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1
INTRODUCTION

1.1. MOTIVATION
Improving engineering components and systems such that they perform optimally is an
established research subject with a rich background and vast amount of literature [1, 2].
Within this realm, the design of engineering problems such that they perform as well as
possible even when the manufacturing process is imperfect has also received consider-
able attention [3]. This particular subject is of great importance due to the relevance of
Design for Manufacturing strategies for many different types of engineering problems
affected by uncertainties.

Integrated photonics is one of the engineering disciplines that can greatly benefit
from improved approaches and methods for Design for Manufacturing [4, 5]. Integrated
photonic circuits enable the propagation and manipulation of light inside a higher re-
fractive index waveguide that is surrounded by relatively lower refractive index mate-
rial(s). Different types of devices and systems such as optical filters [6], multiplexers and
interferometers [7] can be integrated into relatively compact spaces using this technol-
ogy. The primary applications of integrated photonics include optical communication
and bio-sensing amongst others. Integrated photonic devices and systems are prone to
manufacturing uncertainties due to the extremely high precision required for fabricating
devices having a particular geometry and material properties.

Improving fabrication facilities and investing in higher precision equipment for man-
ufacturing may mitigate the uncertainties involved but this would typically come at high
cost. Furthermore, some variations and uncertainties will always remain. Therefore, un-
less the design process takes into account the effect of these variations, economically
feasible high volume production of integrated photonic devices and systems is expected
to be difficult to achieve. On the other hand, if design engineers would have the means
to account for the effects of the uncertainties involved in the fabrication process, not
only could this lead to higher yield but this could also leap forward the field towards
standardization [8].

1
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2 1. INTRODUCTION

Figure 1.1: Illustration of a deterministic and a robust design for a constructed one-dimenionsional example
problem.

In order to design higher yield devices and systems, the design framework needs to
depart from the traditional approach of trial-and-error based design and fabrication.
Instead, methods and algorithms need to be developed that not only incorporate the
uncertainty in the process but also guarantee a certain minimum performance level. In
addition, the methods need to be efficient in terms of providing a robust design, even if
the underlying simulation involves high computational and time costs.

Figure 1.1 shows a comparison of a deterministic and robust optimal design for a
one-dimensional problem affected by uncertainties in the design variable. The deter-
ministic solution is found without taking the uncertainty in the design variable into ac-
count. On the other hand, to find the robust design the uncertainty is explicitly included
in the optimization definition. It can be observed that the robust design is nominally
suboptimal but has a relatively much smaller performance variation range within the
uncertainty set.

Many engineering and non-engineering problems are simultaneously affected by
uncertainties and require expensive simulations in order to provide high fidelity output
[9]. The field of integrated photonics forms a typical example of disciplines that can ben-
efit from an efficient approach for robust optimization. Methods that are implemented
in such a way that they can be applied across disciplines and across engineering and
non-engineering fields could be the most attractive options due to their generality. In
order to maintain this general definition, robust optimization has to be performed on a
black-box problem.

Even though robust optimization has been an active field of research in the recent
past, the focus has been limited to solving convex problems, for example, linear, convex-
quadratic or semi-definite problems [10]. On the other hand, robust optimization of
computationally expensive problems, for which no structure can be assumed, has not
received as much attention [11–13]. Many practical problems are neither convex nor
cheap to simulate. Therefore, there is a strong need for effective strategies to be devel-
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oped that can tackle such problems.

In this work, we strive to develop generic, scalable and efficient methods for robust
optimization of black-box devices and systems that are based on expensive simulations
[14]. The primary application of the techniques is the robust optimization of integrated
photonic components and systems. However, the developed computational approaches
can be applied to many other problems under uncertainty as well.

Even though the computational power of the state-of-the-art computing machines is
improving with time, many engineering problems cannot be simulated reasonably well
in a short period of time. Computational facilities are constantly improving in order to
address this shortfall. However, even while considering the presence of super comput-
ers, large cluster resources, parallelization and ever improving GPU processing, there
remains a gap between the pace at which the complexity of the engineering problem is
increasing and the corresponding ability of computing resources to simulate these com-
plex problems in a reasonably short time. The issue is exacerbated by the fact that, as
computers become faster, users tend to simulate even more demanding problems.

Global, or even local, optimization of expensive simulations often requires many
evaluations of the design with different design parameters and disparate settings. Ap-
plying optimization directly on the simulation is often prohibitively expensive. When
simulating a single design requires, for example, one hour of computation, then serially
evaluating the design at only 4 locations per dimension for a problem with 10 dimen-
sions would require 410 = 1.05 million hours of computation. Such an extensive timeline
for obtaining a solution is not practical.

Different approaches can potentially be taken to efficiently optimize computation-
ally expensive problems [15]. Cheaper computational models can be developed. These
simulations could be based on physical models that have, for instance, a smaller mesh
size. Or a combination of cheap and more expensive physical models could be employed
[16]. Alternatively, a completely non-physical model that is based purely on mathemati-
cal equations could also be used [17]. The ultimate goal is to replace the expensive sim-
ulation with these cheaper models so that the optimization process could become more
efficient.

This replacement of the expensive simulation with a cheaper version, however, brings
with it a plethora of difficulties. The fidelity of the reference simulation is usually much
higher than it is for the cheap model [18]. This basically means that any optimal result
found on the cheap model can often not be trusted. Instead of reducing the amount of
error in the problem definition, in effect, by using cheap models, we increase the num-
ber of parameters with respect to which the problem must be robust. In such a scenario,
methods have to be devised that can adaptively improve a cheap model in regions that
are relevant for robust optimization. The ultimate aim is to employ relatively few iter-
ative improvements to obtain a solution that matches the robust optimum that would
have been found on the expensive simulation. The efficiency of such an iterative opti-
mization strategy heavily depends on the location at which the expensive simulation is
adaptively sampled. For this purpose, infill sampling criteria have to be developed that
enable the robust solution to be found using only a few expensive simulations. Equiva-
lent strategies exist for adaptive sampling of expensive simulations in order to reach a de-
terministic optimum [19]. However, extension of these approaches to non-deterministic
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TypeInformation

UNCERTAINTIES

Distribution
available

Implementation
error

Parametric
uncertainties

Simulation
error

Bounded-
but-unknown

Figure 1.2: Classification of uncertainties based on their type and the information available concerning the
uncertainty set.

problems requires further attention.

An important aspect of engineering problems is that they can often be decomposed
into several components [2]. Some of these components may be expensive to simulate
while others could be orders of magnitude cheaper. For these engineering problems, it
often makes sense to treat the problem at system level. Cheaper models can then be
constructed for the expensive parts of the problem, while the original complexity can be
retained for other parts that are cheap to compute [20]. Such a system level response
can often have higher fidelity. However, the transformation from component to system
level can complicate the derivation of a reasonable criterion for adaptively sampling the
component metamodels in regions of interest for system optimization [21].

1.2. OPTIMIZATION UNDER UNCERTAINTY
For devices and systems under uncertainty, robustness can be included in several ways.
The different approaches are largely governed by the amount of information that is avail-
able concerning the uncertainties involved in the problem. Figure 1.2 classifies uncer-
tainties in terms of their type and information availability. Broadly, uncertainties may
be categorized as either parametric uncertainties or implementation errors. Parametric
uncertainties are uncertainties that impact the parameters of the problem [22]. In the
context of this work, simulation error is treated as a subset of parametric uncertainties.
Implementation errors are variations that directly have an effect on the design variables
of the problem [14]. In general, implementation error can be written in terms of param-
eter uncertainties. However, rewriting the problem in such a way increases the dimen-
sions of the problem. This detrimentally impacts the efficiency of a metamodel based
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Uncertainties

In implementation In parameters In metamodel

Expensive simulationDesign variables Objective, Constraints

Robust optimizer Cheap model

Figure 1.3: Generic illustration of methodology employed for optimization under uncertainty of expensive to
evaluate device level problems.

approach since more samples are then needed to obtain a high fidelity metamodel re-
sponse.

As shown by Figure 1.2, the information about the uncertainties may be limited to
the bounds of the uncertainty set or the complete probability distribution within the
uncertainty set may be available. If the probability distribution of all uncertainties is
completely known then different moments of the distribution can be used to find a re-
liable and robust design. Stochastic optimization [23] and Reliability Based Design Op-
timization (RBDO) [24, 25] are the fields that explore this aspect. However, often such
detailed information about the engineering problems is either not available or is classi-
fied. In such situations, the extent of the information concerning the uncertainties may
only be limited to the bounds of the respective uncertainty sets. Such uncertainties are
sometimes referred to as bounded-but-unknown [26]. In this case, a robust optimum
can often only be found by computing the so called best worst-case cost of the problem
[27].

1.3. DEVICE LEVEL APPROACH
Figure 1.3 shows the approach taken in this work for robust optimization at device level.
In addition to the two types of uncertainties, implementation error and parameter un-
certainties, the uncertainty in the cheap model also has to be taken into account. This
is due to the fact that we apply robust optimization on a cheap model instead of on the
expensive simulation.

In this work, Kriging [27] is used as the mathematical modeling technique to replace
the expensive simulation. Kriging has a statistical basis that enables the error in its in-
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Component 2Component 1

Design variables, Uncertainties

. . . Component N

System

Figure 1.4: The bi-level problem, consisting of a set of components at one level and a system response at the
next level, is shown here.

terpolation to be estimated. This interpolation error estimate is of primary importance
in order to update and improve the cheap model in regions of interest. Jones et al. used
the interpolation error estimator together with the Kriging prediction in order to derive
several useful infill sampling criteria [28, 29]. Amongst these, the expected improvement
criterion was the most sophisticated and powerful in terms of global optimization of un-
constrained problems. Methods for handling constrained problems were first suggested
by Schonlau [30]. The approach suggested by Schonlau involved computing the proba-
bility of feasibility of each constraint based on the constraint metamodel response and
interpolation error. The method was recently further refined by Parr et al. [31, 32].

The expected improvement criterion is extended to different robust optimization
settings at device level. Separate infill sampling criteria are proposed for unconstrained
and constrained problems. Some infill sampling criteria are focused on problems af-
fected by implementation error only or parametric uncertainties only, while others can
handle problems affected by a combination of implementation error and parametric un-
certainties. We emphasize here that the methods developed in this work are not tied to
Kriging. In fact the developed techniques are applicable to any metamodelling approach
that provides a local error estimate.

1.4. SYSTEM LEVEL APPROACH
At the system level, we consider robust optimization of systems with a hierarchical struc-
ture where components do not exchange any coupling variables. Figure 1.4 visualizes
the bi-level problem. All the components of the system affect the system response but



1.4. SYSTEM LEVEL APPROACH

1

7

Uncetrainties

In implementation In parameters In metamodel

Expensive simulationDesign variables Cheap components

Robust optimizer System transformationCheap system

Figure 1.5: Generic illustration of methodology employed for optimization under uncertainty of system re-
sponse based on expensive to evaluate components. The blocks with red boundary indicate the items that
need to be included in order to apply system robust optimization instead of component robust optimization.

there is no interaction between components. The design variables and uncertainties can
however be shared across components. As shown by Figure 1.4, some design variables
and uncertainties may operate directly at system level. The setting shown in Figure 1.4
is only applicable to a subset of system level problems since we assume that the com-
ponents are independent. We consider this particular class of problems since integrated
photonic systems usually have such a hierarchical structure where the component re-
sponses can be computed independently and the system response is cheap. It is shown
that an efficient approach can be derived for solving this type of system. For system level
optimization of problems involving components that interact with one another, we refer
readers to the extensive literature in the field of Multidisciplinary Design Optimization
(MDO) [2, 33].

Figure 1.5 illustrates the methodology employed at system level to efficiently esti-
mate the robust optimum. The system will ordinarily consist of several components.
Metamodels are constructed for each expensive component. The metamodel error in
each component has to be included in the uncertainties of the system problem. The
component responses and component errors undergo a system transformation. The ro-
bust optimizer operates on the cheap system response.

Kriging is again used to construct the component metamodels. A system level er-
ror estimator is derived based on the component metamodels. A new infill sampling
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criterion based on expected improvement is proposed for both system deterministic op-
timization and system robust optimization.

1.5. THESIS STRUCTURE
Figure 1.6 illustrates the structure of this thesis. This work is divided into three main
parts. Part I and Part II concern computational methods at component and system level
respectively. Part III is focused on the application of the methods on integrated photonic
problems.

1.5.1. COMPONENT LEVEL ROBUST OPTIMIZATION

In Chapter 2 robust optimization is applied on unconstrained problems that are affected
by implementation error only. Kriging is used for the construction of the metamodel.
A novel expected improvement criterion that is adapted to enable robust optimization
instead of deterministic optimization is proposed. The special structure of the problem,
where uncertainties reside in the same dimension as the design variables, is harnessed
to devise the infill sampling criterion. The iterative optimization strategy is applied on
several numerical problems for which the method shows consistent convergence.

Chapter 3 focuses on expensive to simulate unconstrained problems affected by
parametric uncertainties. An efficient global robust optimization strategy is developed
using the Kriging framework. The primary novelty of this work is the formulation of infill
sampling criteria for the design variable space and the parametric uncertainty space. A
separate criterion is needed for the parametric uncertainties since they belong to differ-
ent dimensions of the design space than the design variables. The new sampling location
is searched for in two stages, firstly, in the design variables space and, secondly, in the
parametric uncertainties space. In the design variables space, the maximization of the
expected improvement criterion provides the location that is likely to give the highest
improvement over the best worst-case cost on the metamodel. On the other hand, max-
imization of the criterion in the parametric uncertainties space results in a new sampling
location that is likely to give the greatest deterioration in the worst-case cost.

The algorithm is tested on several benchmark test problems and its performance is
also compared with other techniques. In addition, robust optimization is performed
on a TripleX [34] based ring resonator affected by geometrical variations. A robust Full
Width at Half Maximum (FWHM) is found that deteriorates much less than the deter-
ministic solution in the presence of uncertainties. The application of this particular
chapter is more general compared to the implementation error method of Chapter 2,
since all problems affected by bounded-but-unknown uncertainties can be written as
problems affected by parametric uncertainties.

