theoretical foundation from
materials science. Furthermore, the combination of these principles allows for drawbacks
of either model to be corrected with aspects from the other model. Toward realizing this
objective, the basic interaction between ‘bodies’ (i.e. pedestrians or obstacles) is adapted
from the Social Force model (Helbing and Molndr 1995). The Social Force model essentially
uses Newtonian physics to describe how pedestrians move. The model defines attractive
and repellant forces which push and pull pedestrians along their path of motion. On the
other hand, the behavioral heuristics model utilized in this paper considers that pedestrians
take advantage of their eyesight and cognitive perception of their surrounding environ-
ment to determine which direction is the most efficient to reach their local destination
(i.e. operational navigation) (Moussaid, Helbing, and Theraulaz 2011). Finally, an essential
concept from materials science is incorporated; this concept states that molecular inter-
actions can be well modeled by taking into account directly neighboring molecules. This
greatly simplifies the complexity of the calculations since not all surrounding objects need
to be considered. This conceptual hypothesis is to be tried in this paper: when applied to
pedestrian dynamics, this concept implies that accurately modeling pedestrian behavior
requires ‘social force’ calculations not only between the two closest bodies (i.e. pedestrians
or obstacles), nor all surrounding bodies, but rather between multiple bodies (i.e. multi-
body potential interactions) within the corresponding field of view (Gniewek et al. 2011).
In our model, we experimented with considering the closest 1, 2, and 3 nearest pedestri-
ans/obstacles when determining a specific pedestrian’s course of action. It should be noted
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that this number may be a parameter to be calibrated depending on surrounding traffic
conditions.

The IM rules are programmed in a Java simulation platform constructed by the authors.
Realistic parametric values were initially taken from the literature and later calibration
efforts were conducted using experimental data obtained by the Transport and Planning
Department at the Delft University of Technology (TU Delft). The basic manual calibration
was aimed to minimize trajectory error between the modeled results and the experimental
results using the bi-directional and narrow bottleneck experiments. Afterwards, a simu-
lation study was conducted to look into crowd phenomena that might be seen at the
Foggy-Bottom METRO station in Washington, D.C. (USA). A brief literature on microscopic
pedestrian modeling is presented in the next section, followed by an explanation of the IM
approach suggested in this paper. Section 3 presents the model itself, including a descrip-
tion of the model’s formulation and basic calibration. Section 4 contains an analysis of the
results obtained from model trajectory calibration and the simulation of pedestrian move-
ment in a transit station. In Section 5, the paper concludes and suggests future research
recommendations.

2. Background

Microscopic pedestrian traffic models describe the movement of individual pedestrians
and attempt to simulate crowd dynamics by considering the choices made by individ-
uals. These models may aim to capture the strategic behavior of pedestrians (choice of
activities and the corresponding departure time and destination), the tactical behavior of
pedestrians (route choice and possible related activity scheduling), and the operational
behavior of pedestrians (walking, waiting, and local navigation). Focusing on the opera-
tional pedestrian behavior, among the microscopic modeling approaches which are the
most prominent and closely related to the model discussed in this paper, there are Cellular
Automata (CA), Social Force (SF), and behavioral heuristics (BH) models.

In the CA modeling approach, the available walking space is divided into a grid (i.e. cells)
and pedestrians are able to move among grid spaces based on rules that vary between
models proposed by different authors (Blue, Embrechts, and Adler 1997). Generally, each
cell can hold a pedestrian or be empty, and full cells cannot be entered by other pedestri-
ans. These models are computationally efficient because time and space are both discrete.
However, the rules that define walking behavior are not based on human decision-making
and behavioral capabilities. The CA rules can become complex increasing the correspond-
ing estimation tractability as well as the difficulty involved with calibration (Helbing et al.
2005). Moreover, CA models have been criticized due to their inability to show phenomena
observed at high densities, like clogging and turbulence (Helbing et al. 2005). Nevertheless,
it remains a popular model with improved model suggestions being published on a yearly
basis. For example, the recent work of Flétteréd and Lammel (2015) and Crociani and Lam-
mel (2016) offered a CA model with rules derived from behavioral observations and that
can re-create multiple real-life congestion dynamics.

