
 
 

Delft University of Technology

Generation of exchange flows in estuaries by tidal and gravitational eddy viscosity-shear
covariance (ESCO)

Dijkstra, Yoeri M.; Schuttelaars, Henk M.; Burchard, Hans

DOI
10.1002/2016JC012379
Publication date
2017
Document Version
Final published version
Published in
Journal Of Geophysical Research-Oceans

Citation (APA)
Dijkstra, Y. M., Schuttelaars, H. M., & Burchard, H. (2017). Generation of exchange flows in estuaries by
tidal and gravitational eddy viscosity-shear covariance (ESCO). Journal Of Geophysical Research-Oceans,
22(5), 4217-4237. https://doi.org/10.1002/2016JC012379

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/2016JC012379
https://doi.org/10.1002/2016JC012379


RESEARCH ARTICLE
10.1002/2016JC012379

Generation of exchange flows in estuaries by tidal and
gravitational eddy viscosity-shear covariance (ESCO)
Yoeri M. Dijkstra1,2 , Henk M. Schuttelaars1 , and Hans Burchard3

1Delft Institute of Applied Mathematics, Delft University of Technology, Delft, Netherlands, 2Deltares, Delft, Netherlands,
3Leibniz Institute for Baltic Sea Research Warnem€unde, Rostock, Germany

Abstract We present a systematic analysis of generation mechanisms for exchange flows in partially
stratified estuaries using water column (1DV) and width-averaged (2DV) numerical models. We focus on
exchange flows generated by eddy viscosity-shear covariance (ESCO). We identify two distinctly different
physical mechanisms. The first, tidal ESCO circulation, results from interactions between the barotropic tide
and temporal variations of the eddy viscosity. While this flow is mostly generated by direct interactions
between the tide and eddy viscosity variations at the main tidal frequency, a similarly important contribu-
tion can be attributed to indirect interactions. These are more complex interactions involving eddy viscosity
variations at other frequencies than the main tidal frequency (e.g., M4). The second mechanism is called
gravitational ESCO circulation. This results from an amplification of the gravitational circulation through
indirect interactions between the gravitational circulation and temporal variations of the eddy viscosity at
any time scale. Tidal and gravitational ESCO circulations are generated by different mechanisms and have a
different dependency on the phase and frequency of eddy viscosity variations and the density gradient.
The relative contributions of gravitational circulation and tidal and gravitational ESCO circulation to the
exchange flow are typically 1/3 each in tidally energetic well-mixed or partially stratified estuaries. The
results are generalized using an idealized width-averaged model of the Scheldt River estuary. This model
confirms the results of the water column model and additionally shows that temporal variations of
turbulence not captured in the water column model have a significant effect on the exchange flow.

1. Introduction

The exchange flow is an important contributor to the net transport of salt, suspended sediments, and dis-
solved substances in estuaries [see e.g., Geyer and MacCready, 2014]. This flow, also called estuarine circula-
tion, is a subtidal or residual flow, with root-mean-square velocities which are generally an order of
magnitude smaller than the tidal flow in tidally energetic estuaries. Since no precise agreed definition exists,
we define the exchange flow here as the contribution to the subtidal flow that has a cross-sectional average
of zero. In most midlatitude estuaries, the exchange flow velocity is directed up-estuary near the bed and
down-estuary near the surface.

In what Geyer and MacCready [2014] call the classical theories, the estuarine circulation consists of the gravi-
tational circulation and the shear due to the river discharge [Pritchard, 1956; Hansen and Rattray, 1965;
Chatwin, 1976; MacCready, 2004]. Gravitational circulation is created by the balance of a baroclinic pressure
gradient induced by an along-estuary density gradient and a subtidal barotropic pressure gradient. Later,
other mechanisms contributing to the along-channel estuarine circulation were identified. These mecha-
nisms include lateral advection [Fischer, 1972; Lerczak and Geyer, 2004; Burchard and Schuttelaars, 2012;
Schulz et al., 2015], longitudinal advection [Li and O’Donnell, 2005], wind stress [Scully et al., 2005; Burchard,
2009], wind induced density straining [Burchard and Hetland, 2010], Earth’s rotation [Lerczak and Geyer,
2004; Huijts et al., 2006], and flow curvature [Chant, 2002].

The focus of this paper is the exchange flow contribution induced by the covariance between the eddy vis-
cosity and velocity shear variations on the tidal time scale [Jay and Musiak, 1994]. This exchange flow is the
tidal average of the time-varying deformation of the velocity profile caused by time variations of the eddy
viscosity. This contribution has been called straining circulation [Burchard et al., 2011; Geyer and MacCready,
2014] or exchange flow induced by asymmetric turbulent mixing (ATM) [Cheng et al., 2011, 2013]. It will be
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demonstrated in this paper that both these names are not sufficiently accurate. Therefore, we introduce the
name eddy viscosity-shear covariance circulation or ESCO circulation.

One of the important physical mechanisms causing variations of the eddy viscosity associated with ESCO
circulation is strain-induced periodic stratification (SIPS) [Van Aken, 1986; Simpson et al., 1990]. Restricting
our attention to stratification by salinity, SIPS describes a process where the vertical profile of the tidal
velocity strains the salinity profile. During flood, this leads to a tendency of dense sea water to move over
less salty water, leading to an increase in turbulent kinetic energy (TKE). Conversely, the ebb velocity
advects less salty water over sea water leading to a stably stratified water column and a reduction of TKE.
As a result, the eddy viscosity varies on the M2 tidal time scale assuming the M2 tide is the main tidal con-
stituent. This process has been verified from observations by e.g., Peters [1999], Geyer et al. [2000], Rippeth
et al. [2001], Stacey and Ralston [2005], and Simpson et al. [2005] and numerical models by e.g., Simpson
et al. [2002], De Boer et al. [2008], and Verspecht et al. [2009].

Apart from SIPS, there are many other mechanisms that lead to temporal variations of TKE. Examples of
mechanisms that induce variations of turbulence on an M2 tidal time scale are asymmetric shear, tidal asym-
metry, and depth asymmetry. Asymmetric shear denotes a difference in the shape of the vertical velocity
profiles during ebb and flood. The combination of an M2 tidal flow and an exchange flow for example leads
to a different degree of velocity shear during ebb and flood and therefore to a variation in TKE production
[Burchard and Hetland, 2010]. Tidal asymmetry relates not to an asymmetry in shape, but in magnitude of
the velocity between ebb and flood. This leads to a temporal variation in TKE production. TKE production
additionally scales with the water depth. A water level difference between ebb and flood, i.e., depth asym-
metry, therefore results in temporal variations in TKE production. Apart from M2 variations in TKE produc-
tion, these mechanisms also generate TKE variations on other frequencies, such as the M4 component.
Another source of TKE variations on the M4 frequency is the M2 tide itself. Tidal velocity variations produce
less turbulent energy during the slack tides than during the peak tides. These variations result in time varia-
tions of TKE with a predominant M4 component, which can be of the same order of magnitude as the tidally
averaged TKE.

The work of Stacey et al. [2008], Burchard and Hetland [2010], and Cheng et al. [2010, 2011, 2013] has provid-
ed us with much of our insight into the ESCO circulation. Using an idealized one-dimensional model, Stacey
et al. [2008] showed that the absolute magnitude of the ESCO circulation depends strongly on the moment
during which the water column stratifies. Using a nonlinear one-dimensional vertical model coupled to a k
2e turbulence model, Burchard and Hetland [2010] found that the ESCO circulation is a factor two larger
than the gravitational circulation in the parameter space associated with well-mixed and partially stratified
estuaries. Burchard and Hetland [2010] additionally establish that the ESCO circulation scales approximately
linearly with the salinity gradient, similar to the gravitational circulation. Cheng et al. [2010] used a two-
dimensional longitudinal-vertical perturbation approach, assuming that the time-varying eddy viscosity is
small compared to the tidal-mean eddy viscosity, which is typical for well-mixed systems. They found that
the resulting ESCO circulation is typically of the same order of magnitude as the gravitational circulation.
They also observe that ESCO circulation does not only scale with eddy viscosity variations but also scale
with the magnitude of the tidal velocity. Cheng et al. [2011, 2013] extend this to partially and strongly strati-
fied estuaries using a combination of a fully numerical model and a perturbation approach. They showed
that the level of stratification strongly affects the vertical structure, direction, and magnitude of the ESCO
circulation. From these studies, it follows that ESCO circulation is a complex process that depends on multi-
ple variables and multiple physical mechanisms, which have not been completely identified.

