

Delft University of Technology

Memristive Device for Logic Design and Computing

Xie, Lei

DOI
10.4233/uuid:52c58e54-883a-4268-8413-c7491dc78671
Publication date
2018
Document Version
Final published version
Citation (APA)
Xie, L. (2018). Memristive Device for Logic Design and Computing. [Dissertation (TU Delft), Delft University
of Technology]. https://doi.org/10.4233/uuid:52c58e54-883a-4268-8413-c7491dc78671

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:52c58e54-883a-4268-8413-c7491dc78671
https://doi.org/10.4233/uuid:52c58e54-883a-4268-8413-c7491dc78671

MEMRISTIVE DEVICE FOR

LOGIC DESIGN AND COMPUTING

MEMRISTIVE DEVICE FOR

LOGIC DESIGN AND COMPUTING

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 26 februari 2018 om 15:00 uur

door

Lei XIE

Master of Engineering in Electronic Science & Technology,
Xi’an Jiaotong University, Xi’an, China,
geboren te Yinchuan, Ningxia, China.

This dissertation has been approved by the

promotor: Prof. dr. ir. S. Hamdioui

Composition of the doctoral committee:

Rector Magnificus, chairman
Prof. dr. ir. S. Hamdioui, Delft University of Technology, promotor

Independent members:
Prof. dr. ir. K.L.M. Bertels, Delft University of Technology
Dr. ir. T.G.R.M. van Leuken, Delft University of Technology
Prof. dr. phil.nat.habil. R. Tetzlaff, TU Dresden, Germany
Prof. dr. ir. A.J. van der Veen, Delft University of Technology
Prof. dr. H. Corporaal, Eindhoven University of Technology
Dr. ir. H.G. Kerkhoff, University of Twente

Keywords: Memristor, Logic, Computing

Copyright © 2017 by Lei Xie

ISBN 978-94-6366-013-6
This research was financially supported by China Scholarship Council (CSC)

CONTENTS

Summary vii

Samenvatting ix

Acknowledgements xi

1 Introduction 1
1.1 Motivation . 2
1.2 Opportunities and Challenges . 3
1.3 Research Topics . 7
1.4 Contributions . 8

1.4.1 Primitive Logic Gate . 8
1.4.2 Interconnect Design . 8
1.4.3 Circuit Design and Synthesis Flow 9
1.4.4 Non-Von Neumann Architecture. 9

1.5 Thesis Organization. 9

2 Background on Memristive Device and Its Potential 11

3 Primitive Logic Gate 23
3.1 Introduction . 24
3.2 Main Contributions . 24

4 Interconnect Design 45
4.1 Introduction . 46
4.2 Main Contributions . 46

5 Circuit Design and Synthesis Flow 61
5.1 Introduction . 62
5.2 Main Contributions . 62

6 Non-Von Neumann Architecture 85
6.1 Introduction . 86
6.2 Main Contributions . 86

7 Conclusion 95
7.1 Summary . 96
7.2 Future Research Directions . 97

References 99

List of Publications 105

Curriculum Vitæ 109

v

SUMMARY

Memristive device or memristor is a promising emerging technology due to its good scal-
ability, near-zero standby power consumption, high integration density, and CMOS fab-
rication compatibility. Several potential applications based on memristor technology
have been proposed, such as non-volatile memories, neuromorphic systems, and resis-
tive computing. However, research on resistive computing is still in its infancy phase.
Therefore, it faces challenges with respect to the development of the device technology,
logic design styles, computer architectures, compilers and applications.

This thesis focuses on the logic design (including primitive logic gates, interconnect, cir-
cuit, and synthesis flow) and a novel non-Von Neumann architecture.

Primitive logic gate – We first explore the complete logic gate space for Snider logic.
Subsequently, we develop a novel logic design style referred to as scouting logic; it per-
forms logic operations by modifying standard memory read operations. In addition, we
analyze robustness of logic gates while considering memristive device variability, para-
sitic resistors and capacitors of nanowires, sneak path currents, and different memristor
models. Despite the contribution of this thesis, innovative design styles still need to be
explored and more research is required in designing robust logic circuits against device
variability.

Interconnect design – We explore and compare three approaches to implement general
interconnect schemes; they are using only memristor crossbar, CMOS peripheral circuits
and a hybrid of memristor crossbar and pass transistors. Next, we explore the intra-tile
and inter-tile communication schemes using memristor crossbar. In addition, we fur-
ther explore the possibility to use dedicated interconnect schemes to address specific
algebraic problems, such as matrix transpose. It worth to note that more efforts are re-
quired to generalize and optimize the communication infrastructure automatically.

Circuit design and synthesis flow – We develop methodologies to design ASICs and FP-
GAs using memristor logic design styles. For ASICs, we first explore the place-and-route
methods for large-scale circuits, and then develop a synthesis flow and the related evalu-
ation model. For FPGAs, we develop two different implementations based on memristor
logic, and we automate their design and evaluation flow. We observe that both ASICs
and FPGAs based on memristor logic suffer from the CMOS control parts. An intelligent
CMOS controller is therefore essential for overall improvements.

Non-Von Neumann architecture – We explore a non-von Neumann architecture, which
is referred to as Computation-In-Memory (CIM Architecture), for specific data-intensive
applications. CIM architecture integrates both storage and processing elements in the

vii

viii SUMMARY

same physical location using memristor technology; hence, it significantly reduces the
memory access time and energy consumption. The preliminary results show that CIM
architecture obtains significant improvements (e.g., energy-delay product and compu-
tational efficiency) over conventional multi-core architectures for specific applications
(e.g., parallel addition, DNA sequencing).

SAMENVATTING ix

Het geheugenresistieve element of de geheugenweerstand is een veelbelovende opko-
mende technologie vanwege de goede schaalbaarheid, bijna-nul stand-by stroomver-
bruik, hoge integratiedichtheid en compatibiliteit met het CMOS-fabricage proces. Er
zijn al verschillende mogelijke toepassingen op basis van geheugenresistieve techno-
logie voorgesteld, waaronder niet-vluchtige geheugens, neuromorfe systemen en resis-
tieve gegensverwerking. Onderzoek naar geheugenresistieve gegensverwerking staat ech-
ter nog in de kinderschoenen. Daarom staat het voor uitdagingen met betrekking tot de
ontwikkeling van de elementtechnologie, logische ontwerpstijlen, computerarchitectu-
ren, compilers en toepassingen.

Dit proefschrift richt zich op het logische ontwerp (waaronder primitieve logische poor-
ten, onderlinge verbindingen, schakelingen en synthese) en een nieuwe niet-Von Neumann-
architectuur.

Primitieve logische poort – We onderzoeken eerst de complete logische poortruimte
voor Snider-logica. Vervolgens ontwikkelen we een nieuwe logische-ontwerpstijl ge-
naamd scouting-logica; het voert logische operaties uit door standard geheugen-leesoperaties
aan te passen. Bovendien, analyseren we de robuustheid van de logische poorten re-
kening houdende met de elementvariabiliteit, parasitaire weerstanden en capaciteiten
van de nanodraden, sluipbaanstromen en verschillende geheugenweerstandmodellen.
Ondanks de bijdrage van dit proefschrift dienen innovatieve ontwerpstijlen nog verder
onderzocht te worden en is meer onderzoek vereist voor het ontwerpen van robuuste
logische schakelingen tegen elementvariabiliteit.

Onderlinge-verbindingsontwerp – We onderzoeken en vergelijken drie methodes om
algemene onderlinge-verbindingsschema’s te implementeren; ze gebruiken enkel de ge-
heugenweerstandskruisschakeling, CMOS-hulpschakelingen en een hybride van de ge-
heugenweerstandskruisschakeling en doorgeeftransistors. Vervolgens, onderzoeken we
de intra-tegel en inter-tegel communicatiemethodes voor de geheugenweerstandskruis-
schakeling. Bovendien onderzoeken we de mogelijkheid om toegewijde onderlinge-
verbindingsschema’s te gebruiken om specifieke algebraïsche problemen te adresseren,
zoals matrixtranspositie. Het is de moeite waard te vermelden dat meer inspanning ver-
eist is om de communicatie-infrastructuur automatisch te generaliseren en optimalise-
ren.

Schakelingontwerp en synthese stappenplan – We ontwikkelen methodologieën voor
het ontwerpen van ASIC’s en FPGA’s die gebruikmaken van geheugenresistieve logische-
ontwerpstijlen. Voor ASIC’s onderzoeken we eerst plaats-en-verbind-methodes voor groot-
schalige schakelingen en vervolgens ontwikkelen we een synthese stappenplan en het
bijbehorende evaluatiemodel. Voor FPGA’s ontwikkelen we twee verschillende imple-
mentaties gebaseerd op geheugenresistieve logica en automatiseren we de ontwerp- en
evaluatiestappenplannen. We merken op dat beide op ASIC- en FPGA-gebaseerde ge-
heugenresistieve logica lijden onder de CMOS-aansturingsonderdelen. Een intelligente
CMOS-regelaar is daarom essentieel voor een algehele verbetering.

x SAMENVATTING

Niet-Von Neumann-architectuur – We onderzoeken een niet-Von Neumann-architectuur,
genaamd Gegevensverwerking-in-Geheugen (GiG-architectuur) voor specifieke data-intensieve
toepassingen. De GiG-architectuur integreert zowel opslag- en verwerkingselementen
in dezelfde fysieke locatie met behulp van geheugenresistieve technlogie; daarom ver-
mindert het de geheugentoegangsstijd en het energieverbruik. De voorlopige resulta-
ten tonen dat de GiG-architectuur significante verbeteringen brengt (bijvoorbeeld in het
energie-vertraging product en de verwerkingsefficiëntie) ten opzichte van conventionele
multikernarchitecturen voor specifieke toepassingen (bijvoorbeeld parallelle optellin-
gen en DNA-sequentiereactie).

ACKNOWLEDGEMENTS

After four years, I can finally say that my Ph.D. dissertation has ended. It has been a
unique experience with many ups and downs. Fortunately, I have got through every-
thing with the help from my professors, colleagues, friends and families.

First of all, I would like to thank my promotor Prof. dr. ir. S.Hamdioui, for providing
me the opportunity to pursue my Ph.D. thesis under his guidance. Not did I only learn
how to do research, write scientific papers, present my work, but also what it means
to be a team worker and collaborate with my colleagues. Thanks for your continuous
motivation and the appropriate guidance during my Ph.D. study. In addition to prop-
erly educating me as an independent researcher, you gave me many valuable chances
to develop my skills more than research such as being a teaching assistant, organizing
international conferences, etc. Thank you very much for all your efforts, patience and
helps during my Ph.D. study. I also would like to thank Prof. dr. ir. K.L.M. Bertels. As the
head of our Quantum and Computer Engineering Department, you offers us a wonder-
ful and friendly atmosphere. You have been encouraging us to attend social events, such
as football, bowling, etc. I would also like to thank the remaining committee members
for accepting their role, reading this dissertation, and providing feedback; thank you for
all your efforts. In addition, I would like to thank Motta and Daniel for translating my
thesis summary and propositions into Dutch.

I would like to thank the CE secretaries and staff for taking care of all the management
and technical supports related to my day-to-day work. Lidwina and Joyce, thank you for
managing all the paperworks and other secretary-related tasks. Erik, thank you for creat-
ing and keeping the websites updated, managing the servers, fixing computer problems,
installing various software, etc.

Hoang Anh, Jintao, dr. Mottaqiallah Taouil and Prof. dr. ir. S. Hamdioui, thank you for
your contributions as members of the CE memristor team. The brainstorm sessions have
been very helpful. You have built a great team to work with, always helpful, and open to
discussions. Specially, I would like to appreciate dr. Taouil for his helpful discussions
and paper revisions. Also, I would like to thank our previous memristor team members,
Adib and Berna.

I would like to thank Imran for organizing the CE weekly football games. These games
provided me good chances to refresh myself and recharge my energy to continue the
challenging tasks during my Ph.D. Everyone that participated in these matches, thank
you all! Also, special thanks to George, Mihai, Hoang Anh, Joost and Leon for organizing
various other CE social events. Everyone that participated and contributed to the nice
atmosphere, thank you as well.

xi

xii SAMENVATTING

I would like to extend my thanks to my previous and current office mates. Anthony,
Hoang Anh, Innocent, Adib, Berna and Jintao. Thank you for the many discussions and
interesting chats. I thank each of you individually for the pleasant working environment.

I would like to thank Shanshan, Xiang, Jian, Jintao, Lingling, Yande, and Lizhou for our
close friendship on the campus and in particular for the enjoyable daily lunches we had.
I really also appreciate your delicious dinners and interesting board games after them. I
would like to also thank all the other Chines friends, Shi, Qi, Sensen and his family, Long,
Xiaohui, Jingtang, Lian, Tian, Yan. I would also like to thanks Anthony, Hoang Anh, Joost
and Jintao for going restaurant for enjoying some delicious food.

Last but not least, I would like to express my deepest thanks to my family for all the
support they gave me, in particular my mother and father! My mother and father, there
are no words that can fully express my gratitude towards you. Love you always.

Lei Xie Delft, February, 2018
the Netherlands

1
INTRODUCTION

1.1 MOTIVATION

1.2 OPPORTUNITIES AND CHALLENGES

1.3 RESEARCH TOPICS

1.4 CONTRIBUTIONS

1.5 THESIS ORGANIZATION

Downscaling of CMOS technology has been approaching the device physical limits. There-
fore, the conventional CMOS technology is suffering from the magnificent challenges, e.g.,
increased static power consumption, saturated clock frequency, reduced device reliabil-
ity, and a more complex manufacturing process. In order to address such challenges,
novel device technologies (e.g., memristive device, carbon nanotube, etc.) have been un-
der research as alternatives to the future very large scale integration circuits. Among them,
memristive device (or memristor) is a promising candidate due to its great scalability, high
integration density, near-zero standby power consumption, and CMOS fabrication com-
patibility. Many potential applications of memristive device technology have been pro-
posed, such as non-volatile memories, neuromorphic processing, logic gates and resistive
computing paradigms.

This chapter first introduces the motivation behind resistive computing paradigms. There-
after, it presents the opportunities and challenges of resistive computing. Subsequently, it
briefly describes the research topics of this thesis followed by its main contributions. Fi-
nally, it provides the organization of the remainder of this thesis.

1

1

2 1. INTRODUCTION

1.1. MOTIVATION
Emerging applications, such as big data and artificial intelligence, require exascale com-
puting capabilities (i.e., 1018 calculations per second) [1–3]. Such applications not only
significantly influence our daily life, but also change the computer science and semicon-
ductor industry deeply.

Unfortunately, both today’s computer architectures and device technologies are encoun-
tering major challenges, which make them incapable of delivering the required comput-
ing power. On one hand, the performance of today’s computer architectures are limited
by the three well-known walls [1,2,4], as shown in Fig. 1.1 and explained next.

• Memory wall is caused by the increasing speed gap between processor and mem-
ory. Consequently, the limited memory bandwidth makes memory accesses the
performance killer, as shown by the saturated single-thread performance of Fig. 1.1.

• Power wall is reached due to a power limit for cooling as shown in Fig. 1.1. As a re-
sult, the CPU clock frequency cannot increase further, and hence the performance
of a single-core CPU stagnated (see Fig. 1.1).

• Instruction Level parallelism (ILP) wall is reached due to the increasing difficulty
of extracting enough parallelisms for multi-core applications. Consequently, pro-
cessing resources remain idle and hence it makes the increasing number of cores
further not attractive (see Fig. 1.1).

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Year

No. Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Power (Watts)

Figure 1.1: Trends of Microprocessors in Last 40 Years [1,4]

On the other hand, CMOS technology, which has been the main driving force of today’s
computer industry, is also facing three walls [2,4,5].

1.2. OPPORTUNITIES AND CHALLENGES

1

3

• Reliability wall is occurring as the down scaling of CMOS technology is approach-
ing the physical device limits. Consequently, a CMOS transistor has a shorter life-
time and higher failure rate.

• Leakage wall is becoming more apparent with technology scaling due to the volatile
CMOS technology and lower threshold voltages used for CMOS. As a consequence,
the static power is increasing as a dominant part.

• Cost wall is caused by adding new materials, masks and process steps to newer
technology nodes. As a consequence, this reduces the cost benefits purely ob-
tained from geometric scaling.

All the above walls have slowed down advancements of both traditional computer archi-
tectures and CMOS technology. To address these walls, alternative computing paradigms
based on novel device technologies must be explored [5–10]. Resistive computing, neu-
romorphic computing and quantum computing are several candidates for the next-gene-
ration computing paradigms, while memristor, quantum dots, spin-wave devices are a
couple of emerging device technologies. Resistive computing is promising candidate as
it is able to process data within memory, and provide high energy efficiency and mas-
sive parallelism [11–16]. Memristive device is a promising candidate to (partially) re-
place traditional CMOS technology (at least in some applications) due to many advan-
tages including great scalability and high density, CMOS process compatibility, near-
zero standby power, and its potential to implement new computing paradigms [5,17].

Resistive Computing

Logic Architecture CompilerDevice Application

Reliability

Variability

Yield

Interconnect

Primitive
Logic Gate

Circuit

Synthesis
Flow

Programming
Interface

Backend

Parallelization
Application

Identification

Workload
Characterization

Design
Exploration Tools

Novel
Algorithms

Modeling
Task and Data

Mapping

Synchronization

Communication &
I/O Infrastructure

Non-Von Neumann
Architecture

Instruction Set

Figure 1.2: Overview of Resistive Computing.

1.2. OPPORTUNITIES AND CHALLENGES
This section briefly overviews both the opportunities and challenges of resistive comput-
ing. Fig. 1.2 shows the different aspects that have to be explored in order to implement

1

4 1. INTRODUCTION

resistive computing architectures; these consist of device, logic, architecture, compiler
and application. Each aspect is further described below.

Device: Resistive computing architectures use resistive switching devices for computa-
tion, such as Resistive RAM (RRAM), Conductive Bridge RAM (CBRAM), Phase Change
Memory (PCM), Spin-Transfer Torque Magnetic RAM (STT-MRAM) [18]. These devices
are also referred to as memristive devices or memristors [19,20]. Memristor technology
is a promising alternative for CMOS technology due to its many advantages including
CMOS process compatibility, near-zero standby power, great scalability, high integration
density and enabling both logic and memories for computation [5,17]. Memristor tech-
nology has been studied by both academia and industry (e.g., Samsung, Micron, Toshiba
and Sony) as shown in Fig. 1.3; the capacity of these memory prototypes are growing
continuously in recent years up to a volume of 32 Gb. However, memristor technology
is also facing major challenges in terms of reliability (e.g., limited endurance), variability
(e.g., cycle-to-cycle variation), low yield and appropriate device modeling [17,19,21] (see
Fig. 1.2).

Figure 1.3: Trends of Emerging Device Technologies [18]

Logic: Many memristor based logic design styles [15,22–36] have been proposed re-
cently. They can be classified using the following criteria:

• Input Data Representation indicates whether the input data are represented by a
resistance or voltage.

• Output Data Representation indicates whether the output data are represented
by a resistance or voltage.

1.2. OPPORTUNITIES AND CHALLENGES

1

5

• Processing Element indicates whether the data is processed by memristors only
or a hybrid of CMOS transistors and memristors.

VoltageResistance

Ratioed [2012]

Snider[2005]

Scouting [2017]

CMOS-like [2012]

Stateful [2010]

CRS [2012]

Prog. Threshold [2013]

Cur. Mirror [2012]

Input

R
es

is
ta

n
ce

V
o

lt
ag

e

O
u

tp
u

t

Processing

PLA-like [2009]

VVH

VRMRRM

 RVH

VVMRVM

 VRH RRH

?

??

Pinatubo [2016]

Hybrid

M
em

-only

Magic [2014]

FBL [2015]

MAD [2017]

You [2014]

RIM [2016]

Aker [2014]

Figure 1.4: Overview of Logic Design Styles [37]

Fig. 1.4 shows the classification result. Each class is named using the input and output
representation signals and the processing element. For instance, scouting logic is part
of the RVH class where R represents input resistance, V output voltage and H hybrid
CMOS/memristor processing. The existing logic design styles are parts of the five out of
eight classes. In RRM, logic design styles use resistances to represent both the input and
output data. They perform logic operations using memristors to form voltage dividers
which conditionally switches the output memristors. In VRM, logic design styles use a
voltage to represent the input data, while a resistance to represent the output data. They
perform logic operations by modifying the standard memory write operations. In RVM,
the logic design style uses a resistance to represent the input data, while a voltage to rep-
resent the output data. It performs logic operations by replacing the transistors in the
pull-up and pull-down networks of the traditional CMOS logic with memristors where
they function as digital switches. In RVH, logic design styles use a resistance to represent
the input data while a voltage to represent the output data. They perform logic oper-
ations by modifying the standard memory read operations. In VVH, logic design styles
use voltages to represent both the input and output data, while use CMOS gates (e.g.,
inverter or D Flip-Flop) as a threshold function. The memristors are used as either con-
figuration switches or input weights.

Memristor based logic circuits have an immense potential to reduce area and power con-
sumption, as memristor technology provides a great scalability (5 nm), a high integra-
tion density (10GB/cm2) and near-zero standby power [17,19,21]. In addition, its unique
characteristics (i.e., multi-level state and non-volatility) also inspire and motivate novel
circuits (e.g., dot matrix multiplication [38], high-radix arithmetic circuits [39,40]). How-

1

6 1. INTRODUCTION

ever, memristor logic circuits also face major challenges [37], including development of
innovative primitive logic gates, appropriate interconnect schemes, efficient arithmetic
circuits and automated synthesis flows. In addition, it is crucial to properly evaluate the
impact of device variability and sneak path currents on the circuit robustness [37,41,42].

Architecture: The ability to use memristors both for memories and logic has led to
novel resistive computing architectures such as Computation-In-Memory (CIM) [11–13],
Pinatubo [15], PLiM [14], AC-DIMM [16,43,44]. Typically, these architectures either move
the computations into memory arrays [11–14] or embed computing components into
the peripheral circuit of the memories [15,16,43,44]. As a result, they could improve the
delay and energy performance by at least 10x [11,14,15]. In addition, the non-volatile
memristors empower non-volatile computing units [45], such as non-volatile FPGAs
[46,47] and processors [48], which can be used in low-power and energy-harvesting sys-
tems [48]. However, some crucial topics are still open for research. First, the architec-
ture design methodology has been changed completely. The conventional architectures
design the applications, the instruction set, micro-architecture and device technology
separately. In contrast, the novel resistive computing architectures need to consider all
above factors together to maximize the computing efficiency. Therefore, we need to de-
velop an appropriate design methodology. Second, exploring the details of the architec-
tures at different levels (i.e., macro, micro and nano) and how the different choices can
impact the overall performance are still open questions. Third, a relevant instruction set
and communication infrastructure should be explored. Finally, design exploration tools
(e.g., system simulators) and benchmark suits should be developed in order to evaluate
the performance of resistive computing architectures.

Compiler: As resistive computing is still in an infancy stage, only the limited work has
been published with respect to the compiler [49–51]. In [50], a domain-specific language
is modified to create an appropriate programming interface. In [49,51], the authors pro-
posed a compiler based on arithmetic skeletons to simplify the scheduling process dur-
ing the compilation; an arithmetic skeleton is an implementation template for a spe-
cific class of algorithms. However, the compilers for resistive computing still need effi-
cient programming language interfaces and strong backends that explore the memristor
technology fully. In addition, such compilers need to maximally extract parallelism, in-
telligently map tasks and data onto the massive processing and storage resources, and
synchronize the communication between them.

Application: Preliminary results of resistive computing architectures have shown signif-
icant performance improvements compared to today’s architectures for specific applica-
tions, such as genomics in diagnosing/treating diseases, scientific computing, database
query, graph processing [11,13,15]. These are applications that benefit from the mas-
sive parallelism, ultra-large data storage and energy-efficient computation provided by
resistive computing architectures. In addition, as resistive computing architectures can
process and transfer data directly in the main memory, data can be processed directly in
the main memory without the need to pass it through the whole memory hierarchy to the
processor. Although several applications (e.g., DNA sequencing, database query) bene-

1.3. RESEARCH TOPICS

1

7

fit from resistive computing architectures, it is still crucial to develop novel algorithms
that maximize the potential of resistive computing architectures and further improve the
overall performance. In addition, it is also necessary to characterize these applications
and identify the properties suitable for resistive computing architectures.

1.3. RESEARCH TOPICS
Many challenges described in Section 1.2 still need to be addressed. The research that is
carried out in this thesis focuses on two aspects (see also the shadowed boxes in Fig. 1.2).
They are logic design (including primitive logic gates, interconnect design, and circuit
design and synthesis flow) and architecture (i.e., non-Von Neumann architecture).

PRIMITIVE LOGIC GATE

As logic gates are the fundamental components in logic circuits, it is crucial that they
work efficiently. In this thesis, we focus on the exploration of novel logic design styles.
These logic styles should be easily integrated into memory arrays and therefore enable
the promising resistive computing paradigms. In addition, their resilience against the
device variations need to be investigated.

INTERCONNECT DESIGN

To build a complex logic circuit, individual logic gates should be connected with each
other. Therefore, appropriate interconnect schemes must be developed. This thesis
explores possible interconnect schemes and implementation methods; e.g., using only
memristor crossbar, using the peripheral circuits, etc.

CIRCUIT DESIGN AND SYNTHESIS FLOW

In order to use the above gates and interconnect to build large and complex designs, it
is critical to explore different design methodologies for both application specific inte-
grated circuits (ASIC) and field programmable gate arrays (FPGA). For the ASICs, solu-
tions of mapping the logic gates onto memristor crossbar and subsequently place-and-
route them have to be explored. For the FPGAs, it is crucial to implement look-up tables
using different memristor logic styles. In order to benchmark and evaluate the perfor-
mance of the design methodologies, synthesis flows and performance estimation mod-
els for both ASIC and FPGA should be suggested.

NON-VON NEUMANN ARCHITECTURE

As today’s von Neuman architecture is suffering from the memory wall, power wall, and
ILP wall, we need novel non-Von Neumann architectures. Resistive computing architec-
tures are a promising candidate as they use memristors as both logic and memory and
hence reduces the memory access and energy consumption. The potential of such archi-
tectures should be analyzed first. Thereafter, the details of such architectures in different
levels (i.e., macro, micro and nano) and the suitable applications should be explored and
characterized.

1

8 1. INTRODUCTION

1.4. CONTRIBUTIONS
The contributions of this dissertation are directly related to the research topics presented
in the previous section.

1.4.1. PRIMITIVE LOGIC GATE
We study the existing logic design styles and propose a novel one. With respect to this
research topic, the main contributions are as follows:

1. Complete logic gate space exploration for Snider logic [52]. In order to explore the
gate space of Snider logic, several gate parameters are extracted from the primitive
gates such as circuit structure, fan-in, fan-out, etc. The logic gate space is explored
via an exhaustive search of all the gate parameter combinations. Several new gates
can be implemented such as AND, NOR, etc.

2. Novel scouting logic, which performs logic operations by modifying standard mem-
ory read operations in [31]. Scouting logic implements OR, AND and XOR opera-
tions. Instead of reading a single memory cell at a time, scouting logic activates
the two inputs of the gate simultaneously. To perform different operations, we
only need to use different current references. We modified the standard sense am-
plifier to a reconfigurable one to support the required functions.

3. Robustness analysis of both Snider [53] and scouting [31] logic gates. For Snider
logic gates, a set of proper constraints are formulated to guarantee correct func-
tionality of logic gates (e.g., AND). Its accuracy is evaluated while considering con-
sidering the device variability, parasitic resistance and capacitance of nanowires,
sneak path currents, and different memristor models. For scouting logic gates, the
impact of the device variability is investigated. Subsequently, a variation-resilient
design methodology is proposed to select appropriate resistance values for a given
failure rate.

1.4.2. INTERCONNECT DESIGN
We explore different approaches to implement interconnects for memristor-based logic
design. With respect to this research topic, the main contributions are as follows ex-
tracted:

1. Exploration and comparison of three methods to implement general interconnect
schemes [54]. First, we only use memristor crossbar to build the interconnect, this
interconnect needs to use copy operations within crossbar. The second method is
using the peripheral circuit. The peripheral circuit first read out the data from the
source and then write the data to the destination. The final method is using some
pass transistors to directly connect the source and destination. My work mainly
contributes to the interconnects using only memristor crossbars.

2. Crossbar based interconnects to support both intra-tile and inter-tile communica-
tion [55]. Based on copy operations, an intra-tile interconnect network for general
logic functions is proposed; this interconnect can transfer data between building
blocks. In addition, we explore a method to use intra-tile interconnect to solve

1.5. THESIS ORGANIZATION

1

9

specific algebraic problems (e.g., matrix transpose). To implement inter-tile com-
munication, 2D bus is proposed, which enables both horizontal and vertical trans-
mission between tiles (i.e., processing elements).

1.4.3. CIRCUIT DESIGN AND SYNTHESIS FLOW
We develop methodologies to design ASICs and FPGAs. With respect to this research
topic, the main contributions are as follows:

1. Design of large scale ASICs [25,56]. First, the place-and-route approaches for large
scale ASICs are explored. Thereafter, a peripheral circuit design is proposed, which
is used to control the memristor crossbar. Subsequently, an evaluation model is
proposed while considering both the memristor crossbar and CMOS controller.
Finally, we present a synthesis flow by modifying flows for conventional CMOS
logic.

2. Design of FPGAs [47]. First, two different logic design styles are utilized to imple-
ment look-up tables. Subsequently, an evaluation model is proposed while con-
sidering both the memristor and CMOS parts. Finally, a synthesis flow is devel-
oped by adapting existing flows for CMOS based FPGAs .

1.4.4. NON-VON NEUMANN ARCHITECTURE
We explore a non-von Neumann architecture, Computation-In-Memory (CIM Architec-
ture), for specific data-intensive applications. With respect to this research topic, the
main contribution is the following:

Development of CIM architecture [11]. CIM architecture is based on the integra-
tion of storage and computation in the same physical location. It has a significant
potential in solving data-intensive problems (e.g., parallel addition, DNA sequenc-
ing) than today’s computer architectures in terms of computation efficiency, solv-
ing the communication bottleneck, reducing the leakage currents, etc. My major
work is implementing related memristor logic circuits and estimating their perfor-
mance in terms of area, delay and energy.

1.5. THESIS ORGANIZATION
The remainder of this dissertation is organized as follows.

Chapter 2 describes the background on memristor technology (i.e., its brief history and
working principle) and its potential applied to memory, logic and resistive computing
paradigms (e.g., neuromorphic processing, computation-in-memory).

Chapter 3 discusses the contributions of this dissertation with respect to primitive logic
gate design. It presents the proposed logic gates and studies their robustness.

Chapter 4 discusses the contributions of this dissertation with respect to interconnect
design. It presents how to design interconnects to connect individual logic gates and ex-

1

10 1. INTRODUCTION

plores the possible implementation methods.

Chapter 5 discusses the contributions of this dissertation with respect to circuit design
and synthesis flow. It presents place-and-route approaches for logic gates in ASICs tar-
geting memristor crossbar. Thereafter, it presents FPGA implementations using memristor-
based logic circuits. In addition, their synthesis flow and evaluation model are pre-
sented.

Chapter 6 describes the contributions of this dissertation with respect to non-von Neu-
mann architectures. We propose Computation-In-Memory (CIM) architecture for spe-
cific data-intensive applications (e.g., parallel adder and DNA sequencing); it is based
on the capability of memristor technology to integrate both storage and computation in
the same physical location.

Chapter 7 concludes this dissertation and discusses the future work.

2
BACKGROUND ON MEMRISTIVE

DEVICE AND ITS POTENTIAL

This chapter describes the fundamentals of the memristive device and its potential. First,
it briefly provides an overview of the memristive device, including its history and major
properties. Thereafter, it describes next-generation non-volatile memories, including Re-
dox Memories, Phase Change Memories, Electrostatic/Electronic Effects Memories. Next,
it overviews and compares memristor-based logic design styles (e.g., Snider Logic, State-
ful Logic, Memristor Ratioed Logic). Subsequently, emerging computing paradigms are
presented, including the computation-in-memory architecture and a neuromorphic ar-
chitecture. Finally, this chapter highlights major challenges for technology, memory, logic
circuits and computing paradigms.

The content of this chapter consists of the following research article:

1. H.A. Du Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, D. Fey, Memristive Devices
for Computing: Beyond CMOS and Beyond von Neumann, IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC), Abu Dhabi, UAE, October,
2017, pp. 1-10

11

Memristive Devices for Computing: Beyond CMOS
and Beyond von Neumann

H.A. Du Nguyen∗, Jintao Yu∗, Lei Xie∗, Mottaqiallah Taouil∗, Said Hamdioui∗, Dietmar Fey†
∗Computer Engineering, Delft University of Technology, Delft, the Netherlands

S.Hamdioui@tudelft.nl
† Computer Architecture, University of Erlangen-Nrnberg, Erlangen, Germany

dietmar.fey@informatik.uni-erlangen.de

Abstract—Traditional CMOS technology and its continuous
down-scaling have been the driving force to improve perfor-
mance of existing computer architectures. Today, however, both
technology and computer architectures are facing challenges that
make them incapable of delivering the growing computing per-
formance requirement at pre-defined constraints. This forces the
exploration of both novel architectures and technologies; not only
to maintain the economic profit of technology scaling, but also
to enable the computing architecture solutions for big-data and
data-intensive applications. This paper discusses the emerging
memristive device as a complement (or an alternative) to CMOS
devices and shows how such devices enable novel computing
paradigms that will solve the challenges of today’s architectures
for certain applications. The paper covers not only the potential
of memristor devices in enabling novel memory technologies, logic
design styles, and arithmetic operations, but also their potential
in enabling in-memory computing and neuromorphic computing.

I. INTRODUCTION

Today’s and emerging applications including internet-of-
things (IoT) and big data applications are extremely demand-
ing in terms of storage and computing performance. Such
world-changing applications will not only impact all aspects
of our daily life, but also change a lot in the IC and computer
manufacture industry. Emerging applications require comput-
ing performance which was typical of supercomputers a few
years ago, but with constraints on size, power consumption and
guaranteed response time which are typical of the embedded
applications [1,2]. Both current device technologies and com-
puter architectures are encountering significant challenges that
make them incapable of providing the required functionalities
and properties.

Nanoscale CMOS technology is facing three walls [2]: (1)
the reliability wall as technology scaling leads to increased
failure rate and reduced device lifetime [2], (2) the leakage
wall as static power dominates and might be even larger than
dynamic power at more advanced technology nodes (due to
volatile technology and decreasing supply voltage) [3]; (3) the
cost wall as the cost per transistor via pure geometric scaling
of process technology is plateauing [4]. These walls have led
to the slowdown of the CMOS scaling. On top of that, today’s
computer architectures are facing the three well-known walls
[5]: (1) the memory wall due to the growing gap between pro-
cessor and memory speeds, and the limited memory bandwidth
making the memory access as the killer of performance and

energy consumption for data-intensive applications; e.g. big-
data; (2) the Instruction Level parallelism (ILP) wall due to the
complexity of extracting sufficient parallelism to keep all cores
running; (3) the power wall as the practical power limit for
cooling is reached, which leads to no further increase of CPU
clock frequency. In order for computing systems to continue
delivering required performance and sustaining profits for
the near future, alternative computing architectures have to
be explored in the light of emerging device technologies.
Resistive computing, neuromorphic computing and quantum
computing are some candidates for the next-generation com-
puting paradigms, while memristor devices, quantum dots,
spin-wave devices are couple of emerging device technologies
[6]. Among these technologies, memristor is a promising
candidate to complement and/or replace traditional CMOS (at
least for some applications) due to many advantages such
as near-zero standby power, high device scalability, high
integration density, and CMOS process compatibility [7,8].
Therefore, it provides significant potential to implement high
density memories [9–11], different logic design styles [12–16],
and consequently enabling new computing paradigms [17–21].

This paper will comprehensively explore the potential of
memristors in building logic functions, memories, arithmetic
operations, and novel computer architectures. Section I briefly
describes the history and characteristics of memristive devices.
Section II and III overview the logic design styles and non-
volatile memories based on memristive devices, respectively.
Section IV shows how the unique properties of memristor
devices enable the concept of neuromorphic and emerging
computation-in-memory architecture. Section V highlights the
major challenges for memristive device based computing,
followed by a conclusion of this paper.

II. MEMRISTIVE DEVICES: WHAT ARE THEY?

Memristive device, better known as memristor, is the fourth
fundamental two-terminal element, next to the resistor, capac-
itor, and inductor. It was initially proposed in 1971 by the
circuit theorist Leon Chua [22]. He noticed that there was still
a missing relationship between flux and charge as shown by the
dashed line in Fig. 1(a). Theoretically, a memristive device is a
passive element that maintains a relationship between the time
integrals of current and voltage across a two-terminal element,
while considering the internal state variable of the device.

2

12 BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

v

φ q

i

ᵠd

td
v =

dv

td
R = dq

vd
C =

ᵠd

id
L = i =

dq

td

ᵠd

qd
M=

RL

RH

I

V
Vth

-Vth

(a) The four fundamental elements (b) Pinched hysteresis loop

Fig. 1: Stateful Logic

Hence, a memristor can be expressed either by a function of
charge q or flux φ. An important fingerprint of a memristor
is the pinched hysteresis loop current-voltage characteristic
as illustrated in Fig. 1(b). It shows that memristive devices
have two stable states: high RH and low RL resistive states.
When the voltage across the memristive device is greater than
the absolute value of its threshold voltage (i.e., Vth), then it
switches from one resistive state to another. Secondly, it has
the ability to remember its history (i.e., the internal state).

After a silent period of more than 30 years, memristive
device became renowned in 2008 when the first physical
memristor device was fabricated by HP Lab [23]. HP built
a metal-insulator-metal device using a titanium oxide as a in-
sulator sandwiched by two metal electrodes. They successfully
identified the memristive behaviour over its two-terminal node
as described by Leon Chua. The device tunes its resistance by
controlling positive charged oxygen vacancies in the insulator
layer by applying different voltages. After the first memristive
device was manufactured, many memristor devices based on
different type of materials have been proposed such as HfOx,
TaOx, SiOx [7,8].

III. MEMRISTIVE DEVICES FOR LOGIC

This section first classifies existing memristor-based logic
design styles. Thereafter, it briefly describes examples of each
class. Finally, it qualitatively compares them.

A. Classification

Multiple logic design styles have been proposed [12–16,24–
27]. We divide them into several classes using the following
criteria:
• Input Data Representation indicates whether the input

data is represented by a voltage or resistance.
• Output Data Representation indicates whether the out-

put data is represented by a voltage or resistance.
• Processing Elements indicates whether the data is pro-

cessed based on memristors only or by using a hybrid
cmos/memristor combination. Obviously the control of
the memristors is always done using CMOS circuits.

Fig. 2 shows the classification result; there are eight classes
in total. Each class is named based on the input and output rep-
resentation signals, and the processing element. For instance,

Voltage Resistance

M
em

-only
Hybrid

Ratioed

Snider

Scouting

CMOS-like

Stateful
CRS

Prog. Threshold
Cur. Mirror

Input

R
es

is
ta

n
ce

V
o

lt
ag

e

O
u

tp
u

t

Processing

PLA-like

Magic

VVH
VRM RRM

RVH

VVM RVM

VRH RRH

?

? ?

Pinatubo

Fig. 2: Classification of Memristor-Based Logic Design Styles.

scouting logic is located in the RVH class where R indicates
the input data representation, V the output data representation
and H hybrid CMOS/memristor processing. The classification
clearly shows that the existing logic designs fit in five defined
classes, and that three classes are potentially not explored yet.
• VVH: Memristor ratioed logic [24], PLA-like [12], cur-

rent mirror based threshold logic [13], and programmable
threshold logic [25] belong to this class. They use a volt-
age to represent both input and output data and CMOS
gates (e.g., inverter [12,13,24] and D Flip-Flop [25]) as a
threshold function (and inverter). The memristors are used
as either configuration switches [12,24] or input weights
[13,25].

• RVH: Pinatubo [28] and Scouting logic [27] are the work
published in this class. They use a resistance to represent
the input data and a voltage to represent the output data.
Both logic styles perform logic operations by modifying
memory read operations.

• RVM: CMOS-like logic [26] is the only existing work in
this class. It uses a resistance to represent the input data
and a voltage to represent the output data. It replaces
MOSFETs in the pull-up and -down network of the
conventional CMOS logic with memristors.

• VRM: Complementary Resistive Switching (CRS) logic
[14] is the only published work in this class. It uses
a voltage to represent the input data and a resistance
to represent the output data. CRS logic performs logic
operations by modifying memory write operations. In
addition, You et al. extended the existing CRS logic gates
with other Boolean logic gates which requires also fewer
execution steps [29].

• RRM Snider [15] and stateful [16] logic belong to this
class. They use a resistance to represent both the input
and output data. They perform logic operations by using
memristors as voltage dividers which conditionally switch
the output memristors. Lehtonen et al. [30] extended
stateful logic to support more types of logic operations
(e.g., AND-IMP and OR-IMP). Kvatinsky et al. [31] and

BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

2

13

SA

Vr

Vr

M1

M2

(a) Memory

Iin

Vout

Vr/RL 2Vr/RL2Vr/RH
Iin

1110/0100 Input

OR

Output10

S1

S2

Iref

Iin

Input

Read
Iref

Output

Vr/RH

0

0

Vr/RL

1

1

Iref

(b) References of Primitive Operations

Iin
AND

Iin
XOR

Iref1 Iref2

Output0 1

Output10 0

Vr/RL 2Vr/RL2Vr/RH

Vr/RL 2Vr/RL2Vr/RH

1110/0100 Input
Iref

1110/0100 Input

Fig. 3: Scouting Logic

Xie et al. [32] extended Snider logic to support more
types of logic operations (e.g., AND and OR).

In the remainder of this section, the working principle of
two logic design styles will be given as examples since they are
the most popular candidates to implement resistive computing
systems. Finally, a comparison between the state-of-the-art
will be provided.

B. RVH: Scouting Logic

As Pinatubo and scouting logic share the same idea, we
use scouting logic as an example using different circuit im-
plementations. Scouting logic [27] supports the AND, OR and
XOR logic operations. Scouting logic uses resistances RH and
RL to represent its logic inputs 0 and 1, respectively; it uses
voltages Vdd and GND to represent its logic output 1 and 0,
respectively.

Scouting logic is inspired by memory read operations.
Typically when a cell is read, say Memristor M1 of Fig. 3(a),
a read voltage Vr is applied to its row and the switch S1

is activated. Subsequently, a current Iin will flow through the
bit line to the input of the sense amplifier (SA). This current
is compared to the reference current Iref. If Iin is greater
than Iref (i.e., when M1 is RL state), the output of the SA
changes to Vdd (logic 1). Similarly, when M1 is RH state,
Iin<Iref and subsequently the output changes to logic 0. For
proper operations, Iref should be fixed between high and low
currents of Fig. 3(b). Instead of reading a single memristor
at a time, scouting logic activates the two inputs of the gate
simultaneously (e.g., M1 and M2 in Fig. 3(a)). As a result,
the input current to the sense amplifier is determined by the
equivalent input resistance (M1//M2). This resistance results
in three possible values: RL

2 , RH

2 and RL//RH≈RL. Hence,
the input current Iin can have only three values. By changing
the value of Iref different gates can be realized.

For example, to implement an OR gate Iref should be set
between 2Vr

RH
and Vr

RL
as depicted in Fig. 3(b)). When the

inputs are p = 0 and q = 1, the input current Iin to the sense
amplifier is around Vr

RL
. As 2Vr

RH
<Iref<

Vr

RL
, Iin > Iref and the

output voltage Vout is Vdd. The AND and XOR operations
work in a similar way. Note that the XOR gate needs two
references which is not shown in Fig. 3(a). More details on
the sense amplifier can be found in [27].

C. RRM: Stateful Logic

Stateful logic [16] supports material implication (IMP) as
primitive logic operation. The IMP operation is denoted by

Mp=RL Mq=RH

Float

Vp=Vh Vq=Vw

Vx≈Vh

RL<<Rs <<RH
Rs

Mp=RH Mq=RH

Vw

Vp=0 Vq=0

Vx=Vw

RL<<Rs <<RH
Rs

Mp=RL Mq=RH

0

Vp=Vw Vq=Vh

Vx=0

RL<<Rs <<RH
Rs

(a) RESET all memristors (b) Program input memristors (c) Evaluate the output memristor

Fig. 4: Stateful Logic

Eq. 1.
IMP: q′ = p→ q = p̄+ q (1)

Here p and q are inputs while q′ is the output. Stateful
logic uses RH and RL represent logic 0 and 1, respec-
tively; both for the inputs and outputs. An IMP gate consists
of two memristors (i.e., Mp and Mq) and a resistor Rs

(RL�Rs�RH). Mp is only used for the input p while Mq
is used both for the input q and output q′. To perform the
operation, control voltages Vh and Vw are applied to Mp
and Mq, respectively; the control voltages typically satisfy the
relationship: 0<Vh=Vw

2 <Vth<Vw<2Vth.
To illustrate the working principle of stateful logic, an

example of an IMP gate is given for the inputs p = 1
and q = 0, as shown in Fig. 4. It consists of three steps.
First, all the memristors are reset to RH by applying voltages
Vp = Vq =GND and Vx = Vw (see Fig. 4(a)). Second, Mp is
programmed to RL (p = 1) by applying voltages Vp = Vw,
Vq = Vh and Vx = 0 (see Fig. 4(b)). Vh is used to prevent Mq
from undesired switching. Finally, the IMP gate is evaluated
by applying voltages Vp = Vh, Vq = Vw and keeping the row
floating (see Fig. 4(c)). Therefore, Vx≈Vh (RL�Rs�RH)
and the voltage across Mq is Vq − Vx ≈ Vw − Vh < Vth. As
a result, Mq stays in RH . More details and the latest progress
can be found in [16,30,33].

D. Comparison

We use the following metrics to qualitatively compare the
existing memristor logic design styles.

• Array Compatibility indicates whether the logic style is
compatible with normal 1R and/or 1T1R memory arrays
or not.

• CMOS Controller Requirement indicates whether the
logic style needs a CMOS circuit to control it or not.

• Nonvolatility indicates whether the logic style can store
the data when it is powered off or not.

• Area indicates how area-efficient the logic style is to
perform operations.

• Speed indicates how fast the logic style is to perform
operations.

• Energy Consumption indicates how energy-efficient the
logic style is to perform operations.

• Scalability indicates how well the logic style can be
scaled to implement more complex circuits.

• Robustness indicates how robust the logic style is to
be resilient against the unrelaible CMOS and memristor
technology.

2

14 BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

TABLE I: Comparison Between Existing Logic Styles

Style Class Array Control NV Speed Area Energy Scalability Robustness
Memristor ratioed logic VVH No No No + ++ ++ ++ +

PLA-like memristor logic VVH No No No + ++ ++ ++ ++
Current mirror threshold logic VVH No No No + ++ ++ ++ ++
Programmable threshold logic VVH No No No + ++ ++ ++ ++

Pinatubo / Scouting logic RVH Yes Yes Yes + + ++ + +
CMOS-like logic RVM No Yes Yes - - - - +

CRS logic VRM Yes Yes Yes - - - - -
Snider logic RRM Yes Yes Yes - - - - -

Stateful logic RRM Yes Yes Yes - - - - -

Table I shows the comparison result. We can draw the
following conclusions with respect to the metrics.

• Array Compatibility: Design styles of RVH, VRM and
RRM are compatible with memory arrays. CMOS like
memristor logic is not compatible with memory arrays
due to its irregular topology. Design styles of VVH are
not compatible with 1R/1T1R array as they need to add
CMOS inverters or D flip-flops to memory arrays. Note
that array compatibility is an important requirement to
implement resistive computing systems.

• CMOS Controller Requirement: The logic styles of
VVH do not need additional CMOS control units as their
inputs and outputs are voltage based. In contrast, other
logic styles need to transduce the data between voltages
and resistances, and also need the controller to control
each step during execution. Note that several logic design
styles require multiple execution steps.

• Nonvolatility: Only the design styles of VVH are volatile,
as both their inputs and outputs are represented by
voltages. In contrast, other logic styles have their input
and/or output represented by resistances, and thus are
nonvolatile.

• Speed: The design styles of VVH and RVH are faster
as they can finish logic operations in a single step. In
contrast, other logic design styles are slower as they need
multiple steps.

• Area: Design styles of VVH require smaller area as
they do not need CMOS controllers. In contrast, other
design styles require larger area as they need CMOS
controllers. In addition, Pinatubo/Scouting logic needs a
simpler controller as it only needs a single step instead
of multiple [27].

• Energy Consumption: Three main factors impact on
the energy consumption; they are controller necessity,
nonvolatiltiy and speed. Design styles of VVH do not
need CMOS controllers and they are fast, and hence they
are likely not to consume a lot energy to perform logic
operations. Design styles of RVH are nonvolatile and
fast, and hence they are likely to consume less energy
to perform logic operations. In contrast, the other design
styles possibly need more energy as they need complex

controllers and longer time to perform logic operations.
• Scalability: Controller necessity impacts on the scala-

bility. Design styles of VVH are the easiest to scale up
as they do not need CMOS controllers. Design styles of
RVH are easier to scale as they need a simpler controller.
In contrast, the other design styles are hard to scale up
as they need complex controllers.

• Robustness: Controller necessity impacts on the robust-
ness as many transistors are involved by controllers. In
addition, design styles are more reliable if the memristors
do not need to switch during logic operations. This
is because memristor devices suffer from cycle-to-cycle
variation [2]. Except memristor ratioed logic, design
styles of VVH are likely to be most robust as they need
no CMOS controllers and memristor switching. Design
styles of RVH and RVM are more reliable than other
styles as they do not need to switch memristors during
logic operations.

Overall, in order to implement the resistive computing
architectures, design styles of RVM , VRM, and RRM are
very suitable due to their array compatibility. Among them,
scouting logic is the most promising candidate due to its good
performance in the remaining aspects. In addition, the design
styles of VVH and RVM are possible alternatives to replace
CMOS logic.

IV. MEMRISTIVE DEVICES FOR MEMORIES

Many non-volatile memory elements have been pro-
posed such as phase-change-memories (PCMs), spin-torque-
transfer magnetic RAMs (STT-MRAMs), and resistive RAMs
(ReRAMs). A very good introduction into the the topic of
memristive memory and the ReRAM technology is given
in the first two chapters [34], [35], in the book Resistive
Switching, edited by Ielmini and Waser [36].

Each of these device classes shows a more or less different
technology and working principle causing different benefits
and drawbacks what itself leads to different appropriate use
scenarios of these devices. In the following we will briefly
show an overview of these memristive devices used as mem-
ories.

PCMs are based on the use of calcogenide materials which
can be switched between an amorphous and a crystalline state.

BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

2

15

This is realised by heating up a conductive rod reaching
through the calcogenide material with a high write current.
The two states show different behaviours in their electric
resistance when the current is flowing through such a device.
If the calcogenide is crystalline, the whole device is in the low
resistance state (LRS), in contrast it is in the high resistance
state (HRS) if the calcogenide is amorphous. Furthermore,
it is also possible to adjust intermediate states which are
located between the two extremes, the LRS and the HRS. This
possibility leads us to the first benefit of such PCM devices,
namely its feasible multi-level cell operation. Additionally,
PCMs offer a quite mature technology and show a good
compatibility (MLC) with CMOS. PCMs have more than 109

an endurance comparable to ReRAMs which have the best
endurance of current non-volatile memristive devices. The
endurance corresponds to the maximum number of possible
switching cycles up to the moment, in which the device does
not work anymore. On the other side there are some challenges
in the controlling of the switching process. This refers to
the necessary high write circuits, a 10x slower switching
speed than ReRAMs due to the slow crystalline process, and
the resistance drift in the amorphous state that has to be
compensated on circuit level.

STT-RAMs are based on a parallel and anti-parallel config-
uration of a stack of ferromagnetic layers forming a magnetic
tunnel junction (MTJ) structure. The magnetization at the
terminals of the MTJ stack is on one side fixed, therefore
this side is denoted as a fixed layer, whereas on the opposite
side the so-called free layer is located, which can be switched
between two magnetization directions. If both layers are in
parallel to each other, the electrons with opposite orientation
spin-polarized can pass with a high probability through the
stack. Therefore in this case the device is in HRS. In contrast,
if the two layers are polarized anti-parallel to each other the
probability that an electron can pass both layers is low, since
the electron will always meet a layer with different polarization
to its own one independent in which direction the electron is
spin-polarized. Therefore in this case the device is in a HRS.
The benefits of such technology is the fast switching and its
relatively mature technology even if it is a challenge to make
it compatible with CMOS because the MTJ stack can consist
of more than ten layers of not easy to handle ferromagnetic
materials, e.g. CoFeB or MgO. Nevertheless, due to its low
energy efficient features STT-MRAM technology is strongly
discussed to use them in last-level caches.

