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Abstract

Electron surface states in solids are typically confined to the outermost atomic layers

and, due to surface disorder, have negligible impact on electronic transport. Here we

demonstrate a very different behavior for surface states in graphene. We probe the

wavelike character of these states by Fabry-Perot (FP) interferometry and find that, in

contrast to theoretical predictions, these states can propagate ballistically over micron-

scale distances. This is achieved by embedding a graphene resonantor formed by gate-

defined p-n junctions within a graphene SNS structure. By combining superconducting

Aharanov-Bohm interferometry with Fourier methods, we visualize spatially resolved

current flow and image FP resonances due to p-n-p cavity modes. The coherence of the

standing wave edge states is revealed by observing a new family of FP resonances which

coexist with the bulk resonances. The edge resonances have periodicity distinct from

that of the bulk states, manifest in a repeated spatial redistribution of current on and

off the FP resonances. This behavior is accompanied by a modulation of the multiple

Andreev reflection amplitude on and off resonance, indicating that electrons propagate

ballistically in a fully coherent fashion. These results, which were not anticipated by

theory, provide a practical route to developing electron analog of optical FP resonators

at the graphene edge.

Keywords: ballistic transport; Josephson interferometry; graphene edge states;

Fabry-Perot interference; electron optics

Surface states in electronic solids, which occur at the material boundaries, have a wide

range of interesting properties. The Tamm-Schockley states, which originate from crystal

structure termination or band bending, are localized in the top atomic layer and, being hin-

dered by disorder at the surface, do not contribute current-carrying pathways.1,2 In contrast,

topologically protected surface states in topological insulators or quantum Hall systems allow

electrons to propagate coherently without backscattering.3,4 However, the necessity of topo-

logical protection for the coherent propagation of surface states remains an open question.
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This work reveals the existence of phase-coherent electron waves at the graphene edges that

propagate ballistically over sub-micron length scales. We observe these states, and probe

their coherence, by studying standing waves formed at the graphene edges embedded in an

electronic Fabry-Perot interferometer.

Electron resonators have so far been explored in the momentum domain, in which Fermi

momentum is simply tuned with a gate, but little is known about the spatial distribution

of current flow due to the challenge of imaging current paths with submicron resolution. To

elucidate the role of edge effects on wave interference in graphene, we measure the inter-

ference of standing waves in a Josephson junction and image the real space distribution of

supercurrent flow using Fraunhofer interferometry.5 By extracting the spatial structure of

current-carrying states in the cavity using Fourier methods, our measurements disentangle

edge from bulk current flow and highlight the surprising role of the crystal boundaries on

electron wave interference.

In a coherent electron cavity, electronic transport is governed by quantum interference

of electron plane waves in an enclosed geometry rather than diffusive transport.6,7 In our

system, a pair of p-n junctions serve as electronic mirrors, confining electron waves in analogy

to the confinement of light within an optical FP cavity. As an added benefit over optical

systems, the Fermi wavelength of electrons in the cavity is electrostatically tunable with

a gate, moving the quantized energy levels of the cavity on and off resonance with the

Fermi energy of the superconducting leads. The resonances give rise to the wavelength-

dependent transmission through the n-p-n cavity resulting in the critical current oscillations.

Specifically, in absence of magnetic field, a single electron trajectory with an incidence angle

θ and refraction angle θ′ within the cavity yields a transmission probability P = |T (θ, θ′)|2,

where T (θ, θ′) is FP transmission amplitude

T (θ, θ′) =
t1(θ)t2(θ)eiD

1− r1(θ)r2(θ)e2iD
, D = kL cos θ′, (1)
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where t1,2(θ) and r1,2(θ) are the angle dependent transmission and reflection amplitudes for

two p-n junctions, L is the length of the n-p-n cavity, k is the wavenumber, and D is the

one-way optical path. The dependence of the amplitudes t1,2(θ) and r1,2(θ) on the angle θ

can in principle be obtained from free-electron Hamiltonian describing the p-n junction for

a given carriers wavelength.

