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a b s t r a c t

A stochastic Direct Simulation Monte Carlo (DSMC) method has been extended for handling bubble-
bubble and bubble-wall collisions. Bubbly flows are generally characterized by highly correlated veloci-
ties due to presence of the surrounding liquid. The DSMC method has been improved to account for these
kind of correlated collisions along with a treatment allowing the method to be used also at relatively high
volume fractions. The method is first verified with the deterministic Discrete Particle/Bubble Model
(DPM/DBM) using two problem cases: (a) dry granular flow of particles through two impinging nozzles
and (b) 3D periodic bubble rise for mono-disperse and poly-disperse systems. The verification parameters
are the total number of prevailing collisions within the system, the collision frequencies and the time-
averaged liquid velocity profiles (only for the 3D-periodic bubble rise). Subsequently the method is
applied to a lab-scale bubble column and validated with the experimental data of Deen et al. (2001). A
computational performance comparison with the DBM is reported for the 3D periodic bubble rise case
with varying overall gas fractions. The DSMC is approximately two orders of magnitude faster than the
deterministic approach for the studied dense bubbly flow cases without adverse effects on the quality
of the computational results.

� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Bubbly flow is one of the most widely used methods for gas-
liquid contacting operations in the process industries. Processes
like absorption, fermentation, Fischer-Tropsch synthesis, waste
water treatment and bio-reaction based processes are typically
operated in bubble columns. These operations are generally mass
transfer limited and to obtain reasonable yields, certain criteria
have to be satisfied. These include a high gas-liquid inter-facial
area and fast mixing to enhance the reactor performance. Both cri-
teria are met in bubble columns with the additional advantage of
no moving mechanical parts. Industrial columns possess volumes
in the range of 100–300 m3. Even larger columns are employed
for bio-processes like fermentation (3000 m3) and waste water
treatment (20,000 m3) (Deen et al., 2012).

The bubble dynamics inside the column dictate the (induced)
liquid flow where coalescence, break-up and mass transfer rates
determine the bubble size distribution. Local mass transfer rates
are highly influenced by the mixing within the liquid phase which
in turn depends on the previously mentioned phenomena in the
column. Due to this strong coupling between the parameters, mod-
eling of such bubble columns is very challenging and inevitably
empirical input information (i.e. correlations) is required. A review
of such correlations and the scale-up of these columns can be
found in the works of Chaudhari and Ramachandran (1980),
Shaikh and Al-Dahhan (2013). Due to recent advances in computa-
tional power and techniques, considerable progress has been made
in simulation of the flow structures in such columns which occur at
multiple time and length scales.
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Nomenclature

Roman symbols
F force (N)
g radial distribution function at contact (–)
r position vector of the discrete phase (particles/bubbles)
Pij probability of collision between particle ids (–)
Stk Stokes number (–)
V volume (m3)
u continuous phase velocity vector (m/s)
v discrete phase velocity vector (m/s)
P pressure (Pa)
g acceleration due to gravity (m=s2)
d particle diameter (m)
n parcel size (–)
Rs searching scope size (m)

Greek symbols
e porosity (–)
q density (kg=m3)

s stress tensor (N=m2)
U local volume averaged momentum source term (N=m3)
s relaxation time (s)
m kinematic viscosity (m2=s)
� dissipation rate of turbulent kinetic energy (m2=s3)

Subscrips
b; bub discrete phase (bubble/particle) (–)
l liquid phase (–)
G gravity (–)
P pressure (–)
D drag (–)
L lift (–)
VM virtual Mass (–)
W wall (–)
eff effective (–)
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The accurate simulation of bubble columns defines a complex
multi-scale problem due to the wide range of length scales that
needs to be covered. Methods such as Front-Tracking (Unverdi
and Tryggvason, 1992) and Volume of Fluid (van Sint Annaland
et al., 2005) methods have been applied to simulate the behavior
of a single bubble or a swarm of interacting bubbles rising through
the liquid phase. Closures obtained from these simulations have
been developed and implemented into methods used at larger
length and time scales, such as the Discrete Bubble Model (DBM)
and the Multi Fluid Models (MFM). The DBM constitutes a suitable
framework to understand the influence of bubble-bubble interac-
tions and bubble wall encounters on large scale flow structures.
There are several recent works which have used this framework
to simulate bubbly flows (Darmana et al., 2006; Jain et al., 2014)
using the hard-sphere model for bubble-bubble and bubble-wall
interactions. Several recent studies have also incorporated a soft
sphere model which is much more parallelizable for bubble-
bubble and bubble-wall collisions (Heitkam et al., 2017; Xue
et al., 2017a,b; Lau et al., 2014). However, the method becomes
computationally very expensive when simulating dense bubbly
flows because every bubble is tracked explicitly and the bubble-
bubble encounters are resolved in time. Therefore, at the industrial
scale, Euler-Euler approaches like the MFMs are preferred to save
time (Deen et al., 2004).

