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Abstract 11 

Obtaining an overview of the spatial and temporal distribution of seabed sediments is of high 12 

interest for multiple research disciplines. Multi-beam echo-sounders allow for the mapping of 13 

seabed sediments with high area coverage. In this paper, the repeatability of acoustic 14 

classification derived from multi-beam echo-sounder backscatter is addressed. To this end, 15 

multi-beam echo-sounder backscatter data acquired on the Cleaver Bank (North Sea) during 16 

five different surveys is employed using two different classification methods, i.e., a method 17 

based on the principal component analyses and the Bayesian technique. Different vessels were 18 

used for the different surveys. The comparison of the classification results between the 19 

different surveys indicates good repeatability. This repeatability demonstrates the potential of 20 

using backscatter for long-term environmental monitoring. However, the use of different 21 

classification methods results in somewhat different classification maps. Monitoring, 22 

therefore, requires the consistent use of a single method. Furthermore, it is found that the 23 

statistical characteristics of backscatter is such that clustering algorithms are less suited to 24 

discern the number of sediment types present in the study area. The Bayesian technique 25 

accounting for backscatter statistics is therefore recommended. A strong positive correlation 26 
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between backscatter and median grain size for finer sediments (< 0.5 mm) using a frequency 27 

of 300 kHz is observed within the study area, but an ambiguity is found for sediments with 28 

median grain sizes > 0.5 mm. Consequently, for the situation considered a unique assignment 29 

of sediment type to acoustic class is not possible for these coarser sediments.  30 

1. Introduction 31 

Acoustic remote sensing with multi-beam echo-sounders (MBES) is extensively used for 32 

mapping the seafloor morphology because of the systems’ capability to map large areas in 33 

relatively short time periods. However, capabilities of these acoustic underwater techniques 34 

extend beyond the determination of only the seafloor bathymetry. They also exhibit strong 35 

potential for classifying the seabed sediments by investigating the sediment backscatter 36 

strength that can be derived from the intensities of the received echo. The backscatter strength 37 

is physically attributed to seabed properties such as sediment bulk density, seafloor roughness, 38 

volume heterogeneity, discrete scatterers and sediment layering [1] [2] [3]. The contribution 39 

of each factor to the backscatter strength is dependent on the complexity of the seabed, 40 

acoustic frequency and angle of incidence [3]. Several regional studies have revealed a 41 

relationship of  backscatter to sediment properties such as median grain size [4] [5], grain size 42 

distribution [6] [7] [8], or shell or gravel content [9] for a specific study area and frequency. 43 

However, other studies have shown that in diverse environments additional factors such as 44 

benthic fauna [10] [11], activity of benthic organisms [12], sediment compaction [13] or 45 

natural hydrocarbons [14] [15] may influence the backscatter strength of the seafloor as well. 46 

In general, classification methods employing measured backscatter data can be divided into 47 

model-based and image-based methods [16]. Model-based methods are attributed to 48 

techniques that perform inversion based on physical backscatter models either to exploit the 49 

measured backscatter strength directly [17] or the angular backscatter response [18] to invert 50 
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for sediment properties (e.g. mean grain size, roughness spectrum, volume scattering 51 

coefficient). Image-based methods are based on statistical relationships and patterns within 52 

the backscatter data [19] [20]. Whereas model-based methods require accurate models for 53 

predicting the backscatter strength and well-calibrated systems for measuring backscatter 54 

strength [3] [21], image-based techniques are also applicable to relative backscatter values 55 

from poorly or uncalibrated systems.  56 

Reference [22] gives a review of various strategies and methods employing acoustic remote 57 

sensing techniques including SBES, SSS and MBES to produce sediment or habitat maps. 58 

They present 147 studies utilizing acoustic survey techniques published during the last two 59 

decades. This is a good indicator for the intensive research already carried out and the still 60 

ongoing development in the scientific field of seafloor classification. Among others, they 61 

classify image-based methods in objective/subjective and supervised/unsupervised strategies. 62 

The classification methods applied in this study, i.e. the Principal Component Analysis (PCA) 63 

and Bayesian technique, can be referred to as image-based, objective and unsupervised 64 

strategies. The PCA and Bayesian techniques have been successfully applied to MBES 65 

backscatter in several studies [4], [20], [23], [24].  66 

Using the full MBES acoustic data content gives the opportunity for the development of 67 

marine-landscape maps displaying topography and the seabed sediment spatial distribution 68 

simultaneously. Because of physical and biological, as well as anthropogenic processes, the 69 

seafloor is a time-varying environment. Monitoring this dynamic environment requires good 70 

repeatability of the methods for seabed sediment classification. That means the data gathering, 71 

processing, and interpretation must lead to equal results for different measurement campaigns 72 

if the environment does not change. However, regarding the use of MBES measurements for 73 

sediment classification, repeatability of the results is a topic of concern. Reference [21] points 74 

out the acoustic-instrument stability, settings, processing algorithms, range, environmental 75 
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conditions, and survey methods as critical factors influencing the classification results, and 76 

consequently, affect repeatability. Therefore, there is a strong demand from the MBES 77 

backscatter community for data quality control, standardised acquisition and processing steps 78 

as well as detailed documentation of the processing chain within MBES systems [25]. In the 79 

research field of seafloor classification with MBES the ultimate goal is to generate consistent 80 

and repeatable results within the same area under the same settings from backscatter data 81 

acquired by differing MBES systems or analysed by different processing procedures [26]. 82 

The goal of this paper is to apply two different classification methods to MBES backscatter 83 

data acquired on different vessels during different surveys carried out in various time periods 84 

and to investigate the repeatability and agreement of the resulting sediment maps. To 85 

accomplish this goal, the Bayesian approach and PCA in conjunction with k-means clustering 86 

approach are applied to backscatter data acquired on the Dutch vessels Zirfaea and Arca in the 87 

Cleaver Bank area in the time period from 2013 to 2015. This study site consists of a 88 

significant number of sediment types, and intersecting survey tracks within the source data of 89 

this study allow for the investigation of the repeatability of the results. The classification 90 

results are compared to ground truth data to investigate the relationship between acoustic 91 

classes and sediment properties. The spatial resolution capabilities of the classification 92 

methods are additionally addressed to illustrate the state of the art of methods for MBES 93 

seabed sediment classification. 94 

This paper is organized as follows. In Section 2 the study area and the data are described. 95 

Section 3 gives an overview of the two classification methodologies that are applied. Then, 96 