Hence, the aim of this paper is to identify the mechanisms resulting in ESCO circulation, their relative impor-
tance and their sensitivity to flow parameters. We will show that, in a 1DV context, the ESCO circulation as
identified by Burchard and Hetland [2010] and Cheng et al. [2011, 2013] is actually made up of two different
physical mechanisms with a clearly distinct behavior. This observation will then be used to develop a gener-
alized theoretical framework for ESCO circulation. To identify the different mechanisms, we will use a one-
dimensional (1DV) and two-dimensional width-averaged (2DV) model with a k2e turbulence closure. The
1DV model is applied to a wide parameter space that covers parameter values found in well mixed to par-
tially stratified estuarine conditions. For the 1DV simulations, we will restrict our attention to the baroclinic
and barotropic tidal forcing and do not take the effects of the Earth’s rotation (Coriolis) or wind into
account. Similarly, we ignore the effects of geometry, bathymetry, advection, and river discharge. These
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restrictions are severe in the context of real estuaries but allow us to identify the mechanisms resulting in
ESCO circulation as clearly as possible. The 2DV model generalizes the 1DV theory using a case study, which
includes the effects of geometry, bathymetry, advection, and river discharge. We will argue that the mecha-
nisms presented in the 1DV framework are still present in the 2DV case.

This paper first discusses the model equations, assumptions, and the way in which the exchange flow is
decomposed into different physical contributions. The contributions to the estuarine circulation are then stud-
ied in the 1DV model in section 3 by studying two cases. This allows us to develop a theoretical framework
that distinguishes between two contributions to the ESCO circulation. Several important properties of these
contributions will be discussed in section 4. Section 5 presents the sensitivity of the 1DV results to Simpson
and unsteadiness numbers associated with well-mixed and partially stratified estuaries. The results are then
generalized in a 2DV case study in section 6. Finally, we summarize and discuss our results in section 7.

2. Equations and Scaling

The exchange flow will first be studied by considering a 1DV model, since this is the simplest model that
contains the interactions essential for a complete understanding of the mechanisms resulting in exchange
flows. In section 6, we will generalize this to a width-averaged model example. In the 1D model, we neglect
the effects of Coriolis and assume that variations of the water density are small compared to the density
itself, allowing for the Boussinesq approximation. The resulting equation reads [see also Burchard and Het-
land, 2010]

ut2ðAmuzÞz52g fx½ �2g
ð0

z

qx½ �
q0

dẑ : (1)

In this equation, 2H � z � 0 is the vertical coordinate with fixed water depth H, t denotes time, u is the
velocity in the along-channel direction, q0 is a constant reference density of 1000 kg/m3, g is the accelera-
tion of gravity, and Am denotes the eddy viscosity, which parametrizes the Reynolds stress. The model is
forced by a prescribed water surface gradient fx½ � and density gradient qx½ �. The brackets �½ � are used to indi-
cate an externally prescribed forcing. The subscripts z and t in the equation denote derivatives in the verti-
cal direction and time.

The pressure gradient fx½ � is chosen such that the depth-averaged velocity �u satisfies

�u5½U�cos ðxtÞ: (2)

Here ½U� is a prescribed depth-averaged M2 tidal velocity amplitude and x 5 1.4 3 1024 s21 is the angular
frequency of the M2 tide.

The boundary conditions at the free surface (z 5 0) and bed ðz52HÞ prescribe kinematic and no-slip
conditions

Amð0Þuð0Þz50;

uð2HÞ50:

The turbulence closure used is the k2e model (as implemented by Uittenbogaard et al. [1992] and Dijkstra
et al. [2016]). The density input into this turbulence closure is provided by a transport equation for salinity
and the UNESCO equation of state [IOC et al., 2010] to convert salinity to density. The transport equation for
salinity reads

st2 Kmszð Þz52u sx½ �;

where s is salinity and Km is the eddy diffusivity computed as the eddy viscosity divided by a constant
Prandtl-Schmidt number with value 0.7. This model is forced by a prescribed horizontal salinity gradient,
directly related to the density gradient in the momentum equation via the equation of state.

2.1. Decomposition of the Equations
In order to provide insight into different contributions to the exchange flow, we will make a decomposition
of the horizontal velocity u into four different contributions. To this end, we first make a careful analysis of
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the role of the tidally averaged eddy viscosity and the time-varying eddy viscosity in the generation of the
exchange flow. This yields a decomposition of the velocity into a component affected only by the tidally
averaged eddy viscosity and one induced by the time-varying eddy viscosity. Both components can then
be separated into a part forced by the barotropic pressure gradient ½fx � and a part forced by the density gra-
dient ½qx �.

Such an explicit decomposition of the velocity requires the momentum equation to be linear in u. Since the
eddy viscosity depends on the velocity shear, the term ðAmuzÞz is nonlinear. In order to make a decomposi-
tion, we therefore analyze the equations using two steps. In the first step, we calculate the total exchange
flow and eddy viscosity using the fully nonlinear 1DV model coupled to the k2e turbulence model. In the
second step, this result is further analyzed by calculating several individual contributions to the exchange
flow. This is done by inserting the eddy viscosity calculated in the first step as a known input into the
momentum equation. This makes the momentum equation a linear model in u, allowing for a decomposi-
tion of the exchange flow. Since the eddy viscosity is still a function of the velocity, the above steps are
repeated for every new set of parameters. It is important to note that the sum of the exchange flow contri-
butions found in the second step is identical to the total exchange flow found in the first step.

To analyze the exchange flow in the second step, we separate the eddy viscosity into a tidally averaged
part Am

0½ � and time-varying part Am
1½ �. Since we will only consider purely periodic flows, Am

1½ � is zero when
time averaged: ½Am�5½Am

0�1½Am
1�. Later, we will also consider specific harmonic components that contribute

to Am
1, such as Am

1
M2

and Am
1
M4

: the M2 and M4 components of Am
1. The velocity u is decomposed accordingly

into a contribution u0, which is only influenced by the tidally averaged eddy viscosity, and a contribution u1,
which contains all contributions generated by the time-varying eddy viscosity: u5u01u1. If Am

1½ � is zero this
implies that u1 becomes zero as well. These decompositions are substituted into equation (1), resulting in
separate equations for u0 and u1.

All flow components that are directly forced by the prescribed M2 depth-averaged tidal velocity ½U� and
density gradient ½qx � are contained in the velocity component u0. The corresponding equation and bound-
ary conditions are obtained by setting ½Am

1� to zero and read

u0
t 2 Am

0½ �u0
z

� �
z52g f0

x

� �
2g
ð0

z

qx½ �
q0

dẑ ; • Am
0½ �ð0; tÞu0

z ð0; tÞ50; • u0ð2H; tÞ50; (3)

where the barotropic pressure gradient f0
x

� �
is defined such that

�u05½U�cos ðxtÞ: (4)

Equation (3) can be separated into an equation describing the velocity resulting from the barotropic tidal
pressure and the velocity resulting from the baroclinic pressure (i.e., density gradient). In other words, we
separate u0 into ut0, the barotropic tidal part, and ug0, the baroclinic or gravitational part, such that
u05ut01ug0. We thus obtain (omitting the boundary conditions for brevity)

ut0
t 2 Am

0
� �

ut0
z

� �
z52g ft0

x

� �
; (5)

2 Am
0

� �
ug0

z

� �
z52g fg0

x

� �
2g
ð0

z

qx½ �
q0

dẑ : (6)

Equation (5) defines the classical equation for the linear propagation of a tidal wave under linear friction.
The forcing ft0

x

� �
is such that (4) holds. Equation (6) describes the classical gravitational circulation. Hence,

the time derivative and the depth average of ug0 are both zero. This condition defines the corresponding
pressure gradient fg0

x

� �
.