Euler-Euler approaches such as the Multi Fluid Model represent
the bubble phase with different size classes. Coupled momentum
andmass conservation equations are solved for each size class with
suitable closures. The interactions among the different considered
phases need to be defined explicitly. Bubble-bubble interactions
are not explicitly accounted for nor the naturally occurring phe-
nomena of coalescence and break-up. Dedicated external models,
such as population balance models, have to be integrated with
the Multi-Fluid Model to account for coalescence and break-up.
Some of the recent works in this field can be found in Zhang
(2007), Fletcher et al. (2017), Giorgio et al. (2017), Buwa and
Ranade (2002), Bhole et al. (2008), Yang and Xiao (2017). In the
work of Zhang, 2007 the range of bubble sizes is assumed to be
2–4 mm while the other parameters such as drag, lift etc. are
assumed to not vary significantly. Therefore a two-fluid approach
is employed. Similarly, Krishna et al. (2000) have considered three
phases, one for large bubbles, one for small bubbles and one for the
liquid phase.
Stochastic Euler-Lagrangian methods provide interesting com-
promise with respect to consideration of both, the computational
efficiency and the accurate representation of the discrete phase.
There are several examples of stochastic methods being used for
particulate flows in the literature (O’Rourke, 1981; Du et al.,
2011; Pawar et al., 2014; Sungkorn et al., 2011). These methods
have also been coupled with Eulerian methods to simulate multi-
phase flows. Pawar et al. (2015) have simulated droplet sprays
using the Direct Simulation Monte Carlo (DSMC) method for
droplet-droplet collisions. Sommerfeld (2001) has presented a fic-
titious ghost particle approach for the inter-particle collisions. This
approach considers the velocity fluctuations in the particle phase
due to the turbulence in the fluid phase. It has also been used by
Witz et al. (2016) for the execution of bubble-bubble interactions
in an industrial scale bio-reactor. Huilin et al. (2006) have simu-
lated a 2D fluidized bed using the DSMC approach also incorporat-
ing the DSMC parcels; however the porosity calculation for the
coupling with the fluid does not seem to be consistent since the
real particle positions in a parcel are not known.

The main objective of this work is to develop a computationally
inexpensive Euler-Lagrange model that can be used for large scale
dense bubbly flows. Bubble-bubble and bubble-wall interactions
are critical bottlenecks in the computational speed of deterministic
simulations. To resolve this issue, a stochastic DSMC approach is
used to execute the collisions in a more efficient manner. Pawar
et al. (2014) and Du et al. (2011) have shown that the method is
nearly two orders of magnitude faster than the DBM, but limita-
tions to the approach were encountered with respect to the vol-
ume fraction of the discrete phase. This work also aims to extend
the DSMC approach to alleviate the volume fraction limitation
observed by Pawar et al. (2014) and improve the DSMC algorithm
for particles/bubbles with highly correlated velocities.

A detailed methodology of the DSMCmethod extended to dense
bubbly flow application is presented in this paper. Section 2
describes the method used, the modifications and the algorithm.
Verification of the method is performed for two systems: a) Dry
granular flow b) 3D periodic bubble rise and will be reported in
Section 4. The verification model chosen is the Discrete Bubble
Model (Darmana et al., 2006). Furthermore, a validation with
experimental data reported in the literature is performed through
the simulation of a lab-scale bubble column (Deen et al., 2001).
Lastly the computational performance of the method is investi-
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gated on a single core and compared with the performance of the
Discrete Bubble Model.
2. Methodology

2.1. Discrete phase

Bubble sizes depend on the regime in which a bubble column is
operated as well as the characteristics of the gas distributor. The
bubble size is typically in the range of a few millimeters to a few
centimeters (Deen et al., 2012). The bubble motion is governed
by the Newtonian equations of motion (see Eq. (1)) where the con-
sidered forces include here are gravitational (FG), pressure ðFPÞ,
drag ðFDÞ, lift ðFLÞ, virtual mass ðFVMÞ and wall lubrication ðFWÞ
force (see Eq. (2)). The relevant closures used for these forces can
be found in Table 1.

qbVb
dðvÞ
dt

¼ RF� qb
dðVbÞ
dt

� �
v ð1Þ
RF ¼ FG þ FP þ FD þ FL þ FVM þ FW ð2Þ

The closures used for drag, lift and wall forces used here are from
Tomiyama et al. (1995, 2002). The drag correction for dense bubble
swarms that is included here can be found in Roghair et al. (2011). A
more detailed explanation about the forces and closures can be
found in works of Darmana et al. (2006), Jain et al. (2014) and
Delnoij et al. (1997).

The DSMC methods generally employ a parcel approach where
a group of discrete particles is represented by one simulated parti-
cle. The particles in a parcel are considered to be of the same size
and to move with the same velocity as the simulated particle.
Velocity change only occurs due to collisions with other parcels.
This approach is adopted to save computational costs and is based
on the assumption that the parcels grow isotropically purely due to
diffusion in time. The systems for which this method was initially
developed and applied to are molecular systems that have finite/
large Knudsen number (Bird, 1994). In this work a parcel size of
1 is chosen to keep things simple and relatively more accurate.
For a parcel size of 1, Pawar et al. (2014) have shown a major
(60 to 70 times) speed boost compared to the deterministic Dis-
crete Particle approach.

Extension to larger parcel sizes requires careful consideration of
different forces for the bubbles as a swarm and the mapping func-
tions for calculation of the porosity. Moreover, the trajectory of the
bubbles is non-linear due to coupling with the liquid and the parcel
needs to grow anisotropically in the direction of buoyancy with
time. This will be considered in our future work.
Table 1
Closures for the different types of forces acting on bubbles.

Force Closure

FG ¼ qbVbg –
Fp ¼ �VbrP –

FD ¼ � 1
2CDqlpR

2
b jv � ujðv � uÞ CD;1 ¼ max min 16

Re ð1þ 0:15Re0:687Þ; 48Re
n oh

CD
CD;1ð1�ebÞ ¼ 1þ 18

E€o eb
FL ¼ �CLqlVbðv � uÞ � ðr � uÞ

CL ¼
min½0:288 tanhð0:121ReÞ; f ðE€odÞ�;
f ðE€odÞ;
�0:29;

8<
:

f ðE€odÞ ¼ 0 : 00105E€o3d � 0:0159E€o2d � 0:02

E€od ¼ E€o
E ; E ¼ 1

1þ0:136E€o0:757

FVM ¼ �CVMqlVb
Dbv
Dbt

� Dbu
Dbt

� �
CVM ¼ 0:5

FW ¼ �CWRbql
1

D2
bw
ju� vj2n CW ¼ expð�0:933E€oþ 0:179Þ; 1 6 E€o

0:0007E€oþ 0:04; E€od P

�

2.2. Liquid phase hydrodynamics

The liquid phase hydrodynamics is obtained by solving the
volume-averaged Navier-Stokes equations coupled with the conti-
nuity equation (see Eqs. (4) and (3)).