The SF modeling theory, first suggested by Helbing and Molnar, is a physics-based
approach that describes pedestrian motion through three relatively simple parameters
(Helbing and Molnar 1995). These parameters are incorporated into equations that cap-
ture a pedestrian’s ‘internal motivation to perform certain movements’. The first parameter
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represents a pedestrian’s acceleration toward her/his desired velocity. The second param-
eter relates to a pedestrian’s desire to remain at a certain distance away from borders,
obstacles, and other pedestrians (i.e. comfort space). The third parameter quantifies the
attractiveness that a pedestrian may feel when approaching familiar pedestrians, store
windows, etc. Some expansions and variations of the equations first proposed by Hel-
bing and Molnar have been suggested (Johansson 2004). Perhaps the greatest diffi-
culty with this model is correctly calibrating the SF equations in order to accurately
recreate organizational phenomena that have been observed in the real world. Fur-
thermore, the ability of a physics-based approach to accurately predict human behav-
ior (which is stochastic by nature) has been questioned. Because of these difficulties,
physics-based modeling approaches have been questioned. Their increasing computa-
tional complexity and the extensive calibration efforts needed have prompted researchers
to develop more simplistic modeling approaches. Accordingly, some researchers advo-
cate for simpler modeling theories to efficiently capture pedestrian behavior and crowd
dynamics.

One such group of models which attempts to simplify the microsimulation of pedes-
trian movements while still covering the fundamental observed behaviors is the behavioral
heuristic models. The first proposed model that incorporates elements of BH was devel-
oped by Paris, Pettré, and Donikian (2007). Although their approach does not describe
itself as a BH model, it includes pedestrians’ ability to predict future collisions, which
Moussaid et al. later classify as a heuristic (Moussaid, Helbing, and Theraulaz 2011). Mous-
said et al. propose a modeling approach based on what they term ‘behavioral heuristics’
(Moussaid, Helbing, and Theraulaz 2011). BH are cognitive procedures used when deci-
sions have to be made quickly. The suggested heuristics are based on the following two
questions: (1) what kind of information is used by pedestrians? (2) How does this infor-
mation influence walking behavior? To answer these questions, it is assumed that vision
is the main source of information for pedestrians. As such, the first heuristic becomes ‘A
pedestrian chooses the direction that allows the most direct path to their destination, tak-
ing into account the presence of obstacles’ (Moussaid, Helbing, and Theraulaz 2011). The
second heuristic is ‘A pedestrian maintains a distance from the first obstacle in the cho-
sen walking direction that ensures a time to collision of at least ' (Moussaid, Helbing, and
Theraulaz 2011). The BH models are capable of showing crowd turbulence in high density
situations.

As has been mentioned, one of the primary difficulties associated with modeling pedes-
trian behavior stems from the complexity of calibration. Model calibration has been
achieved through a variety of methods. The most basic method, of course, is simple manual
calibration, in which parameters are manually altered in order to adjust model output until
satisfactory results are obtained. More advanced methods for model calibration range from
applying statistical estimation methods, such as Maximum Likelihood Estimation (MLE)
(Hoogendoorn and Daamen 2007; Ko, Kim, and Sohn 2013) to evolutionary adjustment
to video tracking data (Johansson et al. 2008), among others. Both MLE and evolutionary
adjustment to video data have had success in calibrating the SF model. MLE is a statistical
method that is used to estimate the parameters of the model. This method, as described by
Ko, Kim, and Sohn (2013), uses observed individual trajectory data to estimate the model
parameters, although MLE can also be applied to macroscopic pedestrian characteristics.
The underlying principle of MLE is that the observed data are those which correspond to the
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most probable scenario. MLE allows for the simultaneous estimation of all parameter coef-
ficients and produces unbiased estimates (Lehmann and Casella 1998). The evolutionary
adjustment to video tracking data conducted by Johansson, Helbing, and Shukla (2007)
made use of an evolutionary optimization algorithm that determined the best parameter
specifications for the SF model. The authors use a hybrid method to combine empiri-
cal trajectory data and microscopic simulation data of pedestrian movement in space by
assigning a virtual pedestrian in the model to every real pedestrian observed in the video
data. The authors used distance error to determine how well the model was performing,
with the best possible fitness value corresponding to 0. The authors then used an evo-
lutionary algorithm to obtain the parameter set with the best fitness value. The authors
found that there was actually a broad range of parameter sets that produced similarly
good results. In this exploratory paper, the presented model has undergone a basic man-
ual calibration using pedestrian flow data collected in five scenarios, as further described
in Section 5.