The equation for the velocity u1, induced by time variations of the eddy viscosity, reads

u1
t 2 Am

0
� �

u1
z

� �
z2 Am

1
� �

u1
z

� �
z52g f1

x

� �
1 Am

1u0
z

� �
z

� �
; (7)

• Am
0ð0; tÞ½ �u1

z ð0; tÞ1 Am
1ð0; tÞ½ �u1

z ð0; tÞ52 Am
1ð0; tÞu0

z ð0; tÞ
� �

; • u1ð2H; tÞ50: (8)

This equation is forced by Am
1u0

z

� �
z

� �
on the right-hand side of the equation and 2 Am

1ð0; tÞu0
z ð0; tÞ

� �
at the

right-hand side of the boundary condition. These terms describe the interaction between the time-varying
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eddy viscosity and the velocity gradient of the flow affected only by the tidally averaged eddy viscosity.
This forcing term is known explicitly since Am

1 is prescribed and u0 follows from (3). The water level gradient
f1

x

� �
is defined such that

�u150:

This implies that u1 only contains contributions with a depth-averaged value of zero.

The velocity u1 is also decomposed into two contributions. We define ut1 as the velocity induced by interac-
tions of Am

1 with the barotropically forced velocity ut0, i.e., Am
1ut0

z

� �
z

� �
. The second contribution, ug1, is

defined as the velocity induced by interactions of Am
1 with the baroclinically forced velocity ug0, i.e.,

Am
1ug0

z

� �
z

� �
. It holds that u15ut11ug1. We thus obtain

ut1
t 2 Am

0
� �

ut1
z

� �
z2 Am

1
� �

ut1
z

� �
z52g ft1

x

� �
1 Am

1ut0
z

� �
z

� �
; (9)

ug1
t 2 Am

0
� �

ug1
z

� �
z2 Am

1
� �

ug1
z

� �
z52g fg1

x

� �
1 Am

1ug0
z

� �
z

� �
: (10)

The flow resulting from (9) is induced by interactions between the time variations of the eddy viscosity and
the barotropic tide. Hence, the subtidal part of the solution ut1 will be referred to as the contribution from
tidal eddy viscosity-shear covariance (tidal ESCO or t-ESCO). Similarly, the flow resulting from (10) is induced
by interactions between the time variations of the eddy viscosity and the classical gravitational circulation.
The subtidal part of the flow ug1 will hence be referred to as the contribution by gravitational eddy viscosity-
shear covariance (gravitational ESCO or g-ESCO). Both ut1 and ug1 also contain tidally varying velocity compo-
nents, but we will focus here on the subtidal components.

3. Tidal and Gravitational ESCO Circulation

Equations (9) and (10) will be used to show how the time-varying eddy viscosity contributes to the estuarine
circulation. The time variations of the eddy viscosity Am

1½ � appear both in the known forcing terms
Am

1ut0
z

� �
z

� �
and Am

1ug0
z

� �
z

� �
on the right-hand side, as well as in the diffusive terms Am

1½ �ut1
z

� �
z and

Am
1½ �ug1

z

� �
z on the left-hand side. All four terms containing Am1 contribute to the horizontal flow at multiple

tidal frequency components and, depending on the frequency components of the velocity and eddy viscos-
ity, the exchange flow. The right-hand side forcing terms can only generate an exchange flow through the
interaction between a velocity shear component and eddy viscosity component on the same frequency.
(Too see this, consider Am

1ut0
z

� �
z

� �
, where the time-varying eddy viscosity only has one constituent with

angular frequency mx and the velocity ut0 only has one tidal constituent with angular frequency nx. The
product of both consists of two contributions with frequencies ðn1mÞx and jn2mjx. Since an exchange
flow by definition has an angular frequency of zero, it will only be generated if m 5 n, i.e., if the velocity and
eddy viscosity components have the same frequency.) We will call such interactions direct interactions. The
direct interactions are calculated by ignoring the left-hand side diffusion terms containing Am

1½ �. Demon-
strating this using equation (6) yields

ut1;direct
t 2 Am

0
� �

ut1;direct
z

� �
z52g ft1;direct

x

� �
1 Am

1ut0
z

� �
z

� �
; (11)

where ft1;direct
x

� �
follows from requiring �ut1;direct50.

The generation of exchange flows is more complex for the left-hand side diffusive terms, since they are not
predetermined forcing terms, but instead depend on the solution itself. Exchange flows can therefore be
generated through interactions between the velocity shear and eddy viscosity of different frequency com-
ponents as well, through a set of interactions that we will explain in more detail below. We will call such
interactions indirect interactions. The indirect interactions for the tidal ESCO follow from the difference of
equations (9) and (11) and similar for the gravitational ESCO. By making a distinction between direct and
indirect interactions below, we will identify new contributions to and dependencies of the exchange flow.

We will use two cases to illustrate how exchange flows are created. The typical depth, velocity, salinity gra-
dient, and roughness used for these cases are characteristic for the Ems and the Scheldt River estuaries [see
Burchard et al., 2013]. The eddy viscosity is calculated using the 1DV k2e model and further analyzed using
a harmonic analysis. The main time-varying eddy viscosity components are the M2 and M4 components, in
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both cases covering about 90% of the total time variation. All parameter values and a summary of the tur-
bulence data are listed in Table 1.

3.1. Tidal ESCO Circulation
The water motion in equation (9) is forced by Am

1ut0
z

� �
z

� �
. This forcing term forms the basis of the original

interpretation of the exchange flow due to tidal ESCO by Jay and Musiak [1994]. In this interpretation, the
main M2 tidal constituent (ut0) and the time variable eddy viscosity at M2 frequency (½Am

1
M2
�) interact to cre-

ate an exchange flow ut1. The left-hand side diffusive term Am
1½ �ut1

z

� �
z was not considered in their interpre-

tation. This seems reasonable, since the generated exchange flow is typically much smaller than the M2

tidal velocity amplitude. So although the exchange flow shear (in ut1
z ) could interact with the M2 eddy vis-

cosity in this diffusive term, this interaction is likely to be small. We call the described M2–M2 interaction of
Jay and Musiak [1994] a direct interaction, as the interaction between the velocity gradient and eddy

Table 1. Parameters Used in the Reference Cases, Corresponding to the Typical Values in the Ems and Scheldt Riversa

Parameter Symbol Ems Case Scheldt Case

Depth H 7 m 8 m
Depth-averaged velocity amplitude U 0.9 m/s 0.8 m/s
Along-channel salinity gradient sx 21.0 3 1023 psu/m 21.5 3 1023 psu/m
Dimensionless roughness height z0=H 6 3 1025 6 3 1025

Depth-averaged tidally averaged eddy viscosity Am 8.5 3 1023 m2/s 2.2 3 1022 m2/s
Fraction M2/tidal-mean eddy viscosity jAm

1
M2
j=Am

0 0.22 0.11
Phase M2 eddy viscosity with respect to M2 velocity /ðAm

1
M2
Þ 458 628

Fraction M4/tidal-mean eddy viscosity jAm
1
M4
j=Am

0 0.84 0.70
Phase M4 eddy viscosity with respect to M2 velocity /ðAm

1
M4
Þ 228 168

aThe eddy viscosity magnitude and phase follow from the 1DV k2e model and a harmonic analysis of the result. The other parame-
ters are derived from Burchard et al. [2013].

Figure 1. Vertical profiles of (left) tidal ESCO circulation and (right) gravitational circulation and gravitational ESCO in the (top) Ems River
and (bottom) Scheldt River configurations (Table 1). The tidal ESCO circulation is mainly caused by the direct interaction (blue dashed line)
between the tide and M2 variations of the eddy viscosity. The remaining indirect interactions (green dashed line) between the barotropic
flow and M2 and M4 eddy viscosity components are somewhat smaller. The gravitational circulation and gravitational ESCO circulation are
of a similar order of magnitude in both cases.
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viscosity immediately generate an exchange flow. This direct interaction is compared to other indirect inter-
actions in Figure 1 (left), which show different contributions to the tidal ESCO circulation in the reference
cases (Table 1). The blue lines show the exchange flow resulting from the direct M2–M2 interaction. While
this approximates the total tidal ESCO circulation reasonably well, the exchange flow generated by indirect
interactions is not negligible.