@ðelqlÞ
@t

þr � elqlu ¼ 0 ð3Þ

@ðelqluÞ
@t

þr � elqluu ¼ �elrP �r � elsl þ elqlgþU ð4Þ

where el is the local liquid fraction. U represents the local momen-
tum source term for the force exerted by the bubbles on the liquid.
The shear stress term sl is given by:

sl ¼ �leff ;lððruÞ þ ðruÞT � 2
3
Iðr � uÞÞ ð5Þ

where

leff ;l ¼ lL;l þ lT;l ð6Þ
Here, lL;l is the dynamic viscosity and lT;l is the turbulent viscosity.
The contribution with lT;l originates from the convection term
when the Navier-Stokes equations are volume-averaged and the
Boussinesq eddy viscosity assumption is applied. A large volume
of literature exists comparing different turbulence models with
experimental data in a bubble column (Tabib et al., 2008; Deen
et al., 2001). They concluded that the large eddy simulations out-
perform the k� emodel. LES was chosen for the explicit calculation
of the eddy viscosity (lT;l) in the liquid phase. The lT;l is closed with
the sub-grid scale eddy viscosity expression given by Vreman
(2004).

lT;l ¼ qlc

ffiffiffiffiffiffiffiffiffiffi
bb

aijaij

s
ð7Þ

where c ¼ 2:5C2
s ; Cs is the Smagorinsky constant,

aij ¼ @uj
@xi

; bij ¼ D2
mamiamj and bb ¼ b11b22 � b2

12 þ b11b33 � b2
13þ

b22b33 � b2
23. Dm is the size of the grid in the m direction. A similar

approach has been used by Darmana et al. (2006) and also by Jain
et al. (2014).

3. Numerical solution method

3.1. Time marching

The numerical solution of the governing equations for our
Euler-Lagrange model involves time-marching where the equa-
tions for the discrete and continuous phase are solved sequentially
Reference

–
–

; 83
E€o

E€oþ4

i
Tomiyama et al. (1995, 2002), Roghair et al. (2011)

E€od < 4
4 6 E€od 6 10
E€od > 10

04E€od þ 0:474

Tomiyama et al. (1995, 2002)

Darmana et al. (2007)

d < 5
5

Tomiyama et al. (1995, 2002)



S. Kamath et al. / Chemical Engineering Science 176 (2018) 454–475 457
while accounting for the coupling. The flow time step (dtflow) is
divided into a fixed number of bubble time steps (dtbub). The forces
on each bubble are calculated based on the Eulerian flow-field
around them for every bubble time-step dtbub. dtbub may be divided
into several more time steps based on the collision frequency cal-
culated for every bubble. More details about this procedure are
given in Section 3.3.

The major difference in time marching from the deterministic
approach employed by Darmana et al. (2006) and the stochastic
approach used in this work is the resolution of the lowest time
scale. In the deterministic approach, the collision times are explic-
itly calculated and a list is maintained to sequentially do the colli-
sions in the ascending order of their times. In the current approach,
the collision times are not determined. The collisions take place
based on a probabilistic approach.

3.2. Coupling

Inter-phase coupling consists of porosity mapping and the com-
putation of the volumetric momentum exchange rate between the
Euler and Lagrangian frameworks. Kitagawa et al. (2001) have sys-
tematically laid down the rules for a Lagrangian template function
for mapping the porosity based on the discrete phase positions.
Along the same lines, Deen et al. (2004) have proposed a fourth
order polynomial filter for mapping. The filter width is a user-
defined variable. Darmana et al. (2006) have used a variable filter
width based on the bubble size for their Discrete Bubble Model
which makes it independent of the Eulerian grid size. This mapping
function is used in this work for the inter-phase coupling.

Lau et al. (2011) have reported that the effect of changing the
filter width on the predicted time averaged axial liquid velocities
and velocity fluctuations in a bubble column is negligible when a
drag correction based on local porosity is used. In this work, a filter
width size of 2Rbub is used for a one-to-one comparison between
both the collision models.

3.3. Discrete phase dynamics and collision algorithm

The bubble phase equation of motion is solved using a first
order explicit scheme for Eq. (1):

vnþ1 ¼
P

Fn

mb
dtbub þ vn ð8Þ

The forces are mapped to the discrete bubble locations from the
Eulerian grid cells using the polynomial filter described in Sec-
tion 3.2. The collision sequence is then initiated according to the
algorithm shown in Fig. 1 and Eq. (8). This also includes the update
of bubble positions. Forces on the bubbles are recalculated every
bubble time-step (dtbub) and are also collected in the volumetric
momentum source term U with an opposite sign. This is repeated
until the discrete phase has moved for a full dtflow. The forces col-
lected in the volumetric source term are time-averaged over the
flow time-step dtflow, since they are calculated multiple times in
one flow time-step. Weights for the averaging are calculated based
on the ratio dtbub

dtflow
. With the new bubble positions, the volume fraction

in each Eulerian cell is determined using the polynomial mapping
function.

The collisions that occur during a bubble time-step can cause a
big computational overhead for a dense, large scale system with
bubble/particle numbers in the order of millions. The algorithm
of a deterministic model such as the Discrete Bubble Model
(Darmana et al., 2006) is inherently serial even with a domain
decomposition as the collisions need to occur in the order of their
collision times. In a parallel environment this time needs to be
communicated every time the encounter list is updated. These col-
lision times are maintained in an encounter list from which, the
minimum time needs to be searched every time a collision occurs
due to changes in the bubble positions and velocities. This is com-
putationally expensive for dense systems, even with the imple-
mentation of neighbour lists.