Section 4 presents the results from applying the classification algorithms along with 97 

considerations such as the number of sediment classes that can be discerned. Section 5 is a 98 

discussion of the results, addressing the repeatability of the classification, the spatial 99 
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resolution, the issue of assigning sediment type to the acoustic classes, as well as a discussion 100 

on the ambiguity for large grain sizes. Finally, in Section 6 the conclusions are presented. 101 

2. Study area and data 102 

The Cleaver Bank area is located 160 km north-west from Den Helder in the Dutch North Sea 103 

(Fig. 1) and is part of the nature protection areas in the territory of the European Union. The 104 

area was formed as a terminal moraine of a glacier during the Weichselian Ice Age. The water 105 

depth mainly varies between 25 m and 50 m, but is divided from north-west to south-east by a 106 

70 m deep channel called the Botney cut (Fig. 1). The Cleaver Bank extends over an area of 107 

about 900 km2 and is the largest area within the Dutch North Sea with coarse sediments [27]. 108 

In comparison to the mostly sandy areas of the Dutch seafloor the Cleaver Bank consists of 109 

the entire grain size spectrum from mud to gravel with isolated boulders. The diverse geology 110 

of the Cleaver Bank seafloor is a result of the Weichselian Ice Age and is relatively well 111 

preserved due to the combination of the sufficiently large depth and the rocky bottom which 112 

reduces the erosive influence of waves [28].  113 

The MBES data considered in this work were acquired in the Cleaver Bank area during five 114 

surveys carried out within the period from November 2013 to February 2015. The entire 115 

survey area is 57 km in the north-south direction and 30 km in the west-east direction. In 116 

general, the survey lines are separated by approximately 1500 m except a few lines spaced 117 

closer together, overlapping lines, and several cross lines (Fig. 1). The swath width ranges 118 

from 90 m to 180 m depending on the water depth. Two different vessels, the Zirfaea and 119 

Arca, were both equipped with a Kongsberg EM3002 single head MBES sonar system using a 120 

central frequency of 300 kHz. The transmit and receive beam width are both 1.5° for nadir 121 

angles. The transmitted pulse length was set to 150 μs and the number of beams were 258 122 

along the entire swath. These parameters were kept constant during each survey. Furthermore, 123 
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the same transmitted source level, receiver gain and time-varying gain were applied during the 124 

different surveys. The acquired MBES data were corrected for roll, pitch and heave. 125 

Depending on the different environmental conditions, the water absorption coefficient was 126 

calculated for each survey individually. The MBES data were also corrected for tidal effects. 127 

To obtain a relatively good approximation of the backscatter strength from the received 128 

acoustic echo several steps are carried out within the Kongsberg MBES. The system corrects 129 

in real time for transmission loss (attenuation and geometrical spreading), insonified area as 130 

well as for transmission and reception beam pattern [29]. However, the real-time correction 131 

for the insonified area assumes a flat seafloor. Therefore, the backscatter data is corrected for 132 

the seafloor bathymetry slope in post processing to obtain the true insonified area [30]. 133 

However, some of the real-time correction performed by Kongsberg still includes 134 

simplification of the marine environment (e.g. constant absorption coefficient, flat seafloor 135 

assumption for reception process) which might affect the true backscatter strength [26]. In 136 

addition, a MBES calibration that would account for the alteration of sonar transducers’ 137 

sensitivities or deviation of the system configuration from  the manufacturer specification was 138 

not performed. Taking these factors into account, strictly speaking, the employed acoustic 139 

data represent a relative rather than absolute backscatter strength because the data might still 140 

not be entirely independent of the MBES configuration or environmental impacts. Therefore, 141 

we are using the term backscatter data or backscatter values in this paper instead of 142 

backscatter strength.  143 

For validation and assignment of sediment type to acoustic class, 104 Hamon and Van Veen 144 

grab samples were taken during four different surveys in 2000, 2013, 2014 and 2015 (Fig. 1). 145 

The grab samples were sieved to separate the gravel and shell fragments from the sand and 146 

mud fraction. The latter part was analysed by laser-diffraction granulometry. The percentage 147 

of the different grains was used to classify the grab samples after the Folk scheme [30]. 148 
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Almost no shell fragments or other biological particles were found to be present in the grab 149 

samples. Because the seafloor dynamics of the Cleaver bank are low, the grab samples from 150 

2000 are considered to be valid.  151 

 152 

Fig. 1 .  MBES tracks of five different surveys carried out from 2013 to 2015 are plotted over the bathymetry of the 153 
Cleaver Bank. Bathymetry is received from EMODnet [31]. Grab samples taken in the years 2000 and 2013 to 2015 154 
are denoted by triangles. 155 

3. Classification methods 156 

In this study two unsupervised sediment classification methods, the Bayesian technique and 157 

PCA in conjunction with k-means clustering, are applied to the MBES data of the Cleaver 158 
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Bank. The Bayesian technique for seafloor classification was developed in [23] where also a 159 

detailed theory description is given. It has since been used in [4], [20], [24], and [32]  among 160 

others. This section provides a brief overview of the basic concepts and the relevant 161 

processing steps to generate the sediment maps of the Cleaver Bank. The theory of PCA was 162 

first introduced by [33] [34]. Today many different variations of PCA exist which are adapted 163 

depending on the application purposes. A very detailed explanation of the application to 164 

MBES data is given by [20]. 165 

3.1 Bayesian technique 166 

Assuming that a beam footprint contains a large number of scatter pixels, based on the central 167 

limit theorem, the backscatter strength per beam footprint can be assumed to be Gaussian 168 

distributed [23]. A scatter pixel here is the instantaneously insonified area of the sea floor 169 

within a beam footprint of the MBES. Given a constant frequency and angle of incidence, the 170 

backscatter strength is dependent on the seabed properties. It follows that if a survey area has 171 

a total of ݉ different sediment types, with specific seabed properties, then the backscatter 172 

histogram from a selected oblique beam of the echo-sounder should be represented by a 173 

combination of ݉ Gaussian distributions. Consequently, the model for the histogram of 174 

measured backscatter values per beam can be written as 175 

 ݂൫ݕ௝หܠ൯ ൌ	෍ܿ௞ exp൭െ
൫ݕ௝ െ ത௞൯ݕ

ଶ

௬ೖߪ2
ଶ ൱

௠

௞ୀଵ

 (1) 

