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a b s t r a c t

Two statistical post-processing approaches for estimation of predictive hydrological uncertainty are com-
pared: (i) ‘dressing’ of a deterministic forecast by adding a single, combined estimate of both hydrological
and meteorological uncertainty and (ii) ‘dressing’ of an ensemble streamflow forecast by adding an esti-
mate of hydrological uncertainty to each individual streamflow ensemble member. Both approaches aim
to produce an estimate of the ‘total uncertainty’ that captures both the meteorological and hydrological
uncertainties. They differ in the degree to which they make use of statistical post-processing techniques.
In the ‘lumped’ approach, both sources of uncertainty are lumped by post-processing deterministic fore-
casts using their verifying observations. In the ‘source-specific’ approach, the meteorological uncertain-
ties are estimated by an ensemble of weather forecasts. These ensemble members are routed through a
hydrological model and a realization of the probability distribution of hydrological uncertainties (only) is
then added to each ensemble member to arrive at an estimate of the total uncertainty.
The techniques are applied to one location in the Meuse basin and three locations in the Rhine basin.

Resulting forecasts are assessed for their reliability and sharpness, as well as compared in terms of mul-
tiple verification scores including the relative mean error, Brier Skill Score, Mean Continuous Ranked
Probability Skill Score, Relative Operating Characteristic Score and Relative Economic Value. The dressed
deterministic forecasts are generally more reliable than the dressed ensemble forecasts, but the latter are
sharper. On balance, however, they show similar quality across a range of verification metrics, with the
dressed ensembles coming out slightly better. Some additional analyses are suggested. Notably, these
include statistical post-processing of the meteorological forecasts in order to increase their reliability,
thus increasing the reliability of the streamflow forecasts produced with ensemble meteorological
forcings.

� 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The future value of hydrological variables is inherently uncer-
tain. Forecasting may reduce, but cannot eliminate this uncer-
tainty. Informed, forecast-sensitive decision making is aided by
adequate estimation of the remaining uncertainties (see, for
example, Verkade and Werner, 2011 and the references therein).

Omission of relevant uncertainties would result in overconfident
forecasts, hence all relevant uncertainties must be addressed in
the estimation procedure. These include uncertainties related to
the modeling of the streamflow generation and routing processes
(jointly referred to as ‘‘hydrological uncertainties”) and uncertain-
ties related to future atmospheric forcing (‘‘meteorological
uncertainties”). Generally speaking, the total uncertainty can be
estimated by separately modelling the meteorological and
hydrological uncertainties or by lumping all uncertainties together
(cf. Regonda et al., 2013).
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The source-specific approach identifies the relevant sources of
uncertainty and models these individually before integrating them
into an estimate of the total uncertainty. In this context, the hydro-
logic uncertainties may be treated separately (independently) from
the meteorological uncertainties, because they depend only on the
quality of the hydrologic modelling. This approach has been fol-
lowed by, among others, Kelly and Krzysztofowicz (2000);
Krzysztofowicz (2002); Krzysztofowicz and Kelly (2000); Seo
et al. (2006) and Demargne et al. (2013). The approach has a num-
ber of attractive characteristics. The individual sources of uncer-
tainty may each have a different structure, which can be
specifically addressed by separate techniques. Also, some of the
uncertainties vary in time, while others are time invariant. A disad-
vantage of source-based modelling is that developing uncertainty
models for each source separately may be expensive, both in terms
of the development itself as well as in terms of computational cost.
Also, whether modelling the total uncertainty as a lumped contri-
bution or separately accounting for the meteorological and hydro-
logical uncertainties, hydrological forecasts will inevitably contain
residual biases in the mean, spread and higher moments of the
forecast probability distributions, for which statistical post-
processing is important.

In the lumped approach, a statistical technique is used to esti-
mate the future uncertainty of streamflow conditionally upon
one or more predictors, which may include a deterministic fore-
cast. Underlying this approach is an assumption that the errors
associated with historical predictors and predictions are represen-
tative of those in future. This approach is widely used in atmo-
spheric forecasting, where it is commonly known as Model
Output Statistics (MOS) (Glahn and Lowry, 1972). Several reports
of applications of the lumped approach in hydrology can be found
in the literature. These include the Reggiani and Weerts (Reggiani
and Weerts, 2008) implementation of the Hydrologic Uncertainty
Processor (Kelly and Krzysztofowicz, 2000), the Model Conditional
Processor (Todini, 2008; Coccia and Todini, 2011), Quantile Regres-
sion (Weerts et al., 2011; Verkade and Werner, 2011; López López
et al., 2014), the ‘‘uncertainty estimation based on local errors and
clustering” approach (UNEEC; Solomatine and Shrestha, 2009) and
the Hydrologic Model Output Statistics approach (HMOS; Regonda
et al., 2013). For a complete overview that is periodically updated,
see Ramos et al. (2013). These techniques each estimate the total
uncertainty in future streamflow conditionally upon one or more
predictors, including the deterministic forecast. Of course, they
vary in their precise formulation and choice of predictors. The
lumped approach is attractive for its simplicity, both in terms of
development and computational costs. The main disadvantage of
the approach is that both meteorological and hydrological uncer-
tainties are modeled together via the streamflow forecast, which
assumes an aggregate structure for the modeled uncertainties
(although the calibration may be different for particular ranges of
streamflow). Also, in order to produce ensemble traces, these tech-
niques must explicitly account for the temporal autocorrelations in
future streamflow, which may not follow a simple (e.g. autoregres-
sive) form.

In the text above, the source-specific and the lumped approach
were presented as separate strategies. However, as the source-
based approach may not fully account for all sources of uncer-
tainty, statistical post-processing is frequently used to correct for
residual biases in ensemble forecasts. In the present work, an inter-
mediate approach is described, namely the ‘dressing’ of streamflow
ensemble forecasts. Here, the meteorological uncertainties are esti-
mated by an ensemble of weather forecasts. The remaining, hydro-
logical uncertainties are lumped and described statistically.
Subsequently, the streamflow ensemble members are, cf. Pagano
et al. (2013), ‘dressed’ with the hydrological uncertainties. This
approach has previously been taken by, among others, Reggiani

et al. (2009); Bogner and Pappenberger (2011) and Pagano et al.
(2013) and, in meteorological forecasting, by Fortin et al. (2006),
Roulston and Smith (2003) and Unger et al. (2009). Most of these
studies report skill of the dressed ensembles versus that of clima-
tology; Pagano et al. (2013) explored the gain in skill when moving
from raw to dressed ensembles and found this gain to be signifi-
cant. In contrast, the present study compared dressed ensemble
forecasts to post-processed single-valued streamflow forecasts.

The kernel dressing approach is akin to kernel density smooth-
ing, whereby missing sources of uncertainty (i.e. dispersion) are
introduced by dressing the individual ensemble members with
probability distributions and averaging these distributions (cf.
Bröcker and Smith, 2008). As ensemble dressing aims to account
for additional sources of dispersion, not already represented in
the ensemble forecasts, a ‘‘best member” interpretation is often
invoked (Roulston and Smith, 2003). Here, the width of the dress-
ing kernel is determined by the historical errors of the best ensem-
ble member. The resulting distribution is then applied to each
ensemble member of an operational forecast and the final predic-
tive distribution given by the average of the individual distribu-
tions. In this context, ensemble dressing has some similarities to
Bayesian Model Averaging (BMA; see Raftery et al., 2005 for a
discussion).

