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RESEARCH ARTICLE
10.1002/2017JC013204

A Bayesian-Based System to Assess Wave-Driven Flooding
Hazards on Coral Reef-Lined Coasts
S. G. Pearson1,2 , C. D. Storlazzi3 , A. R. van Dongeren1 , M. F. S. Tissier2 , and
A. J. H. M. Reniers2

1Department of Applied Morphodynamics, Unit of Marine and Coastal Systems, Deltares, Delft, the Netherlands, 2Faculty
of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands, 3Pacific Coastal and Marine
Science Center, U.S. Geological Survey, Santa Cruz, CA, USA

Abstract Many low-elevation, coral reef-lined, tropical coasts are vulnerable to the effects of climate
change, sea level rise, and wave-induced flooding. The considerable morphological diversity of these coasts
and the variability of the hydrodynamic forcing that they are exposed to make predicting wave-induced
flooding a challenge. A process-based wave-resolving hydrodynamic model (XBeach Non-Hydrostatic,
‘‘XBNH’’) was used to create a large synthetic database for use in a ‘‘Bayesian Estimator for Wave Attack in
Reef Environments’’ (BEWARE), relating incident hydrodynamics and coral reef geomorphology to coastal
flooding hazards on reef-lined coasts. Building on previous work, BEWARE improves system understanding
of reef hydrodynamics by examining the intrinsic reef and extrinsic forcing factors controlling runup and
flooding on reef-lined coasts. The Bayesian estimator has high predictive skill for the XBNH model outputs
that are flooding indicators, and was validated for a number of available field cases. It was found that, in
order to accurately predict flooding hazards, water depth over the reef flat, incident wave conditions, and
reef flat width are the most essential factors, whereas other factors such as beach slope and bed friction
due to the presence or absence of corals are less important. BEWARE is a potentially powerful tool for use in
early warning systems or risk assessment studies, and can be used to make projections about how wave-
induced flooding on coral reef-lined coasts may change due to climate change.

Plain Language Summary Low-lying tropical coasts fronted by coral reefs are threatened by the
effects of climate change, sea level rise, and flooding caused by waves. However, the reefs on these coasts
differ widely in their shape, size, and physical characteristics; the wave and water level conditions affecting
these coastlines also vary in space and time. These factors make it difficult to predict flooding caused by
waves along coral reef-lined coasts. We created a system (‘‘BEWARE’’) that estimates how different wave,
water level, and reef combinations can lead to flooding. This tool tells us what information is needed to
make good predictions of flooding. We found that information on water levels and waves is most important,
followed by the width of the reef. BEWARE can be used to make short-term predictions of flooding in early
warning systems, or long-term predictions of how climate change will affect flooding caused by waves on
coral reef-lined coasts.

1. Introduction

Thousands of reef-lined tropical islands are threatened by climate change, sea level rise, and coral degrada-
tion (Ferrario et al., 2014). Many of these islands, such as atolls, have low (<4 m above MSL) maximum ele-
vations, making them particularly vulnerable to sea level rise and the impact of wave-driven flooding. For
instance, on the Gilbert, Marshall, Caroline, and Maldives island chains, over 90% of the population and land
area are located within 5 m of mean sea level (UN-Habitat, 2015). On many low-lying coral atolls, freshwater
is constrained to a relatively thin (<15 m) freshwater lens. These aquifers are susceptible to wave-driven
flooding that salinizes the freshwater lens, making the water unsuitable for human consumption (Gingerich
et al., 2017; Terry & Falkland, 2010). For example, large storm-driven wave events occurring in 2008, 2009,
and 2011 that coincided with high tides destroyed crops, demolished infrastructure, and contaminated
freshwater drinking supplies on numerous atolls in the Pacific Ocean (Fletcher & Richmond, 2010; Hoeke
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et al., 2013; U.S. Fish and Wildlife Service, 2015), underscoring the evident vulnerability of these reef-lined
island communities. Even on more mountainous tropical islands, the majority of housing, critical infrastruc-
ture, and agriculture are situated on narrow coastal plains close to sea level. The susceptibility of these trop-
ical islands to changing oceanic and climatic conditions represents a severe threat to food and water
security, public safety, and environmental health.

Wave-driven flooding hazards on coral reef-lined islands not only result from large tropical cyclones but
more commonly are the result of remotely generated (‘‘sunny-day’’) swell events (Hoeke et al., 2013).
When these waves or those from tropical cyclones encounter a reef-lined coast, they usually undergo
significant transformation due to the abrupt changes in bathymetry. Through wave breaking and bot-
tom friction dissipation, incident wave heights are reduced on the order of 90–99%, depending on the
tidal stage (Ferrario et al., 2014; P�equignet et al., 2011). However, not all of this incident sea-swell wave
energy (‘‘SS,’’ >0.04 Hz) is dissipated, and some is transferred to infragravity (‘‘IG,’’ 0.004–0.04 Hz) and
very low frequencies (‘‘VLF,’’ <0.004 Hz), generally via the breakpoint mechanism/dynamic setup on the
steep fore reef slope (Pomeroy et al., 2012b; Symonds et al., 1982). As a result, low-frequency wave
energy often dominates at the shoreline, which promotes higher runup and hence an increased chance
of flooding (Beetham et al., 2015; Cheriton et al., 2016; Gawehn et al., 2016; Roeber & Bricker, 2015; Shi-
mozono et al., 2015).

Resonant amplification occurs when the highly energetic IG and VLF wave frequencies on the reef flat coin-
cide with the nth natural frequency of the reef (fn):

fn5
2n11ð Þ

ffiffiffiffiffiffiffiffiffiffiffi
ghreef

p

4Wreef
(1)

where n is mode number, g is gravitational acceleration, hreef is the mean water depth on the reef flat, and
Wreef is the width of the reef flat. This phenomenon is controlled by parameters characterizing the reef (e.g.,
morphology) and extrinsic hydrodynamic forcing (Cheriton et al., 2016; Gawehn et al., 2016; P�equignet
et al., 2009). The consequences of resonant amplification are dire because higher water levels can be
excited on the reef flat than might be expected for the incident wave conditions, resulting in flooding or
damage to coastal infrastructure (Nakaza et al., 1990; P�equignet et al., 2009; Roeber & Bricker, 2015; Tajima
et al., 2016).