   

where ( | )jf y x   is the value of the model at backscatter value yj, and  x is the vector 176 

containing the unknown parameters,  ܠ ൌ ሺ	ݕതଵ, … , ,ത௠ݕ ,௬భߪ … ,௬೘ߪ ܿଵ, … , ܿ௠ሻ, i.e. the means 177 

 of the Gaussian distributions that represent 178	௬ೖ and coefficients ܿ௞ߪ ത௞, standard deviationsݕ
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each seafloor type. By fitting the above model to the measured histogram all unknowns are 179 

determined. 180 

With a new data set, one may not know how many sediment types there are in the survey area. 181 

By conducting a ߯ଶ goodness of fit test, the optimal number of Gaussians m can be 182 

determined where ߯ଶ is defined as: 183 

߯ଶ ൌ෍
ቀ ௝݊ െ ݂൫ݕ௝หܠ൯ቁ

ଶ

௝ߪ
ଶ

ெ

௝ୀଵ

 (2) 

 184 

Here the ௝݊ denote the number of measurements per bin (in our case the bin size is 0.5 dB ) of 185 

the previously mentioned histogram and ܯ is the total number of bins in the histogram.  For 186 

the ௝݊ a Poisson-distribution is postulated1. The variances ߪ௝
ଶ  are thus equal to ௝݊. The 187 

goodness of fit statistic is ߯ଶ distributed with ν = M – 3m degrees of freedom. The goodness-188 

of-fit criterion is then further defined as the reduced-߯ଶ statistic (߯ఔଶ ൌ ߯ଶ/ߥ) having a value 189 

close to one [35, pp. 68, 195 - 197]. The value of ݉ for which a further increase of ݉ does not 190 

generate a better fit of the model to the histogram, as quantified by the reduced-߯ଶ measure, is 191 

taken to be the number of seafloor types that can be discriminated in the survey area based on 192 

the backscatter data. 193 

For the classification, the Bayes decision rule is applied, where there are m states or 194 

hypotheses. These hypotheses correspond to the m seafloor types present in the surveyed area. 195 

From Bayes and assuming all hypothesis to be equally likely, it is found that the intersections 196 

                                                            
1 The requirements for an event being Poisson distributed are that (1.) ܧ is the number of times the event in 
question occurs in an interval of time or space. (2.) ܧ ∈ 0 ∪ Գ (3.) The events are independent. (4.) The 
probability of the event occurring does not vary with time. (5.) Two events cannot occur at the same time. (6.) 
The probability of an event in a small interval is proportional to the length of the interval. 
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of the m Gaussian PDFs provide the m non-overlapping backscatter acceptance regions, 197 

corresponding to the m seafloor types. 198 

3.2 Principal component analysis and k-means clustering 199 

 PCA is a statistical method to reduce the complexity of a dataset while preserving most of the 200 

information content. This is achieved by transforming the original data set consisting of p 201 

(potentially) correlated variables to a new data set of ℓ = 1, 2,…, p uncorrelated variables ℓܻ, 202 

the so-called principal components (PCs). Each PC can be seen to account for a part of the 203 

variation in the feature values of the original data set. Therefore, the size of the original data 204 

set can be reduced by considering only the PCs representing a significant portion of the data 205 

variability. 206 

The n measurements of the p variables, often called features, are summarized in an (n × p) 207 

data matrix. To account for different magnitudes of the features, the data are standardized, 208 

where for each feature the mean is determined and subtracted from the measurements of that 209 

feature. In addition, the features are divided by their standard deviation. The matrix F contains 210 

these standardized measurements. The first step of PCA is the calculation of the covariance 211 

matrix of F as 212 

܀  ൌ	
1
݊
෍۴௝

்۴௝

௡

௝ୀଵ

 (3) 

with Fj the ݆௧௛ row of the matrix F.	Superscript T denotes the transpose. The second step is to 213 

determine the eigenvectors and the corresponding eigenvalues of R by solving  214 

ۯ܀  ൌ  ઩ (4)ۯ
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with ۯ the (p	x	p)	eigenvector matrix whose columns are the eigenvectors ࢇℓ and ઩ the (p	x	215 

p) eigenvalue matrix where the diagonal elements are the corresponding eigenvalues ߣℓ of the 216 

covariance matrix R.  217 

The obtained eigenvector matrix ۯ is used to transform the original data set F into the new 218 

data set consisting of the PCs. Thus, the original measurements Fj can be written as a sum 219 

over the eigenvectors, i.e.,  220 

 
Fj = YjAT 

 
(5) 

with the coefficients for the eigenvectors contained in the row vector Yj of matrix Y. Thus, 221 

one finds 222 

 
Yj  = Fj(AT)-1 

 
(6) 

where the full matrix Y is of size (n x p), as is the original matrix F, and contains for the n 223 

measurements the p coefficients for the eigenvectors. In general, although different definitions 224 

exist, the ℓth column ࢅℓ	of	Y	is	considered	as	the	ℓth PC,	given by 225 

ℓ܇  ൌ ℓࢇ۴  (7) 

   

The amount of variability in the original data set which is accounted for by the PC ܇ℓ is 226 

quantified by the eigenvalue ߣℓ. Based on these eigenvalues a subset of PCs can be selected 227 

that represent the majority of the variations in the measurements. For this work, the subset 228 

was selected such that 70% to 90 % of the data variability is accounted for. These PCs are 229 

then supplied to the k-means algorithm to group the PCs into different clusters [36]. 230 
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The k-means clustering algorithm aims to assign the n data points for each of the PCs into k 231 

predefined clusters Si ሺ݅ ൌ	1,…,k). Thereby the sum of the squared Euclidean distance 232 

between the data points and the average of all data points within the cluster, i.e., the so-called 233 

cluster centroid, is minimised. The minimisation problem is thus 234 

 	݉݅݊෍ ෍ ௦ݔ| െ ܿ௜|ଶ

௫ೞఢௌ೔

௞

௜ୀଵ

 (8) 

 

where ݔ௦ is a data point within the cluster i and ci is the cluster centroid of the cluster i.  235 