In the ensemble dressing approach, one highly relevant source
of uncertainty, namely the weather forecasts, is described using
an ensemble Numerical Weather Prediction (NWP) model. This
NWP model takes into account current initial conditions of the
atmosphere and exploits the knowledge of physical processes of
the atmosphere embedded in the NWPmodel, as well as any mete-
orological observations that are assimilated to improve estimates
of the predicted states. The hydrologic uncertainties, which may
originate from the hydrologic model parameters and structure
(among other things) are then lumped, modelled statistically, and
integrated with the meteorological contribution to the streamflow.

The objective of this work is to compare the quality and skill of
the forecasts created through dressing of deterministic streamflow
forecasts and through dressing of ensemble streamflow forecasts. A
priori, the dressed ensemble forecasts are expected to have higher
skill than the dressed deterministic forecasts. Both account for the
effects of all relevant sources of uncertainty on the streamflow
forecasts. However, in the ensemble case, the estimate of atmo-
spheric uncertainties is based on knowledge of the physical system
and its state at issue time of a forecast, whereas this knowledge is
unused in the lumped approach. Nevertheless, the lumped
approach accounts for any residual meteorological biases via the
streamflow.

The context for this study is an operational river forecasting
system used by the Dutch river forecasting service. This system
models the total uncertainty in the future streamflow using a
lumped approach, whereby a deterministic streamflow forecast is
post-processed through quantile regression (following a procedure
similar to that in Weerts et al., 2011). While this module performs
reasonably well, there is a desire among operational forecasters to
explore the benefits of (and account for) information in ensemble
weather predictions, including information beyond the ensemble
mean. This resulted in the operational implementation of the
ensemble dressing approach using the same statistical technique
(quantile regression). Thus, estimates of the meteorological uncer-
tainties, which were previously modeled indirectly (i.e. lumped
into the total uncertainty), are now disaggregated and included
separately in the streamflow forecasts. This raises the question of
whether the ‘new’ approach indeed increases forecast skill.

The novel aspects and new contributions of this work include (i)
a direct comparison between the quality of the dressed determin-
istic forecasts and the dressed ensemble forecasts; (ii) the applica-
tion of quantile regression to account for the hydrologic
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uncertainties, and (iii) the application of the dressing technique to
dynamic ensemble streamflow forecasts.

This paper is organised as follows. In the next section, the study
approach is detailed, followed by a description of the study basins
in Section 3. In Section 4 the results of the experiments are pre-
sented and analysed. In Section 5, conclusions are drawn and
discussed.

2. Approach

2.1. Scenarios

The present study consists of an experiment in which verifica-
tion results in two scenarios are inter-compared: dressed determin-
istic forecasts and dressed ensemble forecasts. These are tested in
multiple cases, that is, combinations of forecasting locations and
lead times.

2.2. Cross-validation

The results from the experiments that are described below are
cross-validated by means of a leave-one-year-out analysis. The
set of available data is divided into N available years. Models are
trained using N � 1 years and validated on the remaining one year.
The experiment is carried out N times, every time with another
year chosen as a validation year. Thus, the validation record that
is verified comprises of N years of data that is obtained indepen-
dently from the training data — and optimal use is made of the
available length of record.

2.3. Hindcasting

The experiment comprises the process of hindcasting or refore-
casting: forecasts are produced for periods of time that are cur-
rently in the past – while only using data that was available at
the time of forecast (issue time, or reference time or time zero).

Hindcasts are produced using an offline version of the Delft-
FEWS (Werner et al., 2013) based forecast production system
‘‘RWsOS Rivers” that is used by the Water Management Centre of
The Netherlands for real-time, operational hydrological
forecasting.

Hindcasting is a two-step process: first, the hydrological models
are forced with observed temperature and precipitation for a per-
iod up to the forecast initialisation time. Thus, the internal model
states reflect the basin’s actual initial conditions as closely as pos-
sible. These initial states are used as the starting point for forecast
runs, where the models are forced with the precipitation and tem-
perature ensemble NWP forecasts. These are imported into the
forecast production system as gridded forecasts and subsequently
spatially aggregated to sub-basins. Basin-averaged precipitation or
temperature is then equal to the average of the grid boxes within
that basin, accounting for partial inclusion of grid boxes through
a process of weighting.

In the case of St Pieter streamflow forecasts, an autoregressive-
moving-average (ARMA) error-correction procedure was used to
correct for biases in the raw streamflow forecasts and hence any
residual biases contributed by the forcing (see below). This is in
line with the procedures used in the operational system. The
autoregressive (AR) correction scheme used here is based on esti-
mation of the AR parameters using the Burg’s method and ARMA-
Sel (see Broersen and Weerts, 2005, and the references therein).
The procedure is implemented in Delft-FEWS (Werner et al.,
2013) and can be configured as self-calibrating (automated selec-
tion of order and/or AR parameter values) or with fixed AR param-

eters for post-processing of hydrological forecasts. Here, the latter
option was chosen.

The effect of error correction is that forecast uncertainty will be
reduced to zero at zero lead time; with increasing lead time, this
uncertainty reduction will ‘phase out’. To account for this in the
streamflow hindcasts, error correction was used in simulation
mode also. Effectively, the hindcasting procedure comprised the
re-production of forecasts where the models were forced with pre-
cipitation measurements instead of precipitation forecasts. This
introduces a lead time dependence in the quality of the streamflow
simulations. This is described in more detail in Section 2.5.

2.4. ‘Dressing’ of streamflow forecasts

The dressing technique is similar across the lumped and the
source-specific approaches in that the forecasts are dressed with
predictive distributions of uncertainties that are not already
explicitly addressed in the raw forecasts. Thus, deterministic
hydrological forecasts are dressed with a predictive distribution
that comprises both meteorological and hydrological uncertainties,
and hydrological ensemble forecasts are dressed with a predictive
distribution that comprises hydrological uncertainties only. In both
approaches, the total uncertainty is computed by averaging over
the number of ensemble members E (which E ¼ 1 in the case of
deterministic forecasts),

Un qnjsn;1; sn;2; . . . ; sn;Eð Þ ¼ 1
E

XE

e¼1

/n qnjsn;eð Þ; ð1Þ

where U is the aggregated distribution of observed streamflow q at
lead time n, conditional on the raw streamflow forecast s that con-
sists of ensemble members e 2 1; . . . ; Ef g, each of which are dressed
with distribution /.

In the ensemble dressing scenario, this means that each of the
ensemble members is dressed with a predictive distribution of
hydrological uncertainty, and that these multiple distributions
are averaged to obtain a single distribution of predictive uncer-
tainty. Note that here, we assume that the ensemble members
are equiprobable (which generally applies to atmospheric ensem-
bles generated from a single model, but not necessarily to multi-
model ensembles, for example). If the members are not equiprob-
able then a weighting can easily be introduced.

