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Abstract: Model-based dynamic optimization of the water-flooding process in oil reservoirs is a
computationally complex problem and suffers from high levels of uncertainty. A traditional way
of quantifying uncertainty in robust water-flooding optimization is by considering an ensemble
of uncertain model realizations. These models are generally not validated with data and the
resulting robust optimization strategies are mostly offline or open-loop. The main focus of this
work is to develop an adaptive or online robust optimization scheme using residual analysis as a
major ingredient. The models in an ensemble are confronted with data and an adapted ensemble
is formed with only those models that are not invalidated. As a next step, the robust optimization
is again performed (i.e., updated/adjusted) with this adapted ensemble. The adapted ensemble
gives a less conservative description of uncertainty and also reduces the high computational cost
involved in robust optimization. Simulation example shows that an increase in the objective
function value with a reduction of uncertainty on these values is obtained with the developed
adaptive robust scheme compared to an open-loop offline robust strategy with the full ensemble
and an adaptive scheme using Ensemble Kalman Filter (EnKF), which is one of the most
common parameter estimation methods in reservoir simulations.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Dynamic optimization of the water-flooding process has
shown significant scope for improvement of the economic
life-cycle performance of oil fields compared to a more con-
ventional reactive strategy, see e.g., Brouwer and Jansen
(2004); Jansen et al. (2008); Foss (2012); Van den Hof et al.
(2012). Besides computational complexity, induced due
to complex non-linear dynamics and hence non-convexity,
one of the key challenges in this model-based dynamic
optimization is the high levels of uncertainty arising from
the modeling process of water flooding and from strongly
varying economic conditions.

Various approaches to decision making under uncertainty
can be implemented in two different ways, see e.g., Bert-
simas and Thiele (2006). In open-loop or offline schemes,
robust optimization is performed only once under a given
description of uncertainty. Robust optimization can also
be used in an adaptive or online fashion where the un-
certainty is reduced with the information that is revealed
over time. A general practice of quantifying uncertainty in
water-flooding optimization is a scenario-based approach
where an ensemble of uncertain parameters (e.g., reser-

* The authors acknowledge financial support from the Recovery
Factory program sponsored by Shell Global Solutions International.

voir models), see e.g., Van Essen et al. (2009); Capolei
et al. (2013) is considered. These models are mostly either
generated by using geostatistical tools, see e.g., Mariethoz
and Caers (2014) or hand drawn, and are typically not
(in)validated by the production data. Hence they may
provide a (very) conservative description of uncertainty.
An adaptive scheme, i.e., Closed-Loop Reservoir Manage-
ment (CRLM) has been introduced in Jansen et al. (2005),
where the reservoir model variables (states and/or param-
eters) are updated using data assimilation or Computer
Assisted History Matching (CAHM) techniques, such as
Ensemble Kalman Filter (EnKF), variational approaches,
etc., see e.g., Evensen (2009); Aanonsen et al. (2009);
Oliver and Chen (2011) and the optimization is adapted
with updated model(s). In the robust settings, as robust
optimization uses an ensemble of model realizations, pos-
terior ensemble, e.g., estimated by EnKF, can be directly
used in an adaptive fashion resulting in a robust CLRM,
see e.g., Chen et al. (2009), Chen et al. (2010), Capolei
et al. (2013).

The purpose of this work is to devise an adaptive robust
scheme that can be updated with the given production
data. The main focus is to address the question: how the
available information (data) with time can be used to
shrink the uncertainty space by selecting fewer number of
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representative models in an ensemble (reduce the ensemble
size) or in other words how uncertainty is propagated
and can be reduced in an adaptive online setting? The
concept of residual analysis is used, where the models in
an ensemble are confronted with data and are invalidated
if they do not sufficiently agree with the observed data. An
adapted ensemble is formed with only those models that
are not invalidated thus providing a less conservative de-
scription of uncertainty with a reduced number of models
in an ensemble. The adapted ensemble is used in a robust
optimization in an online fashion. Residual analysis follows
an ’exclusion approach’ to uncertainty modeling, see e.g.,
Tarantola (2006); Caers (2011), which focuses on starting
from all possibilities (models) and then excluding those
possibilities (models) that can be ’rejected’ by any infor-
mation available to us, e.g., with rejection sampling which
is a probabilistic approach of rejecting models. EnKF is
also implemented and the posterior ensemble is used in
robust optimization. The results of the EnKF in terms of
uncertainty reduction and performance improvement are
compared with the developed approach.