Vulnerability to wave-induced flooding is spatially heterogeneous due to the highly variable morphology
of reef-lined coasts. Quataert et al. (2015) found that relatively smooth, deep, narrow reef flats fronted by
steep fore reefs are prone to higher runup and therefore increased flood risk than other coral reef mor-
phologies. Furthermore, Owen et al. (2016) noted that small variations in island topography and land use
also influence wave-driven flooding and associated impacts. Therefore, the timing and severity of wave-
induced impacts depend, in part, on island characteristics, but the uncertainty regarding the spatially var-
iable shoreline morphology contributes considerable uncertainty to the prediction of these impacts. The
vulnerability of Small Island Developing States to natural hazards is further enhanced by their small physi-
cal size, relative isolation, often limited resources (Meheux et al., 2007), and existing socioeconomic vul-
nerabilities (Ferrario et al., 2014). These vulnerabilities will likely increase in years to come due to
population growth and climate-change effects such as sea level rise (Hinkel et al., 2014; Nicholls & Caze-
nave, 2010). All these factors may affect the habitability of these islands in the next century, displacing
their people and causing internal migration or emigration. Indeed, Storlazzi et al. (2015) project that
many atolls may become uninhabitable within the next few decades, when the recurrence interval of cat-
astrophic floods becomes shorter than the recovery period for freshwater lenses, vegetation, wildlife pop-
ulations, and repair of critical infrastructure. To combat threats like these, United Nations-endorsed
Sendai Framework for Disaster Risk Reduction calls for improved access to early warning systems and
disaster risk assessments by 2030 (UNISDR, 2015).

To answer this call and plan suitable adaptations, there is a need to improve how we evaluate and predict
wave-driven flooding threats to these regions, which constitute a large, diverse set of islands and reef
morphologies, all subject to a range of offshore oceanographic conditions. Bayesian networks are proba-
bilistic models that have been successfully used to make predictions of hydrodynamics and morphology
in numerous coastal applications (Gutierrez et al., 2011, 2015; Plant & Holland, 2011; Poelhekke et al.,
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2016). They do not require a detailed description of the physical pro-
cesses, as they only investigate the correlations between each vari-
able. Hirschberg et al. (2011) call for a probabilistic approach for
hydrometeorological forecasts, making Bayesian networks fit-for-
purpose, since they handle the uncertainty inherent to climate change
and short-term meteorologic-oceanographic processes. While process-
based model simulations can be time consuming, Bayesian networks
compile and provide probabilities nearly instantly once supplied with
data and trained. This speed makes Bayesian networks an ideal tool for
early warning systems, which require rapid decision making under uncer-
tainty. Furthermore, they have the potential to lower barriers to entry for
end users by presenting scientific output in a more accessible and interac-
tive way.

The main disadvantage of Bayesian networks is that they are data-
intensive, requiring sufficient input in order to derive the probabilis-
tic relationships used in their predictions. This may make their appli-

cation in data-poor environments (e.g., low-lying tropical islands) challenging. To overcome this
limitation, we used a process-based numerical wave and water level model to generate a synthetic data-
base of model results that captures a wide range of intrinsic coral reef properties and extrinsic hydrody-
namic conditions. The network then acts as an emulator or surrogate for the process-based model, as
also applied by Poelhekke et al. (2016). Given the numerous combinations of island morphologies and
physical forcing, Bayesian networks are a powerful tool for improving our prediction strategies for wave-
driven flooding threats.

This paper aims to demonstrate the use of a physics-based, deterministic numerical wave and water
level model (XBeach Non-Hydrostatic) and probabilistic Bayesian network (Netica) for estimating
wave-induced flooding of reef-fronted coastlines. First, the methodology used to construct the syn-
thetic database and design the Bayesian network is reviewed, and then the results of the network,
here termed, ‘‘Bayesian Estimator for Wave Attack in Reef Environments’’ (BEWARE), are presented
and discussed. The findings focus on the most important parameters for estimating wave-driven
flooding of reef-lined coasts, and the implications of using this system for early warning systems, cli-
mate change impact assessments, or adaptive planning such as prioritizing reef restoration projects.
The resulting Bayesian estimator is powerful in that it will enable researchers and coastal managers
to assess wave-induced flood hazards on a coast even if only approximate information is available.
The paper is organized as follows. In section 2, we discuss the methods; in section 3, the results
and analysis; in section 4, we discuss the implications of our findings and future applications; in sec-
tion 5, we provide our conclusions. Additional material regarding the XBeach Non-Hydrostatic model
validation, runup decomposition calculation, and BEWARE database are included in supporting infor-
mation (S1).

2. Methods

To construct BEWARE, the results of a validated process-based numerical wave model were combined with
a probabilistic Bayesian network. There are five steps in the methodology:

1. Schematize the reef and forcing conditions, and formulate a range of input parameters based on field
measurements and typical values from the literature, as per Quataert et al. (2015).

2. Simulate nearshore hydrodynamics for the full range of parameters using the validated process-based
wave and water level XBeach Non-Hydrostatic (XBHN) model to create a synthetic database of hydrody-
namic responses to extrinsic forcing and intrinsic coral reef geomorphology.

3. Develop a Bayesian network and train with model results.
4. Validate the Bayesian network by comparing predictions to field observations.
5. Assess the performance of the Bayesian network using techniques such a log likelihood ratios and confu-

sion matrices.