The application of the k-means algorithm to a dataset requires a predefined number of clusters 236 

k. However, the estimation of how many clusters to use is a well-known issue in unsupervised 237 

classification methods [37] and is in general the most subjective part of a cluster analysis. In 238 

this study three different statistical methods are applied to the MBES backscatter dataset to 239 

determine the number of clusters. 240 

The statistical methods are applied to the output of the clustering techniques using varying 241 

numbers of clusters. The first method, the gap statistic, was proposed by [38]. This method 242 

calculates the overall within-cluster variance of the dataset and compares this value to an 243 

expected value calculated for an appropriate reference distribution. The estimated number of 244 

clusters is defined where the logarithmic overall within-cluster variance value is minimized. A 245 

detailed mathematical description is found in [38]. The second method, the Silhouette 246 

statistic, is developed by [39]. The average distance of the observations within the clusters and 247 

the average distance of the observations to the data points in the nearest clusters is calculated 248 

for each number of clusters. The values are called the Silhouette coefficients. The optimal 249 

number of clusters is selected where the Silhouette coefficient is maximized. Finally, the 250 

David-Bouldin criterion is also used in this study [40]. This method examines the ratio of the 251 
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within-cluster distance and between-cluster distance. The optimal clustering solution is 252 

represented via the smallest David-Bouldin index. In [38], the performance of several cluster 253 

number estimation methods including the gap statistic and the Silhouette coefficient was 254 

investigated. That study demonstrated that the gap-statistic performs most efficiently. 255 

4.  Results  256 

In this section, the results of the two classification methods are presented. Both methods 257 

employ the MBES backscatter data for the classification of the seafloor. 258 

4.1 Bayesian method 259 

For the application of the Bayesian method we use receiving beams between 20° and 60°. The 260 

beams between nadir and 20° are not used because firstly, there are too few scatter pixels to 261 

meet the central limit theorem requirement and secondly, these beams are less sensitive to 262 

sediment properties (e.g. roughness) variation than the outer beams [41]. Often receive beams 263 

beyond 60° can also be used for classification but for the data considered here, those beams 264 

tended to be too noisy to yield reasonable results. 265 

The estimation of the optimal number of classes is a well-known issue in unsupervised 266 

classification methods [37]. For the Bayes method, however, a statistically sound approach is 267 

available. Here, the curve fitting procedure as described in Section 3.1 is executed for 268 

increasing numbers of sediment types m. The number of sediment types present in the area is 269 

taken as that value of m for which a further increase in m does not result in a further 270 

improvement of the fit. The goodness of fit is quantified through the reduced ߯ఔଶ statistic. For 271 

the Cleaver Bank data, it is found that a maximum of seven sediment types can be 272 

discriminated based on the available backscatter data. Fig. 2 shows an example of the ߯ఔଶ 273 

statistic for an increasing number of Gaussians and for the 48° beam from nadir, for both the 274 
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2013 and 2014/2015 data, as well as the two sides (starboard and port). It is seen that for the 275 

2013 data as well as for side 2 of the 2014 and 2015 data the use of 7 Gaussians provides a 276 

very good fit between modelled and measured histogram, with the ߯ఔଶ statistic being close to 277 

1. An example, indicating that sometimes the ߯ఔଶ statistic is inconclusive about the number of 278 

Gaussians, is shown for side 1 in Fig. 2b. In general, such behaviour is found for a limited 279 

number of cases and, therefore, these results are discarded when determining the number of 280 

sediment types. These analyses have been carried out for beam angles between 46° and 60° 281 

and for all surveys, not all of which are plotted here. In general, a single outer beam is used to 282 

determine the number of Gaussians, but given that our data is noisy, we choose to investigate 283 

a number of beams. The use of 7 Gaussians is found to reproduce the measurements best. 284 

 285 

Fig. 2. The reduced ࣇ࣑૛ statistic for the 48° beam angle. The two curves are for the two sides of the echo-sounder 286 
respectively. a) 2013 data and b) 2014 and 2015 data. 287 

As an example, Fig. 3 presents the result of the fitting procedure for seven Gaussians. Here 288 

the histogram of the measured backscatter data ௝݊ (black line with error bars) per 0.5 dB bin is 289 

almost hidden by the modelled backscatter in red. The variance of the measured data is 290 

indicated by the error bars. Also seen are the 7 Gaussians used for the curve fitting in black. 291 

After a good fit is found per beam angle and per experiment, the intersections of the unscaled 292 

Gaussians are used to derive the ranges of backscatter, corresponding to the different acoustic 293 

classes, from which the acoustic class map is derived as explained in [23]. Acoustic classes 1-294 

(a)  (b) 
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7 correspond to the Gaussians from left to right, and from lowest to highest backscatter 295 

values. 296 

 297 

Fig. 3.  Shown here is the histogram of the measured backscatter data ࢐࢔ per 0.5 dB bin ࢐࢟ from the data collected in 298 
2014 and 2015 (black line with error bars) which is almost hidden by the modelled ࢌ൫࢐࢟ห࢞൯ in red. Also displayed are 299 
the 7 Gaussians in black. 300 

 301 

The resulting classification map is shown in Fig. 4 where each acoustic class is presented with 302 

a separate colour. Colours have been selected such that from green to purple the backscatter 303 

value increases. 304 

4.2 PCA and k-means clustering 305 

 PCA in conjunction with a clustering algorithm is a common unsupervised classification 306 

technique for seafloor classification based on backscatter [24], [19]. This technique is 307 

applicable to relative backscatter values and, therefore, does not necessarily require calibrated 308 

MBES. In recent studies, this method was also applied to backscatter and bathymetry 309 

simultaneously [20], [4]. However, in this study PCA and k-means clustering are only applied 310 

to backscatter so that a direct comparison with the classification from the Bayes method can 311 

be made. 312 



MBES BS classification for monitoring 

16 
 

As with the Bayesian technique, for PCA and k-means clustering, beam angles from 20° to 313 

60° are considered. The backscatter data are averaged over seven pings in the along-track 314 

direction and over an angle range of 2° to 4° in across-track direction. To eliminate the 315 

angular dependency of backscatter the global Z-score approach is applied, which is the 316 

subtraction of the mean value from the backscatter value, and then divided by the standard 317 

deviation at each angle [20] [42] (henceforth simply referred to as backscatter). To obtain the 318 

same resolution among the entire survey area, surface patches of 10 m x 10 m are constructed 319 

similar to [32]. 320 

For each surface patch eight statistical features of the backscatter distribution are calculated 321 

(Table 1). The arithmetic mean gives the averaged backscatter value within the patch. If the 322 

distribution is not symmetric, the median value differs from the mean and provides the middle 323 

of the distribution. Therefore, the median can be considered as an additional valuable feature. 324 