The paper is organized as follows: in the next section,
model-based water-flooding optimization and uncertainty
quantification are discussed. The concept of residual anal-
ysis is presented in section 3. In section 4, the adaptive
robust scheme is introduced. Simulation example with the
introduced scheme is given in section 5 followed by the
conclusions in section 6.

2. UNCERTAINTY IN WATER-FLOODING
OPTIMIZATION

Water-flooding involves the injection of water in an oil
reservoir to increase oil production. Net Present Value
(NPV), as an objective for the dynamic optimization of the
water-flooding process, can be mathematically represented
in the usual fashion as:

K
J = Z To Gok — Tw * Qw,kt: Ting * Qing,k . Atk (1)
k=1 (1+b)7

where 7,7, and 7;,; are the oil price, the water produc-

tion cost and the water injection cost in % respectively. K

represents the production life-cycle i.e., the total number
of time steps k and Aty the time interval of time step
k in days. The term b is the discount rate for a certain
reference time 7;. The terms Go ks Guw,k and Qinj,k Tepresent
the total flow rate of produced oil, produced water and

injected water at time step k in Z‘L—y.

Model uncertainty is the prime source of uncertainty in
model-based optimization of the water-flooding process.
Traditionally an ensemble of uncertain dynamic model
realizations is considered to quantify the uncertainty space
0,ie., {M(0:), M(02),---, M(ON,.,)}, where M is a dy-
namic model with 8; € ©,i = 1,2,---, Ny, a realization
of a vector of uncertain parameters. This ensemble-based
uncertainty set can be used with various robust schemes.
One of the simplest offline or open-loop scenario-based
robust approaches is to maximize the average of NPV
over the model uncertainty ensemble, as introduced in
Van Essen et al. (2009). Robust optimization (or Mean
Optimization (MO)) can be formulated as:
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Ngeo

Jymo = J(u7 01) (2)

Ngeo
where J is NPV and u is the input decision variable. Other
offline (open-loop) robust approaches in water-flooding
optimization, e.g., mean-variance and mean-CVaR have
been introduced in e.g., Capolei et al. (2015); Siraj et al.
(2015). In these offline strategies, the optimal solution is
devised for the complete production life of the reservoir
under a given uncertainty set and the optimization is
not updated/adapted to the available information with
time. These offline (open-loop) approaches mainly aim
only at minimizing the negative effect of uncertainty on
the achieved NPV and do not deal with shrinking the
uncertainty space O.

=1

The uncertainty reduction can be achieved with the help
of available information. The estimation of physical pa-
rameters with the available production data is one of the
ways to reduce uncertainty. Data assimilation or CAHM
algorithms such as the Ensemble Kalman Filter (EnKF),
variational methods are typically used in reservoir sim-
ulation offering a joint state and parameter estimation.
This parameter estimation problem, due to a large num-
ber of to-be-estimated parameters, is ill-posed, i.e., many
combination of parameter values will result in the same
minimum value of the cost function. Therefore, CAHM
typically uses a Bayesian framework with a prior distri-
bution of the parameters reflected by a prior ensemble.
Hence the estimation of physical parameters is highly
influenced by the selection of this prior ensemble of pa-
rameter. These estimated parameters and the resulting
posterior (adapted) ensemble with CAHM can be used
in an adaptive fashion to update the robust strategies
as presented, e.g., in Chen et al. (2009); Capolei et al.
(2013), which is also referred to as closed-loop approaches
in the petroleum engineering literature. The application
of CAHM with nominal optimization has been presented,
e.g., in Jansen et al. (2005); Sarma et al. (2005); Jansen
et al. (2009). As the number of realizations in the adapted
ensemble with CAHM are not reduced, the computational
complexity of these adaptive robust optimization is not
decreased. Another way to adapt the ensemble is by using
clustering techniques. The number of realizations in an
ensemble is reduced by clustering the models with the
similar (static or dynamic) behavior, see e.g., Sarma et al.
(2013). The clustering techniques are not data driven and
the ensemble size reduction may not correspond to uncer-
tainty reduction, hence it will only reduce the complexity
of the robust optimization problems.