Exchange flow contributions due to indirect interactions (green lines in the left figures) are generated by
many mechanisms. Each of these mechanisms individually is capable of creating an exchange flow of a sim-
ilar magnitude as that generated by the direct interaction. However, different indirect interactions generate
exchange flow components with opposite directions that approximately cancel against each other. The rea-
son why individual indirect interactions can lead to a significantly large exchange flow is related to the pres-
ence of a relatively large M4 component of the eddy viscosity. This is best understood in steps, also
illustrated in Figure 2. In the left figures, the figure shows the barotropic pressure (top left) and resulting M2

tidal flow (bottom left). This flow interacts with Am
1 and leads to a forcing Am

1ut0
z

� �
z

� �
(top middle). Through

equation (11), this forcing results in the tidal ESCO circulation due to not only the direct M2–M2 interaction
but also M2 and M4 flow components (bottom middle). These flow components ut1

M2
and ut1

M4
interact with

the M2 and M4 eddy viscosity respectively in the left-hand side diffusion term (equation (9)) and lead to a
forcing at several frequency components, including the subtidal component, which is displayed in Figure 2
(top right). This forcing leads to an additional contribution to the tidal ESCO circulation, as shown in the bot-
tom right figures. This contribution has the opposite direction to a classical exchange flow. In this case,
because we require two steps of interactions (or two approximations) to find an exchange flow contribu-
tion, we will call this two-step indirect interactions. The described two-step interactions, together with the
direct interaction, are depicted schematically in Expressions (12)–(14).

Direct interaction Am
1
M2

ut0
z;M2
! exchange flow; (12)

Two-step interactions Am
1
M4

ut0
z;M2
! ut1

M2
) Am

1
M2

ut1
z;M2
! exchange flow; (13)

Figure 2. Sketch of the forcing terms and velocity profiles relevant to the direct and two-step indirect interactions that contribute to the
tidal ESCO circulation. The shape of the profiles sketched and the order of magnitudes are derived from the results of the Scheldt case
(Table 1). (left) The barotropic pressure and resulting M2 tidal flow. (middle) How the tidal flow forces the direct tidal ESCO circulation and
an M2 and M4 flow component through interactions with the time-varying eddy viscosity. These velocity components again interact with
the time-varying eddy viscosity. This interaction lead to multiple frequency components, of which (right) shows the subtidal contribution.
This forces the two-step indirect contribution to the tidal ESCO circulation. Contributions to this flow through more than two steps can be
found by repeating the reasoning of this figure with more steps.
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Am
1
M2

ut0
z;M2
! ut1

M4
) Am

1
M4

ut1
z;M4
! exchange flow: (14)

Figure 3 shows a further decomposition of the indirect interactions contributing to tidal ESCO circulation by
separating two-step indirect interactions in the Ems case. The total and direct contributions in this figure
are identical to those shown in Figure 1. The Scheldt case gives qualitatively similar results. The exchange
flow by the two-step interactions is of a similar shape and size as the exchange flow by the direct M2–M2

interaction but has an opposite sign. There are more indirect interactions that can only be found by making
three or more steps of interactions between the velocity and time-varying eddy viscosity. These, as Figure 3
shows, result in an exchange flow in the same direction as the total tidal ESCO circulation. The combined
result of the two-step and other multiple-step interactions is therefore smaller than the individual contribu-
tions to it.

The distinction between different types of indirect interactions is relevant, because the magnitude and
direction of the exchange flow created by a particular set of interactions critically depends on the relative
phase of all involved eddy viscosity components. As the M2 and M4 eddy viscosity components are typically
the most dominant components, the phase difference between the M2 and M4 eddy viscosity and the M2

velocity is the most important. As a result, the total exchange flow caused by indirect interactions may well
be larger than that caused by direct interaction if the M2 and M4 eddy viscosity phases are different. We will
consider this further in section 4.2.

3.2. Gravitational ESCO Circulation
Indirect interactions lead to a newly identified contribution to the exchange flow resulting from the classical
gravitational circulation. This exchange flow is an amplification of the classical gravitational circulation due
to interactions between the gradient of the gravitational circulation and time variations of the eddy viscosi-
ty. We will call the subtidal part of this contribution the gravitational ESCO circulation.

The gravitational ESCO contribution is the subtidal part of ug1 in (10). The generation of this term is
explained using Figure 4. In the left column, the figure shows the profile of the baroclinic pressure (top left),
which generates the gravitational circulation (bottom left). Considering the direct interactions and so
neglecting the left-hand side term Am

1ug1
z

� �
z

� �
, the gravitational circulation ug0 interacts with both the M2

and M4 eddy viscosity components in Am1½ �, leading to the forcing term in the top middle. In the Scheldt Riv-
er case, this forcing has a similar amplitude as the original baroclinic pressure forcing. This generates a con-
tribution to the M2 and M4 velocity: ug1

M2
and ug1

M4
(bottom middle). The M2 and M4 flow components have

profiles that resemble an exchange flow and, in the Scheldt case, have magnitudes similar to the gravita-
tional circulation. The phase of the forcing and flow in the middle figures depends entirely on the phase of
the eddy viscosity components, but the resulting phase profile is not trivial. Next considering the indirect
interactions, ug1

M2
and ug1

M4
again interact with the M2 and M4 eddy viscosity in the left-hand side diffusion

terms (see equation (10)) resulting in a forcing term at multiple frequencies. In the top-right plot, we only
show the subtidal component of this forcing, which is smaller than the baroclinic pressure forcing, but still
of the same order of magnitude in the Scheldt case. This forcing leads to an exchange flow that contributes

Figure 3. Further decomposition of the tidal ESCO circulation in the Ems River configuration. The exchange flow described by two
interactions between the velocity and eddy viscosity is of a similar magnitude as that caused by the direct M2–M2 interaction but has an
opposite sign. Other indirect interactions described by more interaction steps lead to an exchange flow with a positive sign. The total of
all indirect interactions corresponds to the small, oddly shaped exchange flow observed in Figure 1.
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to the gravitational ESCO circulation and is of a similar order of magnitude and in the same direction as the
gravitational circulation.

This sequence of interactions is alternatively displayed in Expressions (15) and (16). Most notably, the inter-
action between ug1

M4
and the relatively large M4 eddy viscosity (equation (16)) provides a strong contribution

to the exchange flow. This exchange flow contribution is found by two-step indirect interactions. Multiple-
step interactions are relevant as well and will also contribute to the gravitational ESCO circulation.

Two-step indirect interactions Am
1
M2

ug0
z ! ug1

M2
) Am

1
M2

ug1
z;M2
! exchange flow; (15)

Am
1
M4

ug0
z ! ug1

M4
) Am

1
M4

ug1
z;M4
! exchange flow: (16)

Figure 1 (right) shows the resulting magnitudes of the gravitational ESCO circulation compared to the gravi-
tational circulation in the Ems and Scheldt River cases (Table 1). The figures show that the gravitational
ESCO circulation is of a similar magnitude as the classical gravitational circulation in the Ems case and about
half the size of the gravitational circulation in the Scheldt case. The difference between the cases follows
from the observation that M2 and M4 eddy viscosity amplitudes are smaller in the Scheldt River case than
those in the Ems River case.

4. Dependencies of Tidal and Gravitational ESCO Circulation

In this section, we will study the sensitivity of the tidal and gravitational circulation to the amplitude (sec-
tion 4.1) and phase (section 4.2) of the temporally varying eddy viscosity. The default parameter settings for
this sensitivity study are for the Scheldt River case, as shown in Table 1. The M2 component of the eddy vis-
cosity calculated for this case is multiplied by a factor to change the amplitude (section 4.1) or phase (sec-
tion 4.2). Physically, this could roughly represent a change to the M2 eddy viscosity component by
processes not accounted for in the 1-D model. The newly obtained eddy viscosity field is used to recalculate
and decompose the exchange flow.

Figure 4. Sketch of the forcing terms and velocity profiles relevant to the two-step indirect interactions that contribute to the gravitational
ESCO circulation. The shape of the profiles sketched and the order of magnitudes are derived from the results of the Scheldt case (Table 1).
(left) The baroclinic pressure and gravitational circulation. (middle) How the gravitational circulation forces an M2 and M4 flow through
interactions with the time-varying eddy viscosity. These velocity components again interact with the time-varying eddy viscosity. This
interaction lead to multiple frequency components, of which (right) shows the subtidal contribution. This forces the two-step indirect
contribution to the gravitational ESCO circulation. Contributions to this flow through more than two steps can be found by repeating the
reasoning of this figure with more steps.
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The results will be analyzed using a measure for the magnitude of the exchange flow according to

MðuÞ5r
1
H

ð0

2H
juðzÞ2�uj dz; (17)

where �u denotes the depth average and

r5sign
2
H

ð2H=2

2H
uðzÞ2�u dz

 !
:

We thus take the integral of the absolute value of the tidally averaged flow, minus any depth-averaged tid-
ally averaged contribution, such as the river discharge. While this is not relevant in our 1DV model, the 2DV
model discussed later does allow for river discharge. The parameter r adds a sign to the exchange flow,
stating it is positive when the flow is upstream in the lower half of the water column. As a consequence, the
classical gravitational circulation in an estuary is considered positive.