In the presence of magnetic field, using Landau gauge with vector potentialA = (−By, 0, 0)

the optical path and transmission amplitude are modified by including the Aharonov-Bohm

phase:

D → D +
π

2

Φ

Φ0

L

W
tan θ′ T (θ, θ′)→ T (θ, θ′)eiϕAB(y), ϕAB(y) = π

Φ

Φ0

y

W
, (2)

where we define ϕAB the mean Aharonov-Bohm phase, Φ = BLW is the total magnetic

flux through the junction, Φ0 = hc/2e is magnetic flux quantum, and y is the position of

the beginning of the trajectory along the leads. Here D is an effective optical path derived

as a half-sum of one-way optical paths for the right-moving and left-moving modes in the

resonator.

This result can be applied to the superconducting transport through the SNS junction

mediated by Andreev pairs. For each electron of the pair transmission amplitude through

the p-n-p junction is described by by Eq.(1) with the B-dependent contribution to the phase

given in Eq.(2). The choice of the model for SNS transport depends on Thouless energy ET =

~/τ , where τ ∼ L/vF is traversal time through the junction.8 The SNS junctions studied in

our experiment are characterized by ET values few times greater than the supeconducting gap

∆. It can be shown that in the limit ET � ∆ a single trajectory with electron transmission

probability Eq. (1) gives a contribution to the supercurrent of the form

I(ϕ, θ) =
2e∆

~
|T (θ, θ′)|2 sinϕ√

1− |T (θ, θ′)|2 sin2(ϕ/2)
, ϕ = ϕ1 − ϕ2 + 2ϕAB

(
y +

1

2
L tan θ′

)
(3)

where the phase difference ϕ includes difference of superconducting phases in the leads ϕ1,2
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and the Aharonov-Bohm phase gained by an Andreev pair for the given trajectory (for the

derivation of equation (3) see Supporting Information).

The resulting interference fringes are dominated by the angles for which both the trans-

mission and reflection are reasonably high (the first harmonic of FP fringes is at its brightest

when the product of transmission and reflection coefficients |t(θ)|2|r(θ)|2 takes a maximum

value). In general, the spread of angles for different trajectories in graphene bulk gives rise

to a spread of the FP oscillation periods, somewhat reducing the fringe visibility in the net

current (see Supplementary Information). In contrast, no suppression is expected for the

interference fringes due to edge modes, as discussed in detail later.

The experimental manifestation of these standing-wave edge states constitutes a depar-

ture from conventional Josephson behavior and arises from the interplay between supercon-

ductivity and electron-optics. While the ballistic Josephson effect has been previously probed

in one-dimensional systems such as carbon nanotubes and nanowires, the two-dimensional

structure of graphene enables use of superconducting Aharonov-Bohm interferometry to un-

derstand the contributions of electronic pathways at the edge and in the bulk. In this work,

we demonstrate how the presence of an electron resonator inside the Josephson junction can

induce novel superconducting phenomena, including unconventional Josephson interference

patterns that exhibit lobes as a function of Fermi energy and modulation of the multiple

Andreev reflection amplitude depending on interference conditions of electron waves in the

cavity.

We employ proximity induced superconductivity to shed light on the microscopic nature

of electron interference along the crystal boundaries of a graphene resonator.9–12 Embedding

the resonator between a pair of superconducting electrodes is the key step that allows ex-

traction of spatial information on current flow. On a practical level, graphene provides an

accessible interface for superconducting electrodes because it is purely a surface material,

unlike 2D electron gases embedded in semiconductor heterostructures. Although graphene is

not intrinsically superconducting, proximity-induced superconductivity can be mediated by
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phase coherent Andreev reflection at the graphene/superconductor interface.13,14 This pro-

cess features an electron-hole conversion by the superconducting pair potential that switches

both spin and valley to preserve singlet pairing and zero total momentum of the Cooper

pair.15 In this study, we employ gated mesoscopic Josephson junctions consisting of bilayer

graphene suspended between two superconducting Ti/Al electrodes, as well as a graphene de-

vice on hBN. The superconductors serve three roles: (1) they create electrostatic potentials

that confine electron waves, serving as electronic analogs to mirrors (2) superconducting

interferometry can extract spatial information on how current flows through the system,

and (3) beyond equilibrium, scattering events between the superconductors and graphene

(multiple Andreev reflections) depend critically on resonance conditions and reveal how the

resonator couples to the outside world.