In the next sections, residual analysis is introduced which
offers minimization of uncertainty space and a reduction
of computational complexity of robust optimization.

3. RESIDUAL ANALYSIS

Model validation is usually performed by confronting the
model with available information, e.g., production data, a
priori knowledge. For a given ensemble of models, residual
analysis follows an ’exclusion approach’ to uncertainty,
which focuses on rejecting models by available production
data. Therefore, it does not only aim at minimizing the
uncertainty space © but it also reduces the size of the
ensemble, leading to complexity reduction of subsequent
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robust optimization. A principle difference between resid-
ual analysis and other data assimilation techniques is that
residual analysis is performed on the model space which
is smaller in size compared to the assimilation methods
which focus on the large parameter space. Hence residual
analysis does not suffer from the problem of ill-posedness
and the effect of the selection of a poor prior ensemble.

Fig. 1 illustrates a detailed overview of techniques which
can be used to update the ensemble of realizations. CAHM
techniques, such as variational methods follow a gradient-
based approach while EnKF uses ensemble-based approach
for joint state and parameter estimation. Rejection sam-
pling is a probabilistic technique to reject models in an
ensemble and requires knowledge of data likelihood prob-
ability. These techniques can be used in a adaptive robust
optimization settings where the robust optimization is
defined over the posterior (adapted) ensemble. For a linear

Data-driven methods to adapt model/ensemble Without data
Variational Rejection Sampling | Residual analysis | Clustering
methods techniques
*  Prior *  Priorensemble * Priorensemble * Priorensemble * Priorensemble
model/ensemble 6;,65,...,0y 0,0, .., 0y 0,0, ...,0x 0,05, ...,0n
* Objective=data + Forward * Forward simulations * Forward * Forward
mismatch + simulations 7= a(6) imulati imulation
regularization $1=g(6) 91=8(6,) 91=1g(6)
l Data=y lbata =y lData =y lData =y Nodata
+ Minimize + Update  If§ =y, accept the «  Define residual: * cdlusteringthe
objective using ensemble with model else reject it. &=Fi—y models with
gradient based the linear the similar
methods with estimator Oracceptthe modelif - |fE[BFR (6)] = (static or
adjoint + conditioned on data likelihood threshold in % , dynamic)
typically innovatione; p= PY=yl0= accept the model behavior
Bayesian 6)/P™3*}> p*, where else rejectit.
regularization P™M3% s the max p and
p* is threshold.
* Posteriormodel + Posterior o asrereesriie o e B = Adautetr’jl
ensemble 9. 0. 0, withr <N 9. 6. 6. wi ensemble
2 ~ e = e ith
6,85, .., 6y with e A Beliot 0,,0,-,0r

sample mean withr < N

and covariance

Fig. 1. A comparison of methods for updating an ensemble
of models to be used with robust optimization.

regression problem, first order statistics provide a complete
characterization of the validation problem, e.g., in the
correlation analysis, the residual should be asymptotically
uncorrelated with past input samples. For a nonlinear re-
gression problem, the first order moments are not sufficient
to draw any conclusions about the validity of the models.
As the reservoir models are strongly nonlinear in nature,
we use a deterministic metric, i.e., Best-fit-ratio (BFR) to
define an invalidation test. The available production data
is used for invalidation.