The ReRAM technology can be subdivided in three different
approaches which all exploit nanoionic switching mechanisms.
These three approaches are typified either as electrochemical
memory (ECM), valence change memory (VCM) (see Fig. 5),
or thermochemical memory (TCM) which are using different
ionic mechanisms to generate different resistances. In TCMs
and ECMs a so-called filamentary structure is used to build up
and down small metallic bridges by redoxation and oxidation
processes in ionized material layers consisting of e.g. TiO2

or HfO2 which are entangled between two metal plates as
terminals. TCMs are unipolar, i.e. the same voltage is applied

Pt

Cu

SiO2

+

+

+

+

+

++

+

+

Cu
fila-
ment

Cu
ions

+

-

+

Pt

Pt

D
TiO2

TiO2-xw

+ low
resistance

high
resistance

+

++

+

-

memristor symbol

+ -

Fig. 5: ECM (left) and VCM (right) ReRAMS (ECM).

to the poles and a filament with low resistance characteristic
is growing from both sides. In contrast to that, in ECM
two opposite voltages are applied to the terminals which are
normally composed of different metals. By this bipolar control
mechanisms voltage and reversed voltage signals are used to
build up the metallic filament by a redox transitions and to
dissolve it again by launching local oxidation processes.

In VCMs not only a filament but also a complete metallic
layer or an area interface is built up and dissolved by the
exchange of ions. VCMs are also bipolar devices and they
correspond to the technique that was used in the memristors
of Hewlett Packard [37]. Due to the focus on ion motion as
underlying switching process much more localized structures
in the nanometer range sized cells, e.g. 10x10 nm1 or even
less, can be realized offering good scalability. A large HRS
/ LRS ratio makes the interfacing to resistance evaluating
CMOS circuits easier. ReRAMs are further characterized by
fast switching in the ns range, but even 100 ps have been
demonstrated. This characteristic is given due to the small
distances the ions have to move and the high electrical field
forces that occur in the nanoscale active region causing a so-
called Joule heating what for its part further increases the
ion mobility. A further advantage is the good compatibility
of ReRAMs with CMOS manufacturing processes even if
3D integration of PCMs is a little bit easier since PCMs
need only a unipolar selection device compared to the bipolar
ReRAMs switching. The endurance, which is may be the most
important feature for memristive elements concerning their
use in computing circuits either as memory or as switching
element, is reported very different in literature. One can find
values of 106 cycles up to more than 1012 cycles. The power
comsumption is in the pf range, which makes ReRAMs a good
candidate for an use in embedded applications. For example,
in 2013 Panasonic is the first semiconductor manufacturer
who integrated ReRAM into their microcontroller for storing
firmware [38].

V. MEMRISTIVE DEVICES FOR ARITHMETIC

This section lays a focus on how memristive devices can be
used to realise new computing concepts for arithmetic circuits.
In particular, the presented concepts will exploit qualitative
benefits of memristive devices that can not be so easily realised

2

16 BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

with pure SRAM or DRAM memory cells. This will be on
the digital side the multi-level cell (MLC) capability which
can be used for new ternary computing concepts like e.g.
ternary adders. Ternary content-addressable memory (TCAM)
is another architecture in which memristive devices are used
for ternary computing schemes [39]. However, TCAM does
not exploit the MLC feature. It uses two memristors for a
storing a logical 1 and 0, and an additional third memristor
for the realisation of the don’t care state, which is essential
for a CAM. Therefore, the rest of this section will only focus
on the ternary computing.

Actually, ternary computing schemes for arithmetic opera-
tions like addition, subtraction, multiplication and division are
long known. First mathematical investigations go back to the
17th century. Two newer ground breaking work was done by
Avizienis [40] and Parhami [41]. The first work shown that
carry-free additions can be realised by using so-called signed-
digit numbers to a base r ≥ 3. It means that numbers are
not presented in the usual sign magnitude presentation, like
e.g. in one’s or two’s complement, but each digit can also
have negative values. Then, independent of the operand’s word
length an addition can be carried out in O(1) instead of O(N)
or O(log(n)) which is unavoidable if pure binary numbers and
at the same time a reasonable number of integrated Boolean
gates is utilized. In 1988 Parhami [41] presented a solution in
which also a base r = 2 can be used to make the realisation
with digital electronics possible.

The question remains why such ternary concepts were not
used in the last decades in integrated microprocessors if their
benefits concerning the run time of arithmetic operations
are obvious. One answer to that question is that no CMOS
compatible storage device was available that could store three
states. This had led to a situation that the complete register
files, the caches and even the data segments of the main
memory had to be doubled by two SRAM or DRAM cells
to store three states. With the emerging of MLC-capable
memristive devices this situation has changed. The idea to use
MLC memristive devices for ternary adders was first published
in [42]. The first technical solution using MLC ReRAMs for
redundant arithmetic operations is shown in [43]. The clear
qualitative benefit over SRAM and DRAM memory for ternary
arithmetic can be exploited in two directions. First, MLC based
memristive devices can be used as ternary memory in digital
CMOS circuits or, second, in pure in-memory computing
circuits in which a well-directed state transfer between the
three states in one memristive device is induced according to
the compute rules of ternary computing.

The way how a ternary addition works is explained by
means of the example shown in the Table II. The basic idea
to avoid a carry transfer over more than two digits is that in
step 1 only 0, −1, or −2 is used for the result of a digit in the
intermediate sum z; whereas in the so-called transfer vector t
only 0 or a positive 1 is used. This avoids a further generation
of a carry. The rules of math have to be observed, i.e. 0 + 1
yields −1 for zi and 1 for ti+1. The second step is necessary to
get rid of the −2 in digit z1. Now, −2 turns to −1 in digit t′2.

TABLE II: Addition of Two Ternary Numbers.

x = (0 0 -1 0)2 = (−2)10
+y = (0 1 -1 0)2 = (+2)10

step 1:
0 -1 -2 0 = z

0 1 0 0 0 = t

step 2:
0 1 1 0 0 = z′

0 -1 -1 0 0 = t′

step 3:
0 0 0 0 0 = s = 0

Fig. 6: Prototyping Platform for Memristive Ternary Adder.

In general, by repeatedly applying the rules of addition, only
0s and 1s are generated in the vector z′ while only 0s and -1s
in vector t′. Then, no situation can occur that two positive 1s
or two negative 1s will meet at the same digit position and no
carry can occur. Therefore the addition requires exactly three
steps independent of the operands’ word length.

Details about the complete Boolean logic for the ternary
compute steps and an extensive comparison with other pos-
sible ternary representations concerning a solution with MLC
capable memristive devices can be found in [44].

The memristive ternary adder was realized as a first pro-
totype using discrete electronic devices (Fig. 6) consisting of
an FPGA board (a) that implements the Boolean logic for the
ternary adder, a device from BioInspired Inc. (c) to provide
the memristors, and an interface card (b) designed by our own
which realises the communication between the FPGA and the
memristor device via ADC and DAC functions. More details
in the set up can be found in [45].

Fig. 7 shows a measurement of the memristor device used
as ternary storage. There are two sets of five measurement
curves to see. Each curve shows the current running through
the memristor by reading the memristor with an applied low
voltage after we wrote a memristor in subsequently increased
voltage steps of δV = 0.5 V . This was done for two different
compliant current limits of 10 µA and 40 µA. Even though
the five curves for a certain current compliance level scatters
widely, we still could clearly distinguish the three desired
states.

Fig. 8 shows a screen display of the program that controls

BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

2

17

I
 [

µ
A

]
m

em
ri

st
or

V [V]memristor

0 10.5

0

10

4

16

5 kOhm

0 Ohm

5 kOhm

12.5
kOhm

12.5
kOhm

∞

I =40µAwrite,max

I =10µAwrite,max

erased

Fig. 7: Determine the Resistance of a Memristor.

Fig. 8: Testing Program for a Memristive Ternary Adder.

carried out experiments. Multiple of the in all 20 memristor
cells in the memristor device (Fig. 6c) were addressed as
ternary registers. Their content was read in the FPGA. Then,
the new ternary result was calculated there and written back
to the ternary memristor device.

VI. MEMRISTIVE DEVICES FOR RESISTIVE COMPUTING

Resistive computing enabled by memristive technology has
introduced new opportunities to renovate existing computing
paradigms for embedded and low power computing [46,47],
in-memory computing [18,21,48] as well as neuromorphic
computing [49,50].

The rest of this section will describe the Computation-in-
Memory (CIM) and neuromorphic processing as examples of
the emerging resistive computing.

CPU

DRAM

External Memory

CIM
Accelerator

L1

Program

loop1:

loop2:

loop3:

CIM
Accelerator

(a) Architecture (b) Expected Application

Fig. 9: CIM-based Architecture

A. Computation-in-Memory

One potential in-memory computing architecture is CIM,
which was introduced in [18] based on the concept of inte-
grating computation and storage units in a dense memristor
crossbar. CIM is implemented as an accelerator (for specific
applications) and integrated into conventional architectures to
improve overall computer performance [2,18].

The CIM-based architecture consists of a conventional
processor, caches, CIM accelerator, main memory DRAM
and external memory (as shown in Fig. 9(a)). Similarly as
in conventional architectures, the processor fetches, decodes
and executes a big data program. However, in conventional
architectures, the intensive memory accesses consume (relative
to ALU instructions) an enormous amount of energy and
significantly degrade the overall performance due to frequent
cache misses. As compared to an ALU operation, loading
a word from the on-chip SRAM (50x) and off-chip DRAM
(6400x) cost much more energy [51,52]. Eliminating this
communication will impact the overall performance signif-
icantly, especially for data-intensive applications. In order
to reduce the data transfers between caches and memories,
the CIM accelerator will execute the data-intensive parts of
the program locally within the CIM accelerator. Note that
the CIM accelerator can perform parallel operations locally
on the data stored in the non-volatile memory, hence the
memory bottleneck can be significantly reduced. Therefore,
the CIM architecture achieves significant improvements in
both performance and energy consumption. The performance
can be further improved if appropriate applications are mapped
on the CIM accelerator.

The potential applications that benefit from CIM accelerator
are (big data) applications where communication between
processor and memory results in a low performance and high
energy consumption. In case the CIM accelerator’s capacity
is large enough to store the application data, a high level of
parallelism can be exploited. In addition, a higher performance
can be achieved when different operations are applied to the
same data, i.e., data that is not changing frequently; this also
benefits the endurance of the non-volatile memory of the
CIM accelerator. Last but not least, if the processor provides
appropriate instructions to the CIM accelerator ahead of the
normal execution time, the CIM accelerator already can start
performing its operations while the CPU is simultaneously
executing other operations, resulting in overall performance

2

18 BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

Fig. 10: Evaluation Results for CIM and Multicore Architectures

improvement.
Fig. 9(b) illustrates a program that could be executed

efficiently on the CIM accelerator. In this case, multiple
invoked loops work on the same large datasets; obviously
the data should be initialized on the CIM accelerator. Each
time the loop is invoked, the processor sends a request to the
CIM accelerator; the latter, performs the requested operations
and returns the results to the processor. Examples of such
applications are database applications, where multiple queries
(each consisting of large loops) are applied to a fixed database.
These queries are used to look for specific data patterns in the
database.

To illustrate how the CIM-based computer architecture
advances the state-of-the-art, its estimated performance will be
compared to a multicore-based architecture. The assumptions
for the multicore architecture and CIM-based architecture are
similar to those in [53]; the multicore architecture consists of 4
cores (ALU only), two levels of caches (32KB L1 and 256KB
L2) and 4GB DRAM; the CIM-based architecture consists of
one core (ALU only), two levels of caches (32KB L1 and
256KB L2), 2GB DRAM, and a CIM accelerator with a dedi-
cated computing unit and a 2GB memory. The non-accelerated
part is executed by the ALU of the conventional processor and
the accelerated part by CIM’s dedicated computing unit. The
memory operations are modeled based on cache miss rates and
DRAM access time, similarly as provided in [18,53]. Three
metrics are used for the evaluation: (1) performance energy
efficiency ηPE (defined by MOPs/mW), (2) energy efficiency
ηE (defined by pJ/op), and (3) performance area efficiency
ηPA (defined by MOPs/mm2).

Fig. 10 shows the results of the evaluation metrics for both
architectures. It assumes that 90% of the instructions can be
accelerated on CIM. Both architectures execute petabyte prob-
lem size. As the organization of the CIM-based architecture
preserves the conventional part of a multicore architecture (i.e.,
CPU, caches, DRAM and external memory), only 10x im-
provement is obtained with respect to the performance-energy
efficiency. However, the CIM-based architecture achieves four
orders of magnitude energy efficiency improvement in com-
parison with the multicore architecture. Furthermore, the pro-
posed architecture is 15x area-efficient than the multicore

architecture. In comparison with state-of-the-art, the proposed
architecture is capable of realizing significant improvements,
despite the high switching latency and low endurance of
memristor technology. The improvements are the result of a
significant reduction of cache and DRAM accesses and the
usage of non-volatile memory. The reduction of memory ac-
cesses leads to a lower latency and lower energy consumption,
while the non-volatile memory reduces the static power to
practically zero.

B. Neuromorphic Processing

Memristive devices related to neuromorphic processing con-
cern the weights that have to be used in artificial neural
networks. They are quasi naturally mapped onto different
stored resistance levels. Moreover, the neuromorphic process-
ing systems use memristive devices as not only processing
elements but also storing elements, which is not possible using
CMOS memories. This finally leads to more energy-efficient
and smaller circuits as compared to current CMOS solutions.

Actually, the proposals found in literature to use memristive
devices for analogue processing came much earlier and have
also a much higher number than the proposals for digital
solutions. The idea, e.g. for memristive spike-time-dependent
plasticity (STDP) networks [54], [55] is to mimic directly
the functional behaviour of a neuron. In STDP networks the
strength of a link to a cell is determined by the time correlation
of incoming signals to a neuron along that link and the output
spikes. The shorter the input pulses occur compared to the
output spike, the stronger the input links to the neuron are
weighted. In contrast, the longer the input signals lay behind
the output spike, the weaker the link is adjusted. This process
of strengthening or weakening the weight shall be directly
mapped onto memristors by increasing or decreasing their
resistance depending which voltage polarity is applied to the
terminals of a two-terminal memristive device. This direct
mapping of an STDP network to an analogue equivalent of the
biological cells by an artificial memristor based neuron cells
shall emerge new extreme low-energy neuromorphic circuits.

An example how memristive devices are used for neu-
romorphic processing is a chip based on PCM technology
realized by IBM. The chip comprises 64k cells, consisting
of 256 axons by 256 dendrites and was demonstrated in

BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

2

19

2015 [56]. The update of the artificial synaptic weights uses
STDP as an in-situ learning function. Besides this memristor
based STDP networks, there are lots of other proposals, e.g.
[57], for neural networks to be realised with memristor based
crossbar and mesh architectures for cognitive detection and
vision applications.

VII. OPPORTUNITIES AND CHALLENGES

A. Opportunities

Memristive devices provide significant opportunities with
respect to the following aspects.
• Memristive devices are a promising alternative for the

leakage wall that limits CMOS technology scaling.They
are non-volatile and require low energy consumption;
hence, they can be used to produce memory and logic
circuits that have practically zero static power [58–60].

• Memristive devices could also help solving the computer
architecture walls. Memristive devices are capable of both
storing and computing, which enables new computing
paradigms [18,52,61]. Furthermore, massive parallelism
can be achieved as the high density of memristive de-
vices facilitate more functional units within the same
area [20,53]. In addition, the high energy consumption
of today’s computers can also be reduced due to the low
dynamic energy and zero static energy consumption [53].

• The above benefits (non-volatility, low energy consump-
tion and scalability) provide solutions for emerging ap-
plications such as embedded and low power systems for
IoT applications [62], big data application and health care
applications [18].

B. Challenges

Despite the above opportunities, memristive devices are
facing several challenges.
• Memristive devices are still in their infancy stage; hence,

there is a lack of libraries with well-optimized memristive
designs as well as mature automation tools to speed-up
the exploration process.

• Memristive devices suffer from limited endurance which
is currently around (1012) [8]. This is insufficient for
general purpose computing; therefore, a new computing
paradigm or logic style is required to deal with this
limited endurance (e.g., high-radix computing [63]). In
addition, researchers strongly believe that the endurance
will substantially increase and reach 1016 [64]

• Memristive devices also face reliability challenges in both
manufacturing and design phase. Nonvolatile memory
manufacturing has to deal with nonuniform resistance
profile across the crossbar array, resistance drift, inherent
device-to-device and cycle-to-cycle variations as well as
yield issues [2]. Furthermore, the intrinsic variation of
memristive devices make it difficult to design robust logic
circuits [2,65].

• The integration of memristive devices with CMOS is
still an open research question. It seems that this kind
of integration is possible as presented in [66]; however,

details of stacking memristive layers on top of CMOS
are still in research. Moreover, there is limited work
that investigates the impact of the CMOS controller on
an entire memristive system [53]. Further investigation
requires not only the optimization of the CMOS part,
but also its efficient use to control the crossbars while
maintaining the system scalability.

VIII. CONCLUSION

Memristive devices provide many opportunities; not only to
enable next-generation non-volatile memories (with fast access
speed, up to 1TB storage capacity, and multi-level capability),
but also to enable novel alternative computing architectures
required for emerging applications, such as energy-efficient
neuromorphic systems and computation-in-memory architec-
tures. However, there are still many challenges ahead that need
to be addressed.

REFERENCES

[1] EU-Commission, “Next generation computing roadmap.” European
Union, 2014.

[2] S. Hamdioui et al., “Memristor for computing: Myth or reality?” in
DATE. IEEE, 2017.

[3] B. Hoefflinger, Chips 2020: a guide to the future of nanoelectronics.
Springer Science & Business Media, 2012.

[4] H. Jones, “Whitepaper: Semiconductor industry from 2015 to 2025.”
International Business Strategies, 2015.

[5] J. L. Hennessy et al., Computer architecture: a quantitative approach.
Elsevier, 2011.

[6] ITRS, “Beyond cmos white paper.” ITRS, 2014.
[7] R. Waser et al., “Redox-based resistive switching memories–nanoionic

mechanisms, prospects, and challenges,” Advanced Materials, pp. 2632–
2663, 2009.

[8] J. J. Yang et al., “Memristive devices for computing,” Nature nanotech-
nology, vol. 8, pp. 13–24, 2013.

[9] R. Fackenthal et al., “A 16gb reram with 200mb/s write and 1gb/s
read in 27nm technology,” in Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), 2014 IEEE International. IEEE, 2014,
pp. 338–339.

[10] M.-F. Chang et al., “Challenges and circuit techniques for energy-
efficient on-chip nonvolatile memory using memristive devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 5,
pp. 183–193, 2015.

[11] A. Kawahara et al., “An 8 mb multi-layered cross-point reram macro
with 443 mb/s write throughput,” IEEE Journal of Solid-State Circuits,
vol. 48, pp. 178–185, 2013.

[12] J. Borghetti et al., “A hybrid nanomemristor/transistor logic circuit
capable of self-programming,” Proceedings of the National Academy
of Sciences, vol. 106, pp. 1699–1703, 2009.

[13] G. S. Rose et al., “Leveraging memristive systems in the construction of
digital logic circuits,” Proceedings of the IEEE, vol. 100, pp. 2033–2049,
2012.

[14] E. Linn et al., “Beyond von neumann–logic operations in passive
crossbar arrays alongside memory operations,” Nanotechnology, vol. 23,
p. 305205, 2012.

[15] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A: Materials Science & Processing, vol. 80, pp. 1165–1172,
2005.

[16] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, pp. 873–876, 2010.

[17] Q. Guo et al., “Ac-dimm: associative computing with stt-mram,” ACM
SIGARCH Computer Architecture News, vol. 41, pp. 189–200, 2013.

[18] S. Hamdioui et al., “Memristor based computation-in-memory archi-
tecture for data-intensive applications,” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition. EDA
Consortium, 2015, pp. 1718–1725.

[19] H. A. Du Nguyen et al., “Computation-in-memory based parallel adder,”
in NANOARCH. IEEE, 2015.

2

20 BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

[20] A. Haron et al., “Parallel matrix multiplication on memristor-based
computation-in-memory architecture,” in High Performance Computing
& Simulation (HPCS), 2016 International Conference on. IEEE, 2016,
pp. 759–766.

[21] P.-E. Gaillardon et al., “The programmable logic-in-memory (plim)
computer,” in 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2016, pp. 427–432.

[22] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on circuit theory, vol. 18, pp. 507–519, 1971.

[23] D. B. Strukov et al., “The missing memristor found,” nature, vol. 453,
p. 80, 2008.

[24] S. Kvatinsky et al., “Mrl-memristor ratioed logic,” in 2012 13th Interna-
tional Workshop on Cellular Nanoscale Networks and their Applications.
IEEE, 2012, pp. 1–6.

[25] L. Gao et al., “Programmable cmos/memristor threshold logic,” IEEE
Transactions on Nanotechnology, vol. 12, pp. 115–119, 2013.

[26] I. Vourkas et al., “A novel design and modeling paradigm for memristor-
based crossbar circuits,” IEEE Transactions on Nanotechnology, vol. 11,
pp. 1151–1159, 2012.

[27] L. Xie et al., “Scouting logic: A novel memristor-based logic design for
resistive computing,” in IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). IEEE, 2017, pp. 335–340.

[28] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in DAC. IEEE,
2016.

[29] T. You et al., “Exploiting memristive bifeo3 bilayer structures for
compact sequential logics,” Advanced Functional Materials, vol. 24, pp.
3357–3365, 2014.

[30] E. Lehtonen et al., “Memristive stateful logic,” in Memristor Networks.
Springer, 2014, pp. 603–623.

[31] S. Kvatinsky et al., “Magic–memristor-aided logic,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 61, pp. 895–899, 2014.

[32] L. Xie et al., “Boolean logic gate exploration for memristor crossbar,” in
2016 International Conference on Design and Technology of Integrated
Systems in Nanoscale Era (DTIS). IEEE, 2016, pp. 1–6.

[33] S. Kvatinsky et al., “Memristor-based material implication (imply) logic:
design principles and methodologies,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, pp. 2054–2066, 2014.

[34] R. Waser et al., Introduction to Nanoionic Elements for Information
Technology. Wiley-VCH Verlag GmbH & Co. KGaA, 2016, pp. 1–30.
[Online]. Available: http://dx.doi.org/10.1002/9783527680870.ch1

[35] E. Linn et al., ReRAM Cells in the Framework of Two-Terminal Devices.
Wiley-VCH Verlag GmbH & Co. KGaA, 2016, pp. 31–48. [Online].
Available: http://dx.doi.org/10.1002/9783527680870.ch2

[36] D. Ielmini et al., Resistive switching: from fundamentals of nanoionic
redox processes to memristive device applications. John Wiley & Sons,
2015.

[37] R. Williams, “How we found the missing memristor,” IEEE
Spectr., vol. 45, pp. 28–35, Dec. 2008. [Online]. Available:
http://dx.doi.org/10.1109/MSPEC.2008.4687366

[38] Y. Hayakawa et al., “Highly reliable taox reram with centralized filament
for 28-nm embedded application,” in 2015 Symposium on VLSI Circuits
(VLSI Circuits), June 2015, pp. T14–T15.

[39] P. Junsangsri et al., “A memristor-based TCAM (Ternary Content Ad-
dressable Memory) cell,” in 2014 IEEE/ACM International Symposium
on Nanoscale Architectures (NANOARCH), Jul. 2014, pp. 1–6.

[40] A. Avizienis, “Signed-digit numbe representations for fast parallel
arithmetic,” Electronic Computers, IRE Transactions on, vol. EC-10,
pp. 389–400, Sept 1961.

[41] B. Parhami, “Carry-free addition of recoded binary signed-digit num-
bers,” Computers, IEEE Transactions on, vol. 37, pp. 1470–1476, 1988.

[42] D. Fey, “Using the multi-bit feature of memristors for register files in
signed-digit arithmetic units,” Semiconductor Science and Technology,
vol. 29, p. 104008, 2014. [Online]. Available: http://stacks.iop.org/0268-
1242/29/i=10/a=104008

[43] W. Kim et al., “Multistate Memristive Tantalum Oxide Devices for
Ternary Arithmetic,” Scientific Reports, vol. 6, Dec. 2016. [Online].
Available: http://www.nature.com/articles/srep36652

[44] D. Fey et al., “Using memristor technology for multi-value registers in
signed-digit arithmetic circuits,” in Proceedings of the Second Interna-
tional Symposium on Memory Systems, ser. MEMSYS ’16. New York,
NY, USA: ACM, 2016, pp. 442–454.

[45] D. Wust et al., “Prototyping memristors in digital system with an
fpga-based testing environment,” in to appear in Proc. IEEE/ 27th

International Symposium on Power, and Timing, Modeling, Optimization
and simulation (PATMOS), Sep. 2017, p. 7 pages.

[46] C. J. Xue, “Redesigning software and systems for nonvolatile proces-
sors on self-powered devices,” in Smart Sensors at the IoT Frontier.
Springer, 2017, pp. 107–123.

[47] F. Su et al., “Design of nonvolatile processors and applications,” in
Very Large Scale Integration (VLSI-SoC), 2016 IFIP/IEEE International
Conference on. IEEE, 2016, pp. 1–6.

[48] L. Yavits et al., “Resistive associative processor,” CAL, 2015.
[49] H. Mostafa et al., “Beyond spike-timing dependent plasticity in mem-

ristor crossbar arrays,” in Circuits and Systems (ISCAS), 2016 IEEE
International Symposium on. IEEE, 2016, pp. 926–929.

[50] F. Alibart et al., “Pattern classification by memristive crossbar circuits
using ex situ and in situ training,” Nature communications, vol. 4, p.
2072, 2013.

[51] A. Danowitz et al., “Cpu db: recording microprocessor history,” Com-
munications of the ACM, vol. 55, pp. 55–63, 2012.

[52] A. Pedram et al., “Dark memory and accelerator-rich system optimiza-
tion in the dark silicon era,” IEEE Design & Test, vol. 34, pp. 39–50,
2017.

[53] H. A. Du Nguyen et al., “On the implementation of computation-
in-memory parallel adder,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2017.

[54] G. S. Snider, “Spike-timing-dependent learning in memristive
nanodevices,” in 2008 IEEE International Symposium on
Nanoscale Architectures, NANOARCH 2008, Anaheim, CA,
USA, June 12-13, 2008, 2008, pp. 85–92. [Online]. Available:
https://doi.org/10.1109/NANOARCH.2008.4585796

[55] T. Serrano-Gotarredona et al., “Stdp and stdp variations with
memristors for spiking neuromorphic learning systems,” Fron-
tiers in Neuroscience, vol. 7, p. 15, 2013. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/fnins.2013.00002

[56] S. Kim et al., “Nvm neuromorphic core with 64k-cell (256-by-256)
phase change memory synaptic array with on-chip neuron circuits
for continuous in-situ learning,” in 2015 IEEE International Electron
Devices Meeting (IEDM), Dec 2015, pp. 17.1.1–17.1.4.

[57] C. K. K. Lim et al., “Computing Image and Motion with 3-D Memristive
Grids,” in Memristor Networks, A. Adamatzky et al., Eds. Springer
International Publishing, 2014, pp. 553–558.

[58] Crossbar Inc., “Rethink data storage with 3d reram.” [Online]. Available:
https://www.crossbar-inc.com/en/

[59] Intel Corporation, “Revolutionizing memory and storage.” [On-
line]. Available: https://www.intel.com/content/www/us/en/architecture-
and-technology/intel-optane-technology.html

[60] S. C. Bartling et al., “An 8mhz 75µa/mhz zero-leakage non-volatile
logic-based cortex-m0 mcu soc exhibiting 100vdd=0v with lt;400ns
wakeup and sleep transitions,” in 2013 IEEE International Solid-State
Circuits Conference Digest of Technical Papers, Feb 2013, pp. 432–433.

[61] M. Barbareschi et al., “Memristive devices: Technology, design automa-
tion and computing frontiers,” in Design & Technology of Integrated
Systems In Nanoscale Era (DTIS), 2017 12th International Conference
on. IEEE, 2017, pp. 1–8.

[62] K. Ma et al., “Nonvolatile processor architecture exploration for energy-
harvesting applications,” IEEE Micro, vol. 35, pp. 32–40, 2015.

[63] B. Parhami, Computer arithmetic. Oxford university press, 1999,
vol. 20, no. 00.

[64] M.-F. Chang et al., “Endurance-aware circuit designs of nonvolatile logic
and nonvolatile sram using resistive memory (memristor) device,” in
Design Automation Conference (ASP-DAC), 2012 17th Asia and South
Pacific. IEEE, 2012, pp. 329–334.

[65] L. Xie et al., “On the robustness of memristor based logic gates,” in
Design and Diagnostics of Electronic Circuits & Systems (DDECS),
2017 IEEE 20th International Symposium on. IEEE, 2017, pp. 158–
163.

[66] Q. Xia et al., “Memristor- cmos hybrid integrated circuits for reconfig-
urable logic,” Nano letters, vol. 9, pp. 3640–3645, 2009.

BACKGROUND ON MEMRISTIVE DEVICE AND ITS POTENTIAL - PAPER 2.1

2

21

3
PRIMITIVE LOGIC GATE

This chapter presents the design of primitive logic gates and studies the impact of device
variability. First, it explores the complete logic gate space for Snider logic by parameteriz-
ing gates and identifying all possible combinations of such parameters. Subsequently, it
proposes a novel logic design style, referred to as scouting logic. This logic style performs
logic operations by modifying standard memory read operations; they effectively reduce
the device endurance requirement and improve the performance in terms of delay and
power consumption. Finally, this chapter analyzes the robustness of primitive gates used
in both Snider logic and scouting logic. The device variability, parasitic resistance and
capacitance of nanowires, sneak path currents, and different memristor models are con-
sidered.

The content of this chapter consists of the following research articles:

1. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, Boolean Logic Gate
Exploration for Memristor Crossbar, IEEE International Conference on Design &
Technology of Integrated Systems In Nanoscale Era (DTIS), Istanbul, Turkey, April,
2016, pp. 1-6

2. L. Xie, H.A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. Alfailakawi, S. Ham-
dioui, Scouting Logic: A Novel Memristor-Based Logic Design for Resistive Com-
puting,IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, Ger-
many, July, 2017, pp. 151-156

3. L. Xie, H.A. Du Nguyen, J. Yu, M. Taouil, S. Hamdioui, On the Robustness of Memris-
tor Based Logic Gates, IEEE International Symposium on Design and Diagnostics of
Electronic Circuits & Systems (DDECS), Dresden, Germany, April, 2017, pp. 158-163

23

3

24 3. PRIMITIVE LOGIC GATE

3.1. INTRODUCTION
Primitive logic gates are the fundamental components for resistive computing. Many
logic design styles have been proposed [15,22–36]. However, there are still some open
questions: (i) What is the complete logic gate space for logic design based on memristive
device? (ii) Can we develop any novel logic design styles? (iii) How can we guarantee the
logic gates to behave correctly while the technology is not mature enough? This chapter
focuses on these three questions.

Logic Gate Space Exploration: Snider logic [22] is a promising candidate due to its non-
volatility, compatibility with the crossbar architecture, ability to do computation using
only memristors, easy reuse of existing arithmetic designs, IP designs, and EDA flows.
The author proposed three primitive operations: copy, inversion and NAND. However,
these operations are only a subset of all the possible logic gates that can be implemented
by Snider logic.

A Novel Logic Design Style: Many logic design styles use resistance to represent both
input and output data, such as stateful implication logic [23], Snider logic [22], CRS
logic [27], etc. However, in such logic design styles, a sequence of primitive operations is
required to execute a simple logic gate (e.g., XOR) leading to the frequent device switch-
ing which reduces devices’ endurance. Moreover, these logic designs suffer from a con-
siderable delay hence low device switching speed.

Robustness Analysis: The logic design styles are facing some robustness issues due to the
device variability, sneak path currents, parasitic resistance and capacitance of nanowires.
Such robustness issues may cause the incorrect functionality of logic gates. Only limited
work has been reported for robustness analysis. In [57], Kvatinsky et al. reported a set
of constraints for individual implication logic gates. However, this work did not con-
sider device variations, sneak path currents, and nanowire resistances. In [58], Zhu et
al. reported a methodology to derive design constraints while considering sneak path
currents within the crossbar. However, they did not consider dynamic switching process
of memristors and other effects such as device variation and nanowire resistances. In
addition, no such robustness analysis has been for Snider and scouting logic.

3.2. MAIN CONTRIBUTIONS
The main contributions in the above three aspects are as follows.

• Complete Logic Gate Space Exploration [52]: In order to explore the complete space
of Snider logic gates, six parameters are extracted from the primitive gates; they are
related to circuit structure, control voltage, fan-in, fan-out, device polarity, and
data representation. By an exhaustive search of all the gate parameter combina-
tions, the logic gate space is completely explored. As a result, several new gates
are developed including AND, OR and NOR. In addition, we also find several new
ways to implement the original gates used by Snider logic including NAND and
copy operations. All such gates are verified with SPICE simulations.

3.2. MAIN CONTRIBUTIONS

3

25

• A Novel Logic Design Style [31]: Scouting logic performs logic operations by mod-
ifying standard memory read operations. Normally when a memory cell is read,
a read voltage is applied to this cell to activate it. Subsequently, an input current
for a sense amplifier is generated and it is compared with a reference current to
distinguish between logic 1 and 0. As a result, the value stored in the memory cell
is read out. Inspired by this read operation, scouting logic performs OR, AND and
XOR operations, which are frequently used in bitwise logic operations. Instead of
reading a single memory cell at a time, scouting logic activates the two inputs of
the gate simultaneously. To perform different operations, we only need to use dif-
ferent current references. Therefore, we modified the standard sense amplifier to
a reconfigurable one to support the required current reference. To illustrate the
potential of scouting logic, the performance of scouting logic is compared with
the state-of-the-art in terms of delay, power and area. The results show that scout-
ing logic improves the delay and power consumption by at least a factor of 2.3 as
compared to the state-of-the-art, while having similar or less area overhead.

• Robustness Analysis [31,53]: Robustness analysis of both Snider and Scouting logic
gates. For Snider logic gates, a set of proper constraints are formulated to guar-
antee correct functionality of logic gates (e.g., AND). It is observed that the errors
due to analytical parameter constraints are typically within 4.5% as compared to
SPICE simulations. In addition, the impact of memristive device variability, par-
asitic resistance and capacitance of nanowires, sneak path currents, and differ-
ent memristor models on its accuracy is investigated. When these realistic factors
are within a certain range, the proposed constraints can still guarantee the correct
functions of the logic gates. For Scouting logic gates, the impact of device variabil-
ity is investigated. When the high and low resistance of the device vary within a
certain range (e.g., around 10%), scouting logic can perform correctly. As the resis-
tance variation range depends on the resistance values, a variation-resilient design
methodology is proposed to select proper resistance values for a given failure rate.
This proposed methodology can effectively enhance the robustness of the design
to deal with resistance variation in scouting logic based design.

Boolean Logic Gate Exploration
for Memristor Crossbar

Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui, Koen Bertels
Laboratory of Computer Engineering, Delft University of Technology, the Netherlands

Email: {L.Xie, H.A.DuNguyen, M.Taouil, S.Hamdioui, K.L.M.Bertels}@tudelft.nl

Abstract—Emerging technologies are under research as alter-
natives for next-generation VLSI circuits. One of the promising
candidates is memristor due to its scalability, high integration
density, non-volatility, etc. Different design styles of memristor-
based logic circuits have been proposed. This paper first
overviews these design styles and compares them using several
criteria. Subsequently, it selects a promising candidate to explore
its potential logic gate space. Thereafter, it derives control voltage
constraints used to ensure correct logic gate functionality. The
newly obtained logic gates are verified by SPICE simulations, and
finally the performance of the memristor gates are compared with
CMOS gates. The results show that the memristor gates, with
reasonable technology improvements, are comparable to CMOS
gates or even outperform them.

I. INTRODUCTION

As CMOS technology gradually scales down to its intrinsically
physical device limits, it faces major challenges [1] such
as saturated performance enhancement, increased leakage
power consumption, reduced reliability, etc. To address such
challenges, new technologies (e.g., memristors, nanotube,
graphene transistors, etc. [2]) have been proposed as
alternatives for next-generation VLSI circuits. Among
these technologies, the memristor is one of the promising
candidates. Massive memristors can be mapped on a crossbar
architecture, where memristors are located between horizontal
and vertical nanowire junctions [3]. The memristor crossbar
is able to provide great scalability, high integration density,
non-volatility, etc [3]. Several potential applications have been
proposed including non-volatile memory [2,3], neuromorphic
circuits [2,3] and novel computing paradigms for data-
intensive applications (e.g., computation-in-memory [4,5]).
To realize novel computing paradigms, it is pivotal to design
fundamental logic circuits/gates.

Four types of memristor-based logic circuits have been
proposed: (i) threshold logic [6], (ii) majority logic [6], (iii)
material implication logic [7], and (iv) Boolean logic [8]; each
logic type consist of different design styles. Among them,
Snider Boolean logic (SBL) [9] is a promising candidate for
memristor crossbar as shown later in this paper. The author
of SBL proposed three primitive operations: copy, inversion
and NAND. However, these operations are only a subset of
all the possible logic gates that can be implemented by SBL.
In addition, the author did not notice that these logic gates
only function correctly when the applied control voltages
satisfy certain constraints.

This paper explores all the possible logic gates for SBL. There-
after, it derives the control voltage constraints by formulating
the switching conditions of memristors during operation. The
main contributions of this paper consist of:

• A brief overview of existing memristor-based logic cir-
cuits.

• The logic gate space exploration for SBL.
• The derivation of the control voltage constraints to ensure

correct functionality of logic gates.
• A comparison between memristor and CMOS logic gates.

The remainder of this paper is organized as follows. Section
II overviews memristor logic circuits and selects SBL as a
promising candidate. Section III explores the SBL logic gate
space. Section IV derives the control voltage constraints. Sec-
tion V verifies new memristor gates and compares memristor
and CMOS gates. Finally, Section VI concludes the paper.

II. OVERVIEW OF MEMRISTOR LOGIC CIRCUITS

This section first overviews the-state-of-art of memristor logic
circuits. Thereafter, it selects SBL as a promising candidate
to implement memristor crossbar logic circuits.

The memristor logic circuits are briefly overviewed by
considering criteria related to technology and design.

Two technology criteria are considered: crossbar compatibility
(Xbar) and computing technology requirement (Cmp.Tech.).
Several memristor logic circuits have been proposed in
particular for the crossbar architecture and therefore, they are
compatible with crossbar (Y); in contrast, others may not
be compatible (N). The memristor logic circuits consist of a
computing (e.g., logic gates) part, and a CMOS control part
(e.g., control logic, clock, etc.). Some logic circuits require
only memristors (M) for the computing part, while others
require both CMOS and memristors (CM). This is captured
by computing technology requirement.

The considered design criteria are:

Logic Type: The logic type specifies the kinds of operations
that are performed; e.g., Boolean logic includes operations
such as AND, OR, etc. Five logic types have been
implemented with memristors; they are Boolean logic (Bool),
implication logic (IMP), threshold logic (TH), majority logic
(MAJ) and hybrid logic (Hyb.). In hybrid logic, different
logic types are merged (e.g., Boolean and implication logic
are combined in [18]).

3

26 PRIMITIVE LOGIC GATE - PAPER 3.1

TABLE I: Features of Memristor-Based Logic Circuits

Ref Name Abbr.
Technology Design

Xbar Cmp. Logic Logic Data Usage Syn. No. NVTech. Type Gate Sig. Step
[8] Hybrid Transistor/Memristor Boolean Logic HTMBL N CM Bool NAND V CFG AS S N

[10] Memristor Ratioed Logic MRL N CM Bool AND,NAND,OR,NOR V CMP AS S N
[11] mLogic mLogic N M Bool AND,NAND,OR,NOR,NOT C CMP CLK M Y
[12] Domain Wall Logic DWL N M Bool AND,OR,NOT C CMP CLK M Y
[6] Memristive Programmable Logic Array MPLA Y CM Bool AND,OR,NOT V CFG AS S N

[13] CMOS-like Configurable Memristor Logic CCML Y M Bool AND,NAND,OR,NOR,NOT V CMP AS S Y
[14] Stateful Logic Pipeline Architecture SLPA Y M Bool OR,NOR R CMP CTR M Y
[9] Snider Boolean Logic SBL Y M Bool CPY,NOT,NAND R CMP CTR M Y

[15] BRS/CRS Crossbar Logic BCCL Y M IMP CIMP,NIMP V CMP CTR M Y
[7] Material Implication Logic MIL Y M IMP IMP R CMP CLK M Y
[6] Charge Sharing Threshold Gate CSTG N CM TH TG V MEM AS S N
[6] Current Mirror Threshold Gate CMTG N CM TH TG V MEM AS S N

[16] Programmable CMOS/Memristor Threshold Logic PCMTL N CM TH TG V MEM CLK S N
[6] Memristive Programmable Threshold Logic Array MPTLA Y CM TH TG V MEM CLK S N

[17] All Spin Logic ASL N M MAJ MAJ,CPY,NOT C CMP CLK M Y
[6] Memristive Programmable Majority Logic Array MPMLA Y CM MAJ MAJ V MEM CLK S N

[18] Memristive Stateful Logic MSL Y M Hyb. IMP,CNIMP,AND,OR R CMP CTR M Y

Logic Gate: Logic gates compute primitive operations used to
build complex digital functions. For Boolean logic, the basic
operations are AND, OR, NAND, NOR, and NOT. Note that
not all the Boolean logic circuits can implement all gates. For
implication logic, implication (IMP, f=A+B where A and B
are inputs, and f the output), converse implication (CIMP,
f=A+B), nonimplication (NIMP, f=A·B), and converse
nonimplication (CNIMP, f=A·B) gates have been proposed
[19]. Threshold logic uses threshold gates (TG) and majority
logic majority gates (MG).

f =

{
1

∑n
i=1 wixi ≥ T (1)

0 Otherwise

f =

{
1

∑n
i=1 xi > (n+ 1)/2 (2)

0 Otherwise
Eq.1 and Eq.2 describe a TG and MG, respectively, where
n presents the number of inputs, xi the input, wi the weight
of input xi, and T the threshold. Finally, some logic circuits
may use a copy (CPY) operation to transmit data within the
crossbar.

Data Signal (Data Sig.): The data in memristor circuits
is presented either by a voltage (V) (i.e., different voltage
levels), a current (C) (i.e., different current directions or
values) or a resistance (R) (i.e., high or low resistance).

Memristor Usage (Usage): A memristor can be used as a
digital computing switch (CMP), a resistive memory (MEM)
or a configuration switch for signal routing in programmable
logic array (CFG).

Synchronization (Syn.): Some logic circuits use a clock
(CLK) or CMOS controller (CTR) for synchronization, while
others operate asynchronously (AS).

Number of Steps: Logic circuits may complete the operation
in a single (S) step or multiple steps (M).

Non-volatility (NV): The non-volatility indicates whether a
logic circuit can store its results when it is powered down.

Table I summarizes the features of each design style.
For instance, MRL uses hybrid technology to implement
Boolean logic; it uses individual memristors based on a
voltage; its basic gates are AND, NAND, OR and NOR

gates where each memristor is used as a computing switch;
MRL works asynchronously, computes the result within
one cycle without having non-volatility. Note that Table I
reflects relationships between different features; e.g., most
hybrid CMOS/memristor circuits calculate the results within
one cycle, while memristor-only circuits require several cycles.

SBL is one of the most promising candidates for memristor
crossbar due to the following reasons. Technology-wise, SBL
is compatible with memristor crossbar which provides great
scalability and high integration density. Next, SBL’s com-
puting part is implemented only by memristor (no CMOS
logic required) which potentially enables novel computing
paradigms [4,15]. Design-wise, SBL is based on Boolean
logic; this is preferred as it enables the resue of existing
arithmetic designs, IP designs, and EDA flows. In addition,
SBL is non-volatile, and therefore, has the potential to support
lower-power designs as it can be powered-off when it is not
used. Note that other criteria that are not used in this work
(e.g., latency) may lead to different outcomes.

III. LOGIC GATE SPACE OF SNIDER BOOLEAN LOGIC

This section first describes the memristor model used by SBL.
Thereafter, it presents the existing SBL gates. By investigating
these gates, gate parameters are extracted which are subse-
quently used to explore the potential logic gate space.

A. Memristor Model

The current-voltage relation of the ideal memristor used in
SBL [9] is shown in Fig. 1(a). In case the absolute value
of the voltage across the device is greater than its threshold
voltage Vth, the memristor switches from one resistive state
to another. Otherwise, it stays in its current resistive state.
Typically, a memristor requires two different Vth values to
switch from high (RH) to low (RL) resistance (SET), and low
to high resistance (RESET) [20]; see Fig. 1(b) and (c). The
black squares at the top edge of the memristors present the
positive terminal. For simplicity, we assume that this model
has the same absolute Vth value for both SET and RESET.

B. Existing SBL Gates

The authors in SBL [9] proposed three different logic gates:
copy (CPY), inversion (INV) and NAND as shown in Fig. 2.

PRIMITIVE LOGIC GATE - PAPER 3.1

3

27

(a) I-V Curve (b) SET (c) RESET

I

V

RL

RH
VwVthVh

-Vth

RL RH

Vw

GND

I

Vw

GND

I

RH RL

Fig. 1: Memristor model [9].

Each gate consists of one or multiple input memristors and
an output memristor; the output memristor (surrounded by
a dashed-line box in Fig. 2) is initialized to RH prior to
execution. For brevity, this initialization is not shown. The
nanowire that connects the input and output memristors is
floating; Vx presents the voltage of this floating nanowire
and Vom the voltage across the output memristor. Both
Vx and Vom are used to explain the working principle. In
addition, INV and NAND gates requires an extra resistor Rs

attached to the floating nanowire as shown in Fig. 2(c) and
(e), respectively; Rs must satisfy RL�Rs�RH to guarantee
that Vx is close to the desired voltage for correct operation [9].

SBL logic gates use a high (RH) and low (RL) resistance to
represent logic 1 and 0. To control these gates, three different
voltages are required: Vw, Vh, and GND (G); see Fig. 1(a).
Vw is used to program the resistance of a memristor; Vh is
used to control primitive operations (e.g., NAND [9]), or used
as half-select voltages to reduce the impact of sneak path
currents [21]. The typical relationship between Vw, Vh, G
and Vth is 0<Vh=

Vw

2 <Vth<Vw<2Vth. This is the minimum
requirement to ensure the functionality of logic gates.

CPY is given as an example as other logic gates work in
a similar way. Voltages G and Vw are applied to the input
and output memristors, respectively. In case the input is 1
(RH), Vx=Vw/2 , and hence, Vom=Vw−Vx=Vw/2<Vth (see
Fig. 2(a)). As a result, the output memristor stays at 1. In case
the input is 0 (RL), Vx≈0 and Vom≈Vw−Vx≈Vw>Vth (see
Fig. 2(b)). As a result, the output memristor switches to 0.

C. Gate Parameters

To explore the logic gate space of SBL, several gate
parameters are extracted from the SBL gates. These
parameters are desribed next.

Structure: From the CPY and INV gates of Fig. 2(a) and
(c), it is observed that the gates have a different structure
due to Rs; Rs can be regarded as an extra terminal of the
schematic. Hence, the schematic without Rs (see for example
CPY in Fig. 2(a)) is referred to as 2 terminal (2T), while the
schematic with Rs is referred to as 3 terminal (3T) (e.g., INV
gate in Fig. 2(c)).

Control Voltage: From the CPY and INV gates of Fig. 2(a)
and (c), it is observed that the gates are controlled with
different voltages; for instance, the GND and Vh are applied
to input memristors of CPY and INV, respectively. The
control voltages impact the functionality of the logic gates.
For instance, Fig. 2(g) and (h) swap the input and output
control voltages with respect to Fig. 2(a). As a result, this
gate is not able to copy data from the input to output

VwG
RH

Vx = Vw/2

RH

Vx G

RL RH

VwG

RL

(b) Copy 0

Vh Vw

Vx Vh

RL RH

Rs

(d) Invert 1

(c) Invert 0
Vh Vw

RH

Vx GRs

RH

RL

Vx

Vx Vx

Vx

(a) Copy 1

Vx Vh

RH

(e) NAND, All inputs are 1

(f) NAND, At least an input is 0

Vh Vw

RH

Vx GRs

RH

RL
Vx

RH

Vh

Vh Vw

RH

Rs
Vx

RL

Vh

Vw G
RH

Vx = Vw/2

RH

Vx Vw

RL RH

Vw G

(h) Input is 0

Vx

Vx

(g) Input is 1

Fig. 2: Basic Operations

memristors. In general, we denote the control voltages using
the tuple (Vci,Vco), where Vci and Vco present the voltage
applied to the input and output memristors, respectively; e.g.,
the control voltages of CPY in Fig. 2(a) is denoted by (G,Vw).

Fan-in (FI): From the INV and NAND gates of Fig. 2(c)
and (e), it is observed that the fan-in (the number of inputs)
leads to different functions; INV has a single fan-in (SFI),
while NAND a multi fan-in (MFI). The number of inputs is
denoted by ni.

Fan-out (FO): All the existing SBL logic gates have only
one output memristor; these gates are referred to as single
fan-out (SFO) gates. Here, we extend the SFO gates to multi
fan-out (MFO) gates by applying the same control voltages
to multiple output memristors. The number of outputs is
denoted by no.

Polarity: All input and output memristors of the existing SBL
gates have their negative terminal connected to the floating
nanowire, which is referred to as negative polarity (see also
Fig. 2). Here, we also explore the case where all the positive
termnals of the input and output memristors are connected to
the floating nanowire; this is referred to as positive polarity.
We limit the exploration to the case where either all positive
or all negative terminals of both input and output memristors
are connected to the vertical nanowires for manufacturing
reasons [21].

Data Representation: All existing SBL gates use RH and RL

to represent a logic 1 and 0, which are referred to as an RH1
data representation. Here, we will also explore the case when
RH is used to represent logic 0 and RL logic 1, which are
referred to as RH0.

Based on the above gate parameters, we propose generic gate
schematics for SBL as shown in Fig. 3(a) for 2T and (b)
for 3T. In the figure, Mi,k (1<k<ni) and Mo,p (1<p<no)
present the resistances of the input and output memristors,
respectively. These two schematics are simplified by their
equivalent circuits obtained through Kirchhoff’s current law;
note that all the input/output memristors are driven by the same
control voltages Vci/Vco. The results are depicted in Fig. 3(c)-
(d) where Mi,eq and Mo,eq present the equivalent resistance
of input and output memristors, respectively. The equivalent
circuits will be used to derive control voltage constraints in
section IV.

3

28 PRIMITIVE LOGIC GATE - PAPER 3.1

Vci

Vx

...

Vci... Vco Vco...

...

Vci

Vx

...

Vci... Vco Vco...

...

(a) Generic 2T (b) Generic 3T

Mi,eq

Vx

Vci Vco
Mo,eqMi,1 Mi,ni Mo,1 Mo,no Mi,1 Mi,ni Mo,1 Mo,no Mi,eq

Vx

Vci Vco
Mo,eq

(c) Equivalent 2T (d) Equivalent 3T

Mi,eq

Vx

Vw G
Mo,eq

(e) 2T, P, (Vw,G)

Mi,eq

Vx

G Vw
Mo,eq Mi,eq

Vx

Vw G
Mo,eq

(f) 2T, N, (G,Vw) (g) 3T, P, (Vw,G)

Mi,eq

Vx

Vh Vw
Mo,eq

(h) 3T, N, (Vh,Vw)

Fig. 3: 2T and 3T Logic Gates.

D. Logic Gate Space

The logic gate space is explored through an exhaustive
search of all the gate parameters. The SFI/SFO gate space is
first explored, and subsequently extended for MFI/MFO gates.

The SFI/SFO logic gate space is explored by using the
following gate parameters: structure, polarity and control
voltages; data representation is not considered (e.g., is set to
RH1) as SFI/SFO logic gates can only either be CPY or INV
gates; therefore, the data representation (RH1 or RH0) has
no impact on them. This leads to total 24 (2 structures x 2
polarities x 3! control voltages) combinations. Among all the
combinations, only four combinations are useful as shown in
Fig. 3 (e)-(h); the first three gates in Fig. 3 (e)-(g) are CPY
gates, while the last one in Fig. 3 (h) is an INV gate. Note
that although no new functions are formed, our approach
introduces two novel CPY gate implementations as shown
in Fig. 3 (e) and (g). All the other combinations of the gate
parameters ended up in useless gates, such as a gate shown
in Fig. 2(g)-(h) where the output is always 0.

The MFI/MFO gate space is derived from the SFI/SFO gate
space by extending it with the remaining gate parameters
(i.e., fan-in, fan-out and data prepresentation) that are not
considered in the SFI/SFO gate space exploration. Note that
the fan-out does not impact the gate operations, whereas
fan-in and data representation may do so. For instance, by
only changing the SFI of the INV gate of Fig. 2(c) to a
MFI gate the NAND gate of Fig. 2(e) is obtained. This
can be explained by the parallel input memristors and their
equivalent resistance Mi,eq; it can be either a relatively high
resistance (=RH

ni
) when all inputs are 1, or a relatively low

resistance (≈ RL

niL
) when niL inputs are 0. From this, we

observe that the parallel input memristors behave like an AND
gate. Therefore, an AND gate can be realized by replacing
the single fan-in of CPY in Fig. 4(b) with a multi fan-in.
Similarly, in the case of RH0, the multi fan-in introduces OR
and NOR gates. Note that the OR and NOR gates are the
same as the AND and NOR gates except that they differ in
data representation.