4.1. Dependence on the Eddy Viscosity Amplitude
Figure 5 shows the dependence of the tidal and gravitational ESCO circulation to variations of the M2 eddy
viscosity amplitude. The M2 eddy viscosity amplitude jAm

1
M2
j is varied between 0 and 20% of the tidal-mean

eddy viscosity Am
0
M0

, which is not varied. A larger amplitude of the M2 eddy viscosity could not be tested, as
this would cause the eddy viscosity to become negative. The other parameters have their default values.

The figure shows that the tidal ESCO circulation vanishes for vanishing M2 eddy viscosity. This is because all
interactions leading to tidal ESCO circulation with the M2 tide involve the M2 eddy viscosity, see also (12)–(14).
The direct M2–M2 contribution to the tidal ESCO circulation (dashed line) scales linearly with the M2 eddy vis-
cosity amplitude. This is because its forcing term Am

1ut0
z

� �
z

� �
scales linearly with the M2 eddy viscosity in Am

1½ �.
The two-step interactions depend linearly on the M2 eddy viscosity, but interactions involving more steps may
also depend on higher odd powers of the M2 eddy viscosity. This is why the total effect of indirect interactions
(difference between solid line and dashed line) increases nonlinearly with the M2 eddy viscosity amplitude.

The gravitational ESCO circulation is nonzero for vanishing M2 eddy viscosity. Even if the M2 eddy viscosity
is zero, indirect interactions with other time-varying eddy viscosity components, here the M4 component,
still contribute to the gravitational ESCO circulation. The main contribution to the gravitational ESCO circula-
tion involving the M2 eddy viscosity is the two-step interaction of Expression (15). This involves the M2 eddy
viscosity in two steps and thus leads to an approximately quadratic dependence of the gravitational ESCO
circulation on the M2 eddy viscosity amplitude.

4.2. Dependence on the Eddy Viscosity Phase
Figure 6 shows how the tidal and gravitational ESCO circulation depend on the phase of the M2 eddy viscos-
ity /M2

, which is defined as the phase relative to the depth-averaged M2 tidal velocity. The phase /M2
is var-

ied between 08 and 3608. The magnitude of the tidal ESCO circulation varies strongly with the M2 eddy

Figure 5. Dependence of the tidal and gravitational ESCO circulation magnitudeMðuÞ on the amplitude of the M2 eddy viscosity compo-
nent in the Scheldt configuration (Table 1). The tidal ESCO circulation is zero for vanishing M2 eddy viscosity and then shows an almost
linear dependence for jAmM2 j=AmM0 up to 10–15%. It can be well approximated by the linear dependence of the direct M2–M2 interactions.
The gravitational ESCO circulation is nonzero for vanishing M2 eddy viscosity due to remaining interactions with the M4 eddy viscosity. It
has an approximate quadratic dependence on jAmM2 j=AmM0 .
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viscosity phase. It attains its maximum for phases of 108 and 1908 and almost vanishes for phases of 1008

and 2808. Most of this behavior can be explained using the direct M2–M2 interaction (dashed line). This
interaction depends linearly on the M2 eddy viscosity, resulting in a strength of the tidal ESCO circulation
that is proportional to the cosine of /M2

.

The total tidal ESCO circulation can be either larger or smaller than the exchange flow by the direct interac-
tion due to the effect of indirect interactions. As already noted in section 3, the magnitude and direction of
the exchange flow caused by indirect interactions depends strongly on the phase difference between the
M2 and M4 eddy viscosity components. While keeping the phase of the M4 eddy viscosity constant, we see a
complex dependence of the indirect interaction on the M2 eddy viscosity phase. Indirect interactions
decrease the total exchange flow between /M2

5508 and 2308 and increase it otherwise. The sudden jumps
around the zero-crossings are an artifact resulting from our choice to keep the vertical distribution of the
phase difference constant throughout the experiment, which is not entirely realistic. A smooth transition is
expected when allowing for the phase of the M2 eddy viscosity to vary over the water column as well.

The magnitude of the gravitational ESCO circulation is less sensitive to the phase of the M2 eddy viscosity. The
direction of the exchange flow furthermore remains positive, independent of the relative phase of the eddy
viscosity. The magnitude is largest for an M2 eddy viscosity phase of 908 and 2708 and reaches a minimum for
a phase of 08 and 1808. To elucidate this behavior, consider a case with only an M2 eddy viscosity component.
The interaction between the gravitational circulation and M2 eddy viscosity results in a contribution to the M2

velocity, which is approximately in phase with the M2 eddy viscosity. This M2 velocity contribution interacts
with the M2 eddy viscosity again to create an exchange flow. The M2 velocity contribution and eddy viscosity
always have the same small phase difference, regardless of the phase of the M2 eddy viscosity. So their inter-
action always leads to the same exchange flow, regardless of the phase of the M2 eddy viscosity. The varia-
tions in the magnitude of the exchange flow are a consequence of three-step or higher interactions, which
use a combination of the M2 and M4 eddy viscosity components and therefore depend on their relative phase
difference. The phase difference between these two eddy viscosity components changes when the phase of
the M2 eddy viscosity is changed, thus affecting the resulting magnitude of the exchange flow.

5. Parameter Space Dependency of the Exchange Flow

It has been shown by Baumert and Radach [1992] and Burchard [2009] that the parameter sensitivity in a
1DV model without Coriolis can be captured in three dimensionless parameters: the inverse Stokes number
or unsteadiness number Un [Burchard et al., 2011], the Simpson number Si, and the dimensionless rough-
ness height z�0:

Un5
xH
u�

; Si5
bx H2

u2
�
; z�05

z0

H
:

It should be noted that different authors use slightly different dimensionless parameters, e.g., by making
time dimensionless using the tidal period T instead of the angular frequency x or by making the velocity

Figure 6. Dependence of the tidal and gravitational ESCO circulation magnitudeMðuÞ on the phase difference between the M2 eddy
viscosity and the M2 tidal velocity. The results are for the Scheldt River case (Table 1). The tidal ESCO circulation shows a strong dependen-
cy and almost vanishes for a 1008 and 1908 phase difference. The gravitational ESCO circulation shows a weaker dependency, because it is
largely caused by phase-independent interactions.
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dimensionless by using the depth-averaged amplitude U instead of a typical friction velocity scale u� . The
definitions used here match those used by Burchard et al. [2011].

We vary the unsteadiness number between 0 and 0.2 with increments of approximately 0.007 by varying
the velocity U½ � and the Simpson number between 0 and 0.5 with increments of 0.02 by varying the density

Figure 7. Sensitivity of the M2 and M4 eddy viscosity amplitude relative to the tidally averaged eddy viscosity to Un and Si in the 1DV model. The M2 eddy viscosity scales dominantly
with the Simpson number. The M4 viscosity shows a variation with both the Simpson and unsteadiness numbers.

Figure 8. Sensitivity of the exchange flow magnitude to the unsteadiness number (horizontal axis) and Simpson number (vertical axis). (a) The absolute exchange flow magnitude of all
mechanisms combined. (b–d) The relative contributions to this exchange flow by the gravitational circulation, tidal ESCO circulation, and gravitational ESCO circulation. The blanked out
area corresponds to the area where the 1DV model assumptions are violated. The numbered crosses correspond to the estuaries listed in Table 2.
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gradient qx½ �. This range is similar to that used by Burchard and Hetland [2010]. A fixed value of the dimen-
sionless roughness height z�05631025 is used throughout the simulation. This parameter is not varied, as
the relative importance of the different exchange flow contributions is not very sensitive to it. The Simpson
number has a critical maximum value in 1DV models. Above this value, the assumption of horizontal homo-
geneity is violated, resulting in a boundless increase in stratification [e.g., Simpson et al., 1990; Monismith
et al., 2002; Geyer and MacCready, 2014]. The cases for which this happens are blanked out in Figures 7–9.