In Chapter 4, the scenario in which the expensive to simulate problem is affected by
both uncertainty types, i.e. implementation error and parametric uncertainties, is ad-
dressed. The algorithms described in Chapter 2 and Chapter 3 are combined in order
to address this problem. A novel infill sampling criterion is proposed that can explicitly
take into account the two distinct uncertainty types. It is shown that making a distinc-
tion between implementation errors and parametric uncertainties enables the proposed
algorithm to be more effective than other strategies for robust optimization of problems
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Figure 1.6: The structure of this thesis is visualized here. This work is divided into three main sections. In
the first part, we discuss component level robust optimization. Part II deals with techniques for system level
optimization. Part III is devoted to the application of the methods to integrated photonic systems.
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affected by both uncertainties.

The performance of the approach is showcased on several numerical problems as
well as on a TripleX based ring resonator. The waveguide width variation is considered as
an implementation error since the width is used as a design variable. On the other hand,
the uncertainty in the waveguide thickness remains a parametric uncertainty since the
layer thickness cannot be a design variable. The effectiveness of the strategy is confirmed
on the engineering example by showing that the robust optimum for the FWHM is de-
termined more efficiently than for the example shown in Chapter 3.

Robust optimization of constrained problems is discussed in Chapter 5. Given that a
majority of engineering problems are constrained, the algorithm proposed in this chap-
ter is the most important for robust optimization of expensive to simulate devices. Since
it is assumed that the constraints are also based on expensive simulations, Kriging meta-
models are constructed for each constraint. The probability of feasibility criterion for
constraints suggested by Schonlau et al. [30] is adapted to enable robust constrained
optimization instead of nominal constrained optimization. The method is applied on
five benchmark problems and on the TripleX single ring resonator example. Maximizing
the FWHM still remains the objective. Constraints are placed on the minimum extinc-
tion ratio and the maximum insertion loss. The algorithm is shown to exhibit steady
convergence towards the robust optimum on all test problems.

1.5.2. SYSTEM LEVEL DETERMINISTIC AND ROBUST OPTIMIZATION

Efficient global optimization at system level is discussed in Chapter 6. The method ad-
dresses optimization of systems consisting of expensive components that do not interact
with one another. Uncertainties are not considered in the problem and only determin-
istic optimization is performed. Kriging metamodels are constructed for the expensive
components. A system level error estimator is found based on a linear transformation
of the component level metamodel errors. A system level expected improvement crite-
rion is then proposed using the combination of the system response and system error
estimate. Expensive to evaluate constraints are incorporated in the problem by deriv-
ing a system level probability of feasibility criterion. The algorithm is tested on several
numerical problems and is found to outperform a space filling based metamodel con-
struction and optimization strategy. TripleX based serial ring resonators are used as the
engineering example. We choose a bandpass filter response at the through port as the
objective and construct component metamodels for the directional coupler section. It is
shown that the global optimum can efficiently be found for the serial ring resonators.

In Chapter 7 we propose efficient infill sampling criteria for system level global ro-
bust optimization. The method builds on the algorithm developed in Chapter 6. The
primary novelty is the induction of uncertainties in the problem. The system level ex-
pected improvement criterion found in Chapter 6 is updated to suggest locations that
could lead to the global robust optimum instead of the deterministic solution. In ad-
dition, a system level expected deterioration criterion is developed for the parametric
uncertainties domain. The probability of feasibility expression derived in Chapter 6 is
also adapted to address problems with uncertain constraints. The algorithm is applied
on the TripleX based serial ring resonator problem and the results are compared against
the system deterministic optimum found in Chapter 6.
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1.5.3. INTEGRATED PHOTONICS
System level robust design optimization of integrated photonic systems is discussed in
Chapter 8. The algorithm developed in Chapter 7 is applied on TripleX based second
and third order serial ring resonators in order to obtain a bandpass filter response. The
ease of applicability and efficiency of the system level approach is emphasized in the
context of integrated photonic problems. We show that the proposed system level robust
optimization method is generic, scalable and efficient. Furthermore, emphasis is placed
on the fact that the serial ring resonator example is merely used for demonstration of the
developed robust optimization methodology and that the component level and system
level algorithms proposed in this work can be applied to a varied set of problems within
and outside integrated photonics.

The conclusions derived from this thesis are presented in Chapter 9. Suggestions
for future work and possible improvements to the proposed techniques in this work are
also discussed. We analyze the strengths and weaknesses of the methods and place them
within the wider context of approaches developed for optimization under uncertainty at
device and system level.
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2
ROBUST OPTIMIZATION UNDER

IMPLEMENTATION ERROR

2.1. INTRODUCTION
Many engineering and structural problems involve uncertainties. If these uncertainties
are not taken into account during optimization, undesirable phenomena such as high
variations in performance are observed. Ben-Tal et al. [1] showed this by analyzing the
performance of an antenna array when subjected to slight perturbation in the nominal
data. The array was nominally optimized to attenuate sidelobes, but even small imple-
mentation errors in the design variables cause the radiation pattern of the antenna to
worsen dramatically in the region of interest.

Applying optimization directly on an expensive to evaluate computer simulation is
prohibitively costly. To avoid this problem, an approximate fast mathematical model
of the simulation can be constructed and optimization can be applied on the cheaper
model. There is a plethora of choices available in terms of building a cheap response
surface of an expensive simulation. These include, but are not limited to, polynomial
approximation, regression models as well as interpolation techniques such as radial ba-
sis functions, splines and Kriging.

The statistical framework of Kriging [2, 3] provides an estimator of the variance of
the Kriging interpolator; this variance is useful for performing adaptive sampling. Using
this potential error, different metrics have been proposed to efficiently find the deter-
ministic optimum of unconstrained problems [4]. Amongst these metrics, the expected
improvement measure and the Efficient Global Optimization (EGO) algorithm are adept
at finding the nominal optimum of unconstrained problems using only a small number
of expensive computer simulations [5, 6].

Efficient global optimization has been extensively applied on deterministic optimiza-
tion problems [7]. However, the strategy has not been widely used to solve optimization
problems that involve uncertainties. When the probability distributions of the uncer-
tainties are not available, the resulting robust optimization problem is a nested min-max

17



2

18 2. ROBUST OPTIMIZATION UNDER IMPLEMENTATION ERROR

optimization problem. Here the term nested optimization means that the objective to
be optimized is itself a result of an optimization. Formally speaking, robust optimization
is the minimization of the maximum possible realization of the objective with respect to
the uncertainty set, subject to the non-violation of the worst-case constraints. In this
work, we consider robust optimization of unconstrained problems. Given the impor-
tance of design under uncertainty, research in the field of robust optimization has seen
a steady increase in the past decades [8]. Application examples include, but are not lim-
ited to, structural design [9], portfolio selection [10], electromagnetic scattering [11] and
truss topology design [12].

With respect to the uncertainties involved in these problems, a clear distinction can
be made between implementation errors and parametric uncertainties. Implementa-
tion errors are those uncertainties that directly affect the design variables. Parametric
uncertainties, on the other hand, are defined as variations in the problem data or pa-
rameters.

Since robust optimization is a nested optimization problem, computing the robust
optimum requires a much greater amount of computational resources than the resources
needed to find the deterministic optimum. In this context, surrogate based optimization
techniques have the potential to drastically reduce the computational budget required
to solve such problems. In general, surrogates have often been used in conjunction with
evolutionary algorithms to find the robust optimum of unconstrained problems [13, 14].
To the best of our knowledge, the use of efficient global optimization to find the robust
optimum of unconstrained problems has previously only been explored by Marzat et al.
[15]. These algorithms, however, were all directed towards problems affected by para-
metric uncertainties.

Implementation errors can also be treated as parametric uncertainties. However,
there are certain inherent disadvantages in performing this conversion. When imple-
mentation errors are included as parametric uncertainties, then the total number of di-
mensions of the problem increases. Parametric uncertainties act independently of the
design variables and therefore belong to separate dimensions. Moving from a nomi-
nal optimization problem to a problem affected by implementation errors, on the other
hand, does not result in an increase in the total number of dimensions. This is because
implementation errors reside in the same dimensions as the design variables. Therefore
the pragmatic approach would be to treat uncertainties in the design variables as imple-
mentation errors. Based on this observation, we propose a modified adaptive Kriging-
based approach to this class of problems, and demonstrate its effectiveness.

In this work, robust optimization using a modified expected improvement criterion
is applied to unconstrained problems affected by implementation errors. Such uncon-
strained problems are often encountered in the field of integrated photonics [16], where
device analysis involves expensive computer simulations. Designers of integrated pho-
tonic devices typically do not have access to the probability distribution of the uncer-
tainties involved in the fabrication process. However, the bounds on the uncertainty
set are known. Therefore, in this work, it is assumed that no probability distribution
information is available concerning the uncertainty set and that the set is bounded-but-
unknown. In order to find the robust optimum, we have to compute the best worst-case
solution. This is evaluated by minimizing the maximum realizable value of the objective
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with respect to the uncertainty set.
The cost of the proposed algorithm is compared against other techniques such as the

method of Marzat et al. [15]. EGO was used by Marzat et al. for min-max optimization
of problems with parametric uncertainties. The focus in this work, on the other hand,
is on problems under implementation error. It is shown that, for problems affected by
implementation error, the proposed technique is much more efficient as it exploits the
particular structure of this class of problems. In addition, the algorithm is compared
with the classical approach of using space-filling sampling [17, 18] and applying robust
optimization on the resulting surrogate.

This chapter is organized as follows. Robust optimization of an unconstrained prob-
lem under implementation error is introduced in Section 2.2. We briefly discuss Kriging
and efficient global optimization in Section 2.3. In Section 2.4 we introduce the pro-
posed algorithm for the application of robust optimization to unconstrained problems
affected by implementation errors. Section 2.5 contains description of the test cases on
which the algorithm is applied while Section Bch2-sec:res and 2.7 consist of the results
and conclusions, respectively.

2.2. ROBUST OPTIMIZATION UNDER IMPLEMENTATION ERROR
Deterministic optimization [19] of an unconstrained problem can be stated as

min
x

f (x) (2.1)

where f (x) ∈ R is the objective function and x ∈ Rn is the set of design variables. If the
problem is affected by uncertainties the problem definition changes. Let us assume that
due to an error in implementation Δ ∈U , where U is the uncertainty set, x deviates from
its nominal value to a new value x+Δ. Assuming that the information of the probability
distribution of the set U is not available, the robust optimum can only be found by com-
puting the best worst-case solution. In other words, the maximum possible realization
of the objective function f (x+Δ) has to be minimized, instead of the nominal function
f (x). The problem is defined as

min
x

g (x) (2.2)

where
g (x) = max

Δ∈U
f (x+Δ). (2.3)

2.3. KRIGING AND EFFICIENT GLOBAL OPTIMIZATION (EGO)
2.3.1. KRIGING
Kriging is an interpolation technique based on statistics. In this work, a brief overview of
Kriging and efficient global optimization is provided, for a more in-depth study please
refer to [3, 6]. There are several types of Kriging formulations, but we assume the sim-
plest and most popular type; namely, Kriging with a constant mean and a Gaussian mul-
tiplicative correlation function.

Kriging assumes that the function response at a position x can be described as a nor-
mally distributed random variable Y (x) with mean μ and variance σ2. Furthermore, the
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function is assumed to be smooth and continuous. A parameterized Gaussian correla-
tion function is used to model the correlation between the responses at any two points
xi and x j ,

Corr
[
Y (xi ),Y (x j )

]= exp

(
−

k∑
q=1

θq
∣∣xi q −x j q

∣∣pq

)
. (2.4)

k represents the total number of dimensions of the problem. θq is a measure of how
influential the q th dimension is with respect to the design domain. Higher values of
θq denote greater influence. The parameter pq regulates the relative smoothness of the
function. Values of pq close to 2 represent smooth, differentiable functions. Values of
pq close to 0 model non-smooth, non-differentiable functions. A constant value of 2 is
assigned to pq in this work.

The parameters θq , μ and σ2 are estimated by choosing them such that the likeli-
hood of the observed data is maximized. Once the unknown parameters have been de-
termined, Kriging is used to predict how the function behaves in between the sample
points. This is performed by maximizing the combined likelihood of the observed data
and the predicted value. The Kriging prediction ŷ is defined as

ŷ(x) = μ̂+ r̂TR̂−1(y−1μ̂) (2.5)

where μ̂ is the maximum likelihood estimate for the mean μ. R̂ is the N ×N correlation
matrix between the N sample points, r̂ is the vector of correlations between the observed
data and the new prediction, while y is the observed response. Both the correlation vec-
tor r̂ and the correlation matrix R̂ are computed using Equation (2.4).

The statistical basis of Kriging gives an estimate of the error in the predicted re-
sponse. This mean squared error (MSE) is given by

s2(x) = σ̂2
[

1− r̂TR̂−1r+ 1−1TR̂−1r̂

1TR̂−11

]
. (2.6)

where σ̂2 is the maximum likelihood estimate for the varianceσ2. It should be noted that
the mean squared error, given by Equation (2.6), is only an approximate since we ignore
the fact that the Kriging parameters are estimated [20]. The MSE is zero at the sample
points since the true response of the function is known at these locations.

2.3.2. EFFICIENT GLOBAL OPTIMIZATION
The adaptive sampling strategy based on Expected Improvement (EI) in EGO can be used
to estimate the global minimum of a deterministic unconstrained problem. The EI met-
ric is constructed by assuming that the uncertainty in the Kriging prediction at any po-
sition x can be described in terms of a normally distributed random variable Y (x). The
mean of Y (x) is given by the predicted value ŷ(x) while the variance is given by the MSE
s2(x). Let ymin represent the minimum objective value in the sample data. The next
sampling point should be added at the location most likely to lead to the highest im-
provement over the current minimum ymin. The improvement I over ymin is defined as
I = max(ymin −Y ,0). The expected value of this improvement I determines the amount
of improvement that can be expected. The expected improvement is thus defined as

E [I (x)] = (ymin − ŷ)Φ

(
ymin − ŷ

s

)
+ sφ

(
ymin − ŷ

s

)
(2.7)
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1. Set n, εEI, NT
2. Choose initial

samples X = [x1, ...,xn]
3. Compute function

response y = [y1, ...,yn]

4. Construct Kriging
metamodel K f

5. Find xnew by
maximizing EI in
K f and set EImax
to max(E[I(x)])

6. Append xnew
to X and f (xnew)
to y, increment n

7. EImax > εEI
and n < NT

8. Return
xbest = arg min(y)

no
yes

Figure 2.1: Flowchart shows the Efficient Global Optimization (EGO) algorithm [6]. EGO uses expected im-
provement to find the deterministic optimum of an unconstrained problem using relatively few evaluations of
an expensive computer simulation.

where Φ(.) is the normal cumulative distribution function and φ(.) is the normal prob-
ability density function. The full derivation of EI can be found in [21]. Using a global
optimization algorithm, we can find the location at which the expected improvement is
maximum in the whole design domain. Since this is the location most likely to lead to the
highest improvement over the current minimum ymin, a new sampling point is added at
this location.