A schematic of a suspended graphene Josephson junction is provided in Figure 1a. Ac-

cessing a regime where electrons travel ballistically, similar to photons, is indispensable for

probing the phase-coherent nature of the edge states. We developed a new method to isolate

the flake from charge disorder in the underlying dielectric by suspending it over the back

gate electrode, described in the Supplementary Information. This approach combines the

high purity of suspended devices with superconductivity and enables the creation of ballis-

tic waveguides where the mean free path le of electrons exceeds channel length L. Similar

results are also obtained on a gate-defined resonator in monolayer graphene encapsulated

in hBN, discussed later, which enables a higher degree of electronic control over the cavity

while preserving sample quality.

The superconducting leads serve not only as electronic probes but also induce a resonant

electron cavity in the scaling limit le > L (Fig. 1b).6,7 The graphene in the immediate vicinity

of the Ti/Al contact is n-doped by charge transfer ,16 forming an intrinsic n-n or n-p junction

near the interface when the graphene has electron or hole carriers, respectively. Taking

advantage of contact induced doping to define the resonator, the resulting n-p junctions
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Figure 1: Normal state signatures of electron wave interference in a graphene
Fabry-Pérot cavity (a) Gated Josephson junction consisting of bilayer graphene suspended
between two superconducting electrodes. L is the distance between contacts and W is the
junction width. In the presence of magnetic field, a flux threads the junction area. A voltage
applied to the back gate electrode Vb tunes the Fermi wavelength λF in the cavity. (b)
Plot of the normal resistance Rn, obtained by sweeping the gate voltage Vb at a fixed bias
exceeding Ic. Data sets in panels (b-d) are from device B1. Left inset: Charge transfer at
the boundaries of the superconducting electrodes leads to intrinsic n-doped regions near the
contacts, forming an electronic resonator when the bulk is tuned to hole doping. Dips in
resistance appear when constructive interference conditions in the cavity, 2L = mλF , are
satisfied for any integer m. Right inset: When the bulk is tuned to electron doping, standing
waves are not formed, leading to monotonic resistance. (c) Rn plotted versus 2d/λF , where
d is the effective junction length and λF is the Fermi wavelength. By comparing the junction
length L to the effective size d extracted from fits, we determined that the contact-doped
regions extend at most 100 nm into the channel, consistent with the results of scanning
photocurrent studies. Reproducibility of the oscillation period is demonstrated in three
devices of length L = 500 nm. The blue resistance curve is from sample B1, the green curve
is from sample B4, and the red curve is from sample B5 and offset by -250 Ω. Resonances
marked by dips in resistance appear when constructive interference conditions are satisfied.
(d) Fabry-Pérot diamonds obtained using voltage bias spectroscopy, as shown in color maps
of R(Ω) and its derivative dRn/dVb, as function of back gate voltage Vb and voltage bias
VDC . Data from sample B1.

constitute electrostatic barriers that are sharp compared to the electron wavelength and are

less complex than gate-defined methods.17–20 Analogous to an optical Fabry-Pérot cavity,
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the n-p junctions serve as the electronic counterparts to mirrors while the ballistic graphene

channel serves as an electron waveguide. The Fermi wavelength of electrons in the cavity,

expressed as λF = 2π/
√
πn for a 2D Fermi disk with fourfold degeneracy, is experimentally

tunable with a gate voltage Vb that determines the carrier density n.

Fabry-Pérot (FP) resonances in ballistic waveguides arise due to reflection from p-n junc-

tions formed near the superconducting leads when the carrier polarity in the graphene region

is opposite to the polarity of contact doping. Figure 1b shows a plot of the normal resistance

Rn, obtained by sweeping Vb at a fixed bias exceeding the critical current Ic. We observe

periodic resistance oscillations at small positive carrier densities (Vb < 0) when n-p-n junc-

tion formation is favored and monotonic behavior when doping is unipolar. The dips in

Rn originate from constructive interference of electron waves in the resonator and therefore

coincide with carrier densities satisfying the condition 2d = mλF , where d is the effective

cavity length and m is an integer. The correspondence to FP interference conditions can

be seen more clearly in Fig. 1c, which shows that Rn is periodic as a function of 2d/λF .