Figure 1. The idealized reef profile modeled in XBeach-Non-Hydrostatic with
the relevant hydrodynamic and morphological parameters indicated: offshore
water level with respect to the reef flat (g0), offshore significant wave height
(H0), wave steepness (H0/L0), fore reef slope (bf), bed roughness (cf), reef width
(Wreef), beach slope (bf), and beach crest elevation (zbeach).
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2.1. Model Reef and Forcing Schematization
Key parameters were chosen based on findings of previous studies, following the methodology outlined by
Quataert et al. (2015). Multiple extrinsic and intrinsic parameters were covaried. The extrinsic hydrodynamic
parameters were offshore water level (g0), wave height (H0), and wave steepness (H0/L0), while the intrinsic
reef morphologic parameters examined were fore reef slope (bf), reef flat width (Wreef), beach slope (bb),
and bed roughness (cf), as shown in Figure 1. Values were chosen to represent typical conditions reported
in the literature and observed at field sites (Table 1). Beach crest elevation, or island height (zbeach), was fixed
at a height of 30 m to focus on runup as a proxy for overtopping, as per (Matias et al., 2012). However, the
method can easily be extended to include lower values of zbeach for direct computation of overtopping.

2.2. Simulation of Nearshore Hydrodynamics
To generate the synthetic database, the process-based XBeach Non-Hydrostatic (XBNH) model (version
1.22.4867) was used with varying reef morphology and hydrodynamic forcing based on the schematization
of section 2.1. XBNH is a depth-averaged, wave-resolving model that solves the shallow water equations
including nonhydrostatic pressure (McCall et al., 2014; Smit et al., 2014; Roelvink et al., 2015). The model
was first validated using data from a fringing reef hydrodynamics laboratory experiment (Demirbilek et al.,
2007) (see supporting information S1).

An idealized 1-D reef profile was created in XBNH and varied for a range of parameter values (Table 1). This
study extends the 57 XBNH simulations of Quataert et al. (2015) to 174,372 (seven parameters, 3–12 varia-
tions per parameter, and four 30 min simulation periods with random realizations of the surface elevation
time series at the offshore boundary). A variable spin-up time was implemented to account for the differ-
ences in the time to achieve stationary conditions.

The XBNH model complexity had to be balanced carefully with time constraints because computational
demand increases exponentially with the number of parameters and variations. The scope of this study was
thus limited to remotely generated swell with unimodal JONSWAP spectra and maximum significant wave
height of 5 m, rather than more extreme cyclone conditions. The idealized setup used here has several other
limitations, in that it was one-dimensional, had spatially uniform bed roughness, and greatly simplified the
complex bathymetry characteristic of most coral reefs. The application of a one-dimensional model along a
cross-shore profile neglects some of the dynamics that occur on natural reefs, such as lateral flow. It does, how-
ever, represent a conservative estimate for IG wave generation and runup, as the forcing is shore-normal.

2.3. Development and Training of the Bayesian Network
Bayesian networks such as Netica (Norsys, 2003), which was used here, are probabilistic graphical models
that rely on Bayesian probability to make predictions. By examining the statistical relationships between
each result in the database, the network develops conditional probabilistic relationships between each
parameter, which are updated as more data (here: model results) are added (see supporting information S2).

The first step in developing a Bayesian network is to define key parameters as nodes, and then to create
links between them based on their dependencies. The eight main parameters varied in XBNH served as the
input nodes. Output nodes or ‘‘hazard indicators’’ were chosen from model variables (Table 2) that either
indicate the potential for flooding (in this case the top 2% of runup, R2%) or provide insight into the

Table 1
Primary XBeach Non-Hydrostatic Model Input Parameters and Their Values

Parameter Symbol Units Values

Offshore water level g0 m 21.0, 20.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
Offshore significant wave height H0 m 1, 2, 3, 4, 5
Offshore wave length L0 m –
Offshore wave steepness H0/L0 – 0.005, 0.001, 0.050
Fore reef slope bf – 1/2, 1/10, 1/20
Reef flat width Wreef m 0, 50, 100, 150, 200, 250, 300, 350, 400,

500, 1,000, 1,500
Beach slope bb – 1/5, 1/10, 1/20
Coefficient of friction cf – 0.01, 0.05, 0.10
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hydrodynamic processes acting on reefs, such as mean wave period (Tm-1,0). The main Bayesian network
configuration used here (Figure 2) assumes that all input parameters influenced each of the output
parameters.

In order to represent the model variables as probability distributions, the data set was divided into bins (Fig-
ure 2). Input parameters were discretized using the same parameter values as were tested in XBNH, result-
ing in uniform distributions. Discretization of output variables required more careful consideration, since
they were continuously distributed. Furthermore, because of nonlinear processes, a uniform input may yield
a nonuniform output distribution, which influences bin discretization. The chosen bins took into account
both the distribution of data and the desired precision of the estimates. Care was taken to prevent overfit-
ting by checking that increasing the number of bins per node did not increase validation error rates, as per
Gutierrez et al. (2015). The last step in constructing the Bayesian network was to train it using the synthetic
data set created with XBNH, resulting in the prior predictions (i.e., probability distributions of all model
results in the absence of additional information or constraints). Simulations that did not achieve stationary
conditions before the end of the spin-up period (30–120 min, depending on reef width) were excluded
from the Bayesian network.

2.4. Bayesian Network Validation
The Bayesian network was constructed using a synthetic data set, so it needed to be validated using field
data from case studies. However, there are limited suitable field measurements available, so at this time
only a field data set from Roi-Namur in the Republic of the Marshall Islands (Quataert et al., 2015; Cheriton
et al., 2016; Gawehn et al., 2016) and numerical model results from Funafuti, Tuvalu (Beetham et al., 2015),
were used for validation. The availability of additional runup time series recorded on fringing coral reef-
fronted beaches would provide more opportunities to test the network, although this is hampered by the
dearth of published R2% field measurements in such locations.

To test the network, input nodes were constrained based on the prescribed hydrodynamic boundary condi-
tions and given reef geomorphology. The posterior probability distributions of runup, wave height at the
toe of the beach (SS, IG, and VLF frequencies), and wave setup were then compared with their observed val-
ues. An ideal prediction would show a narrower posterior distribution (indicative of precision) that is cen-
tered on the observed value (representative of accuracy).