A speed-up with the DSMC algorithm compared to the DBM is
obtained when the collision partner is chosen using probabilistic
rules; thereby avoiding the necessity of an encounter list. There
are several methods used for choosing the right collision pairs in
DSMC such as the time counter method, Nanbu method, modified
Nanbu method and many more (Lutišan, 1995). Pawar et al. (2014)
and Du et al. (2011) have used the modified Nanbu method with
their own modifications for treatment of the searching scope and
collision conditions.

A detailed description and motivation behind the modifications
to the algorithm in this work will be given after the description of
the algorithm. The algorithm is described as follows:

1. Choose a bubble/particle id i from a randomly generated list of
id’s.

2. Calculate the collision frequency f i for i based on Eq. (9).
f i ¼
X
j2 Rs;i

jvijjp4 ðd2
i þ d2

j Þ
nj

4
3pR

3
s;i

gij ð9Þ

where vij is the relative velocity between particles/bubbles i and
j;d is the diameter, nj is the parcel size, Rs;i is the searching scope
size for particle/bubble i and gij is the radial distribution function
at contact for discrete entity i with particle type j. During this
phase, the nearest neighbour to i based on surface to surface dis-
tance is determined, as well as a local list of Ni neighbour ids of
particle/bubbles within the range of Rs;i. If the number of neigh-
bours is less than Nmin, the searching scope is enlarged and step 2
is repeated.

3. The discrete phase time-step Dtp;i is found from the mean free
path (ki) and the magnitude of the velocity of the particle/bub-
ble (v i). If the remnant time (dtbub � Dtcompl) is smaller than the
discrete phase time step, then the remnant time is taken into
account.
ki ¼ jvij
f i

ð10Þ

Dtp;i ¼ min
ki
3v i

; dtbub � Dtcompl

� 	
ð11Þ
4. Calculate new searching scope for the next discrete phase time-
step of particle/bubble i (see Eq. (12)).
Rnew
s;i ¼ maxðjvijDtp;i; jvijjmaxDtp;iÞ ð12Þ
5. A random number (v) is chosen between 0 and 1. The particle j
is chosen based on Eq. (13). The collision probability of i with j
is calculated using Eq. (14).
j ¼ int½vNi� þ 1 ð13Þ

Pij ¼ jvi � vjjp4 ðd2
i þ d2

j Þ
njDtp;i
4
3pR

3
s;i

gij ð14Þ
6. The following conditions (see Eqs. (15) and (16)) are to be sat-
isfied if a collision has to occur. Eq. (16) makes sure that the dis-
crete phase entities are moving towards each other which leads
to more realistic collisions (Pawar et al., 2014).
v >
j
Ni

� Pij ð15Þ

ðvi � vjÞ � ðri � rjÞ < 0 ð16Þ



Fig. 1. Collision algorithm developed and employed in this work.
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Fig. 2. Schematic of the systems in P1 and P2.
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7. This step is executed only for the cases with fluid coupling. If
a collision in step 6 is rejected then the bubble Stokes num-
ber (see Eq. (17)) is checked as per Algorithm 1. If the condi-
tion is satisfied then it is checked if the nearest neighbour of
i will overlap with i. If this is true, then i is collided with its
nearest neighbour.

Algorithm 1. Explicit check for bubbly flow systems.

if Stkbub < 1 then
check for collision with nearest neighbour of i

else
no collisions; move to next step

end if
Stkbub ¼ sbub
sl

ð17Þ

where sbub is approximated for a spherical bubble and the non-
linear part of the drag is assumed to be a constant for the current
time-step. The liquid phase relaxation time is estimated from
the turbulent dissipation calculated from the implemented LES
model.

sl ¼ ml
�

� �ð12Þ ð18Þ

where ml is the liquid kinematic viscosity and � is the dissipation

rate of turbulent kinetic energy. � ¼< 2mejjSijjj2 > where me is the
eddy viscosity calculated from the sub-grid scale turbulence
model and Sij is the rate of deformation tensor.

8. Check for wall collisions. If a particle/bubble overlaps with a
wall, then it is bounced back.

9. Update position (ri), searching scope (Rs;i) of i and time com-
pleted (Dtcompl). Check for time step completion
Table 2
Parameter space for the mono-disperse system of particle size 2 mm applied to P1 (impin

Case Mean velocity (m/s) Std. deviation (m/s)

1 0.2 0.001
2 0.2 0.15
3 2.5 0.001
4 2.5 1.0
It should be noted that the collision frequency (f i) and probabil-
ity term (Pij) include the radial distribution function (gij). As the
flow becomes denser, a structural factor becomes important to
determine the correct collision frequency due to a non-uniform
spatial distribution of the particles. In a packed or a highly clus-
tered system, the local relative velocities are low which leads to
low collision frequencies and probabilities based on the equation
proposed by Bird (1994). In these cases the clusters travel together
with continuous collisions occurring among them. DSMC can pre-
dict the right collision frequency as long as the velocities of the
particles/bubbles remain uncorrelated and the non-uniform spatial
distribution is accounted for via gij (Sundaram and Collins, 1997).

3.3.1. Radial distribution function (gij)
The expression for gij is closed fromMa and Ahmadi (1986) for a

mono-disperse system (see Eq. (19)). The extension to poly-
disperse systems is based on the work of Santos et al. (1999).
The radial distribution function for a multi-component hard-
sphere mixture can be approximated from the compressibility of
a single component hard-sphere system (see Eq. (20)).

gii ¼
ð1þ 2:5ep þ 4:5904e2p þ 4:515439e3pÞ

1� ep
emax

� �3
� �0:67802 ð19Þ

gij ¼
1

1� ep
þ gðrÞcontact;ii þ

1
1� ep

� 	
didj

�ddij

ð20Þ

where �d represents the sauter mean diameter of the particles within
the searching scope whereas ep is the average solids/bubble volume
fraction in the neighborhood of particle i.

3.3.2. Interstitial liquid based velocity correlations
Clustering and layering in bubbly flow is a common phe-

nomenon observed in DNS (Roghair et al., 2011) as well as exper-
iments (Van Wijngaarden, 1993). Bubble dynamics is strongly
coupled with the bubble-induced turbulence especially for a bub-
ging particle streams).