Reproducibility of the oscillation period is demonstrated in three devices of 500 nm length

(Fig. 1c), while shorter junctions exhibit larger periods as expected. Quantum confinement

between the cavity “mirrors” gives rise to discrete energy levels with spacing hvF/2d, where

vF = ~kF/m∗ is the Fermi velocity and and m∗ is the effective electron mass in bilayer

graphene. We evaluate this energy scale to be of the order ∼ 0.8 meV using the height of

FP diamonds, as measured using voltage bias spectroscopy (Fig. 1d).

The interplay between cavity resonances and supercurrent is evident from a resistance

colormap as a function of IDC and Vb (Fig. 2a-b) showing critical current oscillations whose

period satisfies FP interference conditions, consistent with supercurrent propagation via

ballistic charge carriers.21 As λF in the cavity is tuned with the gate, the quantum levels

of the cavity are moved on or off resonance with the Fermi energy of the superconducting

leads, thus inducing a oscillating critical current periodic in
√
n for bilayer graphene. This

phenomena is observed in two independent systems: suspended bilayer graphene resonators
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defined by contact-induced doping (Fig. 2b) and a gate-defined resonator in monolayer

graphene on hBN (Fig. 2c and Supplementary Fig. S1), both of which exhibit similar

behavior. In total, five suspended bilayer devices are studied with a lithographic distance

L between superconducting contacts of 350 to 500 nm and contact width W of 1.5 to 3.2

µm, in addition to one gate-defined monolayer device with cavity dimensions of L = 100

nm and W = 2.7 µm (see Supplementary Information). Figure 2c displays critical current

modulations in a gate-defined monolayer resonator whose oscillations are periodic in n, in

agreement with a monolayer FP for cavity length ∼ 100 nm.

We employ yet another property of superconductor-normal-superconductor (SNS) sys-

tems to gain insight into the coupling between the cavity modes with the superconducting

reservoirs. Because the phenomenon of multiple Andreev reflection (MAR) is known to be

extremely sensitive to the coupling between electrons in the normal metal and the supercon-

ductor, we use voltage bias spectroscopy to map out the interplay between MAR oscillation

amplitude and cavity transmission (Fig. 2d-e). The millielectronvolt energy scale associated

with FP interference substantially exceeds the Al superconducting gap ∆, allowing one to

study the system close to equilibrium conditions for the resonator. Well defined MAR peaks

appear at 2∆,∆, and 2∆/3 when the density is tuned off resonance, while MAR is com-

pletely suppressed on resonance, as visible in line cuts of resistance on and off resonance in

Fig. 2e (additional data sets are provided in Supplementary Figs. S2, S3-S4). It is notable

that the amplitude of the multiple Andreev reflections depends strongly on cavity resonance

conditions, thereby providing a direct measure of the tunable coupling between the resonator

and the outside world.

We hypothesize that the change in visibility of MAR on and off resonance is most natu-

rally explained by changes in the distribution of transmission eigenvalues. When an electron

cavity is tuned to the resonant wavelength, a larger fraction of the current is carried by

highly transmitting modes than when the cavity is off resonance. Meanwhile, the magnitude
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Figure 2: Interplay between superconductivity and the Fabry-Pérot interference
in a ballistic graphene Josephson junction (a, b) Plots of resistance as a function
of DC current bias and back gate voltage. The critical current Ic oscillates with a period
that satisfies the Fabry-Pérot (FP) interference conditions, consistent with supercurrent
propagation via ballistic charge carriers. (c) Differential resistance of a gate-defined FP
resonator in monolayer graphene on hBN (device M1 ), as a function of top gate voltage and
DC bias current when the back gate voltage is held fixed at -1.75 V. The critical current,
defined by the width of zero resistance region along the current axis, oscillates with the
same periodicity as normal state resistance, in agreement with a FP model for cavity length
∼ 100 nm. (d) Schematic illustration of the mechanism of multiple Andreev reflection in
a graphene Josephson junction for DC voltage bias eV = 2∆/3, which leads to a tilt in the
scattering trajectories. (e) Line cuts of resistance versus DC voltage bias on (Vb=0.3 V, red
curve) and off (Vb=0.14 V, blue curve) resonance. Well defined MAR peaks appear at 2∆,∆,
and 2∆/3 when the density is tuned off resonance, while MAR is suppressed on resonance.
Data is from device B3. (f) Modeled conductance profiles in the short junction limit, as a
function of applied bias voltage. The curve corresponding to high transmission, Ghigh (red)
is computed for a single mode with transmission 0.9. The low transmission curve (blue) is
obtained for 4 modes with transmission 0.6. Lower transparencies lead to the formation of
conductance resonances at bias voltages corresponding to 2∆/3, ∆, and 2∆.