In summary, the models discussed in this section are each capable of reproducing
particular aspects of crowd dynamics. However, the complexities involved in real world
crowds have prevented the creation of a single model which is capable of reproducing all
crowd phenomena. Although this is a limitation, models can still be developed for spe-
cific causes. For the model presented here, the ultimate objective is to achieve realistic
results in high density situations, since these are the scenarios in which METRO personnel
would need to deploy the crowd control devices at their disposal. Of course, this ulti-
mate objective also relies on maintaining the efficiency of real-time computation. However,
the limited availability of high density data increases the difficulty of attaining this objec-
tive. Therefore, the preliminary goal of this paper is to show that the integrated modeling
approach, which combines aspects of SF, BH, and materials science is capable of reproduc-
ing different flow dynamics obtained through experimentation at TU Delft. As such, the
main contribution becomes the combination of a continuous space SF simulation model
and a heuristic approach (inspired by/derived from physiological perception considera-
tions and materials science) to capture realistic behaviors in different set-ups/experiments.
Such hybrid approach could be utilized with other force-based models (e.g. generalized
centrifugal-force model) or velocity-space based models (e.g. ORCA).

The methodology utilized in this paper is explained in the next section focusing on the
model formulation and basic calibration. For validation reasons, the simulation numerical
results are presented afterwards before concluding with future research recommendations.

3. Model formulation and calibration

In this section, the IM-related details are explained, beginning with the formulation which
specifies the aspects of the suggested model which were adapted from other sources
as well as the method by which they were combined. Following the formulation, the
calibration efforts that were undertaken for this model are described.

3.1. Formulation

The primary equations used in this model come from the SF and BH models and are com-
bined using concepts from materials science. The acceleration term affecting pedestrians
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whose actual velocity differs from their desired velocity comes from the SF model, as shown:

Fa(vou vaeﬂl) = T_(Uaeol - UO[)I (1)
o

where v, (t) = actual velocity of pedestrian «, &, (t) = desired direction of pedestrian «,

:g(t) = 10e, = desired velocity of pedestrian , and 7, = relaxation time of pedestrian a.

The relaxation time accounts for the time taken by a pedestrian to return to his/her
desired speed. The direction chosen by a pedestrian is dictated by the BH model’s first
heuristic, which essentially states that a pedestrian chooses the direction that allows for
the most direct path to his/her destination while considering the presence of other pedes-
trians and obstacles (Moussaid, Helbing, and Theraulaz 2011). To compute this direction,
the distance to the first collision, r(e), is computed for all pedestrians within a pedestrian’s
field of view. If no collision is expected to occur, then r(e) is set to a default maximum value
dmax- The dmax value corresponds to the ‘horizon distance’ of the pedestrian, namely how
far ahead the pedestrian is looking while deciding which direction to move in. It should
be noted that this ‘heuristic’ component may add to the repulsive/attractive forces experi-
enced through the interaction between pedestrians. The directional equation is shown in
Equation (2).

ey (t) = d2 ., + r(e)* — 2dmaxr(e) cos(ep — e), (2)

max

where &, (t) = desired direction of pedestrian «, dmax = sight distance of pedestrian «,
r(e) = distance to first collision, eg = direction of destination, and e = direction within
field of view considered by pedestrian

The repulsive effect felt by the pedestrian as a result of nearby obstacles and pedestri-
ans is described by the SF model. Equation (3) shows the repulsive effect caused by other
pedestrians, B.

Fop (Fap) = ~ Vi Vaplb(Tah), 3)

where @ = repulsive effect felt by pedestrain « due to pedestrian 8, 75 = distance

between pedestrians « and B, and V,4[b(75)] = replusive potential ( monotonic decrea-
sing function of b).

The monotonic decreasing function of b(-) has equipotential lines in the form of an ellipse
thatis pointed in the direction of motion, which accounts for a pedestrian’s next step in the
specified direction. This feature is included because other pedestrians take into account
the imminent step of the other pedestrian, assuming the other pedestrians maintain their
current speed (Van Den Berg et al. 2011). The semi-minor axis of the ellipse is denoted by
b, as shown in Equation (4).

b= 05"/ (I3l + e — vp Ategl)? — (s AD?, @

where  vg = velocity of pedestrian 8, e = direction of motion of pedestrian 8, and
At = time change used to determine step width of pedestrian 8.