Fig. 5 shows the explored gate space with their gate param-
eters. These gates support basic computation and communi-
cation. In the figure, the original SBL gates proposed in [9]
are highlighted by boxes. Compared to the original SBL, our
approach (i) identifies new gates (such as AND, OR, NOR
gates), (ii) shows different ways to design them (using 2T or
3T structure and different polarities), and (iii) introduces multi

(b) AND(a) NAND

VwG
Mo1 Mo2

VwGG
VwVh Vw

Rs

Vh Vh

Mi3Mi2Mi1

Vx

Mo1 Mo2Mi3Mi2Mi1

Vx

Fig. 4: Multi Fan-out Logic Gates.

2T 3T

RH1/RH0

CPY

RH1 RH0RH1 RH0

OR NORINV AND NAND

Communication Computation

Fanin

Structure

Data
Representation

Basic
Operations

Basic Functions

Fanout SFO/MFO

2T 3T

SFO/MFO

P N P NPolarity P N

(Vw,G) (G,Vw) (Vw,G) (Vh,Vw)Control Voltage (Vh,Vw)

3T

SFI MFI

3T

N

(Vw,G) (G,Vw) (Vw,G)

P

MFI

2T

P

3T

N

(Vw,G) (G,Vw) (Vw,G)

P

MFI

(Vh,Vw)

RH1/RH0

SFO/MFO SFO/MFO SFO/MFO SFO/MFO

SFI MFI

3T

N

Fig. 5: Logic Gate Space.

fan-out gates. Overall, these new gates have the potential to
design logic circuits more efficiently than the original SBL
gates.

IV. CONSTRAINTS OF CONTROL VOLTAGES

This section formulates the control voltage constraints of
all the logic gates of Fig. 5. The logic gates only function
correctly when their control voltages are in certain range. The
voltage constraints are derived from the switching conditions
of both input and output memristors. We assume that each
memristor behaves as a resistor at each moment in time and
ignore the resistance and capacitance of the nanowires.

The functionality of the gate is guaranteed when the switching
conditions of the input and output memristors are satisfied.
For all the logic gates, the input memristors should stay in
their current resistive state independent of the gate function.
The output memristors, which are initialized to RH prior to
evaluation, either stay at RH or switch to RL depending on
the input values and gate type.

To illustrate the derivation of constraints, as an example we
discuss the AND gate with the following gate parameters:
RH1, 2T, P, MFI and MFO (see also Fig. 5). Fig.3(e) shows
the equivalent circuit of this AND gate. In case all the inputs
are 1 (RH), the outputs of the AND gate must remain 1 (RH)
and Mi,eq=

RH

ni
and Mo,eq≈RH

no
. To ensure that all the input

and output memristors stay logic 1 (RH), the voltage across
the input (Vim) and output (Vom) memristors should be less
than Vth as shown in Eq.3.

Vim = Vx − Vci = Vx − Vw < Vth (3)
Vom = Vx − Vco = Vx − 0 < Vth

In Eq.3, only the voltage of the floating nanowire Vx is
unknown. To express Vx, Kirchhoff’s current law is applied to

PRIMITIVE LOGIC GATE - PAPER 3.1

3

29

TABLE II: Control Voltage Constraints
2T Structure, Positive/Negative Polarity

1 + 1
rR

no
niL

< rwt < min{1 + no
ni

, 1 + niL
no

}
3T Structure, Positive Polarity
1 + 1

rR

no
niL

+ rLs
niL

< rwt <

min{1 + no
ni

+ rHs
ni

, 1 + niL
no+rLs

}
3T Structure, Negative Polarity

1 + nirht+no
ni+rHs

< rwt < min{1 + rRniLrht+no
rRniL+rHs

,

1 + ni
no

+ rLs
no

+ (1 + rLs
no

)rht}

the circuit of Fig. 3(e), and solved for Vx as shown in Eq.4.

Vw − Vx

Mi,eq
=

Vx − 0

Mo,eq
⇒ Vx =

Mo,eqVw

Mo,eq +Mi,eq
(4)

Therefore, Vim and Vom can be rewritten as:

⇒ Vim = − Mi,eqVw

Mi,eq +Mo,eq
;Vom =

Mo,eqVw

Mo,eq +Mi,eq
(5)

According to Eq.5, the condition Vim<Vth, which specifies
that the input memristors must stay RH , is always true as
Vim<0<Vth. The condition Vom<Vth for the output mem-
ristors is rewritten in Eq.6 by substituting Mi,eq=

RH

ni
and

Mo,eq=
RH

no
, respectively.

Vom =
ni

ni + no
Vw < Vth (6)

In case at least one input of the AND gate is 0 (RL), four
conditions must be satisfied. All the inputs must stay at their
current resistive states before and after the outputs switch,
and the outputs must switch from logic 1 to 0 and stay at
logic 0 after switching. Before the outputs switch, Mi,eq≈ RL

niL
,

Mo,eq=
RH

no
and Vx is obtained by substituting these equivalent

resistances in Eq.4. To ensure that the input memristors stay at
their current resistive states, −Vth<Vim<Vth (see Fig. 1(a));
to switch the output memristors to RL, Vom>Vth. The relevant
constraints are expressed in Eq.7 where rR=

RH

RL
.

−Vth < Vim = − Vw

1+rR
niL
no

< Vth, Vom = Vw

1+rR
no
niL

> Vth (7)

After the output memristors switch to RL, the Mi,eq remains
the same (Mi,eq≈ RL

niL
), while Mo,eq changes to RL

no
. To

ensure that the input memristors stay at their current resistive
states, −Vth<Vim<Vth (see Fig. 1(a)); to prevent the output
memristors from switching back to RH , Vom>−Vth. Note that
Vom>−Vth is always true as Vom>0 (see Eq.5).

−Vth < Vim = − Vw

1 +
Mo,eq

Mi,eq

= − Vw

1 + niL

no

< Vth (8)

All above constraints are further reduced to Eq.9 where
rwt=

Vw

Vth
and rht=

Vh

Vth
.

1 +
1

rR

no

niL
< rwt < min{1 + no

ni
, 1 +

niL

no
} (9)

Note that niL=1 is the worst case condition. The constraints
for other gates can be derived in a similar way. All the relevant
constraints of each gate are summarized in Table II where
rHs=RH

Rs
and rLs=RL

Rs
.

TABLE III: Memristor Technology and Simulation Parameters
Technology

F (nm) D (nm) RL (Ω) RH (Ω) Vth (V) Area (F2) Tsw (ps)
50 8 (5) 200k (4M) 400M 1.5 4 527 (10.2)

Simulation
Vw (V) Vh (V) Rs (Ω)

1.95 0.975 2M (40M)

(a) AND (b) NAND

RST INI EVA RST INI EVA

1.95 0.78 1.95 0 0.975
1.95 0
1.95 0
1.95 0

0.975 1.95 0 0.975 1.95
0.975 1.95 0 0.975 1.95

1 0
1 0
1

1 0
1 0

RST INI EVA RST INI EVA

1.95 1.86 1.95 0 0.929

0.975 0 1.95 0.975
0.975 0 1.95 0.975
0.975 0 0.975

0.975 1.95 0 0.975 1.95
0.975 1.95 0 0.975 1.95

1 0
1 0
1
1 0
1 0

1
1

CLK
Vx

Vci1

Vco1

Vco2

Mi1

Mo1

Mo2

Vci2

Vci3

Mi2

Mi3

CLK
Vx

Vci1

Vco1

Vco2

Mi1

Mo1

Mo2

Vci2

Vci3

Mi2

Mi3

Fig. 6: Simulation Results of Logic Gates.

V. SIMULATION RESULTS AND EVALUATION

This section first verifies the proposed logic gates and their
constraints using SPICE simulations; subsequently it discusses
the potentials of SBL gates by comparing them with CMOS
gates in terms of area, delay and power/energy consumptions.

A. Simulation

The simulation model of the SBL gates contains a CMOS
controller, voltage drivers, and a memristor crossbar. The
controller is used to determine the control voltage that must
be applied to each nanowire; it is based on a state machine
consisting of four states: IDLE, RST (reset all the memristors
to RH), INI (initialize the input memristors to RH or RL)
and EVA (evaluate the logic gates). The voltage drivers are
implemented with three pass transistors and three voltage
sources [21]. The memristor model (see Section III.A),
controller and voltage drivers are described by Verilog-A
modules, while the memristor crossbar by a SPICE netlist.

Table III summarizes both the memristor technology and
simulation parameters; the technology parameters RL, RH ,
Vth, feature size (F), area (A) and thickness of TaOx film
(D) are extracted from the physical devices in [22], while
the switching time (Tsw) is derived from the method used in
[23]; the values of the technology parameters in brackets can
be ignored for now and are explained later. The simulation
parameters consist of the control voltages and Rs, which are
determined by the proposed constraints in section IV.

To verify the proposed logic gates, the AND and NAND
gates of Fig. 4 with three inputs and two outputs are used
as examples. Fig. 6 shows the simulation results. In the
waveform, the voltages Vci#, Vco#, and Vx are shown in
addition to the input and output values; RH and RL present
logic 1 and 0.

The accuracy and effectiveness of the voltage constraints are
mainly determined by the formulation of Vx. Therefore, the
formulas in Section IV are used to calculate Vx, and the

3

30 PRIMITIVE LOGIC GATE - PAPER 3.1

TABLE IV: Vx at State EVA
Cases AND Cases NAND

Cal. (mV) SPICE (mV) Cal. (mV) SPICE (mV)
All 1 780 780 Not All 1 929.1 929

Not All 1, 0.974 0.974 All 1 33.3 33.3B B
Not All 1, 974.9 975 All 1, 1856.5 1860A A

calculated results are compared with the simulation results as
shown in Table IV. The table shows that for the AND and
NAND gates the calcuated (cal.) and simulated (SPICE) values
of Vx both before (B) and after switching (A) have an error
of only a couple of mVs. The simulation results show that the
functionality of gates perform correctly, and the constraints
are effective to determine the values of control voltages.

B. Comparison with CMOS gates

To investigate the potentials of the SBL gates, the INV and
2-input NAND gates are compared to 32nm FinFET gates
[3,24] in terms of area, delay, power/energy consumption
during a single operation. The area of each SBL gate in-
cludes the sum of both the transistors (T) required for the
control and memristors (M) used for computation; the voltage
drivers are implemented using the same technology as CMOS
gates; these voltage drivers can be shared by several (e.g.,
5) SBL gates as they can use the same nanowires in the
crossbar; the area of Rs (R) is not considered. In addition,
we only consider the evaluation step (e.g., EVA in Fig. 6)
and therefore, the controller is ignored. The delay of each
SBL gate is 3·Tsw as it requires three states for computation
(see Fig. 4). The power consumption of the SBL gates is
the sum of the power consumption of each memristor and
Rs (which are calculated by P = V 2/R where V is the
voltage across the memristor, R the memristor’s resistance
at that moment; V is calculated by the voltage formulas in
Section IV). Table V shows the evaluation results for both
SBL and FinFET gates. For SBL gates, we consider two cases
based on (a) existing and (b) future memristor technology.
The future memristor technology parameters can be found by
the numbers in the brackets of Table III. Comparing to the
same type of FinFET gates, SBL gates perform worse in terms
of delay and energy consumption, and may consume more
power for exisiting memristor technology. For example, the
SBL inverter consumes less power (652.9 nW) than the CMOS
inverter (1067 nW) with the almost same area. However, the
SBL inverter has longer (about 150x) delay than the CMOS
inverter, and this leads to a higher energy consumption. In
contrast, SBL gates with future technology parameters (e.g.,
with higher RL and less thickness of TaOx) can outperform
FinFET gates in all metrics. For instance, the delay of the
SBL inverter using future memristor technology is reduced
to around 31ps, which is comparable to the CMOS inverter;
therefore, the SBL inverter consumes around 28x less energy
than CMOS. Overall, the SBL gates are potential to implement
logic gates consume less area and power/energy with a slight
delay panelty with reasonable technology improvements.

VI. CONCLUSION

This paper first overviewed the existing memristor logic cir-
cuits. Thereafter, it explored the logic gate space for Snider

TABLE V: 32nm CMOS and Memristor Comparison
Inputs Tech. Gates No. of Devices Area Delay Power Energy

T M R (μm2) (ps) (nW) (fJ)

1 INV
CMOS 2 0 0 0.0794 10.6 1067 0.0113
Existing 6∗ 2 1 0.0795 1581 652.9 0.3439
Future 30.9 36.73 0.0004

2 NAND
CMOS 4 0 0 0.1590 14.9 194 0.0029
Existing 9∗ 3 1 0.1014 1581 549.5 0.2895
Future 30.9 31.13 0.0003

∗These transistors can be shared among 5 gates.

Boolean logic, which is one of the promising candidates for
logic circuit design style for memristor crossbars. Compared
to CMOS gates, memristor-based gates show potentials to
achieve competitive performance with reasonable technology
improvements. The Snider Boolean logic gates can be used
for both computation and communication; therefore, they are
a promising alternative for future VLSI circuits.

REFERENCES

[1] S. Borkar, “Design perspectives on 22nm cmos and beyond,” in DAC.
ACM, 2009, pp. 93–94.

[2] W. Zhao et al., “Nanodevice-based novel computing paradigms and the
neuromorphic approach,” in ISCAS. IEEE, 2012, pp. 2509–2512.

[3] ITRS report. [Online]. Available: http://www.itrs.net
[4] S. Hamdioui et al., “Memristor based computation-in-memory architec-

ture for data-intensive applications,” in DATE, 2015, p. 199.
[5] P.-E. Gaillardon et al., “The programmable logic-in-memory (plim)

computer,” in DATE, 2016, p. 188.
[6] G. S. Rose et al., “Leveraging memristive systems in the construction of

digital logic circuits,” Proceedings of the IEEE, vol. 100, pp. 2033–2049,
2012.

[7] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, pp. 873–876, 2010.

[8] J. Borghetti et al., “A hybrid nanomemristor/transistor logic circuit
capable of self-programming,” PNAS, vol. 106, pp. 1699–1703, 2009.

[9] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, pp. 1165–1172, 2005.

[10] S. Kvatinsky et al., “MRL:memristor ratioed logic,” in CNNA. IEEE,
2012, pp. 1–6.

[11] D. Morris et al., “mlogic: Ultra-low voltage non-volatile logic circuits
using STT-MTJ devices,” in DAC. ACM, 2012, pp. 486–491.

[12] J. A. Currivan et al., “Low energy magnetic domain wall logic in
short, narrow, ferromagnetic wires,” Magnetics Letters, IEEE, vol. 3,
pp. 3 000 104–3 000 104, 2012.

[13] I. Vourkas et al., “A novel design and modeling paradigm for memristor-
based crossbar circuits,” Nanotechnology, IEEE Transactions on, vol. 11,
pp. 1151–1159, 2012.

[14] K. Kim et al., “Stateful logic pipeline architecture,” in ISCAS. IEEE,
2011, pp. 2497–2500.

[15] E. Linn et al., “Beyond von Neumann: logic operations in passive
crossbar arrays alongside memory operations,” Nanotechnology, vol. 23,
p. 305205, 2012.

[16] L. Gao et al., “Programmable cmos/memristor threshold logic,” IEEE
Transactions on Nanotechnology, vol. 12, pp. 115–119, 2013.

[17] B. Behin-Aein et al., “Proposal for an all-spin logic device with built-in
memory,” Nature nanotechnology, 2010.

[18] E. Lehtonen et al., “Memristive stateful logic,” in Memristor Networks.
Springer, 2014, pp. 603–623.

[19] A. N. Whitehead et al., Principia mathematica. University Press, 1912,
vol. 2.

[20] S. Kvatinsky et al., “Team: Threshold adaptive memristor model,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 60, pp.
211–221, 2013.

[21] K.-H. Kim et al., “A functional hybrid memristor crossbar-array/cmos
system for data storage and neuromorphic applications,” Nano letters,
vol. 12, pp. 389–395, 2011.

[22] F. Miao et al., “Anatomy of a nanoscale conduction channel reveals
the mechanism of a high-performance memristor,” Advanced Materials,
vol. 23, pp. 5633–5640, 2011.

[23] M. Zangeneh et al., “Performance and energy models for memristor-
based 1T1R RRAM cell,” in GLVLSI. ACM, 2012, pp. 9–14.

[24] C. Meinhardt et al., “FinFET basic cells evaluation for regular layouts,”
in LASCAS. IEEE, 2013, pp. 1–4.

PRIMITIVE LOGIC GATE - PAPER 3.1

3

31

Scouting Logic: A Novel Memristor-Based
Logic Design for Resistive Computing

Lei Xie, H.A. Du Nguyen, Jintao Yu, Ali Kaichouhi, Mottaqiallah Taouil, Mohammad AlFailakawi*, Said Hamdioui
Laboratory of Computer Engineering, Delft University of Technology, the Netherlands

*Computer Engineering Department, Kuwait University, Kuwait
Email: {L.Xie,H.A.DuNguyen,J.Yu-1,M.Taouil,S.Hamdioui}@tudelft.nl; alfailakawi.m@ku.edu.kw

Abstract—Memristor technology is a promising alternative to
CMOS due to its high integration density, near-zero standby
power, and ability to implement novel resistive computing. One
of the major limitations of these architectures is the limited
endurance of memristor devices, especially when a logic gate
requires multiple steps/switching to execute the logic operations.
To alleviate the endurance requirement and improve the per-
formance, we present a novel logic design style, called scouting
logic that executes any logic gate by only reading the memristor
devices and without changing their states. Hence, no impact on
the memristors’ endurance. The proposed design is implemented
using two styles (current and voltage based). To illustrate the
performance of scouting logic based designs, the area, delay, and
power consumption are analyzed and compared with state-of-
the-art. The results show that scouting logic improves the delay
and power consumption by at least a factor of 2.3, while having
similar or less area overhead. Finally, we discuss the potential
applications and challenges of scouting logic.

I. INTRODUCTION

As CMOS technology is being continuously scaled down
towards its physical limits, it suffers from major challenges
such as saturated performance improvement, increasing
leakage power, etc [1,2]. Emerging technologies, such as
memristors, nanotube, graphene transistors [1], are under
research as an alternative to CMOS technology. Memristor
is one of the most promising candidates due to its great
scalability, high integration density, and its near-zero standby
power [1,3,4]. Novel memristor-based computing architectures
[5–7] have been proposed as an alternative to today’s von-
Neumann architectures for big-data applications. Preliminary
results of these resistive architectures show several orders of
magnitude improvement for different metrics such as energy
and area efficiency [5,6]. Big-data applications typically need
to process large volume of data resulting in frequent device
switching which poses as a concern for the endurance-limited
memristor technology [3]. As a result, a logic design style
with less switching frequency is required.

Recently, three types of memristor-based logic have been
proposed; they can be classified into [4]: threshold/majority
[8,9], implication [10,11] and Boolean logic [7,12,13]. Since
threshold and majority logic use voltages to represent data,
they are more applicable to von-Neumann architectures [8,9].
Due to the fact that implication and Boolean logic designs
represent data as resistances, it is more efficient to use

such approaches in resistive computing architectures [12,13].
However, in such logic designs, a sequence of primitive
operations is required to execute a simple logic gate (e.g.,
XOR) leading to frequent device switching which reduces
devices’ endurance. Moreover, these logic designs suffer
from a considerable delay hence low speed. To operate logic
gates with limited endurance, the authors of [7] proposed an
approach to implement logic operations using read operations
by modifying the sense amplifier. Unlike previous approaches
in [7], AND and OR gates are executed in one read operation
while the XOR gates executed in two. However, their
approach is area-inefficient and requires two steps to execute
in the worst case.

In this work, we propose a novel logic design style, called
scouting logic to enhance the performance of memristor-based
logic circuits by limiting all gate executions to a single read
operation. The current through the equivalent gate input
resistance or the voltage drop over it is compared with a
reference signal. The proposed design style is implemented
using two types of sense amplifiers (current and voltage
based) and their performance in terms of area, delay and
power consumption are investigated. Moreover, designing
robust scouting logic in presence of variations is discussed.

The remainder of this paper is organized as follows. Section
II provides a background on memristors and briefly describes
the state-of-the-art in memristor-based logic designs. Section
III presents the working principle of scouting logic. Section
IV verifies the designs of scouting logic using simulations and
evaluates their performance. Section V discusses the potential
applications and challenges of scouting logic. Finally, Section
VI concludes the paper.

978-1-5090-6762-6/17/$31.00 c© 2017 IEEE

II. BACKGROUND

A. Memristor

Fig. 1 (a) shows the typical current-voltage relation of a
bipolar memristor [3]. A memristor switches from one resistive
state to another (i.e., a write operation) when the absolute
value of the applied voltage (Vw) across the device is greater
than its threshold voltage (see Fig. 1(b)-(c)). Otherwise, it
stays in its current resistive state. Normally, a memristor
requires different switching threshold voltages for SET (Vts)
and RESET (Vtr) operations where Vtr<Vts [3]. Reading the

3

32 PRIMITIVE LOGIC GATE - PAPER 3.2

(a) I-V Curve of Memristor (b) SET (c) RESET

I

V

RL

RH VwVtsVr
-Vtr

RL RH
Vw

GND

I

Vw

GND

I

RH RL

SET

RESET
Vh

Fig. 1: Memristive Behaviour.

Boolean

Memristor-Based Logic Design

ImplicationThreshold/Majority

Memristor Ratioed
Logic [12]CRS Logic [10]

Programmable CMOS/
Memristor Logic [9]

Current Mirror
Threshold Logic [8]

Resistive Boolean
Logic [13]

Material Implication
Logic [11]

Pinatubo [7]

Scouting Logic

Fig. 2: Classification of Memristor-Based Logic

memristor is performed by applying the read voltage Vr; based
on the resistance a low or high current will flow through
the device. An additional control voltage Vh is required in
some of the Boolean and implication logic operations [11,13].
Typically, the control voltages should satisfy the relation:
0<Vr<Vh=Vw/2<Vtr <Vts<Vw<2Vtr (see Fig. 1(a)) [11,13].

B. Classification of Memristor-Based Logic

Several memristor-based logic designs have been proposed
[7–13]. Fig. 2 classifies them into Boolean, implication, and
threshold/majority logic [4]. Note that the logic designs using
resistance to represent data are suitable for crossbar-based
resistive computing. Two of such designs, resistive Boolean
logic and material implication logic, will be discussed next as
they are the most popular candidates for crossbars.

C. State-of-the-Art Resistive Logic Types

Resistive Boolean Logic (RBL) provides three primitive gates:
NOT, AND, and NAND [13]. It uses high resistance RH and
low resistance RL to represent a logic 1 and 0, respectively.
The two-input NAND gate of Fig. 3(a) is used as an example
to explain the working principle of RBL. We assume that the
inputs are stored on memristor M1 and M2, while the output
is produced at Mo. The gate requires an extra resistor Rs

(RL�Rs�RH). To complete the NAND gate, two steps are
performed. First, Mo should be RESET to RH . Next, control
voltages Vh and Vw are applied to the input and output
memristors, respectively. In case one of the inputs is 0, the
equivalent resistance of M1 and M2 is around RL (see e.g.
Fig. 3(a) where M1=RL and M2=RH). Therefore, the voltage
Vx on the nanowire connected to memristors and the resistor
is around Vh as RL�Rs�RH . As a result, the voltage Vom
across the output memristor Mo is Vw−Vx≈Vw−Vh=

Vw

2 <Vts,
and therefore Mo stays at RH (logic 1).

Material Implication Logic (MIL) provides a single primitive
gate only, which is material implication (IMP) as shown in
Fig. 3(b) [11]. MIL uses RH and RL to represent logic 0 and
1, respectively. An IMP gate consists of two memristors M1
and M2 and a resistor Rs (RL�Rs�RH). M1 is used as an

Vh VwVh

Vx ≈ Vh

RL

M2 Mo

(a) NAND of RBL

M1

RH RH Rs

(b) IMP of MIL

Vh Vw

M1 M2

RH RH RL

VX≈GND

Rs

Fig. 3: Logic Designs Suitable for Resistive Computing

input, while M2 is used both as input and output. To perform
the IMP operation, the control voltages Vh and Vw should be
applied to M1 and M2, respectively. In Fig. 3(b), both inputs
are assumed to be logic 0 (RH). After applying Vh and Vw,
Vx≈0 and the output switches to logic 1. Multiple sequential
IMP gates can realize AND, OR, or XOR gates [11].

Both RBL and MIL have several shortcomings. First, they
require several steps to execute a single gate thereby affecting
the delay and power. Second, both require additional CMOS
controllers to apply the control voltages and control the
sequential steps. This impact the performance of the design.
Third, both logic designs require the relative high voltage Vw

to program the memristors, and hence, each primitive gate
consumes more power/energy as compared to having read
operations only [3]. Forth, both designs need to switch the
output memristors frequently, and therefore, the entire design
is strongly limited by the endurance [1,3]. This motivates us
to develop scouting logic as described in the next section.

III. SCOUTING LOGIC

This section first describes the main idea of scouting logic.
Subsequently, it presents two designs of the sense amplifier
used to implement scouting logic.

A. Main Idea

Scouting logic performs its logic operations by modifying
the read operation. Fig. 4(a) shows a resistive memory
based on 1T1R cells. Normally when a cell is read, say
for example Memristor M1, a read voltage Vr is applied
to its row and the switch S1 is activated. Subsequently,
a current Iin will flow through the bit line to the input
of the sense amplifier (SA). This current is compared to
the reference current Iref. If Iin is greater than Iref (i.e.,
when M1 is RL state), the output of the SA changes to
Vdd (logic 1). Similarly, when M1 is RH state, Iin<Iref,
and the output changes to logic 0. For proper operations,
Iref should be fixed between high and low currents of Fig. 4(b).

Inspired by this read operation, we demonstrate how to
implement OR, AND and XOR scouting logic gates, which
are frequently used in bitwise logic operations [14,15].
Instead of reading a single memristor at a time, scouting
logic activates the two inputs of the gate simultaneously
(e.g., M1 and M2 in Fig. 4(a)). As a result, the input current
to the sense amplifier is determined by the equivalent input
resistance (M1//M2). This resistance results in three possible
values: RL

2 , RH

2 and RL//RH≈RL. Hence, the input current
Iin also can have only three values. By changing the value
of Iref different gates can be realized. To implement an OR
gate, Iref should be fixed between 2Vr

RH
and Vr

RL
as depicted in

PRIMITIVE LOGIC GATE - PAPER 3.2

3

33

SA

Vr

Vr

M1

M2

(a) Memory

Iin

Vout

Vr/RL 2Vr/RL2Vr/RH
Iin

1110/0100 Input

OR

Output10

S1

S2

Iref

Iin

Input

Read
Iref

Output
Vr/RH

0

0
Vr/RL

1

1

Iref

(b) References of Primitive Operations

Iin
AND

Iin
XOR

Iref1 Iref2

Output0 1

Output10 0

Vr/RL 2Vr/RL2Vr/RH

Vr/RL 2Vr/RL2Vr/RH

1110/0100 Input
Iref

1110/0100 Input

Fig. 4: Main Idea of Scouting Logic

Vout

Iin

p1 p2 p3 p4 p5

n1 n2 n3n0

2:1 2:1 4:1 4:1 4:1

V1 V2

Sr1 Sr2

Vdd

1:3 2:1
2:1

2:1

Iref1 Iref2

CA

A B

CB

Vr

Vr

M1

M2

S1

S2

CSA

Operation

OR/Read

AND

XOR

Sr1
OFF

ON

OFF

Sr2

OFF

ON

OFF

Switch Configurations

Fig. 5: Current-based SA

Fig. 4(b)). As a result, only when R1//R2=
RH

2 the output is
0. Similarly, to implement an AND operation, Iref should be
fixed between 2Vr

RL
and Vr

RL
. The XOR operation needs two

references and only when R1//R2≈RL the output is logic 1.
Note that it is also possible to support multi-fanin logic gates
by setting proper reference currents.

The above implies that reading logic circuit should satisfy
two requirements. First, it should be operational with a single
or two references. Second, it should support a reconfigurable
reference signal. Different from Pinatubo [7], scouting logic
uses sense amplifiers with a lower delay and smaller area.
Next, we describe the two SA designs that satisfy the above
requirements.

B. Sense Amplifier Design

We propose two SA designs that both satisfy the two
requirements: current-based SA (CSA) shown in Fig. 5, and
voltage-based SA (VSA) shown in Fig. 6. CSA generates its
reference current using transistors p1 and n1. This reference
current is duplicated via p2 and p3 using PMOS current
mirrors. Note that the value of Iref2 is twice larger than that
of Iref1 as p3 has a double size. The input current Iin is also
mirrored twice through n2 and n3. The two pairs of transistors
p2-n2 and p3-n3 implement at the same time two current
comparators [16]; they compare the two reference currents
(i.e., Iref1 and Iref2) with the input current (Iin). Transistors
p4 and p5 determine the logic operation and decide which
reference currents are enabled. The table on the right side
of Fig. 5 summarizes how p4 and p5 are configured for the
different gates. For instance, when an XOR is performed
both p4 and p5 are turned off, i.e. both Iref1 and Iref2 are
considered for the comparison. Assume for this gate that
M1 is RH and M2 is RL. Hence, Iref1<Iin<Iref2 (see right
bottom of Fig. 4(b)). The parasitic capacitor CA of input A is
discharged to ground as Iref1<Iin, while CB is charged to Vdd

as Iin<Iref2. As a result, the output voltage Vout is Vdd. The

Mr1 = 2RL

Mr2 = RL

Mr3 = 2.5RL

Mr1

Mr3

Mr2 Vout
Sr2

Sr3

Sr1

VSA

V2
4:1

4:1

4:1
Vr

Vr

M1

M2

S1

S2

V1 Operation

OR/Read

AND

XOR

Sr1
ON

ON

OFF

Sr2

ON

OFF

OFF

Switch Configurations

Sr3

OFF

OFF

ON

Fig. 6: Voltage-based SA

AND and OR gates work in a similar way.

Fig. 6 shows the VSA. It consists of three reference memristors
(Mri, 1≤i≤3), three switches (Sri, 1≤i≤3), and an XOR gate.
The switches are used to select the reference memristors, while
the XOR gate is used as a threshold function. The table on the
right part of Fig. 6 shows how the switches are configured for
different gates. For instance, to perform an XOR operation,
Sr1 and Sr2 are turned off while Sr3 is turned on. After
switches S1 and S2 are turned on, the input (M1 and M2)
and the reference memristors form a voltage divider. Let us
assume that M1 is RH and M2 is RL for the XOR gate. By
setting Mr1 and Mr3 to appropriate values (e.g., Mr1=2RL and
Mr3=2.5RL), the voltage V1 will be greater than the threshold
voltage of a transistor while V2 will be less than the threshold
voltage. As a result, the output Vout approximates 0V. Note
that the reference memristors only need to be programed once
and may be implemented by resistors.

IV. EVALUATION

This section first verifies scouting logic (SL). Thereafter, it
provides a comparison with state-of-the-art.

A. Design Verification

The SL gate simulations are verified with Cadence Spectre.
The simulation model consists of the 1T1R array of Fig. 4(a)
connected to either CSA or VSA; both SAs have been
verified. The 1T1R array and SAs are described by a SPICE
netlist, while the memristor model [17], CMOS controller
and voltage drivers by Verilog-A modules. The simulation
parameters are extracted from references [11,13,18] and
summarized in Table I. The transistor sizes of the CSA and
VSA designs are depicted in Figs. 5 and 6, respectively and
are simulated with the PTM 90nm [19] library. Here, we
assume that all the memristors already store same data (in
1T1R array).

The AND, OR and XOR gates are verified for all the pos-
sible memristor states. Fig. 7(a) and (b) show an example
of waveforms for the XOR gate based on CSA and VSA,
respectively. Here, the states M1=RH (logic 0) and M2=RL

(logic 1) are simulated. To evaluate the output of the XOR
gate, the switches S1 and S2 of Fig. 5 should be turned on
to read the memristors M1 and M2. To configure the CSA
of Fig. 5 as an XOR gate, the switches Sr1 and Sr2 should
be turned off. As a result, the voltage of node V1 of CSA
is 0.256V<Vth,cmos=0.45V while the voltage of node V2 is
0.59V>Vth,cmos=0.45V (see also Fig. 5). The final output Vout

of the XOR gate is 0.894V (logic 1). VSA-based XOR gate

3

34 PRIMITIVE LOGIC GATE - PAPER 3.2

TABLE I: Parameters

Parameter Description Value
Technology

Memristor (TaOx) [1,18]
F (nm) Feature size 90
Vts (V) Threshold voltage for SET 1.17
Vtr (V) Threshold voltage for RESET 1.06
RL (kΩ) Low resistance 200
RH (MΩ) High resistance 10
Acell (μm2) Area of a 1T1R cell 0.0486
Tsw(ns) Switching time (max of SET and RESET) 1.71

CMOS
UMC 90nm Library

Design [11,13]
NR No. of rows in 1T1R array 128
NC No. of columns in 1T1R array 32
Vw (V) Program voltage 1.6
Vh (V) Half-select voltage 0.8
Vr (V) Read voltage 0.9
Vdd (V) CMOS power supply 0.9

works in a similar way as shown in Fig. 7(b). Note that the
VSA based design is faster than the CSA design.

B. Comparison with the State-of-the-art

SL gates (i.e., AND, OR and XOR gates) both based on CSA
(SL CSA) and on VSA (SL VSA) are compared to RBL
and MIL gates in terms of delay, power consumption and
area using a 128x32 1T1R memory array. The considered
components are the 1T1R memory array, the CMOS controller
and SAs. For RBL and MIL, additional memristors required
to store intermediate results and implement Rs as shown in
Fig. 3 are also considered. The delay and power consumption
of the 1T1R memory array are obtained from Cadence
Spectre while the area of a single 1T1R cell is taken from
ITRS [1]. CMOS controllers are synthesized and evaluated
using Cadence RTL Compiler with UMC 90nm library. The
delay and power consumption of the SAs are obtained from
Cadence Spectre while the area of a single SA is obtained
from Cadence Virtuoso using Cadence 90nm PDK [20]. For
the modified SA used by SL, only the additional transistors
are considered as compared to the current SA of [21].

Fig. 8 presents the results of the comparison:
• Delay: CSA-based SL has the lowest delay to execute a

single step as well as the lowest total delay (see Fig. 8(a)
and (b)); its total delay is at least 2.48 times shorter than
RBL and MIL. Although RBL and MIL have a shorter
delay per step than VSA-based SL, their total delay is
longer as they need multiple steps to execute a logic
operation.

• Power: VSA-based SL consumes the lowest power for
all the gates; it consumes at least 2.36 times less power
than RBL and MIL as it can execute a logic operation
in a single step. In addition, the controller dominates
the power consumed by RBL and MIL, while the SAs
dominate the power consumption for SL.

• Area: SL does not need more area than RBL and MIL.
Although CSA- and VSA-based SL need additional area
for the modified SA, it utilizes a simple CMOS controller.
In contrast, RBL and MIL require additional area for their
more complex controller as they need several steps to
execute the gate. The total additional area of the extra
cells for MIL and RBL is negligible.

S1,2

Sr1

Sr2

Sr3

V1

V2

Vout

Time (ns)
(b) VSA-Based XOR

S1,2

Sr1

Sr2

V1

V2

Vout

Time (ns)
(a) CSA-Based XOR

Fig. 7: SPICE Simulation Results

The comparison results clearly show that SL outperforms RBL
and MIL in terms of delay and power consumption while
having the same or less area overhead.

Fig. 9 compares SL with Pinatubo [7] in terms of delay and
area. However, as the authors of [7] provided a design without
implementation details (i.e., W

L ratio of the transistors), we
use the number of computation steps as the delay metric and
the number of required transistors and memristors as the area
metric. Compared to Pinatubo, SL requires only one step
to execute the XOR gate. All other gates can be executed
in a single step. In addition, the current- and voltage-based
sense amplifiers require much less transistors (40% and 64%,
respectively). Therefore, SL is potentially faster with a lower
area overhead than Pinatubo.

V. DISCUSSION

This section discusses potential applications and some chal-
lenges and solutions of scouting logic design.

A. Potential Applications

SL can implement many bitwise logic operations, such as
AND, OR and XOR, in a very efficient manner as pointed out
earlier. Such logic operations are frequently used in many data-
intensive applications such as database queries [15], graph
processing [14], etc. In traditional settings, these applications
need to transfer data between the processor and memory to
perform these bitwise logic operations. The movement of such
large amount of data input/output of the memory results in
considerable amount delay and energy overhead [14,15]. Since
SL can directly perform logic operations within the memory
array, it can eliminate the need for data movement between
processors and memory, thus, significantly reducing execution
time and energy consumption. Moreover, scouting logic based
memories have very good scaling characteristics due to the
fact that only memory controller need to be adapted.

B. Challenges

Memristor technology has been being extensively studied for
the past few years due to its applicability in logic and memory
designs [4]. Memristor devices have been implemented using
different material and cell structures, but nevertheless all
suffer from the same two major challenges, namely, limited
cell endurance and device variability [4,22]. Performing
logic operations using scouting logic requires only reading
memristors’ states as compared to other memristor-based
logic designs that require switching between resistive states.

PRIMITIVE LOGIC GATE - PAPER 3.2

3

35

(a) Delay

(b) Power

Delay per Step (ns)

0
2.5

5
7.5
10

RB
L

M
IL

SL
_C

SA

SL
_V

SA

Ctrl Cell SW SA

0
4
8

12

RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA

AND OR XOR

No. of Execution Steps

0

20

40

RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA

AND OR XOR

Total Delay (ns)

0
25
50
75

100

RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA

AND OR XOR

Cell+SA Ctrl

0

2

4

6

RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA RB
L

M
IL

SL
_C

SA

SL
_V

SA

AND OR XOR

0
200
400
600
800

RB
L

M
IL

SL
_C

SA

SL
_V

SA

Cell SA Ctrl

No. of Extra Cells Total Area Overhead (um2)

(c) Area Overhead

Total Power (uW)

Fig. 8: Comparison Between Different Logic Styles

(a) Delay (b) Area

0
5

10
15
20
25

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

No. of FETs No. of Memristors

0

1

2

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

Pi
na

tu
bo

SL
_C

SA

SL
_V

SA

AND OR XOR

No. of Steps Device Counts

Fig. 9: Comparison with Pinatubo

Requiring only read operations makes scouting logic designs
have better endurance as compared to other approaches
resulting in improved device lifetime.

Similar to all memristor based logic, scouting logic suffers
from CMOS (i.e. transistor mismatch [23]) and memristor
variations (cycle-to-cycle and device-to-device [22]). Such
variations may cause circuit failures if not addressed
appropriately. Extensive research on CMOS process variations
in sense amplifiers has been proposed [23,24]; hence we will
elaborate only on memristor variations and how scouting
logic can be made more resilient to such variations.

Fig. 10 shows a methodology that can be used to realize a
more robust scouting logic design against variations. Firstly,
the design is simulated without variations and the range for
RL and RH are determined. Fig. 11(a) shows the relationship
between the equivalent resistance of two input memristors
(Req) and the normalized output voltage (Vout

Vdd
) of the sense

amplifier of Fig. 5 configured for XOR operation; we assume
here that the output threshold for logic 1 is 0.6Vdd and 0.4Vdd
for logic 0 (see red lines in Fig. 11(a)). Hence, the resistance
ranges for RL and RH can be determined by sweeping the
resistance values of memristors using SPICE simulations.

Since process variations may cause the resistance values to
deviate from their intended values [22,25], the equivalent re-
sistance might fall outside the working range of the memristor
leading to operational failure. Variations are typically modeled
as a normal distribution as shown in Fig. 11(b) [22], where the

Variation-free SPICE simulation
(Cadence Spectre)

Initial design

Ranges of RL and RH

Variation-Injected Monte Carlo
SPICE simulation

(Cadence Spectre)

Select values of RL and RH

considering the worst case

Pass
Fail

Failure
Rate

Robust Design

Fig. 10: Variation Resilient Design Methodology

normalized standard deviation versus the mean (or intended)
resistance values is given. The figure shows that RH suffers
from large variance as compared to RL, and that the standard
deviation reduces when smaller values for RL and RH are
used. It is possible to use the standard deviation to express
the failure rate. To realize a failure rate of e.g., 10-3, the value
of RL or RH should fall in the range of nσ=3σ of the normal
distribution [24] (i.e. μ+3σ and μ−3σ). For example, a robust
XOR gate design considering the variability should satisfy the
following equations:

1

2
(RL + nσσRL

) < (RL||RL)Max (1)
[
(RL − nσσRL

)
]
||
[
(RH − nσσRH

)
]
> (RL||RH)Min (2)

[
(RL + nσσRL

)
]
||
[
(RH + nσσRH

)
]
< (RL||RH)Max (3)

1

2
(RH − nσσRH

) > (RH ||RH)Min (4)

where σRL
and σRH

represent the standard deviation of RL

and RH , respectively. Eq. 1 applies when both XOR inputs
are 1, and hence output is 0. As the maximum value of the
low resistance of each input memristor is RL + nσσRL

, the
maximum equivalent resistance 1

2 (RL + nσσRL
) should be

3

36 PRIMITIVE LOGIC GATE - PAPER 3.2

RL

RH

(b) Normalized Deviation
of Resistance [15]

(a) Relation between
Resistance and Output Voltage

Logic 1

Logic 0

Unknown

Fig. 11: Range and Normalized Deviation of Resistance

less than (RL||RL)Max. Eq. 2 and 3 are the constraints for
inputs 01/10 while Eq. 2 for inputs 00.

Once RL and RH are defined, the design is subsequently
simulated using Monte Carlo simulations in Cadence Spectre
[20]. The total number of failed simulations are monitored. If
failure rate is lower than the requirement, then the design is
considered robust; otherwise, the whole process is restarted by
selecting new reference currents (i.e. redesign). Designs can
be modified in two ways; either to modify mean resistance
values, or tune the reference current/voltage value of the sense
amplifier (i.e., W

L of transistors in CSA or Mi of VSA).
Changing mean resistances values can be accomplished by
the writing circuity; e.g., by tuning the voltage pulse duration
or amplitude to map logic states to resistance states as needed.

To verify the robust design methodology of Fig. 10, we apply
the proposed approach to CSA-based scouting logic approach
as a case study. Here, a 3σ design is used which satisfies a
failure rate of 10-3. The initial design (input of Fig. 10) is
compared with the robust design (output of Fig. 10) in terms
of failure rate. To verify the proposed approach, a 1000-
iteration Monte Carlo simulation is conducted using Cadence
Spectre simulator and the output voltage for each simulation
run is monitored. The output voltage for logic 1 requires a
voltage of 0.6×Vdd or higher while for a logic 0 should be
below 0.4×Vdd. Therefore, if a simulation run results in an
output that does not fall in either range will be considered as
an unknown and hence unreliable operation. If the logic state
of the simulated output is different from the expected one,
the design fails; otherwise, it passes. Table II summarizes
technology and Monte Carlo simulation parameters used in
the experiments. Note that the σ of the normal distribution are
extracted from [22] depending on the selected resistance value.

The bottom of Table II shows failure rates as given by the
Monte Carlo simulations. For the OR gate, both the initial and
the robust design versions pass. However, for AND and XOR
gates, the initial version fails when logic states are 01/10 while
the robust version still passes. Therefore, the methodology
proposed in Fig. 10 can enhance the robustness of the design
to deal with resistance variation in scouting logic based design.

VI. CONCLUSION

This paper proposed scouting logic design for resistive com-
puting. Such design does not reduce device endurance. In
addition, it outperforms the existing memristor-based logics

TABLE II: Parameters and Results of Monte Carlo Simulations

Technology Parameters
MOSFET p1,2 p3,4,5 n0,1,2,3

W
L

4 8 4
Version Initial Robust
RH/RL 50
RL(kΩ) 23 30
RH (kΩ) 1150 1500

Monte Carlo Simulation Parameters
Iteration 1000
Version Initial Robust

σRL
/μRL

[22] 0.0261 0.0281
σRH

/μRH
[22] 0.0406 0.0418

VH 0.6×Vdd
VL 0.4×Vdd

Failure Rate
Version Initial Robust��������Gate

Input 00 01/10 11 00 01/10 11

AND 0 19.10% 0 0 0 0
OR 0 0 0 0 0 0

XOR 0 45% 0 0 0 0

in terms of delay and power consumption, while using similar
or less area.

REFERENCES

[1] ITRS ERD report. [Online]. Available: http://www.itrs.net
[2] B. Hoefflinger, Chips 2020: a guide to the future of nanoelectronics,

2012.
[3] J. J. Yang et al., “Memristive devices for computing,” Nat. Nano, 2013.
[4] S. Hamdioui et al., “Memristor for computing: Myth or reality?” in

DATE. IEEE, 2017.
[5] S. Hamdioui et al., “Memristor based computation-in-memory architec-

ture for data-intensive applications,” in DATE. IEEE, 2015.
[6] H. A. Du Nguyen et al., “Computation-in-memory based parallel adder,”

in NANOARCH. IEEE, 2015.
[7] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk

bitwise operations in emerging non-volatile memories,” in DAC. IEEE,
2016.

[8] G. S. Rose et al., “Leveraging memristive systems in the construction
of digital logic circuits,” Proceedings of the IEEE, 2012.

[9] L. Gao et al., “Programmable cmos/memristor threshold logic,” TNANO,
2013.

[10] E. Linn et al., “Beyond von neumannlogic operations in passive crossbar
arrays alongside memory operations,” Nanotechnology, 2012.

[11] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, pp. 873–876, 2010.

[12] S. Kvatinsky et al., “Mrl: memristor ratioed logic,” in CNNA. IEEE,
2012.

[13] L. Xie et al., “Boolean logic gate exploration for memristor crossbar,”
in DTIS. IEEE, 2016.

[14] V. Agarwal et al., “Scalable graph exploration on multicore processors,”
in SC. ACM, 2010.

[15] J. Chou et al., “Parallel index and query for large scale data analysis,”
in SC. ACM, 2011.

[16] L. Samuel, “Cmos current comparator with regenerative property,”
IJECSE, 2013.

[17] A. Siemon et al., “Simulation of tao x-based complementary resistive
switches by a physics-based memristive model,” in ISCAS. IEEE, 2014.

[18] F. Miao et al., “Anatomy of a nanoscale conduction channel reveals the
mechanism of a high-performance memristor,” Adv. Mat., 2011.

[19] Predictive transistor model. [Online]. Available: http://ptm.asu.edu/
[20] Cadence ic design kit. [Online]. Available: https://www.cadence.com/
[21] M.-F. Chang et al., “An offset-tolerant fast current-sampling-based sense

amplifier for small-cell-current nonvolatile memory,” JSSC, 2013.
[22] A. Fantini et al., “Intrinsic switching variability in hfo 2 rram,” in IMW.

IEEE, 2013.
[23] W. Dehaene et al., “Variability-aware design of low power sram mem-

ories,” 2009.
[24] I. Agbo et al., “Quantification of sense amplifier offset voltage degra-

dation due to zero-and run-time variability,” in ISVLSI. IEEE, 2016.
[25] M. Hu et al., “Geometry variations analysis of tio 2 thin-film and

spintronic memristors,” in ASP-DAC. IEEE, 2011.

PRIMITIVE LOGIC GATE - PAPER 3.2

3

37

On the Robustness of Memristor Based Logic Gates
Lei Xie, Hoang Anh Du Nguyen, Jintao Yu, Mottaqiallah Taouil, Said Hamdioui

Laboratory of Computer Engineering, Delft University of Technology, Delft, the Netherlands
Email: {L.Xie,H.A.DuNguyen,J.Yu-1,M.Taouil,S.Hamdioui}@tudelft.nl

Abstract—As today’s CMOS technology is scaling down to its
physical limits, it suffers from major challenges such as increased
leakage power and reduced reliability. Novel technologies, such
as memristors, nanotube, and graphene transistors, are under
research as alternatives. Among these technologies, memristor is
a promising candidate due to its great scalability, high integra-
tion density and near-zero standby power. However, memristor-
based logic circuits are facing robustness challenges mainly
due to improper values of design parameters (e.g., OFF/ON
ratio, control voltages). Moreover, process variation, sneak path
currents and parasitic resistance of nanowires also impact the
robustness. To realize a robust design, this paper formulates
proper constraints for design parameters to guarantee correct
functionality of logic gates (e.g., AND). Our proposal is verified
with SPICE simulations while taking both device variation and
parasitic effects into account. It is observed that the errors due
to analytical parameter constraints are typically within 4.5% as
compared to simulations.

I. INTRODUCTION

As today’s CMOS technology is scaling down to its
physical limits, it suffers from major challenges such as
saturated performance gain, increased leakage power, and
reduced reliability. Emerging technologies (such as nanotube
transistors, graphene transistors, magnetic tunneling junctions
and memristors) are being investigated as alternatives [1–
3]. Among these technologies, memristor is a promising
candidate due to its great scalability, near-zero standby power
and compatibility with CMOS process [1,2].

Many potential applications based on memristor technology
have been proposed, such as non-volatile memory,
neuromorphic circuits and resistive computing architectures,
and logic [2]. With respect to logic, three types of memristor-
based logic have been proposed;namely threshold/majority,
implication, and Boolean logic [2]. In threshold/majority
logic, memristors are used as input weights while CMOS
current mirrors or inverters implement the threshold function.
Both implication and Boolean logic use resistance to represent
the data and therefore can be easily integrated in high density
memory based on crossbar architectures [4,5]. However,
implication and Boolean logic are facing robustness issues,
such as unexpected switching of memristors, which leads to
an erroneous functionality. These issues are typically caused
by improper design parameters and thus, proper constraints
must be formulated to realize a robust design.

Only limited work has reported such design constraints.
In [6], Kvatinsky et al. reported a set of constraints for
individual implication logic gates. However, this work did
not consider device variation [7], sneak path currents [4],
and nanowire resistances. In [4], Zhu et al. reported a

methodology to derive design constraints while considering
sneak path currents within the crossbar. However, they did not
consider dynamic switching process of memristors and other
effects such as device variation [7] and nanowire resistances.
Both [6] and [4] focused on implication logic and no such
work has been done for Boolean logic. More importantly, the
impact of device variation, dynamic switching process, sneak
path currents, and nanowire resistances on robustness have
not been intensively studied.

To address above issues, this paper proposes a novel
methodology to analytically formulate design constraints,
while considering the dynamic switching of memristors. The
impact of device variation and parasitics effects as well as the
impact of different memristor models are studied extensively
using simulations. To illustrate our proposal, this paper uses
resistive Boolean logic [5,8] as an example. Note that our
approach also can be applied to implication logic.

The rest of this paper is organized as follows. Section II
describes the fundamentals of the resistive Boolean logic.
Section III illustrates the proposed approach. Section IV
verifies our approach using SPICE simulations. Finally, section
V concludes the paper.

978-1-5386-0473-1/17/$31.00 c© 2017 IEEE

II. FUNDAMENTALS OF RESISTIVE BOOLEAN LOGIC

This section first explains the memristive behaviour. There-
after, it classifies reported memristor models and describes the
model [7] used in this paper. Finally, it presents the primitive
logic gates of resistive Boolean logic (RBL) [5].

A. Memristive Behaviour

Fig. 1 shows the I-V relation of a memristor, which has
a high (RH) and low (RL) resistance [10]. Initially, when
a memristor is fabricated, it cannot switch until a high
voltage Vf is applied to the memristor, referred to as forming
process [10]. Thereafter, the memristor switches from one
resistive state to another in case the absolute value of the
voltage across the device is greater than its threshold voltage.

SET

RESET

I

V

RL

RH

VwVts

-Vtr

Vf

FORM

Vh

SET

Vw

GND

I

Vw

GND

I

RH RL

RESET
RL RH

Fig. 1: Behaviour of a Memristor [9].

3

38 PRIMITIVE LOGIC GATE - PAPER 3.3

Pt

Pt

TiO2

FORM

SET

RESET
RL RH

gmin

gmax

Fig. 2: Mechanism of Resistive Switching

Otherwise, it stays in its current resistive state. A memristor
typically requires two different threshold voltages to switch
from high-to-low (SET, Vts) and from low-to-high (RESET,
Vtr<Vts) resistance [7]. In the figure, the black squares at
the edges of the memristors represent their positive terminal.
RBL uses voltages Vw and Vh to control its primitive
operations. Vw is used to program memristors. Vh is used to
(i) implement gates (e.g., NAND), (ii) minimize sneak path
currents and (iii) avoid unexpected programming [5]. The
typical relationship between control and threshold voltages is
valuing 0<Vh=Vw

2 <Vtr<Vts<Vw<2Vtr, which provides a
rough estimate of a valid voltage range [8]. A more accurate
range will be shown later in Section IV.

Fig. 2 shows the resistive switching process [10]. After the
forming process, a conductive filament consisting of oxygen
vacancies is created in the TiO2 layer. The gap g between the
top electrode and the tip of the conductive filament determines
the resistive state [10]. When the gap is at its minimum (i.e.,
gmin), the memristor is in RL state. In contrast, when the
gap is at its maximum (i.e., gmax), the memristor is in RH

state. This gap g is tuned by applying the voltage as shown
in Fig. 1. For instance, when Vw>Vts and GND are applied
to the top and bottom terminal of the device respectively, the
gap is reduced to gmin and the memristor is SET to RL.

B. Memristor Models and its Classification

To formulate the memristive behaviour, many memristor mod-
els have been proposed [11,12]. These models can be classified
using the following two criteria [11,12]:

• Switching process: it describes whether the memristor
switches abruptly or smoothly when the voltage across
the memristor is greater than its threshold voltage.

• I-V relation: it describes whether the current I flowing
through the memristor is a linear (i.e., I=V

R , R is the
resistance of memristor) or nonlinear (i.e., I=f(V),
where f is a nonlinear function) function of the voltage
V across it.

