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Abstract

The interaction of electromagnetic waves with matter is at the foundation of the way we perceive and
explore the world around us. In fact, when a field interacts with an object, signatures on the object’s
geometry and physical properties are recorded in the resulting scattered field and are transported away
from the object, where they can eventually be detected and processed. An optical field can transport
information through its spectral content, its polarization state, and its spatial distribution. Generally
speaking, the field’s spatial structure is typically subjected to changes under free-space propagation
and any information therein encoded gets reshuffled by the propagation process. We must ascribe to
this fundamental reason the fact that spectroscopy was known to the ancient civilizations already, and
founded as modern science in the middle of seventeenth century, while to date we do not have an
established scientific of field of ‘spatial spectroscopy’ yet. In this work we tackle this issue and we show
how any field, whose evolution is dictated by Helmholtz equation, contains a universal and invariant
spatial structure. When expressed in the framework of this spatial fabric, the spatial information
content carried by any field reveals its invariant nature. This opens the way to novel paradigms in
optical digital communications, inverse scattering, materials inspection, nanometrology and quantum
optics.

1. Introduction

Our understanding of the many physical phenomena taking place in Nature often requires extracting
information from different types of wavefields. Electromagnetic fields play a special role in this sense, because:

(a) Itdeals with infinite-range fields. Hence, they tell us on events that happened remotely in space and time.

(b) Scattered light gives us insights on the structure of matter, especially in the ultraviolet, visible and infrared
part of the electromagnetic spectrum, due to the fact that most of the electronics and molecular transitions
fall in that spectral range [ 1, 2].

Of equal importance are also applications of wave fields in communications. The growing demand for an
interconnected society drives the need for an increased capacity of free-space communications by finding new
ways of encoding large amount of information in an electromagnetic wave [3—6]. For monochromatic fields
propagating in free space we know that the spectral content consists of a single wavelength A, which remains
invariant in propagation. Also the polarization state of a field remains essentially unaffected by propagation,
except for the special cases of strongly focused fields which can show nontrivial polarization changes in the focal
region. The situation is quite different for the spatial degree of freedoms, though. In fact, except for the very
limited classes of the so-called diffraction-free and shape-invariant fields [7—11], the first class of fields being not
physically realizable and the second being only strictly defined within the paraxial regime, until now it seemed to
be not possible to represent the spatial information present in any field in a way that remains manifestly invariant
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under propagation. In some sense this is not to be expected because, on an purely intuitive point of view, a free
field does not interact with anything which could destroy the information content originally imprinted in it and,
after all, the fields equations are deterministic by nature. With the risk of oversimplifying the description, one
can picture the situation as that of an object made of a mass of a restless fluid constrained within a closed plastic
bag: if the object moves, the fluid total mass remains constant while the bag continuously mutates its shape.
While one observer would clearly see a shape changing with time, it might exist a particular reference frame
where the fluid would be at rest and the shape of the plastic bag would stay frozen. The current work has been
motivated by this simple reasoning and we will show that, indeed, it is possible to find such a privileged
representation of a field. Once described in this way, any effect of propagation is removed and the field simply
reveals its spatial content, which is, as expected, invariant for any field. This result opens new exciting
possibilities in many different fields, as we will discuss later on in the manuscript. More importantly, Helmholtz
equation is not bound to only electromagnetism as all. In fact, all the things we are going to present here can be
applied to acoustic waves as well and to any other field theory which satisfies a similar equation of motion. The
manuscript is organized as follows: in section 2 we introduce the main formalism and the concept of Helmholtz
natural modes (HNMs) and we discuss their main properties. In section 3 we show an explicit example of
application which helps visualize the essence of the invariance. Finally, in section 4 we summarize the main
achievements of the work.