The experiments are performed using the 1DV model with k2e turbulence closure. This model uses 50 equi-
distant grid cells and a time step of 20 s. Each run allows for four tidal cycles of spin-up time, after which
the results are a purely periodic signal.

5.1. Sensitivity to Un and Si
As the M2 and M4 eddy viscosity components are the most important generators of the tidal and gravita-
tional ESCO circulation, we will first investigate the sensitivity of these components to Un and Si, see Figure
7. The M2 eddy viscosity is mainly generated by SIPS. As explained in the introduction, SIPS typically reduces
the eddy viscosity through stable stratification during ebb and increases the eddy viscosity through mixing
of the stratification during flood. The strength of SIPS primarily depends on the Simpson number through a
linear relation. Correspondingly, the figure shows that the M2 eddy viscosity, relative to the tidal-mean eddy
viscosity, is almost independent of the unsteadiness number and scales approximately linearly with the
Simpson number �Si0:9. The phase of the M2 eddy viscosity (not shown) depends on timing of the stratifica-
tion and destratification of the water column. This phase decreases somewhat with Un and hardly varies
with Si. It is hypothesized that this is because the timing of stratification depends mainly on the mean rate
of mixing of the water column, which is mainly determined by the tidal velocity, versus the tidal period.
Both are associated with the barotropic tide and therefore with Un. The M4 eddy viscosity in mainly generat-
ed by the absolute value of the tidal velocity, so that the eddy viscosity is smallest around the slack tides
and largest around the peak tides. The M4 eddy viscosity amplitude and phase (the latter not shown) are
therefore mainly related to the unsteadiness number. The Simpson number has some effect on the M4

eddy viscosity amplitude. However, this dependency is weaker and has multiple causes. These causes
include the effect that stratification has on the tide and mean eddy viscosity, therefore affecting the genera-
tion of the M4 eddy viscosity, and the direct generation of an M4 eddy viscosity component by the stratifica-
tion through nonlinear interactions in the turbulence model. No simple expression in terms of powers of Un
and Si can be found for the M4 eddy viscosity.

Figure 8a presents the absolute magnitude of the exchange flowM in the parameter space of unsteadiness
and Simpson numbers. The total exchange flow increases for increasing Si and decreasing Un. An increasing
Simpson number means an increasing influence of buoyancy, leading to a larger gravitational circulation. It
also leads to a larger M2 eddy viscosity component and therefore larger ESCO circulation. A decreasing
unsteadiness number is equivalent to an increasing tidal velocity at the same depth. The exchange flow
magnitude increases with the tidal velocity, because the tidal velocity gradient is the forcing for the tidal

Figure 9. Magnitude of the tidal ESCO circulation contributions caused (a) by the direct M2–M2 interaction and (b) by indirect interactions. The given magnitudes are relative to the total
tidal ESCO circulation. A negative magnitude indicates an exchange flow in the opposite direction.
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ESCO circulation. A decreasing unsteadiness number also leads to a larger M4 eddy viscosity and therefore a
larger ESCO circulation. We can look closer at the magnitude of the individual contributions to the total
exchange flow by defining the magnitude of the gravitational circulation Mgc, tidal ESCO Mt2ESCO and
gravitational ESCOMg2ESCO similar to equation (17), but then for these individual flow components.

The relative contribution of the gravitational circulation to the total exchange flow (Mgc=M) is 30%–50%
(Figure 8b). This percentage depends only weakly on Si, which implies that its relative contribution is insen-
sitive to the horizontal salinity gradient. This is because both the gravitational circulation and total
exchange scale approximately linearly with the horizontal salinity gradient (see also later in Figure 10). The
relative contribution of gravitational circulation increases with increasing unsteadiness number.

The tidal and gravitational ESCO circulations are responsible for the remaining 50%–70% of the exchange
flow (Figures 8c and 8d). The tidal ESCO circulation is much more important than the gravitational ESCO cir-
culation for high unsteadiness numbers and low Simpson numbers. In this range, the gravitational circula-
tion and the M2 (weak SIPS) and M4 (weak friction) eddy viscosity components are relatively small. As the
gravitational ESCO circulation depends on the gravitational circulation and depends approximately quadrat-
ically on the time-varying components of the eddy viscosity (see also section 4.1), its magnitude is small in
this parameter range. The tidal ESCO circulation only depends linearly on the time-varying components of
the eddy viscosity and is therefore relatively large compared to the gravitational ESCO circulation.

On the other hand, the gravitational ESCO circulation makes a relative contribution of 40% to the exchange
flow, versus 25% by the tidal ESCO circulation, in the range of high Simpson numbers and low unsteadiness
numbers. In this range, the magnitude of the gravitational circulation is relatively larger compared to the
tidal velocity amplitude and the time variations of the eddy viscosity are at their maximum. These condi-
tions favor the primarily quadratic dependence of the gravitational ESCO on the time-varying eddy
viscosity.

Figure 9 shows a further decomposition of the tidal ESCO circulation into the contribution due to the direct
M2–M2 interaction and that due to indirect interactions. The direct interaction is always the most important
term. Nevertheless, the indirect interactions make a significant positive contribution to the exchange flow

Figure 10. Fitted relations for the exchange flow magnitude and its separate contributions as a function of Si and Un. The fitting
procedure uses a least squares procedure and has been set to fit closest to the lower range of values. The obtained relations for each
contribution are plotted below the figures.
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in the range of intermediate to large Simpson numbers and small unsteadiness numbers. Conversely, the
indirect interactions make a significant contribution to reduce the exchange flow in the range of small
unsteadiness numbers and large Simpson numbers.

The dimensionless parameters for a number of estuaries and tidal inlets have been indicated in Figures
8 and 9. The numbers next to the markers correspond to the numbers in Table 2, which is adapted from
Burchard et al. [2013]. These numbers are representative for the estuaries under consideration. Note howev-
er that there is strong variation in these numbers depending on the position along the estuary (see section
6), the phase of the spring-neap cycle and the freshwater discharge. The numbers listed are thus mainly
indicative. Additionally, these numbers are projected onto one-dimensional results which do not include all
the possible physical mechanisms present in a three-dimensional system. Nevertheless, all the estuaries and
inlets listed here are located within the range where the gravitational ESCO circulation is of the same mag-
nitude or larger than the tidal ESCO circulation. Following the strong indications that tidal ESCO is important
in many systems [e.g., see Geyer and MacCready, 2014, and references therein] this seems to indicate that
the newly identified gravitational ESCO circulation is an important exchange flow contribution in real-world
systems.

5.2. Scaling of the Exchange Flow With Un and Si
The dependence to Un and Si of the gravitational circulation and tidal and gravitational ESCO circulation to
the exchange flow can be reasonably well described by a power relation of the form aSibUnc. The results
obtained from fitting this relation to the computed data are plotted in Figure 10. The fit is made on the
basis of the smaller exchange flow magnitudes, hence the fitted line deviates from the data points for larger
values. The results show that the magnitude of the gravitational circulation scales linearly with the Simpson
number, consistent with the findings of Burchard and Hetland [2010] and the analytical expression of Han-
sen and Rattray [1965]. However, for somewhat larger values of the gravitational circulation, the scaling
gradually changes to Si1:5 or more. This is caused by the stratification that starts to reduce the tidal-mean
eddy viscosity as the Si number increases. As was shown by the analytical solution of Hansen and Rattray
[1965], such a reduction of the tidal-mean eddy viscosity increases the magnitude of the gravitational
circulation.

The tidal ESCO circulation also scales approximately linearly with Si and shows little deviation from this line-
ar dependency for larger values. We have established that the M2 eddy viscosity also scales approximately
linearly with the Simpson number, so the scaling represents a linear dependency between the tidal ESCO
circulation and the M2 eddy viscosity. This is consistent with the observation that the tidal ESCO circulation
consists mainly of the contribution by the direct M2–M2 interaction, which scales linearly with the M2 eddy
viscosity (see section 4.1).