Here, the distribution, U, aims to capture the historical residuals
between the observed and simulated streamflows (i.e. streamflows
produced with observed forcing). A ‘‘best member” interpretation
does not apply here, because the dressing kernel is aiming to cap-
ture a new source of uncertainty (the hydrologic uncertainty) and
not to account for under-dispersion in (the hydrologic effects of)
the meteorological uncertainties. In short, we assume that the
meteorological ensembles are unbiased and correctly dispersed.
This is a necessary assumption: uncertainty originating in future
weather is only estimated by the spread of the streamflow ensem-
ble and not in any way through statistical post-processing, nor
does post-processing in any way bias-correct the streamflow
ensemble to better account for meteorological uncertainty. This
constitutes a disclaimer to the ensemble dressing approach: if
the assumption of a correctly dispersed meteorological ensemble
is invalid then this will have an adverse effect on the quality of
the dressed ensemble!

By construction, the raw deterministic forecasts are dressed
with a single distribution only, which aims to account for the total
uncertainty of the future streamflow, not the residual uncertainty
of a best ensemble member,

Un qnjsn;1ð Þ ¼ /n qnjsn;1ð Þ: ð2Þ
The dressing procedures are schematically visualised in Fig. 1.
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2.5. Uncertainty models

As mentioned above, the source-specific and lumped
approaches differ in the predictive distributions that the raw fore-
casts are dressed with. In the lumped approach, the deterministic
forecast is dressed by a distribution of both hydrological and atmo-
spheric uncertainties, conditional on the value of the deterministic
forecast itself. The ‘‘errors” in the deterministic forecast are thus a
measure of uncertainties originating in both the meteorological
forcing as well as the hydrological modeling.

Ensemble streamflow forecasts are dressed using a predictive
distribution of hydrological uncertainty only. This is achieved by
fitting a probability distribution to the historical residuals between
the hydrological model simulations and observations (see Sec-
tion 2.6 for details on how this was done). The simulations are
derived by forcing a hydrological model with observed precipita-
tion and temperature. As such, the simulations are independent
of lead time. This approach is quite widely reported in the litera-
ture, for example by Montanari and Brath (2004), Seo et al.
(2006), Chen and Yu (2007), Hantush and Kalin (2008),
Montanari and Grossi (2008), Todini (2008), Bogner and
Pappenberger (2011), Zhao et al. (2011) and Brown and Seo (2013).

Time invariant estimates of hydrological uncertainty using
these hydrological simulations, however, do not take into account
any error correction or data assimilation procedures that, in a real-
time setting, reduce predictive uncertainty. In the Meuse at St
Pieter case, such an error correction method is an integral compo-
nent of the forecasting system. Hence, in the Meuse case, hydrolog-
ical uncertainty is not based on observations and simulations, but
on observations and ‘‘perfect forcing hindcasts”. Similar to the fore-
casts produced by the operational system, these hindcasts benefit
from the ARMA error correction procedure that is applied to
streamflow forecasts at St Pieter at the onset of every hindcast.
However, the hindcasts are forced with observed precipitation
and streamflow. Hence the hindcasting record is similar to a simu-

lation record, but with the added benefit of an ARMA error correc-
tion. This introduces a lead time dependency in the skill of the
hindcast. At zero lead time, the hindcast has perfect skill; with
increasing lead time, forecast errors increase in magnitude and
skill deteriorates. These resulting forecast errors are largely due
to hydrological uncertainties. When the effect of the ARMA proce-
dure has worn out, forecast skill reduces to that of the hydrological
simulations. The procedure is similar to that followed by Bogner
and Pappenberger, 2011; an alternative approach to this would
be to use the latest available observation as a predictor in the
uncertainty model; this approach was taken by, among others,
Seo et al. (2006).

As the experimental setup is quite complex, the Table 1 should
be helpful in distinguishing the various types of model runs from
each other.

2.6. Quantile Regression

In the present paper, in both scenarios, uncertainty is estimated
using Quantile Regression (QR; Koenker and Bassett, 1978;
Koenker and Hallock, 2001; Koenker, 2005). QR is a regression
technique for estimating the quantiles of a conditional distribution.
As the sought relations are conditional quantiles rather than condi-
tional means, quantile regression is robust with regards to outliers.
Quantile Regression does not make any prior assumptions regard-
ing the shape of the distribution; in that sense, it is a non-
parametric technique. It is, however, highly parametric in the
sense that, for every quantile of interest, parameters need to be
estimated. QR was developed within the economic sciences, and
is increasingly used in the environmental sciences (see, for exam-
ple, Bremnes, 2004; Nielsen et al., 2006). Specific applications in
the hydrological sciences include Weerts et al. (2011), Roscoe
et al. (2012) and López López et al. (2014).

In the present work, Quantile Regression is used to estimate
lead time n specific conditional distributions of streamflow,

Fig. 1. Schematic representation of the dressing procedures. The vertical red line denotes the issue time of the forecast, with the observations (black dots) in the past and the
raw forecasts (blue lines) in the future. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of characteristics of the various types of model runs used in the present manuscript

Type of model run Forcings Characterised
by lead-time?

Use

Simulations Observed meteorological parameters No Estimation of hydrological uncertainty in
cases where no data assimilation is applied

Perfect forcing (hydrological) forecasts Observed meteorological parameters Yes Estimation of hydrological uncertainty in
cases where data assimilation is applied

Deterministic and ensemble (hydrological) forecasts Meteorological forecasts Yes These comprise the raw hydrological forecasts

260 J.S. Verkade et al. / Journal of Hydrology 555 (2017) 257–277



/n ¼ Qn;s1 ;Qn;s2 ; . . . ;Qn;sT

� � ð3Þ

where T is the number of quantiles s (s 2 0;1½ �) considered. If T is
sufficiently large and the quantiles s cover the domain 0;1½ � suffi-
ciently well, we consider /n to be a continuous distribution. Here,
T ¼ 50 and s 2 0:01; 0:03; . . . ;0:99f g,

/n ¼ Qn;s¼:01;Qn;s¼:03; . . . ;Qn;s¼:99

� � ð4Þ
We assume that, cf. Weerts et al., 2011, separately for every lead

time n considered and for every quantile s, there is a linear rela-
tionship between the streamflow forecast S and its verifying obser-
vation Q,

Qn;s ¼ an;sSn þ bn;s ð5Þ

where an;s and bn;s, are the slope and intercept from the linear
regression. Quantile Regression allows for finding the parameters
an;s and bn;s of this linear regression by minimising the sum of
residuals,

min
XJ

j¼1

qn;s qn;j � an;ssn;j þ bn;s
� �� � ð6Þ

where qn;s is the quantile regression weight for the sth quantile, qn;j

and sn;j are the jth paired samples from a total of J samples, and an;s

and bn;s the regression parameters from the linear regression
between streamflow forecast and observation. By varying the value
of s, the technique allows for describing the entire conditional
distribution.

In the present work, solving Eq. 6 was done using the quantreg

package (Koenker, 2013) in the R software environment (R Core
Team, 2013). Figs. 5 and 6 show the joint distributions of
forecast-observation pairs as well as a selection of estimated quan-
tiles; these plots are discussed in the Results and Analysis section.

2.7. Verification strategy

Forecast quality in the two scenarios is assessed using visual
exploration of forecast hydrographs, examination of graphical
measures of reliability and sharpness as well as a selection of met-
rics (presented as skill scores) for both probabilistic forecasts and
single valued derivatives thereof. The metrics and skill scores are
described in detail in Appendix A.