2.5. Assessment of Bayesian Network Performance
The performance of the Bayesian network (how often estimates are correct) was assessed by comparing the
predictive skill of different configurations, and by testing its accuracy in predicting a subset of the database

Table 2
Primary XBeach Non-Hydrostatic Output Parameters, Calculated at the Inner Reef Flat Unless Otherwise Noted

Parameter Symbol Units

Significant sea/swell wave height (0.04–1 Hz) Hm0,SS m
Significant infragravity wave height (0.004–0.04 Hz) Hm0,IG m
Significant very low frequency wave height (0.001–0.004 Hz) Hm0,VLF m
Significant low-frequency wave height (0.001–0.04 Hz) Hm0,LF m
Wave setup gsetup m
Mean water depth (averaged across entire reef flat) hreef m
Extreme water level (mean of values greater than

2% exceedance value)
g2% m

Sea/swell contribution to g2% (0.04–1 Hz) g2%;SS m
Infragravity contribution to g2% (0.004–0.04 Hz) g2%;IG m
Very low frequency contribution to g2% (0.001–0.004 Hz) g2%;VLF m
Runup (2% exceedance value) on beach slope R2% m
Runup (mean of values greater than 2% exceedance value) R2% m
Sea/swell contribution to R2% (0.04–1 Hz) R2%;SS m
Infragravity contribution to R2% (0.004–0.04 Hz) R2%;IG m
Very low frequency contribution to R2% (0.001–0.004 Hz) R2%;VLF m
Mean spectral period Tm21,0 s
Mean spectral frequency fm21,0 Hz
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Figure 2. Layout of the ‘‘Bayesian Estimator for Wave Attack in Reef Environments’’ (BEWARE) system, illustrating key parameters and the links between
them. Extrinsic hydrodynamic input parameters are shaded in blue, intrinsic reef morphologic input parameters in teal, and output variables (calculated at
the inner reef flat/beach toe) in yellow. Within the nodes are a histogram indicating the prior probability distributions, mean, and standard deviation for
each parameter (n 5 174,372). The key parameters are defined in Tables 1 and 2. Negative values of R2% can be explained by cases where g0< 0 and
runup on the fore reef does not exceed the reef crest. Negative values of gsetup can be explained by cases where the Wreef 5 0 and set down is occurring
at the observation point.
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that had been excluded from the training. The first means of evaluating the predictive skill of the Bayesian
network here was through the use of confusion matrices, which break down predictive error rates into over-
prediction and underprediction. A confusion matrix thus provides a ‘‘hit rate’’ for the Bayesian network,
identifying how often the network correctly predicts what was observed in reality, or, in this case, calculated
by the XBNH model. To compute the error rates and confusion matrices, a k-fold cross validation was per-
formed, as per Poelhekke et al. (2016) and Gutierrez et al. (2015). This entailed randomly dividing the data-
base into k (in this case 10) folds or subsets, excluding them one at a time from the training, and comparing
the network predictions of the excluded data with the actual values. Although there is no restriction on the
size of confusion matrices, their complexity increases greatly with the number of bins for a given output
node. Hence, only a binary confusion matrix (two bins) was considered here, such that a variable lying
below a set threshold was considered negative, and positive above the threshold.

The second method for assessing the predictive capability of the network was using the log likelihood ratio
(LLR). The LLR is an indicator of predictive skill and model uncertainty that compares the prior predictions
of a network with the posterior predictions made using additional information (Plant & Holland, 2011). The
concept is explained in more detail by, van Verseveld et al. (2015), Gutierrez et al (2015), and Poelhekke
et al. (2016). When the LLR is calculated for key parameters, it makes it possible to consider which parame-
ters should be included in the Bayesian network, which parameter uncertainty should be constrained, and,
thus, which field measurements are most important to collect. By withholding parameters from the network
one at a time and comparing the resulting predictions with those of the full network, the relative impor-
tance of each parameter was assessed. For this study, the LLR score for each withheld parameter was nor-
malized by the LLR score of the full network.

3. Results and Analysis

3.1. XBNH Validation on Reefs
In order to validate XBNH and the parameter settings for wave transformation and runup on a fringing reef,
the model was tested against the Demirbilek et al. (2007) laboratory-derived experimental data set of cases
without wind, similar to the data sets used by Nwogu & Demirbilek (2010), Zijlema (2012), and Shimozono
et al. (2015) to validate their numerical models.

Modeled Hm0 at the inner reef flat shows good agreement with the laboratory data across the 29 tested
cases (Figure 3a), albeit with slight underestimation (R2 5 0.786, bias 5 20.098). The model shows greater
skill at estimating wave setup at the inner reef flat, also with a slight negative bias (R2 5 0.946,
bias 5 20.046), as shown in Figure 3b. The scatter in R2% predictions is wider but shows a positive correla-
tion and slight overestimation (R2 5 0.642, bias 5 10.098), as shown in Figure 3c. The results of this valida-
tion suggest that XBNH can simulate reef hydrodynamics with reasonable accuracy, and give us the

Figure 3. Scatterplots of observed (Demirbilek et al., 2007) and computed properties at the inner reef flat (a) wave height
(Hm0), (b) setup, and (c) runup (R2%) for all 15 tested cases.
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confidence to use it in the subsequent analysis. More information regarding the validation can be found in
supporting information (S1).

3.2. XBNH Results
The nearshore hydrodynamic results of all XBNH simulations were aggregated to enable an examination of
general trends across the entire synthetic data set (Figure 4). Extreme water levels on the inner reef flat
(g2% ) and runup (R2% ) were defined as the mean of the highest 2% of the water level time series for each
simulation at the inner reef flat and waterline, respectively. We focus on g at the inner reef flat because it is
commonly measured in reef hydrodynamics studies (i.e., Cheriton et al., 2016; Merrifield et al., 2014), and on
R2% because it can be used as a proxy for overtopping and potential flooding (Matias et al., 2012). These

Figure 4. For the full set of XBeach Non-Hydrostatic simulations, variations in (a–g) extreme water levels, g2% , and (h–n) runup, R2% ; as a function of the seven pri-
mary input parameters (Table 1). The different colors represent the mean relative contribution of water level (g0), setup, and each wave frequency band (VLF, very
low frequency, 0.004–0.001 Hz; IG, infragravity, 0.04–0.004 Hz; SS, sea swell, >0.04 Hz) to the total water level and runup. Results have been filtered to show only
cases with g0 � 0 (n 5 136,032).
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values were then decomposed into separate components (i.e., g0; gsetup ; g2%;SS ; g2%;IG ; g2%;VLF ) to yield
insight into the nature of wave transformation across the reef. This decomposition calculation is described
in supporting information (S3).