Applying the above two criteria, memristor models are classi-
fied into three classes:

• Ideal models: this class of models apply abrupt switching
and their I-V relation is linear, such as the behavioural
model of Fig. 1.

• Linear models: this class of models apply smooth switch-
ing and their I-V relation is linear, such as Biolek’s model
[13].

• Nonlinear models: this class of models apply smooth
switching and their I-V relation is nonlinear, such as
Guan’s model [7].

To illustrate our proposal, this paper uses Guan’s model as an
example, since it is a calibrated model that can also model

TABLE I: Parameters of Guan’s model [7]
Parameter Description Value
ν0 (nm/ns) Velocity of ions 10
Ea (eV) Activation energy barrier 0.6
a (m) Hopping distance of ions 2.50E-10
Fmin (V/m) Minimum field requirement 1.40E+09
q (C) Charge value of a single electron 1.60E-19
k (m2kgs-2K-1) Boltzmann constant 1.38E-23
T (K) Temperature 298
tox (m) Thickness of the oxide layer 1.20E-08
gmin (m) Minimum of the gap 2.00E-10
gmax (m) Maximum of the gap 2.10E-09
γ0 Fitting parameters 16
β Fitting parameters 0.8
I0 (A) Fitting parameters 1.00E-03
g0 (m) Fitting parameters 2.50E-10
V0 (V) Fitting parameters 0.25

device variation. Guan’s model formulates the I-V relation
using a tunnelling current, which is tuned by the voltage V
across the device and the gap g. This I-V relation is expressed
in Eq. 1 [7]:

I(g, V) = I0 · exp
(
− g

g0

)
· sinh

(
V

V0

)
(1)

where I0, g0 and V0 are fitting parameters which depend on
different manufacturing configurations (e.g., materials).

The gap change rate is modelled by the probability that oxygen
ions overcome the activation energy barriers Ea; this change
rate is expressed in Eq. 2 [7]:

dg

dt
= ν0 · exp

(
−Ea

kT

)
· sinh

(
qaγV

toxkT

)
(2)

where ν0 is the velocity, Ea the activation energy barrier,
k the Boltzmann constant, T the temperature of the device,
q the charge value of a single electron, a is the hopping
distance of the ions (e.g., oxygen ions), tox the thickness of
the oxide layer (e.g., TiO2), and γ = γ0 − βg is the local
enhancement factor (γ0 and β are fitting parameters). Table I
summarizes the values of the model parameters.

To start resistive switching, the voltage V across the device
should satisfy the condition in Eq. 3 [7]:

V >
Fmintox

γ0 − βg
(3)

where Fmin is the minimum required field to enhance the
gap formation. Note that this models the different threshold
voltages for SET and RESET (see Fig. 1).

C. Primitive Gates

RBL uses AND and NAND as primitive gates [5]. As AND
and NAND gates work in a similar way, the AND gate of
Fig. 3 is used as an example to illustrate its working principle.
Both the fan-in and fan-out of this AND gate are two; two
input and output memristors are employed. The high and low
resistance of a memristor are used to represent logic 1 and 0,
respectively. The triangles in the subfigures represent voltage
drivers. Performing an AND gate needs three steps as shown
in Fig. 3(a)–(c), respectively. Let us assume that all inputs are

PRIMITIVE LOGIC GATE - PAPER 3.3

3

39

RH RH RH

(a) Initialization

Fan-in Fan-out

Vw
RH

GND GND GND GND

RL RH RL

(b) Program Inputs

GNDRH

Vw Vw Vh Vh

RL RH RL

(c) Evaluation

RH

GND GND Vw Vw

Vx≈ GND

Float

Fig. 3: An Example of an AND Gate

logic 0. First, all the input and output memristors are initialized
to RH by applying Vw and GND to the row and columns,
respectively (see Fig. 3(a)). Second, all input memristors are
SET to RL as both inputs are logic 0 (see Fig. 3(b)); GND
is applied to the row while Vw is applied to columns of input
memristors. To avoid programming the output memristors,
Vh is applied to the columns of output memristors. Finally,
the AND gate is evaluated by applying GND and Vw to the
columns of input and output memristors, respectively (see
Fig. 3(c)); while the row is kept floating. Hence, the voltage
Vx of the floating row is around 0 as RH�RL, and the
voltage across the output memristor Vom=Vw−Vx≈Vw>Vts.
As a result, the two output memristors switch to RL. The same
reasoning can be applied to other input combinations.

III. METHODOLOGY OF FORMULATING CONSTRAINTS

To determine the values of the design parameters appropriately,
a set of constraints need to be defined. This section first defines
how the constraints are derived. Thereafter, the method is
applied to an AND gate as a case study. Finally, it discusses
the factors that impact the parameter constraints.

A. Methodology
The AND gate of Fig. 3 functions correctly when all the
memristors of the gates should switch correctly and on the
right time. This correct switching can be formulated by
relationships describing the voltage across the memristors and
their threshold voltages; they are referred to as switching
conditions. Motivated by this, a three-step methodology is
proposed as follows:

• Step 1 Formulate the unknown voltages of the floating
nanowires (e.g., Vx of Fig. 3(c)), as they are required to
obtain the voltage across the input and output memristors.
To formulate them, Kirchhoff’s circuit law is applied to
the logic gates.

• Step 2 Predict the resistance of the output memristors.
As the resistive switching is a dynamic process, output
memristors will stop switching once the voltage across
them do not satisfy the minimum voltage requirement
(e.g., Eq. 3).

• Step 3 Formulate the parameter constraints by combining
the switching conditions of input and output memristors.

To formulate the voltages of the floating nanowires, the
following assumptions are made.

• The resistance of nanowires is initially ignored. Its impact
will be studied later in Section IV using SPICE simula-
tions. The capacitance of the nanowires is neglected as it
mainly impacts the delay [14].

• The device variation is initially ignored. Its impact will
also be studied in Section IV using SPICE simulations.

Vx

GND

Iin

GND

Ii2

GND

Ii1 ...

Vw

Ion

Vw

Io2

Vw

Io1 ...
i o

Fig. 4: Generic AND Gate in Evaluation Step

B. Case Study: AND Gate

To illustrate the proposed methodology, it is applied to an
AND gate with ni fan-in and no fan-out. Fig. 4 shows
this AND gate, which consists of ni input and no output
memristors. The only relevant step in Fig. 3 where the
switching conditions have to be checked is the evaluation
step, as it is the only case where the row nanowire is floating
and unexpected or wrong switching may occur.

Step 1 To formulate the unknown voltage Vx of the floating
nanowire, Kirchhoff’s current law is applied to the AND gate.
The result is expressed in Eq. 4.

ni∑

p=1

Iip +

no∑

q=1

Ioq = 0 (4)

where Iip(1≤p≤ni) and Ioq (1≤q≤no) are the currents flowing
through the input and output memristors, respectively. As the
voltage across all the input memristors equals 0−Vx, while
the voltage across the output memristors Vw−Vx. Substituting
Iip and Ioq in Eq. 4 with Eq. 1 results in:

ni∑

p=1

[
I0exp

(
−gip

g0

)
sinh

(−Vx
V0

)]
+ (5)

no∑

q=1

[
I0exp

(
−goq

g0

)
sinh

(
Vw − Vx
V0

)]
= 0

where gip (1≤p≤ni) presents the gap of the input memristors,
goq (1≤q≤no) the gap of output memristors. Let us assume the
number of low-resistance input memristors is nL and their gaps
are gmin. Therefore, the remaining ni−nL input memristors are
in high resistance; their gaps are gmax. Meanwhile, all output
memristors have the gap gout. As a result, Eq. 5 is rewritten
as

nLI0exp
(
−gmin

g0

)
sinh

(−Vx
V0

)
+ (6)

(ni − nL)I0exp
(
−gmax

g0

)
sinh

(−Vx
V0

)
+

noI0exp
(
−gom

g0

)
sinh

(
Vw − Vx
V0

)
= 0

To obtain the expression of Vx, Eq. 6 is solved as following

Vx =
V0
2

ln



a+ noexp

(
Vw

V0
− gom−gmin

g0

)

a+ noexp
(
−Vw

V0
− gom−gmin

g0

)


 (7)

where a is

a = nL + (ni − nL)exp
(
gmin − gmax

g0

)
(8)

3

40 PRIMITIVE LOGIC GATE - PAPER 3.3

Step 2 This step predicts the resistance of the output mem-
ristors. When all inputs are in high resistance (i.e., logic
1), the output memristors should stay at RH . As the output
memristors are already initialized to RH (see Fig. 3(a)), it is
not necessary to predict the resistance of output memristors.
In contrast, when at least one of input memristors (i.e., nL>0)
is in low resistance, the output memristors must switch from
high to low resistance. During this switching process, Vx
increases starting from 0V. Therefore, the voltage across the
output memristors (i.e., Vw−Vx) decreases. Once this voltage
cannot satisfy the condition of Eq. 3, the output memristors
stop switching. At this moment, Vx and the gap of output
memristors gom satisfy the following condition:

Vw − Vx =
Fmintox

γ0 − βgom
(9)

To obtain Vx and gom, Eq. 7 and 9 need to be solved.
As it is complex to solve Eq. 7, it will be first simpli-
fied. Typically, exp

(
gmax−gmin

g0

)
and exp

(
Vw

V0
− gom−gmin

g0

)
are

greater than 1000 [7]. Hence, exp
(

gmax−gmin
g0

)
�ni−nL

nL
and

exp
(

Vw

V0
− gom−gmin

g0

)
�no

nL
when the number of inputs and

outputs are not very large (e.g., 100). As a result, Eq. 7 is
approximated as follows:

Vx ≈
V0
2

ln



noexp

(
Vw

V0
− gom−gmin

g0

)

nL


 (10)

=
V0
2

[
ln
(
no

nL

)
+
Vw
V0
− gom − gmin

g0

]

Solving Eq. 9 and 10 provides the approximated values for Vx
and gom; they are

Vx =
V0
4

[
gmin

g0
− ln

(
no

nL

)
+ 3

Vw
V0
− γ0
βg0

+
√

∆

]
(11)

gom =
g0
2

[
gmin

g0
− ln

(
no

nL

)
− Vw
V0

+
γ0
βg0
−
√

∆

]
(12)

where ∆ is

∆ =

[
gmin

g0
− ln

(
no

nL

)
− Vw
V0
− γ0
βg0

]2
− 8Fmintox

βV0g0
(13)

Step 3 To formulate the parameter constraints, the switching
behaviour of the input and output memristors need to be
identified first. Thereafter, we express the conditions based on
the expected switching behaviour of each memristor. These
conditions are used to derive the constraints.

We use the case where all inputs are logic 1 (i.e., nL=0) as an
example. Therefore, in the evaluation step, all input and output
memristors should stay at RH . The voltage across the input
memristors is Vx−Vw and it is always negative. Therefore,
input memristors always stay at RH (see also Fig. 1). In
contrast, to guarantee that the output memristors stay at RH ,
the voltage across them (i.e., Vw − Vx < Vts) should be less
than Vts. This condition is expressed by

Vw − Vx < Vts =
Fmintox

γ0 − βgmax
(14)

Therefore, all design parameters (e.g., ni, no, Vw) should
satisfy the constraint expressed in Eq. 14. By substituting nL
with 0 in Eq. 7, Vx is expressed as

Vx =
V0
2

ln



niexp

(
gmin−gmax

g0

)
+ noexp

(
Vw

V0
− gmax−gmin

g0

)

niexp
(

gmin−gmax
g0

)
+ noexp

(
−Vw

V0
− gmax−gmin

g0

)




(15)

The same process can be applied to the case where at least
one input is 0. Note that the constraints should distinguish
between the following two cases: before (to make sure that
the switching condition is right) and after (to make sure that
the memristors do not change back) the output memristors
switch. The complete constraints can be obtained by applying
the three-step methodology to all possible cases. It is worth
to note that the constraints mainly put restrictions on the
values of the control voltages Vw and Vh, since the other
parameters are determined by technology (e.g., gmax, gmin) and
gate configurations (e.g., ni, no).

C. Factors Impacting the Accuracy of Constraints

The accuracy of the obtained constraints is impacted by the
following factors, which are ignored in the formulation:

1) Device variation. The fabricated memristors suffer from
device variations [10]. Guan’s model formulates the
device variation by the variations in the gap, which
determines the resistance of the memristors. Hence, it
impacts the voltage of the floating nanowire and the
voltage across memristors.

2) Resistance of nanowires. Nanowires have a parasitic
resistance. It induces a voltage drop along the nanowires,
and therefore the voltage across memristors along the
nanowires may change. Note that the capacitance of
nanowires mainly impacts the delay of the logic circuits
[14].

3) Sneak path currents within crossbar. When multiple
RBL gates are mapped on the crossbar, sneak path
currents will induce voltage drifts on floating nanowires
[8]. These voltage drifts can disturb the gates or even
cause failures [6,8].

4) Types of memristor models. Different types of memristor
models (e.g., ideal, linear or non-linear models [11,12])
use a different I-V relation and switching process. They
impact the calculated values of Vx and output resistance
after switching.

The impact of the above factors on the accuracy of the design
constraints will be investigated in the next section.

IV. EVALUATION

This section presents the simulations used to verify the pro-
posed approach and investigates its accuracy.

A. Simulations and Setup

To verify the proposal, we compare the calculated values of Vx
and gom with HSPICE simulations using AND gates as a case
study. Different fan-ins (ni=1, 3, 4, 5) and fan-outs (no=1,

PRIMITIVE LOGIC GATE - PAPER 3.3

3

41

GND VhVw

F

Vh

GND

A

S

Co

A

B

B

C

C

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

R1

R2

R3

R4

R5

R6

R7

R8

Fig. 5: Example of Sneak Path Currents for a One-Bit Full Adder

2, 3, 4) are considered. For simplicity, we set Vh to Vw

2 [8].
By default, all simulations are performed with Guan’s model.
The following simulations are conducted.

1) Default simulation. The standard Guan’s model is used
without considering the four factors described in Section
III.C.

2) Impact of device variations. In these simulations,
Guan’s model is used to quantify the degree δg0 of the
variations; the greater δg0 is, the higher the variation
of the memristor devices. Three different values (i.e.,
δg0=0.0025, 0.005, 0.01) are investigated.

3) Impact of the nanowire resistance. To model the
nanowire resistance, a small resistor is added between
two memristors in all the rows and columns.

4) Impact of different memristor models. Besides Guan’s
model, we use the ideal [8] and Biolek’s (a linear model)
[13] model determine Vx analytically, and compare them
with Guan’s model. Note that the ideal and Biolek’s
model are simpler models and hence, this simulation
shows whether they can be used.

5) Impact of sneak path currents. As sneak path currents
exist in crossbar, we evaluate their impact using a one-
bit full adder based on RBL [9], as shown in Fig. 5.
In the figure, ‘×’ at a junction represents a memristor
with an unknown logic state and ‘◦’ a memristor with
high resistance. At the other junctions, no memristors
are formed; they are in permanent high resistance RD
(e.g., 10MΩ [15]). The inputs stored in the memristors
of column C1 are copied to memristors of column C2
in the same row using one-input AND gates (see row
R5 in Fig. 5). For more details about the operation, we
refer to [9]. In order to alleviate the sneak path currents,
half-select voltages are applied to the rows and columns
that are not involved in the operation [8].

All the analytical equations are solved in Matlab, while all
simulations are conducted with HSPICE simulator [16]. The
memristors and nanowire resistances are described by a SPICE
netlist; the memristor models, the CMOS logic that is used to
control logic gates, and the voltage drivers are described in
Verilog-A. The parameters used in all simulations are summa-
rized in Table II (Guan’s model) and II (remaining parameters).
The parameters of memristor models and copper nanowires
are extracted from [7,8,13,14]. As the switching of output
memristors changes the value of Vx, we need to distinguish
between different cases; they are ‘output memristors are not

TABLE II: Parameters
Parameter Description Value

General
F (nm) Feature size 90

Ideal and Biolek’s Model [8,13]
RH (Ω) High Resistance 200k
RL (Ω) Low Resistance 200
RD (Ω) Resistance of non-formed memristor 10M

Nanowire (Copper) [14]
R (Ω/µm) Resistance in unit length 9.88

Control Voltages
Vw (V) Program voltage –
Vh (V) Half-select voltage Vw

2
Gate

ni No. of inputs 3,4,5
no No. of inputs 2,3,4
nL No. of low-resistance inputs –

switching (NSW)’, ‘before output memristors switch (BSW)’
and ‘after output memristors switch (ASW)’. Note that Vx is
calculated in all three cases, while gom is only calculated after
the output memristors switch.

B. Results

The results of all simulations are discussed next.

Default simulation. Table III presents the calculated and
simulated results of a AND gate with fan-in=3 and fan-out
=2, where Vw=1.4. Both the calculated and simulated gom
are normalized by gom−gmin

gmax−gmin
. Compared to the simulation

results, the errors of the calculated Vx and the range of Vw
are less than 1%; the error of calculated gom is less than 5%.
Therefore, the proposed approach formulates the constraints
properly.

Impact of device variation. Fig. 6 shows the calculated and
simulated range of Vw for a three-input AND gate with the
three different values of δg0. Fig. 6(a) shows the result for
the minimum value of Vw, while Fig. 6(b) the maximum.
Compared to the simulation results, the error of the calculated
range of Vw is within 3%. In addition, when the variation
becomes more serious (i.e., δg0 increases), the error increases
only for the minimum calculated Vw.

Impact of nanowire resistance. Fig. 7 shows the calculated
and simulated range of Vw for three AND gates (i.e., ni=3,4,5
and no=2). Compared to the simulation results, the error of
the predicted range is less than 14%. Note that this error of
minimum Vw increases when the number of inputs increases.
A gate with more inputs needs a longer row nanowire, and
hence the nanowire resistance increases and therefore, also
the voltage drop along the nanowire. As a result, the control
voltage range for Vw is greater than the calculated values.

Impact of different types of models. Fig. 8 shows the
calculated and simulated range of Vw for three AND gates
(i.e., ni=3,4,5 and no=2) using different models. The
calculated range of Vw based on ideal and Biolek’s model are
validated with simulations using their corresponding model.
For brevity, only the calculated ranges of these three models
are shown in Fig. 8. These three models provide a similar
minimum Vw around 1.18V. In contrast, the maximum Vw

3

42 PRIMITIVE LOGIC GATE - PAPER 3.3

TABLE III: Verification of the approach
Vx (V)

nL Cases Calculated SPICE Error Error%
0 NSW 0.6493 0.6500 -0.0007 -0.1077

1
BSW 0.0299 0.0300 -0.0001 0.3333
ASW 0.2825 0.2810 0.0015 0.5338

2
BSW 0.0159 0.0159 0.0000 0.0000
ASW 0.2940 0.2920 0.002 0.6849

3
BSW 0.0108 0.0108 0.0000 0.0000
ASW 0.3007 0.2990 0.0017 0.5686

Normalized gom
nL Cases Calculated SPICE Error Error%
1 ASW 0.5307 0.5470 -0.0163 -2.9799
2 ASW 0.4273 0.4420 -0.0147 -3.3258
3 ASW 0.3670 0.3810 -0.0140 -3.6745

Range of Vw (V)
Vw Calculated SPICE Error Error%
Min 1.1966 1.1968 -0.0002 -0.0167
Max 2.1117 2.1116 0.0001 0.0047

2.1115

2.1116

2.1117

2.1118

0.0025 0.005 0.01

Calculate SPICE

1.16
1.18

1.2
1.22
1.24

0.0025 0.005 0.01

Calculate SPICE

δg0 @ ni = 3 δg0 @ ni = 3

V
w

 (V
)

(a) Minimum Vw

V
w

 (V
)

(b) Maximum Vw

Fig. 6: Impact of Device Variation

2.1

2.12

2.14

3 4 5

Calculate SPICE

1

1.2

1.4

1.6

3 4 5

Calculate SPICE

ni

V
w

 (V
)

(a) Minimum Vw

V
w

 (V
)

(b) Maximum Vw

ni

Fig. 7: Impact of Nanowire Resistance

spreads from around 1.5V to 2.1V. Therefore, the way the
memristors are modeled impacts the valid range of Vw. Note
that the simpler models (e.g., ideal and Biolek) can be used
to provide a rough estimation of design constraints, since
its valid Vw range is mostly within the range obtained from
Guan’s model.

Impact of sneak path currents. Table IV shows the
calculated and simulated values of Vx, gom and the range of
Vw including the impact of the sneak path currents within
crossbar. Compared to the simulation results, the error of the
calculated Vx and the range of Vw are typically less than 1%;
the error of the calculated gom is less than 4%. This is similar
to the first simulation which has no sneak path currents.
Hence, our approach is able to calculate accurate constraints
when sneak path currents exist within a small crossbar.

Above simulations clear show that our proposed approach can
effectively calculate the design constraints when the device
variation and sneak path currents exist. The errors of the
calculated constraints due to nanowire resistance are relatively
larger. Future work should therefore also model the nanowire
resistance when such constraints are derived. Nevertheless,

0

1

2

3

3 4 5

Ideal Biolek Guan

1.16

1.17

1.18

1.19

1.2

3 4 5

Ideal Biolek Guan

ni

V
w

 (V
)

(a) Minimum Vw

V
w

 (V
)

(b) Maximum Vw

ni

Fig. 8: Impact of Different Models

TABLE IV: Impact of Sneak Path Currents
Vx (V)

ni0 Cases Calculated SPICE Error Error%
0 NSW 0.7000 0.6959 0.0040 0.5765

1
BSW 0.0159 0.0179 -0.0020 -11.2049
ASW 0.2940 0.2923 0.0016 0.5580

Normalized gom
ni0 Cases Calculated SPICE Error Error%
1 ASW 0.4273 0.4427 -0.0154 -3.475

Range of Vw (V)
Vw Calculated SPICE ErrAbs Err%

Minimum 1.1966 1.1920 0.0046 0.3859
Maximum 2.1117 2.1210 -0.0093 -0.4384

simpler models can provide rough estimations.

V. CONCLUSION

This paper proposed an analytical method to obtain robust
memristor-based logic gates. It intensively investigated the
impact of device variation, nanowires resistance, sneak path
currents, and different types of memristor models. Our method
steps closer to the feasible design of memristor logic gates.

REFERENCES

[1] ITRS, “Beyond cmos white paper,” 2014.
[2] S. Hamdioui et al., “Memristor for computing: Myth or reality?” in

DATE. IEEE, 2017.
[3] S. Hamdioui et al., “Memristor based computation-in-memory architec-

ture for data-intensive applications,” in DATE, 2015, pp. 1718–1725.
[4] X. Zhu et al., “Performing stateful logic on memristor memory,” TCAS–

II, 2013.
[5] L. Xie et al., “Boolean logic gate exploration for memristor crossbar,”

in DTIS. IEEE, 2016.
[6] S. Kvatinsky et al., “Memristor-based material implication (imply) logic:

design principles and methodologies,” TVLSI, 2014.
[7] X. Guan et al., “A spice compact model of metal oxide resistive

switching memory with variations,” EDL, 2012.
[8] L. Xie et al., “Fast boolean logic mapped on memristor crossbar,” in

ICCD, 2015.
[9] G. Snider, “Computing with hysteretic resistor crossbars,” Applied

Physics A, 2005.
[10] R. Waser et al., “Redox-based resistive switching memories–nanoionic

mechanisms, prospects, and challenges,” Advanced Materials, 2009.
[11] C. Yakopcic et al., “Memristor spice modeling,” in Advances in Neuro-

morphic Memristor Science and Applications.
[12] E. Linn et al., “Applicability of well-established memristive models for

simulations of resistive switching devices,” TCAS-1, 2014.
[13] Z. Biolek et al., “Spice model of memristor with nonlinear dopant drift,”

Radioengineering, 2009.
[14] G. S. Snider et al., “Nano/cmos architectures using a field-programmable

nanowire interconnect,” Nanotechnology, 2007.
[15] F. Miao et al., “Anatomy of a nanoscale conduction channel reveals the

mechanism of a high-performance memristor,” Adv. Mat., 2011.
[16] Synopsys hspice user guide.

PRIMITIVE LOGIC GATE - PAPER 3.3

3

43

4
INTERCONNECT DESIGN

This chapter presents the design of interconnects which are used to connect primitive logic
gates. First, it explores and compares three possible schemes to implement interconnect
networks: a) using only the memristor crossbar, b) using only the CMOS peripheral cir-
cuits, c) using both the memristor crossbar and CMOS pass transistors. Then, it presents
interconnect schemes for both intra-tile and inter-tile communication, where a tile is a
building block or processing element.

The content of this chapter consists of the following research articles:

1. H.A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui, K.L.M. Bertels, Interconnect Net-
works for Resistive Computing Architectures, IEEE International Conference on De-
sign & Technology of Integrated Systems In Nanoscale Era (DTIS), Dresden, Palma
de Mallorca, Spain, 2017, pp. 1-6

2. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, Interconnect Net-
works for Memristor Crossbar, IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), Boston, USA, July, 2015, pp. 124-129

45

4

46 4. INTERCONNECT DESIGN

4.1. INTRODUCTION
Interconnects are required to connect primitive logic gates employed by a complex cir-
cuit. Therefore, finding the best method to implement the interconnects is an important
question. Another interesting question is further exploring the use of crossbar-based
interconnect to support both intra- and inter-tile communication. This chapter will
present these aspects.

Exploration of Interconnect Implementations: Although there is some research focus-
ing on implementing individual logic gates, research on implementing the interconnect
network used to connect individual gates is not explored at all. Therefore, it is of great
interest to explore different possible implementation methods of interconnect networks
for large scale circuits.

Interconnects for Intra-tile and Inter-tile Communication: The fundamental function of
interconnects is supporting the communication within a tile (i.e., a building block or
IP) or between tiles. However, how to use crossbar-based interconnect to support such
intra-tile and inter-tile communication has not been studied yet.

4.2. MAIN CONTRIBUTIONS
The main contributions in the above aspects are as follows.

• Exploration of Interconnect Implementations [54]: Three methods are explored
and compared to implement interconnect networks used in logic circuits. First, we
only use the memristor crossbar to build the interconnect, such type of intercon-
nect uses copy operations within crossbar to transfer data. The second method
is using the CMOS peripheral circuit of memristor arrays. The peripheral circuit
first reads out the data from the source and then writes the data to the destination.
The final method is using some pass transistors to directly connect the source and
destination. To evaluate and compare these three methods, three parallel adders
are implemented using different methods. The SPICE simulation results show that
the third method speeds up the data transfer based on the first two. My work is fo-
cusing on the interconnects using only memristor crossbars.

• Crossbar Based Interconnects for Intra-tile and Inter-tile Communication [55]: An
intra-tile interconnect for generic logic functions is first proposed; it transfers data
between gates or building blocks based on copy operations executed within cross-
bars. Such an interconnect network can be used route signals for ASICs. In ad-
dition, we design a dedicated intra-tile interconnect network to transpose a ma-
trix. It consists of an input, intermediate and output blocks. The input and out-
put blocks store the original and transposed matrix, respectively. The interme-
diate block stores one column of the input matrix at a time and the, the trans-
posed column is transferred to the output block. This is repeated for all the input
columns. To implement inter-tile communication, we propose 2D bus, which en-
ables both horizontal and vertical transmission between tiles. A 2D bus consists
of some buffers implemented by reserved memristive devices within the crossbar.

4.2. MAIN CONTRIBUTIONS

4

47

These buffers allow the 2D bus and tiles to run without blocking each other. The
2D bus is able to support three basic communication patterns including unicast,
multicast, and broadcast. These interconnect networks are validated with SPICE
simulations.

2017 12th International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(OTIS)

Interconnect Networks for
Resistive Computing Architectures

H.A. Du Nguyen, Lei Xie, Jintao Yu, Mottaqiallah Taouil, Said Hamdioui
Laboratory of Computer Engineering, Delft University of Technology, The Netherlands

Email: H.A.DuNguyen@tudelft.nl

Abstract-Today's computing systems suffer from a mem­
ory/communication bottleneck, resulting in high energy con­
sumption and saturated performance. This makes them ineffi­
cient in solving data-intensive applications at reasonable cost.
Computation-In-Memory (CIM) architecture, based on the in­
tegration of storage and computation in the same physical
location using non-volatile memristor crossbar technology, offers
a potential solution to the memory bottleneck. An efficient
interconnect network is essential to maximize CIM's architectural
performance. This paper presents three interconnect network
schemes for CIM architecture; these are (1) CMOS-based, (2)
memristor-based and (3) hybrid cmos/memristor interconnect
network scheme. To illustrate the feasibility of such schemes,
a CIM parallel adder is used as a case study. The results
show that the hybrid interconnect network scheme achieves a
higher performance in comparison with the CMOS-based and
memristor-based interconnect scheme in terms of delay, energy
and area.

I. INTRODUCTION

Classical Von Neumann computer architectures are unable
to deal with big data problems efficiently due to the mem­
ory bottleneck [1], high energy consumption [2] and ineffi­
cient programming methodology [3]. Architectures based on
resistive computing [4-6], such as Computation-in-Memory
(CIM) architecture [6], are emerging and try to address
the aforementioned problems [71. CIM architecture alleviates
the memory bottleneck by using the same physical devices
to implement both logic and storage units. However, such
computing architectures require efficient interconnect network
scheme to explore their potential. The interconnect network
and communication schemes applied in CMOS technology are
not applicable to memristor crossbar due to fundamental differ­
ences in their working principle. In CMOS technology, logic
signals are represented by voltages that propagate through
wires. In CIM, logic signals are represented by resistances that
are programmed by control voltages. Therefore, it requires a
distinct interconnect network.

Recent research in the field has been focusing on imple­
menting logic inside the memristor crossbar [8-11]. However,
limited work has investigated possible interconnect network
and communication schemes; so far only a single publication
has addressed this topic. In previous work [12], the authors
have proposed different communication schemes (i.e., unicast,
multicast, and broadcast) using an interconnect network fully
integrated in the memristor crossbar. The scheme has a high
area overhead and the communication cost depends on the
relative positions between the source and target memristor.
This complicates the place-and-route phases [13]. Therefore,
there is a need to explore different possible interconnect
network schemes in order to optimize overall performance.

In this paper, we develop and investigate the potential
of different interconnect network schemes and use the CIM

978-1-5090-6377-2/17/$31.00 ©2017 IEEE

�rs0---! '------- -------,
rf----�

(a) Single copy operation (b) Diagonal scheme
Fig. 1: Interconnect Network Proposed in [12]

parallel adder [141 as a case study. Note that the proposed
interconnect network schemes can be applied to any crossbar­
based resistive computing architecture. The contributions of
this paper are the following:

• We propose two new interconnect networks for CIM
architecture.

• We compare them with the previously interconnect
network proposed in [12]; the CIM parallel adder is
used as a case study.

• We evaluate the overhead of the three interconnect
network schemes in terms of delay, energy and area.

The rest of this paper is organized as follows. Section
II briefly describes the state-of-the-art and the CIM parallel
adder implementation. Section III presents the interconnect
network schemes. Section IV discusses the evaluation model
and results. Finally, Section V concludes this paper.

II. BACKGROUND

This section first presents the state-of-the-art in memristor
crossbar based interconnect networks. Thereafter, it discusses
the CIM parallel adder and its crossbar implementation [10].

A. State-of-the-Art Interconnect Network Schemes

In [12l, the authors proposed a complete interconnect network
for the memristor crossbar. Copy operations are used to move
data between two memristors. A copy operation is carried out
by applying appropriate control voltages to the source and
target memristor nanowires. A direct copy operation takes one
memristor write cycle and occurs when both memristors share
the same horizontal or vertical nanowire.

To perform a copy operation between two metmistors re­
siding on different rows and columns, an extra copy operation
is required as shown in Fig. la. Here, an additional memristor
located at one of its two intersection points referred to as
diagonal scheme. In the figure, 5 presents the source memristor
and T the target memristor, while I is used as intermediate
memristor. As a result, the communication cost doubles, i.e.,
two metmistor write cycles. In order to transfer multiple
bits simultaneously, the diagonal scheme can be extended (as
shown in Fig. lb); it performs the data transfers (i.e., from 51
to Tl and 52 to T2) in two cycles.

4

48 INTERCONNECT DESIGN - PAPER 4.1

Macro controller
Micro controller
Nano controller - f � �

- I I

••• I I ... 1::::.1 alsl

:: ��. + '"¢ + ,21 1:::::1:::: ·· .. 1· . ,15 + ;;io
::�! + '12� -+_+ '22h�'" �'32 + �� ���
.. � .. . � -� n13 .. n6 + ,13- + ,31 1'-,,, + . .of ,17 + �
.. -;;]� .. + ·I-------=c� I·· .. ��I I n15 .. n8 + "4-1 + ,uml-::· r-'24 + "'H"8 + '\;fs

'--- �, . , . ! . ,

I Controllers I
Fig. 2: CIM-based Parallel Adder (16 inputs)

In [8], the authors present a memristor adder based on Com­
plementary Resistive Switches (CRS). As both high and low
resistance have the same equivalent resistance, copy opera­
tions cannot be used. Instead, the authors propose a CMOS
interconnect network consisting of a controller with additional
logic (such as sense amplifier, write driver) to read from the
source mernristor and write to the destination. However, no
implementation details were reported.

B. elM Parallel Adder

The lower part of Fig. 2 shows a parallel adder (based on the
binary tree) implemented using the CIM concept, referred to
as CIM parallel adder [14]. It consists of two components: (i)
the computation and storage part which reside in the memristor
crossbar, and (ii) the CMOS controlling part.

The melmistor crossbar has two purposes, i.e., it perfonns
computations (additions) and it is used as a storage (memory)
device. In Fig. 2, the adders are indexed by axy where x
presents the addition stage and y the adder index within a
stage. The adders in this architecture are not reused as they
relatively do not impact the interconnect network schemes.
Dedicated storage cells for the inputs are presented by ni,
where i the index of the ith input. Each storage cell consists
of a memristor that is able to store a single bit. The placement
of the adders and memory is flexible as both are implemented
using memristors. To utilize the area of the binary tree imple­
mentation efficiently, half of the inputs are mapped from left
side, while the other half from right side.

The upper part of Fig. 2 shows the CIM parallel adder
implementation using the Fast Boolean Logic Circuit (FBLC)
style [10]. Each adder aery is replaced by an FBLC 32-bit ripple
carry adder that is composed of 16 two-bit adders; the two-bit
adders are selected for their area efficiency [10]. Each two-bit
adder is represented by a rectangle with two dark areas in the
upper part of Fig. 2; the longer dark areas present the input
area, while the smaller dark areas the outputs. The crossbar,
the controller, and the peripheral circuit are marked in pink,
blue and green area, respectively.

,� /" /'"--' " . ,�'/' ". .."... . �. start H CFGAMij-.(EVAAMi '---, EVARi)->(INVRi } , end)
// '... ..,.' '... '" ,,' / ,,'"

Fig. 3: State Machine for Micro Controller

,registers "\ controllers
controllers \

� �.J ::; !] � '/.J :;, controllers
.J � [? .J.J � 0 � 1:A .J .J .J 8;;' .J

u .J .J .J .J
� .J

i\::7

(a) CMOS (b) Memristor (c) Hybrid
Fig. 4: Proposed Interconnect Network

The CMOS part consists of the controller and peripheral
circuit. The controller is hierarchically divided in three layers,
i.e., macro, micro and nano controller. The macro-controller
controls the addition stage of the binary tree. The micro­
controller executes a single addition. Each two-bit addition
has four states as shown in Fig. 3; these states are repeated
16 times to complete a 32-bit addition. The nano-controller
translates the macro- and micro-controller instructions to ap­
propriate control voltages which are subsequently applied to
the appropriate nanowires of the crossbar. Each controller is
implemented with a state machine. More details of the nano­
controller can be found in [10,12].

The crossbar implementation requires a peripheral circuit
to support the memristor crossbar operations. For example,
the peripheral circuit includes voltage drivers to control the
nanowires, sense amplifiers to read out memristor states, and
multiplexers accompanied with the sense amplifiers to select
which nanowires are accessed, and logic circuitry to create
connections between different crossbar nanowires.

III. INTERCONNECT NETWORK SCHEMES

This section describes the overview of interconnect net­
work schemes. Thereafter, it integrates them in the CIM
parallel adder. Note that the CIM parallel adder is only used for
illustrative purposes. The proposed interconnect networks can
be applied in general to any resistive computing architectures.

A. Overview

Fig. 4 shows the three proposed interconnect networks. They
are referred to as: (1) CMOS, (2) memristor, and (3) hybrid
scheme. Each scheme impacts the crossbar and CMOS logic
differently, as explained next.

Fig. 4a shows the CMOS interconnect network scheme. In
this scheme, data movements in the crossbar transit through
registers in the CMOS layer and consist of two memristor
operations (i.e., a read and write operation). First, the controller
reads the value from a source memristor. It stores the value
temporarily in a CMOS register. Second, it writes the register
value into the target mernristor. This interconnect network
scheme requires sense amplifiers, multiplexers, registers and
a controller that applies appropriate control voltages. The
communication requires two cycles with a the cycle time
equal to the maximum delay of the read and write operation.
The delay of the read operation consists of the delay of the
controller, sense amplifiers, multiplexers and the time to write
the CMOS registers. The write path delay consists of the
controller delay and the write time of the target melmistor.

Fig. 4b shows the memristor interconnect network scheme.
In this scheme (based on the work published in [12]), the

INTERCONNECT DESIGN - PAPER 4.1

4

49

Fig. 5: CMOS-based Interconnect Network

controllers need one or two steps to transfer data from the
source to target memristor. Each step consist of a memristor
copy operation. This scheme requires an extra intermediate
memristor at the intersection points between the source and
target memristors. In case multiple bits are transferred simulta­
neously, the diagonal scheme may be used [12]. The maximum
delay of the scheme is two memristor write cycles in case there
are no conflicts between intermediate and reserved (for logic
or storage) memristors. In case of a conflict, more than two
copy operations are required.

Fig. 4c shows the hybrid interconnect network scheme.
This scheme also uses a copy operation to transfer data from
source to target memristor. It performs this operation in a
single cycle by creating a direct path between source and
destination using a CMOS switch as depicted in the bottom
part of Fig. 4c. This switch can be implemented by a pass­
gate. The transfer delay equals the delay of the controller to
perform the copy operation and to activate the pass transistor.

As described above, the three proposed schemes are ca­
pable of transferring data between any two memristors, and
support parallel communication. However, they impact the
delay, energy and area consumption of the memristor crossbar
and CMOS control differently. Note that the above concept
applies to data transfers between adders within the same sub­
crossbar (intra-crossbar) and two different sub-crossbars (inter­
crossbar). In the following sections, the three schemes are
applied to the CIM parallel adder as a case study.

B. CMOS Interconnect Network

Fig. 5 shows the CIM parallel adder based on the CMOS inter­
connect network scheme. Each sub-crossbar has its own nano­
controller. Therefore, communication within a sub-crossbar
is handled by a single controller while two controllers are
involved in the communication between different crossbars.

In intra-crossbar communication, (e.g., between adders all
and a21), the controller reads out the value from the source
adder (all), stores it in a register, and writes the value in
the target adder (a21). In inter-crossbar communication, (e.g.,
between adders a12 and a21), the communication is handled
by two controllers and may be implemented in two ways. The
first method adds an additional network on the CMOS side
to move data between the controllers. For example, a source
controller (e.g., nano-controller 2 in Fig. 5) reads out the value
of adder a12, transmits the value via the interconnect network
(which is also implemented by CMOS devices) to the target
controller nano-controller 1; the target controller writes the
received values into the inputs of the target memristors (i.e.,

, I
IJ

I})

fol· ·

/

,

1/ /

IL
I? IL

a11 -
! 1/ ILlL

'I)

, IL
IN

ILIL
1/ IL'

a21

l [� B � +a21 IC + IC + -. -
_�a=1�5- 110

Fig. 6: Memristor-based Interconnect Network

inputs of a21). The second method is through a register file.
In this case, the source controller writes the read-out value to
a predefined register; thereafter, the target controller reads the
value from the predefined register. Note that, the register file
may become large when there are a lot of data transfers. In
case the size is too big, a memory can be used.

A read-out operation might destroy the value stored in the
source adder [8]. Hence, a write-back (restore) operation is
also required. The read-out, write-in and write back operations
are carried out by applying appropriate control voltages to the
nanowires and are required for each data transfer.

Due to the synchronization between two controllers, the
read-out and write-in operations executed sequentially using
two different steps, while the write-back operation is executed
simultaneously with the write-in operation. Therefore, with
respect to the crossbar, the delay equals two memristor write
operations, the energy three memristor write operations per bit
(including the write-in, write-back operation and the possible
destructive read of the source memristor), and the area is
zero (as no extra memristors are required). With respect to
the controller, each crossbar needs its own nano-controller. In
addition, two states are required for the two communication
steps in the micro controller in comparison with the original
design [12]. With respect to the peripheral circuit, a 2-bit adder
has three values to be read out (one carry bit and two sum
bits) simultaneously; hence three sense amplifiers are required
per adder. As only one 2-bit adder is active at a time in a sub­
crossbar, the sense amplifiers can be shared, while multiplexers
are used to forward the data from the currently working adders.
In short, only three sense amplifiers are required per sub­
crossbar. Note that the sense amplifier may be a current [15] or
voltage sense amplifier [16] depending on the adder logic type.
In the CIM parallel adder implementation using FBLC style,
a voltage sense amplifier is preferred [16]. Finally, a register
file is required to store temporary read values.

C. Memristor Interconnect Network

Fig. 6 shows the CIM parallel adder based on the memristor­
based interconnect network scheme. In this scheme, we use the
state-of-the-art interconnect network proposed in [12]. As the

4

50 INTERCONNECT DESIGN - PAPER 4.1

"�

T •
I'" --

I; �v
all 1/

I j) j)
� I)

I)()
a21

IL 1/ 1/) j)
1/ I; I;

switches l
••• II II

I ii -
+all +a2i + + �

I i2- a15 iiO I
...

Fig. 7: Hybrid Interconnect Network

FBLC adder is used, the nano-controller can be shared among
the sub-crossbars as they require the same control voltages at
each time step.

Note that each adder is built from multiple two-bit adders
that are placed on the same adder row. To simplify the state
machines, communication takes directly place after partial
results are obtained. Consider for example the output of adder
all which will be transferred to the input of adder a21. The
target adder a21 is located in a different row. As soon as the
first two-bit adder of adder all produces its outputs, they will
be moved to the proper locations. More precisely, the carry
output (in orange in Fig. 6) of this adder needs to be transferred
to the second two-bit adder of all, while the sum output (in
blue in Fig 6) is needed at the first two-bit adder of a21 (for the
addition in the next stage). As the source and target memristors
are on different rows, additional intermediate memristors (see
Fig. 1) are required to create a path between them. The red
dotted arrow lines present the communication paths between
source and destination adder.

As multiple bits need to be transferred simultaneously, the
diagonal scheme of Fig. Ib is used as shown in the upper
part of Fig. 6; denoted by Interconnect Network (IN). In this
scheme, all communications from one adder stage to the next
one can be performed simultaneously with a latency of three
cycles due to two intermediate hops. Note that only one IN
block is needed per sub-crossbar as one adder is active at the
time.

Next, we discuss the delay and area cost. With respect
to the crossbar, the communication delay between source
and destination equals 3 write operations for each n=2-bit
addition, the energy equals 3 memristor write operations per
data transfer (as 3 writes are required due to the need of two
intermediate memristors). Each sub-crossbar needs 2· (n + I)
additional rows for the IN block as an n-bit adder has n­
sum bits and one carry bit and their complementary values
as outputs. With respect to the CMOS part, three additional
states are required for the micro-controller to perform the
communication steps. With respect to the peripheral circuit,
six additional voltage drivers are required per sub-crossbar to
drive the rows of the IN block.

TABLE I: Simulation Parameters [9,18]

Fig. 8: HSPICE verification of hybrid communication scheme

D. Hybrid Interconnect Network

Fig. 7 shows the CIM parallel adder based on the hybrid inter­
connect network scheme which consists of both CMOS devices
and memristors. This scheme also utilizes the memristor copy
operation as mentioned in [12]. However, instead of using
additional intennediate memristors, CMOS switches are used
to create direct paths between source and target memristors.
For instance, in the upper part of Fig. 7 two nanowires are
connected by a transmission-gate [17], which is controlled
by the CMOS controller. When the switch is open, the two
nanowires are disconnected and normal computations can be
performed. As the switch closes, the memristors on the two
different nanowires are directly connected. Therefore, a single
copy operation [12] can be used to transfer data within and
between sub-crossbars. As the inputs of the target adder and
the outputs of the source adder are both effectively located in
the same row, multiple bits can be copied simultaneously.

We discuss the cost of the scheme next. With respect to
the crossbar, the delay of a copy operation equals one write
operation, the energy consists of writing the target memristor
(per single copy operation [12]), and the area is zero (as no
extra memristors are required). With respect to the CMOS
part, additional logic is required to control and implement
the switches [17]. The micro controller requires one additional
state to perform the communication step. No sense amplifiers
and multiplexers are required for the peripheral circuit.

IV. RESULTS

This section first verifies the proposed interconnect network
schemes. Thereafter, we present a model to evaluate them.
Last, we discuss the performance results.

A. HSPICE Verification

We verify the proposed interconnect network schemes in
HSPICE simulations using the ideal melmistor model [9,18]
using the same simulation approach as in [12]. The memristor
parameters are shown in Table I; the low resistance RL =
IOOkll represents a logic 0, the high resistance RH = IGIl
represents a logic I, the memristor threshold voltage Vih equals
I Y, the memristor write voltage 11,,, 1.4 Y, and the half-select
voltage Vh", 0.7Y. Due to space limitations, only the results of
the hybrid scheme are included. Fig. 8 shows the data transfer

INTERCONNECT DESIGN - PAPER 4.1

4

51

TABLE II: Basic Model Parameters

Component Basic Unit Parameter CMOS-based I Mernristor-based Hybrid
Device Technology

F m - Feature size (nm) 5 [19]

Memristor Technology
lJm - Delay (ps) 200 l19J
Ern - Energy (fJ) 1 [19]

j1m - Area (nrn�) 100 (4F�) [19]
CMOS Technology Fe - Feature size (nrn) 40

CIM Parallel Adder Interconnect Network Schemes

Voltage driver

Peripheral Circuit

Sense Amplifier [16]

Multiplexer l20 J

Controller

(Synthesized for 16 inputs. 32-bit input)

Diee - Delay
EVd - Energy (pJ)

AVd - Area (urn")
Dsa - Delay (ps)
Esa - Energy (pJ)

Asa - Area (urn")
Dmux - Delay (ps)
i'Jmux - Energy (pJ)

Amux - Area (urn")
D con t - Delay (ps)
Eeont - Energy (pJ)

Aeont - Area (,urn-)
Dicx - Delay (ps)

masked by adder voltage driver
not applicable Ept Ept

3· Apt Apt
20

3.69
OJJl7 not applicable
Dpt
i'Jpt

16·4· Apt
825 825 825

0.115 O. !O3 O. !O()
2234 1869 1147

400 (2 cycles . D m) 600 (3 cycles . D m) 200 (l cycle· Dm)
Memri stor Crossbar Eiex - Energy (fJ) 2 (2 memristors . Em) 3 (3 memristors . Em) I (I memristors . Em)

j1iex - Area (urn")

from source memristors (first row) to the target memristor
(second row); in the y-axis, Sand T represent the source and
target memristor, x the crossbar index, c and r the column and
row index; the x-axis shows the time steps. The data values
are selected randomly. The first two plots of both the source
and target memristors present simultaneous copy operation that
occurs in one single sub-crossbar from different source rows
(rIO and r9) to one target row (rl) (see orange blocks in
Fig. 7). The next two plots present similar copy operations
which take place between two different sub-crossbars (from
the output rows of sub-crossbar xl to the input row of sub­
crossbar x2, e.g., as shown by the blue blocks in Fig. 7). The
last four plots shows that simultaneous copy operations can
occur within the same or between different sub-crossbars.

B. Evaluation Model
The interconnect network schemes are evaluated using the CIM
parallel adder model. The model includes four components:
memristor adders, peripheral circuit (voltage drivers, sense
amplifiers, multiplexers), controller (including register file).
The basic adder implementation is the same for the three
interconnect schemes. Table II shows the basic parameters
of the model. The top part of the table shows the mernristor
and CMOS technology parameters. The memristor device has
a feature size Fm of 5nm, delay Dm of 200ps, energy
consumption Ern of If J per transition, and area Am of
100nm2. The CMOS device has a feature size Fe of 40nm.
This technology node is also used to synthesize the controller.
The lower part of Table II shows the basic parameters of the
peripheral circuits, controller.

The above basic model parameters are used to estimated the
performance of the proposed interconnect network schemes.
The delay per cycle is calculated by the sum of the components
that are part of the critical path. The total delay is calculated
by taking the product of the delay per cycle and the number
of cycles. The total energy and area are obtained by summing
up the energy and area cost of all the sub-components.

C. Results
Fig. 9 shows the total delay, energy and area of the CIM
parallel adder implementation with the three proposed inter-

() 200 (2 memristors . Am) 0

connect network schemes, while Fig. 10 shows the cost break­
down per component. Fig. 10 contains six plots related to the
energy and area of each component (i.e., crossbar, controller
and peripheral circuit). The delay is not considered here due to
space limitations; in addition, the delay is based on the critical
path and not on the total sum of the individual components.
The results of each metric are described next.

Delay: In terms of delay, the hybrid scheme outperforms
marginally the other two schemes as it (i) does not have a sense
amplifier and multiplexer delay in its critical path, (ii) requires
fewer controller states, and (iii) needs fewer mernristor writes
operations for communication.

Energy: In terms of energy consumption, the memristor­
based scheme performs the worst due to the additional writes
required for the intermediate memristor and control states. In
comparison with the CMOS-based scheme, the hybrid scheme
has a lower energy, as it requires fewer CMOS devices and
has a lower delay.

The energy breakdown for each component is shown in
the top part of Fig. 10. Note that the interconnect network is
only a small part of the FBLC based CIM parallel adder, and
therefore, nearly the same energy results are observed for the
crossbar part. Nevertheless, the memristor-based scheme has
the highest crossbar energy consumption due to the writing of
the intermediate melmistors. In comparison with the CMOS­
based scheme, the hybrid scheme has slightly a lower energy
consumption as each data transfer requires a single write.
With respect to the controller, the CMOS-based scheme has
the highest energy consumption due to the additional control
logic and register file. In the CMOS-based scheme, read-out
operations may be destructive and write-back operations are
required to preserve the value of the source mernristor, hence
the additional states also cost more energy. Note that the hybrid
scheme's controller requires only one additional state for
the micro-controller, while the CMOS- and memrisor- based
schemes need two and three additional states, respectively.
With respect to the peripheral circuit, the CMOS-based scheme
also has the highest energy consumption, due to the presence

4

52 INTERCONNECT DESIGN - PAPER 4.1

of additional voltage drivers.

Area: In terms of area, the CMOS-based scheme has
the highest area overhead due to the presence of additional
peripheral circuits, a register file and a larger controller. The
other two schemes have nearly the same area overhead. We
will discuss the cost breakdown next.

Each component's area is shown in the lower part of Fig.
10. With respect to the crossbar, the melmistor-based scheme
consumes slightly more area than the other two schemes as
additional memristors are required to perfonn the commu­
nication. With respect to the controller, the hybrid scheme
has the smallest area overhead as only one additional state
is required for the micro-controller. The controller of the
memristor-based scheme has slightly a smaller area than the
CMOS-based scheme, as the CMOS-based scheme needs a
register file and additional logic to address the register file.
With respect to the peripheral circuit, the memristor-based
scheme has slightly a higher area overhead as compared to
the other two schemes due to the presence of voltage drivers.
The peripheral circuits of the hybrid scheme requires less area
than the CMOS-based scheme due to the presence of sense
amplifiers and multiplexers.

In summary, the hybrid communication scheme shows
benefits in terms of delay, energy and area due to fewer
control states, less peripheral circuits and no need of additional
memristors are required for the interconnect network. The
results of this paper are useful for memristor designers, as it is
essential to select appropriate interconnect schemes to improve
the overall performance.

V. CONCLUSION

In this paper, we showed three feasible interconnect net­
work schemes for resistive computing architectures in general,
and for CIM architecture in particular. The result showed that a
hybrid interconnect network scheme has the highest efficiency
in terms of delay, energy and area. This shows that an
interconnect network fully integrated in the memristor crossbar
is not efficient enough, and can lead to vast performance
reduction. Similarly, an interconnection network solely based
on CMOS devices also showed to be inefficient. In conclusion,
it is essential to utilize both memristor operations and CMOS
devices to build an effective interconnect network scheme for
resistive computing architectures.

Fig. 10: Performance Breakdown of Each Component

REFERENCES

[1] S. Kaxiras. Architecture at the End of Moore. ser. Advances in Atom
and Single Molecule Machines. Springer Berlin Heidelberg, 2013.

12] B. Hoefflinger, "The energy crisis," in Chips 2020, ser. The Frontiers
Collection, 2012, pp. 421-427.

[3] H. Esmaeilzadeh et ai., "Dark silicon and the end of multicore scaling,"
SIGARCH Compat. Archit. News, vol. 39, pp. 365-376, 2011.

14] P.-E. Gaillardon et al., "The programmable logic-in-memory (plim)
computer," in Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2016, pp. 427-432.