Mass flow rate (kg/s) Particle size (mm)

0.015 2
0.015 2
0.15 2
0.15 2



Fig. 3. Steady state domain snapshots for mono-disperse dry granular streams, DPM vs DSMC.
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Fig. 4. Steady state collision frequency (units of 1=s) snapshots in the xz plane for a cross section at y
YMAX

¼ 0:5 for mono-disperse system cases in Table 2, DPM vs DSMC.

Fig. 5. Total number of collisions (left) and instantaneous collision frequency (right) measured in the domain vs time for different cases given in the Table 2 applied to P1 for a
mono-disperse system with particle size 2 mm, DBM vs DSMC.
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Fig. 6. Velocity probability density plots for different cases in Table 2 applied to P1 for a mono-disperse system with particle size 2 mm, DBM vs DSMC.

Table 3
Parameter space for the mono-disperse system of different bubble sizes applied to P2 (3D periodic bubble rise).

Case Bubble size (mm) Number of bubbles in domain (–) Grid size Box dimensions (l ðmÞ � b ðmÞ � h ðmÞ) Time step (s)

1 2 5000 20� 20� 20 0:1� 0:1� 0:1 10�3

2 4 5000 20� 20� 20 0:1� 0:1� 0:1 10�3
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ble in the wake of another bubble or a bubble swarm. As a conse-
quence, the bubble velocities in and near the same region in a liq-
uid are correlated (or biased). This can be quantified in terms of the
bubble Stokes number.

The seminal paper of Sundaram and Collins (1997), reported the
behavior of particles with different Stokes numbers in the dilute
limit in a turbulent suspension. As the particle Stokes number
increases, the inertia reduces the degree of correlation in velocities
with the fluid. This leads to a more complex behavior with partly
correlated and partly uncorrelated velocities of particles/bubbles.
There exists no theoretical basis in predicting collision frequency
for this intermediate regime. Therefore an explicit treatment with
the nearest neighbour collisions is added to the algorithm when
there is fluid coupling and a collision is rejected due to highly cor-
related velocities (or low Stokes number). As the slip velocity of
bubbles increase, the bubble Stokes number increases therefore
the condition is based on an approximation of the calculated bub-
ble Stokes number which in turn is based on the experienced fluid
drag.

DSMC simulations are typically initiated with a dynamic system
and hence collisions occur because of its dynamic nature. With the
addition of the above Stokes condition the discrete phase can be
started from rest, as from rest most of the collisions occur because
of the fluid-bubble/particle interactions. This is also shown in
Section 4.
3.4. Liquid phase numerical scheme

The continuity equation and the momentum equations are
solved in a coupled manner using SIMPLE (Patankar, 1980). The
unsteady part is discretized using the first order Euler scheme.
The convective fluxes in the continuity equation are treated implic-
itly. The convective, diffusive and the source terms are treated
explicitly in the momentum equations.
4. Verification

The Discrete Bubble Model from Darmana et al. (2006) is taken
as verification model for the DSMC. This is done for two distinctly
different systems:

1. Impinging particle streams (P1): For the verification of the
DSMC method for larger particle/bubble sizes with a non-
uniform spatial distribution.

2. 3D - periodic bubble rise from rest (P2): For the verification in a
bulk bubbly flow system with 4 way coupling.

where P1 corresponds to the case without the presence of any
interstitial fluid and P2 to the bubbly flow case (with interstitial
liquid).

P1 consists of two nozzles facing each other at an angle (see
Fig. 2a). The solid particles enter through these nozzles, collide at
the impact region and spread across the domain based on the out-
come of the collisions. The velocity distribution purely depends on
the collision statistics within the system. Absence of a fluid phase
also means there is no correlation in particle velocities. The mass
flow-rate is set for each nozzle. The parameters that are varied,
are the mean particle velocities and the standard deviation of the
velocities. A Gaussian distribution is used to generate velocities
in the x and z direction with given mean velocity and standard
deviation. The mean velocity in the y direction is set to 0 and per-
turbations are imposed based on the same Gaussian distribution.

P2 represents a 3D periodic system which starts as an array of
regularly spaced bubbles (see Fig. 2b). The spacing between bub-
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bles across the periodic boundaries is a little larger than in the cen-
tral bulk of the domain. Thus, a concentration bias exists in the
bulk of the domain. The bubbles start from rest and their motion
is coupled with the liquid phase motion. The physical properties
used in this system correspond to that of the air-water system.

The following sections are classified based on particle/bubble
system properties. The measurement parameters are the total
number of collisions and the average collision frequency as a func-
tion of time.

4.1. Mono-disperse systems

4.1.1. Impinging particle streams (P1)
The probability ðPijÞ depends on the relative velocity distribu-

tion. Therefore it is necessary to test the DSMC model at different
velocity regimes and different solids fractions at the impact region.
The parametric space is defined based on the mean velocity of the
particle streams and the standard deviation of the inlet velocity
distribution (see Table 2).

It can be clearly observed from Figs. 3 and 5 that the DSMC can
handle collisions even at high dispersed phase fractions. High
Fig. 7. Time based evolution of bubble positions and flow structures for a mono-disperse
on their velocity magnitudes in m/s; scale given on the right).
solids volume fractions occur in cases 1 and 3 due to a low stan-
dard deviation in the inlet velocity distribution. Equivalently the
total number of collisions for cases 2 and 4 have a maximum error
(based on the difference between DSMC and DPM) of 3 %. The ini-
tial evolution of the collision frequency within the first second
after the particles enter the system is also captured reasonably
well by DSMC in all cases. Visually, the DSMC controlled collisions
lead to a similar particle concentration throughout the domain
compared to their DPM counterparts (see Fig. 3). Quantitatively,
the average collision frequency at steady state for different cases
is compared for both methods in Fig. 4.