Some trends confirm a priori expectations: the extreme water level parameters g2% and R2% both increase
with increasing g0 and H0 (Figures 4a, 4b, 4h, and 4i), and both decrease for high H0/L0 (Figures 4c and 4j).
In addition, the highest extreme water levels occur with low cf (Figures 4d and 4k), small Wreef (Figures 4f
and 4m), steep bf (Figures 4e and 4l), and steep bb (Figures 4g and 4n), which concurs with the findings of
Quataert et al. (2015) and Shimozono et al. (2015). When runup (R2%) is evaluated as a function of reef width
and friction (Figure 5), it increases with reduced width (consistent with Shimozono et al., 2015) and reduced
friction (consistent with Quataert et al., 2015).

For a constant water level, as offshore wave heights increase, extreme water levels and runup at the shore-
line become primarily driven by setup and reef flat waves. With increasing H0, the combined contribution of
gsetup , g2%;SS , g2%;IG , and g2%;VLF (i.e., excluding g0) to total g2% increases from 20% to 60% (Figure 4b), and
similarly, the contribution of Rsetup , R2%;SS , R2%; IG , and R2%;VLF to total runup (R2% ) rises from 23% to 67%
(Figure 4i). The large contribution of setup and reef flat waves to total extreme shoreline water levels and
runup during the occurrence of large offshore waves reinforces the importance of including these parame-
ters in predictions of flooding on reef-lined coasts, as opposed to simpler ‘‘bathtub’’ models that only
account for offshore water levels. Variations in H0/L0 (Figures 4c and 4j) and bf (Figures 4e and 4l) have little
effect on the relative composition of g2% and R2% , but there is a proportionally larger R2%; IG component at
lower values of cf (23% of R2% at cf 5 0.01, up from 11% at cf 5 0.1; Figure 4k), indicating the importance of
frictional dissipation to resulting infragravity wave dynamics over reef flats. This relationship has been indi-
cated by field data (Cheriton et al., 2016) and physics-based models (Pomeroy et al., 2012a), particularly in
relation to resonance.

While offshore wave forcing is important, mean offshore water level (g0) was found to have the strongest
effect on the relative proportions of setup and reef flat waves to overall extreme shoreline water levels and
runup. Wave-driven setup makes up the largest proportion of g2% at lower values of g0 (61% at 0 m; Figure
4a), but its influence decreases with increasing water depth on the reef flat (6% at 3 m); this inverse relation-
ship between water level setup and offshore water levels is well established (Becker et al., 2014; Beetham
et al., 2015; Vetter et al., 2010). Infragravity and VLF waves make a fairly constant contribution across the full
range of modeled water levels (g2%;IG : l 5 0.14 m, r 5 0.02 m; g2%;VLF : l 5 0.25 m, r 5 0.02 m); this rela-
tive insensitivity of low-frequency waves to offshore water level was also observed in the field (Beetham
et al., 2015; Merrifield et al., 2014). However, for the short-period waves, since they are depth-limited, as the
mean water level over the reef flat increases, the contribution of g2%;SS to the total g2% increases (from
0.15 m [11%] at 0 to 0.72 m [17%] at 3 m). However, while the magnitude of the contribution of SS waves to
runup, R2%;SS , increases with increasing g0, the relative proportion does not (from 0.16 m [10%] at 0 to

Figure 5. Runup (R2%Þ as a function of reef width (Wreef) and friction coefficient (cf), averaged across all tested XBeach
cases (n 5 174,372).
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0.36 m [8%] at 3 m). This modulation of SS waves by offshore water level is consistent with previous findings
(Beetham et al., 2015; Merrifield et al., 2014; Storlazzi et al., 2011). Because increases in g0 can be considered
a proxy for sea level rise, these findings imply that sea level rise may result in a greater contribution to
extreme shoreline water levels and runup from SS-band reef flat waves.

Although the composition of g2% is relatively insensitive to different beach slopes, bb, (Figure 4g), R2%
shows some variation (Figure 4n), with the contribution of R2%;SS increasing with steeper bb (from 2% to
15% of total). This trend was also noted by Shimozono et al. (2015), as runup is inversely proportional to dis-
sipation in the surf zone. Furthermore, higher-frequency waves break more readily on milder beach slopes
where they are depth limited (Brocchini & Baldock, 2008).

The overall trends for g2% and R2% are similar, although R2% is consistently �27% higher than g2% for the
same forcing conditions (Figure 6). This may have important implications for inferring R2% and flooding
characteristics from measurements on the reef flat in the absence of direct R2% measurements. Although
directly correlated (R2 5 0.916), g2% by itself does not fully translate to R2% , as a result of continued wave
transformation on the beach slope.

In this section, we examined the average of all conditions in the data set, but there is considerable variation
around the mean. These variations can be attributed, in part, to particular combinations of parameters that
yield anomalously high runup, such as those that result in resonant amplification, which is explored in the
next section.

3.3. Reef Flat Resonance
As reef flat resonance may account for anomalously high runup (Gawehn et al., 2016; Nakaza et al., 1990;
Nwogu & Demirbilek, 2010; Shimozono et al., 2015), the model results were analyzed to determine if reso-
nant conditions were present. A peak in Hm0,VLF wave height at the inner reef flat was identified for narrower
(�50 to 250 m) reefs (Figure 7a). In order to verify whether this peak was related to resonance, cases of rela-
tively high (top 30%) IG and VLF waves, defined as Hm0;IG=H0

� �2
> 0:3 and Hm0;VLF=H0

� �2
> 0:1, respectively,

were isolated for additional analyses. The data from these cases reveal a distinct peak (Figure 7b) at the res-
onant frequency (fm21/fn051 6 0.1), indicating that resonance is likely occurring. Frictional and geometrical
effects can explain deviations from the theoretical resonant frequency (van Rijn, 2011). Furthermore, not all
high-energy VLF waves are necessarily resonant: some may also be standing or progressive waves (Gawehn
et al., 2016).