of multiple Andreev reflection peaks should be small for modes with high transmission prob-

ability due to the absent suppression of higher order scattering processes.22 The interplay

between these two effects should thus produce the observed multiple Andreev reflection pat-

tern in short junctions, in which different modes contribute independently to the current. In

our devices, the superconducting phase coherence length ξ = ~vF/∆ ≈ 450− 700 nm, while
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the channel size is ≈ 350 nm, so we expect the short junction limit to qualitatively hold.

In order to qualitatively understand the multiple Andreev reflection measurements, we

consider a short Josephson junction model. In this limit, the conductance is given by

G(V ) =

∫ 1

0

ρ(T )G(V, T )dT, (4)

with T the transmission probability, ρ the density of transmission eigenvalues, and G(T, V )

the single mode conductance contribution, calculated using expressions from Ref.22 Because

supercurrent is predominately transmitted by bulk modes, as indicated by the Fraunhofer

interferometry data (Fig. S6), we simplify our MAR analysis by focusing on resonances of

bulk states. We approximate the integral as a sum, G(V ) ≈
∑

n αnG(Tn, V ), where

αn =

∫ Tn+Tn+

Tn−Tn−

ρ(T )dT (5)

models the contribution of modes having different ranges of transmission probability.

Following Refs.,22–24 we compute multiple Andreev reflection curves in the single chan-

nel short junction limit, Gn(V ) = G(Tn, V ), for a set of transmission probabilities Tn ∈

{0.3, 0.4, . . . , 1.0}. Comparison with the measured values, Gm(V ), reduces to fitting for the

coefficients αn which minimize the linear system of equations Gm(V )−
∑

n αnGn(V ), for each

value of the back gate voltage, Vgate. The theoretical curves have MAR resonances which

are sharper than the experimental ones, so the fitting process is improved by smoothing the

single channel results by convolution with a Gaussian function (the width of the Gaussian

that we used is 0.03). In order to avoid over-fitting, we limit the number of coefficients αn

to 3, corresponding to small T ∈ [0, 0.4), αlow, medium [0.4, 0.8), αmed, and large [0.8, 1]

transmission, αhigh. The resulting function has three fitting parameters and reads:

G(V ) = αlowG(T = 0.3, V ) + αmedG(T = 0.6, V ) + αhighG(T = 0.9, V ). (6)

Both the amount of smoothing, as well as the value of the superconducting gap to which
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the bias voltage is rescaled to are optimized in order to produce the smallest fit residuals over

the entire range of back gate voltages. We obtain curves which are in good agreement with

the measured ones. The coefficients αn corresponding to large transmissions increase, while

the ones corresponding to low transmissions decrease whenever the system is on resonance,

at values of Vgate where also the normal state conductance is peaked (see Fig. S5c). However,

the estimated normal state conductance GN = g0

∑
n Tnαn is smaller than the measured one

for all back gate voltages, which may be due to deviations from the short junction theory,

or the nonlinear behavior of the p-n junctions.

Figure 3: Spatially resolved supercurrent imaging in a ballistic graphene cavity (a)
Theoretical calculation of the superconducting interference pattern for the case of uniform
current flow, plotted as the normalized critical current Ic(B)/Ic(B = 0). (b) Plot of normal-
ized critical current Ic(B)/Ic(B = 0), indicating a nontrivial dependence of superconducting
interference on cavity resonances. The value of Ic at each pixel was obtained by measuring
the DC voltage Vsd across the junction as a function as a function of DC current bias IDC
and extracting the maximum derivative dVsd/dIDC . Red and green dotted lines indicate on
and off resonance conditions for the cavity, respectively. Data was collected from device B2.
(c) Real-space normalized supercurrent density distribution J(x)/Jmax(x) extracted from
the Ic(B) data in (b) using Fourier techniques (see Supplementary Information for details).