The repulsive potential V,4[b(F55)] is assumed to decrease exponentially, as shown in
Equation (5).

Vi (b) = Ve, (5)

where Vgﬁ = constant parameter and o = constant parameter,
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The repulsive effect felt by a pedestrian due to the presence of obstacles, B, is similar to
that due to pedestrians, as shown in Equation (6).

fup(TaB) = — Vi Uas([ITasl), (6)

where f?g = repulsive effect felt by pedestrain « due to obstacle B, 7,3 = distance between
pedestrian « and obstacle B, and U,g(||7z5]l) = replusive potential (monotonic decreasing
potential)

This repulsive potential is further explained in Equation (7), in which the repulsion effect
felt by the pedestrian due to the presence of obstacles is a function of the distance between
the pedestrian and the obstacle, further determined by the constant parameters R and U2,

Uaa(lras ) = U0ge 17817, )

where UgB = constant parameter and R = constant parameter

Equations (1)-(7) describe the majority of pedestrian movement. In this model, the effect
induced by pedestrians and obstacles is only considered for those pedestrians and obsta-
cles that lie within the pedestrian’s field of view. The field of view concept employed here
most closely resembles that of the BH model, although it is also related to the approach
developed by Antonini, Bierlaire, and Weber (2006). A pedestrian’s field of view is defined
by an angle and a distance. At this stage, the angle and the distance specifying the field of
view are constant even though they might be related in the future to individual pedestrian
and traffic characteristics. It should be noted that the field of view does not include pedes-
trians/obstacles hidden by other pedestrians or obstacles. Considering that a pedestrian is
looking into her/his desired direction of motion, the angle defines how much the pedes-
trian is able to see on either side of the imaginary line of sight of the pedestrian. The field
of view is further defined by a sight distance, which has previously been mentioned with
regard to Equation (2). The sight distance describes how far straight ahead the pedestrian is
able to anticipate what is going to happen. This distance is much shorter than the distance
that the pedestrian is capable of seeing, since the pedestrian is unlikely to anticipate the
actions of pedestrians that are very far away. This concept is illustrated in Figure 1.

In addition to a pedestrian’s reaction being determined by what is occurring within the
field of view, this model also assumes that only those pedestrians/obstacles nearest the

sight distance

Figure 1. lllustration of the field of view concept as a function of the angle of sight and sight distance.
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pedestrian influence the pedestrian in question. This assumption stems from the materials
science concept which has previously been discussed. At present, the model assumes that
the nearest three other pedestrians/obstacles are influential. However, this number may
be considered as a calibration parameter in the future. Using the equations and concepts
described earlier, the model was implemented in a Java platform.

3.2. Calibration

Model calibration was conducted using a basic genetic algorithm in which an initial set
of chromosomes was continuously altered to minimize the trajectory error. For this case,
the trajectory error refers to the Euclidean distance between a simulated pedestrian’s coor-
dinates and its corresponding real pedestrian’s coordinates. The simulated trajectory for
both the bidirectional and the narrow bottleneck scenario was compared to experimental
data obtained by TU Delft. A detailed review of these experiments is provided by Daamen
and Hoogendoorn (2003). The data are based on video recordings and the x and y coordi-
nates of each pedestrian are collected every 0.1 second. In the bidirectional experiment, the
walking area was 4-meter wide and 10-meter long and pedestrians were allowed to move
from ‘left’ to ‘right’ or from ‘right’ to ‘left’ along the 10-meter length of the walking area. In
total, there were 56,051 data entries collected over 415 seconds. The mean speed recorded
was 1.28 meters per second and the standard deviation was 0.2 meters per second. The
total number of pedestrians observed in the experiment was 724. In the narrow bottleneck
experiment, the walking area consisted of a 5-meter long by 4-meter wide area followed
by a 5-meter long by 1-meter wide area. For the narrow bottleneck experiment, a total of
178,196 data entries were recorded over 915 seconds. There were 1154 unique pedestrian
IDs. From this narrow bottleneck data, the mean speed was 0.68 meters per second with
a standard deviation of 0.4 meters per second. The trajectories from both of these exper-
iments were compared to model output and a genetic algorithm approach was used to
calibrate the model in an effort to reduce the distance between the simulated pedestrians’
coordinates and the experimental pedestrians’ coordinates.