Figure 6. Extreme water levels at the inner reef flat (g2% ) versus runup on the beach slope (R2% ). Results have been fil-
tered to show only cases with g0 � 0 and zbeach 5 30 m (n 5 136,032).
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To quantify the differences between mean conditions and resonant cases, the full set of model results was
filtered, selecting only those cases meeting the aforementioned resonance criteria, and the same analyses
of comparing the contributions to extreme shoreline water levels and runup were carried out for only these
resonance cases (Figure 8). In general, g2% and R2% were slightly higher for the resonant cases in Figure
8 when compared to the full set of simulations shown in Figure 4. The starkest difference between the
resonance-only and full set of simulations is found with the g2% and R2% trends as a function of reef width:
as Wreef increases, g2% and R2% values from the full set of model results gradually decline (Figures 4f and
4m), while the g2% and R2% values for the resonance cases increase sharply (Figures 8f and 8m). The dis-
continuity at 500 m is due to the fact that none of the simulations with Wreef> 500 m met the aforemen-
tioned resonance criteria. Furthermore, the percent contribution of g2%;IG to g2% is larger than that of
g2%;VLF for Wreef< 300 m, whereas the percent contribution of g2%;VLF to g2% is larger at Wreef> 300 m (Fig-
ure 8f), likely due to resonance. When theoretical resonant frequencies are calculated for a mean reef flat
depth (hreef) of approximately 1.5 m across all simulations using Equation (1), Wreef< 240 m should be reso-
nant at IG frequencies, and resonant at VLF frequencies when Wreef> 240 m. A similar shift from IG to VLF
energy on wider reefs was also demonstrated by Shimozono et al. (2015).

Many of these resonant cases are associated with greater mean reef flat water depths (hreef), whether due
to higher g0 or setup (Figure 8a). This coincides with the expected response, since greater water depth over
the reef increases the resonant frequency and reduces the effects of frictional dissipation (P�equignet et al.,
2009; Pomeroy et al., 2012a). Shimozono et al. (2015) also posited that the increase from extreme water lev-
els at the inner reef flat to runup on the shoreline can be partly attributed to resonant runup amplification
along the beach slope. However, this effect was found to be minor for the steep range of bb tested here.
The trends in percent contribution of setup and the different wave frequency components to total extreme
water levels and runup are relatively similar between the resonant cases (Figure 8) and the full set of simula-
tions (Figure 4).

Though large R2%;VLF values are seen for Wreef � 250–500 m in resonance cases (Figure 8m), a similar
increase in runup as a function of reef width is not seen for the full suite of cases (Figure 4m) because reso-
nant cases are rare (n 5 7,608) relative to all others in the data set (n 5 136,032). However, given that the
synthetic data set is based on uniform input distributions, and Tp values that are a function of H0 (via the
steepness parameter), it is possible that resonant cases are underrepresented here compared to what might
be expected in the field.

3.4. Bayesian Network Validation
In the next step, the Bayesian network was trained using the results from XBNH, and validated against field
data from the 18 November 2013 runup event on Roi-Namur in the Republic of the Marshall Islands (Cheri-
ton et al., 2016; Quataert et al., 2015), and model simulations of the 23 June 2013 runup event on Funafuti,

Figure 7. (a) VLF wave height as a function of reef width (n 5 174,372). The red line indicates the mean, blue box indi-
cates 25th and 75th percentiles, and black whiskers denote the 5th and 95th percentiles, with red dots indicating upper-
range outliers. (b) Normalized, squared VLF wave height (Hm0,VLF/H0)2 as a function of the ratio between mean spectral
frequency at the inner reef flat (fm21,0) and the reef’s zeroth resonant frequency (fn,0). Points close to fm21,0/fn,0 5 1 (108)
are near resonance.

Journal of Geophysical Research: Oceans 10.1002/2017JC013204

PEARSON ET AL. BEWARE: FLOODING ON REEF-LINED COASTS 10,109



Tuvalu (Beetham et al., 2015). The prior distributions in Figure 2 (also presented in Figure 9 in a different for-
mat) indicate the default prediction for each hazard indicator without any additional information (dark blue
bars in Figure 9). When the observed hydrodynamic forcing and reef characteristics are introduced to the
Bayesian network, the hazard predictions are constrained, yielding the posterior distributions. The network’s
predictive skill is judged based on whether the peak of the posterior prediction matches the observed value
for each hazard variable. In the Funafuti cases, results are presented as maximum runup (Rmax) and contri-
butions to Rmax (Rmax,SS and Rmax,LF), so we used R2% , R2%;SS , and R2%;LF to make comparisons rather than
R2%, Hm0,SS, and Hm0,LF as with Roi Namur.

Figure 8. For the XBeach Non-Hydrostatic (XBNH) model resonance cases, variations in (a–g) extreme water level, g2% , and (h–n) runup, R2% ; as a function of the
seven primary input parameters (Table 1). The different colors represent the mean relative contribution of water level (g0), setup, and each wave frequency band
(VLF, very low frequency, 0.004–0.001 Hz; IG, infragravity, 0.04–0.004 Hz; SS, sea swell, >0.04 Hz) to the total water level. Resonant cases were filtered from the full
set of XBNH simulations presented in Figure 4 by selecting only simulations where fm21,0/fn,0 5 1 6 0.1 (n 5 7,608).
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The network underestimates R2% for Roi-Namur (Figure 9a), and overestimates R2% for the Funafuti high tide
case (Figure 9m), albeit by a single bin (20 cm elevation difference). However, it correctly predicts runup for
the low and mid tide Funafuti cases (Figures 9e and 9i). Although the network overpredicts Hm0,SS

f > 0:04 Hzð Þ on Roi-Namur (Figure 9b), it successfully estimates R2%;SS for the Funafuti cases (Figures 8f, 8j,
and 8n). Hm0,LF and R2%;LF f < 0:04 Hzð Þ are confidently and correctly predicted by the network in three of
the tested cases (Figures 9c, 9g, and 9k), although the bimodal posterior probability distribution for Funafuti
at high tide (Figure 9o) suggests lower confidence in that prediction. Setup is overestimated for the Funafuti
cases (Figures 9h, 9l, and 9p) but correctly predicted for Roi-Namur and Funafuti at high tide (Figure 9d).