The residual € is defined as the difference between the
observed (measured) output y and the simulation output
y.
Residual = measured output — simulation output,
E=y-—y.
The Best-Fit Ratio (BFR) or the fit ratio is defined as:

BFR = 100% x max (1 — &,O)
lly —7ll2

where 3 is the average of the measured output y. The
BFR percentage is a relative measure often used in system
identification, and a low value of BFR indicates a poor fit
to data, see Ljung (1999). BFR is a unit-less quantity and
gives an indication of fit in a percentage. Generally, as
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the reservoir models contain multiple outputs, an average
BFR over each individual output channel is considered.
The selection of BFR is not unique and other metrics,
e.g., Mean Squared Error (MSE) or Variance Accounted
For (VAF), see Ljung (1999) can also be used for defining
the invalidation test. VAF measures how much variation
in data (variance) is captured by the model output and
disregards the mismatch (bias) of data with model output
while the MSE measure is dependent on the unit of
physical quantity being measured, therefore BFR is used
for residual analysis.

The test for invalidating models is chosen as:
M(6;,u) is not invalidated if E[BFR(M (0;,u))] > 30%,
for a given u

where E[.] is the expected value and calculated as the
average over all outputs. It implies that all those models
with an average BFR of above 30% are retained in the
adapted ensemble. The selection of 30% is chosen in an
ad-hoc way. One of the risks with this selection criterion
is that all the models in an ensemble can be rejected. An
alternative choice for the invalidation test is by considering
e.g., 10% models who score the highest average BFR
within the ensemble. This criterion is not used in this work.

A flow chart as shown in Fig. 2 explains residual analysis.
At a given time step, the concept of residual analysis
from generating prior models to forming an adaptive
ensemble is performed and later, as a final step of the
developed adaptive strategy as discussed in the next
section, the robust optimization is conducted with the
adaptive ensemble. At the next time step, the adaptive
ensemble in the previous step is considered as a prior and
the procedure is repeated as shown in Fig. 2.

Generate prior model
ensemble

Perform forward

simulations

Calculate BFR Production data

Reject model

Accept model and form

R adapted model ensemble

Perform robust

optimization

Fig. 2. Adapting a model ensemble using residual analysis

4. AN ADAPTIVE ROBUST OPTIMIZATION

The key elements of the introduced adaptive robust strat-
egy using residual analysis are displayed in Fig. 3. The
top of the figure represents the physical system consisting
of reservoirs, wells and facilities with inputs and outputs.
The center of the figure displays the residual analysis
step, which starts from considering a prior ensemble. The
sensors on the right side of the figure are used for mea-
surements which are used to invalidate models with resid-
ual analysis. A robust optimization is defined using the
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adapted ensemble as shown at the left side of the figure.
Throughout this work, the MO approach of Van Essen
et al. (2009) is used for robust optimization. Other robust
measures such as mean-variance, mean-CVaR can also be
used. An implementation of the adaptive robust strategy is

- Output Noise
Noise Input System P

(reservoirs, wells
and facilities)
Controllable

input I

Robust
optimization

Sensors

Prior model
ensemble

Residual
analysis

Adapted model
ensemble

Fig. 3. An adaptive robust approach by updating the
ensemble with residual analysis at each time step.

presented in the next section to investigate if model inval-
idation by residual analysis can be an appropriate tool for
reducing uncertainty and improving robust optimization of
economic performance of oil reservoir in an online setting.