Initially, model results were generated using macroscopic information from the exper-
imental data obtained by TU Delft and parameter values from literature. The mean and
standard deviation of the pedestrians’ speed in the experimental data (assuming a normal
distribution) was applied to the modeled pedestrians as their desired speed. This approach
assumes that no congestion occurred in the experimental data, which is not the case, and
therefore will lead to a slight underestimation of the modeled pedestrians’ desired speeds.
In order to account for this, the mean speed of the pedestrians in the narrow bottleneck
experiment was not utilized as a desired speed since it was so low. Instead, the mean from
the bidirectional flow experiment was used. In addition to obtaining desired velocity from
the data, the start times, initial coordinates, and desired destination were determined from
the experimental data. Simulated trajectories were obtained from the model using the
velocities, start times, and starting/ending coordinates from the data. The x and y coor-
dinates of each pedestrian in the model were recorded at every time step and compared to
the actual trajectories recorded in the data. The difference between the experimental data
and the model output was measured by calculating the Euclidean distance between the
two trajectory points (i.e. coordinate from the data and coordinate from the simulation) of
each pedestrian at each times step.
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In order to minimize the calculated distance between the model trajectory coordinates
and the experimental trajectory coordinates, the parameter values in the model were
changed using a genetic algorithm approach. Six model parameters were chosen to be
adjusted. Four of the parameters were chosen from the SF part of the IM, due to the notori-
ous difficulty of SF model calibration. The SF parameters include the U and V potentials as
well as their associated o and R values (Equations (5) and (7)) and the corresponding initial
values were chosen based on the initial work of Helbing and Molnar (1995). The BH param-
eter selected for calibration is the sight distance, dmax shown in Equation (2). Finally, the
number of closest obstacles/pedestrians considered by the pedestrian in question was cho-
sen as a parameter to calibrate. The average distance between the experimental data and
the model output was used to determine if the change in parametric values was successful
or not, thereby serving as the objective function for the genetic algorithm.

To implement the genetic algorithm, three initial parameter sets were selected (i.e. three
values for each of the six parameters). The three parameter sets roughly correspond to: (1)
values seen in literature, (2) lowest reasonable values for all parameters considered, and
(3) highest reasonable values for all parameters considered. Table 1 shows the three initial
parameter sets that were used for the model calibration. Table 1 shows that the number of
nearest obstacles in the parameter set taken from the literature is two — nearest obstacle
(Helbing and Molnar 1995). Although the literature generally considers only one nearest
obstacle, this parameter was adjusted to ensure that all parameters in the set taken from
the literature correspond to median values in the available range. Using these three sets
of parameters (referred to as chromosomes in genetic algorithm theory), other parame-
ters sets were created. In order to do this, each chromosome was tested to determine the
average distance between experimental coordinates and simulated coordinates at each
time step produced by the parameter set. Different parameter sets produced unique aver-
age distance values. New chromosomes were generated by crossing all previously existing
chromosomes with each other. The crossover point was randomly selected. In order to
introduce further variety among the parameters, the chromosome crossing was followed
by an iteration through each parameter in each chromosome in which the parameter under
consideration had a 10% chance of being swapped with the same parameter in one of the
other randomly selected chromosomes. Each parameter under consideration also had a
10% chance of being randomly mutated by the addition or subtraction (randomly chosen)
of a percentage (between 0% and 50%) of the parameter’s initial value. Using this gen-
eration process, numerous chromosomes were created and tested in order to determine
which parameter set resulted in the lowest average distance between the experimental
trajectories and the simulated trajectories. The bidirectional flow simulation and the nar-
row bottleneck flow simulation performed at their best for different sets of parameters.
Table 2 shows the top performing parameter sets for each scenario considered. The error
corresponds to the average Euclidean distance (in meters) between each simulated pedes-
trian and corresponding real pedestrian’s coordinates. This average was calculated over
the entire duration of the simulation. It should be noted that the error value (i.e. distance
between the simulated and real coordinates) generally increased with time because the
simulated pedestrians were never corrected to realign with the real pedestrians. Because
of this, pedestrians in the vicinity of the simulated pedestrian were in different locations
than those pedestrians in the vicinity of the real pedestrian. As such, the simulated pedes-
trian was reacting to conditions that were not exactly experienced by the real pedestrian,
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Table 1. Initially selected parameter sets.