Figure 9. The ‘‘Bayesian Estimator for Wave Attack in Reef Environments’’ (BEWARE) system validation against case stud-
ies. Figures 9a–9d correspond to the runup event on 18 November 2013 in Roi Namur, Republic of the Marshall Islands
(Cheriton et al., 2016; Quataert et al., 2015). Figures 9e–9p correspond to a runup event on Funafuti, Tuvalu modeled by
Beetham et al. (2015). Please see Table 2 for parameter definitions. Note that for these test cases, Hm0,LF and R2%;LF
encompass the full range of low-frequency waves from 0.001 to 0.04 Hz (i.e., including infragravity waves), as per the con-
vention used in the data sources. The dark blue bars represent the prior probability distribution for all cases in the net-
work, and the lighter blue bars represent the posterior probability distributions, based on the hydrodynamic forcing and
reef characteristics of each test case. The yellow triangles indicate the observed values of each variable from the case
study.
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These results suggest that the Bayesian network is capable of predicting wave transformation processes
across the reef for the majority of the limited cases that were accessible, but that it is less able to capture
the final transformation from the inner reef flat across the beach. Discrepancies could be explained in part
by the schematized nature of the XBNH model when compared to the real conditions of the reefs, or to dif-
ferences in the runup/wave height decomposition calculation used by the validation cases. Underestima-
tion of the Roi-Namur case may also be explained by the available measurements—the observed runup
value is a single wave event that was captured on camera and may not correspond well with a statistical
value like R2%. The limited published data available for validation of flooding hazards on reefs underscores
the great need for further field measurements.

3.5. Bayesian Network Predictive Skill
After validating the Bayesian network on field and model data, its prediction of the XBNH results was tested,
making it possible to draw on a much larger pool of data for comparison. This provides some insight into
how often the Bayesian network overpredict or underpredict certain hazard indicators. The confusion matri-
ces in Table 3 indicate that the network has high positive prediction rates for large values of R2%, gsetup,
Tm21,0, Hm0,SS, and Hm0,IG (>96% correct) but is slightly less skilled at predicting large Hm0,VLF (�85%). The
high predictive skill for most of the hazard indicators (particularly runup) suggests that the Bayesian net-
work acts here as a suitable proxy for XBNH, similarly to the findings of Poelhekke et al. (2016) for the
XBeach Surf Beat model.

3.6. Bayesian Network Log Likelihood Ratio
After establishing the validity and performance of the network, the LLR test was used to investigate the rela-
tive importance of each parameter within the Bayesian network. When the normalized LLR was calculated
for R2% by withholding each input parameter successively from the network, it scored much lower when H0,
g0, and Wreef were not taken into account (Figure 10a). This indicates that those parameters are more impor-
tant for making successful predictions of runup (and by extension flooding) than parameters such as H0/L0,

cf, bf, or bb. Compared to the runup, setup is less sensitive to cf (Figure 10b), as the setup is dominated by a
balance between the radiation stress gradients and the pressure gradient with the friction force being a
smaller component. The Tm21,0 (Figure 10c) is sensitive mostly to Wreef and g0 as these parameters control
the degree to which the energy shifts to lower frequencies. Hm0,SS (Figure 10d) shows similar behavior as
the runup. Compared to the short waves, Hm0,IG (Figure 10e) is less dependent on g0 because it is not satu-
rated and more determined by the breakpoint-generation and frictional dissipation processes as evidenced
the sensitivity to H0, H0/L0 and cf. Hm0,VLF (Figure 10f) shows poor predictive skill without H0, H0/L0, bf, and
Wreef, indicating both offshore forcing and geometry are important to this response. This may reflect the
highly nonlinear nature of processes controlling Hm0,VLF (i.e., resonance), and may also explain the lower pre-
dictive accuracy observed for this variable in Table 3.

Table 3
Confusion Matrices Depicting the Accuracy of the Bayesian Network in Predicting the XBeach Non-Hydrostatic (XBNH) Model
Output Parameters (Table 2) for a Given Set of Input Conditions (i.e., Validation Error Rates)

R2% (m)

Hm0,SS
(m)

Hm0,IG
(m)

ηsetup 
(m)

Hm0,VLF
(m)

Tm-1,0 
(s)

Predicted

Predicted

Predicted

Predicted

Predicted

Predicted

Predicted

Observed

Observed

Observed

Observed

Variable

Observed

Observed

Observed

Note. Values in the tables indicate the percentage of observed cases falling into a given prediction bin. Green values
along the main diagonal indicate correct predictions, whereas the bottom left corner indicates the false negative rate
(underpredictions) and the top left indicates the false positive rate (overpredictions).
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4. Discussion

This study presents a proof-of-concept for the use of a process-based model and Bayesian network to esti-
mate flood hazard indicators such as runup on low-lying coral reef-lined coasts. This section examines the
sensitivity of key parameters and potential future applications in early warning systems and climate change
impact assessments.

4.1. Relevance of Key Parameters
The results of the LLR tests (Figure 10) across the entire data set indicate that hydrodynamic forcing (e.g.,
H0, g0, and H0/L0) is most important to an accurate prediction of the hydrodynamic response on the reef,
followed by morphological characteristics. Of these, reef geometry parameters (e.g., bf and Wreef) are
more influential than the frictional characteristics (cf) and beach slope bb. The LLR tests imply that reef
properties that can be more easily obtained via remote sensing (e.g., Wreef and bf) may provide (to first
order) more useful information than detailed, labor-intensive field surveys to measure parameters such as
bed roughness (cf). Similarly, although measurements of beach slope bb are unavailable for most low-
lying tropical islands, the LLR tests suggest that it is not critical for effective prediction of flooding
hazards.