5. SIMULATION EXAMPLE
5.1 Ensemble of reservoir models

An ensemble of 100 geological realizations of the standard
egg model is considered. Each model in the ensemble is
a three-dimensional realization of a channelized reservoir
produced under water flooding conditions with eight water
injectors and four producers based on the original Egg
model proposed in Van Essen et al. (2009). The life-cycle
of each reservoir model is 3600 days. The complete list of
parameters and the details about the model set are pre-
sented in Jansen et al. (2014). The true permeability field
is considered to be the unknown parameter. The number of
100 realizations is assumed to be large enough to be a good
representative of this parametric uncertainty space. The
absolute-permeability field of the first realization in the
set is shown in Fig. 4. Fig. 5 shows the permeability fields
of six randomly chosen realizations of the standard egg
model in an ensemble of 100 realizations. Each realization
in the set is considered equiprobable.

5.2 An offline (open-loop) MO approach with complete
ensemble

All the simulation experiments in this work are performed
using MATLAB Reservoir Simulation Toolbox (MRST),
see Lie et al. (2012).

Economic data for NPV An un-discounted NPV is used.
Other economic parameters, i.e., oil price r,, water injec-
tion r;,; and production cost 7, are chosen as 126%, 6%

and 19% respectively.
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81 mDarey

Fig. 4. Permeability field of realization 1 of a set of 100

realizations

Fig. 5. Permeability fields of 6 randomly chosen realiza-
tions. (Van Essen et al. (2009))

Control input The control input u involves injection flow
rate trajectories for each of the eight injection wells. The
minimum and the maximum rate for each injection well

are set as 0.2% and 79.5% respectively. The production

wells operate at a constant bottom-hole pressure of 395bar.
The control input u is reparameterized in control time
intervals with input parameter vector . For each of the
eight injection wells, the control input u is reparameterized
into twenty time periods of ¢, of 180 days during which
the injection rate is held constant at value ;. Thus the
input parameter vector ¢ consists of N, = 8 x 20 = 160
elements. The initial input value for the optimization is

the maximum possible injection rate, i.e.,79.5%z for each
injection well. The optimal input, u.g is obtained by using
MO as in eq. (2) with the complete ensemble.

5.8 The adaptive robust approach for a synthetic truth

Residual analysis with synthetic truth One of the models
in the ensemble, i.e., model 10, is considered as the
synthetic truth to generate data y. The optimal solution
from the offline (open-loop) approach, i.e., ug is applied
to the truth to collect data y. The output y is defined as
the total production rate from each production well, i.e.,
Yy ={¥1,¥2,¥s,¥4}. The data is collected at time t = 360
days. The input u.g is also applied to each member of
the ensemble to collect simulation data y. An average
BFR is calculated for each model simulation output y
and subsequently the invalidation test is performed. The
average BFR values for each model in the ensemble and
the model retained in adapted ensembles are shown in Fig.
6. The adapted ensemble contains 22 models and provides
a less conservative description of uncertainty.

Data assimilation with EnKF EnKF is also implemented
with the standard egg model ensemble to estimate only
the permeability field based on production data measure-
ment. The production data is generated by the synthetic
truth. We used a straightforward implementation using the
EnKF module of MRST without localization or inflation.
The output y is defined as the total production rate from
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Fig. 6. Average BFR values for each model in the ensemble
and the models retained in adapted ensemble

each production well and the data is collected at time
t = 360 days. In EnKF, all ensemble members are updated,
and so this also leads to an updated ensemble which can
be directly used in robust optimization. However, unlike
residual analysis, it has the same number of elements as
the original ensemble.