The flowchart in Figure 2.1 shows how expected improvement is used to find the
global nominal optimum of an unconstrained problem using relatively few samples. The
algorithm, known as Efficient Global Optimization (EGO), is initialized with n samples,
through a space-filling strategy, e.g., Latin hypercube sampling (LHS) [22]. At each itera-
tion the Kriging metamodel of the objective, represented by K f , is constructed. There-
after, the expected improvement metric is applied to the design domain. A new sample
is added at the location where the maximum EI is found. The algorithm terminates when
the total number of samples NT is exhausted or when EImax falls below the threshold εEI.
At this stage, xbest , the argument that yields the minimum value amongst the sampled
data is returned.
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2.4. ROBUST OPTIMIZATION USING EXPECTED IMPROVEMENT

2.4.1. CONCEPT AND CENTRAL IDEA
Thus far, we have described the algorithm for efficient global optimization that is used to
find the nominal optimum of an unconstrained problem. In the following discussion, a
novel algorithm is proposed for finding the robust optimum of an unconstrained prob-
lem. We demonstrate how a modified version of efficient global optimization can be
used to find this best worst-case cost.

The algorithm begins with the construction of a metamodel based on an initial set
of samples and responses. First, a reference robust optimum is computed on the meta-
model. A modified EI criterion is then applied. For each location at which the modi-
fied EI needs to be computed, a worst-case Kriging prediction, with respect to the un-
certainty set, is evaluated on the metamodel. We sample the location with the highest
expectation of improvement for the worst-case Kriging prediction over the reference ro-
bust optimum. At the following iterations, the process of finding the reference robust
optimum, evaluating the worst-case Kriging prediction on the metamodel and applying
EI is repeated until convergence.

2.4.2. ALGORITHM
This section is devoted to a detailed explanation of the proposed algorithm. The method
will from now on be referred to as Efficient Global Robust Optimization under Imple-
mentation Error (EGRO-IE).

The flowchart in Figure 2.2 illustrates the steps EGRO-IE follows in order to find the
global robust optimum of an unconstrained problem affected by implementation error.
Apart from three steps, highlighted by a thicker boundary for the flowchart boxes in Fig-
ure 2.2, the flowchart for EGRO-IE is the same as the one for EGO in Figure 2.1.

After initialization in Step 1, n initial sampling locations are generated using a design
of experiments (e.g. Latin hypercube sampling). The response at these sample locations
is computed on the expensive to evaluate function in Step 3. Based on the set of sam-
ples and responses, a Kriging metamodel K f of f (x) is constructed in Step 4. At this
point EGRO-IE deviates from the efficient global optimization algorithm. Step 5 is di-
vided into two sub-steps. In Step 5a, a reference robust optimum rK is computed on the
constructed metamodel K f ,

rK = min
x∈Rn

max
Δ∈U

K f (x+Δ). (2.8)

rK represents the best worst-case cost on the metamodel.
In Step 5b, the algorithm identifies the next sampling location xnew . This location

is found using a modified expected improvement criterion. The worst-case Kriging pre-
diction, with respect to the uncertainty set, at any position x in the design variable space
is

ŷmax(x) = max
Δ∈U

K f (x+Δ). (2.9)

The corresponding location within the range x+Δ, where ŷmax is found, is

xmax = x+arg max
Δ∈U

K f (x+Δ). (2.10)
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1. Set n, εEI, NT
2. Choose initial

samples X = [x1, ...,xn]
3. Compute function

response y = [y1, ...,yn]

4. Construct Kriging
metamodel K f

5a. Evaluate ro-
bust optimum rK

on metamodel

5b. Find xnew by
maximizing modified

EI on metamodel

6. Append xnew
to X and f (xnew)
to y, increment n

7. EImax > εEI
and n < NT

8. Return xbest = arg rK
no

yes

Figure 2.2: Flowchart shows the modifications applied to the Efficient Global Optimization (EGO) algorithm
[6] in order to efficiently find the robust optimum of an unconstrained problem affected by implementation
error. The modifications are highlighted by a bold boundary for the flowchart boxes.
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Figure 2.3: A one-dimensional function is shown on the left. A Kriging metamodel of the function is plotted in
the centre. For U ∈ [−0.05,0.05], the worst-case Kriging prediction ŷmax at x = 0.8 is indicated along with the
location xmax where it is found. On the right, the worst-case Kriging prediction with respect to U is plotted.
The reference robust optimum rK is the minimum value obtained on this plot.

When constructing K f , the design domain is scaled to a range of [0,1] across each
dimension. It is assumed that K f is only valid in the domain of x and we do not consider
extrapolation outside this domain. Let Δmax be the maximum realized Δ ∈U . Further-
more, assume that the range of U is symmetric around zero. Then it can be noted from
Equation (2.9) that we may not be able to compute ŷmax(x) if the sample is located at
x < Δmax or x > 1 −Δmax . This is because in this range there would be no nominal
metamodel K f to refer to. Therefore, the domain within which the worst-case Kriging
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prediction ŷmax is allowed to be computed is reduced to [Δmax ,1−Δmax ] across each
dimension.

Figure 2.3 illustrates some of the concepts that have been introduced so far. A one-
dimensional function f (x) is shown on the left. A Kriging metamodel K f of the function
is constructed based on a sample set. Let the size of the implementation error be given by
U ∈ [−0.05,0.05] for the scaled design domain x ∈ [0,1]. The bounds on the uncertainty
set U at x = 0.8 are displayed in the central plot. It can be seen that for x = 0.8 the worst-
case Kriging prediction ŷmax is found at the positive bound of U , i.e. at xmax = 0.85. Note
that in general xmax �= x, i.e. the worst-case generally occurs at a finite implementation
uncertainty. The plot on the right shows the worst-case Kriging prediction as a function
of x. The reference robust optimum rK is the minimum value found on this plot.

As in deterministic EGO, it is assumed that the uncertainty in the value of the worst-
case Kriging prediction, ŷmax, at any point xmax can be modelled using a normally dis-
tributed random variable Ymax(xmax) with mean ŷmax and variance s2(xmax). The term
s2(xmax) represents the Kriging mean squared error at xmax; see Equation (2.6). We em-
phasize that no distribution is assumed for the uncertainty set U and the implemen-
tation error remains bounded-but-unknown. The normal distribution introduced here
expresses the uncertainty in the worst-case Kriging prediction ŷmax.

The next sampling point should be added at the location most likely to lead to the
highest improvement over the current robust optimum rK . This improvement over rK

is defined as Iw = max(rK −Ymax,0). Iw represents the improvement of the worst-case
Kriging prediction over rK . The expected improvement is found by computing the ex-
pected value of the improvement Iw under the normal distribution setting,

E [Iw (xmax)]︸ ︷︷ ︸
EIw

=
∫Iw=∞

Iw=0
Iw

{
1�

2πs(xmax)
exp

[
− (rK − Iw − ŷmax)2

2s2(xmax)

]
d Iw

}
. (2.11)

Let

t = rK − Iw − ŷmax

s(xmax)
. (2.12)

Also take into consideration that the standard normal probability density function is de-
fined as

φ(z) = 1�
2π

exp

(−z2

2

)
. (2.13)

Then Equation (2.11) can be written as

E [Iw (xmax)] = (rK − ŷmax)
∫t= rK −ŷmax

s

t=−∞
φ(t )d t − s

∫t= rK −ŷmax
s

t=−∞
tφ(t )d t . (2.14)

The first integral in (2.14) is just the standard normal cumulative distribution function

Φ( rK −ŷmax
s ). The second integral in (2.14) can be solved by using the substitution z = −t 2

2 .
The final expression for EIw is given by,

E [Iw (xmax)] = (rK − ŷmax)Φ

(
rK − ŷmax

s

)
+ sφ

(
rK − ŷmax

s

)
. (2.15)
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To find the next sampling location, the global maximum of EIw in Equation (2.15) needs
to be found. For this, the design landscape in the range x ∈ [Δmax ,1−Δmax ] is scanned
using a global optimizer. For each location x requested by the optimizer, the worst-case
Kriging prediction ŷmax and the corresponding location where it is found, i.e. xmax, are
computed using (2.9) and (2.10 ) respectively. Once these quantities are found, EIw is
evaluated using Equation (2.15). The location xmax for which EIw is maximum is chosen
as the new sampling location xnew , where the expensive function is sampled. Comparing
(2.7) with (2.15) we note that the structure of EIw is similar to that of the deterministic EI.
However, EIw is a function of xmax instead of x. In the deterministic EI, the minimum ob-
served sample ymin was the reference solution over which an improvement was sought.
In the case of EIw , the expected improvement is computed over the global robust opti-
mum on the metamodel, rK . Secondly, the reference solution is now compared to the
worst-case Kriging prediction ŷmax instead of to the nominal Kriging prediction ŷ .

Using this adaptive sampling strategy, the algorithm steadily progresses towards the
robust optimum. As illustrated by Figure 2.2, EGRO-IE terminates when EImax falls be-
low the threshold εEI or when the total number of samples is exhausted. At this stage, the
algorithm returns the location, xbest , where the global robust optimum rK was found on
the metamodel in the last iteration, which was built using all the collected information.

2.4.3. DISCUSSION

As can be noted in the procedure outlined above, the worst-case Kriging prediction ŷmax

was computed as a deterministic quantity on the metamodel. As in the conventional
EGO procedure, it was then assumed that the uncertainty in the value of the worst-case
Kriging prediction can be modelled as a normally distributed random variable. The ex-
pectation of improvement of the worst-case cost over the reference robust optimum was
then computed using an expression similar to the deterministic EI (2.7).

The proposed approach to use the deterministic value for the worst-case cost on the
metamodel with respect to the uncertainty set is not entirely rigorous. Instead, the dis-
tribution of the maximum [23] should have been found given the assumption that the
Kriging surface is a Gaussian field. For this, additional assumptions would be necessary
on the joint distribution of all points. The expectation of improvement should have been
computed for this, generally non-Gaussian, distribution of the maximum. However, the
computational costs of finding the distribution of the maximum numerous times at each
iteration for the whole Kriging surface are prohibitively high. Furthermore, numerically
evaluating the integral for the expectation of improvement of a non-Gaussian distribu-
tion across the design domain at each iteration is also expensive. Balancing the value of
an expected improvement indicator function with its computational costs, we propose
to focus only on improvement of the most relevant point in each uncertainty interval,
i.e. the worst-case design. After all, EGO is only a heuristic, because it uses a sequence of
Kriging metamodels that are only approximations of the true function defined in Equa-
tion (2.1).
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2.5. NUMERICAL PERFORMANCE EVALUATION

2.5.1. FORMULATION OF TEST PROBLEMS

In order to evaluate the performance of the proposed algorithm, we apply it on a set
of test problems. The aim is to test various aspects of the algorithm. The most impor-
tant aspects to be tested are the ability of the algorithm to reach the global robust opti-
mum for a given test problem and the convergence speed. The performance of EGRO-IE
is compared to other methods that could potentially be used. Comparisons are made
against sampling using a design of experiments strategy such as Latin hypercube sam-
pling as well as against the MiMaReK algorithm proposed by Marzat et al. [15].

Due to the non-deterministic nature of the initial sampling, the results can vary from
one run to another. The robust optimum found by EGRO-IE should be reproducible
and consistent regardless of the random samples used to initialize the algorithm. In
order to guarantee convergence for different initial sample sets, all the test cases are run
100 times and the statistical output is analysed. In this section, we introduce the test
problems, while numerical results are presented in Section 2.6.

2.5.2. ONE-DIMENSIONAL PROBLEM

In order to illustrate the choices made by EGRO-IE at each individual step as it proceeds
towards the robust optimum, it is applied on a one-dimensional problem. A modified
version of the one-variable test function proposed by Forrester et al. [7] is used for this
purpose. This function is defined as

f (x) = (6x −2)2 sin(12x −4)+8x, x ∈ [0,1] (2.16)

0 0.2 0.4 0.6 0.8 1
0
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15

20
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f(
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Figure 2.4: One-dimensional test problem for EGRO-IE, modified from [7]. The test function is used to illustrate
the choices made by EGRO-IE at each individual step and to show how the algorithm proceeds toward the
robust solution.
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From Figure 2.4 it can be noticed that the function is non-convex and has two min-
ima whose objective values are very close to each other. The nominal global optimum
of the problem lies at 0.75. However, it can be seen that the local minimum that lies at
0.12 has a lower curvature than the nominal global minimum, so this local optimum is
the global robust optimum.

To test the ability of the algorithm to identify a nominally suboptimal minimum as
the global robust solution, an uncertainty range U that ensures that the robust optimum
lies at the lower curvature minimum at 0.12 is intentionally chosen. As mentioned pre-
viously, the one-variable problem also allows us to visually follow the evolution of the
algorithm as it adds new samples at each iteration and gradually identifies the global ro-
bust solution. A range of [−0.05,0.05] is appropriate for the uncertainty set U in order to
test the relevant aspects of the algorithm.

2.5.3. THREE-DIMENSIONAL PROBLEM
The one-dimensional problem enables us to observe the progress of the algorithm at
each iteration. However, the problem is too small in number of dimensions to judge the
ability of the algorithm to tackle higher-dimensional, multi-modal problems. In order to
evaluate the ability of the algorithm to converge to the global robust optimum of multi-
dimensional, non-convex problems it is tested on the following three-dimensional test
function,

f (x) =
(

x2 − 5.1

4π
x2 + 5

π
x1 −6

)2

+10

((
1− 1

8π

)
cos(x1)+1

)
+ (6x3 −2)2 sin(12x3 −4)+8x3,

x1 ∈ [−5,10], x2 ∈ [0,15], x3 ∈ [0,1]. (2.17)

This test function is a combination of the two-dimensional Branin function [24] and the
one-dimensional test problem that has been described previously. The one-dimensional
test problem is introduced into the test function through the third design variable. The
Branin function is a multimodal, non-convex function with three nominal minima, all
with the same objective value. Therefore, all three minima are nominally global. In the
third dimension the function has one local and one global nominal minimum.