The gravitational ESCO circulation scales with Si1:4 for small Si values and with Si2 for larger values. The non-
linear dependence on Si results from its nonlinear dependence on the M2 and M4 eddy viscosity compo-
nents, which both depend on Si. The nonlinear dependence of the gravitational circulation on Si at large
values additionally results in a nonlinear dependence of the gravitational ESCO circulation on Si at large val-
ues. The gravitational ESCO circulation additionally depends on a power 20.7 of the unsteadiness number.
This is mainly caused by its dependence on the M4 eddy viscosity component, which varies with Un.

The sum of the three contributions to the exchange flow results in a total flow that scales almost linearly
with the Simpson number for small values of this parameter, but scales with Si1:5 for larger values. This
means that the exchange flow, and in particular the contribution by the gravitational ESCO circulation,

Table 2. Typical Depth, Tidal Velocity, and Salinity Gradient of Five Estuaries or Tidal Inletsa

No. Name of Estuary H (m) UM2 (m/s) sx (31024 psu/m) Si Un

1 Wadden Sea (List Deep) 14.8 0.7 1.8 0.38 0.07
2 Wadden Sea (Marsdiep Inlet) 22 1.4 2.6 0.34 0.06
3 York River (spring tide) 7 0.65 3 0.13 0.03
4 Western Scheldt River 8 0.8 2.7 0.11 0.03
5 Ems River 7 0.9 10 0.23 0.02

aThe Simpson number Si and unsteadiness number Un have been calculated accordingly. This table is adapted from Burchard et al.
[2013].
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grows at an accelerating pace when the
flow approaches the transition to a strongly
stratified water column.

6. Generalization: A 2DV Test
Case

In this section, we will decompose the
exchange flows found using a width-
averaged (2DV) shallow water model using
the theoretical framework developed for the

1-D model. Whereas the exchange flow in the 1-D model only results from a linear barotropic and baroclinic
pressure, the exchange flow in the width-averaged model additionally results from river induced velocity
gradients and nonlinear terms, such as momentum advection and elevations of the water surface. The 2DV
model is forced by an M2 and M4 tide at the seaward boundary and constant river discharge at the land-
ward boundary.

In order to decompose the exchange flow, we take a similar approach as taken by Cheng et al. [2011,
2013] and in section 2. We use the state of the art simulation model Delft 3-D [Deltares, 2014] with k2e
turbulence closure to compute the eddy viscosity and salinity fields. Unlike the 1DV model, the 2DV
model does not reduce to a linear model when the eddy viscosity and salinity are prescribed. Therefore,
the 2DV model equations are solved using a perturbation approach [Chernetsky et al., 2010; Cheng et al.,
2010; Wei et al., 2016], where the computed eddy viscosity and salinity are used as input. These models
use the assumption that the water surface elevation is small compared to the water depth, resulting in
an asymptotic analysis that allows for a decomposition of the flow induced by different physical mecha-
nisms. Here we extend this approach to allow for a no-slip boundary condition and arbitrary vertical
eddy viscosity profiles and time variations of the eddy viscosity at leading order. A detailed description
of this model, called iFlow, can be found in Dijkstra et al. [2017]. The perturbation model uses a fixed sur-
face level instead of a temporally varying one. The eddy viscosity and salinity from the complex model
therefore need to be interpolated and extrapolated to the fixed surface level. This interpolation and the
approximations of the nonlinear terms in the perturbation model lead to differences between the results
of this model and the Delft 3-D modeling suite. The perturbation model nevertheless results in a good
approximation and provides a clear indication of the importance of the various exchange flow
contributions.

We will investigate the relative importance of the various exchange flow contributions in the Scheldt River,
using the model setup by Brouwer et al. [2015]. This model approximates the observed depth using a
smooth function that varies between 14.5 m at the mouth and 3 m at 160 km from the mouth, where a lock
complex marks the end of the tidal influence. The width varies between 6.5 km at the mouth and 40 m as
the landward end. The salinity is calibrated such that the tidally averaged salinity corresponds to the multi-
year average summer, i.e., low discharge, salinity profile. Details of the parameters values used are listed in
Table 3.

Table 3. Parameter Values Used in the 2DV Case

Parameter Value

Length (km) 160
M2 tidal amplitude at mouth (m) 1.78
M4 tidal amplitude at mouth (m) 0.13
Phase of M4 tide relative to M2 tide (8) 21
River discharge (m3/s) 20
z0 (m) 0.005
Number of equidistant computational cells in x-direction 100
Number of equidistant computational cells in z-direction 50
Time step (only in Delft 3D) (s) 60

Figure 11. Water level amplitudes of the tidally averaged, M2 and M4 components in the 2DV case. The result of the iFlow model (solid
lines) is corresponds reasonably well to the result of the Delft 3-D model (dashed lines) up to 100 km. The largest differences are found in
the M4 water level amplitude, which is underestimated in the iFlow model.
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Figure 11 shows the tidally averaged, M2 and M4 surface elevation. The dashed lines show the results of
the Delft 3-D model, while the solid line shows the results obtained with the perturbation model. There is
a good correspondence between the results of both models up to about 100 km inland. Beyond this
point, the tidal elevation is no longer small compared to the depth of the shallow river and the differ-
ences between the models are no longer negligible. The M2 velocity profiles at two locations in both
models are shown in Figure 12. There is a good correspondence between the profiles. The deviations are
mainly due to the conversion of the Delft 3-D profiles from a moving reference level to fixed coordinates.
Profiles of the tidally averaged and M4 velocity cannot be compared between the models, because these
components have a different interpretation in surface-following coordinates than in a fixed reference
frame.

We find a number of contributions to the ESCO circulation additional to those present in the 1-D model.
These include the circulation due to interactions between the time-varying eddy viscosity and the external
M4 tide, river flow, tidal return flow, and flow generated by momentum advection. The latter is named
advective ESCO circulation. The decomposition of the exchange flow at four selected locations is presented
in Table 4. The table shows the total exchange flow magnitudeMðuÞ (see (17)) and the fractional contribu-
tions to this exchange flow. The table also presents the depth-averaged amplitudes of the M2 and M4 eddy
viscosity relative to the tidally averaged eddy viscosity and the phase relative to the M2 tidal velocity phase.
Below, we will discuss the various exchange flow contributions listed in this table.

First considering the eddy viscosity, we see that the M2 eddy viscosity amplitude is considerably larger than
in the 1DV Scheldt case, where it was 11% (Table 1). At the 56 km point, this is partly because the along-

Figure 12. Comparison of the velocity amplitude profiles at 16 and 56 km from the mouth in the 2DV case with the iFlow model (solid
lines) and the Delft 3-D model (dashed lines).

Table 4. Exchange Flow and an Approximate Decomposition Into the Relative Contributions for the 2DV Casea

At 5 km At 16 km At 56 km At 100 km

Total exchange flow (m/s) 0.006 0.004 0.01 0.01
Tidal ESCO circulation: M2 tide (%) 41 47 35 12

Of which direct M2–M2 interactions (%) 37 57 71 117
Of which indirect interactions (%) 63 43 29 –17

Tidal ESCO circulation: M4 tide (%) 28 27 28 21
Gravitational circulation (%) 26 19 43 1
Gravitational ESCO circulation (%) 25 9 24 0
Advection circulation (%) 8 1 21 1
Advective ESCO circulation (%) 0 1 21 0
Other (%) 8 30 8 87
jAmM2 j=AmM0 (%) 32 27 42 35
jAmM4 j=AmM0 (%) 60 54 47 29
Phase AmM2 relative to M2 velocity (8) 88 80 65 62
Phase AmM4 relative to M2 velocity (8) 5 2 10 17
Subtidal salinity gradient sx (31024 psu/m) 21.6 21.5 25.1 20.7

aAdditionally, the relative magnitudes and phases of the M2 and M4 eddy viscosity and the magnitude of the horizontal salinity
gradient are shown. The results are presented at four stations along estuary, the first three are in the saltwater region, while the last
station is just in the freshwater area. The exchange flow contribution ‘‘other’’ contains the shear of the velocity profiles of the tidal return
flow and river flow. Italics signifies that this is a percentage of the above percentage.
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channel salinity gradient is about four times larger than in the 1DV case, leading to more SIPS and thus a
larger M2 eddy viscosity. However, the along-channel salinity gradient at 5 and 16 km is very close to the
value used in the 1DV study and the salinity gradient is two times smaller at 100 km. This indicates that the
M2 eddy viscosity is affected by other mechanisms than SIPS. Besides SIPS, the two most dominant mecha-
nisms are the M2 variation of the water depth and tidal velocity asymmetry.