2. Helmholtz equation, non paraxial fields and fields representations

Without any loss of generality, let us consider a scalar monochromatic optical beam that propagates in a region
of space where a Cartesian reference frame, (O, X, y, z) has been defined, being z the main direction of
propagation for the field. We know that the field must satisfy Helmholtz equation, which reads

VU (x, 9, 2) + k}U (%, 9, 2) = 0 1)

with kg = 27/A. U (x, y, z) denotes the field distribution of the (scalar) field. If U (x, y, 0) represents its value
onareference input plane z = 0, the following Fourier integral representation holds

U, y,0) = ff A0 (p, g)expli2m (px + qy)1dpdg, ()
(p,9)€D

where A9 (p, q) is the angular spectrum of the field, and (p, q) the spatial frequencies in Fourier space. The
integration domain ® is a subset of the homogeneous domain only as a consequence of the fact that evanescent
waves are not present in the integral representation in equation (2). This is because we are considering fields that
propagate on distances larger than the wavelength A such that any contribution to the field coming from
evanescent waves can be safely neglected. When dealing with freely-propagating fields, one usually refers to this
fact as the low-pass filtering effect of propagation. Once the angular spectrum A® (p, q) is known, Helmholtz
equation tells us how to compute it to another plane z. In fact, by denoting such a spectrum at plane zas

A®(p, q), wehave
AP (p, q) = AV (p, q)exp(i27rz % —p? - qz)
= A0 (p, <p)exp(i2ﬂ'z /% — p? ) S

For convenience later on, in equation (3) we have introduced a circular coordinate system in Fourier domain,
(p, ¢)suchthat p = p cos pand g = p sin . Given that the angular spectrum A® (p, ) is defined on a finite
support (the disk on Fourier space of radius 1/ \) it must be possible to represent it in terms of a discrete, bi-
dimensional, modal decomposition. This is a remarkable property, if we consider that we are dealing with
classical free-fields. In pure mathematical terms, the problem of finding an orthogonal base through which one
can decompose a field distribution on a circular domain can be solved in different ways, by introducing different
types of field expansions. In optics, the most used decomposition is that introduced by Zernike and Nijboer
around the 40s of the last century [12—16], nowadays better known as Nijboer—Zernike’s unit circle polynomials
expansion. Nijboer—Zernike expansion owns its popularity in optics to its applications to the characterization of
aberrations of optical systems. Another base, mostly used in patterns recognition and nowadays also in adaptive
optics, is represented by the so-called disk-harmonics [17, 18]. These are eigenfunctions of the Laplacian
operator and what they share with the Nijboer—Zernike’s decomposition is the fact that it deals with an
orthogonal base on the unit disk as well. However, all these bases also share a common limitation: they are all not
compatible with Helmholtz equation, which leads them violate propagation invariance. The lack of propagation
invariance gives rise to cross-talks among the modes and makes a field decomposition not unique. This in
practice means that the same field gives rise to different decompositions if analyzed at different reference planes.
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A modal decomposition, orthogonal but also propagation invariant, must necessarily account for the natural
fabric of electromagnetism, in other words, it must contain the natural spatial modes of the physical system.
Recently, it has been shown how such a base can be defined within the paraxial approximation [19]. If a modal
decomposition for the full non paraxial case exists, it must reduce to that paraxial base decomposition within the
paraxial limit. On the other hand, the transition from a paraxial to fully non paraxial regime is not trivial nor
guaranteed. In order to appreciate this, we can for instance recall the difficulty of finding a close-form expression
for a Gaussian beam under non paraxial regime or, again, the large amount of works describing the physics of
vortex beams in analytical terms, in the majority of the cases limited to the known existing paraxial solutions
(like Laguerre—Gauss beams or Ince—Gauss beams) and very few non paraxial cases (like Bessel beams or
Mathieu beams [7, 20, 21]). Interestingly enough, how we are going to show in moment, it is possible to find the
analytical expression for a modal decomposition, orthogonal but also propagation invariant, which is
compatible with Helmholtz equation. The relevance of this finding stems from the fact that Helmholtz equation
applies to many field theories, not only electromagnetism. In the next section we will introduce such a base.

2.1. Helmholtz natural modes
If one aims at finding a description of a field in terms of orthogonal modes that is however also compatible with
the field equations, there are no many possibilities to choose from. From equation (3) we know that free space

% — p? ) and one should try to find a

base which shares a similar functional dependency. Inspired by this principle, we write A? (p, q) in the
following way

propagation alters the field angular spectrum by the factor exp (127rz

exp (i27rm/\1 | % — p? )
1 1/4
C)
where m and n are integers, with m, n = 0, +1, 2, .... Aswe will show, equation (4) is the core result of this

work and we will refer to the modes of the base as the Helmholtz Natural Modes (HNMs). If we define
p=pA 5)

then the expansion in equation (4) is defined on the unit disk and takes the form

exp(i2rm+/1 — p?)