15] R. B. Hur et ai., "Algorithmic considerations in memristive memory
processing units (mpu)," international Symposium on Nanoscale Archi­

tecture (NANOARCH), 2016.
16] S. Hamdioui et aI., "Memristor based computation-in-memory archi­

tecture for data-intensive applications," in IEEE Conference on Design,
Automation & Test in Eumpe, 2015, pp. 1718-1725.

17] S. Hamdioui et aI., "Memristor for computing: Myth or reality?" in
Design, Automation and Test in Europe DATE, 2017.

18] A. Siemon et ai., "A complementary resistive switch-based crossbar
array adder," IEEE journal on emerging and selected topics in circuits

and systems, vol. 5, pp. 64-74, 2015.
[9] G. Snider, "Computing with hysteretic resistor crossbars," Applied

Physics A, vol. 80, pp. 1165-1172,2005.
[10] L. Xie et ai., "Fast boolean logic mapped on memristor crossbar," in

IEEE Conference on Computer Design (iCCD), 2015, pp. 335-342.
[II] S. Kvatinsky et ai., "Magicmemristor-aided logic," IEEE Transactions

on Circuits and Systems lJ: Express Briefs, vol. 61, pp. 895-899, 2014.
[12] L. Xie et aI., "Interconnect networks for meruristor crossbar," in

Symposium on Nanoscale Architectures, 2015, pp. 124-129.
[13] J. Yu et ai., "Skeleton-based design and simulation flow for

computation-in-memory architectures," in Nanoscale Architectures

(NANOARCH), 2016 IEEEIACM international Symposium on. IEEE,
2016, pp. 165-170.

[14] H. A. Du Nguyen et 01., "Computation-in-memory based parallel adder,"
in Symposium on Nanoscale Architectures, 2015, pp. 57-62.

[15] S. Sundaram et ai., "High speed robust current sense amplilier for
nanoscale memories: a winner take all approach," in Conference on

VLSI Design (VLSID), 2006.
[16] W. Dehaene et 01., "Variability-aware design of low power sram

memories," Doctoral Thesis, 2009.
[17] R. Zimmermann et al., "Low-power logic styles: Cmos versus pass­

transistor logic," IEEE journal 0/ solid-state circuits, vol. 32, 1997.
[18] E. Lehtonen et aI., "Memristive stateful logic," in Memristor Networks.

Springer, 2014, pp. 603-623.
[19] ITRS, "The international technology roadmap for semiconductors

ITRS," Semiconductor Industry Asso, Tech. Rep., 2011.
[20] SYNOPSYS, "Digital standard cell library saed_edk90_core databook,"

SYNOPSYS ARMENIA Educational Department, Tech. Rep., 2008.

Fig. 9: Performance of Proposed Interconnect Network
Schemes

of sense amplifiers and multiplexers. Note that the switches
used for the interconnect network in the hybrid scheme show
relatively a marginal energy consumption. The memristor­
based scheme has a slightly higher energy consumption in
comparison with the hybrid scheme, mostly due to the presence

INTERCONNECT DESIGN - PAPER 4.1

4

53

Interconnect Networks for Memristor Crossbar
Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui, Koen Bertels

Laboratory of Computer Engineering
Delft University of Technology, Delft, The Netherlands

Email: L.Xie@tudelft.nl

Abstract—As the down-scaling of CMOS technology reaches
inherent physical device limits, major challenges arise such as
reliability, power consumption, etc. Novel technologies are under
investigation as an alternative for next-generation VLSI circuits.
Memristor is one of the promising candidates due to its scala-
bility, non-volatility, practically zero leakage, high integration
density, etc. Several applications have been proposed for the
memristor crossbar architecture; examples are neuromophic,
memories and logic circuits. This paper proposes a generic and
flexible interconnect network for memristor-based logic circuits
within a crossbar architecture. The scheme is based on the use
of reserved memristors (within the crossbar) and the execution
of copy operations from and/or to the reserved memristors; it
can be applied both at intra-tile as well as inter-tile level, where
a tile is a basic block performing a simple logic function. To
illustrate the potential of the proposed scheme, two intra-tile and
one inter-tile case study are evaluated using SPICE simulation,
and their incurred costs are analyzed; the case studies consist
of interconnect networks for (a) a specific function within a tile
(i.e., the matrix transpose), (b) generic logic functions within a
tile, and (c) communication between tiles.

I. INTRODUCTION

The down-scaling of CMOS technology gradually reaches
the inherent physical device limits and leads to significant
challenges [1]; e.g., saturated performance gain, higher
leakage, reduced reliability and complex fabrication process.
To deal with these issues, emerging technologies (e.g.,
graphene transistors, nanotube, tunnel field-effect transistor,
memristors, etc. [2]) are proposed as an alternative for next-
generation VLSI circuits. Among the emerging technologies,
memristor is a promising candidate. It provides great
scalability, high density, zero standby power consumption,
higher technology maturity, CMOS process compatibility, and
the ability to implement both logic and memory in the same
physical crossbar [3].

Memristors can be utilized as individual discrete devices or in
arrays [4]. Designs using discrete memristors are intended to
improve the performance of conventional circuits [4] such as
chaos circuits, analog circuits (e.g., variable gain amplifier),
etc. Memristor arrays provide numerous memristors which
fit straightforward on a crossbar architecture [5]. Here,
memristors are located at the intersection of horizontal and
vertical nanowires. Therefore, a crossbar architecture can
provide a high integration density, and therefore enable many
applications such as neuromorphic systems [5], non-volatile
memories [4], new computing paradigms for data-intensive
applications [6], etc.

Research on memristor-based logic circuits has started getting
more attention since the fabrication of the memristor device
by HP in 2008. Four types of such circuits have been
proposed: (i) Boolean logic [7], (ii) material implication
logic [3], (iii) threshold logic [8], and (iv) majority logic [8].
Although memristor circuit design is becoming more popular,
the research on interconnects for such circuits is still in its
infancy stage. For circuits based on discrete memristors, metal
wires for the implementation of the interconnections -similarly
as in the conventional CMOS logic circuits- were proposed
in [8], while for crossbar arrays, the author [7] proposed
the concept of using circuit switching (no simulations were
included); circuit switching uses nanowires and memristors
as routing switches. Obviously, using traditional metal wires
for dense crossbar will induce serious delay and significantly
increase the routing complexity. On the other hand, circuit
switching requires the programming of memristors to form
a low-resistance path between different parts of the circuit
prior to transmitting data; creating such low-resistance paths
might be infeasible due to sneak path currents.

This paper proposes a generic and flexible interconnect net-
work using primitive low-cost copy operations for crossbar
architectures; the scheme is resilient against sneak path cur-
rents. This interconnect network can be used both at intra- and
inter-tile levels. The contributions of this paper are:

• A methodology to design intra- and inter-tile interconnect
networks.

• An interconnect network supporting several communica-
tion schemes such as unicast, multicast and broadcast.

• A diagonal data storage format reducing the communica-
tion latency.

• Different interconnect networks for three case studies:
(a) a specific function within a tile (i.e., the matrix
transpose), (b) generic logic functions within a tile, and
(c) communication between tiles.

The remainder of this paper is organized as follows. Section
II briefly describes some background regarding the memristor
model. Section III discusses the fundamentals of the proposed
interconnect network and its applications. Section IV presents
intra- and inter-tile interconnect networks as case studies.
Section V presents the simulation results. Finally, Section VI
concludes the paper.

II. BACKGROUND

This section describes the memristor model, its data represen-
tation and control voltages.

124978-1-4673-7849-9/15/$31.00 c©2015 IEEE

4

54 INTERCONNECT DESIGN - PAPER 4.2

Fig. 1: A simplified memristor THAB model [3].

A. Memristor Model
Although memristors have different physical mechanisms
[9], their behaviour at circuit level can be abstracted by
two parameters: resistive switching behaviour (abrupt or
smooth) [10] and switching threshold voltage (with or
without a minimum voltage for resistive switching) [11]. In
this work we use a simplified model with abrupt switching
and switching threshold voltage [3,7] (see Fig. 1(a)), referred
to as THAB (THreshold-ABrupt) memristor model. The
model is suitable for digital circuits and avoids issues such
as memristance drift and undesired switching [12].

Fig. 1(a) shows the characteristic of THAB model; the black
square in the figure presents the positive terminal of the
memristor. The memristor switches from one resistive state
to another when the absolute value of the voltage (either
positive or negative) across the device is greater than its
threshold voltage. Otherwise, it stays in its current resistive
state. Typically, a memristor requires two different switching
threshold voltages to switch from high to low resistance and
vice versa [11]. For simplicity, we assume that THAB model
uses the same absolute threshold voltage Vth for both cases.

B. Data Representation and Control Voltages
A memristor has two resistive states, high Roff and low Ron

resistance (see Fig. 1(a)). In this paper, Roff and Ron present a
logic 1 and 0, respectively. To control the digital circuits, three
different voltages are required: Vw, Vwh, and GND. Vw is used
to program the resistance of a memristor as shown in Fig. 1(b)
and (c), and Vwh is used to alleviate the impact of sneak
path currents by using half-select voltage strategy [5]. Vwh is
applied to memristors which are not accessed. The relationship
between Vw, Vwh, GND and Vth is [5]: 0<Vwh=

Vw

2 <Vth<Vw.
This guarantees Vw−Vwh=2Vwh−Vwh=Vwh<Vth, preventing
undesired switching.

III. FUNDAMENTALS OF INTERCONNECT NETWORK

This section describes briefly the requirements, primitive op-
erations of the interconnect network, and how it supports
different communication schemes.

A. Requirements for Interconnect Network
The interconnect network should support unicast, multicast
and broadcast as they are the most used communication
schemes [13]. Unicast describes the communication between
a single sender and a single receiver; multicast describes the
communication between one (multiple) sender(s) and multiple
receivers; broadcast describes the communication between one
sender and all connected receivers. In this section, we show
how these operations are realized in a memristor crossbar.

(a) Copy 1 (b) Copy 0 (c) Copy 1 (d) Copy 0

GNDVw

Vx Vw

Ron
Roff

Ron

GNDVw

Vx = ½Vw

Roff Roff

GND Vw

Vx GND

Ron
Roff

Ron

GND Vw

Vx = ½Vw

Roff Roff

Fig. 2: Single-Fanout Copy Operation

B. Primitive Operations for Interconnect Network

The primitive operations are single- (one output memristor
is involved) and multi- (multiple output memristors) fanout
copy operations as depicted in Fig. 2 and 3, respectively.
For each copy operation, we define the source memristor(s)
as input memristor(s) and the target memristor(s) as the
output memristor(s). In the figures, the output memristors are
surrounded by a dash-lined square. All the voltages of the
floating wires are denoted by Vx; Vx is used to explain the
switching of the output memristor. Prior to a copy operation,
each output memristor should be initialized to high resistance.

The single-fanout copy (SFC) was proposed by G. Snider in
[7] and is shown in Fig. 2(a) and (b) for a copy 1 and 0, re-
spectively. Fig. 2(c) and (d) show them for reversed memristor
orientations, i.e., with reversed positive and negative terminals.
In Fig. 2(a) and (b), GND is applied to the positive terminal
of the input memristor, while Vw to the output memristor.
In case the resistance of the input memristor equals Roff

(see Fig. 2(a)), Vx=1/2Vw, and therefore, the voltage across
the output memristor is Vw−Vx=1/2Vw < Vth. As a result,
the output memristor stays at Roff . In case the resistance of
the input memristor equals Ron, Vx≈GND, and therefore, the
voltage across the output memristor is Vw−Vx≈Vw > Vth. As
a result, it switches to Ron. Similar conclusions can be made
for Fig. 2(c) and (d).

To support multicast and broadcast, we propose a novel multi-
fanout copy (MFC) operation as shown in Fig. 3. It shows
MFC for both memristor orientations (Fig. 3(a)-(c) and 3(d)-
(f)). In Fig. 3(a)-(c), GND is applied to the positive terminal
of the input memristor while Vw to the output memristor. In
case, the resistance of the input memristor equals Roff (see
Fig. 3(a)), Vx=3/4Vw. Therefore, the voltage across the output
memristor is Vw−Vx=1/4Vw<Vth. As a result, the output
memristor stays at Roff . In case the resistance of the input
memristor equals Ron (see Fig. 3(b)), Vx≈GND. Therefore,
the voltage across each output memristor is Vw−Vx≈Vw>Vth.
As a result, the output memristors switch to Ron. However,
MFC is a destructive operation. After the output memristors
switch to Ron, the voltage across the input memristor changes
to Vx=3/4Vw>Vth. As a result, the input memristor switches
to Roff (see Fig. 3(c)). Similar conclusions can be made for
the reversed memristor orientation in Fig. 3(d)-(f).

C. Support for Unicast, Multicast and Broadcast

Unicast communication schemes can be realized in memristor
crossbars using SFC operations. Fig. 4 shows the unicast
communication scheme for different cases. In the figure, mem-
ristors are represented by arrows with their positive terminal
presented by the arrow head. The sender(s) and receiver(s) are

2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 125

INTERCONNECT DESIGN - PAPER 4.2

4

55

(a) Copy 1

GND Vw

Vx = ¾Vw

Roff Roff

Vw Vw

Roff Roff

(c) Copy 0, Phase 2

GND Vw

Vx = ¾Vw

Ron Ron Ron

Vw Vw

Ron

Roff

(b) Copy 0, Phase 1

GND Vw

Vx GND

Ron
Roff

Ron

Roff

Ron

Roff

Ron

Vw Vw

(d) Copy 1
Vx = ¼Vw

Roff Roff Roff Roff

Vw GND GND GND

(e) Copy 0, Phase 1
Vx Vw

Ron
Roff

Ron

Roff

Ron

Roff

Ron

Vw GND GND GND

(f) Copy 0, Phase 2

Vw GND

Vx =¼Vw

Ron Ron Ron

GND GND
Ron

Roff

Fig. 3: Multi-Fanout Copy Operation

(a) Single 1D Copy (b) Multiple 1D Copies (c) 2D Copy, Step 1 (d) 2D Copy, Step 2

Vw

GND

Vwh Vwh

Vwh

Vwh

VwhVwGND Vwh Vwh

Vwh

Vwh

Vwh

VwGND Vwh VwhVwGND Vwh Vwh

Vwh

Vwh

Vwh

S R

R

R

RS

S

S R

S

R

S

Fig. 4: Unicast Communication Schemes

marked by a letter S and R, respectively. Arch arrows present
the direction of the copy operation. The output memristor of
each copy operation is surrounded by a dash-lined frame work.
Each memristor represents a single bit.

The unicast communication can be subdivided into one-
and two-dimensional transmission. One-dimensional unicast
transmission involves data transfer between a sender and
receiver within the same row (horizontal) or column (vertical).
Fig. 4(a) shows a horizontal unicast transmition as an example
since the similar operation can be used for vertical unicast
transmission. A one-dimensional unicast transmission requires
an SFC operation in the same row (column). Multiple one-
dimensional unicast transmissions can occur simultaneously
as their floating nanowires do not interfere. Fig. 4(b) shows
multiple horizontal unicast transmissions as an example.
Two-dimensional unicast transmission involves data transfer
between a sender and receiver that are not in the same row
or column. A two-dimensional unicast transmission requires
two sequential SFC operations. First the data is copied
from the sender to an intermediate memristor in the same
row (column) (see Fig. 4(c)), and subsequently from the
intermediate memristor to the receiver in the same column
(row) (see Fig. 4(d)). The transmission can be horizontal-first
or vertical-first. The voltages GND and Vw are applied to
the positive terminals of the input and output memristor,
respectively when horizontal communication is used (see also
Fig. 2 (a) and (b)). Oppositely, for vertical communication,
Vw and GND are applied to the negative memristor terminals
(see Fig. 2 (c) and (d)). All the other crossbar nanowires that
are not involved in data transfer are set to Vwh. This prevents
undesired switching of idle memristors and alleviates the
impact of sneak path currents during the transmission [5].

Similar to unicast communication, multicast and broadcast
communication schemes can be realized in the memristor
crossbar by using MFC operations instead of SFC operations.
As the working principle of unicast and multicast/broadcast
implementation on memristor crossbar are similar, we do not
describe multicast and broadcast operations in detail. Fig. 5
shows the multicast and broadcast communication schemes
for different sender and receiver configurations.

(a) Horizontal Multicast (c) Simultaneously
Horizontal Multicast

(d) Simultaneously
Vertical Multicast

(e) 2D Multicast

(f) Broadcast(b) Vertial Multicast

VwGND Vw Vwh

Vwh

Vwh

Vwh

VwGND Vwh Vw

Vwh

VwGND Vwh Vw

Vwh

Vwh

Vwh

Vw

GND

Vwh Vwh

Vwh

GND

Vwh

Vw

GND

Vwh

GND

Vwh

Vw

GND

GND

GND

RS R R

S

R

RS R

RS R

S

R

R

S S

RR R

RR R

S S

R R

R R

R R

R R

R R

R R

R R

R R

R R RS

VwGND Vw Vw

Vwh

Vwh

Vwh

R R

R R

R R

R R

R R

R R

S R R R

Vwh

GND

GND

GND

Vwh Vwh

R R

R R

S

Fig. 5: Multicast and Broadcast Communication Schemes

Horizontal Vertical Diagonal
(a) Data Storage Pattern

(c) Horizontally-Stored
Horizontal Transmission

Vwh

VwGND Vwh Vwh

Step 1

S1 R1 R2S2

VwGNDVwh Vwh

Step 2

S1 R1 R2S2

Vwh

(e) Diagonally-Stored
Horizontal Transmission

Vw

Vwh

VwGND GND

S1

S2

R1

R2

Vwh

Vw

Vwh

Vw

GND

GND

Vwh

S1

S2

R1

R2

(b) Transmission Error

VwGND GND Vw

RoffRon Ron Ron

S1 R1 R2S2

GND

Vw

Vwh

S1

R1 R2

S2

(d) Horizontally-Stored
Vertical Transmission

MSB LSB MSB

LSB

MSB

LSB

(f) Diagonally-Stored
Vertial Transmission

Fig. 6: Multi-Bit Word Storage Patterns and Communication

D. Impact of Multi-Bit Words

In digital circuits, each memristor stores one bit. To store
multi-bit numbers, or words, three different patterns can be
considered: horizontal, vertical and diagonal as shown in Fig. 6
(a) with green boxes (for a two-bit example). The horizontal
and vertical patterns store a word in a row and column,
respectively. The diagonal pattern stores a word diagonally.
The remaining off-diagonal memristors in the green box are
disabled [7] and have a permanent high resistance.

Based on the data storage pattern and communication
direction, transmitting data in parallel might not always be
feasible. For example, in Fig. 6 (b) the transmission of both
bits simultaneously cannot work as both copy operations
share the same floating nanowire. This causes an erroneous
transmission on one of the output bits (Sender S2 has value
Roff , while receiver R2 Ron). Therefore, the horizontal
transmission of words must be performed sequentially bit-
by-bit as depicted in Fig. 6 (c). In step 1, only the first input
is transmitted, while in step 2 the second bit is transmitted.
However, the vertical transmission of horizontally-stored
words can be performed simultaneously as the copy
operations do not share the same floating nanowire; this is
depicted in Fig. 6 (d). Oppositely, vertically-stored words can
transmit data simultaneously during horizontal transmission
and require multiple steps for vertical transmission.

Fig. 6 (e) and (f) show horizontal and vertical transmission
for diagonally-stored words, respectively. Both bit-copy
operations can be performed simultaneously as they do not
share the floating nanowires. Note that this storage requires
disabled memristors on the off-diagonal positions which do
not impact the transmission, but increases the area.

As the word size increases, the transmission time for
horizontally- or vertically-stored data increases linearly (based

126 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

4

56 INTERCONNECT DESIGN - PAPER 4.2

Vwh Vwh

Vw

GND

GND

Vwh Vwh

VwVwGND GND

Vwh

Vwh

GND

Vw

Vw

Vwh Vwh

S1 S2 R1 R2 S1 S2 R1 R2 S1 S2 R1 R2

Step 1 Step 2 Step 3

Fig. 7: Multi-Bit Communication with Mirrors

on the transmission direction) and may lead to high com-
munication overhead. To solve this problem, we propose a
communication scheme consisting of 3 steps (independent of
the width of the word) using two mirrors. The mirrors are
reserved storage units that use the diagonal data pattern. For
horizontally-stored data (see Fig. 7), data is copied vertically
to the first mirror in step 1; in step 2 this data is transferred
horizontally to the second mirror; finally, in step 3 the data
is transferred to the destination. Similarly, but with opposite
directions, three steps are required for vertical transmission.

IV. CASE STUDY

This section describes three case studies: interconnect net-
works for (a) specific function within a tile (i.e., matrix
transpose), (b) general logic functions within a tile and (c)
communication between tiles.

A. Specific Intra-Tile Interconnect Network

The matrix transpose is a basic and one of the most used
operations in matrix computation. Typically, this operation
is very costly in traditional architectures [14]. We propose
an intra-tile interconnect network to implement a matrix
transpose operation. Fig. 8 (a) shows an example for a 2×3
matrix. Each word aij consists of 2 bits (aij(1) presents MSB
and aij(0) presents LSB) stored in a diagonal pattern (see
Fig. 8(b)). The words in the intermediate and final results are
also stored in this pattern.

The proposed interconnect network consists of an input,
intermediate and output blocks. The input and output blocks
store the original and transposed matrix, respectively. The
intermediate block stores one column of the input matrix at a
time and subsequently, the transposed column is transferred to
the output block. This is repeated for all the input columns. In
this procedure, the intermediate block is referred to as a mirror.

The complete working procedure to transpose a matrix is
captured by the state machine in Fig. 8(c); here en presents the
enable signal for control logic, Row cnt the number of rows
which have been transposed, Row num the total number of
rows. State INI initializes the memristors of mirror and output
block to Roff and write input matrix to input block. State
IM2M (input matrix to mirror) copies a single column of the
input matrix to the mirror based on the value of Row cnt (see
Fig. 8(d)); State M2OM (mirror to output matrix) copies the
data from the mirror to the output matrix (see Fig. 8(e)); State
INIM initializes the memristors of mirror to Roff for the next
column. The control logic repeats state IM2M, M2OM and
INIM until all the columns have been transposed.

(a) Input/Output Matrix

a11
a21

a12
a22

a13
a23

10
01

10
01

10
01

a11 a21

a12 a22

a13 a23

10 01

10 01

10 01

Input Matrix Output Matrix

a11

a21

a12

a22

a13

a23

a11

a12

a13

a21

a22

a23

1
0

0
1

1
0

1
0

0
1

0
1

1
0

0
1

1
0

0
1

1
0

0
1

(b) Data Layout in Crossbar

a11(1)

a11(0)
a21(1)

a21(0)
a11(1) a11(0)

m1(1)
m1(0)

m2(1)
m2(0)

IM2M

Row_cnt >= Row_num

Row_cnt < Row_num

en

!en

a11

a21

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

a11

a21

a11 a21

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10

(C) State Machine

(d) Copy from Input Matrix to Mirror (e) Copy from Mirror to Output Matrix

M2OM

INIMINI

IDLE

1
0

0

1

1
0

0

1
1

0

1
0

0

1

1
0

0

1
0

1

Fig. 8: Matrix Transpose on Memristor Crossbar

B. General Intra-Tile Interconnect Network
Based on single- and multi-fanout copy operations, an intra-tile
interconnect network for general logic functions is proposed;
a logic function including five logic blocks (i.e., A, B, C, D
and E) is shown as an example in Fig. 9. The interconnect
between different logic blocks of the block diagram depicted
in Fig. 9(a) is implemented on the memristor crossbar using
mirrors as depicted in Fig. 9(b). In the figure, the outputs
of Block A and B (denoted by Oi) are transferred to the
corresponding inputs of Block C, D and E. In Fig. 9 (b),
each square with a diagonal line presents a mirror. The blue
lines present the interconnects between the blocks similar as
Fig. 9 (a). The red lines around each block present isolations
between blocks [7] (e.g., breaking the horizontal and vertical
nanowires). This guarantees that the blocks can work in
parallel. As a memristor crossbar only contains horizontal and
vertical nanowires, each interconnect between an input and
output involves two mirrors where one is aligned with the
input and one with the output. Both mirrors are placed on the
same horizontal nanowires. When both the output and input
of an interconnect reside in the same column, no mirrors are
required and only a direct copy operation can transmit data.
Otherwise, each transmission requires three sequential copy
operations: 1) from the output to the first mirror, 2) from
the first mirror to the second mirror, and 3) from the second
mirror to the input. Outputs with multiple fanouts (e.g., O5 in
Fig. 9(b)) require a MFC operation.

O1 O2 O3 O4 O5 O6 O7 O8O1 O2 O3 O4 O5 O6 O7 O8

(a) Block Diagram (b) Implementation on Memristor Crossbar

Mirror

A B

C D E

A B

C D E

Tile Tile

Fig. 9: General Intra-Tile Interconnect Network Using Mirrors

2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 127

INTERCONNECT DESIGN - PAPER 4.2

4

57

T1

IS1

OS1

IB1

OB1

T4

IS4

OS4

IB4

OB4

T7

IS7

OS7

IB7

OB7

T2

IS2

OS2

IB2

OB2

T5

IS5

OS5

IB5

OB5

T8

IS8

OS8

IB8

OB8

T3

IS3

OS3

IB3

OB3

T6

IS6

OS6

IB6

OB6

T9

IS9

OS9

IB9

OB9

CI

CI

CI

CI

(a) Organization (b) Layout on Crossbar (c) State Machine

OB2OS

OS2CI

CI2CI

CI2IS

IS2IB

INIR

IDLE

!OB_EMPTY

OB_EMPTYen

!en

OS2IS

Only
Horizontal
Transfer

Two-
Dimensional

Transfer

Fig. 10: 2D Bus General Inter-Tile Interconnect Network

C. General Inter-Tile Interconnect Network

We propose an interconnect network, 2D bus, between multi-
ple processing blocks (PB) or tiles (T) as shown in Fig. 10.
Each tile implements a complex logic function as proposed
in [7]. Our 2D bus enables both horizontal and vertical trans-
mission. It consists of input buffers (IB), output buffers (OB),
input stops (IS), output stops (OS) and channel intersections
(CI). The IB temporarily buffers the data received from 2D
bus, while the OB temporarily buffers the data that should be
transmitted via the 2D bus. These buffers allow the 2D bus and
tiles to run without blocking each other. Each tile has its own
dedicated an IB, OB, IS and OS. Horizontal transmission is
handled by OS and IS and their task is to buffer and transmit
data horizontally. The vertical transmission is handled by CI
and its task is to switch the communication direction from
horizontal to vertical and vice versa.

Fig. 10 (b) shows the crossbar implementation of a 2D bus.
Note that details of tiles have been left out for convenience.
All IBs, OBs, ISs, OSs and CIs employ mirrors to realize
two-dimensional transmission within constant time (see
Section III). Each tile is isolated from its neighbouring
tiles that are in the same row and column (by breaking the
horizontal and vertical nanowires shown by the red lines in
Fig. 10 (a) and (b) [7]). Each tile communicates with its
corresponding IS and OS via its IB and OB, respectively.
Therefore, tiles do not influence each other.

Fig. 10 (c) shows the state machine. In the first state (OB2OS)
the outputs of the sender tile are moved from OB to OS.
In the second state, the data is moved from OB to IS if
only horizontal transmission is involved (OS2IS). Otherwise,
the data is moved to the CI that is on the same row of OS
(OS2CI). The next state (CI2CI) moves the data vertically
to the CIs which are on the same rows as the ISs of the
receivers. Afterwards, data is moved horizontally from CI
(CI2IS, if vertical transmission is involved) or OS (OS2IS,
in case only horizontal transmission is involved) to the IS of
the receiver. Next, data is moved from the IS to IB of the
receiver (IS2IB). Finally, all memristors of IS, OS and CI are
programmed to Roff in state INIR for the next transmission.

The 2D bus is able to support unicast, multicast, and broadcast
communication as shown in Fig. 11. The figure shows each
transfer step in an (blue) arch arrow. In all cases Tile1 is
assumed to be the sender. For the multicast operation, we

OB1 OB2 OB3

IB4 IB5 IB6

OB5OB4 OB6

OS1IS4 OS2IS5 OS3IS6

OB2OB1 OB3

IB1 IB2 IB3

IB1 IB2 IB3

OB1 OB2 OB3

CI

CI

(a) Unicast (b) P2R Multicast

T1

IS1

OS1IS4

T2

IS2

OS2IS5

T3

IS3

OS3IS6 CI

(c) P2C Multicast (d) Broadcast

T1

IS1

T4

T7IB7

T2

IS2

T5

T8IB8

T3

IS3

T6

T9IB9

CI

T1

IS1

OS1

IB1

IS4

T2

IS2

OS2

IB2

IS5

T3

IS3

OS3

IB3

IS6 CI

CI

OS4IS7 OS5IS8 OS6IS9 CI

IB4 IB5 IB6

OB5OB4 OB6

OS1IS4 OS2IS5 OS3IS6

OB2OB1 OB3

IB1 IB2 IB3

CI

T1

IS1

T4

T7IB7

T2

IS2

T5

PB8IB8

T3

IS3

T6

T9IB9

CI

OS4IS7 OS5IS8 OS6IS9 CI

Fig. 11: 2D Bus Communication Schemes

consider two examples; they are point-to-row (P2R) and
point-to-column (P2C) multicast (see Fig. 11 (b) and (c)).
Most states of the state machine of Fig. 10 (c) execute the
same operations for each communication scheme. The only
states that differ CI2CI and CI2IS as they transfer to either
multiple receivers on different rows or multiple receivers on
the same row. The CI that is positioned in on the same row of
the sender OS is referred to as the sender CI, while the CI on
the same row of the receiver IS is referred to as the receiver CI.

The unicast (see Fig. 11(a)) involves SFC operations only.
The P2R multicast (see Fig. 11(b)) is similar to the unicast
except that the receiver CI uses a MFC operation to transmit
data simultaneously to the receivers. The P2C multicast (see
Fig. 11(c)) moves the data horizontally to the sender CI.
Subsequently, it uses a MFC operation to send the data to
the receiver CIs. Finally, the data is transmitted in parallel
to all the receivers on the desired columns. Note that in
multicast and broadcast the destructive MFC operation only
affects the sender CI and has no impact on the correctness of
the transmission. The broadcast (see Fig. 11(d)) is similar as
P2C multicast, except that the last step consists of copying data
from CI to all the receivers. However, there is major difference.
As the sender CI may lose its data when its data is copied to
other CIs. The P2C multicast (e.g.,OS1 to IS5 in Fig. 11(c))
and broadcast (OS1 to IS4, IS5 and IS6 in Fig. 11(d)) uses the
sender OS to transmit data to its neighbours in the last step.

V. SIMULATION RESULTS

This section presents the simulation results of the interconnect
network and the three communication schemes of Section IV
(see Fig. 11); the delay and area are evaluated.

A. Simulation

The simulation framework consists of three parts; they are
the memristor crossbar, the voltage drivers and their control
logic [12]. The control logic determines the voltage that should
be applied to the nanowires and the voltage drivers are used
to drive them (either by applying a voltage or leaving them
floating). The memristor crossbar is described by a SPICE
netlist. The THAB model, control logic and voltage drivers are
described in Verilog-A. Table I lists the simulation parameters.
As we forcus on the functionality of the interconnect network,

128 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)

4

58 INTERCONNECT DESIGN - PAPER 4.2

TABLE I: Simulation Parameters
Memristor Model Control Voltages

Parameter Value Parameter Value
Ron 100Ω Vw 1.6V
Roff 200kΩ Vwh 0.8V
Vth 1V

(b) Mirrors(a) Input Matrix (c) Output Matrix

a11(1)

a11(0)

a21(1)

a21(0)

1

0

1

0

a11(1)

a11(0)

a21(1)

a21(0)

1

0

1

0

m1(1)

m1(0)

m2(1)

m2(0)

1

0

1

0

1

0

1

0

1

1

1

1

State IDLE INI State IM2M M2OM INIM State M2OM

Fig. 12: Simulation Results of Matrix Transpose

the resistance and capacitance of nanowires are negelacted.
Half-select voltage strategy is used to alleviate the impact of
sneak path currents [5].

Fig. 12 shows the results of the simulated matrix transpose
operation of Fig. 8. The input matrix is initialized in state
INI. Mirrors receive and send a column of the input matrix in
state IM2M and M2OM, respectively. Afterwards, mirrors are
initialized to high resistance in state INIM. The output matrix
receives the transposed column of the input matrix as a row.

The simulated communication schemes (i.e., unicast, P2R and
P2C multicast, and broadcast) supported by a 2D bus are
depicted in Fig. 11. Fig. 13 shows the SPICE simulation
results. All the simulations use Tile1 as the sender and send
the same data 01. As the simulation intends to verify the
communication only, no tiles are involved and data is directly
written into the OB1 of T1 in state IDLE. The figure shows
for the most important signals of all receivers (depending on
communication schemes). All of them match with Section IV.

B. Evaluation

The proposed interconnect network for matrix transpose and
2D bus are evaluated using delay and area as metrics. Data
for both applications is assumed to be stored in the diagonal
pattern. Table II summarizes the results. For the matrix
transpose we assume a single (grid size equals 1) matrix of
size m× n. Its delay is linear with the number of rows while
the area equals. Each row requires 3 cycles to complete. Its
area consist of three parts which are the input, intermediate
and output blocks. The area grows linearly with the matrix
size (m × n) and quadratically with the word size; this is
due to the diagonal storage pattern. A horizontal or vertical
storage pattern reduces this quadratic to a linear dependency.

For the 2D bus, we assume a grid size of A × B (i.e., the
system consists of A×B tiles whose size are m×n). The delay
of each operation is either 4 (only horizontal communication)
or 6 (horizontal and vertical communication) cycles (see
Fig. 10). The area of the bus is calculated by considering
the whole area of the system minus the area of the A×B tiles.

In our simulations, the resitance and capacitance of nanowires
are ignored. Therefore, the the number of communication
steps might be too optimistic for crossbars arrays with long
nano-wires, especially for the horizontal crossbar lines as they

State IDLE INI State CI2IS IS2IB State CI2IS IS2IB State CI2IS IS2IB

(a) Initialize OB (b) Unicast (c) P2R Multicast (d) P2C Multicast

OB1(1)

OB1(0)

01

11

IB2(1)

IB2(0)

01

11

IB2(1) 01

IB3(1) 01

IB2(0) 11

IB3(0) 11

IB2(1) 01

IB5(1) 01

IB8(1) 01

IB2(0) 11

IB5(0) 11

IB8(0) 11

State CI2IS IS2IB State CI2IS IS2IB

(e) Broadcast

IB2(1) 01 IB6(1) 01

IB2(0) 11 IB6(0) 11

IB3(1) 01 IB7(1) 01

IB3(0) 11 IB7(0) 11

IB4(1) 01 IB8(1) 01

IB4(0) 11 IB8(0) 11

IB5(1) 01 IB9(1) 01

IB5(0) 11 IB9(0) 11

Fig. 13: Simulation Results of 2D Bus

TABLE II: Evaluation
Matrix Transpose 2D Bus

Conditions
Word Size b
Grid Size 1 A×B
PB Size m× n m× n

Metrics
Delay 3m 4 or 6
Area 2mnb2 +m2b2 [B(n+ 2b) + b][A(m+ b) + b]−ABmn

contain only a single CI. In practice, additional repeaters
might be required for proper operation. They can be realized
straightforwardly by inserting additional CI channels (on the
horizontal crossbar lines) or intermediate storages. Neverthe-
less, these repeaters do not impact the principle of operation.

VI. CONCLUSION

Memristor circuits are a promising candidate for the next-
generation VLSI circuits. In these VLSI circuits, the intercon-
nection plays a vital role. To our knowledge, this paper is the
first to address scalable interconnect networks for memristor
crossbar arrays. It realizes this by using reserved memristors
and supports both intra- and inter-tile communication. This
approach is verified using SPICE simulations.

REFERENCES

[1] B. Hoefflinger, “The energy crisis,” in Chips 2020, ser. The Frontiers
Collection, B. Hoefflinger, Ed., Jan. 2012, pp. 421–427.

[2] W. Zhao et al., “Nanodevice-based novel computing paradigms and the
neuromorphic approach,” in ISCAS, May 2012, pp. 2509–2512.

[3] E. Lehtonen et al., “Memristive stateful logic,” in Memristor Networks.
Springer, 2014, pp. 603–623.

[4] P. Mazumder et al., “Memristors: Devices, models, and applications,”
Proceedings of the IEEE, vol. 100, pp. 1911–1919, 2012.

[5] K.-H. Kim et al., “A functional hybrid memristor crossbar-Array/CMOS
system for data storage and neuromorphic applications,” Nano Letters,
vol. 12, pp. 389–395, Jan. 2012.

[6] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in DATE, 2015, p. 199.

[7] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, pp. 1165–1172, 2005.

[8] G. S. Rose et al., “Leveraging memristive systems in the construction of
digital logic circuits,” Proceedings of the IEEE, vol. 100, pp. 2033–2049,
2012.

[9] R. Waser et al., “Redox-based resistive switching memories–nanoionic
mechanisms, prospects, and challenges,” Advanced Materials, vol. 21,
pp. 2632–2663, 2009.

[10] W. Lu et al., “Two-terminal resistive switches (memristors) for memory
and logic applications,” in ASP-DAC, Jan. 2011, pp. 217–223.

[11] S. Kvatinsky et al., “Team: Threshold adaptive memristor model,”
Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60,
pp. 211–221, 2013.

[12] S. Kvatinsky et al., “Memristor-based material implication (imply) logic:
design principles and methodologies,” VLSI, IEEE Transactions on,
vol. 22, pp. 2054–2066, 2014.

[13] A. S. Tanenbaum, “Computer networks 4th edition,” ed: Prentice Hall,
2003.

[14] G. H. Golub et al., Matrix computations. JHU Press, 2012, vol. 3.

2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) 129

INTERCONNECT DESIGN - PAPER 4.2

4

59

5
CIRCUIT DESIGN AND SYNTHESIS

FLOW

This chapter presents design methodologies for both ASIC and FPGA using memristor logic
design styles. First, it explores place-and-route algorithms for large scale memristor cross-
bar ASIC design; a synthesis flow and evaluation model are proposed as well. Subse-
quently, it explores different FPGA implementations using two different logic design styles
and proposes a synthesis flow and evaluation model.

The content of this chapter consists of the following research articles:

1. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, A Mapping Method-
ology of Boolean Logic Circuits on Memristor Crossbar, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), Volume 37, Issue 2, Feb
2018.

2. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, M Alfailakawi, Non-
Volatile Look-up Table Based FPGA Implementations, IEEE International Sympo-
sium on Design and Test (IDT), Hammamet, Tunisia, December, 2016, pp. 165-170

61

5

62 5. CIRCUIT DESIGN AND SYNTHESIS FLOW

5.1. INTRODUCTION
To implement resistive computing architectures, the large scale logic circuits are re-
quired. Logic circuits normally can be divided into application specific integrated cir-
cuits (ASICs) and field programmable gate arrays (FPGAs) depending on the flexibility
and reconfigurability of the circuits. Using the primitive gates and interconnect net-
works presented in Chapter 3 and 4, this chapter explores circuit design methodologies
for both ASICs and FPGAs.

ASIC Design Methodology: Boolean logic seems to be the enabler for the resistive com-
puter architectures as they use resistance to represent data, and can be easily integrated
with high density memories [59,60]. In [22,25], the authors proposed simple and small
Boolean logic designs for memristor crossbar, which partially address the shortcomings
of implication logic. Therefore, exploring memristor crossbar logic design for the larger
circuits is required in order to appropriately assess the potential of memristor technol-
ogy.

FPGA Design Methodology: Many novel memristor-based FPGAs [46,61,62], called MemF-
PGA for short, have been reported recently. MemFPGAs typically employ the classical
island-style architecture [63] which consists of configurable logic blocks (CLBs), pro-
grammable interconnect, and block RAM (BRAM). Each CLB consists of look-up tables
(LUTs) and a D flip-flop (DFF). Both CLBs and the programmable interconnect use mem-
ories to store configuration information. In MemFPGAs, memristors are utilized in the
following fashions: 1) configuration memories for CLBs and programmable intercon-
nects [61], 2) implementation of programmable interconnect [46], and 3) implementa-
tion of BRAMs and DFFs [62]. However, no LUTs have been implemented by memristor
logic circuits.

5.2. MAIN CONTRIBUTIONS
The main contributions in the above aspects are as follows.

1. ASIC Design Methodology [25,56]: In order to implement large scale ASICs, the
place-and-route approaches are explored first. As the memristive devices are pas-
sive, a CMOS-based peripheral circuit design is proposed to control them. Next,
we propose several optimization techniques to improve the performance of Snider
logic in terms of area, delay and energy. In order to estimate the performance of
logic circuits, an evaluation model is proposed while considering both the mem-
ristor crossbar and CMOS controller. Finally, we present a synthesis flow by adapt-
ing conventional CMOS synthesis flows. To illustrate the potential of the proposed
design methodology, a multi-bit adder and other nine more complex benchmarks
are studied; the delay, area and power consumption induced by both the memris-
tor and its CMOS control part are evaluated. The results show that optimization
techniques can improve the area and delay in the factor of 7.8 and 2.2 at least. In
addition, the circuit scalability and the impact of technology parameters on de-
lay and power consumption are also discussed. It is observed that the area of the
whole circuit can be dominated by either crossbar array or CMOS controller de-

5.2. MAIN CONTRIBUTIONS

5

63

pending on the scale of circuits; the faster resistive switching and higher on-state
resistance value of memristor device can significantly reduce the delay and power
consumption of the circuits.

2. FPGA Design Methodology [47]: Based on the classical island-style FPGA archi-
tecture, we use two different logic design styles to implement the look-up tables.
In order to appropriately estimate the performance of the proposed FPGA imple-
mentations, we propose an evaluation model which considers both the memristor
and CMOS parts. Finally, a synthesis flow is developed by adapting CMOS based
FPGA synthesis flows. To illustrate the potential of our proposals, they are bench-
marked using Toronto 20 benchmark suite, and compared with the state-of-the-art
in terms of area and delay. The experimental results show that both the area and
delay of the novel FPGAs are improved up to 4.24x and 1.46x respectively.

1

A Mapping Methodology of
Boolean Logic Circuits on Memristor Crossbar

Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui, Koen Bertels
Laboratory of Computer Engineering,

Delft University of Technology, Delft, the Netherlands
Email: {L.Xie,H.A.DuNguyen,M.Taouil,S.Hamdioui,K.L.M.Bertels}@tudelft.nl

Abstract—Alternatives to CMOS logic circuit implementations
are under research for future scaled electronics. Memristor
crossbar based logic circuit is one of the promising candidates
to at least partially replace CMOS technology, which is facing
many challenges such as reduced scalability, reliability, and
performance gain. Memristor crossbar offers many advantages
including scalability, high integration density, non-volatility, etc.
The state-of-the-art for memristor crossbar logic circuit design
can only implement simple and small circuits. This paper
proposes a mapping methodology of large Boolean logic circuits
on memristor crossbar. Appropriate place-and-route schemes, to
efficiently map the circuits on the crossbar, as well as several
optimization schemes are also proposed. To illustrate the potential
of the methodology, a multi-bit adder and other nine more
complex benchmarks are studied; the delay, area and power
consumption induced by both the crossbar and its CMOS control
part are evaluated.

Index Terms—Memristor Crossbar, Logic Design, Mapping,
Evaluation.

I. INTRODUCTION

As CMOS transistors gradually scale down to the intrinsically
physical device limits, CMOS VLSI circuits are facing major
challenges such as saturated performance gain, increased
leakage power consumption, reduced reliability, and a more
complex fabrication process [1–3]. In addition, CMOS-
based computers are suffering from memory bottleneck [4],
power wall [5], etc. To address these challenges, alternative
technologies [6] are under investigation; examples are
nanotube [7,8], silicon nanowire FET [9], magnetic/spintronic
[10–12], and memristors [13,14]. Among these proposals,
memristor crossbar based logic circuit is a promising candidate
due to its attractive characteristics in terms of scalability, high
integration density, and non-volatility, etc [15,16]. Moreover,
based on memristor technology, novel computer architectures
for data-intensive applications have been proposed, such as
computation-in-memory [17–21], resistive associate processor
[22] and Pinatubo [23]; they show a potential of order of
magnitude performance improvement as compared to todays’
architectures.

To implement such novel computer architectures, logic
circuits based on resistive devices, such as memristors, are
required; research on this topic is still in infancy stage. As
of today, four types of memristor-based logic circuits have
been proposed: threshold [24,25], majority [25], material
implication [26,27], and Boolean [28,29] logic. Threshold and

majority logic circuits use memristor as the weight of inputs
and use CMOS current mirror or inverter as the threshold
function. Both of them are more suitable for traditional
computer architecture as they represent data by using voltage.
In contrast, both material implication and Boolean logic seem
to be the enabler for the novel computer architectures as they
use resistance to represent data, and can be easily integrated
with high density memories [30,31]. In [27,32,33], the authors
proposed methodologies to implement logic functions using
a sequence of material implication operations. However,
these methodologies suffer from low speed and require
new algorithms to implement arithmetic operations such as
addition [27,34,35]. In [28,29], the authors proposed simple
and small Boolean logic designs for memristor crossbar,
which partially address the shortcomings of implication logic.
Therefore, exploring memristor crossbar logic design for
larger circuits is required in order to appropriately assess the
potential of such technology.

This paper proposes a mapping methodology of Boolean logic
circuits on memristor crossbar to enable the implementation
of large logic circuits, and illustrates the methodology for
a multi-bit adder. Thereafter, the methodology is applied to
nine more complex benchmarks to show its generality. This
work is built on our preliminary work published in [29],
where the focus was mainly on the implementation of simple
Boolean functions. Compared to the preliminary work, the new
contributions of this paper are:

• A mapping flow for memristor crossbar enabling large-
scale logic circuits.

• Two place-and-route schemes to map large-scale logic
circuits on crossbar.

• Design of CMOS peripheral circuits, which act as the
control engine of the memristor crossbar.

• Several schemes to optimize the area, delay and power
consumption.

• A model to evaluate the performance of the design in
terms of area, delay and power consumption, which
considers both the crossbar and CMOS parts.

The remainder of this paper is organized as follows. Section II
briefly describes the design of resistive Boolean logic. Section
III presents the proposed mapping flow, two place-and-route
schemes and CMOS circuits to control the crossbar. Section
IV discusses several optimization schemes. Section V verifies
the methodology using multi-bit adders as a case study, and

5

64 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

SET

RESET

I

V

RL ‘0’

RH ‘1’
VwVthVh

-Vth-Vh-Vw

SET RESET

RL RH

Vw

GND

I

Vw

GND

I

RH RL

Fig. 1: Ideal Memristor Model.

INA

RIN CFM EVM

GERINRSOU

1

2 3 4

567

(b)

IL

m1

...

A
N

D

(a)

...

f f

mi

mn

OL

LB

Primary Inputs

ff

INV

Fig. 2: Working Principle of Boolean Logic: (a) Computing Element,
(b) State Machine.

applies the method to nine more complex benchmarks. Section
VI concludes the paper with advantages of the proposal and
challenges in the future work.

II. BOOLEAN LOGIC DESIGN

This section starts first by briefly presenting the memristor
model used in this work. Thereafter, it presents the working
principle of the resistive Boolean logic we proposed in [29].
Then, the implementation of the primitive (logic) operations
(e.g., AND) is given; these are used to build one-bit full adder,
which is used in this work later.

A. Memristor Model

The left part of Fig. 1 shows the current-voltage relation of the
ideal memristor model used in this work; it has a high (RH)
and low (RL) resistive states. The memristor switches from
one resistive state to another when the absolute value of the
voltage across the device is greater than its threshold voltage
Vth. Otherwise, it stays in its current resistive state. Typically, a
memristor requires two different switching threshold voltages
to switch from low to high resistance (RESET) and from high
to low resistance (SET) [36,37] (see the right part of Fig. 1).
For simplicity, we assume that the threshold voltage Vth (in
absolute value) for both switchings are the same. Here, we use
the ideal model as this paper focuses on mapping methodology.
Nevertheless, any model can be used such as those in [36,37].

B. Working Principle of Boolean Logic

Our Boolean logic design approach [29] is able to implement
any logic function f expressed in the format of sum-of-product
(i.e., f = m1 + · · ·+ mi + · · ·+ mn=m1 · · · · ·mi · · · · ·mn

where mi is a minterm of inputs, n the number of minterms);
its implementation is referred to as a computing element (CE)
as shown in Fig. 2(a). A CE consists of an input latch (IL), an
output latch (OL), and a logic block (LB). The LB consists

Rs

Rs

Vw

GND

RH

Vx ≈ GND

Rs

Copy 1

(a) (b)

(e)

GND

Vx ≈ Vw

RH RH

RL

Copy 0

Vw

GND

GND

Vh Vw

Rs

Vw

GND

Vw

Vw

(c)

Rs(d)

Vh VwVhVh

Vom

Vx Vx

Vx Vx

Vw
RL

+
-

Rs(f)

G Vw

Vx

Fig. 3: Implementation of Primitive Operations: (a) Single-Fanout
Copy, (b) Multi-Fanout Copy, (c) 3AND1, (d) 3NAND1, (e) INV1,
(f) Horizontally Copy.

of all the minterms of the Boolean function; each mi is
realized using a NAND gate consisting of several memristors
depending on the number of its inputs. By ANDing all the
mi, the f can be generated. Finally, f is inverted to obtain
f . The input and output latches are composed of several
memristors depending on the number of inputs and outputs
of the Boolean function, respectively.

Memristor-based logic design described above requires a
CMOS circuit to control the crossbar part; its behaviour is
captured by a state machine as shown in Fig. 2(b). The state
machine requires 7 states:

• INA: INitialize All the memristors of a CE to RH . This
state requires RESET operations.

• RIN: Receive INputs. The IL of the CE receives the
inputs from primary inputs using CMOS controller to
program the resistance of memristors, or from the OL of
the previous CE using copy operations. Therefore, this
state requires SET, RESET, or copy operations.

• CFM: ConFigure all Minterms. All the minterms are
configured simultaneously through copying inputs stored
in IL to each minterm in parallel. Hence, this state
requires copy operations.

• EVM: EValuate all Minterms. All the mi are evaluated
at the same time; each mi is implemented by an NAND
operation.

• GER: GEnerate Result. The results of EVM are used
as inputs of an AND gate to generate f , which is the
negation of the Boolean function. Therefore, this state
needs an AND operation.

• INR: INvert Result. The result of GER is inverted to
produce the final result f . Hence, an inversion (INV) is
required.

• SOU: Send OUtputs. Finally the result stored in OL is
sent to IL of the next CE. Hence, copy operations are
employed.

The above shows that in order to implement Boolean logic
using the described approach, at least five primitive operations
are needed: RESET, copy, NAND, AND, and INV; RESET

2

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

5

65

Power Supply

CMOS

Ctrller

ABCi

IL

ABCi

ABCi

ABCi

ABCi

ABCi

S

Co

ABCi

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Rs

RsA A B BCi Ci S Co

Disabled

Memristor

S Co

Fig. 4: Implementation of One-Bit Full Adder.

is already described and is shown in Fig. 1; the remaining
operations are discussed next.

C. Implementations of Primitive Operations

All primitive operations use RH and RL to represent logic
1 and 0, respectively. Fig. 3 shows the implementations
of all primitive operations; each implementation consists of
one or multiple input and an output memristors. The output
memristors are all initialized to RH prior to any operation
(i.e., RESET operation of state INA), and are surrounded
by a dashed-line box in the figure. The voltage across the
output memristor(s) is denoted by Vom, while the voltage of
the floating nanowire is denoted by Vx; both of them are
used to explain the working principle of primitive operations.
In addition, all primitive operations consist of a resistor Rs

(see Fig. 3), which satisfies the condition RL�Rs�RH ; this
is required to guarantee that the voltage across the output
memristor is close to the desired voltage for proper operations
[27]. Fig. 3(a), (c), (d) and (e) show primitive operations with
one output memristor or single fanout. Multi fanout operations
can be realized by employing multiple output memristors;
Fig. 3(b) shows a two-fanout copy operation by employing
two output memristors. Note that the positive terminal of each
memristor is connected to the vertical nanowire. Fig. 3(f)
shows the horizontal copy; it will be used later.

To control primitive operations, three different voltages are
required: Vw, Vh, and GND; see Fig. 1. Vw is used to program
the memristor; Vh is used to minimize the impact of sneak
path currents by half-select voltage strategy [38]; Vh is then
applied to memristors which are not involved in particular
operations within a crossbar. Vh is also used to control NAND
and INV as shown in Fig. 3(d) and Fig. 3(e). The relationship
between Vw, Vh, GND and Vth is 0<Vh=Vw

2 <Vth<Vw. This
relationship guarantees Vw−Vh=2Vh−Vh=Vh<Vth which
prevents undesired switching of non-accessed memristors
[34,39].

The copy operation will be used as an example to explain its
working principle; the other operations can be understood in

TABLE I: Control Voltages for One-Bit Full Adder

States

Control Voltages
Row Column

IL LB OL IN Output
OUT OUTN

H1 H2-8 H9-10 V1-6 V8,10 V7,9
INA Vw Vw Vw G G G
RIN G Vh Vh F Vh Vh
CFM Vw G Vh F Vh Vh
EVM Vh F Vh Vh Vh Vw
GER Vh Vw G Vh Vh F
INR Vh Vh F Vh Vw Vh
SOU Vh Vh Vw Vh Vh Vh

a similar way, and more details can be found in [29]. Before
performing any operation, the data should be stored in the
right locations. Then, for a copy operation, a voltage Vw>Vth

and GND are applied to the input and output memristors,
respectively, as shown in Fig. 3(a). In case of copy 1 (RH), Vx

is around 0 as Rs�RH . Therefore, Vom=Vx−0≈0<Vth. As
a result, the output memristor stays at RH . In case of copy 0
(RL), Vx≈Vw as RL�Rs. Therefore, Vom=Vx−0≈Vw>Vth.
As a result, the output memristor switches to RL.