At all locations except for 56 km, it is found that the tidal ESCO circulation by the M2 tide is, in a relative
sense, larger compared to the gravitational circulation and gravitational ESCO circulation than in the 1-D
model. This is most clear at 100 km, at the end of the saltwater influence. There, the gravitational circulation
almost vanishes, while the tidal ESCO circulation is still considerable. The tidal ESCO circulation can still
establish itself, because other mechanisms than SIPS result in an M2 eddy viscosity component. At 5 and
16 km, the indirect interactions make a particularly large contribution to the tidal ESCO circulation, which
likely explains why this is the dominant exchange flow contribution there. At 56 km, the salinity gradient
has its maximum absolute value, resulting in a dominant contribution of the exchange flow forced by the
baroclinic pressure.

The tidal ESCO circulation induced by the external M4 tide consistently has an opposite direction to the
total exchange flow. It is also relatively large compared to the tidal ESCO circulation induced by the M2

tide, considering that the tidal M4 velocity is more than 10 times smaller than the tidal M2 velocity. The
M4 tide mainly induces an exchange flow through the direct interaction with the M4 eddy viscosity com-
ponent. Since the M4 eddy viscosity is relatively large, this interaction results in a relatively large exchange
flow contribution. The M4 eddy viscosity component is mainly induced by the M2 tide, so the direction of
the tidal ESCO due to the M4 tide depends essentially on the phase difference between the M2 and M4

tide.

The exchange flow induced by momentum advection is relatively unimportant throughout the Scheldt Riv-
er estuary. Only close to the mouth, it contributes about 8% to the exchange flow. It is expected that this
contribution is more important in estuaries with a stronger width or depth convergence [see e.g., Burchard
et al., 2014]. Strikingly, the advective ESCO circulation is negligible. This does not mean there are no direct
or indirect interactions between the advection forcing and the temporally varying eddy viscosity. Rather,
the exchange flow contributions induced by various interactions cancel against each other. The exact
dependencies of the advective ESCO circulation on the amplitude and phase of the eddy viscosity differ
from those of the gravitational ESCO circulation. This is because momentum advection induces different
interactions with the eddy viscosity than the baroclinic forcing term.

The exchange flow contribution marked as ‘‘other’’ includes the vertical velocity variations of the tidal return
flow and the river discharge, with the tidal return flow being much more important than the river discharge
in this case. It is important to note that the depth-mean values of the river discharge and tidal return flow
are not counted as exchange flow, see equation (17). ESCO also affects the exchange flow due to the river
discharge and tidal return flow, by altering these vertical variations of the velocity profile. Depending on
the location along the estuary, these contributions marked as ‘‘other’’ can be considerable or even domi-
nant. Although often not considered when discussing exchange flows, these contributions should thus be
taken into account.

7. Conclusion

In this paper, we have investigated the importance of various mechanisms in generating exchange flows by
eddy viscosity-shear covariance (ESCO) using both a water column (1DV) and a width-averaged (2DV) mod-
el. Originally, the ESCO circulation is attributed to interactions between the M2 tidal flow and the M2 eddy
viscosity caused by strain-induced periodic stratification (SIPS) [e.g., Jay and Musiak, 1994; Burchard and Het-
land, 2010; Burchard et al., 2011; Geyer and MacCready, 2014]. Here we have shown that this direct M2–M2

interaction only explains a part of the total ESCO circulation. We emphasize the importance of other compo-
nents of the velocity and of the time-varying eddy viscosity, including the M2 eddy viscosity induced by oth-
er mechanisms than SIPS and the M4 eddy viscosity component.

From a systematic analysis using a 1DV model, we have identified the gravitational ESCO circulation. This
amplification of the gravitational circulation is caused by indirect interactions between the gravitational
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circulation and the time-varying eddy viscosity. The dominant interaction is a two-step interaction, where
the gravitational circulation interacts with the time-varying eddy viscosity to create time-varying velocity
components. These components again interact with the time-varying eddy viscosity to create an amplifica-
tion to the gravitational circulation. The interaction with the M4 eddy viscosity component is especially
important, since the M4 eddy viscosity amplitude is generally large in estuaries with a predominant M2 tide.
The gravitational ESCO circulation has the same direction as the gravitational circulation, regardless of the
phase of the eddy viscosity components. It is therefore a very robust mechanism for generating exchange
flows. Typical parameter values for some Western European estuaries and tidal inlets provided by Burchard
et al. [2013] are in the range where the gravitational ESCO circulation has a similar magnitude as the gravita-
tional circulation and the tidal ESCO circulation.

We have also identified the contribution of indirect interactions to the tidal ESCO circulation. There is a mul-
titude of relevant interactions that involve any component of the time-varying eddy viscosity. Each of these
interactions can be as important as the direct M2–M2 interaction but can as well be oppositely directed.
Stacey et al. [2008] already showed that the direction of the tidal ESCO circulation depends strongly on the
moment of onset of stratification. This argument may be generalized by stating that the strength and direc-
tion of the tidal ESCO circulation depends on the relative amplitude and phase of all eddy viscosity compo-
nents. Since the time-varying eddy viscosity is generated by a multitude of physical mechanisms, it is hard
to make an a priori estimate of even the direction of the tidal ESCO circulation. In dominantly M2 tidal sys-
tems with a weak M2 eddy viscosity component, the direct M2–M2 interactions dominate any indirect inter-
actions. Indirect interactions involving the M4 eddy viscosity component become relatively more important
for larger M2 eddy viscosity amplitudes. The relative phase and strength of the M4 eddy viscosity then also
affect the strength and direction of the tidal ESCO circulation.

The width-averaged (2DV) case of the Scheldt River estuary demonstrates how the composition of the
ESCO circulation varies over the distance along an estuary. It also demonstrates the importance of sources
of time-varying turbulence other than SIPS. In the mixing zone between salt and fresh water, the relative
strength of the tidal and gravitational ESCO circulation not simply is related to the salinity gradient but also
strongly depends on the relative M2 and M4 eddy viscosity amplitude and phase. As a result, both contribu-
tions to the ESCO circulation are important at different locations. Both ESCO contributions and the gravita-
tional circulation are of a similar order of magnitude in the saltwater zone. Assuming that the idealized
model is at least indicative for the exchange flow in the Scheldt River estuary, this shows that the contribu-
tion by gravitational ESCO circulation cannot be ignored in real estuaries. In the freshwater zone, the gravi-
tational ESCO circulation and gravitational circulation disappear, but the tidal ESCO circulation still persists.
This is due to M2 eddy viscosity contributions by e.g., tidal asymmetry, asymmetric shear, and depth varia-
tions with an M2 tidal frequency.

The width-averaged case also demonstrates that the theory of exchange flows induced by indirect inter-
actions can be generalized to other mechanisms. Basically, each term in the 3-D momentum budget
equations could be associated with a direct generation mechanism for estuarine circulation and a
respective ESCO term. Each forcing mechanism generates a contribution to the ESCO circulation with a
different parameter dependency, which can be identified by a systematic analysis of the indirect interac-
tions between the time-varying eddy viscosity and velocity shear. Such an analysis explains for example
why the advective ESCO circulation is almost zero at a location where the gravitational ESCO circulation
is important. Although not demonstrated here, there is no reason why the advective ESCO circulation
could not be a dominant contribution to the exchange flow in other estuaries. Also not shown here is
the important role of lateral circulation for the estuarine circulation, which has been highlighted by
many studies during the last decade [Lerczak and Geyer, 2004; Scully et al., 2009; Burchard et al., 2011].
The strong direct contribution of lateral circulation to ESCO has been analyzed in detail by Burchard and
Schuttelaars [2012]. Also, the wind stress has been shown to directly contribute to ESCO as discussed by
Burchard and Hetland [2010].

Given these various contributions to ESCO, the earlier used expressions tidal straining circulation [e.g.,
Burchard and Hetland, 2010] or asymmetric tidal mixing [e.g., Cheng et al., 2011] are incomplete, since they
only refer to particular components of the residual circulation generated by the eddy viscosity-shear covari-
ance (ESCO). We therefore propose to use the more suitable expression ESCO circulation.
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