Next we employ superconducting interferometry as a tool to spatially resolve optics-like

phenomena associated with electron waves confined within a ballistic graphene Josephson

junction. Unlike experiments in 1D systems,9,10,25 one can thread flux through the junction
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and explore the rich interplay between magnetic interference effects and cavity transmission.

Upon application of a magnetic field B, a flux Φ penetrates the junction area and induces

a superconducting phase difference ∆ϕ(x) = 2πΦx/Φ0W parallel to the graphene/contact

interface, where Φ0 = h/2e is the flux quantum, h is Planck’s constant, and e is the elemen-

tary charge. When a flux penetrates the junction area, the critical current Ic(B) exhibits

oscillations in magnetic field given by:

Ic(B) =

∣∣∣∣∣
∫ W/2

−W/2
J(x) · e2πiLBx/Φ0dx

∣∣∣∣∣ (7)

where L is the distance between superconducting electrodes (Fig. 1).5,26 This integral expres-

sion applies in the wide junction limit, relevant for our system, where L� W and the current

density is only a function of one coordinate. Because the critical current Ic(B) equals mag-

nitude of the complex Fourier transform of the real-space supercurrent distribution J(x),

the shape of the interference pattern is determined directly by the spatial distribution of

supercurrent across the sample.5,27

To visualize current flow associated with interfering electron waves, we examine the su-

percurrent modulations in a B field that arise from a Fraunhofer interference. In a conven-

tional Josephson junction with uniform current density, the normalized critical current obeys

Ic(B)/Ic(0) = | sin(πΦ/Φ0)/(πΦ/Φ0)|. This “single slit” diffraction pattern would be inde-

pendent of gate voltage, as illustrated in Fig. 3a. In contrast, the fringes in our measured

pattern are at variance with this theoretical scenario and exhibit nodes in Ic(B)/Ic(0) as a

function of both Vb and B. This is illustrated in Fig. 3b and Supplementary Fig. S6, which

reveal the behavior of the normalized interference pattern Ic/Ic(B = 0) at gate voltages

corresponding to the on and off resonance conditions (labeled by the red and green dotted

lines, respectively). The spatial distribution of supercurrent density J(x), which exhibits

gate-dependent modulations along the both edge and bulk of the sample, is provided in Fig.

S6c. From this figure, we see the on/off modulation of Andreev resonances occurs mostly
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in the bulk rather than at the edge. We estimate that the supercurrent density per bulk

mode exceeds that per edge mode by a factor of 1.5 on when the edge mode is off-resonance,

becoming approximately equal when the edge mode is on-resonance. This behavior arises

because the wavefunction comprising Andreev states in the bulk have small overlap with the

edge modes.

Reproducibility of this phenomenon in additional samples is demonstrated in Supple-

mentary Fig. S7. To understand the origin of this behavior, we extract an effective spatial

distribution of the supercurrent J(x) by taking the inverse Fourier transform of the above

Ic(B) line plots in accordance with Eq.(7) and the technique of Dynes and Fulton5 (see

Supplementary Information). As shown in Fig. 3c, the resulting spatial distribution features

bulk-dominated current flow on resonance and an enhanced edge current contribution off

resonance.

Figure 4: Theoretical model of edge and bulk interference in the ballistic regime
(a) Spectrum of bilayer graphene with small edge potential, for which one edge mode dom-
inates. In panels (a, b) k0 = um∗/2~ and E0 = ~2k2

0/2m
∗ with m∗=0.028 me (BLG band

mass) and delta function potential strength ~u = 0.5 eV·nm (see Ref.28). Energies corre-
sponding to quantized momenta are represented by horizontal red lines. (b) Theoretical plot
of critical current Ic as a function of barrier energy and applied magnetic field in presence of
edge modes. Bulk and edge currents produce distinct FP patterns due to different dispersion
laws and angle dependent transmission of bulk modes. (c) Plot of critical current Ic as a
function of back gate voltage Vb and applied magnetic field B. Red and green dotted lines
indicate on and off resonance conditions, respectively. Data was collected from device B2.
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We hypothesize that separate interferences of boundary states and bulk states are re-

sponsible for the experimentally observed critical current fringes. Motivated by the relation

between the spatial current distribution J(x) and critical current Ic(B) in Eq. (7), we directly

model the spatial distribution of current paths for bilayer graphene in the FP regime (see