D. One-Bit Full Adder

The sum (S) and carry (Co) of a one-bit full adder (FA)
are expressed by Eq.1 [40]. Each equation consists of four
minterms.

S = ĀB̄Ci · ĀBC̄i ·AB̄C̄i ·ABCi

Co = ĀBCi ·AB̄Ci ·ABC̄i ·ABCi (1)

Fig. 4 shows the crossbar implementation of this FA using the
principle of Fig. 2 and Fig. 3. For convenience, H# and V# are
used to denote a horizontal and vertical nanowire, respectively;
a memristor in the crossbar is denoted by M(H#,V#). To
implement the FA, two types of memristors are used: active
(which can switch between two resistive states) and disabled
(which is permanently high resistance) memristor. In the
figure, the junctions where disabled memristors are located
have no devices as shown in Fig. 4.

The FA is implemented using a CE consisting of an IL, LB
and OL. The IL is mapped on the memristors M(H1,V1-V6),
since IL consists of primary inputs and their complements.
The remaining memristors on H1 are disabled. The LB
consisting of seven minterms is mapped on H2-H8, where the
minterm ABCi is shared by sum and carry. Each minterm
is implemented by placing active memritors at junctions
formed by the horizontal nanowire (representing the minterm)
and (a) the vertical nanowires associated with the minterm’s
inputs, or (b) an output for which the minterm is part of.
For example, ĀB̄Ci on H2 is a minterm of sum. Therefore,
memristors M(H2,V1=Ci), M(H2,V4=Ā), M(H2,V6=B̄),
and M(H2,V7=S) are active; while the remaining memristors
on H2 are disabled. The four minterms of S and those of Co

(see Eq. 1) are then ANDed in parallel by column V7=S and
V8=Co, respectively. The OL is realized by H9 and H10. The

3

5

66 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

Divide

Design

Into

Simple

Functions

Optimize

Functions

Implement

Functions

by CEs

Place-and-

Route CEs

on Crossbar

Design

CMOS

Control

Circuit CMOS

Layer

Memristor

Nanowire

Via

CrossbarLogic

Interconnect

CMOS

Circuit

Controller

Voltage Driver

Logic

Design

Description

Integrate

Crossbar

and

CMOS

Circuits

Fig. 5: Mapping Flow and Implementation.

results provided by the two ANDs are then stored at M(H9,
V7) and M(H10, V8), which are thereafter inverted and
stored at M(H9, V9=S) and M(H10, V10=Co), respectively.
Note the FA implementation requires 10 rows and 10 columns.

To perform the desired primitive operations during each state,
appropriate voltages are applied to each horizontal and ver-
tical nanowire of the CE. Table I summarizes the required
voltages for the FA; they are straightforwardly derived from
the implementations of the primitive operations as shown in
Fig. 3. Each row (horizontal nanowire) is associated with
the implementation of IL, LB or OL; while the columns are
associated with the primary inputs (IN) or outputs (OUT), or
their complements (OUTN). For instance, to perform copy
operations required by CFM state to configure all minterms
in parallel, Vw is applied to row H1, GND (G) is applied to
rows H2-H8, while columns V1-V6 are left floating (F) (see
the row CFM of Table I). It is worth noting that the remaining
rows (H9-H10) and columns (V7-V10) are set to Vh in order
to minimize the impact of sneak path currents [34,39]. All the
circuits mentioned in this paper use this methodology to solve
the sneak path problems.

III. MAPPING METHODOLOGY AND IMPLEMENTATION

This section first presents the mapping flow for Boolean logic
based on memristor crossbar. Subsequently, it highlights the
challenges of place-and-route within crossbar and potential
solutions. Finally, it presents the CMOS circuit used to control
the memristor crossbar.

A. Mapping Flow

Fig. 5 shows the flow of the mapping methodology. The
entire design is first divided into multiple simple Boolean
functions (e.g., look-up tables), which can be further optimized
by EDA tools such as ESPRESSO [41]. Next, the optimized
Boolean functions are implemented using CEs, as presented in
Section II. Thereafter, all CEs are placed and routed within the
crossbar, and the CMOS circuit (used to control the crossbar)
is designed. Finally, the memristor crossbar and CMOS control
circuits are integrated together by stacking the crossbar on
the CMOS part as shown in Fig. 5. The first three steps are
described in our previous work [29]; this section will focus
on the place-and-route and CMOS circuit design.

B. Potential Solutions to Place-and-Route

To highlight the challenge of place-and-route, a 4-bit ripple
carry adder is used as an example. Fig. 6(a) shows this 4-bit
adder which uses four FAs of Fig. 4 as building blocks.
A naive solution to place and route these FA blocks is to
arrange them adjacently to each other, as the two options

(a)

(b)

FA1

A1 B1

C0

S1

FA2

A2 B2

C1

S2

FA3

A3 B3

C2

S3

FA4

A4 B4

C3

S4

C4

FA1 FA2 FA3 FA4 FA1 FA2

FA3 FA4

Fig. 6: Place-and-Route Challenges: (a) Block Diagram, (b) Layouts
Sharing Nanowires.

(a)

FA1

FA2

FA3

FA4

(b)

FA1 FA2 FA3 FA4

Interconnect

40

46 40

12

Fig. 7: Place-and-Route Schemes: (a) Diagonal Scheme, (b) Isolated
Scheme.

shown in Fig. 6(b). However, typically this cannot be done
as the operations of each FA require specific control voltages
applied to the horizontal and vertical nanowires (see Table I);
sharing these nanowires between different FAs will lead to a
conflict of control voltages; and hence impacting each other’s
operations. Therefore, special attention should be given to
place-and-route.

Potential solutions to address the above challenge are:
• Preventing each pair of FAs from sharing the same

horizontal or vertical nanowires;
• Breaking the nanowires within the crossbar in order to

isolate each FA;
• Stacking FAs on each other rather than having them

within the same crossbar layer.
In the rest of this subsection, we will discuss the first two
potential solutions in more details. Actually the third potential
solution is similar to the second one except that the FAs are
stacked.

To prevent each pair of FAs from sharing the same horizontal
and vertical nanowires, diagonal place-and-route scheme is
proposed. Fig. 7(a) shows the 4-bit adder which is placed
and routed using the diagonal scheme. All the FAs are placed

4

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

5

67

Rs

Vh

G

Vw

(b)

Vx≈ Vh

INA

RIN

CFM

EVM GER INR

SOU

TRD
...

Vh

LB

OL

INT

RL

RL

RL

RH

Rs

Vw

G

Vw

Vx≈ Vw

...

Vw

RL

RL

RL

RH RL

(a)

n < Ns

n = Ns

Fig. 8: CMOS Controller: (a) Modified State Machine, (b) State SOU.

TABLE II: Control Voltages for Multi-CE Design

State

Control Voltage
Row Column

IL LB OL INT IN OUT OUTN
INA Vw Vw Vw Vw G G G
RIN G Vh Vh Vh F Vh Vh
CFM Vw G Vh Vw F Vh Vh
EVM Vh F Vh Vh Vh Vh Vw
GER Vh Vw G Vh Vh Vh F
INR Vh Vh F Vh Vh Vw Vh
SOU Vh Vw Vw G Vh Vh Vh
TRD Vh Vh Vh F Vw G G

in a diagonal pattern, and therefore, no FAs share the same
horizontal and vertical nanowires. To route the carry and its
negation between FAs (e.g., carry C1 and it negation C1

between FA1 and FA2), two extra rows are reserved for
interconnect [42]. As a result, the implementation of the four-
bit adder of Fig. 6(a) is mapped on a 46×40 crossbar using
the diagonal scheme; see Fig. 7(a).

Fig. 7(b) shows the 4-bit adder which is placed and routed
using isolated scheme. By breaking the nanowires within the
crossbar, each pair of FAs is isolated. Therefore, all the FA
units can be placed adjacently, and the adder requires less
crossbar area. Similar to the diagonal scheme, two extra rows
are reserved for interconnect to route carry between FAs.
The neighbour interconnect segments are isolated with each
other, and each FA only connects to the interconnect segment
connecting its up- and down-stream FAs. As a result, the
implementation of the four-bit adder of Fig. 6(a) is mapped
on a 12×40 crossbar using the isolated scheme; see Fig. 7(b).
Note that the isolated scheme consumes less crossbar area
than the diagonal scheme to place and route the same design;
e.g., the crossbar area is reduced from 46×40 to 12×40; a
reduction of 74%.

C. CMOS Control Circuits

To control the memristor crossbar, a CMOS circuit is
employed; it consists of a controller and voltage drivers. The
behaviour of the controller is captured by the state machine
in Fig. 8(a); it is generated based on the state machine of
Fig. 2(b). As the crossbar consists of multiple CEs, the
state machine of Fig. 2(b) is extended with an extra state
TRD (transfer data), which is needed to horizontally transfer

Out

Vw

Vh

GND

C[0]

C[1]

C[2]

T1

T2

T3

...

na nd

RL RD

Active

Memristors

...

C[0:2]

Vw Out
Vh

GND Disabled

Memristors

Vw

Fig. 9: CMOS Voltage Drivers.

the carry (using the interconnect) between FAs. Note that
the execution of the state machine of Fig. 8(a) needs to be
repeated Ns times after the initialization, where Ns is the
number of stages (i.e., FAs) that the crossbar consists of. For
example, Ns for the design of Fig. 6(a) is 4. Consequently,
a design with Ns stages requires 7Ns + 1 execution steps,
where 7 is the number of states (initialization excluded).

Table II summarizes the control voltages required for each
state of Fig. 8; it is derived from Table I. As already
mentioned, additional rows are needed for interconnects; they
are included in the table and denoted as ‘INT’. Note that the
states in the table are extended with state TRD.

In addition, the control voltages of state CFM and SOU in
Table II are different from Table I, due to the impact of sneak
path currents [43]. Fig. 8(b) shows state SOU as an example. In
state SOU, the data in OL is copied to INT; therefore, voltage
Vw and GND are applied to row OL and INT, respectively.
To reduce the impact of sneak path currents, Vh are typically
applied to rows LB as half-select voltage [44]. Let assume
that OL stores ‘0’ (RL). As OL stores the results of AND
operations of state GER, at least one of the memristors in
rows LB is RL as shown in the left part of Fig. 8(b). After
applying control voltages, the voltage of the floating nanowire
Vx is around Vh, and the voltage across the output memristor
in INT is Vx−0≈Vh<Vth. As a result, the output memristor
stays at RH , and cannot copy ‘0’. To solve this issue, Vw

is applied to row LB, and hence Vx≈Vw>Vth; see the right
part of Fig. 8(b). Consequently, the output memristor in INT
switches to RL, and copies 0 from OL.

Next, we will illustrate how to design a voltage driver while
taking the restrictions of the crossbar design into account.
Fig. 9 shows a possible implementation of voltage drivers,
which are parts of the control circuit. A voltage driver is
composed of one NMOS and two PMOS pass transistors; the
state (i.e. closing or opening) of these transistors are controlled
by three-bit signals C[0:2], which are provided by the CMOS
controller. To drive a nanowire connecting active memristors
as shown in the right part of Fig. 9, the transistors should
provide enough current. Therefore, their width-to-length ratio
W
L should be carefully determined. Let assume that we have na

active and nd disabled memristors. To program a single active
memristor, the current supplied by a NMOS transistor should
be greater than Iw= Vw

RL
[45]. Therefore, the NMOS transistor

typically needs (W
L)n=2 and its area has to be An=6F 2

[46,47], where F is the feature size of CMOS technology;

5

5

68 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

ABCi

IL

ABCi

ABCi

ABCi

ABCi

ABCi

S & Co

ABCi

A A B BCi Ci S CoS Co

ABCi

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Fig. 10: The FA Calculating All Outputs Simultaneously.

see Eq. 2. 



Iw = Vw

RL
,

(W
L)n = 2,

An = 6F 2

(2)

To drive na active memristors in parallel, (W
L)n and An of the

NMOS should be increased na times in order to provide the
required current Iw, as shown in Eq. 3.





Iw = na
Vw

RL
,

(W
L)n = 2na,

An = 6naF
2

(3)

In addition, assume that we have nd disabled memristors; each
of them consumes the current ID= Vw

RD
, and hence the NMOS

transistor should be adjusted as to compensate for the current
through nd disabled memristors, as shown in Eq.4.





Iw = na
Vw

RL
+ nd

Vw

RD
= (na + RL

RD
nd) Vw

RL
,

(W
L)n = 2(na + RL

RD
nd),

An = 6(na + RL

RD
nd)F 2

(4)

As the mobility of PMOS transistor is typically twice lower
than that of NMOS [48], the W

L of the PMOS has to be twice
larger than that of NMOS. Therefore, the (W

L)p and area Ap
of PMOS are obtained as expressed in Eq.5.

{
(W
L)p = 2(W

L)n = 4(na + RL

RD
nd),

Ap = 2An = 12(na + RL

RD
nd)F 2

(5)

Finally, the total area Avd of a single voltage driver which
consists of one NMOS and two PMOS pass transistors is given
in Eq.6. Typically, RD

RL
>5 × 104 [49]; hence, the number of

active memristors na dominates the area of the voltage driver.

Avd = An + 2Ap = 30(na +
RL

RD
nd)F 2 ≈ 30naF

2 (6)

IV. MAPPING OPTIMIZATION SCHEMES

This section presents three mapping schemes to optimize the
delay and/or area of a memristor crossbar logic design. These
schemes can be used separately or in a combination.

OL

LB

FA1

FA2

FA3

FA4

IL

OL

LB

IL

OL

LB

IL

OL

LB

IL

40

46 Output C1 of

FA1
Input C1

of FA1

(a) (b)

INA

RIN

GER

TRD

SOU

n < Ns

n = Ns

CFM

EVM

Fig. 11: Diagonally-Mapped Adder: (a) State Machine, (b) Layout.

A. Scheme 1: Calculate All Outputs Simultaneously

The first optimization scheme is calculating both the primary
and complementary outputs at GER state. For example, the
FA of Fig. 4 is optimized as shown in Fig. 10; its outputs S
and S are expressed by Eq.7.

S = ĀBCi ·AB̄Ci ·ABC̄i · ĀB̄C̄i (7)

S = ĀB̄Ci · ĀBC̄i ·AB̄C̄i ·ABCi

All the eight required minterms of output S and S are
implemented by placing active memristors on related junctions
in a similar manner as Fig. 4. Therefore, all the minterms of
both S and S are calculated at state EVM, and then ANDed to
obtain the output S and S at state GER. The similar approach
can be applied to the output Co and Co; see Fig. 10. In
addition, the OL can be implemented by only a single row,
as S and Co are calculated at state GER, rather than by
inverting S and Co as in Fig. 4(a). As both the primary and
complementary outputs are obtained at state GER, state INR
of Fig. 8(a) can be removed as shown in Fig. 11(a); hence, the
four-bit adder of Fig. 7 (a) reduces the number of execution
steps from 7Ns+1=29 to 6Ns+1=25. Fig. 11(b) shows the
layout of the new four-bit adder implementation, where the
FAs of Fig. 4 have been replaced with the FA of Fig. 10.
Note that this new implementation requires the same area (i.e.,
46×40) as the initial design of Fig. 7(a).

However, this scheme typically requires more area as all the
2n minterms of an n-input Boolean function must be mapped
on the crossbar, instead of the required minterms only. For
instance, the output S only needs four minterms as shown
in Eq.7, and they can be implemented by only four rows in
the crossbar. As both primary and complementary outputs are
required as the inputs of the next FA stage, the output S should
also be calculated, and hence, all eight minterms should be
implemented by eight rows of the crossbar. To alleviate the
incurred area overhead, several Boolean functions that have
the same minterms can be implemented using the same share
of hardware. For instance, the sum and carry of a FA are
implemented together as shown in Fig. 10. As a result, it has
the same area as the FA of Fig. 4.

6

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

5

69

LB FA2

FA3

FA4

LB

LB

OL

LB

OL OL OL

IL IL ILFA1IL

34

34

(a)

INA

RIN

CFM EVM

GER

n < Ns

n = Ns

(b)

Aligned C1 between

FA1 and FA2

Fig. 12: Align Intermediate Signals: (a) Layout, (b) State Machine.

B. Scheme 2: Align Intermediate Signals

The area and execution steps of the four-bit adder in Fig. 11(b)
can be further reduced by aligning the intermediate signals
between computing elements. For instance, all the carries
between FAs (e.g., FA1 and FA2) of Fig. 11(b) are aligned
in the same column as shown in Fig. 12(a). Therefore,
the columns initially used for carry transfer are removed.
In addition, the carry of a FA can be directly stored in
the minterms of the next stage FA, as the carry has been
aligned in the same column. Hence, the extra rows initially
allocated for interconnect, as well as the parts of IL and OL
initially required to store carries, are removed. Finally, the
four ILs to store the primary inputs are rearranged at the
top of the crossbar, while the four OLs to store final results
are rearranged at the bottom of the crossbar, as shown in
Fig. 12(a). Fig. 12(b) shows the state machine required by
the new implementation of Fig. 12(a). The adder receives
all the primary inputs of the four FAs (i.e., C0, Ai, Bi,
0≤i≤3) at state RIN. Then, they are copied to the four FAs
to configure their minterms at state CFM. For each stage,
the state EVM generates the minterms of the corresponding
FA, and state GER ANDs these minterms to generate the
sum, carry, and their complements. It is worth noting that the
number of execution steps are reduced from 7Ns+1 (design
of Fig. 7(a)) to 2Ns+3; e.g., for Ns=4, the reduction is 62%.
Moreover, the crossbar area is also reduced. For our 4-bit
adder case study, the crossbar area is reduced from 46×40
(default design) to 34×34 (Fig. 12(a)); a reduction of 37%.

This optimization scheme is not applicable to all designs; it
strongly depends on the place-and-route scheme. For instance,
the design using the isolated scheme (e.g., Fig. 7(b)) does not
support this scheme; the intermediate signals cannot be aligned
in the same column since computing elements are isolated
from each other.

C. Scheme 3: Combine Data Transfer and Inversion

Instead of producing intermediate result Ci and its comple-
ment Ci by each FA, we can rather produce only one of
them (e.g., Ci); the other one (e.g., Ci) will be generated
while communicating the intermediate result to the next FA
stage. Hence, the required crossbar column to produce Ci

can be removed, resulting in less execution steps and area.
Applying this scheme to default design of Fig. 7(b) results
in the implementation shown in Fig. 13(a). The part where

OL

LB

IL

12

FA1

OL

LB

IL FA2

OL

LB

IL FA3 FA4

37

OL

LB

IL

(a)

CFM EVM

GERTRI

n < Ns

n = Ns TRC
C1

Rs
INV

Copy

C1C1

(c)

FA1 FA2

(b)

Interconnect

M1

M2

M3

M4

INA

RIN

Fig. 13: Use Inversion to Transfer Data: (a) Layout, (b) Interconnect,
(c) State Machine.

the combination of data transfer and inversion take place is
highlighted, and illustrated in Fig. 13(b). The output C1 of FA1
is generated at state GER and directly stored in two memristors
M1 and M2 of the interconnect. The interconnect feeds FA2
with C1 and C1 via row INV and row Copy; C1 is provided
by inverting C1, while C1 is provided by just copying M2 to
M4. In addition, the four ILs to store the primary inputs are
rearranged at the top of the crossbar, while the four OLs to
store final results are rearranged below the FAs as similar to
Fig. 12(a).

Fig. 13(c) shows the state machine required by this new
implementation; it makes use of two additional states; transfer
using inversion (TRI), and transfer using copy (TRC). The
adder receives all the primary inputs of the four FAs at state
RIN. For each stage, state CFM configures the minterms of
the corresponding FA; state EVM generates the results of these
minterms; state GER provides logic AND of these minterms to
obtain the complementary carry (e.g., C1); state TRI transfers
Ci to the next stage using inversion; state TRC feeds the
next FA stage with Ci. Note that state TRI and TRC cannot
be combined, because inversion and copy require different
control voltages to the column related to output carry (e.g.,
C1 of FA1); see also Fig. 3(e) and (f). It is worth noting that
the number of execution steps is reduced from 7Ns+1=29
(design of Fig. 7(b)) to 5Ns+2=22 steps; a reduction of 25%.
Meanwhile, the area is also reduced from 12×40 to 12×37; a
reduction of 7.5%.

V. EVALUATION

To validate the proposed approach, we select four designs as a
case study, and perform two experiments on all of them. These
four designs are four-bit ripple carry adders with different
place-and-route and optimization schemes; they are:

• ID design: Initial design based on Diagonal place-and-
route scheme as shown in Fig. 7(a).

• II design: Initial design based on Isolated place-and-route
scheme as shown in Fig. 7(b).

• OD design: An Optimized version of ID design which
is shown in Fig. 12(a); it incorporates the optimization

7

5

70 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

TABLE III: Description of Benchmarks

Circuit Function No. Input No. Output No. LUT4
alu4 ALU 14 8 1522
apex2 Logic 39 3 1878
apex4 Logic 9 19 1262
des Data Encryption 256 245 1591
ex5p Logic 8 63 1064
misex3 Logic 14 14 1397
pdc Logic 16 40 4575
seq Logic 41 35 1750
spla Logic 16 46 3690

scheme 1 (i.e., calculate all outputs simultaneously) and
2 (i.e., align intermediate signals). Note that it is not
possible to incorporate all the three discussed optimiza-
tion schemes in the ID design. E.g., as the use of
optimized scheme 2 removes the interconnects between
FAs, scheme 3 (which makes use of the interconnect)
cannot be used. Based on the nature of the three schemes,
incorporating scheme 1 and 2 is the best in order to
optimize delay.

• OI design: An Optimized version of II design which is
shown in Fig. 13(a); it incorporates optimization scheme
1 and 3. Again, incorporating all the three schemes is not
possible. Hence, scheme 1 and 3 are the best to use with
II design in order to optimize the delay.

The three experiments performed are the following.
• Verification of the mapping methodology; in this exper-

iment, exhaustive SPICE simulations of all the designs
are performed in order to check the correct functionality
of the generated designs with all the possible input
combinations.

• Evaluation and comparison of the four designs; in this ex-
periment, all the four-selected designs are evaluated and
compared in terms of area, delay and power consumption.

• To further illustrate the generality of our mapping
methodology, it is applied to nine benchmarks selected
from MCNC20 benchmark suite [50]. Table III summa-
rizes the functions of the benchmarks and their input
number, output number and number of required 4-input
LUTs. These benchmarks spread in a wide range of
input number, output number and circuit size (quantified
by the number of LUTs). Area and delay are used as
performance metrics to compare the initial and optimized
designs.

Next, we first briefly review the simulation platform, and the
parameters and models used to evaluate performance metrics.
Thereafter, we provide the results.

A. Simulation Setup and Performance Metrics

The simulation platform consists of a memristor crossbar, a
CMOS controller, and voltage drivers. The memristor model,
controller, and voltage drivers are described by Verilog-A,
and the crossbar array by SPICE netlist. The behavioural
function of each of four selected designs is first verified
using HSPICE simulator. Thereafter, each initial design and
its optimized version are evaluated and compared with each

TABLE IV: Simulation Parameters

Parameter Description Value
Technology

Memristor (TaOx) [49,51,52]
F (nm) Feature size 90
T (nm) Thickness of TaOx 8
Vth (V) Threshold voltage 1.5
RL (kΩ) Low resistance 200
RH
RL

– 7k
RD
RH

– 50
Am (µm2) Area of a memristor 0.0324
Tsw(ns) Switching time (max of SET and RESET) 1.71
Em Endurance of a memristor (max switching number) 1012

Nanowire (Copper) [53]
κ Dielectric constant of interlayer spacing 3.9
ρ (µΩcm) Resistivity of Copper 8
Tnw(nm) Thickness of the nanowire (= F) 90
Wnw(nm) Width of the nanowire (= F) 90
Cnw (fF/µm) Capcitance in unit length 0.26
Rnw (Ω/µm) Resistance in unit length 9.88

CMOS
Use UMC 90nm Library @ 500MHz)

Design [29]
NR No. of rows in crossbar –
NC No. of columns in crossbar –
Nstep No. of execution steps –
na,xbar No. of all active memristors in the whole crossbar –
Vw (V) Program voltage 2.1
Vh (V) Half-select voltage 1.05
Rs
RL

– 10

other in terms of area, delay and power consumption. Note
that memristor models are used for SPICE simulations, while
the controller and drivers are described by Verilog-A so that
the entire design (consisting of both the crossbar and CMOS
part) can be simulated and verified using HSPICE simulator.
To estimate the performance of CMOS controller, we will
use a Verilog version.

To evaluate the benchmarks in Table III, a Matlab script
is developed to read, map and estimate the metrics under
consideration both for initial and optimized design versions;
the optimized version uses diagonal mapping scheme and
the optimization scheme 2. The inputs of the Matlab script
are files in Berkeley logic interchange format (BLIF) of
each benchmark [50]; BLIF consists of the minterms of each
4-input LUT which can be directly mapped to crossbar using
our methodology.

Table IV summarizes the used simulation parameters; they
are classified into technology and design parameters. The
technology parameters are taken from [49,51–53], and provide
realistic values for memristor as well as nanowires used to
build the crossbar. For CMOS controller and voltage drivers,
the UMC 90nm library is used. On the other hand, the design
related parameters consist of those specifying the design
itself (e.g., Nstep, which is different for different designs), and
those which specifies the requirements for the correctness of
the design operations (e.g., values of control voltages of the
crossbar) taken from [29,54]. Four parameters (i.e., NR, NC,
NStep, and na,xbar) are design dependent; hence for different
benchmarks, they will have different values.

Three metrics are used to evaluate the performance: area,
delay, and power consumption, while considering the

8

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

5

71

crossbar, CMOS voltage drivers and CMOS controller.
Next, we will show how these evaluation metrics are
determined. An adder is used as an example to illustrate the
evaluation model and other benchmarks use the similar model.

The area of a single adder (Aadder) is expressed in Eq.8.

Aadder = max{Axbar, Acmos} (8)

where Aadder is defined as the maximum of the two values
Axbar and Acmos, where Axbar gives the crossbar area and
Acmos the area of entire CMOS part; note that we select only
the max of the two values as the crossbar is stacked on the
top of CMOS part.

Axbar is a product of (NR+1) crossbar rows by (NC+1)
columns as expressed in Eq.9.

{
Axbar = (NR + 1) · (NC + 1) ·Am

Am = 4F 2
(9)

where ‘+1’ is needed as the implementation requires the use
of a resistive element Rs to perform the appropriate logic
operations (see e.g., Fig. 3(a)). Am gives the memristor area.

Acmos consists of the area of all voltage drivers (Avd,all) and
that of the control state machine (Actrl) as expressed in Eq.10.





Acmos = Avd,all + Actrl

Avd,all = Avd,row + Avd,col

=
∑NR

i=1

(
30na,iF

2
)

+
∑NC

j=1

(
30na,jF

2
)

= 30F 2
(∑NR

i=1 na,i +
∑NC

j=1 na,j
)

= 30F 2(na,xbar + na,xbar)

= 60na,xbarF
2

(10)

The value of Avd,all is derived from Eq.6, which expresses
the area of a single voltage driver used to drive a row or
column with na active memristors. Avd,all is the sum of all
the voltage drivers used to drive both rows and columns
as shown in Eq.10, where na,xbar is the total number of all
the active memristors in the crossbar. The value of Actrl is
provided by Cadence RTL compiler.

The delay of a single adder (Dadder) is expressed in Eq.11.

{
Dadder = Nstep ·Dstep

Dstep = Dxbar + Dctrl
(11)

where Dadder is the product of the execution step number
Nstep and the delay of a single step Dstep. Dstep is the sum of
the crossbar delay Dxbar and that of the CMOS controller Dctrl.

The value of Dctrl is provided by Cadence RTL compiler. On
the other hand, Dxbar consists of the memristor switching time

...
R1 Ri

C1 Ci

...

M1 Mi Mn

Rn

CnVoltage

Driver

Fig. 14: Elmore RC Delay Model.

Tsw and the RC delay due to signal propagation through the
nanowires Dnw; expressed in Eq.12.




Dxbar = Tsw + Dnw

Dnw =
∑n

i=1

[
Ci(
∑n

j=i Rj)
]

= (n2 + 4n− 21/8)Rnw · Cnw · F 2 [55]
n = max{NR, NC}

where
R1 = 3

2F ·Rnw

Ri = 2F ·Rnw, 1 < i ≤ n

C1 = 3
2F · Cnw

2

Ci = 2F · Cnw, 1 < i < n

Cn = 2F · Cnw + 3
2F · Cnw

(12)

where Dnw equals to the time to propagate the signal from
the voltage driver to the nth memristor; it is given by Elmore
model as shown in Eq.11 [53,55]. Fig. 14 shows the equivalent
circuit to model the RC delay in a row or column of a crossbar.
As the resistance value of the memristor device in its ON as
well as in its OFF state is order of magnitudes higher than the
nanowire resistance, the impact of memristor resistance in the
modelled delay by Eq.11 is neglected [55]. Note that Rnw and
Cnw denote the resistance and capacitance of nanowire in unit
length (see Table IV).

The power consumed by a single adder Padder is expressed by
Eq.13, and is the sum of the power consumed by crossbar
(Pxbar), by the CMOS voltage drivers (Pvd,all) and by the
controller (Pctrl) for all steps Nstep to be executed.





Padder =
∑Nstep

n=1(Pxbar + Pvd,all + Pctrl)n

Pxbar =
∑

all devices PR

=
∑

all devices
V 2

R
R

(13)

For each execution step, Pxbar is the total power consumed
by all the devices within the crossbar, which consists of
the active and disabled memristors, and the resistors Rs.
PR=

V 2
R
R is the power consumed by each device, where VR

is the voltage across the device and R is its resistance, and
they are both obtained using SPICE simulations. Pvd,all is
the power consumed by all the voltage drivers; we assume
that the voltage drivers are almost ideal voltage sources and
their power consumption is very small as compared with that
consumed by the crossbar (which constitutes the load of the
voltage drivers). The value of Pctrl is provided by Cadence
RTL compiler. To evaluate the power of each design, we first
estimate the power for each input combination (28 in total),
and thereafter calculate the average power consumption.

9

5

72 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

C0

X3

X1

Y3

Y1

S4

S2

X4

X2

Y4

Y2

C5

S3

S1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

5 10 5 10

5 10 5 10

5 10 5 10

5 10

5 10

5 10

5 10 5 10

5 10

5 10

5 10

Fig. 15: Waveform of OD Adder SPICE Simulation.

B. Simulation Results

In the first experiment, all the four selected designs are
exhaustively verified using SPICE simulations for all the
possible input combinations. The simulation results have
validated the correctness of the approach. For instance,
Fig. 15 shows the waveform of a SPICE simulation of the
OD design when input X=‘0001’, Y=‘0010’ and C0=0.
After eleven execution steps, the final results are C5=0 and
S=‘0011’. It is worth to note that the input data of the input
latch are destructed after they are copied to the computing
elements [29]; this has no impact on the correctness of the
circuit as the inputs have been stored in minterms of the
computing elements to calculate the final results.

In the second experiment, the performance of all the four
selected designs is estimated in terms of area, delay and
power consumption; the results are discussed next.

Area: Fig. 16(a) shows the area of the selected designs. Among
all the designs, OI design uses the smallest crossbar as its
FAs are adjacently placed. OD design requires the smallest
CMOS part as its state machine is the simplest, and consumes
the least overall area. The optimized designs require (up to
55%) less area than initial designs as their controllers have
less states and less output control signals. Note that for these
small designs, the CMOS area dominates the overall area. To
further explore the scalability of the designs and their impact
on area, we estimate the area of n-bit adders based on OD
design (n=2k, 2≤k≤7). Fig. 16(b) shows the area ratio of the
crossbar over the CMOS part (including both the controller
and voltage drivers). Clearly for larger adders (in this case for
k>6), the crossbar area surpasses that of CMOS part.

Delay: Fig. 17(a) shows the required number of execution
steps for each of the four designs, while Fig. 17(b) shows
the corresponding delay for a single execution step Dstep for
each design and its breakdown; see also Eq.9. Obviously, the
optimized designs have lower execution time and OD design
performs by far the best. As each design is based on the same
memristor crossbar technology, each design has the same

(a) (b)

64bit

n
0

0.6

1.2

1.8

ID II OD OI

A
re

a
(1

0
3

u
m

2)

Axbar Avd,all Actrl

1.8

1.2

0.6

0
ID II OD OI

Axbar Avd,all Actrl

A
re

a
(u

m
2
)

2.5

2

1.5

1

0.5

0
50 100 150

A
x
b
ar

/A
cm

o
s

Fig. 16: Area of Selected Designs: (a) Area, (b) Scalability Explo-
ration.

(a) (b)

0

0.5

1

1.5

2

2.5

3

3.5

ID II OD OI

D
el

ay
 p

er
 S

te
p

 (
n

s)

Tsw Dnw Dctrl

0

10

20

30

ID II OD OI

N
o

. o
f

St
ep

s

ID

Tsw Dnw Dctrl30

20

10

0
II OI

D
el

ay
 p

er
 S

te
p
 (

n
s)

3.5

3

2.5

2

1.5

1

0.5

0
ID OD OIIIOD

N
o
.
o
f

S
te

p
s

Fig. 17: Delay of Selected Designs: (a) Number of Execution Steps,
(b) Delay per Execution Step.

(a) (b)

T
im

e
(n

s)
1.71ns [Miao]

0.3ns [Lee]

0.2ns [Torrezan] 0

0.6

1.2

1.8

4 8 16 32 64 128

Dctrl Miao Lee Torrezan102

101

100T
sw

 (
n

s)

10-1

2006 2008 2010
Year

2012 2014

1.8

1.2

0.6

0

4 8 16 32 64 128

Dctrl Miao Lee Torrezan

n

Fig. 18: Delay Scalability Exploration: (a) Tsw for Memristor Tech-
nology, (b) Dctrl and Tsw for n-Bit OD Designs.

memristor switching time Tsw=1.71 ns. The interconnect
delay Dnw is negligible for all designs as compared with other
delays. Moreover, CMOS controller delay Dctrl for optimized
designs is about 11% less than that of the initial designs.

The memristor technology is not mature yet and its switching
time is still being improved. Fig. 18(a) shows the switch-
ing time of some reported resistive devices over the years
[44,49,56–58], while Fig. 18(b) selects three reported Tsw and
compares them with the controller delay for n-bit adders based
on OD design (n=2k, 2≤k≤7). Clearly, the CMOS delay
may become the major critical component with respect to the
performance of crossbar based logic designs. Nevertheless, the
potential of the crossbar is enabling the massive parallelism,
(where the same CMOS circuit may control different paral-
lel designs within crossbar) and reducing the overall delay-
operation of the whole design; hence this increases the overall
throughput.

Power: Fig. 19 (a) shows the power consumption Padder of a
single adder and its breakdown for RL=200kΩ [49], where

10

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

5

73

(a) (b)

0

700

1400

2100

2800

3500

ID II OD OI

P
o

w
er

 (u
W

)

Pxbar_Dyn Pxbar_Leak Pctrl

0

5

10

15

20

25

ID II OD OI

P
o

w
er

 (u
W

)

Pxbar_Dyn Pxbar_Leak Pctrl

ID

P
o

w
er

 (
u

W
)

3500

II OIOD

2800

2100

1400

700

0

Pxbar_Dyn Pxbar_Leak Pctrl Pxbar_Dyn Pxbar_Leak Pctrl

ID

P
o

w
er

 (
u

W
)

25

II OIOD

20

15

10

5

0

Fig. 19: Power Consumption of Selected Designs Using Different
RL: (a) RL=200kΩ, (b) RL=100MΩ.

RL is the memristor resistance in its ON state; see also Eq.13.
The power consumption of the crossbar Pxbar consists of the
dynamic part (Pxbar,dyn) as a result of resistive switching, and
the leakage part (Pxbar,leak) induced by sneak path currents.
The difference between the dynamic power consumption of
the four designs is marginal. However, the crossbar leakage is
at least twice higher than the crossbar dynamic power. This
highlights one of the major challenges the crossbar designs
is facing, namely sneak path currents [52]; and shows the
need of providing solutions. Note that the optimized designs
consume about 30% less power than the initial designs, as
they require less crossbar area. Fig. 19 also shows that the
power consumption of the CMOS part Pctrl is negligible.

One possible solution to reduce the power consumption in the
crossbar (especially the part caused by sneak path currents)
is to increase the value of RL. For example, Fig. 19(b) shows
the power consumption Padder and its breakdown when RL is
increased to 100MΩ [59]. As a result, both the dynamic and
leakage power consumption of the crossbar are significantly
reduced, and the power consumed by CMOS controller
becomes dominant now. Note that the optimized designs
consume approximately 20% less power than the initial
designs, as they have simpler CMOS controllers. Another
possible solution to reduce the leakage power is reducing the
duration of control voltages.

The results show systematically that the OD is the best design
with respect to the three considered metrics.

In the third experiment, the performance of the nine
benchmarks in Table III is estimated in terms of area and
delay. Fig. 20 (a) and (b) shows the improvement ratios
realized by optimized designs. As compared to the initial
designs, the area of optimized designs is 7.8X to 10.2X
smaller, and the delay is 2.2X to 6.0X shorter (due to a
reduced number of execution steps).

Overall, the methodology can be used to not only map logic
design on the crossbar, but also to evaluate its performance
while considering optimization schemes. The results also show
that the optimization techniques can significantly improve the
performance of designs in terms of area and delay when the
logic circuits become larger and more complex.

(a) (b)

9.7 9.9 10.2
9.4 9.3 9.6 9.3

7.8

9.7

2.8
3.1

2.6
2.2

6.0

2.7

4.8

3.1
2.6

Fig. 20: Improvement Ratios for Different Benchmarks: (a) Area, (b)
Delay.

VI. CONCLUSION

This paper has proposed a mapping methodology of Boolean
logic circuits on memristor crossbar as well as several
optimization schemes. The performance of mapped logic
circuits can be evaluated including both memristor and CMOS
parts.

The proposed methodology provides the following advantages.
• Generality: The proposed methodology is potential to

map arbitrary logic circuits as long as they are based on
Boolean logic, such as adders, ALUs, data encryption
(see also Table III).

• Scalability: The proposed methodology is scalable to
map logic circuits as large as possible, but it should
also consider the technology restrictions (e.g., sneak path
current issues [43,44]) for appropriate functionality.

• Automation: The proposed methodology provides a po-
tential to automate the mapping of large-scale logic
circuits on memristor crossbar, which can be incorporated
with existing logic synthesis tools (e.g., ODIN II [60] and
ABC [61]).

• Evaluation: The proposed methodology provides perfor-
mance evaluation for both the crossbar and CMOS part
in terms of area, delay and power consumption, which
can be used to compare between different designs based
on resistive Boolean logic.

• Modularity: The proposed methodology uses a modular
approach; this facilitates the improvement of the approach
if need. E.g., in Fig. 5, the block ‘implement functions
by CEs’ can be updated without the need to touch any
other blocks in the flow.

In order to improve the logic based on memristor crossbar
and related tools for mapping, more efforts should be paid to
address the following challenges in the future work.

• Support Other Logic Types: As our method is modular,
it is possible to be tuned to support other logic styles such
as logic circuits proposed in [26,62–64].

• Innovative Logic Design Styles: As memristor logic cir-
cuit is still in infancy stage, innovative logic circuits based
on resistive switching should be invented to maximize the
potential of memristor crossbar. For instance, memristor
crossbar may be suitable for analog circuits as a single
memristor can represent a multi-level value, instead of a
binary value [38].

11

5

74 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

• Impact of Unreliable Technology: Memristor technol-
ogy is still under development, and therefore logic circuits
based on crossbar are facing reliability challenges due
to limited device endurance, device-to-device variation,
cycle-to-cycle variation [44,65,66].

• Sneak Path Issues: The crossbar-based logic may fail
due to the sneak path currents [34,35], which are the
unexpected currents within the crossbar [43,44]. Even
though several approaches have been proposed such as
adding selector devices (e.g., CMOS transistor) [43,66],
using complementary resistive switches [35], applying
half-select voltages [34,38], how to efficiently apply these
techniques to large-scale circuit is still under research. In
addition, based on our simulations, when the ON/OFF
current ratio increases, the impact of sneak path currents
reduces.

• Implementation Consideration: Some effects should be
considered in the future implementation. First, parasitic
nanowire resistance causes the IR-drop. It can be solved
by slightly increasing the control voltage Vw and Vh

(e.g., 10%). In addition, increasing the low resistance is
also helpful to reduce the impact of parasitic nanowire
resistance. Second, the needed resistance ratio RH

RL
is

typically 1000 to 10000. Third, the area of voltage driver
is related to the placement of memristors within the
crossbar. This may impact the scalability of the design.
A possible solution is balancing the voltage drivers in
the CMOS layer. Fourth, to isolate the crossbars, the
nanowires should be broken and isolated materials (e.g.,
SiO2) should be inserted. Some other possible solutions
are reported in [67].

• Complexity of CMOS Controller: As the logic circuits
based on memristor crossbar is scaling up, the complex-
ity of CMOS controller is also increasing in order to
compensate the driving force and support more execution
states of the FSM. Therefore, it is crucial to design
efficient CMOS control circuity in terms of area and delay
being able to drive appropriate number of logic blocks
in the crossbar. Some approaches may be helpful, such
as sharing the CMOS controller between different logic
circuits, pipelining the computing elements to simplify
the controller, etc. In addition, a simpler controller is
likely to have a shorter delay. Therefore, it is possible to
reduce the power consumption due to a shorter duration
of applied control voltages.

Overall, the proposed mapping methodology sets a step to-
wards the implementation of large-scale resistive computing
architectures, and provides an opportunity to examine the
potential of memristor crossbar architectures.

REFERENCES

[1] B. Hoefflinger, Chips 2020: a guide to the future of nanoelectronics.
Springer Science & Business Media, 2012.

[2] S. Borkar, “Design perspectives on 22nm cmos and beyond,” in Proceed-
ings of the 46th Annual Design Automation Conference (DAC). ACM,
2009, pp. 93–94.

[3] S. Hamdioui et al., “Reliability challenges of real-time systems in
forthcoming technology nodes,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE). EDA Consortium,
2013, pp. 129–134.

[4] J. L. Hennessy et al., Computer architecture: a quantitative approach.
Elsevier, 2011.

[5] F. J. Pollack, “New microarchitecture challenges in the coming gener-
ations of cmos process technologies (keynote address),” in Proceedings
of the 32nd annual ACM/IEEE international symposium on Microarchi-
tecture (MICRO). IEEE, 1999, p. 2.

[6] D. E. Nikonov et al., “Overview of beyond-cmos devices and a uniform
methodology for their benchmarking,” Proceedings of the IEEE, vol.
101, pp. 2498–2533, 2013.

[7] A. Bachtold et al., “Logic circuits with carbon nanotube transistors,”
Science, vol. 294, pp. 1317–1320, 2001.

[8] L. Ding et al., “Cmos-based carbon nanotube pass-transistor logic
integrated circuits,” Nature communications, vol. 3, p. 677, 2012.

[9] L. Amarú et al., “New logic synthesis as nanotechnology enabler,”
Proceedings of the IEEE, vol. 103, pp. 2168–2195, 2015.

[10] B. Behin-Aein et al., “Proposal for an all-spin logic device with built-in
memory,” Nature nanotechnology, vol. 5, pp. 266–270, 2010.

[11] B. Behin-Aein et al., “All-spin logic,” in Device Research Conference
(DRC), 2010. IEEE, 2010, pp. 41–42.

[12] M. Fuhrer et al., “Spintronics: A path to spin logic,” Nature physics,
vol. 1, pp. 85–86, 2005.

[13] L. O. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on Circuit Theory, vol. 18, pp. 507–519, 1971.

[14] D. B. Strukov et al., “The missing memristor found,” Nature, vol. 453,
pp. 80–83, 2008.

[15] ITRS, “Beyond cmos white paper,” 2014.
[16] W. Zhao et al., “Nanodevice-based novel computing paradigms and

the neuromorphic approach,” in Circuits and Systems (ISCAS), IEEE
International Symposium on. IEEE, 2012, pp. 2509–2512.

[17] S. Hamdioui et al., “Memristor based computation-in-memory archi-
tecture for data-intensive applications,” in Proceedings of the Design,
Automation & Test in Europe (DATE). EDA Consortium, 2015, pp.
1718–1725.

[18] S. Hamdioui et al., “Memristor for computing: Myth or reality?” in
Proceedings of the Design, Automation & Test in Europe (DATE). EDA
Consortium, 2017, pp. 1729–1725.

[19] H. A. Du Nguyen et al., “Computation-in-memory based parallel adder,”
in Proceedings of the 2015 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH 15). IEEE, 2015, pp. 57–62.

[20] A. Haron et al., “Parallel matrix multiplication on memristor-based
computation-in-memory architecture,” in High Performance Computing
& Simulation (HPCS), 2016 International Conference on. IEEE, 2016,
pp. 759–766.

[21] J. Yu et al., “Skeleton-based design and simulation flow for computation-
in-memory architectures,” in Nanoscale Architectures (NANOARCH),
2016 IEEE/ACM International Symposium on. IEEE, 2016, pp. 165–
170.

[22] L. Yavits et al., “Resistive associative processor,” IEEE Computer
Architecture Letters, vol. 14, pp. 148–151, 2015.

[23] S. Li et al., “Pinatubo: a processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in Proceedings
of the 53rd Annual Design Automation Conference. ACM, 2016, p.
173.

[24] L. Gao et al., “Programmable cmos/memristor threshold logic,” IEEE
Transactions on Nanotechnology, vol. 12, pp. 115–119, 2013.

[25] G. S. Rose et al., “Leveraging memristive systems in the construction of
digital logic circuits,” Proceedings of the IEEE, vol. 100, pp. 2033–2049,
2012.

[26] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, pp. 873–876, 2010.

[27] E. Lehtonen et al., “Memristive stateful logic,” in Memristor Networks.
Springer, 2014, pp. 603–623.

[28] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A, vol. 80, pp. 1165–1172, 2005.

[29] L. Xie et al., “Fast boolean logic mapped on memristor crossbar,” in
Computer Design (ICCD), 2015 33rd IEEE International Conference
on. IEEE, 2015, pp. 335–342.

[30] Intel xpoint memory. [Online]. Available:
http://www.intel.com/content/www/us/en/architecture-and-
technology/non-volatile-memory.html

[31] Crossbar 3d rram. [Online]. Available: http://www.crossbar-inc.com/
[32] A. Raghuvanshi et al., “Logic synthesis and a generalized notation for

memristor-realized material implication gates,” in Proceedings of the
2014 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2014, pp. 470–477.

12

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

5

75

[33] F. S. Marranghello et al., “Sop based logic synthesis for memristive
imply stateful logic,” in Computer Design (ICCD), 2015 33rd IEEE
International Conference on. IEEE, 2015, pp. 228–235.

[34] S. Kvatinsky et al., “Memristor-based material implication (imply) logic:
design principles and methodologies,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, pp. 2054–2066, 2014.

[35] A. Siemon et al., “A complementary resistive switch-based crossbar
array adder,” IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, vol. 5, pp. 64–74, 2015.

[36] S. Kvatinsky et al., “Team: Threshold adaptive memristor model,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 60, pp.
211–221, 2013.

[37] X. Guan et al., “A spice compact model of metal oxide resistive
switching memory with variations,” IEEE electron device letters, vol. 33,
pp. 1405–1407, 2012.

[38] K.-H. Kim et al., “A functional hybrid memristor crossbar-array/cmos
system for data storage and neuromorphic applications,” Nano letters,
vol. 12, pp. 389–395, 2011.

[39] X. Zhu et al., “Performing stateful logic on memristor memory,” Circuits
and Systems II: Express Briefs, IEEE Transactions on, vol. 60, pp. 682–
686, 2013.

[40] B. Parhami, Computer arithmetic. Oxford university press, 1999,
vol. 20, no. 00.

[41] P. C. McGeer et al., “Espresso-signature: A new exact minimizer for
logic functions,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 1, pp. 432–440, 1993.

[42] L. Xie et al., “Interconnect networks for memristor crossbar,” in
Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International
Symposium on. IEEE, 2015, pp. 124–129.

[43] S. Hamdioui et al., “Memristor based memories: Technology, design
and test,” in Design & Technology of Integrated Systems In Nanoscale
Era (DTIS), 9th IEEE International Conference On. IEEE, 2014, pp.
1–7.

[44] J. J. Yang et al., “Memristive devices for computing,” Nature nanotech-
nology, vol. 8, pp. 13–24, 2013.

[45] X. Tang et al., “A high-performance low-power near-vt rram-based
fpga,” in Field-Programmable Technology (FPT), 2014 International
Conference on. IEEE, 2014, pp. 207–214.

[46] P.-E. Gaillardon et al., “Design and architectural assessment of 3-d
resistive memory technologies in fpgas,” IEEE Transactions on Nan-
otechnology, vol. 12, pp. 40–50, 2013.

[47] M. Mao et al., “Optimizing latency, energy, and reliability of 1t1r reram
through appropriate voltage settings,” in Computer Design (ICCD), 2015
33rd IEEE International Conference on. IEEE, 2015, pp. 359–366.

[48] J. M. Rabaey et al., Digital integrated circuits. Prentice hall Englewood
Cliffs, 2002, vol. 2.

[49] F. Miao et al., “Anatomy of a nanoscale conduction channel reveals
the mechanism of a high-performance memristor,” Advanced materials,
vol. 23, pp. 5633–5640, 2011.

[50] “Fpga place-and-route challenge.” [Online]. Available:
http://www.eecg.toronto.edu/ vaughn/challenge/challenge.html

[51] M. Zangeneh et al., “Performance and energy models for memristor-
based 1t1r rram cell,” in Proceedings of the great lakes symposium on
VLSI. ACM, 2012, pp. 9–14.

[52] J. J. Yang et al., “The mechanism of electroforming of metal oxide
memristive switches,” Nanotechnology, vol. 20, p. 215201, 2009.

[53] D. B. Strukov et al., “Cmol fpga: a reconfigurable architecture for hybrid
digital circuits with two-terminal nanodevices,” Nanotechnology, vol. 16,
p. 888, 2005.

[54] L. Xie et al., “Boolean logic gate exploration for memristor crossbar,” in
Design and Technology of Integrated Systems in Nanoscale Era (DTIS),
2016 International Conference on. IEEE, 2016, pp. 1–6.

[55] W. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, pp. 55–63, 1948.

[56] M.-J. Lee et al., “A fast, high-endurance and scalable non-volatile mem-
ory device made from asymmetric ta2o5- x/tao2- x bilayer structures,”
Nature materials, vol. 10, pp. 625–630, 2011.

[57] A. C. Torrezan et al., “Sub-nanosecond switching of a tantalum oxide
memristor,” Nanotechnology, vol. 22, p. 485203, 2011.

[58] Crossbar 3d rram. [Online]. Available:
https://nano.stanford.edu/stanford-memory-trends

[59] C. Schindler et al., “Electrode kinetics of cu-sio2-based resistive switch-
ing cells: Overcoming the voltage-time dilemma of electrochemical
metallization memories,” Applied physics letters, vol. 94, p. 2109, 2009.

[60] P. Jamieson et al., “Odin ii-an open-source verilog hdl synthesis tool
for cad research,” in Field-Programmable Custom Computing Machines
(FCCM), 2010 18th IEEE Annual International Symposium on. IEEE,
2010, pp. 149–156.

[61] Abc: A system for sequential synthesis and verification. [Online].
Available: https://people.eecs.berkeley.edu/ alanmi/abc/abc.htm

[62] E. Linn et al., “Beyond von neumann? logic operations in passive
crossbar arrays alongside memory operations,” Nanotechnology, vol. 23,
p. 305205, 2012.

[63] S. Kvatinsky et al., “Mrlmemristor ratioed logic,” in 2012 13th Interna-
tional Workshop on Cellular Nanoscale Networks and their Applications.
IEEE, 2012, pp. 1–6.

[64] S. Kvatinsky et al., “Magicmemristor-aided logic,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 61, pp. 895–899, 2014.

[65] H.-S. P. Wong et al., “Metal–oxide rram,” Proceedings of the IEEE, vol.
100, pp. 1951–1970, 2012.

[66] R. Waser et al., “Redox-based resistive switching memories–nanoionic
mechanisms, prospects, and challenges,” Advanced Materials, vol. 21,
pp. 2632–2663, 2009.

[67] I. Vourkas et al., “Alternative architectures toward reliable memristive
crossbar memories,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, pp. 206–217, 2016.

Lei Xie (S’15) received his Bachelors and Mas-
ters degree in Microelectronics from Xian Jiaotong
University, Xian, China. Currently, he is pursuing a
PhD at the Computer Engineering Lab in the Delft
University of Technology, Delft, the Netherlands.
His research interest is memristor-based logic circuit
design.