The mode represents the value with the highest occurrence within a patch and defines the 325 

main tendency of the feature [20]. The standard deviation shows the variability of the 326 

backscatter and might be valuable to characterise the heterogeneity of the sediment. Due to 327 

the fact that outliers are removed during processing, the minimum and maximum value can be 328 

used to define data extremes and might also indicate specific characteristics of the seabed. The 329 

higher statistical moments, skewness and kurtosis, are measures of the shape of a probability 330 

distribution. In previous studies it was shown that the K-distribution can be used to describe 331 

the skewed distribution of backscatter data for all sediment types and the shape parameter of 332 

the K-distribution can be used as tool for seafloor classification [43] [44] [32] [45]. Therefore, 333 

the skewness and kurtosis might provide valuable information about the sediment distribution.  334 

To identify the most valuable of these features, PCA is applied. PCA analysis indicates that 335 

the first 3 PCs contain most of the data variability of around 85%. Fig. 5 displays the ratio of 336 

the sum of the correlation between the first three PCs and the eight backscatter features to the  337 
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 338 

Fig. 4. Acoustic classification result of the Bayesian technique. The grid is resampled to a size of 100 m by 100 m using 339 
the mode value of the finer grid. The black square indicates the extent of the area zoomed in Fig. 10. 340 

sum of correlation between the remaining PCs and the eight backscatter features. In reference 341 

[20], the threshold value has been chosen considering three conditions: (1) it is similar to the 342 

mean value (red line), (2) it includes an adequate number of features for PCA and (3) it 343 
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generates consistent results for each survey. Considering these three conditions the mean, 344 

median, mode and the minimum of the backscatter data are revealed as the most informative 345 

features. PCA analysis indicates that the first 3 PCs contain most of the data variability of 346 

around 85%. Fig. 5 displays the ratio of the sum of the correlation between the first three PCs 347 

and the eight backscatter features to the sum of correlation between the remaining PCs and the 348 

eight backscatter features. In [20], the threshold value has been chosen considering three 349 

conditions: (1) it is similar to the mean value (red line), (2) it includes an adequate number of 350 

features for PCA and (3) it generates consistent results for each survey. Considering these 351 

three conditions the mean, median, mode and the minimum of the backscatter data are 352 

revealed as the most informative features. 353 

Table 1. Backscatter features considered in the first application of PCA.  354 

Number 1 2 3 4 5 6 7 8 
BS  feature Mean Std. deviation Skewness Kurtosis Median Mode Min. Max. 

 355 

Fig. 5. Ratio of the sum of the correlation between the first 3 PCs and backscatter features to the sum of the 356 
correlation between the remaining PCs and backscatter features. The different surveys are considered separately: a) 357 
2013, b) 2014 and c) 2015. The red line indicates the mean value of the ratio of correlation. 358 

These features were used as an input for a second application of PCA to further reduce the 359 

complexity of the dataset and simplify the application of the k-means clustering.  The analysis 360 

shows that the first PC accounts for 98% of the data variability which indicates high 361 

correlation between the selected four backscatter features. Therefore, only this component is 362 

used in the k-means clustering. 363 



MBES BS classification for monitoring 

19 
 

To estimate the optimal number of acoustic classes that can be distinguished within the data, 364 

the gap statistic, silhouette coefficient and Davies-Bouldin method are applied. The methods 365 

use the output of the k-means algorithm which is applied to varying numbers of clusters in the 366 

range from 2 to 10. The results of each method are plotted in Fig. 6. Each method has 367 

different magnitudes of criterion values and therefore the values are normalised. The optimal 368 

number of classes estimated and suggested by each method is two, which is indicated by the 369 

red dots. This can be understood from Fig. 3, showing a histogram of the backscatter data. 370 

Clearly two main peaks are present. These two main peaks are estimated as individual clusters 371 

by the statistical methods. However, this is in disagreement with both the ground truth data 372 

which reveals eight sediment types, and the Bayesian technique which estimates seven 373 

clusters, similar to the ground truth data. 374 

 375 

Fig. 6. Estimating the number of clusters via Gap statistics, Silhouette coefficient and Davies-Bouldin method. Red 376 
circle indicates optimal number of clusters estimated by each method. 377 

To further investigate why the statistical methods only identify two clusters within the 378 

backscatter data the Gap statistics, Silhouette coefficient and Davies-Bouldin methods are 379 

applied to synthetic backscatter histograms. Four different synthetic backscatter histograms 380 

with varying degree of overlap and number of main peaks are shown in Fig. 7. Fig. 7c 381 
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represents a similar backscatter histogram as the measured histogram (Fig. 3). Again, the 382 

methods only identify the two main peaks as individual clusters. Modelling backscatter 383 

histograms with four and seven main peaks, respectively (Fig. 7b and Fig. 7d) and applying 384 

the statistical methods show that even when the individual peaks are clearly visible, the 385 

overlap hampers the clustering methods’ ability to identify the peaks as individual clusters. 386 

Only the synthetic backscatter histogram in Fig. 7a having peaks with very distinct 387 

separations were correctly found to have four clusters by the three methods. This 388 

demonstrates that the statistical methods trying to estimate the number of clusters require a 389 

clear segmentation of the individual clusters which is not always the case for backscatter data. 390 

Seafloor backscattering is a random process having statistical fluctuation leading to a natural 391 

overlap of the backscatter data [1]. In addition, the mostly heterogeneous seabed does not 392 

show clear boundaries between sediment types, increasing the overlap within the measured 393 

backscatter data. In this study, the backscatter features are highly correlated. It is hypothesized 394 

that for situations where this correlation is less, or when additional information such as those 395 

derived from bathymetry are added, the overlap in clusters diminishes and separation between 396 

clusters would be higher. The Bayesian technique accounts for the statistical fluctuation of the 397 

backscatter data [23] and, therefore, is able to distinguish between individual overlapping 398 

clusters in this study as well. This method estimates seven clusters to be present in the data 399 

set. Based on the result of the Bayesian technique and taking into account the fact that the 400 

ground truth data reveals eight sediment types (defined by the Folk scheme) (Section 4.3) as 401 

well as to have consistency between the Bayes and PCA/k-means methods, k-means 402 

clustering is applied with a choice of seven clusters.  403 
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 404 