Reliability is the degree to which predicted probabilities coin-
cide with the observed relative frequencies, given those forecast
probabilities. The degree to which the forecasts are reliable is indi-
cated by reliability plots that plot the conditional relative fre-
quency of observations against forecast probabilities. Proximity
to the 1:1 diagonal, where observed frequency equals predicted
probability, indicates higher reliability.

The refinement of a set of forecasts refers to the dispersion of
the marginal distribution of predicted probabilities. A refinement
distribution with a large spread implies refined forecasts, in that
different forecasts are issued relatively frequently and so have
the potential to discern a broad range of conditions. This attribute
of forecast refinement often is referred to as sharpness in the sense
that refined forecasts are called sharp (Wilks, 2011). Often, sharp-
ness is summarized as the ability to forecast extreme probabilities
such as 0% and 100%. This is closely related to the width, or spread,
of an ensemble forecast. Large spreads are unlikely to yield 0% or
100% event probabilities. Hence, here we have measured the width
of the ensemble forecasts. These ‘‘sharpness plots” show the
empirical cumulative distribution of the width of the 10th–90th
quantiles of the probability forecasts. In this context, sharpness
measures the degree of confidence (narrowness of spread) afforded
by the forecasts.

Metrics that describe the quality of single valued forecasts
include the correlation coefficient (COR), relative mean error
(RME), mean absolute error (MAE) and the root mean squared error
(RMSE). The correlation coefficient describes the degree of linear
dependence between the observation and the forecast. The RME
or fractional bias measures the average difference between the
forecast and the observation, relative to the mean of the observa-
tions. MAE measures the mean absolute difference between a set
of forecasts and corresponding observations. RMSE provides the
square root of the average mean square error of the forecasts. It
has the same unit as the forecasts and the observations. In each
of these four metrics the forecast mean is used as a single valued
forecast.

In terms of the probabilistic characteristics of forecasts, the
overall accuracy is measured with the Brier Score (BS) and the
mean Continuous Ranked Probability Score (CRPS). The BS com-
prises the mean square error of a probability forecast for a discrete
event, where the observation is an indicator variable. The CRPS
measures the integral square error of a probability forecast across
all possible event thresholds, again assuming that the observation
is deterministic.

In the present paper, both BS and CRPS of the forecasts under
consideration are presented as a skill relative to the BS and CRPS
of the climatological forecast, that is, the climatology of streamflow
observations as derived from the sample of verification pairs.

For discrimination, the trade-off between correctly predicted
events (true positives, or hits) and false alarms (false positives) is
considered. Hit rate is plotted versus false alarm rate in the ROC
curves. The area under the curve (AUC) is a measure of discrimina-
tion; this is expressed as the Relative Operating Characteristic
score (ROCS), which factors out the climatological AUC of 0.5, i.e.
2AUC � 1. Forecast value is measured using the Relative Economic
Value (REV; Murphy, 1985; Zhu et al., 2002). REV (V �½ �) is calcu-
lated by matching the occurrences of hits, misses, false alarms
and correct negatives (‘quiets’) with their consequences (Table 2).
It is expressed on a scale from negative infinity to 1, where V ¼ 0
is the situation in which there is no forecasting and warning sys-
tem present and V ¼ 1 is the situation in which there is a perfect
forecasting and warning system present. Negative values imply
that the warning system introduces more costs than benefits. The
REV is expressed as a function of the users cost-loss rate r.

Verification was performed at the same timestep as the post-
processing; results are shown for a selection of lead times only.
For verification, the open source Ensemble Verification System
(Brown et al., 2010) is used. EVS takes ensemble forecasts as input.
Here, predictive uncertainty is expressed by quantiles rather than
ensemble members, but the 50 quantiles are equally spaced, and
ensemble members may be interpreted as quantiles of the under-
lying probability distribution from which they are sampled (e.g.
Bröcker and Smith, 2008).

Conditional quality and skill is determined by calculating veri-
fication metrics for increasing levels of the non-exceedence clima-
tological probability, P, ranging from 0 to 1. Essentially, P ¼ 0
constitutes an unconditional verification for continuous measures,
such as the CRPSS, as all available data pairs are considered

Table 2
Contingency table. The consequences of the items listed are in brackets. Taken from
Verkade and Werner, 2011.

Event observed Event NOT observed
P

Warning issued Hits h C þ Luð Þ False alarms f Cð Þ w
Warning NOT

issued
Missed events
m La þ Luð Þ

Quiets/correct negatives
qð�Þ

w0

P
o o0 N
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(Bradley and Schwartz, 2011). Conversely, at P ¼ 0:95, only the
data pairs with observations falling in the top 5% of sample clima-
tology are considered; this amounts to approx. 60 pairs here for the
Meuse case and approx. 150 pairs for the Rhine case (Fig. 2).

The BSS, ROCS and REV measure forecast skill for discrete
events. The BSS, ROCS and REV are, therefore, unknown for thresh-
olds corresponding to the extremes of the observed data sample,
nominally denoted by P ¼ 0 and P ¼ 1).

Sampling uncertainties were quantified with the stationary
block bootstrap (Politis and Romano, 1994). Here, blocks of adja-
cent pairs are sampled randomly, with replacement, from the J
available pairs in each basin. Overlapping blocks are allowed, and
the average length of each block is determined by the autocorrela-
tion of the sample data. In both cases, an average block length of
10 days was found to capture most of the autocorrelation (some
interseasonal dependence remained). The resampling was
repeated 1,000 times, and the verification metrics were computed
from each sample. Confidence intervals were derived from the
bootstrap sample with a nominal coverage probability of 0.9, i.e.
0:05;0:95½ �. The intervals should be treated as indicative and do
not necessarily provide unbiased estimates of coverage probabili-
ties, particularly for rare events (Lahiri, 2003). Also, observational
uncertainties were not considered.

These sampling uncertainty intervals provide information as to
the ‘true value’ of the metric or skill considered. Unfortunately, the
intervals cannot be used for a formal statistical analysis as the ver-
ification samples are not strictly independent. Hence in the present
paper, the comparison between scenarios is (necessarily) based on
a qualitative description of the uncertainty intervals.

3. Study basins, models and data used

To enhance the robustness of the findings presented in this
paper, the experiment was carried out on two separate study
basins. These comprise forecasting locations in two basins with dif-
ferent characteristics, where hydrological models are forced with
different atmospheric ensemble forcing products.

3.1. Meuse

3.1.1. Basin description
The river Meuse (Fig. 3) runs from the Northeast of France

through Belgium and enters the Netherlands just south of Maas-
tricht. It continues to flow North and then West towards Dor-
drecht, where it meets the Rhine before discharging into the
North Sea near Rotterdam. Geology and topography vary consider-
ably across the basin. The French Meuse basin is relatively flat and
has thick soils. The mountainous Ardennes are relatively high and
steep and the area’s impermeable bedrock is covered by thin soils.
Average annual basin precipitation varies around 900 mm. The
Meuse is a typically rain-fed river; long lasting, extensive snow-
packs do not occur. Fig. 4 shows the distribution of streamflow at
the forecasting locations considered in this study. Near Maastricht,
average runoff equals approx. 2003/s. Temporal variability can be
large as, during summer, streamflow can be less than 103/s, while
the design flood, associated with an average return period of 1250
years, has been established at approx. 30003/s.