Hoang Anh Du Nguyen (S’15) received the M.Sc.
degrees in computer engineering from the Delft
University of Technology, Delft, The Netherlands.
She is currently a pursuing the Ph.D. degree with
the Computer Engineering Laboratory, Delft Uni-
versity of Technology. Her current research interests
include Computation-in-Memory (CIM) architecture
for Big-Data, memristor based systems and synthesis
automation.

Mottaqiallah Taouil (S’10 – M’15) received the
M.Sc. and Ph.D. degrees (both with Hons.) in
computer engineering from the Delft University of
Technology, Delft, The Netherlands. He is currently
a Post-Doctoral Researcher with the Dependable
Nano-Computing Group, Delft University of Tech-
nology. His current research interests include recon-
figurable computing, embedded systems, very large
scale integration design and test, built-in-self-test,
and 3-D stacked integrated circuits, architectures,
design for testability, yield analysis, and memory test

structures.

13

5

76 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

Said Hamdioui (M’99 – SM’11) is currently a
Chair Professor on Dependable and Emerging Com-
puter Technologies at the Computer Engineering
Laboratory of the Delft University of Technol-
ogy (TUDelft), the Netherlands. Prior to joining
TUDelft, Hamdioui worked for Intel Corporation
(Califorina, USA), Philips Semiconductors R&D
(Crolles, France) and for Philips/ NXP Semicon-
ductors (Nijmegen, The Netherlands). His research
focuses on two domains: Dependable CMOS nano-
computing (including Reliability, Testability, Hard-

ware Security) and emerging technologies and computing paradigms (in-
cluding 3D stacked ICs, memristors for logic and storage, in-memory-
computing). He owns one patent and has published one book and co-authored
over 170 conference and journal papers. He delivered dozens of keynote
speeches, distinguished lectures, and invited presentations and tutorial at
major international forums/conferences/schools and at leading semiconductor
companies. Hamdioui is a Senior member of the IEEE, Associate Editor of
IEEE Transactions on VLSI Systems (TVLSI), and he serves on the editorial
board of IEEE Design & Test, and of the Journal of Electronic Testing: Theory
and Applications (JETTA). He is also member of AENEAS/ENIAC Scientific
Committee Council (AENEAS =Association for European NanoElectronics
Activities).

Koen Bertels is Professor and Head of the Com-
puter Engineering Laboratory at Delft University of
Technology. His research focuses on heterogeneous
multicore computing, investigating topics ranging
from compiler technology, runtime support and ar-
chitecture. He recently started working on quantum
computing as a principal investigator in the Qutech
research center. He served as general and program
chair for various conferences such as FPL, RAW,
ARC. He co-authored more than 30 journal papers
and more than 150 conference papers.

14

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.1

5

77

Non-Volatile Look-up Table
Based FPGA Implementations

Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui, Koen Bertels, Mohammad Alfailakawi*
Laboratory of Computer Engineering, Delft University of Technology, the Netherlands

*Computer Engineering Department, University of Kuwait, Kuwait
Email: {L.Xie,H.A.DuNguyen,M.Taouil,S.Hamdioui,K.L.M.Bertels}@tudelft.nl;alfailakawi.m@ku.edu.kw

Abstract—Many emerging technologies are under investigation
to realize alternatives for future scalable electronics. Memristor
is one of the most promising candidates due to memrsitor’s
non-volatility, high integration density, near-zero standby power
consumption, etc. Memristors have been recently utilized in
non-volatile memory, neuromorphic system, resistive computing
architecture, and FPGA to name but a few. An FPGA typically
consists of configurable logic blocks (CLBs), programmable
interconnects, configuration, and block memories. Most of the
recent work done was focused on using memristor to build
FPGA interconnects and memories. This paper proposes two
novel FPGA implementations that utilize memristor-based CLBs
and their corresponding automatic design flow. To illustrate the
potential of the proposed implementations, they are benchmarked
using Toronto 20, and compared with the state-of-the-art in terms
of area and delay. The experimental results show that both the
area (up to 4.24x) and delay (up to 1.46x) of the novel FPGAs
are very promising.

I. INTRODUCTION

As transistors gradually approach their inherent physical
device limits, CMOS technology faces major challenges
such as increased leakage, saturated performance gain, and
reduced reliability [1,2]. To address these challenges, novel
technologies; such as carbon nanotube, graphene transistors,
and memristors [3]; are proposed as alternatives for future
scalable electronics. Memristors are one of the most promising
candidates due to their non-volatility, high integration density,
and near-zero standby power [3,4]. Memristors-based
design have been proposed for non-volatile memory [4],
neuromorphic system, resistive computing architecture [5,6],
and field programmable gate array (FPGA) [7–9].

Many novel memristor-based FPGAs, called MemFPGA for
short, have been reported recently. MemFPGAs typically em-
ploy the classical island-style architecture [10] which consists
of configurable logic blocks (CLBs), programmable inter-
connect, and block RAM (BRAM). Each CLB consists of
look-up tables (LUTs) and a D flip-flop (DFF). Both CLBs
and the programmable interconnect use memories to store
configuration information. In MemFPGAs, memristors are
utilized in the following fashion:

• As configuration memory for CLBs and interconnects [7]
• Used in the implementation of programmable intercon-

nect [8].
• Implement BRAMs and DFFs [9].

In this work, we propose the use of memristors to improve
the implementation of LUTs within FPGA, something that
have not been done before. This paper proposes two FPGA
implementations using memristor-based LUTs along with an
appropriate Electronic Design Automation (EDA) process.
The cost of both implementations in terms of area and delay
is analyzed.

The rest of this paper is organized as follows. Section II
briefly describes memristor-based logic. Section III presents
the proposed FPGA implementation followed by an EDA flow
in Section IV. Section V evaluates the proposed approaches
and the paper is concluded in Section IV.

978-1-5090-4900-4/16/$31.00 c© 2016 IEEE

II. FUNDAMENTALS OF MEMRISTOR LOGIC

This section starts with the characteristics of memristors,
followed by an overview of memristor logic, finally presents
two memristor logic styles used in this work.

A. Electronic Characteristics of Memristor

Fig. 1 shows I-V characteristics of a typical memristor [4]. The
memristor switches from one resistive state to another when
voltage across the device is greater than its threshold voltage
Vth. Otherwise, it stays in its current resistive state. The the
high-to-low switching is referred to as SET (RL) resistance,
while low-to-high switching is referred to as RESET(RL).

B. Overview of Memristor Logic

There are four types of memristor logic that have been
previously proposed, namely, threshold [11], majority [11],
implication [12], and Boolean logic [13,14]. Since LUTs
are commonly based on Boolean logic, we will limit our
discussion to memristor-based Boolean logic. Memristor-based
Boolean logic can be classified into two styles depending on
how logic states are represented. One style uses high and
low voltages to represent logic 1 and 0 as is referred to as
memristor-ratioed logic (MRL) [13]. On the other hand, when

SET

RESET

I

V

RL ‘0’

RH ‘1’
VddVthVdd/2

-Vth -Vdd/2-Vdd

SET RESET

RL RH

Vdd

GND

I

Vdd

GND

I

RH RL

Fig. 1: Electronic Characteristics of Memristor

5

78 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.2

Vx≈ 0

VA= Vdd VB= Vdd

Vx= Vdd

(a) A = ‘1’, B = ‘0’ (b) A = ‘1’, B = ‘1’

Vo= 0

VA= Vdd VB= 0

Vo=
Vdd

MAMB=RL MBMA=RH

VA= 0 VB= 0

Vx= 0

(c) A = ‘0’, B = ‘0’

Vo=
Vdd

MA MB

Fig. 2: 2-Input NAND Gate of Memristor-Ratioed Logic

high/low resistance is to represent logic 1 and 0, then it is
referred to as Resistive Boolean logic (RBL) [14]. Next, we
describe MRL and RBL Boolean logic.

C. Memristor Ratioed Logic (MRL)

The basic gates in MRL are AND, OR, NAND and NOR [13].
Fig. 2 shows an example of a 2-input NAND gate consisting
two memristors and a CMOS inverter (an n-input NAND
gate requires n memristors). When only one the inputs is
1 (e.g., A=1, B=0, see Fig. 2(a)), a current flows through
memristor MA and MB as indicated by the dash-lined resulting
in RESETing MA and SETing MB. The voltage of the floating
nanowire Vx= MB

MA+MB
Vdd≈0 as RH�RL [4], hence the output

voltage Vo is Vdd. Cases when both inputs are 1 or 0 can be
analyzed similarly and are shown in Fig. 2(b)-(c).

D. Resistive Boolean Logic (RBL)

In RBL, the basic logic gates are NAND, copy, invert (INV),
and AND and are shown in Fig. 3 [14]. To illustrate work-
ing principle of RBL, a two-input NAND gate is used as
an example. A 2-input NAND gate consists of two input
memristors (MA and MB), an output memristor (Mo), and
a resistor Rs (RL�Rs�RH). The output memristor must
be RESET to RH before each operation and input ones
must be pre-programmed before execution (for brevity, this
initialization is not shown). To perform an NAND operation,
control voltages Vdd

2 and Vdd (Vdd
2 <Vth) are applied to input and

output memristors, respectively. In the case when input A=1
and B=0, MA = RH, and MB = RL (see Fig. 3(a)), the voltage
on floating nanowire Vx≈Vdd

2 is RL�Rs�RH resulting in the
voltage across Mo to be Vmo≈Vdd−Vdd

2 =Vdd
2 <Vth, rendering

Mo to stay in RH state. Case when input A=B=1 can be
analyzed similarly and is shown at the bottom of Fig. 3(a).
Fig. 3(b) shows other gates which work in the similar way as
the 2-input NAND gate.

III. TWO FPGAS USING MEMRISTOR LOGIC

This section first briefly describes island-style FPGA architec-
ture then presents MRL and RBL based FPGA architectures.

A. Island-Style FPGA Architecture

Fig. 4(a) shows the island-style FPGA architecture [10] which
consists of CLBs, connection boxes (CBs), switching boxes
(SBs) and BRAMs. Each CLB is composed of a switch matrix
and N basic logic elements (BLEs) as shown in Fig. 4(b). The
switch matrix contains multiple MUXs configured by SRAM
bits to route I shared inputs and feedback N outputs among
BLEs. A single K-input BLE contains a LUT, DFF, MUX and
configuration memories (i.e., SRAM) as shown in Fig. 4(c).

Rs

(a) 2NAND1

Copy

INV1

Vdd

GND

GND

Vdd

Vdd

GND

Vdd

2AND1
Vdd

Vx≈ 0

Rs

Rs

RH RH

RH

A = ‘1’, B = ‘1’

RL

Rs

VddVdd/2Vdd/2

Vx≈
Vdd/2

MA

=RH

MB

=RL

Mo

=RH

A = ‘1’, B = ‘0’

(b) Other Gates

Vdd/2Vdd/2

Vdd/2

Rs

Fig. 3: Logic Gates of Resistive Boolean Logic

CB

CB

CLB

BRAM

(a) Architecture

BLE

BLE

... ... N
-B

LEs

SRAM
Bits

I inputs N outputs

(b) Configurable Logic Block

Switch
Matrix

LU
T

..
.

D
Q

2
K
 S

R
A

M
 B

it
s

K inputs

1 SRAM Bit

Output f

clk

(c) Basic Logic
Element

SB CB

SB

CB

CB

CLB

..
.

CLB CB CLB

Fig. 4: Island-Style FPGA Architecture

The LUT can implement a K-input Boolean function as
determined by the configuration memories. The LUT can
switch between sequential and combinational mode using the
DFF and MUX. CBs and SBs constitute the programmable
interconnect to route the signals among CLBs.

The reminder of this section presents two novel FPGAs. The
MRL based implementation will be referred to as MFPGA
whereas RBL based one will be labeled as RFPGA.

B. MFPGA

MFPGA uses MRL to implement the LUT and switch matrix
(SM) of the CLBs while still using CMOS to implement the
DFF and 2:1 MUX of BLEs. The output f of a 2-input LUT
can be expressed by Eq.1:

f = c1x̄1x̄2 + c2x̄1x2 + c3x1x̄2 + c4x1x2 (1)

= c1x̄1x̄2 · c2x̄1x2 · c3x1x̄2 · c4x1x2

where xi (i=1,2) are the inputs and ci (1≤i≤4) are configura-
tion bits. Fig. 5(a) shows an example of an MRL-based 2-input
LUT. Each term in output f , e.g., c1x̄1x̄2, is implemented
using a NAND gate whose output are used as inputs to another
NAND gate to calculate the complete output f . All memristors
of the NAND gates are mapped on a memristor crossbar.
For instance, the term c1x̄1x̄2 is realized by enabling the
three memristors at the junctions between columns x̄1, x̄2,

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.2

5

79

x1

x1x2

x1x2

x1x2

x1x2

x1x2

x1x2

x1x2

x1x2

f

x2

x1 x2

RD

M1

M2

Vr Vdd -Vdd

c1

c2

c1

c2

c3

c4 c4

c3

c1

c2

c3

c4

x1

x1c1

f

x2

x2c1

c1

c1

x1c1

x2c1

(a) 2-Input Look-Up Table (c) 2:1 MUX of Switch Matrix

Vc

(b) Configuration
Memory Cell

Vc

Fig. 5: MFPGA

and c1 with the first row while keeping other memristors on
the same row disabled (by not electroforming them [4]). Note
that the disabled junction is permanently in a high resistance
RD�RH [14]. Configuration bit c1 is stored in a 3-Transistor-
2-Memristor (3T2R) cell as shown in Fig. 5(b) [7]. Two
memristors M1 and M2 form a voltage divider and inverter
output Vc is used as value for c1. To configure c1 to 0, M1 and
M2 should be programmed to RL and RH using Vdd. During
execution stage, Vr is applied resulting in Vc=0 outputted. The
case of c1=1 works in a similar fashion.

The output f of an N:1 MUX (e.g., N=2) used in SM can be
expressed by Eq.2 where xi (1≤i≤2) presents the inputs and
c1 configuration bit. Fig. 5(c) shows an MRL-based 2:1 MUX
as an example. It works similarly as MRL LUT.

f = x1c1 + x2c̄1 = x1c1 · x2c̄1 (2)

C. RFPGA

In RFPGA, RBL is used to implement BLEs while it uses
the same switch matrix used in MFPGA. The output f of a
K-input LUT can be expressed by Eq.1; e.g., K=2.

f = c1x̄1x̄2 · c2x̄1x2 · c3x1x̄2 · c4x1x2 (3)

Fig. 6(a) shows an RBL implementation of 2-input LUT. The
first two rows are used to invert xi to x̄i (i=1,2) whereas
the following four rows implement the four terms in Eq.3
by mapping four NAND gates of Fig. 3(a) on the crossbar.
For instance, the expression c1x̄1x̄2 is implemented by row
3 where three memristors are placed at columns x̄1, x̄2 and
c̄1 junctions representing inputs while a memristor is placed
on column f junction signifying the output. The remaining
junctions in row 3 are disabled. To calculate output f , an
AND gate is mapped on column f where it reuses the output
of the four NAND gates as input hence storing value at the
memristor at the junction of row and column f .

To control the crossbar of the BLE, multiple voltage drivers
and a CMOS controller are employed. A voltage driver is
attached to each nanowire (triangles in Fig. 6(a)) and is used
to control the voltage on the nanowires. The controller has
two modes of operation, configuration (CFG) and execution
(EXE) as described by the state machine shown in Fig. 6(b).
The CFG mode consists of two states:

1) RSC: Activate all configuration bits by RESET all
memristors to RH .

2) WR0: Deactivate configuration bits that do not con-
tribute to function implemented (set memristors to RL).

1

c1x1x2

3 52 4 6

c1

c2

c4

c3

BLE
Ctrller

f

RsDriver

3

4

6

7

5

1

2

x1 x2x1 x2 cif

RSL

TRO

RSO

INV

CPY

NAND

AND

IDLE

WR0

RSC

EXE

CFG

(a) Basic Logic Element (b) State Machine

c2x1x2

c3x1x2

c4x1x2

Fig. 6: RFPGA

TABLE I: Control Voltages for BLEs of RFPGA
EXE Mode

State
Row Column

INV NAND OL IN INN C OUT
1–2 3–6 7 x1,x2 x̄1,x̄2 ci f

RSL Vdd Vdd Vdd/2 GND GND Vdd/2 GND
TRO GND Vdd/2 Vdd Float Vdd/2 Vdd/2 Float
RSO Vdd/2 Vdd/2 Vdd Vdd/2 Vdd/2 Vdd/2 GND
INV Float Vdd/2 Vdd/2 Vdd Vdd/2 Vdd/2 Vdd/2
CPY Vdd GND Vdd/2 Float Float Vdd/2 Vdd/2

NAND Vdd/2 Float Vdd/2 Vdd/2 Vdd/2 Vdd/2 Vdd
AND Vdd/2 Vdd GND Vdd/2 Vdd/2 Vdd/2 Float

CFG Mode

State
Row Column

INV NAND OL IN INN C OUT
RSC Vdd/2 Vdd Vdd/2 Vdd/2 Vdd/2 GND Vdd/2
WR0 Vdd/2 Vdd/GND* Vdd/2 Vdd/2 Vdd/2 Vdd Vdd/2

The EXE mode consists of seven states:

1) RSL: RESET all memristors to RH except output f and
configuration bits (i.e., ci, 1≤i≤4).

2) TRO: Transfer output f to the next BLEs, while receive
all inputs of the LUT.

3) RSO: RESET the memristor that stores output f .
4) INV: Invert inputs xi to x̄i (i=1,2).
5) CPY: Copy inputs to all NAND gates.
6) NAND: Execute all NAND gates to calculate the items.
7) AND: Execute an AND gate to calculate output f .

To perform the operation of each state in the state machine,
control voltages as indicated in Table I needs to be applied
to the various nanowires. For instance, during CPY state, all
inputs (xi and x̄i) are copied to all NAND gates by applying
Vdd to row INV (row 1–2) and GND to NAND (row 3–6)
while simultaneously column IN (xi) and INN x̄i are floating.
In order to reduce the impact of sneak path currents on the
BLE’s robustness, Vdd

2 is applied to rows and columns that are
not involved in the operations [4,14].

IV. AN EDA FLOW FOR PROPOSED FPGAS

This section presents a modified EDA flow for the proposed
FPGA architectures and evaluate them in term of area and
delay.

5

80 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.2

Logic Opt.
(ABC)

Circuit Design

Tech. Mapping
(ABC)

Opt. Design

LUT Netlist

LUT Packing
(T-VPACK)

CLB Netlist

Place-and-Route
(VPR)

Routing Arch.

FPGA
Performance

Estimation

FPGA
Arch.

Memristor
CLB Model

Lib

Area & Delay

FPGA
Lib

CMOS/
RRAM
Tech.

Lib

Fig. 7: A CAD Flow for MFPGA and RFPGA

A. Modified EDA Flow

To automatically implement circuits using the proposed FP-
GAs, we modify the standard EDA flow for CMOS FPGA [10]
as shown in Fig. 7 where shaded blocks identify modification.
Circuit design is first optimized at logic level and then mapped
to LUTs using ABC [15]. Thereafter, LUTs are packed into
CLBs using T-VPACK [16] where each CLB consists of one
or more LUTs depending on configuration setting. Next, CLB
netlist is placed and routed using VPR [16]. Finally, the entire
FPGA consisting of CLBs and the routing architecture (includ-
ing CBs and SBs) are estimated in terms of area and delay.
To estimate the performance of the proposed architectures,
we modify the performance estimation block by adding area
and delay models for memristor-based CLBs. As the FPGA
architecture is regular, FPGA performance estimation block
only need to sum up the area and delay of CLBs and routing
architecture [10]. The rest of this section presents area and
delay model for the proposed CLBs.

B. Area Model of Memristor CLBs

CLBs of MFPGA and RFPGA can be implemented by a
memristor crossbar stacked on top of a CMOS circuit as shown
in Fig. 8 [3,4]. Hence, the area of a single CLB (Aclb) is
estimated by the maximum area of the memristor crossbar
(Axbar) and CMOS circuit (Acmos) as given by Eq.4. Crossbar
area is estimated as the product of number of junctions
(Njunction) by the area of a single junction (Ajunction).

{
Aclb = max{Axbar, Acmos}
Axbar = Njunction ·Ajunction

(4)

The CMOS part of MFPGA CLB contains inverters, DFFs,
and 3T2R memory cells, hence can be represented as the
summation of each component’s area as expressed in Eq.5.

Acmos,MFPGA =
∑

Ainv +
∑

Amemory +
∑

Adff (5)

where Ainv, Amemory, and Adff are the areas of a CMOS
inverter, 3T2R memory cell, a DFF, respectively.

CMOS Layer

Memristor

Nanowire

Metal Via

Crossbar

CMOS
Circuit

Fig. 8: A Possible Implementation of MFPGA and RFPGA

Vdd

GND

C[0]

C[1]

C[2]

T1

T2

T3

...

na nd

RL RD

Memristors

...

C[0:2]

Vo

GND Disabled
Junctions

Vdd/2

Vdd

Vdd/2
Vo

Vdd

Fig. 9: CMOS Voltage Drivers.

The CMOS part of RFPGA CLB contains voltage drivers and
controller and thus its area can be expressed in Eq.6.

Acmos,RFPGA = Actrl +
∑

Avd (6)

where Actrl presents the area of the controller and Avd is
that of a single voltage driver. The area of the controller can
be estimated by a synthesis tool (e.g., Cadence RTL compiler).

Fig. 9 shows a possible implementation of a voltage driver
consisting of three pass transistors [17] controlled by three-bit
signals C[0:2]. To drive a nanowire with multiple memristors
connected as shown on the right side of Fig. 9, the transistors
should provide enough current to drive such wires. There-
fore, transistors width-to-length ratio W

L should be carefully
determined. To program a single memristor, the transistor
must supply a current greater than Iw= Vdd

RL
[9]. The area of

a transistor is typically An=6F 2 [7] where F is the feature
size of CMOS technology. To drive na active memristors in
parallel, W

L should be increased na times in order to provide
the required current Iw. As a result, An of the transistor
increases na times as given in Eq. 7.

Iw = na
Vdd

RL
, and An = 6naF

2 (7)

Further, assume that we have another nd disabled junctions
with each consuming current equal to ID= Vdd

RD
, then the

transistor should also compensate for the current through nd

disabled memristors as described in Eq.8.
{
Iw = na

Vdd
RL

+ nd
Vdd
RD

= (na + RL

RD
nd) Vdd

RL
,

An = 6(na + RL

RD
nd)F 2

(8)

Finally, the total area Avd of a single voltage driver is as given
in Eq.9. Typically, RD

RL
>5 × 104 [18] and hence the number

of memristors na dominates the area of the driver.

Avd = 3An = 18(na +
RL

RD
nd)F 2 ≈ 18naF

2 (9)

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.2

5

81

...
R1 Ri

C1 Ci

...
M1 Mi Mn

Rn

CnVoltage
Driver

Fig. 10: Elmore Delay Model

C. Delay Model of Memristor CLBs

The delay of MFPGA CLB is determined by the critical path
from inputs to outputs similar to CMOS circuit. The critical
path contains an SM MUX , an LUT, a DFF, and a 2:1 MUX.
The DFF and 2:1 MUX are implemented using CMOS and
the remaining components are implemented using MRL. The
delay Dmrl of a MRL-based LUT or MUX is modelled by
Eq.10 (see Fig. 5).

Dmrl = 2Dinv + 2Tsw + Dnw,row + Dnw,col. (10)

where Dinv represents the delay of a CMOS inverter, Tsw is the
switching time of a memristor device, and Dnw,row (Dnw,col.)
the delay of a row (column) nanowire. Note that memristors
driven by Vdd first switch RL and then memristors driven
by GND switch to RH or vice versa (see Fig. 2(a)) [13],
therefore, memristor devices need 2Tsw to switch. A row or
column nanowire is modelled as a transmission line as shown
in Fig. 10 and its delay Dnw is formulated by Elmore model
[19] as given in Eq.11.





Dnw =
∑n

i=1

[
Ci

(∑i
j=1 Rj

)]

= (n2 + 4n− 21/8)Rnw · Cnw · F 2

n : number of junctions in the nanowire
R1 = 3

2F ·Rnw

Ri = 2F ·Rnw, 1 < i ≤ n

C1 = 3
2F · Cnw

2

Ci = 2F · Cnw, 1 < i < n

Cn = 2F · Cnw + 3
2F · Cnw

(11)

RFPGA CLB contains several BLEs based on RBL and an
SM based on MRL. The delay of SM is modelled by Eq.10.
The delay Dble of the BLE of Fig. 6 is modelled by Eq.12.





Dble = Nstep ·Dstep = 7 ·Dstep

Dstep = Dxbar + Dctrl

Dxbar = Tsw + Dnw

(12)

where Dble is the product of execution step number Nstep
and the delay of a single step Dstep. Dstep is the sum of
crossbar delay Dxbar and that of the CMOS controller Dctrl.
The nanowire delay Dnw is modelled by Eq.10 and Dctrl is
provided by the synthesis tool (e.g., Cadence RTL Compiler).

V. EVALUATION

To evaluate the performance of proposed architectures, a
benchmark suite was synthesized and the their area and delay
characteristics were compared with state-of-the-art FPGA.
First, will present experimentation setup, followed by results
and discussion, and finally limitations of this work.

TABLE II: FPGAs for Comparison

FPGA
CLB Routing Architecture

BLE SM Config. Programmable Config.
Memory Interconnect Memory

Baseline CMOS CMOS 6T-SRAM

CMOS SRAM
MemFPGA CMOS CMOS 1T1R-RRAM

MFPGA MRL MRL 3T2R-RRAM
RFPGA RBL MRL 3T2R-RRAM

TABLE III: Parameters of FPGA Architecture and Technology
Parameter Description Value

Island-Style FPGA Architecture [10,16]
K No. of LUT inputs, 3≤K≤12 –
N No. of LUTs in a CLB, N=1,4,8 –
I No. of CLB inputs, I=K

2
(N + 1) –

Fc,in Input connectivity fraction of each CLB 0.5
Fc,out Output connectivity fraction of each CLB 1

N
L Channel segment length (i.e., number of CLBs) 4

Technology
Memristor (TaOx RRAM) [18,22]

F (nm) Feature size 90
Tsw (ns) Switching time (max of SET and RESET) 0.2
RL (kΩ) ON Resistance 200
RH (MΩ) OFF Resistance 200
Rs (MΩ) Resistance of Rs (for RBL) 1

Memory Cell Area [4]
Asram (F 2) Area of a 6T-SRAM Cell 140
A1t1r (F 2) Area of a 1T1R-RRAM Cell 6
A3t2r (F 2) Area of a 3T2R-RRAM Cell 18
Am (F 2) Area of a memristor in crossbar 4

Nanowire (Copper) [23]
Cnw (fF/µm) Capcitance in unit length 0.26
Rnw (Ω/µm) Resistance in unit length 9.88

CMOS: Synopsys EDK 90nm Lib

A. Experiment Setting Up

Table II summarizes the characteristics of all FPGAs used
in this sections. FPGA that employs SRAM as configuration
memories is used as baseline implementation. In addition to
traditional SRAM based FPGA, an MemFPGA that replaces
SRAM of CLB with 1T1R as described in [20] was im-
plemented and compared to the proposed architectures. All
FPGAs in Table II can use routing architecture based on either
CMOS [10] or RRAM [7,8]. To highlight the improvement
of CLBs, all FPGAs use the same CMOS programmable
interconnect.

This experiment uses classical island-style FPGA architecture
[10] and Toronto 20 benchmark package [21] which consists
of 20 benchmark circuits frequently used in different domains.
Different numbers of LUT inputs (K=3–8,10,12) and numbers
of LUTs within a CLB (N=1,8) are evaluated using area
and delay model described in Section IV. All area and delay
various reported are the average for all benchmark circuits
synthesized. Since circuit ‘tseng’ of Toronto 20 cannot be
synthesized correctly by ABC, it was not included in this
experiment. Table III summarizes parameters of FPGA archi-
tecture and technology used in the experiments.

B. Results

Area Fig. 11 shows the area required for all four FPGAs.
MFPGA and RFPGA typically need smaller area to implement
CLBs (see Fig. 11(a)) whereas all need almost similar area to
implement their routing architectures. Overall, MFPGA and

5

82 CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.2

1.00E-01

1.00E+00

1.00E+01

1.00E+02

3 4 5 6 7 8 10 12

A
re

a
 (1

0
6

u
m

2
)

Baseline MemFPGA MFPGA RFPGA

1.00E-01

1.00E+00

1.00E+01

1.00E+02

3 4 5 6 7 8 10 12

A
re

a
 (1

0
6

u
m

2
)

Baseline MemFPGA MFPGA RFPGA

K @ N=1 K @ N=8

(a) Area of CLBs

1.00E-01

3.00E-01

5.00E-01

7.00E-01

9.00E-01

3 4 5 6 7 8 10 12

A
re

a
(1

0
6

u
m

2
)

Baseline MemFPGA MFPGA RFPGA

K @ N=1 K @ N=8

(b) Area of Routing Architecture

1.00E-01

3.00E-01

5.00E-01

7.00E-01

9.00E-01

3 4 5 6 7 8 10 12

A
re

a
(1

0
6

u
m

2)

Baseline MemFPGA MFPGA RFPGA

K @ N=1 K @ N=8

(c) Total Area

1.00E+00

1.00E+01

1.00E+02

3 4 5 6 7 8 10 12

A
re

a
(1

06
u

m
2)

Baseline MemFPGA MFPGA RFPGA

1.00E+00

1.00E+01

1.00E+02

3 4 5 6 7 8 10 12

A
re

a
(1

06
u

m
2)

Baseline MemFPGA MFPGA RFPGA

Fig. 11: Area of Different FPGAs

RFPGA outperform the baseline and MemFPGA as logic area
dominates the total area. Therefore, MFPGA and RFPGA
provide a great potential to improve logic integration density.

Delay Fig. 12 shows the delay of all four FPGAs. The
delay of the CLBs within MFPGA is similar to baseline and
MemFPGA in case K≥6. On the other hand, the delay of
CLBs within RFPGA are longer than others as each CLB
needs several steps to complete its function. The delay of
routing architecture in MFPGA and RFPGA are less than
the other two FPGAs. Overall, MFPGA performs better than
others in case K≥6 in all three clustering configurations. It
is worth noting that each CLB of RFPGA can store data at
run time, and hence its LUTs can be pipelined to improve its
throughput.

In addition, MFPGA and RFPGA can be further improved if
they incorporated with memristor-based routing architectures
(e.g., [8]).

C. Limitations

This paper did not estimate power consumption of the pro-
posed FPGAs as power modelling of memristor logics are
still not mature [4]. Nevertheless, the proposed FPGAs may
consume less power as memristors are non-volatile and hence
they may consume less leakage power [3,4]. In addition, as this
paper mainly illustrates the potential of FPGAs using mem-
ristor logic, technology challenges such as limited endurance,
process variations [4] are out of the scope of this paper. These
limitations will be studied in our future work.

VI. CONCLUSION

This paper proposed two novel FPGA implementations based
on memristor logics. Their performances are intensively eval-
uated. Compared to the state-of-the-art, the proposed FPGAs
provide a potential to improve the logic integration density,
and possibly to reduce the delay. Hence, they are promising
candidates for the future FPGA design and applications.

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

3 4 5 6 7 8 10 12

D
e
la
y(
n
s)

Baseline MemFPGA MFPGA RFPGA

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

3 4 5 6 7 8 10 12

D
e
la
y(
n
s)

Baseline MemFPGA MFPGA RFPGA

K @ N=1 K @ N=8

(a) Delay of CLBs

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

3 4 5 6 7 8 10 12

D
e
la
y(
n
s)

Baseline MemFPGA MFPGA RFPGA

K @ N=1 K @ N=8

(b) Delay of Routing Architecture

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

3 4 5 6 7 8 10 12

D
e
la
y(
n
s)

Baseline MemFPGA MFPGA RFPGA

K @ N=1 K @ N=8

(c) Total Delay

3.00E+01

8.00E+01

1.30E+02

1.80E+02

2.30E+02

3 4 5 6 7 8 10 12

D
e
la
y(
n
s)

Baseline MemFPGA MFPGA RFPGA

3.00E+01

8.00E+01

1.30E+02

1.80E+02

2.30E+02

3 4 5 6 7 8 10 12

D
e
la
y(
n
s)

Baseline MemFPGA MFPGA RFPGA

Fig. 12: Delay of Different FPGAs

REFERENCES

[1] B. Hoefflinger, Chips 2020: a guide to the future of nanoelectronics.
Springer Science & Business Media, 2012.

[2] S. Hamdioui et al., “Reliability challenges of real-time systems in
forthcoming technology nodes,” in DATE. IEEE, 2013.

[3] ITRS ERD report, 2010.
[4] J. J. Yang et al., “Memristive devices for computing,” Nature nanotech-

nology, 2013.
[5] S. Hamdioui et al., “Memristor based computation-in-memory architec-

ture for data-intensive applications,” in DATE. IEEE, 2015.
[6] H. A. Du Nguyen et al., “Computation-in-memory based parallel adder,”

in NANOARCH. IEEE, 2015.
[7] M. Liu et al., “rfga: Cmos-nano hybrid fpga using rram components,”

in NANOARCH. IEEE, 2008.
[8] J. Cong et al., “Fpga-rpi: A novel fpga architecture with rram-based

programmable interconnects,” TVLSI, 2014.
[9] X. Tang et al., “A high-performance low-power near-vt rram-based

fpga,” in FPT. IEEE, 2014.
[10] V. Betz et al., Architecture and CAD for deep-submicron FPGAs.

Springer Science & Business Media, 2012.
[11] G. S. Rose et al., “Leveraging memristive systems in the construction

of digital logic circuits,” Proceedings of the IEEE, 2012.
[12] J. Borghetti et al., “Memristive switches enable stateful logic operations

via material implication,” Nature, 2010.
[13] S. Kvatinsky et al., “Mrlmemristor ratioed logic,” in CNNA. IEEE,

2012.
[14] L. Xie et al., “Fast boolean logic mapped on memristor crossbar,” in

ICCD. IEEE, 2015.
[15] “Abc: A system for sequential synthesis and verification.” [Online].

Available: http://www.eecs.berkeley.edu/ alanmi/abc/
[16] “Vpr and t-vpack: Versatile packing, placement and routing for fpgas.”

[Online]. Available: http://www.eecg.toronto.edu/ vaughn/vpr/vpr.html
[17] W. Zhao et al., “Design and analysis of crossbar architecture based on

crs non-volatile memory cells,” JPDC, 2014.
[18] F. Miao et al., “Anatomy of a nanoscale conduction channel reveals the

mechanism of a high-performance memristor,” AM, 2011.
[19] W. Elmore, “The transient response of damped linear networks with

particular regard to wideband amplifiers,” JAP, 1948.
[20] Y. Y. Liauw et al., “Nonvolatile 3d-fpga with monolithically stacked

rram-based configuration memory,” in ISSCC. IEEE, 2012.
[21] “Fpga place-and-route challenge.” [Online]. Available:

http://www.eecg.toronto.edu/ vaughn/challenge/challenge.html
[22] A. C. Torrezan et al., “Sub-nanosecond switching of a tantalum oxide

memristor,” Nanotechnology, 2011.
[23] D. B. Strukov et al., “Cmol fpga: a reconfigurable architecture for hybrid

digital circuits with two-terminal nanodevices,” Nanotechnology, 2005.

CIRCUIT DESIGN AND SYNTHESIS FLOW - PAPER 5.2

5

83

6
NON-VON NEUMANN

ARCHITECTURE

This chapter presents a non-Von Neumann computer architecture, Computation-In-Memory
(CIM Architecture), for specific data-intensive applications (e.g., parallel addition and
DNA sequencing). CIM is based on the integration of storage and computation in the same
physical location using memristor technology. It significantly reduces the data communi-
cation between processors and memory by computing data directly within memory.

The content of this chapter consists of the following research articles:

1. S. Hamdioui, L. Xie, H.A. Du Nguyen, M. Taouil, K.L.M. Bertels, Memristor Based
Computation-in-Memory Architecture for Data-Intensive Applications, Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, March,
2015, pp. 1718-1725

85

6

86 6. NON-VON NEUMANN ARCHITECTURE

6.1. INTRODUCTION
One of the most critical challenges for the emerging data-intensive applications is the
data storage and processing. The increase of the data size has already surpassed the ca-
pabilities of today’s computation architectures suffering from the limited memory band-
width, programmability overhead, energy inefficiency, and limited scalability. Therefore,
it is necessary to develop a new resistive computing architecture for data-intensive ap-
plications.

6.2. MAIN CONTRIBUTIONS
The main contributions in the above aspects are as follows.

Development of CIM architecture [11]: CIM architecture is based on the integration
of storage and computation in the same physical location using the non-volatile
memristive devices. Such unique features lead to the reduction of memory ac-
cesses and leakage power consumption and the massive processing parallelism.
Therefore, it shows a significant potential in addressing data-intensive problems
than today’s computer architectures (e.g., multi-core CPUs) in terms of computa-
tion efficiency. To illustrate how CIM architecture significantly advances the state-
of-the-art, the performance of CIM and the conventional architectures for health-
care (i.e., DNA sequencing) and mathematics (i.e., parallel addition) applications
are estimated. Both applications clearly show that the improvements are orders
of magnitude. My major work is designing memristive device based logic circuits
and estimating their performance in terms of area, delay and energy.

 Memristor Based Computation-in-Memory
Architecture for Data-Intensive Applications

1Said Hamdioui 1Lei Xie 1Hoang Anh Du Nguyen 1Mottaqiallah Taouil 1Koen Bertels

1Computer Engineering
 Delft University of Technology

Delft, the Netherlands
First_Letter_First_Name.LastName@tudelft.nl

 2Henk Corporaal 2Hailong Jiao

2Electronic Systems group
Eindhoven University of Technology

Eindhoven, The Netherlands
{h.corporaal, H.Jiao}@tue.nl

 3Francky Catthoor 3Dirk Wouters

3IMEC, Kapeldreef 75, B-3001
Leuven, Belgium

<catthoor@imec.be>

4Linn Eike

4RWTH Aachen University
Aachen, Germany

linn@IWE.RWTH-Aachen.de

5Jan van Lunteren

5IBM Research Laboratory
Zurich, Switzerland
jvl@zurich.ibm.com

Abstract—One of the most critical challenges for today’s and

future data-intensive and big-data problems is data storage and
analysis. This paper first highlights some challenges of the new
born Big Data paradigm and shows that the increase of the data
size has already surpassed the capabilities of today’s computation
architectures suffering from the limited bandwidth,
programmability overhead, energy inefficiency, and limited
scalability. Thereafter, the paper introduces a new memristor-
based architecture for data-intensive applications. The potential
of such an architecture in solving data-intensive problems is
illustrated by showing its capability to increase the computation
efficiency, solving the communication bottleneck, reducing the
leakage currents, etc. Finally, the paper discusses why memristor
technology is very suitable for the realization of such an
architecture; using memristors to implement dual functions
(storage and logic) is illustrated.

I. INTRODUCTION
Today’s applications are becoming extremely data intensive;
healthcare, social media, large scientific/engineering
experiments, and security are just couple of examples. As the
speed of information growth exceeds Moore’s Law, since the
beginning of this new century, excessive data is posing major
challenges [1] and a new scientific paradigm is born: data-
intensive scientific discovery, also known as Big Data
problems. The primary goal is to analyse and increase the
understanding of both data and processes in order to extract
the highly useful information hidden in the huge volume of
data, which in turn can be used to increase e.g., the
productivity. Storing and analysing such data is posing major
challenges as the data volume already surpassed the capability
of today’s computers which suffer from e.g., communication
and memory-access bottlenecks due to limited bandwidth [2-
lahiri, 3-somavat]. For instance, a transfer of 1 petabyes data
at a rate of 1000MB/second will take 12.5 days! Memory size
and memory access do not only kill the performance, but also
severely impact energy/power consumption [2, 3 ,4]. In
addition, CMOS technology used to implement today’s
architectures contributes to such consumption due to high
leakage currents; not to mention other challenges the
technology is facing such as limited scalability, reduced

reliability [30-34], etc. In conclusion, today’s CMOS based
architectures are not able to provide the computation
capability needed for data-intensive applications. New
architectures based on new technologies are urgently required.

This paper discusses a new architecture, Computation-In-
Memory (CIM Architecture), for specific data-intensive
applications; it is based on the integration of storage and
computation in the same physical location (crossbar topology)
and the use of non-volatile resistive-switching technology
(memristive devices or memristors in short) [30, 38, 39, 94]
instead of CMOS technology.

The rest of the paper is organized as follows. Section II
highlights the Big Data problem and shows how the
conventional computers based on CMOS technology are
incapable to deal with such problems; and motivates the need
for a new architecture. Section III discusses CIM architecture,
including its concept and its potential; the section puts that in
perspective by taking couple of application examples and
comparing the performance of CIM architecture with the
state-of-the-art. Section III shows why memristor is the key
enabler for CIM architecture by illustrating how the device, in
crossbar architecture, can perform a dual function (storage and
computation). Section IV concludes the paper.

II. DATA-INTENSIVE APPLICATIONS VS CMOS COMPUTERS

A. Big Data and Data Intensive Applications
No one can deny the fact that a large number of fields and
sectors, ranging from economics and business activities to
public administration, from national security to many
scientific research areas, involve data-intensive applications,
hence, dealing with Big Data problems. Big Data is extremely
valuable to generate productivity in businesses and
evolutionary breakthroughs in scientific disciplines, which
give us a lot of opportunities to make great progress in many
fields [1]. The primary goal is to increase the understanding of
processes in order to extract so much potential and highly
useful values hidden in the huge volumes of data, and
therefore, it comes with many challenges, such as data
capture, data storage, data analysis, and data visualization.

1718978-3-9815370-4-8/DATE15/ c©2015 EDAA

NON-VON NEUMANN ARCHITECTURE - PAPER 6.1

6

87

Performing data analysis within economically affordable time
and energy is the pillar to solve big data problems

B. Today’s Computers
The computing systems, developed since the introduction of
stored program computers by John von Neumann in the forties
[5], can be classified based on the location of the so-called
“working set” (loosely defined as the collection of information
referenced by a program during its execution) into four classes
(a) to (d) as shown in Figure 1. In the early computers
(typically before the 80s), the working set was contained in
main memory. Due to the gap between the core (CPU) speed
and the memory, caches were introduced to reduce the gap
and increase the overall performance, where the caches have
become the location of the working set. Today’s computing
systems for data-intensive applications are still based on Von
Neumann (VN) architectures and still rely on many parallel
(mini-)cores with a shared SRAM cache (parallel CPUs,
GPUs, SIMD-VLIWs, vector processors); see Figure 1(c).
Clusters of cores can be replicated many times, each having
their own L1 cache, but it is far from realistic to assume a
distributed reasonable sized L1 cache in every mini-core; too
much area and leakage power overhead is incurred in that
case. Such solutions suffer from major limitations such as a
decreased performance acceleration per core [6], increased
power consumption [7, 8], and limited system scalability [6,
9]. These are mainly caused by the processor-memory
bottleneck [10, 11]. As current data-intensive applications
require huge data transfers back and forth between processors
and memories through load/store instructions [12], the
maximal performance cannot be extracted as the processors
will have many idle moments while waiting for data [10-14].
Computation, which is the main activity of a system, by far
consumes less energy and chip area, and has lower execution
time compared to communication and memory access (e.g.,
L1 cache), especially for data intensive applications [15]. The
energy consumption of the cache accesses and communication
makes up easily 70% to 90% [2,3,4]; not to mention the rest of
the memory hierarchy. In addition, programmability in
conventional processors also comes at a substantial energy
cost: for example, [4] reports that executing a multiply
instruction on a simple in-order core in 45nm technology
consumes about 70 pJ, whereas the actual operation itself

consumes less than 4 pJ. The overhead is due to instruction
fetching and decoding and other control.

Triggered by these issues, the design of high-performance
computing systems is starting to move away from a
conventional computation-centric model towards a more data-
centric approach. The latter concept intends to improve
performance and power efficiency through reduction of data
movement by performing the actual processing closer to
where the data resides in the memory system. Several
alternative architectures are proposed that fall into this
category. One alternative is called “Processor-in-memory” as
shown in Figure 1(d); additional processing units
(accelerators) are put around one or more memories which are
the working set location; examples are FlexRAM [16], DIVA
[17], TeraSys [18], EXECUBE [19], HTMT [20],
Computational RAM [21], DSP-RAM [22], Smart memories-
based architecture [23], Gilgamesh [24], Continuum
computer architecture [24], and MICRON's architecture for
automata processing [26]. The second alternative architecture
is called “Memory-in-processor”, which is an extension of
what is shown in Figure 1(c), where extra addressable
memories are put close to the cores; examples are Data
Arithmetic SRAM [27] and Connection machine [28]. The
third is called “In memory computing/database” (mainly for
database management), which primarily relies on the storage
of the complete database working set in the main memory of
dedicated servers rather than relying on complicated relational
databases operating on comparatively slow disk drives [29].

C. CMOS Technology
Today’s computers are manufactured using the traditional
CMOS technology, which is reaching the inherent physical
limits due to down-scaling. Technology nodes far below 20nm
are presumably only practical for limited applications due to
multiple challenges [30-34,], such as high static power
consumption, reduced performance gain, reduced reliability,
complex manufacturing process leading to low yield and
complex testing process, and extremely costly masks.
Many novel nano-devices and materials are under
investigation to replace the CMOS technology in next IC
generations. Among the emerging devices, such as graphene
transistor [35], nanotube [36], tunnel field-effect transistor
(TFET) [37], etc., memristor [38, 39] is a promising candidate.

Figure 1: Classification of computing systems based on working set location

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1719

6

88 NON-VON NEUMANN ARCHITECTURE - PAPER 6.1

Its advantages are CMOS process compatibility [40], lower
cost, zero standby power [41], nanosecond switching speed
[42], great scalability and high density [43], and non-volatile
nature [44, 45]. It offers a high OFF/ON resistance ratio [46]
and it is promising to have a good endurance and retention
time [47]. More importantly, the memristor is a two-terminal
resistive-switching device that can be used to build both
storage and information processing units [48, 49, 50].

D. The Need of New Architecture
The speed at which data is growing has already surpassed the
capabilities of today’s computation architectures suffering
from communication bottleneck (due to limited bandwidth),
energy inefficiency (due to CMOS technology), and
programmability overhead. Therefore, there is a need for a
new architecture using new device technology, being able to
(a) eliminate the communication bottleneck and support
massive parallelism to increase the overall performance, (b)
reduce the energy inefficiency to improve the computation
efficiency. This can be done by taking the data-centric
computing concept much further by integrating the processing
units and the memory in the same physical location and
therefore moving the working set into the core as shown in
Figure 1 (e).

III. CIM ARCHITECTURE- BEYOND VON NEUMANN
This section presents first the concept of the CIM architecture
as an alternative of today’s architectures. Thereafter the
potential of the architecture will be illustrated by selecting
couple of data-intensive applications and making an analysis
of different performance metrics and comparing the results
with the state-of-the art. Finally, major open questions related
to the implementation of the CIM architectures will be
highlighted.

A. CIM Architecture Concept
To tackle the big data computation problems and solve the
todays computers bottlenecks, we propose a memristor-based
architecture paradigm where both the computation and the
storage take place at the same physical location (the crossbar
array). The approach intends to provide solutions based
computing-in-memory architectures using non-volatile
devices. Figure 2 shows the traditional versus the proposed
CIM architecture; note that in CIM architecture the storage
and computation are integrated together in a very dense
crossbar array where memristors are injected at each junction
of the crossbar (top electrode and bottom electrode). The
communication and control from/to the crossbar can be
realized using CMOS technology. CIM architecture addresses
important challenges and has huge potentials which go
substantially beyond the current state-of-the-art.
• Tightly integrated computation-in-memory crossbar

architecture supporting massive parallelism: as the
storage and computation are integrated together, the
communication bottleneck is significantly reduced. In
addition, because the memristor technology is highly

scalable (~5nm [30]), huge crossbar architectures
allowing massive parallelism are feasible.

• An architecture with practically zero leakage: Today’s
architectures heavily rely on SRAMs as caches. These are
required to have a very fast R/W access, leading to
increasingly high leakage with technology scaling. Hence,
the memristor crossbar architecture solves also the
leakage bottleneck, at least in the memory.

• Significant performance improvement at lower energy
and area: Given the nature of the architecture (supporting
massive parallelism), the non-volatile technology in the
crossbar, and the small feature size of the memristor, the
architecture has the potential of improving the overall
performance at extremely low power consumption and
smaller area. The next section illustrates this potential for
two different applications.

B. CIM Architecture Potential
To illustrate how CIM architecture significantly advances the
state-of-the-art, the performance of CIM and the conventional
architectures for two applications will be estimated.

1) Healthcare: using genomics in diagnosing/treating
diseases: the continuously dropping price of DNA sequencing
has shifted the challenge from acquiring genetic information
to the actual processing and analysis of this information [51].
Despite its computational simplicity, the huge amount of
genetic data (hundreds of GBs per experiment) that needs to
be processed makes the analysis rather time consuming and
even not practical due to communication/memory access
bottleneck. A practical solution used today for comparing two
DNA sequences is based on the creation of a sorted index of
the reference DNA that can be used to identify the location of
matches and mismatches in another sequence rapidly. This
approach, however, results in eliminating available data
locality in the reference and causing huge number of cache
misses with high memory access penalty and high energy cost.
To quantify this effect, we assume we have 200 GB of DNA
data to be compared to a healthy reference of 3GB for 50%
coverages [51] and evaluate the DNA sorted-index sequencing
algorithm on both the conventional architecture and CIM
architecture; see Figure 2. The conventional architecture is
assumed to scalable multi-core architecture, consisting of a
number of clusters, each with 32 cores. Table 1 presents
further made assumptions for both architectures. Three metrics
are used for the evaluation: (a) the energy-delay product per
operations, (b) the computation efficiency defined as the
number (#) of operations per required energy, and (c)
performance (#operations) per area;

Figure 2: Traditional versus proposed architecture

1720 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

NON-VON NEUMANN ARCHITECTURE - PAPER 6.1

6

89

2) Mathematics: Here we assume 106 parallel addition
operations and make similar assumptions for the two
architectures as those done in the previous example; see Table
1 for the details.

Table 2 shows the obtained results for the two applications for
conventional (Conv.) and CIM architectures; both applications
clearly show that the improvements are orders of magnitude.
Reducing/eliminating memory accesses, the non-volatile
technology, and the high parallelism are enabling these
improvements.

C. CIM Architecture Challenges
Although we mentioned that CIM architecture targets data-
intensive applications, especially applications that require
massive parallelism and huge data working sets to be
continuously kept in the memory, the proposed concepts can
be adapted to any computation-in-memory (CIM) architecture
for high computation efficiency. This architecture paradigm
shift, based on memristor technology, changes the traditional
system design, compiler tools, manufacturing processes, etc.,
to facilitate its “industrialization”. In fact, it is well recognized
that memristor technologies are very promising. Although
understanding of its capabilities and limitations is still
evolving, the technology is expected to rule the computer
world, from material science (understanding and proving the
properties of the materials and assuring reliability), to design
methods, tools, operating systems and its potential
applications. Examples of its use are replacement of RAM,
flash and even disk drives, complex self-learning neural
networks, advanced artificial neural brains, and many more
[61]. It may play a significant role in advancing Exascale

Table 1: Assumptions made for conventional and CIM architectures
Assumption for conventional architecture Assumptions for CIM architecture
Generic assumptions
• FinFET 22nm multi-core implementation
o Gate delay = 14 ps [53, 54]
o Area per gate: 0.248 m2 [30]
o Power consumption per gate: 175 nW [54]
o Leakage power: (a) Leakage power consumption per gate: 42,83

nW [30], (b) Leakage duration: cycle time – delay per gate
o Operating frequency: 1 GHz

• The architecture consist of a certain number of clusters of
processing units, each cluster shares an 8kB L1 cache.

For Healthcare example
• Typically, the DNA reference sequence must be covered 50 times by

short reads. The length of the short reads are assumed to be 100
characters.

• 200GB of DNA data is compared to a healthy reference of 3GB.
• Number of short reads no_short_reads = coverage * 3 * giga/

short_read_len; coverage=50, short_read_len=100
• Number of comparisons no_comparsions = 4*no_short_reads, for

each A, C, G, T nucleotides
• Number of clusters is 18750, each contains 32 comparators.
o Limited with the state-of-the-art chip area

• Each cluster shares 8 kB Cache (per cluster)
o Area: 0.0092 mm2 [57]
o Hit ratio = 50%; Hit cycle time = 1 cycle
o Miss penalty = 165 cycle [55];
o Write cycle time = 1 cycle;
o Static power: 1/64 Watt [56]

For Mathematics example
• Fully scalable reusing clusters; each has 8 kB shared cache.
• Additions are performed by 32 adders per cluster:
o Adder architecture: Carry Look Ahead (CLA)
o Number of gates per adder: 208 [52]
o Number of gate delay: 18;
o Adder latency: 252ps = 18*14ps
o Energy per 32-bit adder

• Shared 8 kB Cache (per cluster): the same as for healthcare except
with 98% hit rate,

Generic assumptions
• Memristor 5nm crossbar implementation [30]
o Memristor write time: 200 ps [60]
o Area per memristor: 1x10-4 um2 [30]
o Dynamic energy per write operation: 1 fJ [30]

• The memory capacity of the CIM architectures is assumed to be
equal to the sum of all caches for the CMOS based computer.