(-

AY(p, ©) = exp(iny) |, 4

A© (@ p) = Zcm,n eXP(m(P) (6)

In equation (6) the coefficients ¢, , have been rescaled to include a constant factor V. In terms of the new
normalized variable, equation (3) becomes

AP (p, p) = AD(p, p)exp (i27r2§\11 — ,52). 7)

The orthogonality of the modes in equation (6) is consequence of the relations (denoting again p as p)

1
2rmy1 — p? —2min1 — p?)—L—dp| =6, 8)

and

2T
f exp (inp)exp(—ifip)dy = 276, ;. ©)
0

The coefficients c,, , in equation (4), which represent in fact the HNMs spectrum for the field U (x, y, z), can be
computed as follows

1 [l op2r exp(—i2mmq1 — p?)
Cmn = Ej; j; lA(O) (p> ¥)

(1= pH

In figure 1, the phase profiles, and the amplitude common to all the modes, are shown for the modes with
indices m, n = 0, 1, 2, 3, 4.Itisimportant to point out that each of the fundamental modes appearing in
equation (6) carries the same finite amount of energy, equal to 47, which makes it physically realizable. The
propagation invariance of this expansion can be appreciated if one tries to compare the expression for the
coefficients c,, , for the angular spectrum A® (p, ¢) in equation (6) with those of the propagated spectrum
AP (p, g)in equation (7). The HNM spectrum for A® (p, q) reads

eXp(—insO)pdpdw]- (10)

3
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amplitude for all modes

Figure 1. Amplitude and phase profiles of some HNMs in Fourier space. While all the HNMs share the same amplitude profile, their
phase distribution depends on the indices 1, n of the mode.

exp[—i27r(m — ?)Jl——pz]

. 1 fl fz’f .
Gy = — A0 (p, p)exp(—in dodop b. 11
=1 J, (p, p)exp(—ingp) 4 )/ pdpdyp an
By comparing equations (10) and (11) we see that the following trivial map exists
Em,n = Cm—oa,n> (12)

where av = z/\. This map simply corresponds to a lateral shift of the whole HNMs spectrum along the axis of
radial index m. In particular, at an infinite set of distances z; = I\, with [ = 0, £1, £2, ..., the spectrumof ¢,, ,
shifts by an integer amount of units along the radial axis. Hence, we have found a representation of any solution
of Helmholtz equation in orthogonal modes which is also invariant. We would like to recall that by invariance is
intended that, except for some trivial scaling, shifting, or rotation, the relation ¢,, , = ¢, , holds. One might
wonder what kind of field distribution corresponds to the decomposition in Fourier space in equation (4). That
can be easily obtained by just Fourier inverting the HNM expansion of A®)(p, q) with coefficients &,, ,, which
gives
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U, y,2) =Y cmunexp(inf)

m,n

/A exp[i27r(m/\+z)1/% - 2]
1/4
’ (=)

where x = r cos§, y = r sin §. The fundamental modes in real space consist of vortices in the azimuthal
variable f and integrals of Bessel functions in the radial variable r. This form for the field decomposition makes
also evident that the only contribution to the field on the optical axis is (r = 0), comes from the coefficients c,, ¢,
as expected. In fact, all the other terms would lead to a undefined phase at the points (0, 0, z), due to the
presence of the vortex exp (in)) in the phase profile, which would be not physical. Also, it is important to stress
that the decomposition in equation (13) lends itself to a convenient quantization of a non paraxial field. In fact, it
is discrete by nature and it consists of orthogonal modes already, which can easily be turned into field operators.
We can say that the modes in equation (13) parallel the role that Hermite—Gauss modes have in quantum optics,
which are however, as well known, limited to the paraxial regime only.