Fig. 7 Synthetic histograms generated by modelling a different number of Gaussians (left). Application of Davies 405 
Bouldin, Gap statistic and Silhouette coefficient to synthetic data (right). (a) 4 clearly segmented Gaussians. Each 406 
statistical method gives 4 clusters as a result. (b) 4 Gaussians with overlapping segmentation. Statistical methods are 407 
not able to identify 4 individual clusters. (c) 2 Gaussians representing a hypothetical histogram of backscatter data of 408 
the Cleaver Bank. Statistical methods identify 2 clusters. (d) 7 Gaussians that approximately reproduce the histogram 409 
of the backscatter data of the Cleaver Bank but with added separation. Even in this modelled and simplified case, 410 
statistical methods suggest 2 clusters as the optimal number. 411 

Acoustic classes are obtained from the output of the k-mean clustering by sorting the seven 412 

clusters according to the averaged backscatter value of each cluster. Fig. 8 displays the 413 

(a) 

(b) 

(c) 

(d) 
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resulting acoustic classification map. Compared to the acoustic map of the Bayesian approach 414 

(Fig. 4) acoustic class 1 and 7 have a very large contribution to the entire map. The resulting 415 

map can be divided in seven distinct areas based on the criterion of high and low acoustic 416 

classes as well as homogeneity and heterogeneity. The most of obvious areas are 1) the 417 

heterogeneous centrum consisting of mainly acoustic classes with higher backscatter values; 418 

2) and 3) the homogenous north-western and south-eastern parts with lower backscatter 419 

values; 4) the very homogeneous Botney cut characterised by only acoustic class number 1 in 420 

the south of the central part; 5) the south-western area which is characterised by 421 

homogeneously distributed sediments with high backscatter values; and 6) just north of the 422 

centre a stripe of low backscatter, homogeneously distributed sediment is located; 7) further 423 

north in the north-eastern part of the map a very small stripe of heterogeneous, high acoustic 424 

classes, sediment is present. These distinct areas are also visible in the acoustic map of the 425 

Bayesian technique (Fig. 4). The main differences to consider belong to a shift between the 426 

acoustic classes, in particular at the low and high classes. A more detailed view and 427 

discussion of these maps follows in sections 5.1 and 5.3. 428 

4.3 Ground truth 429 

The analyses of the grab samples indicate the presence of eight different sediment Folk 430 

classes, ranging from sandy mud to sandy gravel in the Cleaver Bank. The grab samples 431 

containing gravel are located in the northern and middle part of the survey area as well as in 432 

the south of the Botney cut (see Fig. 13). Sandy mud grab samples are only available within in 433 

the Botney cut and muddy sand occurs mainly around the Botney cut. The grab samples from 434 

2013 to 2015 are located directly on the MBES track whereas some grab samples taken in 435 

2000 are located about 500 m away from a MBES survey line (Fig. 1). 436 
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 437 

Fig. 8. Acoustic classification result of PCA in conjunction with k-mean clustering using 7 acoustic classes. The grid is 438 
resampled to a size of 100 m by 100 m. The black square indicates the extent of the area zoomed in Fig. 9 and Fig. 10. 439 
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5. Discussion 440 

In this section the repeatability of the classification results is discussed by comparing the 441 

different surveys. The assignment of acoustic classes to sediment classes based on the 442 

correlation of ground truth data with acoustic classes is also examined. Furthermore, the 443 

spatial resolution and the reliability of the classification results is analysed. Finally, the 444 

relationship between median grain size and backscatter values is investigated. 445 

5.1 Repeatability and consistency of classification results 446 

In order to examine the repeatability of the classification results over the different surveys, a 447 

small area of the Cleaver Bank is shown in Fig. 9 and Fig. 10 with a total of ten intersections 448 

of survey lines. All five surveys are represented in this small area of the map. Clearly there is 449 

a high agreement in the classification results obtained from the data from different surveys. 450 

Examples are the intersection of the easternmost 2013 week 45 vertical line that intersects 451 

with the 2015 diagonal line (indicated by area D in the plot). In this intersection features as 452 

narrow as eight meters are clearly visible and are in very good agreement for the two surveys. 453 

At the intersection of the most western 2013 week 45 line and the 2013 week 47 line (area A) 454 

both surveys show an area of acoustic class 3, surrounded by class 6. Area B indicates for 455 

both surveys the presence of acoustic classes 2 to 6 in good agreement. The high repeatability 456 

is also apparent in Fig. 11. Here the Bayes acoustic classes determined for the intersecting 457 

areas of the 2013 and 2014/2015 surveys are presented in a scatter plot. It is shown that for 458 

the majority of the cases the results are in good agreement. However, discrepancies also 459 

occur, for example at the intersection of the 2015 survey and the 2013 week 47 survey in area 460 

C of Fig. 9 and 10 the 2013 data shows acoustic class 2 whereas the 2015 data shows acoustic 461 

class 1 for PCA. The Bayesian results in this intersection show class 3 for the 2013 data and 462 

class 2 for the 2015 data. This is the most apparent disagreement seen on this part of the map, 463 
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and there are a few plausible explanations for this and other disagreements. Firstly, even 464 

though it would not be expected, it is possible that there was a sediment change from 2013 to 465 

2015, that would explain why the discrepancy is present for both classification methods in 466 

area C. To prove a sediment change at any point a grab sample from both periods at the 467 

location would be required but this is not available. According to Fig. 11 there are 468 

discrepancies between the 2013 and the 2014/2015 data but they are not greater than 1 469 

acoustic class except for 1 instance. It is possible that the backscatter from locations with 470 

different classifications are close to a class boundary and happen to fall within the 1 class 471 

discrepancy range. A further reason for a mismatch could be a directional small-scale 472 

morphological influence because of different sailing directions [46]. Given that this is data 473 

from five different surveys carried out over the time period from 2013 to 2015 and that the 474 

data were acquired by different vessels, crews, MBES systems and environmental conditions,  475 

 476 

Fig. 9. Zoomed in area of acoustic class map generated by PCA. Different survey lines denoted by the coloured 477 
pentagons are visible. The grid size is 10 by 10 m and represents the size of the surface patches. 478 
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 479 

Fig. 10.  Zoomed in area of acoustic class map generated by Bayesian technique. Different survey lines denoted by the 480 
coloured pentagons are visible. The grid is resampled to a size of 10 m by 10 m using the mode value of the finer grid. 481 