This study explicitly looks at St Pieter, which is near where the
river enters The Netherlands. Water levels in the Belgian stretch of
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Fig. 2. Sub-sample size as a function of the probability P of non-exceedence of the observation in the climatological record.
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the Meuse, just upstream of the Dutch-Belgian border, are heavily
regulated by large weirs. These, together with the locks that have
been constructed to allow ships to navigate the large water level
differences, cause relatively high fluctuations in discharge. The
manual operations that lead to these fluctuations are not commu-
nicated with the forecasting agency across the border in The

Netherlands, which introduces additional uncertainties with
respect to future streamflow conditions.

3.1.2. Models used
The forecasting system contains an implementation of the HBV

rainfall-runoff model (Bergström et al., 1995). This is a semi-

Fig. 3. Map of the Meuse and Rhine basins and the forecasting locations that are considered in this manuscript.
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lumped, conceptual hydrological model, which includes a routing
procedure of the Muskingum type. The model schematisation con-
sists of 15 sub-basins jointly covering the Meuse basin upstream of
the Belgian-Dutch border, which is very near the St Pieter forecast-
ing location. The model runs at a one-hour time step. Inputs to the
model consist of temperature and precipitation forcings; actual
evaporation is estimated from a fixed annual profile that is cor-
rected using temperature forecasts. The model simulates both
streamflow generation and streamflow routing in natural flow con-
ditions only. Thus, it does not include models of human interfer-
ence that occurs at weirs and sluices. This interference occurs
mainly at low flows; at high flows, weirs are drawn. Hence, at
low flows, considerable uncertainty is associated with model
outcomes.

3.1.3. Forecasts and observations used
COSMO-LEPS is the ensemble implementation of the COSMO

model, a non-hydrostatic, limited-area atmospheric prediction
model. Its 16 members are nested on selected members of the
ECMWF-EPS forecasts. COSMO-LEPS runs twice daily on a 10 km
grid spacing and 40 vertical layers. It covers large parts of conti-
nental Europe including the Meuse basin. For the present experi-
ment, approx. 1400 historical COSMO-LEPS forecasts were
available (Fig. 2): one every day between mid 2007 and early
2011. The forecasts have a 1-h time step and have a maximum lead
time of 132-h, i.e. 5.5 days. Within the operational forecasting sys-
tem, the lead time is artificially extended to 7 days through assum-
ing zero precipitation and 8� C temperature for the lead times
ranging from 132-h through 168-h. The 36-h lead time gain more

or less coincides with the time required for a flood wave to cover
the distance from Chooz (near the French–Belgian border) to St
Pieter. As a general rule, about half of the streamflow volume orig-
inates from the basin upstream from Chooz.

From the 16 members, a single member was isolated to serve as
the deterministic forecast. Note that while the results for a single
deterministic forecast are presented here, the dressing was in fact
done 16 times, using each of the available 16 members as a single
deterministic forecasts. Each of these 16 dressed deterministic
forecasts behaves similarly with respect to the ‘competing’ sce-
nario — hence only one of these is presented in this paper.

Hourly streamflow observations St Pieter as well as
temperature and precipitation observations within the Meuse
basin were obtained from the Water Management Centre of The
Netherlands.

3.2. Rhine

3.2.1. Basin description
The river Rhine runs from the Swiss Alps along the French-

German border, through Germany and enters The Netherlands near
Lobith, which is situated upstream of the Rhine-Meuse delta, and is
often considered the outflow of the Rhine. At Lobith, the basin area
equals approx. 160,000 km2. During spring and early summer, a
considerable fraction of flow at the outlet originates from snow-
melt in the Swiss Alps. Fig. 3 shows the basin location, elevations
and the forecasting locations that were used in this work. These
are Metz, Cochem and Lobith. Metz is located in the headwaters
of the river Moselle, of which Cochem is the outlet.
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Fig. 4. Distribution of streamflow observations at the forecasting locations considered in this study.
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3.2.2. Models used
The forecast production system that was used to create simula-

tions and hindcasts for the Rhine is a derivative of the operational
system that was mentioned above. The system contains an imple-
mentation of the HBV rainfall runoff model (Bergström et al.,
1995). The Rhine model schematisation consists of 134 sub-
basins jointly covering the entire basin. The models run at a daily
time step. Inputs to the model consist of temperature and precip-
itation forcings; actual evaporation is estimated from a fixed
annual profile that is corrected using temperature forecasts.

3.2.3. Forecasts and observations used
For observations of precipitation, the CHR08 dataset (Photiadou

et al., 2011) was used. This dataset was prepared specifically for
the HBV model used here and covers the period 1961 through
2007. The spatial scale of the observations coincides with the
134 HBV sub-basins. Temperature observations originate from ver-
sion 5.0 of the E-OBS data set (Haylock et al., 2008), and are avail-
able from 1951 through mid 2011. These forcings were available at
a time step of one day. The observations are used to force the
hydrological model in historical mode to estimate the initial condi-
tions at the onset of a hydrological forecast, as well as in simulation
mode.

Predicted forcings consisted of the ECMWF reforecast dataset,
comprising medium-range EPS forecasts with 5 ensemble mem-
bers (Hagedorn, 2008). These reforecasts were produced using
the current operational model (Cy38r1 with a 0.25 degrees hori-
zontal resolution). The forecasts were temporally aggregated to a
one day time step, which coincided with that of the hydrological
model used, and go out to a maximum lead time of 240-h, i.e.
10 days. The gridded forecasts were spatially averaged to the
HBV sub-basin scale. For this work, approx. 2,900 reforecasts were
available (Fig. 2), covering the period 1990–2008.

Similar to the Meuse case, the deterministic forecasts used in
this study consist of a randomly chosen ensemble member from
each of the available ensemble forecasts. Each of the members
was used to create a deterministic forecast which was subse-
quently dressed and analysed. However, results for one of these
forecasts is presented only.

Hourly streamflow observations for the hydrological stations
within the Rhine basin were obtained from theWater Management
Centre of The Netherlands.

4. Results and analysis

4.1. Post-processing of single valued forecasts

Scatter plots of single-valued forecasts and observations are
shown in Figs. 5 and 6 for St Pieter and Rhine locations, respec-
tively. Two datasets are shown: (i) the forecasts with perfect forc-
ings (simulations in the Rhine case) and (ii) the deterministic
forecasts. In all plot panels, the horizontal axes are identical to
the vertical axes and the 1:1 diagonal is emphasised. The
forecast-observation pairs are plotted in a transparent colour;
areas that show up darker comprise multiple pairs plotted on top
of one another. A selection of estimated quantiles is superimposed
on the scatter plots, with the median in red and the 5th, 10th, 25th,
75th, 90th and 95th percentiles in blue.

The pairs and the estimated quantiles in the St Pieter figure
(Fig. 5) show that the perfect forcing pairs (bottom row) are closer
to the diagonal than the deterministic forecast pairs (top row). This
is because the residuals between the perfect forcings forecast and
the observations comprise the hydrological uncertainties only. The
plots also show that the median quantile of the pairs comprising
the deterministic forecasts has a shallower slope than the diagonal.