The main aspect that needs to be tested using this function is the algorithm’s ability to
find the true global robust optimum of a multimodal, non-convex problem. The prob-
lem is very flat in certain parts of the domain but changes value dramatically in other
parts. In the third dimension, the function is relatively much flatter than in the other
two dimensions of the problem. Due to its flatness in some regions and its high sensi-
tivity to change in the design variables in other locations, the function is a challenging
test problem for EGRO-IE. The non-convexity of the problem enables us to evaluate the
ability of the algorithm to find the true global robust minimum rather than a robust local
minimum.

Before the metamodel building process, the three design variables are normalized so
that all of them lie in the range of [0,1]. The non-convex problem is tested with an uncer-
tainty set U which has the same number of dimensions as the non-convex problem. The
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size of the set is taken as [−0.125,0.125] across each dimension. This represents a ±12.5
percent maximum change in the design variables due to the implementation error.

2.5.4. EIGHT-DIMENSIONAL AND TEN-DIMENSIONAL PROBLEMS
The three-dimensional problem should sufficiently test the ability of the algorithm to
locate the global robust optimum of a non-convex function. However, to gauge the scal-
ability of the algorithm with respect to increasing number of design variables, the bench-
mark should be a higher dimensional problem. The following test function is proposed
for this criterion,

f (x) =
nt∑

i=1
exp(0.3xi )x2

i ,

xi ∈ [−1,1] ∀i . (2.18)

where nt is the total number of design variables. The nominal optimum of this con-
vex function would be at xi = 0 ∀ i . We test EGRO-IE using an eight-variable and a
ten-variable version of the problem in Equation (2.18). For the eight-dimensional prob-
lem, an eight-dimensional uncertainty set U is assumed. For the ten-dimensional prob-
lem, we assume a one-dimensional uncertainty set U that affects all the design vari-
ables equally. For both test-cases, the design variables are normalized so that they lie
in the range of [0,1]. Furthermore, the range of U is [−0.125,0.125] for both the eight-
dimensional and the ten-dimensional problem.

Given the range of the uncertainty set U , the robust optimum does not lie at the
same location as the nominal optimum for either test-case. The presence of the expo-
nential means that the function is not symmetric around the nominal optimum on the
origin. The resulting non-symmetric curvature of the problem results in a different opti-
mum once robust optimization is performed given the implementation error. Therefore,
with these functions it can be checked whether the algorithm can converge to a robust
optimum, that is different from the nominal optimum, of large multi-dimensional prob-
lems.

Since the test problem is convex, the worst-case cost is always found on the bounds
of the uncertainty set. On the test function, the reference robust optimum location can
be computed by finding the design variables x for which the lower bound and upper
bound of U return the same objective value. Shifting slightly from this location would
mean that the worst-case cost at one of the bounds would become higher than the worst-
case of the other bound. It can be shown that the robust optimum for this convex test
function is found at xi =−0.0094 ∀ i .

2.5.5. COMPARISON WITH OTHER TECHNIQUES
The results produced via EGRO-IE are compared against other techniques that could be
employed to find the robust optimum of a problem affected by implementation error.
The MiMaReK algorithm proposed by Marzat et al. [15] can be applied to the test prob-
lems. However, instead of using the property of implementation error that the uncer-
tainties reside in the same dimension as the design domain, the uncertainties would be
represented by environmental variables. Environmental variables reside in a dimension
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that is separate from the design domain. The problem is posed as

min
x

g (x,xe) (2.19)

where
g (x,xe) = max

xe∈U
f (x,xe). (2.20)

The environment variables are denoted by xe. As an example, the one-dimensional
problem, in this format, can be written as

f (x, xe ) = (6(x +xe )−2)2 sin(12(x +xe )−4)+8(x +xe ), x ∈ [0,1], xe ∈U (2.21)

EGRO-IE is also compared against the simple method of building K f using a design of
experiments strategy such as Latin hypercube sampling and applying robust optimiza-
tion on the resulting surrogate. This comparison is made for the non-convex three-
dimensional problem. U is assumed to have the same number of dimensions as the
number of design variables.

2.6. RESULTS

2.6.1. ONE-DIMENSIONAL PROBLEM
The algorithm is applied on the one-dimensional problem introduced in Section 2.5.2.
Fig. 2.5 shows snapshots of the progress of EGRO-IE as it tries to find the robust optimum
of the one-dimensional test problem. The parameters are set to εE I = 10−6, NT = 12, n =
2, U ∈ [−0.05,0.05]. The column of plots on the far left represent the nominal function
f (x) and its Kriging metamodel K f . The true worst-case cost g (x), computed using (2.3),
is shown in the middle column plots. The worst-case Kriging prediction is also plotted
on the central column. On the right column, EIw is plotted as a function of the design
variable x. The numbering on the far left denotes the current iteration of the algorithm.

In the first iteration, it is observed that K f is a relatively poor approximate of the
true nominal function, f (x). At this stage EIw is also quite high apart from at the sam-
ple point locations. From x = 0.6 to x = 1, EIw is almost flat. This takes place because
the Kriging RMSE remains relatively constant for this region. It can be noted that in the
following iterations, points are added in the range of x = 0 to x = 0.2. By the third iter-
ation, both the Kriging metamodel and the worst-case Kriging prediction approximate
the true functions f (x) and g (x) fairly well in this range. At the 7th iteration, EIw suggests
that points should be added at the other local minimum at 0.75. By the 9th iteration, the
Kriging metamodel and the worst-case Kriging prediction look visually indistinguishable
from f (x) and g (x). EIw has also dropped below the threshold εEI at this stage. The last
robust optimum location found, at x = 0.124, is returned as the final solution.

2.6.2. THREE-DIMENSIONAL NON-CONVEX PROBLEM
Next, EGRO-IE is tested on the three-dimensional non-convex problem. The dimensions
of the uncertainty set U are equal to the number of design variables. U varies in a range
of [−0.125,0.125] across each dimension. The total number of function evaluation avail-
able is assumed to be Nt = 125. This represents 5 function evaluations per dimension.
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Figure 2.5: Snapshots of the progress of the algorithm are shown when it is applied to the one-dimensional test
problem. By the 9th iteration EIw has gone below the threshold εEI and the robust optimum has been found.

The algorithm is initialized with n = 20 samples chosen using Latin hypercube sam-
pling. EGRO-IE is run 100 times with different initial sampling. Figure 2.6 shows the re-
sult. The triangular markers in the figure represent the mean, over 100 runs, of the robust
optimum rK found at each iteration. The error bars denote the first standard deviation
around the mean value. The solid black line represents the true robust optimum directly
evaluated on the three-dimensional non-convex function given the three-dimensional
uncertainty set U with range [−0.125,0.125].
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Figure 2.6: Robust optimum for three-dimensional non-convex problem for U ∈ [−0.125,0.125]. The plots
show the mean and standard deviation of the robust optimum achieved at each iteration of EGRO-IE.
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Figure 2.7: Robust optimum location for three-dimensional problem across each design variable when U ∈
[−0.125,0.125]. The plot shows mean and standard deviation of the best robust optimum location achieved for
each design variable for all iterations of EGRO-IE.

Observing Figure 2.6 it can be seen that the average robust optimum value drops
very fast from iteration 1 to 10. The corresponding standard deviation around this av-
erage also goes down fairly quickly at this stage. On the other hand, from the 11th to
the 25th iteration, the average robust optimum value does not improve further and in
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fact the standard deviation around the mean increases. This may be due to the fact that
the algorithm is exploring the general landscape at this point. The exploration does not
immediately improve the average robust optimum, but results in an overall more ac-
curate Kriging metamodel. From the 26th to the 40th iteration, the mean and standard
deviation of the robust optimum steadily go down again. This is followed by another
period, from the 41st to the 55th iteration, when there is little improvement. Again this
can be attributed to EIw being high in regions that have not been explored yet and that
could be potential robust optimum candidates. By the 80th iteration of EGRO-IE, the
average robust optimum is almost exactly the same as the true robust optimum value.
Furthermore, the standard deviation is also extremely small at this stage. Once the total
computation budget of Nt = 125 samples is exhausted, the average robust optimum is
visually indistinguishable from the true robust optimum. Similarly, at least visually, the
standard deviation seems to have become almost 0.
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Figure 2.8: Robust optimum for ten-dimensional problem given a one-dimensional uncertainty set U with
range [−0.125,0.125]. The plot shows mean and standard deviation of the best robust optimum achieved at
each iteration of EGRO-IE.

It is quite instructive to observe how the average robust optimum location, with re-
spect to each design variable, evolves with increasing number of iterations. Figure 2.7
plots the mean and standard deviations of the robust optimum location for each design
variable. Observing the figure, it can be noted that by the 25th iteration, the average ro-
bust optimum location for x1 and x2 has converged to the true robust optimum. The
standard deviation has also become quite small. However, the average robust optimum
location for x3 only converges to the exact location after 65 iterations. As mentioned
in Section 2.5.3, the function is relatively flat in the third dimension. Therefore, the al-
gorithm needs more samples to identify the true robust optimum in the x3 dimension.
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Figure 2.9: Robust optimum for eight-dimensional problem given an eight-dimensional uncertainty set U

with range [−0.125,0.125]. The plot shows mean and standard deviation of the best robust optimum at each
iteration of EGRO-IE.

2.6.3. EIGHT-DIMENSIONAL AND TEN-DIMENSIONAL PROBLEMS

Thus far we have illustrated the evolution of EGRO-IE when it is applied on a one-dimensional
problem. We have also demonstrated that the algorithm can find the global robust opti-
mum of a challenging non-convex problem. In the following, the scalability of the algo-
rithm is tested on an eight-dimensional and a ten-dimensional problem.

Figure 2.8 shows the result of applying the algorithm on the ten-dimensional prob-
lem (2.18) given a one-dimensional uncertainty set U with range [−0.125,0.125]. EGRO-
IE is initialized with n = 100 samples [25]. The algorithm uses a total of 230 function
evaluations. The figure shows that the average robust optimum falls quite quickly with
increasing number of iterations. The standard deviation around the average robust op-
timum value also goes down steadily. When the computational budget of 230 samples is
exhausted, the average robust optimum is quite close to the true robust optimum. Ad-
ditionally, the standard deviation is also quite small at this stage. EGRO-IE uses only 230
function evaluations to reach the robust solution. This number represents less than a
quarter of the number of samples needed to have 2 samples per dimension.

Finally, the algorithm is applied on the eight-dimensional problem (2.18) given an
eight-dimensional uncertainty set U with range [−0.125,0.125]. We initialize EGRO-IE
with n = 80 samples. Once again, the algorithm is allowed to use a total of 230 function
evaluations. Figure 2.9 shows the result. The mean and standard deviation of the robust
optimum go down steadily with increasing number of iterations. However, compared to
the ten-dimensional problem, the convergence is relatively slow. This is to be expected,
since the algorithm now has to search for the worst-case cost in an eight-dimensional
uncertainty set instead of a one-dimensional uncertainty set. By the 150th iteration, the
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Table 2.1: Comparison of statistics based on 100 runs of EGRO-IE and LHS on three dimensional non-convex
problem assuming a three-dimensional uncertainty set U of range [-0.125, 0.125]

Robust optimum Reference EGRO-IE LHS Function evaluations

Mean 24.95 25.10 27.27 100
Standard deviation - 0.129 1.595 100

Mean 24.95 24.98 25.96 120
Standard deviation - 0.027 0.9094 120

average robust optimum is close to the true solution and the standard deviation has also
decreased to a low value. For an eight-dimensional problem, filling the design landscape
with only 2 samples per dimension would require 28 = 256 total samples. EGRO-IE uses
less than 2 samples per dimension to locate an average robust optimum value that is
quite close to the true robust optimum.

2.6.4. COMPARISON WITH AVAILABLE TECHNIQUES

EGRO-IE was compared against other techniques such as Latin hypercube sampling and
the MiMaReK algorithm of Marzat et al. [15] for robust optimization of a problem af-
fected by implementation error. The MiMaReK algorithm is a more widely applicable
robust optimization algorithm in that it can also be applied to problems with paramet-
ric uncertainties while EGRO-IE is specifically meant for problems with implementation
error.

MiMaReK is used to find the robust optimum of the one-dimensional function (2.16).
Including uncertainties, the problem takes the form of Equation (2.21). We assume
U ∈ [0.05,−0.05] which is the same size as the problem that was solved by EGRO-IE.
Based on an average of 100 runs of EGRO-IE on the one-dimensional function, the ro-
bust optimum was found after 9 iterations of EGRO-IE. Since the problem was initialized
with n = 2, the total number of function evaluations required to find the robust solution
was 11. When MiMaReK is applied on the function to find the robust optimum of the
one-dimensional function, an average of more than 200 function calls was required to
reach the robust optimum. This is more than an order of magnitude of the number of
function evaluations required by EGRO-IE. The comparison of EGRO-IE with MiMaReK
of higher dimensional problems was therefore not necessary since EGRO-IE used much
less than 200 expensive function evaluations to find the global robust optimum of the
three-dimensional problem. Furthermore, the algorithm almost reached the robust op-
timum of the eight-dimensional and ten-dimensional problem using only 230 function
evaluations.

Next, EGRO-IE is compared with the application of a design of experiments strat-
egy such as Latin hypercube sampling to come up with a nominal metamodel on which
robust optimization is performed. Table 2.1 compares EGRO-IE and LHS for robust opti-
mization of the three-dimensional non-convex problem assuming a three-dimensional
uncertainty set U of range [-0.125, 0.125]. Both methods are run 100 times and the mean
and standard deviation of the robust optimum after 100 and 120 expensive function eval-
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uations are computed. The reference global robust optimum, evaluated directly on the
function, has an objective value of 24.95. Comparing the case when there are 100 func-
tion evaluations available, it can be noted that EGRO-IE has a much closer mean robust
optimum value to the reference robust optimum and the standard deviation around this
average is also an order of magnitude lower. Application of LHS and EGRO-IE based on
120 function evaluations also shows that EGRO-IE performs much better than LHS. At
this stage, the average robust optimum for EGRO-IE is very close to the true robust opti-
mum and the standard deviation is more than 30 times smaller than the corresponding
standard deviation for LHS.