It is known for a fact that in particulate systems larger velocity
deviations typically lead to more collisions which seems counter-
intuitive from the obtained results. However, for this to be true,
the systems must be loaded at a comparable solid volume fraction.
In the tests shown for different cases here, the smaller standard
deviation in velocities leads to two very focused particle streams
which create a small impact region with high solids fraction. This
in turn leads to a higher number of collisions and collision frequen-
cies compared to the situation with high standard deviation in the
input velocity where the particle streams spread out from the
system with bubble size of 2 mm applied to P2 (Note: The bubbles are colored based



Fig. 7 (continued)

Fig. 8. Total number of collisions (left) and instantaneous collision frequency (right) measured in the domain vs time for case 1 in the Table 3 applied to P2 for a mono-
disperse system with bubble size 2 mm, DBM vs DSMC.
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onset to give a larger impact region with lower solids fraction. Sim-
ilar explanation is applicable for test cases shown in Section 4.2.1.

Fig. 6 shows the particle velocity probability density functions
for the DBM and DSMC. The particle velocities are sampled at a fre-
quency equal to the inverse mean residence time, calculated based
on the average velocity of the particles. The particles taken into
consideration during sampling are below the impact region to
account for post collisional velocities. It can be seen that on an
average there is no difference in the collision outcomes from
DPM and DSMC.
4.1.2. 3D-periodic bubble rise (P2)
For the 3D-periodic bubble rise (P2) two systems are simulated

with different bubble diameters (see Table 3). The velocity of the
system changes with time as the bubbles rise. They act as small
momentum sources meaning that the periodic system is evolving
from lower to higher bubble and liquid velocity fields.

The bubbles start from rest and are arranged in a periodic array.
As the bubbles rise, the bubbles in the wake of other bubbles accel-
erate and the initial structure disappears. Fig. 7 shows the time
evolving structure of bubbles as they rise through the periodic sys-



Fig. 9. Total number of collisions (left) and instantaneous collision frequency (right) measured in the domain vs time for case 2 in the Table 3 applied to P2 for a mono-
disperse system with bubble size 4 mm, DBM vs DSMC.

Fig. 10. Time averaged liquid velocity profiles along the x-direction at position y
YMAX

¼ 0:5 and z
ZMAX

¼ 0:56 at different times for different cases in Table 3 applied to P2, DBM vs
DSMC.

Table 4
Parameter space for the poly-disperse system of particle size range 1–6 mm applied
to P1 (impinging particle streams).

Case Mean velocity (m/s) Std. deviation (m/s) Mass flow rate (kg/s)

1 0.2 0.001 0.02
2 0.2 0.15 0.02
3 2.5 0.001 0.2
4 2.5 1.0 0.2
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tem. The system starts with layers. As the momentum of the sys-
tem increases these layers reduce to small clusters due to
increased (pseudo) turbulence in the liquid. Finally, these clusters
Table 5
Parametric space for 3D periodic bubble rise (P2) for a poly-disperse system with differen

Case Bubble size range (mm) Number of bubbles in domain (–) Overall gas frac

1 1–4 5000 7.00

2 1–3 25000 15.00
disintegrate to a completely homogeneous system at high slip
velocities. These features are equivalently captured by the DSMC
algorithm. The transitioning of the bubble rise velocity field with
time can be observed from the velocity scales in Fig. 7.

Evolution for the 4 mm system is not shown here but the qual-
itative comparison between both methods reveals that both meth-
ods perform equally well. The bubbles reach high velocities much
faster and the system is also relatively more dense due to the use of
larger bubble sizes with the same number of bubbles in a similarly
sized domain.

The total number of collisions and the collision frequency vs
time for the 2 mm and 4 mm (Case 1 and Case 2) systems can be
compared on basis of Figs. 8 and 9. It can be observed that the col-
t bubble size ranges and overall gas fractions.

tion (%) Grid size Box dimensions
(l ðmÞ � b ðmÞ � h ðmÞ)

Time step (s)

20� 20� 20 0:1� 0:1� 0:1 10�3

20� 20� 20 0:1� 0:1� 0:1 10�3



Fig. 11. Steady state domain snapshots for poly-disperse dry granular streams, DPM vs DSMC.
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Fig. 12. Steady state collision frequency snapshots in the xz plane for a cross section at y
YMAX

¼ 0:5 for poly-disperse system cases in Table 4, DPM vs DSMC.

Fig. 13. Total number of collisions (left) and instantaneous collision frequency (right) measured in the domain vs time for different cases given in the Table 4 applied to P1 for
a poly-disperse system with particle size range of 1-6 mm, DBM vs DSMC.
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Fig. 14. Velocity probability density plots for different cases in Table 4 applied to P1 for a poly-disperse system with particle size range of 1–6 mm, DBM vs DSMC.
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lision frequencies in both 2 mm and 4 mm cases match reasonably
well between DBM and DSMC. At high velocity regimes (in the
order of several m/s) in the 2 mm case the collision frequency is
slightly over-predicted. At the same time, it can be observed from
Fig. 10 that the liquid velocities are not over-predicted by the mod-
ified DSMC method. This shows that the current method is execut-
ing the correct collisions along with some extra ones in the
direction lateral to the flow. Pure DSMC method without the cur-
rently made modifications can predict the right collision frequency
at very high bubble velocities but cannot generate the right bubble
velocities. This is because the bubble velocities are not completely
uncorrelated as in the case of P1. Some correlation with the liquid
velocity field always exists, which means the explicit treatment is
required for prediction of correct bubble velocities. It is also to be
noted that such bubble velocities in the order of several meters per
second are not seen in bubbly flows.

This over-prediction of collisions is not seen in the 4 mm case
even at higher velocity regimes because this is a denser system,
where collisions in the direction lateral to the mean flow direction
occur much more frequently due to lack of void space. Therefore
the collision frequency is accurately predicted by the proposed
method.