U R % o Sight distance No. of nearest obstacles
Literature values 10 0.2 2.1 0.3 10 2
High values 15 0.3 3.2 0.5 15 3
Low values 5 0.1 1 0.1 5 1

Table 2. Top performing parameter sets.

Scenario U R v o Sight distance No. of nearest obstacles Error
Bidirectional 10 0.2 3.2 0.5 15 3 1.16
Narrow bottleneck 15 0.2 2.1 0.5 10 2 1.51

thereby increasing the observed error. Future work on this calibration technique may ben-
efit from repositioning the simulated pedestrians at each time step so that the measured
distance between coordinates more closely represents error in the model.

Using the top performing parameter sets shown in Table 2, simulated bidirectional
and narrow bottleneck trajectories were obtained. The figure below shows a side-by-side
comparison of the trajectories obtained from the experimental data and the trajectories
obtained from the simulation.

Figure 2 presents a trajectory comparison between experimental data gathered by TU
Delft and the corresponding trajectories that were gathered from the IM model. From the
top, the images show: Bidirectional Flow (Left to right in blue and right to left in red) [A, B]
and Narrow Bottleneck [C, D]. In the two directional flow situation, in addition to matching
in terms of area occupied by pedestrians (i.e. area mainly occupied by pedestrians moving
from right to left —red trajectories — versus area occupied mainly by pedestrians moving
from left to right — blue trajectories), the simulation suggests lane formation similar to that
seen in the data, although this phenomenon cannot be definitively observed with all of
the trajectories plotted at once. In the simulated bottleneck result, the funneling effect can
be seen as the pedestrians fan outwards before entering the bottleneck area. The experi-
mental and simulated results from the narrow bottleneck show relatively sharp zig-zagging
trajectories from pedestrians traveling on the outermost edge of the funnel shape who are
attempting to enter the central area.

The next section describes the numerical results gathered from simulation, including a
comparison of the flow-density diagrams obtained from the data and from the simulation
of the bidirectional flow and narrow bottleneck scenarios. Using the calibrated parame-
ters shown above, a transit station scenario was simulated. The results from the transit
simulation are also shown in the following section.

4, Simulation

In addition to measuring the distance between the experimental and the simulated tra-
jectories, the flow—-density relationships were also analyzed. The figure below shows the
flow-density diagrams obtained from the data as well as the flow-density diagrams
obtained from the simulation for the bidirectional flow scenarios. The flows and densities of
the simulations were recorded from the trajectories that were obtained using the previously
described optimal parameter sets for each scenario. The flow was measured by recording
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Figure 2. Observed (left) and the simulated (right) trajectories.

the time at which a pedestrian crossed a specified point in the scenario. These times were
then aggregated to correspond to a single, full second. For example, pedestrians crossing
the specified meter mark at 3.5, 3.7, and 3.9 seconds were all included in the flow count at
3 seconds. The measured flow was divided by the observed width of the walking area in
order to come up with a pedestrians/meter/second value. The density measurement was
conducted in various ways, including the Fruin method and the XT-method. However, it
was found that extrapolating the density from the pedestrians’ speed was favorable since
it was not affected by the need to select a specific grid size, as is required by both the Fruin
and XT-method.

Figure 3 shows that the simulated flow-density diagrams achieved similar shapes and
values to those created from the experimental data for the bidirectional flow scenario. How-
ever, it can be seen that no congestion has been observed in both the experimental and the
simulation results; moreover, the simulated bidirectional flow density had more frequent
observations near the upper part of the diagram in addition to slightly higher observed
density.

As for the simulated bottleneck scenario results, the authors clearly observe a capacity
reach at a flow of around 2.5 pedestrian/second/meter in the area directly at the entrance
of the bottleneck. The corresponding flow-density diagram is presented in Figure 4.

The simulated narrow bottleneck flow density closely matched the reported numbers
from Zhang et al. (2011). However, the experimental data resulted in a much wider range



12 (&) E.PORTERETAL.

Experimental Bidirectional Flow Density
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Figure 3. (A) Bidirectional flow—density diagram from experimental data and (B) bidirectional
flow—density diagram from simulation.

of observed densities. It should be noted that the results are promising but the expected
triangular shape fundamental diagram is not as elaborate as it was expected.