2.7. CONCLUSION
In this chapter, we presented a novel method for finding the robust optimum of un-
constrained problems involving implementation error. The algorithm employs Kriging-
based optimization, specifically expected improvement and efficient global optimiza-
tion, to locate the robust optimum in a small number of function evaluations The spe-
cial structure of the problem, where uncertainties reside in the same dimension as the
design variables, was employed to devise an efficient method that uses a limited number
of function evaluations to reach the robust solution.

The algorithm was applied on four proposed problems under different settings of
the size and range of the uncertainty set for the implementation error. It was shown that
EGRO-IE can find the robust optimum of these problems, for all the settings that were
tested, in only a limited number of function evaluations. The results of the algorithm
were confirmed statistically by running it 100 times on the functions and averaging the
result. Other available techniques were also compared against the method. We observed
that the performance of the proposed method was superior in terms of finding the robust
solution in the lowest number of expensive function evaluations on the considered test
problems.

ERGO-IE is expected to be very efficient in finding the robust optimum of engineer-
ing problems affected by implementation error such as the expensive to simulate inte-
grated photonic devices [16]. We plan to apply EGRO-IE on these practical problems in
the near future. The algorithm also has to be extended in order to perform robust opti-
mization of problems affected by both implementation error and parametric uncertain-
ties. This provides a new challenge since parametric uncertainties operate in a different
dimension than the design variables of the problem.

Finding the global robust optimum of higher-dimensional problems is difficult since
it involves a nested global optimization. Although EGRO-IE demonstrates a clear ef-
ficiency improvement, dealing with higher-dimensional robust optimization problems
remains a challenge.
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3
ROBUST OPTIMIZATION UNDER

PARAMETRIC UNCERTAINTIES

3.1. INTRODUCTION
Most practical design problems have some degree of uncertainty associated with them.
Problems that are sensitive to even slight perturbations may give rise to suboptimal or
even infeasible solutions when optimized without incorporating uncertainties. The un-
certainties may be present in the parameters or in the design variables. Uncertainty in
the parameters is known as parametric uncertainty while uncertainty in the design vari-
ables is referred to as implementation error. Often the uncertainties are bounded-but-
unknown [1] and the probability distribution of the uncertainties is not available. In such
a scenario, robust optimization [2, 3] has to be applied to find a robust solution.

The basic idea of robust optimization is the minimization of the maximum realizable
value of the objective with respect to the uncertainty set, subject to the non-violation of
the worst-case constraints. Other terms such as best worst-case optimization or min-
max optimization are used to describe the same concept.

Due to its wide ranging applications, robust optimization has been a topic of intense
research in several different fields. Tackling robustness has been a fairly established con-
cept in robust control, please refer to [4] and the references therein for more detail. From
a purely engineering perspective, the pioneering paper was written by Taguchi [5]. Con-
siderable progress in robust optimization has been made in the field of mathematical
programming in recent years [2]. However, the focus has been limited to solving con-
vex problems of varying complexity. Min-max optimization has also received a lot of
attention in decision and game theory [6]. Work in this field has shown that for certain
convex-concave functions, the global robust optimum can be found by searching for a
saddle point solution [7]. Therefore, saddle point optimization has been used extensively
to find the robust optimum of such unconstrained min-max problems [7].

However, many practical robust optimization problems are not convex. Addition-
ally, the underlying simulation of these unconstrained continuous min-max problems

39
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could be expensive to evaluate. There is considerably less work on finding the global ro-
bust optimum of such non-convex unconstrained problems. Unconstrained continuous
min-max problems have many applications including, but not limited to, aerodynamic
shape design [8], finance [7], game theory [9], fault detection [10] and signal processing
[11]. Evolutionary algorithms have been used to find the global solution of such un-
constrained continuous min-max problems for which no special structure has been as-
sumed [8, 12–15]. However, using evolutionary algorithms to find the min-max solution
of such problems leads to extremely high computational costs since these algorithms
usually require very high number of function evaluations.

Since robust optimization involves solving a nested min-max problem, applying ro-
bust optimization directly on a problem based on an expensive computer simulation
usually leads to prohibitively high computational costs. Instead, one can sample the ex-
pensive function at carefully chosen points and build a response surface or surrogate
[16, 17]. However, the best sample placement depends on the characteristics of the un-
derlying function, which makes the sampling strategy itself a challenging problem. The
ultimate goal is to reduce the number of expensive function evaluations required to find
the optimum. Many different kinds of response surfaces can be used to build an ap-
proximate model. These include non-interpolating methodologies such as polynomial
and regression models as well as interpolating approaches, e.g. radial basis functions,
Kriging and splines.

Amongst the different techniques for response surface building, Kriging [18, 19] holds
distinctive appeal due to its statistical framework which enables an estimation for the
error in the interpolation between the sample points. This provides the groundwork
for the development of expected improvement [20] and Efficient Global Optimization
(EGO) [21, 22] procedures, which allow the adaptive placement of sample points at lo-
cations most likely to lead to the global optimum. EGO has successfully been applied in
deterministic unconstrained optimization, e.g. [23], while the convergence properties of
expected improvement have been established in [24]. A drawback of Kriging is that the
correlation matrix that contains the underlying basis functions may tend to suffer from
ill-conditioning [21]. Furthermore, it has also been shown that Kriging underestimates
the potential error in the interpolation [25].

In recent work [26, 27], expected improvement has also been applied to perform un-
constrained continuous min-max optimization of black-box functions. The robust so-
lution is found by transforming the min-max problem into a nominal constrained opti-
mization problem with constraint relaxation. Although the method uses less expensive
function evaluations compared to evolutionary algorithms [15], the number of expen-
sive function calls is still quite high.

This work also deals with global robust optimization of unconstrained continuous
min-max problems, where the uncertainties are considered to be bounded-but-unknown.
The black box function is assumed to be continuous and to be based on an expensive
simulation. To solve the min-max problem, we propose a technique that extends the es-
tablished Efficient Global Optimization (EGO) algorithm for deterministic optimization
to the non-deterministic case. At each iteration of the proposed algorithm, the prob-
lem is divided into a separate search for the next control variables sample location and
the next parametric uncertainties sample location. The EI criteria are suitably adapted
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to find the robust optimum instead of the nominal optimum using a small number of
expensive function evaluations. We compare the efficiency of our approach with other
methods using a set of standard test problems. Since the proposed algorithm is based
on surrogate construction, it is not suitable for solving very high-dimensional problems.
For a more in-depth discussion on challenges involved in applying surrogate-based op-
timization on high-dimensional problems we refer readers to [28].

This chapter is organized as follows. We introduce the problem in Section 3.2 and
provide the mathematical background of robust optimization for problems involving
parametric uncertainties. Section 3.3 contains a brief description of Kriging and Efficient
Global Optimization. In Section 3.4 a detailed description of the robust optimization al-
gorithm based on EGO is provided. Finally, Section 3.5 and 3.6 contain the results and
conclusions, respectively.

3.2. ROBUST OPTIMIZATION OF UNCONSTRAINED PROBLEMS

AFFECTED BY PARAMETRIC UNCERTAINTIES
The considered problem may formally be stated as

min
xc∈Xc

max
xe∈Xe

f (xc ,xe ), (3.1)

where xc is the set of control variables while xe is the set of parametric uncertainties or
environment variables. No special structure, such as convexity or monotonicity, etc. is
assumed for the function f (xc ,xe ). However, f (xc ,xe ) is assumed to be continuous. We
seek to find the global min-max solution of f (xc ,xe ). The function is assumed to be ex-
pensive to evaluate and under this constraint, our aim is to develop a method that finds
the location of the global best worst-case cost using a small number of function eval-
uations. This is done by estimating the robust optimum location on a relatively much
cheaper surrogate model built using Kriging. The problem may be written as,

min
xc∈Xc

max
xe∈Xe

K f (xc ,xe ), (3.2)

where K f is the continuously differentiable Kriging model of the expensive to evalu-
ate function f (xc ,xe ). The primary contribution in this work is to provide an adaptive
sampling scheme, dedicated to the robust optimization setting, such that the Kriging
function models the behaviour of the reference function f (xc ,xe ) very accurately in re-
gions of interest, i.e. potential robust optimum locations, using relatively few expensive
function calls of f (xc ,xe ).

In principle, any global optimization approach can be used to perform the min-max
optimization in Equation (3.2). However, since the Kriging model is available and the
Jacobian, Hessian information can be obtained cheaply as well, optimizers that leverage
this information would be preferable. In this context there are several promising algo-
rithms that could be used to perform robust optimization on the surrogate model. It
should be noted that solving Equation (3.2) is equivalent to solving a semi-infinite opti-
mization problem [29] since Equation (3.2) can be written as a constrained minimization
problem over an infinite number of constraints. For a survey of the state of the art meth-
ods that solve Equation (3.2) via a semi-infinite programming approach please refer to
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Figure 3.1: Contour lines of the reference function f11(xc ,xe ). Used to illustrate the choices made by the pro-
posed algorithm at different stages.

[30]. Many of the algorithms reviewed in [30] require first and second order derivative
information for the specified function, which can easily be provided for the continuously
differentiable Kriging function.

A strategy that does not require gradient information is that of redefining Equation
(3.2) as a constrained minimization problem [31] and using constraint relaxation to re-
duce the continuous set Xe to a finite discrete set. This method was used for min-max
optimization in combination with Kriging by [27].

In this work, our focus is on the adaptive sampling strategy instead of on the particu-
lar method chosen to solve the optimization problems on the resulting surrogate model.
Nevertheless, in the optimization process we have opted to make full use of the avail-
ability of the Jacobian and Hessian information. Details on the applied optimizers are
given in Appendix B.

Throughout this work, the 11th test problem from Appendix A will be used to illus-
trate the steps taken by the proposed algorithm,

f11(xc,xe) =
cos(

√
x2

c1 +x2
e1)√

x2
c1 +x2

e1 +10
. (3.3)

The problem is a damped cosine wave in two dimensions with Xc ∈ [0,10] and Xe ∈
[0,10]. As shown by Fig. 3.1, the function is non-convex and multimodal. Both xc and
xe have been rescaled such that the design domain is in the range [0,1]. The oscillatory
behaviour of the function in both dimensions suggests that it is a non-trivial problem
even for nominal global optimization. Therefore, finding the global min-max solution
is also a challenging exercise. The problem will be used in Section 3.4 to visualize the
steps involved in the algorithm. In Section 3.5 it will be employed to demonstrate the
evolution of the algorithm as it searches for the global robust optimum.
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3.3. KRIGING AND EFFICIENT GLOBAL OPTIMIZATION

3.3.1. KRIGING
Kriging is an interpolation method that uses a stochastic process approach to construct
a cheap model of the expensive function. In this work, Kriging is basically used as a
fitting technique for the deterministic simulation data. A detailed derivation of Kriging
surrogate construction and prediction can be found in [19]. In this section, a concise
description of Kriging and EGO is provided, while omitting details of the derivation.

The function response at any position x in the domain is assumed to be a normally
distributed random variable Y (x) with mean μ and variance σ2. Each random variable
in this stochastic process is assumed to be correlated to other random variables via the
following parameterized Gaussian correlation function,

Corr
[
Y (xi ),Y (x j )

]= exp

(
−

k∑
q=1

θq
∣∣xi q −x j q

∣∣p

)
(3.4)

where xi and x j are any two locations in the domain and k represents the total number of
dimensions of the problem. We set p to a constant value of 2. The correlation is therefore
governed by the parameter θq and the distance between the points. The correlation is 1
when xi = x j and it drops as the distance between the points increases. θq determines
how active the q th dimension is in shaping the cheap response. A higher value of θq

means that the correlation will fall relatively quickly with respect to the q th dimension
as the distance between the points increases. A lower value of θq for the q th dimension,
on the other hand, will result in a relatively slower fall in correlation with increasing dis-
tance. This would also lead to a comparatively flatter response with respect to the q th

dimension.
The maximum likelihood estimator for a normal distribution is used to find values

for θq , μ and σ2 such that the likelihood of the observed data is maximized.
Once these model parameters are found, Kriging estimates the interpolation between

the sample points that is most consistent with the observed data. The value of the re-
sponse at these locations is found by maximizing the combined likelihood of the ob-
served data and the Kriging prediction. The Maximum Likelihood Estimate (MLE) for
the prediction ŷ is given by

ŷ(x) = μ̂+ rTR−1(y−1μ̂), (3.5)

where μ̂ is the estimated value for the mean, R is the N ×N correlation matrix between
the N sample points, r is the vector of correlations between the observed data and the
new prediction, while y is the observed response. We find the values for the correlation
vector r and the correlation matrix R via Equation (3.4). It can be noted from Equation
(3.5) that the Kriging predictor is simply a linear combination of basis functions and a
constant.

One of the advantages of the stochastic process assumption in Kriging is that the
error in the predicted response ŷ(x) can be estimated. The mean squared error (MSE) in
the prediction is given by

s2(x) = σ̂2
[

1− rTR−1r+ 1−1TR−1r

1TR−11

]
, (3.6)
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1. Set NT, εEI, n
2. Choose initial

samples X = [x1, ...,xn]

3. Compute func-
tion response

y = [y1, ...,yn] = f (x)

4. Construct Kriging
metamodel K f

5. Find xnew by max-
imizing EI in K f . Set
EImax = max(E[I(x)])

6. Append xnew
to X and f (xnew)
to y, increment n

7. EImax > εEI
and n < NT

8. Return
xbest = arg min(y)

no
yes

Figure 3.2: Flowchart of the Efficient Global Optimization algorithm [21]. The algorithm uses Kriging and
expected improvement to find the nominal optimum of an unconstrained problem with relatively few function
calls of an expensive to evaluate function.

where σ̂2 is the maximum likelihood estimate of the variance σ2. The fraction term in
Equation (3.6) represents the estimated error in using a maximum likelihood estimate μ̂

for the mean to compute the error instead of using the true mean. An intuitive expla-
nation of the mean squared error in terms of the combined log-likelihood between the
observed data and the prediction can be found in [21], while the full derivation of Equa-
tion (3.6) is available in [19].