Time averaged liquid velocity profiles in the rise direction are
taken along a line on the x axis, at y ¼ 0:5YMAX and z ¼ 0:56ZMAX

where YMAX and ZMAX are max domain lengths in the respective
directions (see Fig. 10). The maximum difference in each case is
less than 6% relative to the equivalent DBM cases. The extrema
in the velocity profiles in 2 mm and 4 mm cases are also captured
by the modified DSMC method. In general, it can be observed that
the liquid velocities in the DSMC cases are slightly under-
predicted; this can be attributed to the fact that DSMC collisions
are not exact. In bubbly flow, the collisions are mostly biased in
the rise direction. Because of this, the bubbles on the top can attain
even higher velocities whereas DSMC homogenizes these collisions
isotropically which in turn averages the momenta in the searching
scope around the bubble.
4.2. Poly-disperse systems

The newly developed algorithm is also verified for a set of cases
in P1 and P2 for different poly-disperse systems. The particle size
range in P1 is taken 1–6 mm. A similar size range is taken for P2
specified in Table 5.

4.2.1. Impinging particle streams (P1)
The parametric space is defined similar to the case in Sec-

tion 4.1.1 (see Table 4). The particles are generated with a random
size distribution in the range of 1–6 mm. The generated (or
injected) particle is kept equivalent in both nozzles at a given time
to preserve the same flowrate from both nozzles.

It can be visually observed from Fig. 11 that the DSMC method
executes collisions in such a way that the average outcome of the
simulation is similar to the DPM. This can be said from the corre-
sponding particle spread in the system for both the methods for
all cases defined in the parametric space. This is also verified quan-
titatively in Fig. 12 where the steady state collision frequency is
compared between both DPM and DSMC for all the cases.

The velocity probability density functions measured in time
also indicate that the average velocity distribution is nearly identi-
cal for both the methods in all cases (see Fig. 14).

The total number of collisions and collision frequency vs time
can be seen in Fig. 13. The variation of the collision frequency as
well as the total collisions are within a difference of 3%.

4.2.2. 3D-periodic bubble rise (P2)
The parametric space in this section (see Table 5) is based on

the number of bubbles in the box and the overall gas fraction. It
should be noted that the overall gas fraction is calculated with
respect to the whole simulation domain where as the local gas
fractions reach up to 37% during the simulation.

The time based evolution of the bubble positions and flow
structures are compared in Fig. 15. The bubbles are initially
arranged sequentially in the following order of their sizes 1,2,3
and 4 mm (see in Fig. 15 at time t ¼ 0:018 s). The smaller bubbles
have lower terminal rise velocity. Therefore, due to the initial alter-
nate arrangement of the bubbles, the collision frequency is high
until the system homogenizes. Due to displacement, the 1 mm
bubbles occupy the interstitial space between the larger bubbles
(see Fig. 15 at time t ¼ 0:237 s). Unlike the mono-disperse case,
the bubbles undergo two successive stages of velocity core forma-
tion in the central region of the domain at times t ¼ 1 s and t ¼ 3:6
s. At t ¼ 1 s, a high velocity core is formed in the central region of



Fig. 15. Time based evolution of bubble positions and flow structures for a poly-disperse system with bubble size range of 1–4 mm (Case 1 in Table 5) applied to P2 (Note:
The bubbles are colored based on their velocity magnitudes in m/s; scale given on the right).
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the domain, at t ¼ 2:7 s the velocities homogenize in the system.
With increasing time a low velocity core is formed in the same
region at t ¼ 3:6 s. Then the system homogenizes at t ¼ 4:2 s and
the system momentum increases uniformly with random patches



Fig. 15 (continued)
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Fig. 16. Total number of collisions (left) and instantaneous collision frequency (right) measured in the domain vs time for case 1 in the Table 5 applied to P2 for a poly-
disperse system, DBM vs DSMC.
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of high and low velocity regions. This whole process is identically
captured by the DSMC algorithm.

It can be seen clearly from Figs. 16 and 17 that the major fea-
tures of the evolution of the collisions are captured very well by
the DSMC method. The initial spike in collision frequency is due
to the small bubbles getting displaced down which collide with
larger bubbles on their way. Once the bubbles homogenize, it is fol-
lowed by the successive high and low velocity core formations
which mark the increase and decrease of collision frequency at
around t ¼ 1 s and t ¼ 3:5 s. The DSMC algorithm over-predicts
the total collisions in the initial regimes for both the cases. This
is expected as the DSMC performs collisions with random neigh-
bours. Since the relative velocity is low during the initial stages
(system starts from rest), the collision direction is biased and not
isotropic. This leads to small overlaps between the bubbles which
are then treated by the explicit nearest neighbour collisions intro-
duced in the algorithm. These overlaps lead to extra collisions. The
collision frequency stabilizes to the same value as the DBM as the
liquid momentum within the system increases. This happens



 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 0  0.5  1  1.5  2  2.5  3

to
ta

l c
ol

lis
io

ns
 [

-]

time [s]

DSMC: Case 2
DBM: Case 2

 0

 1x107

 2x107

 3x107

 4x107

 5x107

 6x107

 7x107

 8x107

 9x107

 0  0.5  1  1.5  2  2.5  3

co
lli

si
on

 f
re

qu
en

cy
 [

1/
s]

time [s]

DSMC: Case 2
DBM: Case 2

Fig. 17. Total number of collisions (left) and instantaneous collision frequency (right) measured in the domain vs time for case 2 in the Table 5 applied to P2 for a poly-
disperse system, DBM vs DSMC.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.02  0.04  0.06  0.08  0.1

t = 19 s

t = 15 s

t = 10 s

t = 5 s

t = 1 s

tim
e 

av
er

ag
ed

 li
qu

id
 v

el
oc

ity
 [

m
/s

]

x-coordinates [m]

DSMC: Case 1
DBM: Case 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.02  0.04  0.06  0.08  0.1

t = 1 s

x-coordinates [m]

DSMC: Case 2
DBM: Case 2
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¼ 0:5 and z
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¼ 0:56 at different times for the cases in Table 5 applied to P2, DBM vs
DSMC.