MO with the adapted ensemble Robust optimization is
updated/adjusted with information revealed, i.e., MO is
again performed with the adapted ensembles generated by
residual analysis and EnKF. The economic parameters are
kept the same. The initial input value for the optimization
is ueg. As the first sample of u.g, i.e., from the time
0 day to 360 days is already applied to the system, the
remaining part of the input from time 360 days to 3600
days (end of simulation time) is used. The time horizon
for MO is reduced to 3600 — 360 = 3240 days. Optimal
inputs are obtained as a result of robust optimization over
the different ensembles for both residual analysis Uon RrA
and EnKF u,, gnkr and they are applied to the synthetic
truth. Fig. 8 shows the comparison of time evolutions
of NPV with the offline approach (open-loop with com-
plete ensemble) and the adaptive approaches (online with
adapted ensembles). We note that NPV is often defined
as the cumulative discounted cash flow(CDCF) over the
entire project life. Here we have chosen to use the term
NPV (specifically NPV time-evolution) also for intermedi-
ate values of the CDCF. The introduced adaptive approach
using residual analysis gives an increase of 0.62% in the
NPV value compared to the offline (open-loop) approach
and hence provides better optimization results. MO with
the posterior ensemble with EnKF gives poor results and
a decrease of 1.2% in NPV value compared to offline
(open-loop) approach is observed. From the computational
complexity viewpoint, as the number of model realizations
in posterior ensemble by EnKF are not reduced compared
to the adapted ensemble by residual analysis with only
22 members, the computational complexity of robust op-
timization using residual analysis is drastically reduced.

To analyze uncertainty reduction, the optimal solutions,
i.e., Uoff, Uon,RA and Uon Enkr are applied to the complete
and the adapted/posterior ensembles respectively. NPV
points are collected and the corresponding PDFs are
obtained by approximating a non-parametric KDE with
MATLAB routine ’ksdensity’ on these NPV data values
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Fig. 7. NPV comparison of adaptive online (adapted
ensembles by residual analysis and EnKF) and offline
(complete ensemble) strategies for the synthetic truth.
At t = 360 days a new optimization has started in the
online cases.

as shown in Fig. 8. It can be observed that the standard
deviation of NPV points with the adapted ensemble by
residual analysis is reduced compared to the one resulted
on the complete ensemble. A drastic reduction in standard
deviation of 27.62% is observed. Another indicator for
the effect of uncertainty is the worst-case value. As the
adapted ensemble by residual analysis provides a less
conservative description of uncertainty, the worst-case
value has also improved. An increase of 7.91% in the worst-
case NPV value is obtained. MO with EnKF ensemble
results in the lowest worst-case NPV value with the lowest
mean value while it results in the highest value for the
best-case NPV, which shows poor uncertainty reduction
of EnKF.

~—— Offline with complete ensemble
Online with adapted ensemble (residual analysis)
—— Online with adapted ensemble (EnKF}

PDF

36 38 4 42 44 46 48 5 52
Performance measure (J), USD 107

Fig. 8. PDF (long-term NPV) by applying optimal inputs
from adaptive online (adapted ensembles by residual
analysis and EnKF) and offline (complete ensemble)
strategies to the respective ensembles

The effect of uncertainty on the time evolutions of NPV is
shown in Fig. 9. The maximum and the minimum values of
the time evolutions of NPV from both ensembles will form
a band. The width of the band shows the variability of the
strategy over the ensemble of the model realizations. The
smaller width of resulting from the adaptive strategy with
residual analysis ensemble shows the effect of uncertainty
reduction compared to adaptive strategy with EnKF and
offline approach.
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I Oniine with adapted ensemble (EnKF)
I Cffline with complele ensemble
I Cniine with adapled ensemble (residual analysis)

Time of update

1] 500 1000 1500 2000 2500 3000 3500
Time-days

Fig. 9. Max and min (band) for time evolutions of NPV
by applying optimal inputs from adaptive online
(adapted ensembles by residual analysis and EnKF)
and offline (complete ensemble) strategies to the re-
spective ensembles. At ¢ = 360 days a new optimiza-
tion has started in the online cases.

6. CONCLUSIONS

The question of reducing uncertainty in an adaptive set-
ting is addressed by residual analysis. The adapted en-
semble with residual analysis corresponds to propagation
of uncertainty and it consists of fewer number of represen-
tative model realizations which provide a less conservative
description of uncertainty and also substantially reduce
the computational complexity of robust optimization. Re-
duction of uncertainty is evident by a reduction in variance
of NPV distribution and an improvement in the worst-case
performance compared to EnKF and the offline open-loop
approach with complete ensemble.
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