3.3.2. EFFICIENT GLOBAL OPTIMIZATION

The estimated MSE enables adaptive sampling of the constructed surrogate. Therefore,
it proves useful in order to efficiently reach the global deterministic optimum of an ex-
pensive to evaluate function. The adaptive sampling strategy of expected improvement
is also based on the MSE [21]. To formulate the expected improvement metric, entirely
new assumptions have to be made. In this formulation, the uncertainty in the predicted
value ŷ(x) at any position x in the domain is described as a random variable Y (x) having
a normal distribution. The mean and the variance of this distribution are assumed to be
given by the Kriging prediction ŷ(x) and the mean squared error ŝ2(x) respectively. Let
ymin denote the minimum objective value in the observed responses. We may be able to
improve on ymin at a position x if a part of the distribution Y (x) lies below the current
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minimum. We find the expectation of this improvement I by computing the expectation
E [I (x)] = E [max(ymin−Y ,0)]. Using integration by parts, the expected improvement can
be written as

E [I (x)] = (ymin − ŷ)Φ

(
ymin − ŷ

s

)
+ sφ

(
ymin − ŷ

s

)
(3.7)

where Φ(.) is the normal cumulative distribution function and φ(.) is the normal prob-
ability density function. By finding the position in the design domain where EI is max-
imum we get an indication of where adding a new point would be most beneficial. In
this way, the Kriging prediction ŷ and the error estimate ŝ2 enables the development of
the methodology of expected improvement (EI) and efficient global optimization (EGO)
[21]. Based on the Kriging prediction and MSE, EI gives an indication of the best location
to sample in order to improve on ymin. Using the EI strategy, EGO is able to converge to
the global optimum of the problem by adding new data points until the maximum EI is
sufficiently low.

The flowchart in Fig. 3.2 shows how EGO makes use of EI to find the global optimum.
NT is the total number of sample points available. This is determined by the simulation
time and cost. The initial number of samples, n, is chosen through uniform sampling for
single design variable problems or through a space-filling strategy, e.g., Latin hypercube
sampling (LHS) [32] for two or more design variables. The Kriging metamodel of f (x) is
denoted by K f . The algorithm terminates when either EImax falls below the threshold
εE I or the total number of samples NT is consumed.

3.4. EFFICIENT GLOBAL ROBUST OPTIMIZATION OF PARAMET-
RIC UNCERTAINTIES AFFECTED PROBLEMS

3.4.1. MAIN CONCEPT
We propose an efficient global robust optimization algorithm for finding the best worst-
case cost of unconstrained problems affected by parametric uncertainties. The primary
goal of this method is to find the global robust solution using a relatively small number
of expensive function evaluations. Before expounding the algorithm, the main concept
behind the technique will be discussed.

The proposed algorithm is similar to the efficient global optimization technique in
that both methods employ an initialization phase followed by an iterative surrogate-
based optimization approach, where the optimal sampling location at each iteration is
chosen via adaptive sampling. We refer to the proposed method as Efficient Global Ro-
bust Optimization (EGRO).

During the initialization phase, the underlying expensive simulation is sampled in
the control and environment variable space, (Xc ,Xe ), using an appropriate design of ex-
periments strategy. Based on the sampled set, an approximate model that encompasses
the combined space (Xc ,Xe ) is constructed using Kriging.

This is followed by the iteration phase, in which the expensive function is adaptively
sampled by evaluating it at the location that is most expected to improve the current ro-
bust optimum. The sampling location is searched for in two stages, firstly, in the control
variable space (Section 3.4.3) and secondly in the environment variable space (Section
3.4.4). For both stages, the control variables and environment variables location is found
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by using modified versions of the expected improvement criterion. Thereafter, the ex-
pensive function is evaluated at the new location. The Kriging metamodel is then rebuilt
with the augmented set of sampling locations and responses. The process of finding the
new sampling location is repeated until convergence.

3.4.2. ALGORITHM

1. Set n, εEI, NT
2. Choose initial

samples X = [x1, ...,xn]
3. Compute function

response y = [y1, ...,yn]

4. Construct Kriging
metamodel K f

5a. Find robust opti-
mum rK on metamodel

5b. Find xnew
c by

maximizing EIc
on metamodel

5c. Find xnew
e by

maximizing EIe
on metamodel

6. Append xnew
= (xnew

c , xnew
e ) to

X and f (xnew)
to y, increment n

7. n < NT and
EImax

c > εEI
8. Return xbest = arg rKyes

no

Figure 3.3: Flowchart shows the algorithm for efficient global robust optimization of parametric uncertain-
ties affected problems (EGRO). The steps with the bold borders represent the changes that have been made
to the EGO algorithm in Fig. 3.2 in order to incorporate robust optimization in the presence of parametric
uncertainties.

Fig. 3.3 shows a flowchart that helps to visualize the main steps involved in the pro-
posed algorithm. Comparing EGO (Fig. 3.2) and EGRO (Fig. 3.3), we observe that four
steps, highlighted by a bold border for the flowchart boxes, have been added.

After initialization in Step 1, n initial sampling locations are chosen in the combined
control and environment variable space through a space-filling technique in Step 2. The
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Figure 3.4: The Kriging metamodel of a two-dimensional function is shown in (a). The worst-case Kriging
prediction, ŷmax, is plotted in (b). The reference robust optimum rK is the minimum value obtained on ŷmax.
EIc is plotted in (c). xnew

c is the global maximizer of EIc .

response at these sampling locations is evaluated on the expensive function in Step 3.
Thereafter, a Kriging metamodel K f of f (x) is constructed using the samples and re-
sponses. Step 5 is divided into three sub-steps. In Step 5a, a reference robust optimum
solution rK is searched for on the constructed metamodel K f ,

rK = min
xc∈Xc

max
xe∈Xe

K f (xc ,xe ). (3.8)

In Step 5b and 5c, the algorithm identifies the next location xnew at which the ex-
pensive function should be evaluated. The location corresponding to the highest ex-
pectation of improvement over the current robust optimum rK is chosen as xnew . The
search for xnew is performed by consecutively finding the control variables xnew

c and the
environment variables xnew

e . The key steps are treated in the next subsections.

3.4.3. OPTIMAL SAMPLING LOCATION IN Xc
In order to find xnew

c we limit the search space to the control variable space Xc only.
xnew

c should be the location in the control variable space that is expected to give the
highest improvement over the current robust optimum rK . To compute the expectation
of improvement we need to know the worst-case Kriging prediction across the whole
control variable space:

ŷmax (xc ) = max
xe∈Xe

K f (xc ,xe ) (3.9)

and the corresponding maximizer in the environment variable space Xe is denoted by
xmax

e .
Fig. 3.4 visualizes the steps described so far. Fig. 3.4a shows a Kriging metamodel

of the damped cosine function of one control variable and one environment variable
plotted in Fig. 3.1. The worst-case Kriging prediction ŷmax is plotted in Fig. 3.4b. The
robust optimum rK is the minimum value on this curve. rK is determined in Step 5a.

As in deterministic expected improvement, we assume that the uncertainty in the
value of the worst-case Kriging prediction, ŷmax, at any point (xc ,xmax

e ) can be mod-
elled using a normally distributed random variable Ymax with mean ŷmax and variance
s2(xc ,xmax

e ). The term s2(xc ,xmax
e ) represents the Kriging mean squared error at (xc ,xmax

e ).
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An improvement of the worst-case Kriging prediction ŷmax over the current robust
optimum rK occurs when Ymax < rK . The expected improvement is found by com-
puting the expected value of the improvement Ic = max(rK −Ymax ,0) under the normal
distribution setting,

E [Ic (xc )]︸ ︷︷ ︸
EIc

=
∫Ic=∞

Ic=0
Ic

exp
(
− tc

2

2

)
�

2πs
d Ic , (3.10)

with

tc = rK − Ic − ŷmax

s
, s = s(xc ,xmax

e ) (3.11)

Since the standard normal probability density function is defined as

φ(z) = 1�
2π

exp

(−z2

2

)
, (3.12)

the modified expected improvement criterion EIc can be simplified as

E [Ic (xc )] = (rK − ŷmax)
∫tc= rK −ŷmax

s

tc=−∞
φ(tc )d tc

− s
∫tc= rK −ŷmax

s

tc=−∞
tcφ(tc )d tc . (3.13)

We recognize the first integral in (3.13) as the normal cumulative distribution function

Φ( rK −ŷmax
s ). The second integral in (3.13) can be solved by using the substitution z =

−tc
2

2 . The final expression for EIc is

E [Ic (xc )] = (rK − ŷmax)Φ

(
rK − ŷmax

s

)

+ sφ

(
rK − ŷmax

s

)
. (3.14)

The global maximizer of Equation (3.14) is the new control variable location xnew
c at

which the expensive function should be evaluated since this is the control variables loca-
tion that gives the highest expectation of improvement. The flowchart in Fig. 3.3 shows
that we search for this global maximizer in Step 5b. Fig. 3.4c shows the expected im-
provement EIc as a function of xc , along with the location of the maximizer xnew

c . Com-
puting rK and EIc could be computationally expensive since they both involve estima-
tion of ŷmax. For a more in-depth discussion on calculation of rK and EIc please refer to
Appendix B.

3.4.4. OPTIMAL SAMPLING LOCATION IN Xe
Once xnew

c has been identified, we need to find the location xe , in the environment vari-
able space Xe , at which the expensive function should be evaluated. In this space, the
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Figure 3.5: The Kriging metamodel of a two-dimensional function is shown in (a) along with the location
of xnew

c . The Kriging prediction at xnew
c , corresponding to the red line on the left plot, is plotted as a one-

dimensional function with respect to xe in (b). EIe is plotted in (c). xnew
e is the global maximizer of EIe .

worst-case cost (maximum) is of interest. Let the deterministic maximum on the meta-
model, with respect to xe , at the new control variable location xnew

c be given by

gK (xnew
c ,xe ) = max

xe∈Xe
K f (xnew

c ,xe ). (3.15)

Fig. 3.5a shows the same Kriging metamodel of the damped cosine problem as Fig. 3.4a.
The new sampling location in the control variable space, xnew

c , is indicated. The Kriging
surface along the red line at xnew

c is reproduced as a function of xe in Fig. 3.5b. The
maximum on this slice of the Kriging surface gives the reference worst-case cost gK .

In order to find xnew
e , a modified expected improvement criterion is employed once

again. To formulate the EI measure, it is again assumed that the uncertainty in the value
of the Kriging prediction ŷ(xnew

c ,xe ) at any point (xnew
c ,xe ) can be modelled using a nor-

mally distributed random variable Y with mean ŷ and variance s2(xnew
c ,xe ).

Note that when computing an improvement in the control variable space we were
searching for the global minimum of the worst-case function. In the environment vari-
able space we are searching for the global maximum of the function at xnew

c . An im-
provement is sought over the current maximum gK and this occurs when Y > gK . We
define an improvement Ie over gK as Ie = max(Y −gK ,0). Given the normal distribution
setting, the expected improvement can be written as,

E [Ie (xnew
c ,xe )]︸ ︷︷ ︸
EIe

=
∫Ie=∞

Ie=0
Ie

exp
(
− te

2

2

)
�

2πs
d Ie , (3.16)

with

te = ŷ − Ie − gK

s
, s = s(xnew

c ,xe ). (3.17)

Using derivation similar to the one shown for EIc , the expected improvement simplifies
to

E [Ie (xnew
c ,xe )]︸ ︷︷ ︸
EIe

= (ŷ − gK )Φ

(
ŷ − gK

s

)
+ sφ

(
ŷ − gK

s

)
. (3.18)
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The global maximizer of Equation (3.18) is the new environment variable location
xnew

e at which the expensive function should be evaluated. Step 5c in Fig. 3.3 involves
the search for this global maximizer. Fig. 3.5c shows the expected improvement EIe as a
function of xe , and the location of the maximizer xnew

e .
Next, in Step 6 of the flowchart, the expensive to evaluate function f is sampled at

(xnew
c ,xnew

e ). Step 7 is a conditional statement. If the total number of samples avail-
able is not exhausted or EImax

c is greater than the threshold εE I , the algorithm returns to
Step 4 where the Kriging metamodel is reconstructed with the additional sample and the
process of finding xnew is repeated. Otherwise, the algorithm terminates in Step 8 and
the argument of the last robust optimum found, rK , is returned as the robust optimum
location, xbest .

3.4.5. ALGORITHM CHOICES AND RATIONALE
Here we discuss two important choices made in the definition of the EGRO algorithm.

1. Use of EIe

Instead of computing the expected improvement EIe in the environment variable
space, a simpler option could have been to sample the location of the deterministic max-
imum gK . However, sampling the location of the deterministic maximum at xnew

c is not
viable since this often leads to the algorithm resampling the same location in the next
iterations. The algorithm would stall in such a situation and would fail to converge. Fur-
thermore, not only would the resampling be a waste of expensive function evaluations,
but it would also cause the Kriging correlation matrix R to become ill-conditioned. The
use of EIe effectively avoids such problems because the uncertainty near sampled points
is low, resulting in low EI values.

2. Formulation of EIc

The expression for EIc , Equation (3.10), is approximate since we lack vital informa-
tion to find the exact expression. In our formulation of EIc , we first evaluated the deter-
ministic maximum ŷmax, with respect to the environment variable space Xe , for a fixed
xc . This evaluation was repeated until the worst-case Kriging prediction was known for
the complete Xc space. Thereafter, we imposed the assumption that each point on the
deterministically found worst-case Kriging prediction surface is actually a random vari-
able, whose mean is given by ŷmax and variance is given by the Kriging mean squared
error. This assumption enabled us to find an analytical expression for EIc (3.14) similar
to the one for the nominal EI (3.7).

To find the exact expression for EIc , we need to first retain the assumption from deter-
ministic EGO that each point on the Kriging surface is a random variable, whose mean is
given by the Kriging prediction and variance is given by the Kriging mean squared error.
Now we are interested in finding the distribution of the maximum [33], with respect to
the environment variables, for a fixed xc . However, to perform this operation, additional
assumptions concerning the joint distribution of the random variables are required. In
all likelihood, the distribution of the maximum would be non-Gaussian and the com-
putation of expected improvement would require numerical integration [34]. The lack
of joint distribution information and the high cost of performing numerical integration
makes exact evaluation of EIc less attractive. Therefore, a more pragmatic approach of
computing the worst-case Kriging prediction as a deterministic quantity and imposing
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a Gaussian distribution assumption on ŷmax was taken to find an analytical expression
for EIc . Further details on the rationale behind this approach may be found in [34]. To
what extent this choice affects the effectiveness of EGRO is investigated using numerical
benchmark tests.