Using the six IM parameters that resulted in the lowest distance between trajectories, the
model was tested on a transit scenario as illustrated in Figure 5. The trajectory data obtained
are presented in Figure 6.

For the simulation of the transit scenario, it was assumed that pedestrians entered the
platform from the escalator near the right section of Figure 5(A) as well as from train doors.
Pedestrians were able to leave the platform via the more centrally located escalator as well
as by entering train doors. Pedestrians arriving onto the platform and moving toward train
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Narrow Bottleneck Flow-Density Diagram
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Figure 5. Transit station platform illustration.

doors were initialized using the optimal parameter set from the bidirectional flow scenar-
ios, while pedestrians exiting the platform (i.e. moving from the train doors to the centrally
located escalator) were initialized using the optimal parameter set from the narrow bottle-
neck scenario. These initialization decisions were made because pedestrians coming onto
the platform were more likely to experience bidirectional flow situations than narrow bot-
tleneck situations, while the pedestrians attempting to leave the platform via the escalator
were almost inevitably going to experience a narrow bottleneck situation. In order to gen-
erate the input data for the pedestrians in the transit simulation, a variety of variables were
selected. Initially, each pedestrian was assigned a walking direction determining whether
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Figure 6. (A) Trajectories from transit simulation and (B) density plot from transit simulation.

the pedestrian would be entering or exiting the platform. The walking direction of the
pedestrian influenced all other initialization variables including start time, starting coordi-
nates, and desired destination. For pedestrians entering the platform from the escalator, a
random start time between 0.1 and the desired runtime of the simulation was chosen. Start-
ing coordinates for these pedestrians were limited to the location of the escalator (labeled
as ‘down’ in Figure 5). These pedestrians had a 90% chance of aiming for a hotspot on the
platform (i.e. a position in which they would be near the arriving train’s doors). The pedestri-
ans aiming for hotspots randomly selected one of the 12 available train door hotspots (6 on
each side of the platform) as their destination. Pedestrians entering the platform from trains
were given start times corresponding with the arrival of trains, which occurred every 3 min-
utes. These pedestrians were randomly assigned to start at 1 of the 12 available train doors.
The desired destination of all pedestrians exiting the platform was the centrally located
escalator (labeled ‘up’ in Figure 4). The transit simulation was conducted using this input
information as well as the previously described parameter sets. The resulting trajectories as
well as a density plot of the transit platform are shown in Figure 6. Figure 6(B) shows the den-
sity at each x-coordinate in the transit station, showing the highest densities corresponding
to the area in near the entrance of the centrally located escalator. Figure 6(A) shows that the
high densities near the entrance of the centrally located escalator (as confirmed by Figure
6(B)) resulted in the formation of a small bottleneck.

5. Conclusions and recommendations

Pedestrian modeling faces numerous challenges, ranging from covering heterogeneity
among the behavior of individuals to a lack of commonly used datasets. These difficulties
affect models in different ways — the heterogeneity of pedestrians contributes to the nonex-
istence of a single model that can accurately describe all types of scenarios, and the lack of
common data sets contributes to different approaches taken by authors to validate their
models. Furthermore, thereis alack of commonly accepted calibration and validation meth-
ods as well as a lack of agreement on which phenomena and behaviors a model should be
able to capture, which adds to the difficulty of verifying that a particular model is working
well. Although the pedestrian modelers’ ultimate goal, of being able to realistically simu-
late all types of situations with a single model, has not yet been reached, there are many
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models which are capable of reproducing specific situations. The IM approach is intended
to be used in high density situations, and this paper discusses the initial calibration and val-
idation efforts that have been taken toward achieving that goal. In order to further improve
this model, experimental data gathered in high density situations will need to be used for
calibration. Additionally, a sensitivity analysis must be conducted, in addition to more inten-
sive calibration efforts, in order to verify that the IM approach is capable of simulating all
types of scenarios that are seen in transit stations. Future calibration efforts will consist of
a thorough macroscopic and microscopic calibration in addition to specifying more indi-
vidualized pedestrian information. Based on the testing described above, it appears that
pedestrian modeling may benefit from considering numerous obstacles/pedestrians in the
vicinity of the pedestrian under consideration, as opposed to the classic approach of con-
sidering only a single other entity. The primary future goal identified by the authors of this
paper is to collect data from high density experiments, which will be invaluable to this
model, as well as to other models with similar objectives.
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