4.2. Bayesian Network Improvements
The network’s validation could be improved by training it with additional XBNH simulations that include
higher resolution of input parameters (e.g., H0 5 0.5, 1.5, 2.5, 3.5, 4.5 m). Furthermore, the predictive skill of
a Bayesian network improves when it has multiple cases from which to learn and gain experience (Poel-
hekke et al., 2016). At present, four cases were simulated with random wave forcing for each combination of
input parameters; the network’s experience could be improved by increasing this number. Lastly, the

Figure 10. Log likelihood ratio (LLR) comparisons of key output variables (Table 2) for withheld parameters. The dashed line at y 5 1 shows the normalized total
LLR for the full network with all parameters included. Each of the circles represents the total LLR for a network where that parameter has been withheld from the
prediction, normalized by the total LLR for the full network. A value of 1 would indicate that removing a given parameter does not affect the network’s predictive
skill, whereas a value of 0 means that the parameter is essential to making predictions of a particular output variable.
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discretization of the Bayesian network’s output bins directly influences the accuracy and precision of its pre-
dictions, so sensitivity to alternate configurations could be carried out. For instance, if the observed value
was 0.51 and the predicted bin was 0.00–0.50, it would still be regarded as an incorrect prediction, even
though it was very close.

4.3. Early Warning Systems
The Bayesian network presented in this study can be used in an early warning system (EWS) to predict
flooding. Currently, most operational EWSs are capable of predicting offshore wave heights, tides and
surges, but not onshore hazards such as runup and flooding because these are computationally expensive
to predict. Following Poelhekke et al. (2016), one solution is to precompute the range of offshore forcing
and onshore hazards, compile the results in a Bayesian network, and then couple this network to an EWS.
Predictions of offshore forcing can be then used to obtain constrained posterior probability distributions of
the onshore hazard at negligible computational expense in operational mode. The alternative method of
incorporating a wave transformation model such as XBNH directly into an EWS (as was done in Bosserelle
et al., 2015) does not have these advantages of speed and capability to quantify the hazard uncertainty.

In the case of an EWS for low-elevation, reef-lined islands, the offshore forcing can be obtained as follows:
tides can be computed from a deterministic prediction, surges may be predicted using a hydrodynamic
model such as Delft3D (although they are usually less important on steep-sloped coasts like atolls), and off-
shore wave predictions can be obtained from existing operational models such as WAVEWATCH-III (Tolman,
2009).

If coupled with 2-D inundation models, the EWS can be extended to predict flooding occurrence, timing
and extent, which can be used for land use planning and evacuation purposes. Furthermore, if building
characteristics are known, damage to structures could also be estimated using simple stage-damage rela-
tionships or more sophisticated approaches where sufficient data is available. van Verseveld et al. (2015)
and J€ager et al. (2015, 2017) have used Bayesian networks to predict direct economic damage to houses
and infrastructure resulting from surge and wave-induced flooding on sandy, urbanized coastlines.

4.4. Climate Change Impact Assessments
In addition to EWS, the BEWARE system can be used to investigate hypothetical climate change scenarios,
such as changes to sea level, wave climate, or reef roughness due to coral degradation or restoration. Shope
et al. (2016) used the formulation of Stockdon et al. (2006) (developed on the basis of runup data obtained
on sandy sloping beaches under nonextreme offshore forcing) to estimate Pacific island runup under future
climate change scenarios. The BEWARE system developed for this study could provide a more comprehen-
sive estimate than those based on the Stockdon et al. (2006) equations by accounting for input uncertainty
and considering the full suite of processes involved in reef hydrodynamics (including resonance) and the
resulting wave-driven flooding.

The reaction to climate change does not have to be passive—mitigating measures can be taken by affected
island communities to improve resilience to flooding. The value of coral reefs as nature-based flood
defenses can also be analyzed with this model and used to prioritize conservation or restoration efforts. Fer-
rario et al. (2014) demonstrated that reef restoration is a more cost-effective solution for coastal risk reduc-
tion on coral reef-lined islands than the construction of artificial breakwaters. Given the scarce resources
available for such projects, the BEWARE system can be used to understand which coral reef-lined areas are
most vulnerable and where coral restoration can provide the largest return in terms of coastal hazard risk
reduction.

Since reef roughness is correlated to its coral health (Baldock et al., 2014), degradation of coral due to
bleaching or ocean acidification may reduce its ability to effectively dissipate wave energy (Sheppard et al.,
2005; Quataert et al., 2015). Conversely, restoration efforts that improve coral ecosystem quality (Fox et al.,
2005; Haisfield et al., 2010) may increase roughness and thus provide more effective wave attenuation. The
health of reef ecosystems under different climate change or restoration scenarios could be accounted for
by examining a given location’s sensitivity to cf in the model. It is thus possible that significant increases in
roughness brought on by reef restoration could help offset some of the effects of sea level rise on wave-
induced flooding.
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Although the LLR analysis (Figure 10) suggests that cf is a less important parameter than Wreef for determin-
ing wave transformation and the resulting water levels, it should be noted that it is easier to influence cf by
coral restoration than it is to change Wreef. Thus, restoration is a viable strategy for flood risk reduction on
coral reef-lined islands.

5. Conclusions

The ‘‘Bayesian Estimator for Wave Attack in Reef Environments’’ (BEWARE) system for estimating flooding
hazards on coral reef-lined coasts was developed by training a Bayesian network with a synthetic database
generated by XBeach Non-Hydrostatic (XBNH) model simulations. The XBNH process-based numerical wave
and water level model is shown to be capable of reproducing wave transformation processes on fringing
reefs, including resonant reef flat amplification. BEWARE improves system understanding of reef hydrody-
namics, building on previous work by examining the intrinsic and extrinsic factors controlling runup on
reef-lined coasts.

BEWARE shows high predictive skill for flooding conditions from the XBNH model, and was validated for a
limited number of case studies. Using the log likelihood ratio test, it was found that offshore wave condi-
tions, water level, and reef width are the most important parameters required to estimate extreme water
levels and runup on reef-fronted coasts using a Bayesian network, whereas having knowledge of the reef
roughness or beach slope appears less important.

BEWARE has the potential to form the basis for early warning systems and scenario assessment applications
on reef-lined coasts. The applicability of the BEWARE system can be further enhanced if supplemented by
key parameters (e.g., reef flat width) obtained from remote sensing platforms as well as field measurements
of reef hydrodynamics.
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