3.5. RESULTS

3.5.1. TEST PROBLEMS AND EVALUATION METHODOLOGY

The algorithm is tested on a set of standard robust optimization problems from literature
of varying dimensions and type. The 13 test problems are provided in the Appendix.
Problems 1 to 7 have been applied in [7, 27] while problems 8 to 13 have been used in
[8, 12, 13, 15, 26, 27].

To illustrate the practical value of the algorithm, an engineering case study has been
added to the set of numerical examples. The engineering problem is that of an optical
filter that can be affected by manufacturing uncertainties, leading to deterioration in
parameters of interest.

The first seven problems, f1 to f7, are convex in the control variable space xc and con-
cave in the environment variables space xe . These problems have been optimized using
saddle-point optimization in [7] while a Kriging-based optimization approach has been
used in [27]. Problem f1 to f3 are 4 dimensional with 2 dimensions in Xc and 2 dimen-
sions in Xe . The largest problem is f7 which has 5 dimensions in Xc and 5 dimensions in
Xe .

Test problems f8 to f13 have been widely used by the evolutionary optimization com-
munity [12–14] to test evolutionary methods designed to optimize min-max problems.
The same problems have also been tested by Marzat et al. [26, 27]. The problems have
a relatively smaller size, with a maximum of 4 dimensions. Some of the test problems,
such as f10 and f11, are especially difficult to optimize due to the non-convex and highly
multimodal behaviour of the functions.

All the test problems used as numerical examples in this work are established bench-
mark problems for robust optimization using surrogates. By using these benchmarks,
the performance of the proposed algorithm can easily be compared against state of the
art methods in literature in terms of number of expensive function calls needed to reach
the global robust optimum. The reference results for function f1 to f7 have been solved
to theoretically global robust optimality [7]. Amongst the algorithms in literature, the
MiMareK 1 and MiMareK 2 algorithms [26, 27] converge to the global robust optimum
in the lowest number of expensive function evaluations. In this work, we compare the
converge speed of EGRO in terms of number of expensive function evaluations required
to reach the global robust optimum against currently available methods.

When constructing the metamodel, we choose the initial sampling locations using
a space-filling technique such as Latin hypercube sampling. Since this type of initial
sampling is non-deterministic, the algorithm is run 100 times on each test case and the
results are averaged. The repeatability of the algorithm for random initial sampling is
thereby tested. The average results are compared against other techniques used for min-
max optimization.

For all problems, the initial number of sampling locations are chosen as n = 10×nd ,
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where nd represents the number of dimensions. The threshold for termination for EImax
c

is fixed at ε= 10−7. The maximum number of function evaluations available is different
for each function. However, this number is not allowed to exceed NT = 35×nd for any
problem.

ymax
ŷmax
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Figure 3.6: Snapshots of the progress of the algorithm applied to f11(xc ,xe ). The left column shows the Krig-
ing metamodel K f of the function. The best worst-case expected improvement EIc is plotted in the central
column. The right column shows the deterministic worst-case cost ŷmax on K f and the true worst-case cost

ymax, which is provided as a reference. By the 24th iteration the robust optimum has been found.

3.5.2. ILLUSTRATIVE EXAMPLE
Before performing a detailed analysis of EGRO’s numerical performance, we illustrate
the evolution of the algorithm as it searches for the global robust optimum by applying it
on a two-dimensional problem. The function, which is basically a damped cosine wave,
is plotted in Fig. 3.1.

The problem is multimodal, non-convex and a function of one control variable and
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one environment variable. Since the problem is only 2-dimensional, it is relatively easy
to visualize the choices made by EGRO at each iteration of the algorithm as it searches
for the global robust optimum. The initial variables of EGRO are set to n = 20, εE I = 10−7

Table 3.1: Reference results of all the test problems. The functions are listed in the Appendix. The reference
results have been obtained from [7, 27].

Test function Xc Xe xc xe fi (xc ,xe ) nd

f1(xc ,xe ) [−5,5]2 [−5,5]2 -0.4833 0.0833 -1.6833 4
-0.3167 -0.0833

f2(xc ,xe ) [−5,5]2 [−5,5]2 1.6954 0.7186 1.4039 4
-0.0032 -0.0001

f3(xc ,xe ) [−5,5]2 [−3,3]2 -1.1807 2.0985 -2.4688 4
0.9128 2.666

f4(xc ,xe ) [−5,5]2 [−3,3]3 0.4181 0.709 -0.1348 5
0.4181 1.0874

0.709
f5(xc ,xe ) [−5,5]3 [−1,1]3 0.1111 0.4444 1.345 6

0.1538 0.9231
0.2 0.4

f6(xc ,xe ) [−5,5]4 [−2,2]3 -0.2316 0.6195 4.543 7
0.2229 0.3535
-0.6755 1.478
-0.0838

f7(xc ,xe ) [−5,5]5 [−3,3]5 1.4252 0.5156 -6.3509 10
1.6612 0.8798
1.2585 0.2919
-0.9744 0.1198
-0.7348 -0.1198

f8(xc ,xe ) [0,10] [0,10] 5 5 0 2
f9(xc ,xe ) [0,10] [0,10] 0 0 3 2
f10(xc ,xe ) [0,10] [0,10] 10 2.1257 0.0978 2
f11(xc ,xe ) [0,10] [0,10] 7.0441 10 0.0425 2
f12(xc ,xe ) [−0.5,0.5] [0,10]2 0.5 0 0.25 4

[0,1] 0.25 0
f13(xc ,xe ) [−1,3]2 [0,10]2 1 Any 1 4

1 Any

and NT = 50. We aim to find the robust optimum within 50 evaluations of f11(xc ,xe ).
Latin hypercube sampling is used to choose n = 20 locations where the expensive func-
tion is evaluated. Before choosing these locations both the dimensions are scaled such
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that they lie in the range [0,1]. Given this range for the dimensions, the global robust
optimum of the problem is located at x = (0.7044,1).

The Kriging metamodel K f is built based on the sampling locations and responses.
Fig. 3.6 shows how the algorithm evolves in its search for the robust optimum of the
problem. The numbers on the far left represent the iteration of the algorithm. The col-
umn on the left shows the Kriging metamodel K f of the function. The expected im-
provement in the control variable space EIc is plotted in the central column. The column
on the right shows the deterministic worst-case cost ŷmax on K f and the true worst-case
cost ymax, computed on f11(xc ,xe ). The true worst-case cost ymax is provided as a ref-
erence and the algorithm does not have access to it. It is interesting to note that ymax,
with its peaks and flat plateaus, looks slightly like a step or a staircase function. The
worst-case cost experiences a very slight dip at xc = 0.7044. It is at this location that the
worst-case cost is minimum and therefore this is the robust optimum location in Xc .

Table 3.2: The average numerical performance of EGRO based on 100 runs is evaluated on the 13 test problems
provided in the Appendix. The table shows the mean and standard deviation of the robust optimum along with
the average robust optimum locations in Xc and Xe . The total number of evaluations per dimension on the
expensive function is shown in the right-most column for each problem.

Test function Average xc Average xe Average fi (xc ,xe ) Standard deviation fi
Total evaluations n f

Number of dimensions nd

f1(xc ,xe ) -0.4830 0.0828
-1.6833 2.15×10−5 24

-0.3168 -0.0828
f2(xc ,xe ) 1.6953 0.7183

1.4039 1.5×10−3 27
-0.0031 -0.0015

f3(xc ,xe ) -1.1908 2.1060
-2.4689 7.4×10−2 32

0.9282 2.6966
f4(xc ,xe ) 0.4181 0.7082

-0.1348 2.1685×10−4 250.4156 1.0907
0.7074

f5(xc ,xe ) 0.1113 0.4463
1.3453 1.8286×10−4 230.1544 0.9262

0.2008 0.4022
f6(xc ,xe ) -0.2318 0.6180

4.543 3.1×10−3 34
0.2233 0.3533
-0.6747 1.4775
-0.0840

f7(xc ,xe ) 1.4250 0.5176

-6.3509 4.3×10−3 29
1.6608 0.8783
1.2569 0.2949
-0.9738 0.1201
-0.7346 -0.1218

f8(xc ,xe ) 5 5 0 8.9×10−8 11
f9(xc ,xe ) 0 0 3 1.49×10−2 18
f10(xc ,xe ) 10 2.1181 0.0978 3.47×10−4 25
f11(xc ,xe ) 7.0496 10 0.0425 1.40×10−6 30
f12(xc ,xe ) 0.5 0

0.251 2.7×10−3 11
0.25 0

f13(xc ,xe ) 0.999 -
0.997 5.6×10−3 16

0.999 -

At the first iteration, the Kriging metamodel, constructed using n = 20 initial sam-
ples, seems to have captured the general trend of the true function f11(xc ,xe ). However,
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the worst-case cost ŷmax on the metamodel does not approximate the true worst-case
cost ymax too well at this stage. We note that for the first iteration EIc is maximum at
xc = 1 and this is where a new sample is added in the Xc domain. By the 6th itera-
tion, there is significant improvement in the global accuracy of both the nominal Kriging
metamodel K f as well as the worst-case cost ŷmax. However, locally, the plots show that
there is significant room for improvement in some parts of the design landscape, such
as between xc = 0.1 to xc = 0.6 in the worst-case cost plot. It is interesting to note that by
the 6th iteration, ŷmax approximates ymax very well at the location of the robust optimum
at xc = 0.7044. The two plots are also quite close to each other in the general vicinity of
this robust optimum at this stage.

By the 11th iteration of EGRO, ŷmax and ymax, at least visually, seem to be almost the
same for all values of xc . At this stage, the general location around xc = 0.7044 has also
been sampled more than once. Shifting our focus to the central column of Fig. 3.6, we
note that EIc has also fallen to quite a low value. By the 24th iteration, the Kriging meta-
model K f seems to approximate the concentric circular contours of the true function in
Fig. 3.1 quite well. Additionally, ymax and ŷmax are now visually indistinguishable in the
plots shown. The robust optimum, which is found by identifying the argument of rK , is
returned at this point since EImax

c is now smaller than the threshold εE I .

3.5.3. NUMERICAL PERFORMANCE EVALUATION

Now we turn our attention to analyzing the numerical performance of the algorithm
based on the average performance of 100 runs on each test problem provided in the Ap-
pendix. Table 3.1 shows the reference results obtained from [7, 27]. The table shows the
robust optimum locations for the control variable and environment variable and the ro-
bust optimum object value. The number of dimensions in Xc and Xe along with their
size are also provided in the second column of Table 3.1 for each test problem. The
right-most column shows the total number of dimensions nd for each function. The
numerical performance of EGRO on the test problems is summarized in Table 3.2. The
first column lists the test functions. The mean robust optimum location in Xc and Xe

based on 100 runs is provided in the second and third column respectively. The fourth
and fifth column show the mean and standard deviation of the objective value fi (xc ,xe )
at the robust optimum, where i denotes the function number. Finally, the sixth column
provides the total number of expensive function evaluations n f scaled by the total num-
ber of dimensions nd of the problem. For instance f7(xc ,xe ) required a total of n f = 288
evaluations. The function has nd = 10 total dimensions. The ratio of n f to nd is therefore
288/10, which is rounded up to 29 in the table.

Fig. 3.7 shows the ratio of the average robust optimum (third column in Table 3.2)
to the reference robust optimum (sixth column in Table 3.1) for all the test problems ex-
cept f8. In case of f8, the ratio has not been plotted since the reference robust optimum
is zero. Nevertheless, for f8 there is no difference between the reference objective and
the average robust optimum achieved by EGRO. The error bars in Fig. 3.7 indicate the
standard deviation (fifth column in Table 3.2) around the average robust optimum. It
is clear from the figure that the ratio of the average to the reference robust optimum is
close to 1 for all the test problems. Furthermore, the standard deviation for the objec-
tive function is also low for most of the functions. For f3(xc ,xe ) the standard deviation is



3

56 3. ROBUST OPTIMIZATION UNDER PARAMETRIC UNCERTAINTIES

Test problem number

A
ve

ra
ge

f i
R

ef
er

en
ce

f i

Figure 3.7: Figure shows the ratio of the average robust optimum to the reference robust optimum for all the
test problems. The error bars indicate the standard deviation around the average robust optimum.
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Figure 3.8: Figure shows the ratio of the total function evaluations to the total number of dimensions
n f
nd

for

EGRO, MiMaReK 1 and MiMaReK 2.

relatively higher, but the mean robust optimum objective is still quite accurate. The rel-
atively higher standard deviation can be explained by the fact that the norm of the gradi-
ent at the robust optimum for f3(xc ,xe ) is more than two orders of magnitude larger than
the corresponding value for the other functions. The overall results suggest that EGRO
is consistently able to accurately find the robust optimum objective value, regardless of
the function type or size.

We now turn our attention to the average robust optimum location in Xc and Xe

(second and third column in Table 3.2) for the given test problems. The reference results
are provided in the fourth and fifth column in Table 3.1. Again the numbers compare
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quite favorably and differences between the reference results and the algorithm’s results
surface only in the second and third decimal place. It should be noted here that there is
a greater scope for difference between the reference robust optimum location and those
achieved by the algorithm because it may be the case that some functions are quite flat
with respect to certain dimensions. Therefore, the robust optimum could be quite close
to the reference result even if the robust optimum location is relatively not as close to the
reference result. Nonetheless, we note that the average robust optimum location found
by the algorithm compares very well against the reference results.

The most important aspect of the algorithm is its ability to reach the global robust op-
timum consistently in relatively few expensive function evaluations. Finding the global
robust optimum is an especially challenging problem since it involves a nested global
optimization. Therefore, a large amount of expensive function evaluations could be
needed to solve even quite small problems compared to the amount needed for nom-
inal optimization.