This indicates an overforecasting bias: the majority of pairs is
located below, or to the right of the diagonal. The median of the
pairs comprising the perfect forcing forecasts shows a slope almost
equal to, or higher than that of the 1:1 diagonal. The latter indi-
cates underforecasting: most of the pairs are located above, or to
the left of the 1:1 diagonal. Both sets of pairs show that the spread
increases with increasing forecast lead time and that higher values
of flow have higher spread in real units.

In the Rhine case (Fig. 6), the simulations are independent of
forecast lead time. The difference between the spread of pairs
based on the simulations and that of the deterministic forecasts
is less obvious, especially when the shorter lead times are consid-
ered. Without exception, the median forecast is located below the
diagonal which indicates an overforecasting bias.

4.2. Forecast hydrographs

Sample forecasts or predictive distributions for both scenarios
are shown in Fig. 7. The rows show the cases that use deterministic
(top) and ensemble (bottom) forecasts, with the raw forecasts indi-
cated by thick blue lines and the dressed forecasts by thin grey
lines. Note that the raw cases show one or multiple traces, whereas
for the dressed cases, quantiles are shown (which should not be
confused with ensemble traces).

By construction, ensemble dressing corrects for under-
dispersion and, therefore, increases the ensemble spread. In this
example, the spread of the dressed single-valued forecasts is larger
than the spread of the dressed ensemble forecasts. It is also notice-
able that the raw ensemble forecast fails to capture many observa-
tions, whereas the dressed forecasts capture all.

Please note that this is an example on a particular date and not
necessarily the general behaviour of all forecasts that are post-
processed.

The example forecasts also show an artefact associated with
statistical post-processing, namely that the most extreme quan-
tiles are relatively noisy This originates from the increased sam-
pling uncertainty associated with estimating extreme quantiles.

4.3. Single-valued forecast verification

Generally speaking, COR, RME and RMSE follow similar pat-
terns. Each worsens with increasing lead time and with increasing
value of the verifying observation as indicated by P. In this manu-
script, only the RME is shown (Fig. 8).

The correlations (plot not shown) are highest for Lobith, fol-
lowed by Cochem, Metz and St Pieter. While the correlations are
generally positive, they approach zero at St Pieter for higher P at
longer forecast lead times. Both the patterns and values of the cor-
relation coefficient (as function of lead time and P) are similar
across the two scenarios. Only at the longer forecast lead times
and at St Pieter do they differ. In those cases, the dressed ensem-
bles outperform the dressed deterministic forecasts.

The RME plots (Fig. 8) show that, at P ¼ 0, the dressed deter-
ministic forecasts have near-perfect RME, that is, RME � 0, at all
forecast lead times. The dressed ensemble forecasts show a larger
fractional bias, with St Pieter and Metz showing positive values
and Cochem and Lobith showing negative values. For higher values
of P and at longer forecast lead times, RME becomes increasingly
negative. Consequently, at higher values of P and at longer forecast
lead times, the dressed ensembles at St Pieter and Metz show
smaller fractional bias than the dressed deterministic forecasts.
The converse is true for Cochem and Lobith, where the dressed
deterministic forecasts have smaller RME. The difference in RME
between scenarios increases with increasing forecast lead time.

The RMSE (not shown in plots) worsens (i.e., increases) with
increasing forecast lead time, increasing threshold amount, and
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with declining basin size. The RMSE is lower for the dressed
ensemble forecasts than the dressed single-valued forecasts at
most values of P. Only at Cochem and Lobith and for some values
of P is the RMSE higher for the dressed ensemble forecasts.

Overall, in terms of the single valued verification measures, nei-
ther the dressed ensemble forecasts nor the dressed deterministic
forecasts perform consistently better. At St Pieter and Metz, the
mean of the dressed ensembles has higher quality in terms of
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COR, RME and RMSE, whereas at Cochem and Lobith, the reverse is
true in terms of RME and, at small ranges of P, for RMSE.

4.4. Reliability and sharpness

Reliability plots for the P ¼ 0:50 and P ¼ 0:90 subsamples
(Figs. 9 and 10) show that both approaches are reasonably and
more or less equally reliable at all leadtimes and at all locations.
The one exception here is St Pieter, where the dressed determinis-
tic forecasts appear to be more reliable than the dressed ensemble
forecasts.

Reliability varies slightly with the level of extremeity of the
event: the P ¼ 0:50 reliability plot (Fig. 9) follows the diagonal
more closely than the P ¼ 0:90 reliability plot (Fig. 10). In the
P ¼ 0:50 reliability plot (Fig. 9), the samples are distributed much
more evenly across the horizontal (as indicated by the size of the
plotting positions) compared to the P ¼ 0:90 reliability plot
(Fig. 10). In the latter, the distribution is much less even, with a rel-
atively large number of forecasts to be found at the 0% and 100%
forecasts.

The width of the forecast distributions (Figs. 11 and 12)
increases with increasing lead time and with increasing value of
P. Sharpness, compared to reliability, varies more sharply (we
couldn’t resist the pun) with the value of P. At lead times longer
than 24-h, the differences in forecast width between scenarios
becomes noticeable. In all cases, the dressed ensembles result in
more narrow predictive distributions than the dressed determinis-
tic forecasts. These differences are more pronounced at higher val-
ues of P. Note that while ‘narrowness’ is a desirable property, it is
only valuable in a decision making context if the forecasts are also
reliable.

4.5. Probabilistic skill scores

For the skill scores (Fig. 13), the patterns are more important
than the absolute values, as the baseline is unconditional climatol-
ogy. The patterns of the Brier Skill Score are similar to those
observed for other metrics: skill is highest for the largest basins
and reduces with increasing forecast lead time. The BSS is generally
very similar for both scenarios. Only in the case of St Pieter is there
a consistent difference between the scenarios, with the dressed
ensemble forecasts outperforming the dressed deterministic fore-
casts, but not beyond the range of sampling uncertainty.

The patterns of the mean CRPSS (Fig. 14) are similar to those of
the BSS. The difference is that the CRPSS improves with increasing
P. This is understandable because sample climatology is much less
skilful at higher thresholds.

Often, the CRPSS is similar across the two scenarios. Again, any
differences are more pronounced at longer forecast lead times and
higher values of P, where the dressed ensemble forecasts are some-
what more skilful, particularly at St Pieter and Metz (but again, not
beyond the range of sampling uncertainty).

4.6. Forecast value

Relative Operating Characteristic plots for the event defined by
the exceedence of the 90th percentile of the observational record
are shown in Fig. 15. The plots show that, in all cases, the ROC
curves for both scenarios are well above the diagonal, indicating
that these forecasts improve upon climatology.

At the shortest lead time shown, the curves for the two scenar-
ios are very similar. Differences, if any, increase with increasing
forecast lead time. At longer forecast lead times, the dressed
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Fig. 9. Reliability plots for various lead times (columns) for several locations (rows). The plot is conditional on the observation exceeding the 50th percentile of the
climatological exceedence probability (i.e., P ¼ 0:50).
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Fig. 10. Reliability plots for various lead times (columns) for several locations (rows). The plot is conditional on the observations exceeding the 90th percentile of the
climatological exceedence probability (i.e., P ¼ 0:90).
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Fig. 11. Sharpness plots for various lead times (columns) for several locations (rows). The plot is unconditional, i.e. for the full data sample (i.e., P ¼ 0).
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ensemble forecasts are slightly more discriminatory than the
dressed deterministic forecasts.