Supplementary Information). These calculations take into account the guided edge modes

that originate from edge potentials, which confine carriers to edge-defined ‘waveguides’ in

analogy to the confinement of photons in fiber optics.28 Energies of the edge modes lie out-

side the bulk continuum (Fig. 4a), which implies an evanescent-wave decay of the modes into

the bulk. The resulting modes are quasi one-dimensional, propagating ballistically as plane

waves along the graphene edges. Applying the FP quantization condition in the p-n-p region

leads to a sequence of FP maxima positioned at kn = πn/L, where n is an integer and L

represents the distance between superconducting contacts. Since the FP resonances for the

edge modes originate from head-on transmission and reflection, the corresponding FP fringes

are much stronger than the angle-averaged FP fringes for the bulk states (Supplementary

Fig. S9).

As shown in the theoretical dispersion in Fig. 4a, the interference conditions at the edge

and in the bulk should not coincide due to the difference in the carrier dispersion at the

edge and in the bulk, as well as due to the angle-dependence of the FP period for bulk

carriers. Hence a gradual increase of doping will trigger repeated switching between the

bulk-dominated and edge-dominated regimes, with the current distribution switching from

spatially uniform to edge like, accordingly. Qualitatively, this would be manifested in the de-

pendence of measured critical current on applied magnetic field as switching between Fraun-

hofer and more SQUID-like behavior (Fig. 4b-c). In this paper, the term “edge-dominated”

refers specifically to Fraunhofer interference patterns that feature an enhancement in the

critical currents of the side lobes (outside the B=0 central lobe) when compared to the

standard 1/B envelope expected for a uniform supercurrent distribution (see Fig. 4b).

To relate this scheme with the transport data, we model FP resonances in accordance
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with the approach described in Ref.28 Assuming that the edge potential is sufficiently short-

ranged, we approximate it with a delta function and obtain the density of persistent current

along the edge (see Supplementary Information). To translate this prediction into an ex-

perimentally observable quantity, we model the superconducting interference pattern Ic(B)

using the energy dispersion relation of edge modes (Fig. 4a). This result, plotted in Fig. 4b,

captures the key features of the raw data in Fig. 4c, namely the redistribution of current

on and off resonance as well as the suppression of the side lobes’ intensity on resonance

(Supplementary Fig. S8). Thus, the measurements are consistent with a model that fea-

tures separate FP interference of guided-wave edge currents in parallel to interference of

bulk modes. This further suggests that the quasi-1D edge currents previously observed have

ballistic character. Despite the model’s simplified nature, which neglects disorder and finite

temperature effects, this scheme captures the essential features of the measurements. While

the edge potential featured in this simulation accommodates a single edge channel, we note

that the number of guided modes may exceed one for stronger potentials. While the edge

potential featured in this simulation accommodates a single edge channel, we note that the

number of guided modes may exceed one for stronger potentials. In this case, each mode

would contribute independently to the interference pattern.

In summary, we utilize different aspects of proximity-induced superconductivity, partic-

ularly Fraunhofer interferometry and Andreev scattering, as new tools to resolve optics-like

phenomena associated with electron waves confined within a ballistic graphene Josephson

junction. This enables real-space visualization of cavity modes in a graphene FP resonator,

which reveals surprising redistribution of current on and off resonance and provides direct

evidence of the ballistic nature of guided edge currents. These results constitute a strong de-

parture from conventional Josephson behavior in graphene and motivate further exploration

of new effects at the intersection of superconductivity and optics-like phenomena.

The ballistic character and coherent nature of edge mode transport in a non-topological

material such as graphene, is a puzzling behavior that calls for novel theoretical ideas going
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beyond the usual scenarios for topological protection. New theory must explain why ballis-

tic propagation at exceptionally long length scales occurs despite strong intrinsic disorder

present at the edge. One possible scenario, the so-called weak guiding mechanism, has been

outlined in this work. Ballistic transport at a strongly disordered graphene edge has been

entirely overlooked by previous work, both experimental and theoretical. As such, establish-

ing the presence of a new conduction pathway will dramatically boost our understanding of

charge transport mechanisms in atomically thin conductors.
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