 482 

Fig. 11. Correlation plot of the acoustic classes determined with the Bayesian method. The size of the dots and the 483 
number indicate the number of matches for the acoustic classes determined for the intersecting areas using the 484 
backscatter data from the different surveys in 2013, 2014, 2015. 485 

the results still demonstrate the high degree of repeatability and consistency of the acoustic 486 

classifications for both methods. Although the classification results are in good agreement 487 
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when comparing the classification from different surveys for one method, the comparison 488 

between classification results from applying different methods reveals differences. Whereas 489 

the Bayes classification indicates the presence of mainly five types of sediments, since 490 

acoustic classes 1 and 7 are hardly present, the PCA classification shows all sediment types to 491 

be almost equally present. The deviations from PCA and Bayesian within the low and high 492 

acoustic class ranges are related to the different mathematical approaches of the methods. 493 

Considering Fig. 3, it is seen that the PDFs of acoustic class 1 and 7 have only a very small 494 

contribution to the histogram of backscatter measurements. For k-means clustering 7 sediment 495 

types are assumed. K-means clustering defines the clusters on a simple similarity 496 

measurement of the first PC and assigns these clusters based on an increasing backscatter 497 

value. This leads to a more balanced number of data points within the individual clusters, i.e., 498 

acoustic classes. Therefore, the PCA results show, in contrast to Bayes, a significant presence 499 

of acoustic class 1 and 7. Still, the maps obtained with the two different methods indicate a 500 

similar spatial distribution of the different sediment types over the area. 501 

5.2 Mapping Folk class by combining acoustic classes with ground truth data  502 

Often, for mapping the spatial distribution of sediments, use is made of maps presenting the 503 

Folk class. Here it is investigated to what extent these types of maps can be derived from the 504 

acoustic classification results by assigning sediment types to the acoustic classes. For this, we 505 

use the grab samples that are located at a distance less than 25 m from a survey track, i.e. 506 

slightly more than the 20 m recommended in [46], and that are in areas with little spatial 507 

variation in sediment type. As such, the initial 104 grab samples (Fig. 1) are reduced to 77 508 

grab samples. 509 

As a first step, it is assumed that the lowest acoustic class represents finer sediments whereas 510 

the highest acoustic class represents coarser sediments. Here the order of Folk classes is 511 
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selected such that it is assumed to represent increasing median grain size. The resulting 512 

number of matches between acoustic class number and sediment type at the grab sample 513 

location are plotted in Fig. 12 for the Bayes and PCA results, respectively. In general, indeed 514 

increasing acoustic class is seen to correspond to an increasing median grain size, as 515 

represented by the sediment type.  516 

The PCA results show a good match of acoustic class 1 with the sediment type sandy mud. 517 

For example, this indicates that the Botney cut is covered by sandy mud. However, the 518 

assignment of the sand sediment types from muddy sand to sandy gravel are less clear. For 519 

instance, the sediment type sand shows a uniform distribution from acoustic class 1 to 5. This 520 

indicates additional factors influencing the backscatter data and causes difficulties in the 521 

assignment of sediment type sand to a distinct acoustic class. For the Bayes results (Fig. 12a) it 522 

is found that acoustic class 1 does not correlate to any grab sample. For all other acoustic 523 

classes there is some ambiguity in the relation between sediment type and acoustic class. 524 

 525 

Fig. 12. Correlation between acoustic class and sediment type at grab sample locations. a) Bayesian method, b) PCA. 526 
Dots indicate the number of matches between acoustic class and sediment type. The sediment type is determined after 527 
Folk [22]. 528 

Fig. 13 shows the Folk class map based on the Bayes classification accounting for the 529 

mentioned non-uniqueness. The proposed assignment of Folk class to sediment type used is 530 

presented in table 2. It should be noted, however, that especially for acoustic class 5 a unique 531 

relation with Folk class is not found and for Fig. 13 it is taken to correspond mainly to 532 
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gravelly sand and muddy sandy gravel. A similar map can be made for the results of PCA, but 533 

here only the Bayes results in Fig. 13 are presented.  534 

Table 2 Assignment of sediment type (Folk scheme) to acoustic class.  Acoustic classes are obtained from applying the 535 
Bayes classification method. 536 

Sediment 
type 

sM 
sandy 
mud 

mS 
muddy 
sand 

S 
sand 

gmS 
gravelly 
muddy sand 

gS 
gravelly 
sand 

msG 
muddy 
sandy gravel 

sG 
sandy 
gravel 

Acoustic 
class 

2  3  4  5  5‐6  5‐6  6‐7 

 537 

5.3 Spatial resolution of classification results 538 

To investigate the scale of information obtained from the acoustic classification, Fig. 13 539 

shows more detailed pictures of selected areas in the Cleaver Bank. These areas are selected 540 

because grab samples are available and abrupt changes in the acoustic class occur within a 541 

mainly homogeneous area. Whereas, on the main sediment map the high resolution and the 542 

agreement between grabs sample and classification result are not obvious, the zoomed in plots 543 

do demonstrate these items. Each picture depicts strong changes in sediment classes over tens 544 

of meters resolved by the acoustic classification method. The sediment type of the grab 545 

samples denoted by the coloured squares matches well with the classification result. In 546 

particular, Fig. 13b shows an abrupt change in the sediment map which matches perfectly 547 

with the ground truth given sandy gravel and sand as a sediment type. It is notable that the 548 

sand grab sample is only approximately 10 m away from the estimated sand to gravel 549 

boundary but is perfectly resolved on the sediment map. Fig. 13c displays an area which 550 

seems to be a homogeneous sandy mud to muddy sand region on the main map but the 551 

detailed view reveals a gravelly sediment patch within this area. This patch matches very well 552 

with the grab sample of muddy sandy gravel. The detailed pictures display only a few 553 

examples of the match between classification result and grab sample. The main map of the 554 

Cleaver Bank, in general, also shows good agreement between classification results and 555 
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ground truth. For instance, the Botney cut is classified with sandy mud which fits to each grab 556 

sample taken in that area. 557 

 558 

Fig. 13. Sediment map of the Cleaver Bank obtained from the Bayesian method and ground truth data.  Sediment 559 
classes range from sandy mud (sM) to sandy gravel (sG). a) Sediment map of the entire survey area of the Cleaver 560 
Bank with a resolution of 100 m by 100 m. b), c) and d) represent small areas of the sediment map with a resolution of 561 
3 m by 3 m. The grab samples can be seen in the main map as a colour coded squares.   562 
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5.4 Relation of acoustic classes with sediment median grain size 563 

In Section 5.2 the relation between acoustic class and Folk class is investigated. It is found 564 

that no unique relation holds for the frequency and sediments considered in this study. 565 