The associated ROC scores (Fig. 16) are very similar at most
locations and forecast lead times and generally decline with
increasing forecast lead time and increase with threshold amount.

The Relative Economic Value also relies on the ability of a fore-
casting system to discriminate between events and non-events,
but assigns a cost-loss model to weight the consequences of partic-
ular actions (or inaction). In most cases, the REV of the dressed
ensemble forecasts is similar to, or slightly higher than, the dressed
deterministic forecasts for different values of the cost-loss ratio.
Again, these differences are more pronounced at longer forecast
lead times, higher thresholds, and larger values of the cost-loss
ratio Figs. 17 and 18.

4.7. Analysis

The results show that, at P ¼ 0, the dressed deterministic fore-
casts improve (albeit only marginally) on the dressed ensemble
forecasts in terms of reliability and RME. However, the dressed
ensemble forecasts are somewhat sharper. On balance, the dressed
ensemble forecasts have slightly better RMSE and CRPSS scores.

The dressed ensemble forecasts are only slightly less reliable
than the dressed deterministic forecasts at the three Rhine loca-
tions Metz, Cochem and Lobith. The differences are larger at St
Pieter, where the dressed ensemble forecasts show a substantial
wet bias. In this context, the dressed deterministic forecasts
account for both the atmospheric and hydrologic uncertainties
and correct for biases via the quantile regression, whereas this
dressed ensemble forecasts do not account for under-dispersion
of the meteorological forecasts. In other words: the dressing

assumes that the meteorological uncertainties are well described
by the ensembles whereas in reality this isn’t necessarily so.

At P ¼ 0, the fractional bias of the dressed deterministic fore-
casts is small at all forecast lead times. This is understandable,
because post-processing techniques, such as quantile regression,
are generally good at correcting for unconditional biases and biases
conditional upon forecast value/probability (i.e. lack of reliability).

The dressed ensemble forecasts are sharper than the dressed
deterministic forecasts. However, sharpness is only meaningful
when the forecasts are also reliable. In the case of St Pieter at 0-h
lead time, forecasts are infinitely sharp and of near perfect quality
— this is due to the error correction just upstream of St Pieter.

This error correction introduces some erratic effects on the frac-
tional bias at the shortest lead time (Fig. 8 and a relatively steep
jump to less-than-perfect skills at those lead times when the effect
of error correction has worn off. This is but one of the differences
between the St Pieter catchment on the one hand and the Rhine
catchments on the other. In general, the St Pieter results are
slightly more erratic and dramatic in nature: more pronounced
dependency on lead time, bigger difference in sharpness between
the two scenarios. We believe this to be due to the nature of the
basin which is more complex (in terms of geology and topography)
than the other basins, in combination with the fact that less infor-
mation is available for the Meuse: the hydrometeorological moni-
toring network is a lot less dense.

At higher values of P, both sets of forecasts are consistently less
reliable. The dressed deterministic forecasts show a ‘dry bias’
where the observed relative frequency (or quantile exceedence)
is higher than the predicted probability. However, at St Pieter, this
conditional dry bias is offset by an unconditional wet bias, leading
to reasonably reliable forecasts at higher thresholds and early fore-
cast lead times.
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Fig. 14. Mean Continuous Ranked Probability Skill Score (CRPSS) as a function of lead time for several subsamples of the verification pairs (columns) and several locations
(rows). The shading shows the width of the intervals obtained by bootstrapping the verification metric (see Section 2.7 for details).
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Fig. 15. ROC plots for various lead times (columns) for several locations (rows). The plot is for the event that the posterior water level exceeds the 90th percentile of the
climatological exceedence probability (i.e., P ¼ 0:90). The shading shows the width of the intervals obtained by bootstrapping the verification metric (see Section 2.7 for
details).
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Fig. 16. Relative Operating Characteristic Score (ROCS) as a function of lead time for several subsamples of the verification pairs (columns) and several locations (rows).
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Fig. 17. Value plots for various lead times (columns) for several locations (rows). The plot is conditional on the observations exceeding the 50th percentile of the
climatological exceedence probability (i.e., P ¼ 0:50).
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Fig. 18. Value plots for various lead times (columns) for several locations (rows). The plot is conditional on the observations exceeding the 90th percentile of the
climatological exceedence probability (i.e., P ¼ 0:90).
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In general, the fractional negative bias (RME) increases with
increasing threshold. This is consistent with the RME of the precip-
itation forecasts, which systematically underestimate the largest
observed precipitation amounts (Verkade et al., 2013). At higher
thresholds, the differences in RME between the two scenarios are
similar in pattern to those in the unconditional sample. In other
words, at St Pieter and Metz, the fractional bias of the dressed
ensemble forecasts is smaller, while at Cochem and Lobith, the
dressed deterministic forecasts show smaller fractional bias. Again,
this is due to the RME in the precipitation forecasts.

The BSS, ROCS and REV, which assess the quality of the forecasts
at predicting discrete events, are very similar between the two sce-
narios at all forecast lead times and all values of P. One exception is
St Pieter, where the dressed ensemble forecasts improve some-
what on the dressed deterministic forecasts in terms of ROCS and
REV, but not at the highest thresholds. At St Pieter and at these
higher values of P, the dressed ensembles were both sharper and
more reliable than the dressed deterministic forecasts.

5. Conclusions

We compared a source-based approach and a lumped approach
for estimating predictive uncertainty in terms of various aspects of
forecast quality, skill and value. The analysis shows that the
dressed ensemble forecasts are sharper, but slightly less reliable
than the dressed deterministic forecasts. On balance, this results
in skill and value that is very similar across the two scenarios, with
the dressed ensemble forecasts improving slightly on the dressed
deterministic forecasts at St Pieter and Metz and the reverse being
true at Cochem and Lobith.

6. Discussion

While the analysis revealed quite similar results between the
scenarios, further studies or different approaches to quantifying
the various sources of uncertainty could reveal larger differences.
For example, a larger hindcast dataset would help to reduce the
sampling uncertainties and identify any marginal differences in
forecast quality, as well as supporting an analysis of higher thresh-
olds. The quantile regression technique could be configured in
alternative ways (some configurations were tested by López
López et al. (2014)), or could be replaced by an alternative tech-
nique altogether. Alternative basins can be used for the experi-
ment, and/or alternative ensemble NWP products.

As noted earlier, the quality of the dressed streamflow ensem-
bles is dependent on the quality of the raw streamflow ensembles
- and therefore on the quality of the underlying NWP ensembles.
Any lack of reliability will transfer to the dressed streamflow
ensembles. Such meteorological biases could be addressed through
meteorological post-processing or by accounting for the effects of
under-dispersion on the streamflow forecasts. Conceivably, meteo-
rological post-processing could address error structures that are
specific to the forecast variable (i.e., precipitation, temperature or
other) while hydrologic post-processing then addresses error
structures specific to the hydrological forecasts. Presumably, the
latter errors will have been reduced by the presence of meteorolog-
ical post-processing techniques. Note that in practice, a meteoro-
logical post-processing technique that is effective within the
context of hydrological forecasting is yet to be found. For example,
the approach taken by Verkade et al. (2013) did not result in
improved hydrological forecasts, which was in line with the find-
ings of Kang et al. (2010). Approaches such as those followed by
Bennett et al. (2016), Schefzik (2016), Schefzik (2016) and Hu
et al. (2016) appear to be promising.