X 1"

T 2mpr) pdp ¢, (13)

3. One example of application

In order to help the reader visualize what are the main features of the HNM:s, we will now discuss a concrete
example. In figure 2 (panel a;), we show the measured wavefront of a collimated optical beam, as measured by
using a wavefront sensor, and the same beam after a phase shift exp[i27,/1 — p*]hasbeen applied to the field
(figure 2, panel a,). This phase shift just represents the effect of propagation under a distance z = A.In panel b,
we show the expansion of the field in panel a; in terms of the first fifteen Zernike’s circle polynomials. Panel b,
shows again the Zernike’s circle polynomials decomposition for the propagated field shown in panel a,. Asitis
evident from the two pictures, Zernike’s decomposition changes completely, being affected by propagation-
induced cross-talk problems, mostly among the radial part of the modes. On the other hand, panels ¢; and ¢,
show the decomposition in terms of HNMs, only for the coefficients c,, ;, for the two situations. The complete
2D HMN decomposition is reported in panels d; and d, for both the collimated and defocused field,
respectively. As itis clear from the picture, the description in terms of HNMs remains the same and does not
suffer from any cross-talk. The whole HNM:s spectrum just shifts along the radial index 1, while rigidly keeping
its shape. While it would be difficult, at a first look, to judge whether panels b, and b, refer to the same field,
there are no doubts about it if one looks at panels ¢; and . This is the essence of this work.

Panels d; and d, exemplify what is the impact of HNMs in the area of optical communications. Each mode,
corresponding to a specific combination of indices 1, n is in fact one independent channel, which can be
eventually digitized and transmitted. At the receiver place, all channels can be resolved and the information
retrieved. We would like to emphasize that the HNMs are defined on the full angular spectrum of radius 1/
which is much larger than that of any other decomposition defined within the paraxial regime. This extends the
communication bandwidth, making available, besides to wavelength and polarization, also fully non paraxial
spatial channels to encode information [22, 23]. As we wrote at the end of the previous section, quantization of
optical fields and optical metrology, wavefront characterization and corrections are also areas of applications for
the HNMs. More on these subjects will be presented in upcoming separate works.

A reader familiar with signals theory might wonder what is the main difference between using the HNMs as
channels to convey the information carried by the wavefield and the more common decomposition based on
Shannon’s sampling theorem. A similar question has been, in fact, raised by one of the reviewers of this
manuscript as well. Because of this, it is probably worthwhile to briefly discuss on this point, too. The sampling
theorem, in its two-dimensional form, can be applied to a wavefield U (x, y, z) by taking enough samples to
fulfil Nyquist’s condition. Because the field is band-limited, it is sufficient to sample it with sampling periods
Ax = A\/2and Ay = \/2inorder to avoid aliasing. The original field can then be recovered by applying a low
pass filter cutting the spatial spectrum of the sampled signal in the range — 1/, 1/ for both dimensions. If we
do so, then the field can be expressed in the following way

U(x, y, 2) = y U (mAx, nAy, z)sinc[%—(x - mAx)]

m,n

X sinc[zTﬁ(y - nAy)], (14)

where we have used the common notation sinc(x) = sin(x) /x [24]. In equation (14) the information channels
are now represented by the basic functions sinc[%’T (x — mAx)] and sinc[%7r (y — nAy)], while the pieces of
information encoded in each channel are represented by the values U (mAx, nAy, z). A reader who has
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Figure 2. Comparison between a standard modal decomposition, in this case a Zernike’s circle polynomials decomposition, and the
Helmholtz natural modes decomposition presented in this work. Panel a; shows a wavefront of a roughly collimated beam
(experimentally obtained by collimating the light coming from a single-mode optical fiber). Panel a, shows the same beam after a
defocus term, represented by the additional phase term exp(i2my/1 — p?),is added. This defocus term corresponds to the phase shift
imposed by propagation under a distance z = . Panels b; and b, show the Zernike’s modal decomposition on the unit disk for the
two situations, respectively. As expected, although it deals with the same field, which has just propagated on a finite distance z,
Zernike’s decomposition changes completely, being affected by propagation-induced cross-talk problems among the radial part of the
modes. In contrast to that, panels ¢; and ¢, show the behavior of Helmholtz natural modes of indices (11, 1). Asitis easy to recognize,
the modal structure behaves as a solid body which simply shifts along the radial axis as a whole, without changing its overall shape.
Panels d; and d, show the structure for the full 2D Helmholtz natural modes decomposition for the original and propagated field,
respectively. Again, the reader can appreciate the complete invariance of the modal structure under propagation.

followed the whole reasoning behind this work would immediately recognize the main problem behind the
decomposition in equation (14), namely the fact that the information U (mAx, nAy, z) in each channel is not
preserved as soon as the field propagates. This because, for a generic field,

U (mAx, nAy, z) = U (mAx, nAy, z,) every time z; = z,. Only for the very special case of diffraction-free
beams (like a Bessel beam) the information would remain somehow invariant, given that in that case

|U (mAx, nAy, z)| = |U (mAx, nAy, z,)|, for any values of z; and z,. However, as it was already pointed out
in the introduction, Bessel beams do not exist in reality, as they carry an infinite amount of energy. Thus, this
special case remains an unrealizable exception. For the same reason, a decomposition of a solution of the
Helmbholtz equation directly in terms of Bessel modes, which could be yet another way to represent the
information content of a wavefield, is of no practical use given that each Bessel mode is not physically realizable.
This is a main difference with HNMs, which on the contrary all have the same finite energy.