Therefore, in this section it is investigated whether a more unique relationship between 566 

acoustic class and median grain size exists. To this end, the median grain sizes (D50 value) of 567 

the grab samples are now considered as in [47]. Except for class 7, the median values increase 568 

with class number as seen in Fig. 14 which presents the median of the D50 values as a 569 

function of acoustic class. This reflects an increasing backscatter value with increasing class 570 

number. Class 7 does not have a mean or median value higher than that of class 6. This 571 

indicates a situation where the highest backscatter values (class 7) apparently correspond to 572 

median grain sizes that are not necessarily higher than those belonging to class 6. Based on 573 

this result it can be concluded that, especially for the higher acoustic classes, as for the Folk 574 

class also no unique relationship between acoustic class and median grain size exists in the 575 

data. 576 

To further investigate this we consider standardized backscatter values instead of acoustic 577 

class. In Fig. 15 the backscatter values (averaged over measurements within 25 m around a 578 

grab sample location) are shown as a function of D50 values. The backscatter values are 579 

additionally normalized by dividing each backscatter value by the maximum backscatter value 580 

thus yielding values strictly between -1 and 1. Fig. 15 shows a significant positive correlation 581 

between backscatter and median grain size for the fine fraction (< 1ϕ (0.5 mm)). From the 582 

data, however, it is found that the magnitude of increase in backscatter with increasing median 583 

grain size is less significant between 1 and -1 ϕ (0.5 mm - 2 mm), followed by a plateau and a 584 

decrease for even coarser sediments. This indicates an ambiguity for the relationship between 585 

backscatter values and median grain size exists and hinders the discrimination of sediment 586 

types with median grain sizes larger than 1 ϕ (0.5 mm) using acoustic classification methods 587 
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based only on backscatter data. This is in agreement with the findings of section 5.2. and 588 

indicates that there is no one-to-one relationship between median grain size and backscatter 589 

for the entire grain size spectrum. Such a positive correlation between backscatter and median 590 

grain size followed by a negative correlation was also observed in [4].  They referred to this 591 

change in relationship as a transition point. The transition point in the study of [4] occurred at 592 

-3.5 ϕ (11 mm) using a frequency of 300 kHz. We estimate the transition point at 593 

approximately -2 ϕ (4 mm). The transition point in [4] and the transition point in this study 594 

both occur roughly around the acoustic wavelength (5 mm) of the MBES.  595 

 596 

Fig. 14. Box plots of sediment samples that fall within the same acoustic class. The bottom and top of the blue 597 
rectangle represent the 25th and 75th percentiles, respectively, whereas the red line indicates the median value. The 598 
whiskers extend to the minimum and maximum value of the D50 values that are not considered outliers (i.e. they are 599 
no more than ±2.7σ apart). Outliers are marked with red crosses. The results for PCA, not plotted, are very similar. 600 
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 601 

 602 

Fig. 15. Backscatter values as a function of the median grain size (D50) of grab samples. Dots indicate the averaged 603 
and standardized backscatter values within a maximum radius of 25 m around the grab sample. 604 

 605 

6. Summary and conclusions 606 

In this study two different acoustic classification methods, namely the Bayesian method and 607 

the PCA in conjunction with k-means clustering, were applied to MBES backscatter data from 608 

the Cleaver Bank in the Dutch North Sea. For both methods, the classification is based on 609 

changes in backscatter values for different sediment types. The data were acquired on two 610 

different Dutch vessels during five different surveys carried out in various time periods from 611 

2013 to 2015. 612 

The resulting maps show a high consistency between the classification results obtained from 613 

the different surveys and using a single classification method, despite the use of different 614 

vessels and varying time periods. Some discrepancies are observed (a difference of 1 acoustic 615 
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class); to gain a better understanding of these would require repeated surveys following the 616 

same survey patterns and supported by repeated grab samples for each of those surveys. 617 

Despite the discrepancies, this study demonstrates the potential of using backscatter data for 618 

achieving repeatable seabed sediment classification results even if the backscatter data is 619 

acquired during different time periods and from MBES systems which are mounted on 620 

different ships and thus subjected to different calibrations, survey settings, and ship crews. It 621 

can be concluded that the current state of MBES sediment classification techniques is such 622 

that it can be applied for marine sediment monitoring purposes where the aim is to identify 623 

changes in the sediment over time. 624 

However, the current study clearly shows that monitoring requires the use of a single 625 

classification technique. Although, the same large-scale features are resolved, the two 626 

different techniques result in different maps. For the two techniques considered and using 627 

backscatter data only, the difference fully stems from the different approaches used for 628 

assigning backscatter measurements to a certain acoustic class. The Bayesian technique 629 

accounts for the statistical characteristics of the backscatter by assuming Gaussian distributed 630 

backscatter values. Whereas PCA in conjunction with the k-means algorithm uses a cluster 631 

technique to classify a dataset with respect to similarities of predefined properties and, 632 

thereby, neglects the natural fluctuation of backscatter which can superimpose the backscatter 633 

variation due to different seabed properties. The latter was found to underestimate the number 634 

of sediment types within the study area. Still, if additional information, such as bathymetry 635 

derived features, is considered the PCA method becomes an essential tool due to the ability of 636 

selecting the most valuable features [4], [20]. 637 

Finally, it was investigated to what extent Folk classes and median grain sizes can be assigned 638 

to acoustic classes. In general, this step is hindered by the fact that sediment bulk density, 639 

seafloor roughness, volume heterogeneity, discrete scatterers and sediment layering all 640 
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contribute to backscatter strength depending on the seabed complexity, acoustic frequency 641 

and incident angle [1], [2], [3]. For the Cleaver Bank area and the multi-beam (300 kHz) 642 

considered here, no unique relation between Folk class and acoustic class could be 643 

established. To still be able to map Folk class, a conversion scheme accounting for this non-644 

uniqueness was introduced where a range of Folk classes is assigned to a single acoustic class. 645 

With regards to the relationship between median grain size and backscatter (acoustic class), a 646 

strong positive correlation for the fine fraction (< 0.5 mm) followed by a decrease in positive 647 

correlation and a change into negative correlation for coarser sediments (> 4 mm) are 648 

observed. This constitutes an ambiguity in the relationship between backscatter and median 649 

grain size. Therefore, care must be taken when assigning sediment properties or types (e.g. 650 

median grain size or Folk class) to an acoustic class based on MBES backscatter. 651 

In conclusion, although limitations exist, current seafloor classification capabilities are such 652 

that they are a valuable asset in long-term monitoring efforts of the marine environment.  653 
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