For Healthcare example
• Each comparison is performed by a comparator
o Comparator: 2 XOR and a NAND implemented by implication

logic [58]
o Number of memristors per comparator: 13 (XOR: 5, NAND: 3)
o Area per comparator: 1.3 * 10-3 um2 [58]
o Number of steps per comparator: 16 steps (Two XOR works in

parallel, an XOR takes 13 steps, and an NAND takes 3 steps,
step takes a memristor write time). [58]

o Comparator latency: 3.2 ns
o Dynamic energy per comparator: 45fJ [58]
o Static energy per comparator: 0 fJ [30]

• The crossbar size equals to total cache size of CMOS computer
o Size= 18750*8kB = 1.536*10^8 memristors
o Date hit rate = 50%, Hit cycle time = 1 cycle
o Miss penalty = 165 cycle

For Mathematics example
• The crossbar is scalable to support the 106 adders
• Additions are performed by memristors
o Adder architecture: TC-adder [59]
o Number of memristors per adder: 34 (N+2, N=32) [59]
o Area per adder: 3.4x10-3 um2
o Number of steps per 32-bit addition: 133 (4N+5, N=32, each

step takes a memristor write time). [59]
o Adder latency: 16600 ps (133 * 200 ps)
o Dynamic energy per 32-bit adder: 246 fJ (8 (operations per bit)

*32 (bits) * 1 fJ [59])
o Static energy per 32-bit adder: 0 fJ [30]

• The memory hit rate is assumed to be 98%, remaining parameters
are the same as for the healthcare example.

Table 2: Huge potential of CIM architecture
Metric Archit. DNA Sequencing 106 additions
Energy-delay/
operations

Conv. 2.0210e-06 1.5043e-18
CIM 2.3382e-09 9.2570e-21

Computing
efficiency

Conv. 4.1097e+04 6.5226e+09
CIM 3.7037e+07 3.9063e+12

Performance
area

Conv. 5.7312e+09 5.1118e+09
CIM 5.1118e+09 4.9164e+12

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1721

6

90 NON-VON NEUMANN ARCHITECTURE - PAPER 6.1

computing, ‘computer on a chip’ capabilities, as well as
driving developments in neural and analogue computing. Next
section will elaborate more on memristor technology.

IV. MEMRISTOR - THE KEY ENABLER FOR CIM
ARCHITECTURE IMPLEMENTATION

This section reviews first the memristor technology.
Thereafter its suitability for the realization of both storage and
logic functions is discussed and illustrated.

A. Memristor Technology
Memristors or memristive devices, also referred to as resistive
memory devices, are very broad groups of memory
technologies; they can be classified based on their dominant
physical operating mechanism into three classes [30]: Phase
Change Memories, Electrostatic/ Electronic Effects Memories,
and Redox memories. The redox-based resistive switching
devices (ReRAMs) are attracting most attention due to their
excellent scaling, endurance, and retention properties [30, 95];
their physical mechanism for switching is based on
reduction/oxidation (Redox)-related chemical effects. The
category of “Redox RAM” encompasses a wide variety of
Metal-Insulator-Metal (MIM) structures; the electrochemical
mechanisms driving the resistance state (from high to low or
vice versa) can operate in the bulk I-layer, along conducting
filaments in the I-layer, and/or at the I- layer/metal contact
interfaces in the MIM structure. The ReRAMs consist of three
types, two bipolar and one unipolar [30,50,61]; the rest of the
section will focus on the two bipolar devices and show the
best available properties for both device types; these are the
Valence Change Memory (VCM) and the Electrochemical
metallization (ECM) devices.

For both VCM (HfOx) and ECM (Ag-chalcogenide) devices a
feature size of F = 10 nm was reported [62, 63]. A minimum
switching time of < 200 ps was shown for TaOx-based VCM
devices [42], whereas for ECM devices (Ag-MSQ) switching
times below 10 ns were realized [64]. In terms of endurance,
more than 1012 cycles are feasible for TaOx-based VCM cells
and more than 1010 for Ag-GeSe ECM cells [65]. Extrapolated
retention of > 10 years was, for example, shown in [66]
(TaOx-based VCM cells) and [67] (Ag-chalcogenide).

In ECM devices a conductive metallic filament (Cu or Ag) is
established during switching, thus, the filament length can be
considered the state variable [68]. For a memristive ECM
model, both electronic and ionic currents must be considered,
and the strong non-linearity of the switching kinetics must be
reflected by the model. VCM modelling is even more
challenging due to the versatile device physics [69]. Since
simple memristor models fail to predict the correct device
behaviour [39, 70], more complex empirical and physics-
based models were developed recently [71, 72].

B. Memristor for Crossbar Memories
The primary driver for ReRAM research is the semiconductor
industry seeking for novel energy-efficient non-volatile and

highly scalable memory elements [30]. A straightforward
implementation of the ReRAM array is realised using a
passive crossbar architecture, resulting in the highest density
[73, 74]. However, this architecture suffers from undesired
paths for current called sneak paths [75]; due to the low
resistive current paths, the maximum array is limited to small
arrays [76]. To overcome this issue, three classes of solutions
are proposed:
 Selector devices, which are separate devices in connection

with the RRAM cell such as a diode or a transistor (1S1R)
[77, 78].

 Switching device modification, where the resistive devices
is modified; E.g., serially connecting of two anti-serial
memristive devices (bipolar switches) resulting into a
“complementary resistive switcher” (CRS) being able to
block the current at low voltage irrespective of the state of
the device [78], or the deployment of a high nonlinear
memristive device (due to current-controlled negative
differential resistance) to overcome sneak path [79].

 Bias schemes, where the voltage bias applied to non-
accessed wordlines and bitlines are set to values different
from those applied to accessed wordline and bitlines in
order to minimize the sneak path current; examples are
multistage reading [80] and use of AC signal instead of
DC for sensing the data stored in the desired cell [81].

Figure 3 sketches the concept of the the crossbar array and
some junction options to deal with sneak paths, while Figure 4
illustrates the I-V characteristic of a CRS cell which consists
of two memristive ECM devices A and B. The states '0' and '1'
are the logical storage states and the state 'LRS/LRS’ occurs
only when reading the memory state. The internal memory
states '0 'and '1' of a CRS cell are indistinguishable at low
voltages because state ‘0’ as well as state ‘1’ show a high
resistance. Therefore, no parasitic current sneak paths can
arise. To read the stored information of a single CRS cell, a
read voltage must be applied to the cell. If the CRS cell is in
state '0', then it switches to state ‘ON’; if the cell is in state '1'
then it remains in its state. In case conventional crossbar (with
resistive current paths), reading ON state is a destructive
operation, therefore, it is necessary to write back the previous
state of the cell after reading it. In general, the writing of state
‘0’ requires a negative voltage (V < Vth,4) and for writing '1' a
positive voltage V > Vth,2 is required.

Figure 3: Illustration of complementary resistive switch

1722 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

NON-VON NEUMANN ARCHITECTURE - PAPER 6.1

6

91

C. Memristor for Logic Functions
Memristive devices are well suited for the implementation of
logic functions including: (a) programmable interconnects
[82], (b) look-up tables (LUTs) [83] or content addressable
memories (CAMs) [84], and (c) sequential ‘stateful’ logic
operations [49, 58, 85].

Programmable logic arrays based on resistive switching
junctions were suggested first in [82] and later also applied to
FPGAs [86]. Typically, the CMOS overhead is relatively large
since the array size is small. A next step was the CMOL
FPGA concept [87], where a sea of elementary CMOS cells is
connected to a small crossbar part-array. In this approach the
elementary CMOS cells are connected via resistive switches
(1S1R) enabling wired-or functionality. In general,
reconfigurable on-chip wiring enables new options for
memristive chip design and can also be combined with the
functionalities as those described next .

Resistive memories can be either used to implement small
LUTs for FPGAs (as suggested in [83]) or LUTs can be
mapped to large-scale crossbar arrays [88, 89] to reduce the
crossbar array overhead. Moreover, CAMs based on
memristors are feasible with different flavors [90, 91]; e.g., a
CRS-based CAM is recently demonstrated [84].

Memristors are also used to design (sequential) logic
operations based on Boolean functions [92] or (material)
implication logic (IMP) [49, 58, 85]; the latter seems to be
more popular. Figure 5 uses two examples to illustrate the
concept of IMP. Figure 5(a) gives a basic logic function using
two memristors. Together with a load resistor RG, the
operation p IMP q is conducted as follows [49]:
 1. Set device p to p (VP = ±VWrite)
 2. Set device Q to q (VQ = ±VWrite)
 3. q’ = p IMP q (VP = VCOND and VQ = Vwrite)
 4. Read q’

An alternative approach to implement p IMP q, with superior
performance, is suggested in [93], as shown in Figure 5(b).
The input signals Vp = ±½VWrite and Vq = ±½VWrite are
applied at the terminals T1 and T2 of the memristor. The final
result is stored as resistive state Z. For Z = p IMP q the
following steps are performed:
 1. Init device Z to ‘1’ (VT1 = +½VWrite, VT2 = -½VWrite)
 2. Z’ = p IMP q (VT1 = Vq, VT2 = Vp)
 3. Read Z’

IMP can be used to design arithmetic operations such as
adders [58, 56]; hence, it paves the path to more complex
memristive in-memory-computing architectures.

V. CONCLUSION
This paper discusses data storage and analysis as one of the
most critical challenges for today’s and future data-intensive
and big-data problems. It shows how the increase of the data
size has already surpassed the capabilities of today’s
computation architectures suffering from the limited
bandwidth, energy inefficiency and limited scalability.
Thereafter, the paper proposes a new architecture based on the
integration of the storage and computation in the same
physical location (using a crossbar topology); the architecture
is driven by non-volatile resistive-switching technology
(memristors) instead of traditional CMOS technology.
Therefore, it has the potential to reduce both the memory wall
and energy consumption with orders of magnitude, and
enables massive parallelism. Hence, significantly improving
the performance and enabling the solution of big-data
problems. The details and many aspects of the architecture
still need to be worked out.

Figure 4: Left: Zoom in a passive nano-crossbar array.
 Right: possible cross point junctions

Figure 5: Two ways to implement IMP. Blue cube represents
 state ‘0’ and the red cube state ‘1’

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1723

6

92 NON-VON NEUMANN ARCHITECTURE - PAPER 6.1

ACKNOWLEDGMENT
We would like to thank all people who contributed to the discussion
of CIM architectures including Zaid Al-ars from delft University of
Technology, Jan van Dalfson from Eindhoven University of
Technology, Luca Benini from ETHZ, Shahar Kvatinsky from
Technion, Lotfi Mhamdi from Leed University, Albert Cohen from
INRIA, Stephan Menzel and Vikas Rana from RWTH, and Andrea
Fantini from IMEC.

REFERENCES
[1] P. Chen and C-Y Zhang, ‘Data-intensive applications, challenges,

techniques and technologies: A survey on Big Data’, Information
Sciences, v 275, pp. 314-347, 2014

[2] K. Lahiri, A. Raghunathan, ‘Power analysis of system-level on-chip
communication architectures’, International Conference on
Hardware/Software Codesign and System Synthesis, CODES + ISSS, pp
236-241, 2014

[3] P. Somavat and V. Namboodiri. ‘Energy consumption of personal
computing including portable communication devices’, Journal of
Green Engineering, 1(4):447–475, 2011

[4] M. Horowitz, ‘Computing’s Energy Problem and what we can do about
it’, slides of the keynote at ISSCC 2014

[5] A.W. Burks, et al., ‘Preliminary discussion of the logical design of an
electronic computing instrument’, 1946

[6] H. Esmaeilzadeh, et al., ‘Dark silicon and the end of multicore scaling’,
in Proceedings of the 38th annual international symposium on Computer
architecture, pp. 365-376, 2011

[7] S. Bampi, and R. Reis, ‘Challenges and Emerging Technologies for
System Integration beyond the End of the Roadmap of Nano-CMOS’,
‘VLSI-SoC: Technologies for Systems Integration’ (Springer Berlin
Heidelberg), pp. 21-33, 2011

[8] T. Yuan, ‘CMOS design near the limit of scaling’, IBM Journal of
Research and Development, 2002, 46, (2.3), pp. 213-222

[9] X.-J. Yang et al., ‘Progress and Challenges in High Performance
Computer Technology’, J. Comp. Sci. Tech., 2006, 21, (5), pp. 674-681

[10] S. A. McKee, ‘Reflections on the Memory Wall’, CF’04, pp. 162, 2004.
[11] M.V. Wilkes, ‘The Memory Wall and the CMOS End-point’, SIGARCH

Comput. Archit. News, 1995, 23, (4), pp. 4-6
[12] R.E. Bryant, ‘Data-Intensive Scalable Computing for Scientific

Applications’, Computing in Science & Engin., 2011, 13, (6), pp. 25-33
[13] W.A. Wulf and S.A. McKee, ‘Hitting the memory wall: implications of

the obvious’, SIGARCH Comp. Archit. News, 23, pp. 20-24, 1995
[14] D. Patterson et al. ‘A case for intelligent RAM’, IEEE Micro, 1997, 17,

(2), pp. 34-44
[15] C. Hernandez et al., ‘Energy and Performance Efficient Thread Mapping

in NoC-Based CMPs under Process Variations’, in International
Conference on Parallel Processing, 2011, pp. 41-50

[16] Y. Kang et al., ‘FlexRAM: Toward an advanced Intelligent Memory
system’, in IEEE 30th International Conference on Computer Design,
pp. 5-14, 2012

[17] J. Draper et al., ‘The architecture of the DIVA processing-in-memory
chip’, In Proceedings of the 16th international conference on
Supercomputing, pp. 14-25, 2002

[18] M. Gokhale et al., ‘Processing in memory: the Terasys massively
parallel PIM array’, Computer, vol. 28, pp. 23-31, 1995

[19] P. M. Kogge, ‘EXECUBE-A New Architecture for Scaleable MPPs’, in
International Conference on Parallel Processing, Vol. 1, 1994, pp. 77-84

[20] P. M. Kogge et al., ‘PIM architectures to support petaflops level
computation in the HTMT machine’, in International Workshop on
Innovative Architecture for Future Generation High-Performance
Processors and Systems, 1999, pp. 35-44

[21] D. G. Elliott et al., ‘Computational RAM: implementing processors in
memory’, IEEE Design Test of Computers, vol. 16, pp. 32-41, 1999

[22] Z. Wang et al., ‘DSP-RAM: A logic-enhanced memory architecture for
communication signal processing’, in IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, 1999, pp. 475-478

[23] M. Ken et al., ‘Smart Memories: a modular reconfigurable architecture’,
in Proceedings of the 27th International Symposium on Computer
Architecture, 2000, pp. 161-171

[24] T. L. Sterling and H. P. Zima, ‘Gilgamesh: A Multithreaded Processor-
In-Memory Architecture for Petaflops Computing’, in ACM/IEEE
Conference Supercomputing, 2002, pp. 48-48

[25] T. Sterling and M. Brodowicz, ‘Continuum computer architecture for
nano-scale and ultra-high clock rate technologies’, in Innovative
Architecture for Future Generation High-Performance Processors and
Systems, 2005, pp. 1-9

[26] P. Dlugosch et al., ‘An Efficient and Scalable Semiconductor
Architecture for Parallel Automata Processing’, IEEE Transactions on
Parallel and Distributed Systems, 2014, vol. 99, pp. 3088- 3098

[27] N. Venkateswaran et al., ‘Memory in Processor: A Novel Design
Paradigm for Supercomputing Architectures’, 2003, pp. 19-26

[28] L. W. Tucker and G. G. Robertson, ‘Architecture and applications of the
Connection Machine’, Computer, vol. 21, pp. 26-38, 1988

[29] H. Plattner, ‘SanssouciDB: An In-Memory Database for Processing
Enterprise Workloads’, Datenbanksysteme in Büro, Technik und
Wissenschaft (German Database Conference), 2011

[30] ITRS ERD report. [Online]. Available:
http://www.itrs.net/Links/2010ITRS/Home2010.htm, 2010

[31] B. Hoefflinger, ‘Chips 2020: A Guide to the Future of Nanoelectronics’,
The Frontiers Collection, Springer Berlin Heidelberg, 2012, pp. 421–
427

[32] J. McPherson, ‘Reliability trends with advanced CMOS scaling and the
implications for design’, in IEEE Custom Integrated Circuits
Conference, 2007, pp. 405–412

[33] S. Borkar, ‘Design perspectives on 22Nm CMOS and beyond’, in
Proceedings of the 46th Annual Design Automation Conference, 2009,
pp. 93-94

[34] G. Gielen, et al., ‘Emerging yield and reliability challenges in nanometer
CMOS technologies’, in Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 1322-1327, 2008

[35] F. Schwierz, ‘Graphene transistors’, Nature nanotechnology, vol. 5, no.
7, pp. 487–496, 2010

[36] G. Agnus et al., ‘Two-terminal carbon nanotube programmable devices
for adaptive architectures’, Advanced Materials, vol. 22, no. 6, pp. 702–
706, 2010

[37] K. Boucart and A. M. Ionescu, ‘Double-gate tunnel fet with high-gate
dielectric’, IEEE Transactions on Electron Devices, vol. 54, no. 7, pp.
1725–1733, 2007

[38] L. Chua, ‘Memristor-the missing circuit element’, IEEE Transactions on
Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971

[39] D. B. Strukov et al., ‘The missing memristor found’, Nature, vol. 453,
no. 7191, pp. 80–83, May 2008

[40] D. B. Strukov et al., ‘Hybrid cmos/memristor circuits’, in IEEE
International Symposium on Circuits and Systems, 2010, pp. 1967–1970

[41] H. Lee et al., ‘Low-power and nanosecond switching in robust hafnium
oxide resistive memory with a thin ti cap’, IEEE Electron Device
Letters, vol. 31, no. 1, pp. 44–46, 2010

[42] A. C. Torrezan et al., ‘Sub-nanosecond switching of a tantalum oxide
memristor’, Nanotechnology, vol. 22, no. 48, pp. 1-7, 2011

[43] M.-J. Lee et al., ‘A fast, high-endurance and scalable non-volatile
memory device made from asymmetric Ta2O5x/TaO2x bilayer
structures’, Nature Materials, vol. 10, no. 8, pp. 625–630, 2011

[44] T. Prodromakis and C. Toumazou, ‘A review on memristive devices and
applications’, in 17th IEEE International Conference on Electronics,
Circuits and Systems, 2010, pp. 934–937

[45] W. Zhao et al., ‘Nanodevice-based novel computing paradigms and the
neuromorphic approach’, in IEEE International Symposium on Circuits
and Systems, 2012, pp. 2509–2512

1724 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

NON-VON NEUMANN ARCHITECTURE - PAPER 6.1

6

93

[46] Y. S. Chen et al., ‘Highly scalable hafnium oxide memory with
improvements of resistive distribution and read disturb immunity’, in
IEEE International Electron Devices Meeting, 2009, pp. 1–4

[47] J. J. Yang et al., ‘High switching endurance in tao memristive devices’,
Applied Physics Letters, vol. 97, p. 232102- 232103, 2010

[48] J. J. Yang et al., ‘Memristive devices for computing’, Nat. Nanotechnol.,
vol. 8, pp. 13-24, 2013

[49] J. Borghetti et al., ‘‘Memristive’ switches enable ‘stateful’ logic
operations via material implication’, Nature, 464, pp. 873-876, 2010

[50] S. Hamdioui et al., ‘Memristor based memories: Technology, design and
test’, IEEE 9th International Conference on Design & Technology of
Integrated Systems In Nanoscale Era, pp. 1-7, 2014

[51] E. A. Worthey, ‘Analysis and annotation of whole-genome or whole-
exome sequencing-derived variants for clinical diagnosis’, Current
Protocols in Human Genetics, 2001

[52] B. Parhami, Computer arithmetic: algorithms and hardware designs.
Oxford University Press, Inc., 2009

[53] A. Muttreja et al., ‘CMOS logic design with independent-gate FinFETs’,
25th International Conference on Computer Design, pp. 560–567, 2007

[54] C. Meinhardt et al., ‘FinFET basic cells evaluation for regular layouts’,
in IEEE Fourth Latin American Symposium on Circuits and Systems,
pp. 1–4, 2013

[55] D. Levinthal, Cycle Accounting Analysis on Intel R CoreTM2
Processors. Intel Corp, 2008

[56] C.Y. Lee et al., ‘CACTI-FinFET: An integrated delay and power
modeling framework for FinFET-based caches under process variations’,
in 48th Design Automation Conference, pp. 866–871, 2011

[57] E. Karl et al., ‘A 4.6 GHz 162Mb SRAM design in 22nm tri-gate
CMOS technology with integrated active V MIN-enhancing assist
circuitry’, in IEEE International Solid-State Circuits Conference Digest
of Technical Papers, pp. 230–232, 2012

[58] S. Kvatinsky et al., ‘Memristor-Based Material Implication (IMPLY)
Logic: Design Principles and Methodologies’, IEEE Transactions on
VLSI Systems, vol. 22, no. 10, pp. 2054–2066, 2014

[59] A. Siemon et al., ‘A Complementary Resistive Switch-based Crossbar
Array Adder’, arXiv:1410.2031, 2014

[60] J. Walker, Memristor and the future, [Online]. Available:
http://www.nobeliefs.com/memristor.htm, 2010

[61] R. Waser et al., ‘Redox-Based Resistive Switching Memories -
Nanoionic Mechanisms, Prospects, and Challenges’, Advanced
Materials, vol. 21, pp. 2632-2663, 2009

[62] B. Govoreanu et al., ‘10x10nm2 Hf/HfOx Crossbar Resistive RAM with
Excellent Performance, Reliability and Low-Energy Operation’, IEEE
International Electron Devices Meeting, pp. 31.6.1-31.6.4, 2011

[63] K. Terabe et al., ‘Quantized conductance atomic switch’, Nature, vol.
433, pp. 47-50, 2005

[64] M. Meier et al., ‘A Nonvolatile Memory With Resistively Switching
Methyl-Silsesquioxane’, IEEE Electron Device Letters, vol. 30, pp. 8-
10, 2009

[65] M. N. Kozicki et al., ‘Nanoscale memory elements based on solid-state
electrolytes’, IEEE Transactions on Nanotechnology, vol. 4, pp. 331-
338, 2005

[66] Z. Wei et al., ‘Retention model for high-density ReRAM’, 4th IEEE
International Memory Workshop, pp. 1-4, 2012

[67] M. Kund et al., ‘Conductive bridging RAM (CBRAM): an emerging
non-volatile memory technology scalable to sub 20nm,’ IEEE
International Electron Devices meeting Technical Digest, pp. 754 – 757,
2005

[68] S. Ferch et al., ‘Simulation and Comparison of two Sequential Logic-in-
Memory Approaches Using a Dynamic Electrochemical Metallization
Cell Model’, Microelectronics Journal, vol. 45, pp. 1416-1428, 2014

[69] R. S. Williams et al., ‘Physics-based memristor models’, IEEE
International Symposium on Circuits and Systems, pp. 217-220, 2013

[70] E. Linn et al., ‘Applicability of Well-Established Memristive Models for
Simulations of Resistive Switching Devices’, IEEE Transactions on
Circuits and Systems, vol. 61, pp. 2402 - 2410, 2014

[71] M. D. Pickett et al., ‘Switching dynamics in titanium dioxide memristive
devices’, Journal of Applied Physics, 2009

[72] J. P. Strachan et al., ‘State Dynamics and Modeling of Tantalum Oxide
Memristors’, IEEE Transactions on Electron Devices, vol. 60, pp. 2194-
2202, 2013

[73] D.B. Strukov et al., ‘Prospects for Terabit-scale Nanoelectronic
Memories’, Nanotechnology, vol. 16, no. 1, pp. 137–148, 2005

[74] H.D. Lee et al., ‘Integration of 4F2 selector-less crossbar array 2Mb
ReRAM based on transition metal oxides for high density memory
applications’, Symposium on VLSI Technology, pp. 151-152, 2012

[75] N. Ramaswamy, ‘Challenges in Engineering RRAM technology for high
density applications’, IEEE International Workshop On Integrated
Reliability, pp. 1-5, 2012

[76] A. Flocke et al., ‘Fundamental analysis of resistive nano-crossbars for
the use in hybrid Nano/CMOS-memory’, 33rd European Solid-State
Circuits Conference, pp. 328-331, 2007

[77] H. Manem et al., ‘Design considerations for variation tolerant multilevel
cmos/nano memristor memory’, in Symposium on Great Lakes
Symposium on VLSI, pp. 287-292, 2010

[78] E. Linn et al., ‘Complementary Resistive Switches for Passive
Nanocrossbar Memories’, Nature Materials, vol. 9, pp. 403-406, 2010

[79] J.J. Yang et al., ‘Engineering nonlinearity into memristors for passive
crossbar applications’, Applied Physics Letters, 2012

[80] M. A. Zidan et al., ‘Memristor-based memory: The sneak paths problem
and solutions’, Microelectronics Journal, 44 (2), pp. 176-183, 2013

[81] M. Qureshi et al., ‘AC sense technique for memristor crossbar’,
Electronics Letters, vol. 48, pp. 757-758, 2012

[82] M. R. Stan et al., ‘Molecular electronics: from devices and interconnect
to circuits and architecture’, Proceedings of the IEEE, vol. 91, pp. 1940-
1957, 2003

[83] M. Liu et al., ‘Application of nanojunction-based RRAM to
reconfigurable IC’, Micro Nano Letters, vol. 3, pp. 101-105, 2008

[84] L. Nielen et al., ‘An Experimental Associative Capacitive Network
based on Complementary Resistive Switches for Memory-intensive
Computing’, 2014 IEEE Silicon Nanoelectronics Workshop, 2014

[85] E. Lehtonen et al., ‘Stateful Implication Logic with Memristors’,
IEEE/ACM International Symposium on Nanoscale Architectures, pp.
33-36, 2009

[86] A. Dehon, ‘Nanowire-Based Programmable Architectures’, ACM
Journal on Emerging Technologies in Computing Systems, vol. 1, pp.
109-162, 2005

[87] K. K. Likharev et al., ‘CMOL: Devices, Circuits, and Architectures’,
Introducing Molecular Electronics, vol. 680, pp. 447-477, 2006.

[88] S. Paul et al., ‘Computing with Nanoscale Memory: Model and
Architecture’, pp. 1-6, 2009

[89] S. Paul et al., ‘A Scalable Memory-Based Reconfigurable Computing
Framework for Nanoscale Crossbar’, IEEE Transactions on
Nanotechnology, vol. 11, pp. 451-462, 2012

[90] K. Eshraghian et al., ‘Memristor MOS Content Addressable Memory
(MCAM): Hybrid Architecture for Future High Performance Search
Engines’, IEEE Transactions on VLSI Systems, vol. 19, pp. 1407-1417,
2011

[91] S.J. Lee et al., ‘Complementary Resistive Switch (CRS) Based Smart
Sensor Search Engine’, 8th IEEE International Conference on Intelligent
Sensors, Sensor Networks and Information Processing, pp. 485 - 490,
2013

[92] G. Snider, ‘Computing with hysteretic resistor crossbars’, Applied
Physics A, vol. 80, pp. 1165–1172, 2005

[93] E. Linn et al., ‘Beyond von Neumann-logic operations in passive
crossbar arrays alongside memory operations’, Nanotechnology, vol. 23,
pp. 305205/1-6, 2012

[94] L.O. Chua, ‘Resistance switching memories are memristors’, Applied
Physics A, vol. 102, pp. 765-783, 2011

[95] H Aziza, et. al, ‘A novel test structure for OxRRAM process variability
evaluation’, - Microelectronics Reliability, Vol. 53, N. 9, pp.1208-1212,
2013

2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1725

6

94 NON-VON NEUMANN ARCHITECTURE - PAPER 6.1

7
CONCLUSION

7.1 SUMMARY

7.2 FUTURE RESEARCH DIRECTIONS

This chapter summarizes the overall achievements of this dissertation and highlights some
future research directions. Section 7.1 presents a summary of the main conclusions pre-
sented in this dissertation. Thereafter, Section 7.2 recommends future research directions.

95

7

96 7. CONCLUSION

7.1. SUMMARY
Chapter 1, "Introduction", briefly introduced resistive computing and the research fo-
cus of this thesis. It first described the motivation of this thesis. Thereafter, it overviewed
the state-of-the-art of resistive computing with respects to the device, logic, architec-
ture, compiler and application; it also highlighted the opportunities and challenges in
each aspect. This thesis focused on addressing challenges with respect to logic (includ-
ing primitive logic gates, interconnect design, circuit design and synthesis flow) and ar-
chitecture (i.e., non von-Neumann architecture).

Chapter 2, "Background on Memristive Device and Its Potential", briefly introduced
memristive device (including its brief history and working principle) and its potential
when it is used in memories, logic circuits, and resistive computing paradigms (e.g., neu-
romorphic and computation-in-memory).

Chapter 3, "Primitive Logic Gate", first extended Snider logic (one of the logic design
styles), then proposed scouting logic, and finally studied their resilience against device
variability and other robust issues. First, this chapter explored the logic gate space of
Snider logic. Second, this chapter presented a novel logic design style, called scouting
logic. It executes a logic gate (i.e., AND, OR and XOR) by modifying standard read op-
erations without changing their states. Hence, it does not impact the memristors’ en-
durance. The sense amplifier used to implement logic functions is implemented us-
ing two styles (current and voltage based sense amplifiers). Third, the robustness of
Snider logic and scouting logic were investigated. The robustness of Snider logic was
analysed and mathematically formulated. Then, the impact of device variability, sneak
path currents and parasitic resistance of nanowires on the robustness were investigated.
For scouting logic, we discussed the impact of device variability on gate robustness and
then proposed a methodology to counter it.

Chapter 4, "Interconnect Design", mainly explored how to efficiently connect individual
gates. First of all, it explored three possible implementation methods of the interconnect
network; they are (1) only using memristor crossbars, (2) using the CMOS peripheral cir-
cuits and (3) a hybrid of both the memristor crossbar and CMOS pass transistors. To
illustrate the feasibility of such methods, a parallel adder is used as a case study. Among
these three methods, the hybrid scheme performed best in terms of delay, energy and
area. Second, it further explored how to use the memristor crossbar for both intra-tile
and inter-tile (i.e., 2D bus) communication. In addition, a dedicated interconnect net-
work was designed to address matrix transpose, which shows a new possibility to use the
crossbar interconnect.

Chapter 5, "Circuit Design and Synthesis Flow", presented the implementation of ASICs
and FPGAs using the knowledge obtained from Chapters 3 and 4. For ASICs, the circuits
are first divided into look-up tables and then they are mapped on the memristor cross-
bar. Appropriate place-and-route schemes, to efficiently map the circuits on the cross-
bar, as well as several optimization schemes were proposed. In addition, a synthesis flow
and performance estimation model were proposed. To realize FPGAs, we proposed two

7.2. FUTURE RESEARCH DIRECTIONS

7

97

novel implementations for the look-up tables utilizing memristor-based logic and their
corresponding synthesis flow and performance estimation model.

Chapter 6, "Non-Von Neumann Architecture", proposed the Computation-In-Memory
(CIM) architecture; it consists of an array of memristor devices that can be flexibly pro-
grammed to implement logic functions or memory and performs massive parallel op-
erations. Therefore, it significantly reduces memory access and energy consumption as
compared to conventional architectures (e.g., multi-core architectures). It explored the
relevant data-intensive applications (e.g., parallel adder and DNA sequencing) to maxi-
mize the potential of CIM architecture.

7.2. FUTURE RESEARCH DIRECTIONS
Several recommendations are suggested to improve the state-of-the-art further. They
are organized by the different research topics as listed below.

• Primitive Logic Gate

1. Develop novel logic design styles. Innovative logic styles still need to be ex-
plored which utilize the unique properties of memristive devices, such as its
multi-level resistance and non-volatility. These unique properties may lead
to smaller and more energy-efficient logic circuits, or radically new ways of
implementing logic circuits.

2. Develop multi-functional logic gates. Existing logic styles can only imple-
ment a logic gate with a single function. If they are extended to multifunc-
tional logic gates (e.g., AND-OR-NOT) like CMOS logic, it will simplify the
circuits by using fewer gates.

• Interconnect Design

1. Improve circuit-level interconnect. For VLSI circuits based on CMOS logic,
typically interconnects become a bottleneck for large scale circuits in terms
of both delay and power consumption. Therefore, the interconnection may
become a bottleneck for memristor based logic circuits as well, when mas-
sive logic gates are integrated and the wire density increases. In addition, the
routability of circuits should also be analyzed. All in all, more efforts should
be paid to explore the interconnects for large scale circuits.

2. Develop system-level interconnect schemes. Even though we explored a sim-
ple and naive bus communication infrastructure, the design methodology
of system-level interconnect is not fully studied yet. For example, the im-
plementation of more useful communication functions (e.g., scatter, gather)
or the integration of a complex and powerful communication infrastructure
(e.g., Network-on-Chip) need to be researched.

• Circuit Design and Synthesis Flow

1. Develop novel arithmetic circuits. Memristor-based arithmetic circuits are
still in an infancy stage and most research focuses on additions only. Even

7

98 7. CONCLUSION

though different approaches have been proposed to implement additions,
their performance is still low as they need many steps to execute the addition.
Therefore, speeding up arithmetic circuits is remaining an open question.

2. Simplify the CMOS controller. The CMOS controller is typically dominating
the performance of the entire circuit. It is crucial to simplify the CMOS con-
troller. This can lead to smaller area, lower delay and energy consumption.

• Non-Von Neumann Architecture

Development of novel non-Von Neumann architectures. Although several
pioneering architectures have been proposed (e.g., CIM [11], Pinatubo [15],
AC-DIMM [44], the relevant research is still in its infancy stage. More novel
architectures should be developed by utilizing the unique properties of the
memristor technology, such as automata processors and neuromorphic pro-
cessors.

REFERENCES

[1] S. H. Fuller and L. I. Millett, “Computing performance: Game over or next level?”
Computer, vol. 44, no. 1, pp. 31–38, 2011.

[2] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.
Elsevier, 2011.

[3] “Exascale computing project,” 2016. [Online]. Available: https://nano.stanford.
edu/stanford-memory-trends

[4] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in soft-
ware,” Dr. Dobb journal, vol. 30, no. 3, pp. 202–210, 2005.

[5] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs et al., “Memristor for computing: Myth
or reality?” in 2017 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2017, pp. 722–731.

[6] D. E. Nikonov and I. A. Young, “Overview of beyond-cmos devices and a uniform
methodology for their benchmarking,” Proceedings of the IEEE, vol. 101, no. 12, pp.
2498–2533, 2013.

[7] X. Fu, M. Rol, C. Bultink et al., “An experimental microarchitecture for a supercon-
ducting quantum processor,” in Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. ACM, 2017, pp. 813–825.

[8] G. Paun, G. Rozenberg, and A. Salomaa, DNA computing: new computing
paradigms. Springer Science & Business Media, 2005.

[9] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing
Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[10] G. W. Burr, R. M. Shelby, A. Sebastian et al., “Neuromorphic computing using non-
volatile memory,” Advances in Physics: X, vol. 2, no. 1, pp. 89–124, 2017.

[11] S. Hamdioui, L. Xie, H. A. D. Nguyen et al., “Memristor based computation-in-
memory architecture for data-intensive applications,” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition. EDA Consortium,
2015, pp. 1718–1725.

[12] H. A. Du Nguyen, L. Xie, M. Taouil et al., “Computation-in-memory based paral-
lel adder,” in Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International
Symposium on. IEEE, 2015, pp. 57–62.

99

https://nano.stanford.edu/stanford-memory-trends
https://nano.stanford.edu/stanford-memory-trends

100 REFERENCES

[13] A. Haron, J. Yu, R. Nane et al., “Parallel matrix multiplication on memristor-based
computation-in-memory architecture,” in High Performance Computing & Simula-
tion (HPCS), 2016 International Conference on. IEEE, 2016, pp. 759–766.

[14] P.-E. Gaillardon, L. Amarú, A. Siemon et al., “The programmable logic-in-memory
(plim) computer,” in Proceedings of the 2016 Conference on Design, Automation &
Test in Europe. EDA Consortium, 2016, pp. 427–432.

[15] S. Li, C. Xu, Q. Zou et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in Design Automation Con-
ference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[16] X. Guo, E. Ipek, and T. Soyata, “Resistive computation: avoiding the power wall with
low-leakage, stt-mram based computing,” in ACM SIGARCH Computer Architecture
News, vol. 38, no. 3. ACM, 2010, pp. 371–382.

[17] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Na-
ture nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[18] H.-S. P. Wong, C. Ahn, J. Cao et al., “Stanford memory trends,” 2017. [Online].
Available: https://nano.stanford.edu/stanford-memory-trends

[19] R. Waser, R. Dittmann, G. Staikov et al., “Redox-based resistive switching
memories–nanoionic mechanisms, prospects, and challenges,” Advanced materi-
als, vol. 21, no. 25-26, pp. 2632–2663, 2009.

[20] L. Chua, “Resistance switching memories are memristors,” Applied Physics A, vol.
102, no. 4, pp. 765–783, 2011.

[21] H.-S. P. Wong, H.-Y. Lee, S. Yu et al., “Metal–oxide rram,” Proceedings of the IEEE,
vol. 100, no. 6, pp. 1951–1970, 2012.

[22] G. Snider, “Computing with hysteretic resistor crossbars,” Applied Physics A: Mate-
rials Science & Processing, vol. 80, no. 6, pp. 1165–1172, 2005.

[23] J. Borghetti, G. S. Snider, P. J. Kuekes et al., “Memristive switches enable stateful
logic operations via material implication,” Nature, vol. 464, no. 7290, pp. 873–876,
2010.

[24] S. Kvatinsky, D. Belousov, S. Liman et al., “Magic–memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899,
2014.

[25] L. Xie, H. A. D. Nguyen, M. Taouil et al., “Fast boolean logic mapped on memristor
crossbar,” in Computer Design (ICCD), 2015 33rd IEEE International Conference on.
IEEE, 2015, pp. 335–342.

[26] L. Guckert and E. E. Swartzlander, “Mad gates—memristor logic design using driver
circuitry,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 2,
pp. 171–175, 2017.

https://nano.stanford.edu/stanford-memory-trends

REFERENCES 101

[27] E. Linn, R. Rosezin, S. Tappertzhofen et al., “Beyond von neumann? logic operations
in passive crossbar arrays alongside memory operations,” Nanotechnology, vol. 23,
no. 30, p. 305205, 2012.

[28] T. You, Y. Shuai, W. Luo et al., “Exploiting memristive bifeo3 bilayer structures for
compact sequential logics,” Advanced Functional Materials, vol. 24, no. 22, pp.
3357–3365, 2014.

[29] I. Vourkas and G. C. Sirakoulis, “A novel design and modeling paradigm for
memristor-based crossbar circuits,” IEEE Transactions on Nanotechnology, vol. 11,
no. 6, pp. 1151–1159, 2012.

[30] Y. Zha and J. Li, “Reconfigurable in-memory computing with resistive memory
crossbar,” in Computer-Aided Design (ICCAD), 2016 IEEE/ACM International Con-
ference on. IEEE, 2016, pp. 1–8.

[31] L. Xie, H. A. D. Nguyen, J. Yu et al., “Scouting logic: A novel memristor-based logic
design for resistive computing,” in IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). IEEE, 2017, pp. 335–340.

[32] J. Borghetti, Z. Li, J. Straznicky et al., “A hybrid nanomemristor/transistor logic cir-
cuit capable of self-programming,” Proceedings of the National Academy of Sciences,
vol. 106, no. 6, pp. 1699–1703, 2009.

[33] S. Kvatinsky, N. Wald, G. Satat et al., “Mrl-memristor ratioed logic,” in 2012 13th
International Workshop on Cellular Nanoscale Networks and their Applications.
IEEE, 2012, pp. 1–6.

[34] G. S. Rose, J. Rajendran, H. Manem et al., “Leveraging memristive systems in the
construction of digital logic circuits,” Proceedings of the IEEE, vol. 100, no. 6, pp.
2033–2049, 2012.

[35] L. Gao, F. Alibart, and D. B. Strukov, “Programmable cmos/memristor threshold
logic,” IEEE Transactions on Nanotechnology, vol. 12, no. 2, pp. 115–119, 2013.

[36] Y. Levy, J. Bruck, Y. Cassuto et al., “Logic operations in memory using a memristive
akers array,” Microelectronics Journal, vol. 45, no. 11, pp. 1429–1437, 2014.

[37] H. A. Du Nguyen, Y. Jintao, L. Xie et al., “Memristive devices for computing: Beyond
cmos and beyond von neumann,” in Very Large Scale Integration (VLSI-SoC), 2017
IFIP/IEEE International Conference on. IEEE, 2017, pp. 57–64.

[38] M. Hu, J. P. Strachan, Z. Li et al., “Dot-product engine for neuromorphic computing:
programming 1t1m crossbar to accelerate matrix-vector multiplication,” in Design
Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[39] K.-H. Kim, S. Gaba, D. Wheeler et al., “A functional hybrid memristor crossbar-
array/cmos system for data storage and neuromorphic applications,” Nano letters,
vol. 12, no. 1, pp. 389–395, 2011.

102 REFERENCES

[40] W. Kim, A. Chattopadhyay, A. Siemon et al., “Multistate memristive tantalum oxide
devices for ternary arithmetic,” Scientific reports, vol. 6, 2016.

[41] S. Hamdioui, H. Aziza, and G. C. Sirakoulis, “Memristor based memories: Technol-
ogy, design and test,” in Design & Technology of Integrated Systems In Nanoscale Era
(DTIS), 2014 9th IEEE International Conference On. IEEE, 2014, pp. 1–7.

[42] I. Vourkas, D. Stathis, G. C. Sirakoulis et al., “Alternative architectures toward reliable
memristive crossbar memories,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 1, pp. 206–217, 2016.

[43] Q. Guo, X. Guo, Y. Bai et al., “A resistive tcam accelerator for data-intensive com-
puting,” in Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2011, pp. 339–350.

[44] Q. Guo, X. Guo, R. Patel et al., “Ac-dimm: associative computing with stt-mram,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 189–200, 2013.

[45] A. Chen, J. Hutchby, V. Zhirnov et al., Emerging nanoelectronic devices. John Wiley
& Sons, 2014.

[46] J. Cong and B. Xiao, “Fpga-rpi: A novel fpga architecture with rram-based pro-
grammable interconnects,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 4, pp. 864–877, 2014.

[47] L. Xie, H. A. Du Nguyen, M. Taouil et al., “Non-volatile look-up table based fpga im-
plementations,” in Design & Test Symposium (IDT), 2016 11th International. IEEE,
2016, pp. 165–170.

[48] K. Ma, X. Li, S. Li et al., “Nonvolatile processor architecture exploration for energy-
harvesting applications,” IEEE Micro, vol. 35, no. 5, pp. 32–40, 2015.

[49] J. Yu, R. Nane, A. Haron et al., “Skeleton-based design and simulation flow for
computation-in-memory architectures,” in Nanoscale Architectures (NANOARCH),
2016 IEEE/ACM International Symposium on. IEEE, 2016, pp. 165–170.

[50] J. Yu, T. Hogervorst, and R. Nane, “A domain-specific language and compiler for
computation-in-memory skeletons,” in Proceedings of the on Great Lakes Sympo-
sium on VLSI 2017. ACM, 2017, pp. 71–76.

[51] J. Yu, R. Nane, I. Ashraf et al., “Skeleton-based synthesis flow for computation-in-
memory architectures,” IEEE Transactions on Emerging Topics in Computing, To ap-
pear.

[52] L. Xie, H. A. Du Nguyen, M. Taouil et al., “Boolean logic gate exploration for mem-
ristor crossbar,” in 2016 International Conference on Design and Technology of Inte-
grated Systems in Nanoscale Era (DTIS). IEEE, 2016, pp. 1–6.

[53] L. Xie, H. A. Du Nguyen, J. Yu et al., “On the robustness of memristor based logic
gates,” in Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2017
IEEE 20th International Symposium on. IEEE, 2017, pp. 158–163.

REFERENCES 103

[54] H. Du Nguyen, L. Xie, J. Yu et al., “Interconnect networks for resistive computing ar-
chitectures,” in Design & Technology of Integrated Systems In Nanoscale Era (DTIS),
2017 12th International Conference on. IEEE, 2017, pp. 1–6.

[55] L. Xie, H. A. Du Nguyen, M. Taouil et al., “Interconnect networks for memristor
crossbar,” in Nanoscale Architectures (NANOARCH), 2015 IEEE/ACM International
Symposium on. IEEE, 2015, pp. 124–129.

[56] L. Xie, H. A. Du Nguyen, M. Taouil et al., “A mapping methodology of boolean logic
circuits on memristor crossbar,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 2, pp. 311–323, 2018.

[57] S. Kvatinsky, G. Satat, N. Wald et al., “Memristor-based material implication (imply)
logic: design principles and methodologies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2014.

[58] X. Zhu, X. Yang, C. Wu et al., “Performing stateful logic on memristor memory,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 10, pp. 682–686,
2013.

[59] Intel xpoint memory. [Online]. Available: http://www.intel.com/content/www/us/
en/architecture-and-technology/non-volatile-memory.html

[60] Crossbar 3d rram. [Online]. Available: http://www.crossbar-inc.com/

[61] M. Liu and W. Wang, “rfga: Cmos-nano hybrid fpga using rram components,” in
NANOARCH. IEEE, 2008.

[62] X. Tang et al., “A high-performance low-power near-vt rram-based fpga,” in FPT.
IEEE, 2014.

[63] V. Betz et al., Architecture and CAD for deep-submicron FPGAs. Springer Science &
Business Media, 2012.

http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.intel.com/content/www/us/en/architecture-and-technology/non-volatile-memory.html
http://www.crossbar-inc.com/

LIST OF PUBLICATIONS

International Journals

2. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, A Mapping Methodology of
Boolean Logic Circuits on Memristor Crossbar, IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems (TCAD), Volume 37, Issue 2, Feb 2018.

1. H.A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui, K.L.M. Bertels, On the Implementation of
Computation-In-Memory Parallel Adder, IEEE Transactions on VLSI Systems (TVLSI), Vol-
ume 25, Issue 8, Aug 2017.

International Symposiums and Conferences

12. L. Xie, H.A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. Alfailakawi, S. Hamdioui, Scout-
ing Logic: A Novel Memristor-Based Logic Design for Resistive Computing,IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, July, 2017, pp. 151-156

11. L. Xie, H.A. Du Nguyen, J. Yu, M. Taouil, S. Hamdioui, On the Robustness of Memristor Based
Logic Gates, IEEE International Symposium on Design and Diagnostics of Electronic Cir-
cuits & Systems (DDECS), Dresden, Germany, April, 2017, pp. 158-163

10. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, M Alfailakawi, Non-Volatile
Look-up Table Based FPGA Implementations, IEEE International Symposium on Design and
Test (IDT), Hammamet, Tunisia, December, 2016, pp. 165-170

9. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, Boolean Logic Gate Explo-
ration for Memristor Crossbar, IEEE International Conference on Design & Technology of
Integrated Systems In Nanoscale Era (DTIS), Istanbul, Turkey, April, 2016, pp. 1-6

8. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, Fast Boolean Logic Mapped
on Memristor Crossbar, IEEE International Conference on Computer Design (ICCD), New
York City, USA, October, 2015, pp. 335-342. Best Paper Award

7. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, Interconnect Networks for
Memristor Crossbar, IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH), Boston, USA, July, 2015, pp. 124-129

6. H.A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui, K.L.M. Bertels, Interconnect Networks for
Resistive Computing Architectures, IEEE International Conference on Design & Technology
of Integrated Systems In Nanoscale Era (DTIS), Dresden, Palma de Mallorca, Spain, April,
2017, pp. 1-6

5. H.A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui, K.L.M. Bertels, Synthesizing HDL to mem-
ristor technology: A generic framework, IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), Beijing, China, July, 2016, pp. 43-48

105

106 LIST OF PUBLICATIONS

4. H.A. Du Nguyen, L. Xie, R. Nane, M. Taouil, S. Hamdioui, K.L.M.Bertels, Computation-In-
Memory Based Parallel Adder, IEEE/ACM International Symposium on Nanoscale Architec-
tures (NANOARCH), Boston, USA, July, 2015, pp. 57-62

3. S. Hamdioui, L. Xie, H.A. Du Nguyen, M. Taouil, K.L.M. Bertels, Memristor Based Computation-
in-Memory Architecture for Data-Intensive Applications, Design, Automation & Test in Eu-
rope Conference & Exhibition (DATE), Grenoble, France, March, 2015, pp. 1718-1725

2. H.A. Du Nguyen, J. Yu, L. Xie, M. Taouil, S. Hamdioui, D. Fey, Memristive Devices for Com-
puting: Beyond CMOS and Beyond von Neumann, IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC), Abu Dhabi, UAE, October, 2017, pp. 1-10

1. S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi, H. Elsayed, H. Cor-
poraal, K.L.M. Bertels, Memristor For Computing: Myth or Reality?, Design, Automation &
Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, March, 2017, pp.
722-731

Workshops

12. L. Xie, H.A. Du Nguyen, J. Yu, M. Taouil, S. Hamdioui, FPGA Implementations Based on
Memristor Logic Circuits, ICT.OPEN, Amersfoort, Netherlands, March, 2017

11. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, Non-Volatile Look-up Table
Based FPGA Implementations, Workshop on Memristor Technology, Design, Automation
and Computing (MDAC) in conjunction with HiPEAC, Stockholm, Sweden, January, 2017

10. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui and K.L.M. Bertels, Boolean Logic and In-
terconnect for Memristor Crossbar, ICT.OPEN, Amersfoort, Netherlands, March, 2016

9. L. Xie, H.A. Du Nguyen, M. Taouil, S. Hamdioui, K.L.M. Bertels, Memristor Crossbar Based
Logic and Interconnect Design, Workshop on Memristor Technology, Design, Automation
and Computing (MDAC) in conjunction with HiPEAC, Prague, Czech, January, 2016

8. H.A. Du Nguyen, L. Xie, M. Taouil, S. Hamdioui, K.L.M. Bertels, A Synthesis Framework for
Memristor Crossbar, Workshop on Memristor Technology, Design, Automation and Com-
puting (MDAC) in conjunction with HiPEAC, Stockholm, Sweden, January, 2017

7. H.A. Du Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, K.L.M. Bertels, CIM Based Paral-
lel Adder Implementations and Evaluations, Workshop on Memristor Technology, Design,
Automation and Computing (MDAC) in conjunction with HiPEAC, Prague, Czech, January,
2016

6. H.A. Du Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui and K.L.M. Bertels, CIM Archi-
tecture Communication Schemes, International Workshop on In-Memory and In-Storage
Computing with Emerging Technologies (IMISCET) in conjunction with PACT, Haifa Israel,
September, 2016

5. H.A. Du Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui and K.L.M. Bertels, CIM Based Par-
allel Adder Implementations and Evaluations, ICT.OPEN, Amersfoort, Netherlands, March,
2016

LIST OF PUBLICATIONS 107

4. D. Wouters, A. Siemon, L. Xie, S. Menzel, R. Waser, S. Hamdioui, Influence of ReRAM Device
Characteristics on the Performance of Logic-in-Memory Concepts, International Conference
on Memristive Materials, Devices & Systems (MEMRISYS), Athens, Greece, April, 2017

3. J. Yu, H.A. Du Nguyen, L. Xie, M. Taouil, R. Nane, S. Hamdioui, K.L.M. Bertels, FPGA Imple-
mentations Based on Memristor Logic Circuits, ICT.OPEN, Amersfoort, Netherlands, March,
2017

2. S. Hamdioui, M. Taouil, H.A. Du Nguyen, M.A.B. Haron, L. Xie, K.L.M. Bertels, CIMx: Com-
putation in-Memory Architecture Based on Resistive Devices, International Workshop on
Cellular Nanoscale Networks and their Applications (CNNA), Dresden, Germany, August,
2016

1. S. Hamdioui, M. Taouil, H.A. Du Nguyen, M.A.B. Haron, L. Xie, K.L.M. Bertels, Memristor:
The Enabler of Computation-in-Memory Architecture for Big-Data, International Confer-
ence on Memristive Materials, Devices & Systems (MEMRISYS), Paphos, Cyprus, November,
2015

CURRICULUM VITÆ

Lei XIE

L. Xie was born 1987 in Yinchuan, China. He received his B.Sc. degree in microelectron-
ics in 2010 from Xi’an Jiaotong University, Xi’an, China. After that he received M.Sc de-
gree in Microelectronics and Solid State Electronics from the same university. In Septem-
ber 2013, he joined the Department of Quantum and Computer Engineering at the Fac-
ulty of Electrical Engineering, Mathematics, Computer Science in Delft University of
Technology. His research interests include memristor-based logic circuit design for both
ASIC and FPGA.

109

	Summary
	Samenvatting
	Acknowledgements
	Introduction
	Motivation
	Opportunities and Challenges
	Research Topics
	Contributions
	Primitive Logic Gate
	Interconnect Design
	Circuit Design and Synthesis Flow
	Non-Von Neumann Architecture

	Thesis Organization

	Background on Memristive Device and Its Potential
	Primitive Logic Gate
	Introduction
	Main Contributions

	Interconnect Design
	Introduction
	Main Contributions

	Circuit Design and Synthesis Flow
	Introduction
	Main Contributions

	Non-Von Neumann Architecture
	Introduction
	Main Contributions

	Conclusion
	Summary
	Future Research Directions

	References
	List of Publications
	Curriculum Vitæ