Before concluding this section we would like to get back to the concept of spatial spectroscopy that we have
mentioned in the abstract. We will do this with the help of an informative box, shown in figure 3. In the upper
panel of the figure, a classical spectroscopy scheme is presented. In order to minimize any chance of confusion, it
is better to refer to temporal spectroscopy for this case. The adjective temporal is used to stress that the spectrum
we are talking about comes from a 1D Fourier transform of the temporal response of a system. It deals witha 1D
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Conceptual scheme of classical spectroscopy.

The alteration of the spectral content of a known source reveals information on the
temporal degrees of freedom of an unknown object.

1 1
1 1
1 1
1 1
1 1
1 1
: object :
1 1
1 1
1 1
1 1
1 1
1 _ - — — 1
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Conceptual scheme of spatial spectroscopy.
The alteration of the spatial spectral content of a known source reveals information
on the spatial degrees of freedom of an unknown object.

object

input beam output beam

s s

Figure 3. Informative box showing analogies between a classical temporal spectroscopy scheme and a spatial spectroscopy one. In
common spectroscopy (upper panel) the different colors in the 1D field spectrum represent the different temporal modes carried by
the field. After the interaction with a unknown object, such spectral content changes by virtue of the object internal temporal modes.
The resulting field gives, in this way, information on the object. On a similar way, in a spatial spectroscopy scheme (lower panel) the
different colors in the 2D field spatial spectrum represent the different spatial modes carried by the field. After the interaction with a
unknown object, such spectral content changes by virtue of the object internal spatial modes. Once again, knowledge on the spatial
spectral composition of the incident field and the detection of the emerging field gives provides information on the unknown object.

spectrum because time has one dimension. Because the temporal spectral content of a field can be, in large part
and most of the cases, considered invariant during propagation, any change occurred in the spectrum after the
field has interacted with an object, must be completely ascribed to the object itself. This means that changes in
the field spectral composition are a signature of the unknown object. On a similar way, in the lower panel of
figure 3, a scheme for a spatial spectroscopy concept is presented. In that case, the 2D spatial spectrum of the
input field (in terms of HNM modes) is modified by the interaction with an unknown object. Since we have just
proven that such a spatial spectrum would remain invariant for a free-field, any change in the spectrum has to be
again ascribed to the interaction with the object. Hence, knowledge of the initial spatial spectrum and the
observation of the modified spectrum provides a signature of the unknown object. Some of the research
performed in the past, which aims at mapping changes of optical vortices carried by paraxial light beams, when
interacting with matter, can be seen as an embryonic form of spatial spectroscopy [10, 25, 26]. However, a
genuine and true spatial spectroscopy can only be realized when it is not limited to a special class of fields (like

7
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Laguerre—Gauss or Bessel-Gauss beams) and to a special regime (like the paraxial one) and can be applied to any
optical field relevant for the applications. This is what we believe the introduction of the HNMs can offer to the
scientific community operating in this area of research.

4. Concluding remarks

To conclude, in this work we have presented the natural spatial structure of classical fields solutions of the
Helmbholtz equation. Such a basic structure consists of fundamental, orthogonal and propagation invariant
modes that are fully compatible with Helmholtz equation. For this reason we have denoted these fundamental
modes as Helmholtz Natural Modes. As such, they appear to be the preferential description that Nature has
chosen to represent freely-propagating electromagnetic fields. Because their main properties directly originate
from being solutions of Helmhotlz equation, these modes are not bound to electromagnetism at all but in fact
are the fundamental modes for any wave theory that share similar equations of motion for the fields. We have
also discussed one explicit example which helped point out the essence of representing a field in terms of HNM:s.
We expect the work presented here to be relevant for fields such as quantum optics, classical and quantum
communications, optical metrology, inverse problems.
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