Table 6
Simulation settings for the bubble column from Deen et al. (2001).

Parameter Value Units

Dimensions (l� b� h) 0:15� 0:15� 0:45 m�m�m
Superficial gas velocity 4.9 mm/s
Number of nozzles 7� 7 –

Nozzle pitch 6.25 mm
Grid size (l� b� h) 30� 30� 90 –

Polymap-masking fraction 2 –
Bubble size 4 mm
Coalescence N/A –
Time step 10�3 s
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because of increased bubble induced turbulence which corre-
sponds to a higher bubble Stokes number.

The evolution of the velocity profiles in case 1 is nearly identical
for both the methods (see Fig. 18). The slight under-prediction by
the DSMC in case 2 is for the same reason as explained in Sec-
tion 4.1.2 for the 4 mm mono-disperse case.
5. Validation

Validation of the DSMC method applied to bubbly flows is per-
formed by simulating a lab-scale bubble column. The simulation
results are compared with experimental data from Deen et al.
(2001). The column and simulation settings are specified in Table 6.
The bubble size is assumed to be 4 mm (Deen et al., 2001;
Darmana, 2006). A 3D schematic drawing of the column is shown
in Fig. 19 with reference directions.

The boundary conditions implemented are the same as in
Darmana et al. (2006). A no slip condition is implemented at
x ¼ 0; x ¼ XMAX; y ¼ 0; y ¼ YMAX and z ¼ 0 for the liquid phase.
At z ¼ ZMAX, a wall boundary with free slip is prescribed for the liq-
uid phase. This is an approximation for the free surface. On each
wall in x and y directions, one cell below the top wall, small win-
dows of 3 cells each are prescribed with an inlet/outlet pressure
prescribed boundary condition. Since the bubbles are allowed to
enter and leave the column, the volume addition and loss has to
be accounted for in the liquid phase.



Fig. 19. Schematic diagram of the simulated bubble column.
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Time evolution of the plume structures is compared for the
DBM and DSMC in Fig. 20. The DSMC does not produce the exact
time history in comparison to the deterministic DBM. This is
expected since the exact collisions are not executed in the DSMC
Fig. 20. Evolution of the bubble plume in a bu
algorithm. Nevertheless the plume fluctuations are captured well
by the DSMC collision model.

The measured parameters are time-averaged axial velocity,
axial velocity fluctuations and the lateral (x-direction) velocity
fluctuations (see Figs. 21–23). The z-velocity and z-velocity fluctu-
ations match the experimental data better in the DSMC cases.
DSMC smears out the exchange of momenta among bubbles by
executing random collisions within the searching scope. This is
also evident from the average velocity profiles shown in Figs. 10
and 18 where DSMC simulations under-predict the velocities. We
believe that the smearing out of momentum exchange occurring
in DSMC approximately mimics the smearing out of momentum
due to sub-grid scale hydrodynamic interactions, causing nearby
bubbles to equilibrate their velocities in the experiments. Of course
the physical origin is different, but the effect is approximately the
same, which we think is the reason for the better match. The over-
prediction in the center line z-velocity has been reported by
Darmana et al. (2006) for their DBM. The x-velocity fluctuations
are captured very similar to the DBM.

6. Single-core performance

The purpose of development of our model is to ultimately sim-
ulate dense bubbly flows in an industrial scale slurry bubble col-
umn for which the discrete bubble model is computationally too
expensive. This section is dedicated to assess the computational
performance of the algorithm in comparison with the DBM. The
system used for the performance check is the 3D-periodic bubble
rise discussed in the previous sections. The performance study is
based on the time taken by the algorithm to execute a collision
in a given time step. This is done to keep the comparison fair since
bble column comparison: DBM vs DSMC.
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both algorithms may not produce exactly the same number of col-
lisions for a given situation. The total execution time is therefore
divided by the total number of collisions giving time consumed
per collision (see Fig. 24, left). The total execution times per dis-
crete phase time-step is also reported (Fig. 24, right).

It can be noted that for gas fractions less than 5 percent, the
DSMC algorithm performs as well as the DBM model. As the gas
fraction increases the DSMC becomes more efficient in handling
the collisions. This can straight away be attributed to the overhead
added by the expensive encounter list that needs to be searched
and updated every time a collision occurs.

The parallelization potential of DSMC is much better than that
of the DBM since the loops are individual particle based and not
collision time based. Once the domain is decomposed, it can
remain nearly independent of the remaining sections of the
domain (except for the ghost cells). In the case of the DBM, the
time frame in consideration for the movement of the particles
needs to be communicated and this feature results in more com-
munication overhead if we consider MPI parallelization.
7. Conclusion

A stochastic DSMCmodel has been developed to simulate dense
bubbly flows. The algorithm is now capable of handling relatively
high discrete phase volume fractions due to the addition of the
radial distribution function gðrÞ. The model is then extended for
bubble-bubble collisions in the presence of surrounding liquid
via the addition of an explicit check for nearest neighbour colli-
sions. This addition accounts for collisions in the environment of
highly correlated bubble velocities and also alleviates the volume
fraction limitation occurring due to overlapping bubbles in case
of random collisions.

The model is first verified for a dry granular case and then ver-
ified in a 3D periodic bubbly flow system. This is done for both
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mono-disperse and poly-disperse systems. The verification model
used here in both cases is the Discrete Particle/Bubble Model. It
is then further validated with the experimental PIV data by simu-
lating a lab-scale bubble column from Deen et al. (2001). Perfor-
mance analysis shows that the DSMC shows speed-ups of up to
100 times at high gas fractions.

The current study was limited to parcel size 1. Its extension to
higher parcel sizes will be the subject of future research.
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