In terms of choosing an approach, the results presented here are
quite similar for both techniques. However, there are additional
considerations, including the relative simplicity of dressing a
deterministic forecast, data availability, and the expected addi-
tional information contributed by an ensemble of weather fore-
casts (versus a single forecast or the ensemble mean) in different
contexts. As indicated by Pagano et al. (2014), combining ensemble
and other forecasting technologies with the subjective experience
of operational forecasters is an ongoing challenge in river
forecasting.

Essentially, statistical modelling relies on the stationarity of the
model errors or the ability to account for any non-stationarity with
a reasonably simple model. In practice, however, basin hydrology
changes over time with changes in climate and land-use, among
other things. The lumped approach cannot easily account for this,
while the source-based approach may, using information about
the individual sources of uncertainty, better isolate (and model)
the causes of non-stationarity.

Also, by definition, extreme events are not well represented in
the observational record and frequently change basin hydrology.
Thus, for extreme events in particular, basing estimates of predic-
tive uncertainty on the observational record is fraught with diffi-
culty. In this context, ensemble approaches to propagating the
forcing and other uncertainties through hydrological models
should (assuming the models are physically reasonable) capture
elements of the basin hydrology that are difficult to capture
through purely statistical approaches.
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Appendix A. Verification metrics

For ease of reference, the probabilistic verification metrics used
in this study are briefly explained; this description is partly based
on that in Verkade and Werner (2011); Brown and Seo, 2013 and
Verkade et al., 2013. Additional details can be found in the docu-
mentation of the Ensemble Verification System (Brown et al.,
2010) as well as in reference works on forecast verification by
Jolliffe and Stephenson (2012) and Wilks (2011).

A.1. Reliability plots

One desired property of probabilistic forecasts is that forecasted
event probabilities f coincide with observed relative frequencies F.
This is visualized in reliability plots that plot the latter variable ver-
sus the former,
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Fi ¼
P

ojf ¼ i
Ji

ðA:1Þ

where F is the observed relative frequency, i is one of eleven allow-
able values of the forecast f : i 2 0;0:1;0:2; . . . ;1f g; o is an indicator
variable that is assigned a value of 1 if the event was observed and a
value of 0 if the event was not observed, f is the forecasted proba-
bility of event occurrence and Ji is the total number of forecasts
made within bin i (Wilks, 2011).

A.2. Sharpness

Here, sharpness is indicated by the width of the centred 80%
interval of the predictive distribution,

wj ¼ Ss¼0:90;j � Ss¼0:10;j; ðA:2Þ
for all J forecasts. Again, sharpness is determined for each lead time
n separately and the lead time indicators have been omitted from
above equation. The combined record wj¼1;2;...;J is shown as an
empirical cumulative distribution function.

A.3. Correlation coefficient

The Correlation Coefficient (COR) is a measure for the statistical
relationship between two variables. Here, the Pearson product-
moment correlation coefficient is a measure of the strength and
direction of the linear relationship between two variables that is
defined as the (sample) covariance of the variables divided by
the product of their (sample) standard deviations,

CORX;Y ¼ E½ðX � lXÞðY � lYÞ�
rXrY

; ðA:3Þ

where E indicates an expected value, l is the mean and r is the
standard deviation.

A.4. Relative mean error

The Relative Mean Error (RME, sometimes called relative bias)
measures the average difference between a set of forecasts and
corresponding observations, relative to the mean of the latter,

RME ¼
PJ

j¼1 Sj � qj

� �
PJ

j¼1qj

; ðA:4Þ

where q is the observation and S is the mean of the ensemble fore-
cast. The RME thus provides a measure of relative, first-order bias in
the forecasts. RME may be positive, zero, or negative. Insofar as the
mean of the ensemble forecast should match the observed value, a
positive RME denotes overforecasting and a negative RME denotes
underforecasting. Zero RME denotes the absence of relative bias in
the mean of the ensemble forecast.

A.5. Brier skill score

The (half) Brier score (BS, Brier, 1950) measures the mean
square error of J predicted probabilities that Q exceeds q,

BS ¼ 1
J

XJ

j¼1

FQj
qð Þ � FSj qð Þ

n o2
; ðA:5Þ

where

FSj qð Þ ¼ Pr Qj > q
� 	

and

FQj
qð Þ ¼ 1 if Qj > q

0 otherwise



:

The Brier Skill Score (BSS) is a scaled representation of forecast
quality that relates the quality of a particular system BS to that of a
perfect system BSperfect (which is equal to 0) and to a reference sys-
tem BSref ,

BSS ¼ BS� BSref
BSperfect � BSref

ðA:6Þ

BSS ranges from �1 to 1. The highest possible value is 1. If
BSS ¼ 0, the BS is as good as that of the reference system. If
BSS < 0 then the system’s Brier score is less than that of the refer-
ence system.

A.6. Mean continuous ranked probability skill score

The Continuous Ranked Probability Score (CRPS) measures the
integral square difference between the cumulative distribution
function (cdf) of the forecast FS qð Þ, and the corresponding cdf of
the observed variable FQ qð Þ,

CRPS ¼
Z 1

�1
FS qð Þ � FQ qð Þf gdq: ðA:7Þ

The mean CRPS comprises the CRPS averaged across J pairs of
forecasts and observations,

CRPS ¼ 1
J

XJ

j¼1

CRPSj: ðA:8Þ

The Continuous Ranked Probability Skill Score (CRPSS) is a func-
tion of the ratio of the mean CRPS of the main prediction system,
CRPS, and a reference system, CRPSref ,

CRPSS ¼ CRPS� CRPSref
CRPSperfect � CRPSref

ðA:9Þ

A.7. Relative Operating Characteristic score

The relative operating characteristic (ROC; Green and Swets,
1966) plots the hit rate versus the false alarm rate. These are calcu-
lated using the elements of a contingency table, which is valid for a
single probabilistic decision rule, and are defined as follows

hit rate ¼ #hits
# observed events

¼ h
o

ðA:10Þ

false alarm rate ¼ #false alarms
#events not observed

¼ f
oprime

;

The ROC score measures the area under the ROC curve (AUC)
after adjusting for randomness, i.e.

ROCS ¼ 2� AUC� 0:5ð Þ: ðA:11Þ

A.8. Relative economic value

The Relative Economic Value (V �½ �) of an imperfect warning
system is defined as the value relative to the benchmark cases of
No Warning (V=0) and Perfect Forecasts (V=1). REV can be less
than 0 if the cost of false alarms is higher than the benefits attained
by the warning system:

V ¼ VnoFWS � VFWS

VnoFWS � Vperfect
: ðA:12Þ
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Using the consequences of contingency table elements (Table 2)
and the cost-to-loss ratio r (Verkade andWerner, 2011), REV can be
expressed as a function of r,

V ¼ o� hþ fð Þr �m
o 1� rð Þ : ðA:13Þ
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