The sixth column in Table 3.2 shows the total number of expensive function evalua-
tions n f required for the corresponding average numerical performance scaled by the
total number of dimensions nd for each test problem. The combined results of this
benchmark indicate that the ratio

n f

nd
does not increase significantly with the number

of dimensions nd since all of the ratios remain in the same vicinity of 15-35 evaluations
per dimension. Even for large problems such as f6 (7 total dimensions) and f7 (10 to-
tal dimensions) the ratio of the total evaluations to the number of dimensions remains
steady. Similarly, non-convex and highly multimodal problems such as the damped sine
problem, f10, and the damped cosine problem, f11, do not require especially high num-
bers of expensive function evaluations.

3.5.4. COMPARISON WITH OTHER APPROACHES

It is pertinent here to compare the efficiency of the proposed approach against con-
temporary techniques for min-max optimization. Problems f8 to f13 have been used
for min-max optimization using evolutionary approaches [12–14]. The algorithms in
[12, 13] require a ratio of more than 104 total function evaluations to number of dimen-
sions to reach the robust optimum consistently. The plots in [14] suggest that the ro-
bust optimum is found based on only 110 fitness function evaluations. However, the
actual expensive function evaluations are hidden within each iteration of the surrogate
assisted evolutionary algorithm, resulting in total function evaluation in the same order
as [12, 13]. As shown by the last column in Table 3.2, EGRO is several orders faster than
the evolutionary algorithms since it solves the problems f8 to f13 using only a maximum
ratio of 30 total function evaluations to number of dimensions.

We also compare EGRO against the recent Kriging-based min-max optimization ap-
proaches, known as MiMaReK 1 [27] and MiMaReK 2 [26]. Marzat et al. tested MiMaReK
1 on all the test problems, f1 to f13, while MiMaReK 2 was applied on the problems f8 to
f13. Marzat et al. state that under most conditions MiMaReK 2 will converge faster than
MiMaReK 1. Both these algorithms were shown to use much fewer expensive function
evaluations compared to evolutionary techniques in order to reach the robust optimum.

A more complete comparison can be made against MiMaReK 1, since reference av-
erage results based on 100 runs are available for it in [27] for all the test problems. Fig.
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Table 3.3: Comparison of the robust optimum and deterministic optimum for the filter bandwidth at the re-
spective worst-case locations.

W g L ΔW Δt Nominal B Worst-case B Expensive simulations

Robust optimum 1 1.032 233.64 −0.1 0.003 254.1 GHz 23.3 GHz 150
Nominal optimum 1.071 1.045 300 −0.1 −0.003 405.8 GHz 19.5 GHz 150

In

Drop
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Figure 3.9: Top-view schematic of an optical ring resonator.

3.8 shows the ratio of the total function evaluations to the total number of dimensions
n f

nd
for EGRO, MiMaReK 1 and MiMaReK 2. Comparing EGRO with MiMaReK 1 in Fig.

3.8, we note that EGRO uses fewer function evaluations to reach the global robust opti-
mum for all functions. In some cases, EGRO is more than an order of magnitude faster
than MiMaReK 1, such as for the two largest problems f6 (nd = 10) and f7 (nd = 7). As
can be noted from Fig. 3.8, the difference between EGRO and MiMaReK 1 is not as dra-
matic for the smaller problems, but EGRO does considerably better on all functions. Fig.
3.8 also shows the comparison of EGRO with MiMaReK 2 for the test problems f8 to f13.
MiMaReK 2 uses fewer function evaluations than MiMaReK 1, but it is still slower than
EGRO.

EGRO achieves average results for the robust optimum that are relatively close to the
reference in Table 3.1 and are comparable to those found for MiMaReK 1 and MiMaReK
2 [26, 27]. The standard deviation around the robust optimum for the 100 runs is also
quite low for all problems.

3.5.5. ENGINEERING CASE STUDY: ROBUST OPTIMIZATION OF AN OPTICAL

FILTER
In this work, we consider the robust optimization of an integrated photonic microdevice
known as a ring resonator [35]. A top-view schematic of such a resonator is given in Fig.
3.9. The device consists of two straight optical paths separated by a ring-shaped optical
path, all of which are integrated on a chip. These optical paths on the chip are known as
waveguides. The chip consists of a single stripe of Silicon Nitride buried in Silicon Diox-
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Figure 3.10: Spectral response at the drop port of a ring resonator. The bandwidth of the ring resonator, B , is
also indicated on the plot.

ide and the geometry is referred to as TripleXTM [36]. When light at a certain frequency is
inserted into one of the straight waveguides, it is transferred, via the ring section, into the
other straight waveguide as a result of resonant coupling between the adjacent waveg-
uides. The device operates as an optical filter that allows power to be transferred only at
certain frequencies. This property motivates the use of ring resonators in many applica-
tions in optical communication and signal processing. The optical performance, how-
ever, is very sensitive to fabrication induced variations in geometry of the integrated cir-
cuit. For further details concerning the theory and application of ring resonators, please
refer to [35].

Fig. 3.10 shows the spectral response at the drop port (output) of a ring resonator.
In this case study, we are interested in maximizing the filter bandwidth, B , defined as
the bandwidth of the response at −3dB. The design variables are the gap, g , between
the straight and the ring section, the length L of the straight coupling section in the ring
and the width W of the waveguides. There are two parametric uncertainties, ΔW and Δt .
ΔW represents uncertainty in the width due to fabrication variations while Δt represents
the uncertainty in the out-of-plane thickness of the waveguide. The robust optimization
problem is defined as,

min
w,g,L

max
ΔW,Δt

−B , (3.19)

where w ∈ [1,1.17]μm, g ∈ [1,1.3]μm and L ∈ [100,300]μm. The uncertaintyΔW ∈ [−0.1,0.1]μm
and Δt ∈ [−3,3]nm. The nominal thickness of the waveguides is t = 32nm. The set
of control variables is xc ∈ [w g L] and the set of environment variables consists of
xe ∈ [ΔW Δt ].

The ring resonator is simulated using a commercial software package, [37]. Each
simulation costs approximately 10 minutes. An initial Kriging metamodel is built using
10×nd = 50 samples chosen via Latin Hypercube sampling. The computational budget
is set to 30×nd = 150 expensive simulations. EGRO is therefore allowed to run for 100
iterations. The robust optimum found via EGRO is compared to the nominal optimum
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of the problem. This nominal optimum is estimated by using the Efficient Global Op-
timization algorithm described in Section 3.3. The same total computational budget of
150 simulations is allowed for the nominal optimization and the algorithm is initialized
with 10×nd = 30 samples chosen via Latin Hypercube sampling.

Table 3.3 shows a comparison of the robust optimum estimated by EGRO with the
nominal optimum found by EGO. The optimal locations for W , g and L are provided for
both optima (column 2 to 4). The worst-case location in ΔW and Δt is also given for the
two cases (column 5 and 6). Column 7 and 8 show the nominal and worst-case band-
width found at the respective locations. It is important to note that the values given for
both these quantities have been found on the expensive simulation via postprocessing
after both algorithms terminate. The computational budget used by the two algorithms
is given in the last column.

The performance of the robust optimum and the nominal optimum is first compared
at the nominal location. The table shows that the nominal bandwidth B for the robust
optimum is 254.0 GHz. On the other hand, the bandwidth at the nominal optimum is a
much higher value, 405.8 GHz. However, this large difference, in reality, is not significant
since even the slightest deviation from the ideal parameter values causes the bandwidth
B to drop dramatically for both cases. The comparison of the nominal bandwidth to the
worst-case bandwidth (second last column, Table 3.3) for the two optima also gives an
indication of the sensitivity of the objective with respect to the parametric uncertainties.
For both optima, the bandwidth falls by more than an order of magnitude when moving
from the nominal to the worst-case solution.

It is therefore more instructive to compare the worst-case bandwidth found for the
nominal and robust optimal locations. The worst-case bandwidth for the robust op-
timum is 3.8 GHz (19 percent) higher than the worst-case bandwidth for the nominal
optimum. Although the robust optimum is nominally suboptimal, it will perform better
than the nominal optimum in the worst-case scenario.

Interestingly, the worst-case location in ΔW and Δt for both the optima occurs at
the bounds. This is purely coincidental since the objective function is, in general, non-
convex with respect to ΔW and Δt for many choices of xc .

In addition to the final result, it is also informative to observe how the two meth-
ods, EGRO and EGO, evolve with each iteration. Fig. 3.11 shows the worst-case band-
width found on the metamodel at each iteration of EGRO. Observing the evolution of
the worst-case cost, we note that it fluctuates from the 1st to the 35th iteration. It stays
relatively constant for the next 20 iterations but starts to shift again from iteration 55 to
iteration 70. Thereafter, the value remains largely steady until the algorithm terminates
at the 100th iteration. An interesting observation is that the worst-case cost found on the
metamodel does not exactly match the worst-case cost found on the expensive simula-
tion, Table 3.3, when the algorithm terminates at the 100th iteration. This indicates that
more than 150 total simulations are needed in order to improve the metamodel fidelity
in the local region of the robust optimum.

The response of the expensive simulation at each newly added sample point is plot-
ted with respect to the number of iterations of EGO in Fig. 3.12. The figure also shows the
nominal optimum found at each iteration. Studying the plot, we note that the nominal
optimum at any iteration in EGO is given by the maximum simulated bandwidth found
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till that iteration. The nominal optimum does not change after the 40th iteration since
no better solution is found thereafter.
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Figure 3.11: The worst-case bandwidth found on the metamodel at each iteration of EGRO is plotted for the
total number of iteration.
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Figure 3.12: The nominal optimum at each iteration of EGO is plotted as a function of the number of iterations.
The figure also shows the simulated response for the new sampling location chosen at each iteration.

3.6. CONCLUSION
Optimization problems involving bounded-but-unknown uncertainties and expensive
simulations are often encountered in practice. In this work, we have proposed a novel
method for efficient global robust optimization of such problems that are affected by
parametric uncertainties. To avoid extensive use of expensive function evaluations, a
surrogate-based robust optimization technique was formulated. The approach depended
on constructing a Kriging metamodel and adaptively sampling the resulting surrogate.
The sampling locations were found using expected improvement criteria that reflected
the need for finding the best worst-case cost instead of the nominal cost.

The presented algorithm was tested on several test problems found in literature. We
demonstrated that the proposed approach can consistently locate the global robust op-
timum of these functions using relatively much fewer expensive function evaluations
than the amount reported in previous work. The reproducibility of the technique was
tested by observing average performance based on 100 runs on each test problem. The
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statistical comparison of the method against comparable approaches were also quite fa-
vorable.

In addition to the application of the algorithm on numerical problems, the technique
was tested on an engineering problem as well. It was shown that the method can provide
a fabrication tolerant integrated circuit design for an optical filter affected by fabrication
uncertainties.

Tests on the benchmark problems showed that the proposed approach accurately
found the global robust optimum. Furthermore, the algorithm scaled linearly in terms
of expensive function evaluations with the number of dimensions and exhibited much
faster convergence than existing techniques. Numerical results also suggest that the ap-
proximations made in the algorithm did not hinder convergence to the global robust
optimum.

Appendix A: Test problems
The 13 test functions on which EGRO is applied are provided below. Functions 1 to

7 have been employed as test problems in [7, 27] while functions 8 to 13 have been used
in [12–14, 26, 27].

f1(xc,xe) = 5(x2
c1 +x2

c2)− (x2
e1 +x2

e2)

+xc1(−xe1 +xe2 +5)+xc2(xe1 −xe2 +3). (20)

f2(xc,xe) = 4(xc1 −2)2 −2x2
e1

+x2
c1xe1 −x2

e2 +2x2
c2xe2. (21)

f3(xc,xe) = x4
c1xe2 +2x3

c1xe1

−x2
c2xe2(xe2 −3)−2xc2(xe1 −3)2 (22)

f4(xc,xe) =−
3∑

i=1
(xei −1)2 +

2∑
i=1

(xci −1)2

+xe3(xc2 −1)+xe1(xc1 −1)+xe2xc1xc2 (23)

f5(xc,xe) =−xe1(xc1 −1)−xe2(xc2 −2)

−xe3(xc3 −1)+2x2
c1 +3x2

c2 +x2
c3

−x2
e1 −x2

e2 −x2
e3 (24)

f6(xc,xe) = xe1(x2
c1 −xc2 +xc3 −xc4 +2)

+xe2(−xc1 +2x2
c2 −x2

c3 +2xc4 +1)+
xe3(2xc1 −xc2 +2xc3 −x2

c4 +5)

+ (5x2
c1 +4x2

c2 +3x2
c3 +2x2

c4)−
3∑

i=1
(xei )2 (25)

f7(xc,xe) = 2xc1xc5 +3xc4xc2+
xc5xc3 +5x2

c4 +5x2
c5 −xc4(xe4 −xe5 −5)

+xc5(xe4 −xe5 +3)

+
3∑

i=1
xei (x2

ci −1)−
5∑

i=1
(x2

ei ) (26)
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f8(xc,xe) = (xc1 −5)2 − (xe1 −5)2 (27)

f9(xc,xe) = min(3−0.2xc1 +0.3xe1,3+0.2xc1 −0.1xe1) (28)

f10(xc,xe) = sin(xc1 −xe1)√
x2

c1 +x2
e1

(29)

f11(xc,xe) =
cos(

√
x2

c1 +x2
e1)√

x2
c1 +x2

e1 +10
(30)

f12(xc,xe) = 100(xc2 −x2
c1)2 + (1−xc1)2−

xe1(xc1 +x2
c2)−xe2(x2

c1 +xc2) (31)

f13(xc,xe) = (xc1 −2)2 + (xc2 −1)2+
xe1(x2

c1 −xc2)+xe2(xc1 +xc2 −2). (32)

Appendix B: Numerical choices and optimizers

The calculation of EIc is more computationally demanding than calculating the de-
terministic EI, Equation (3.7), since ŷmax has to be computed for each evaluation of EIc .
In this work, Matlab implementation of the multistart framework for global optimization
[38] is used to estimate ŷmax. The algorithm is a global optimization method that chooses
the best solution after performing local optimization runs from multiple starting points.
The Matlab implementation fmincon, of the interior point algorithm for non-linear pro-
gramming [39], was used as the local solver in this work. Since ŷmax is computed on a
known analytical function, i.e. the Kriging predictor, the Jacobian and Hessian of the
Kriging predictor can very cheaply and easily be computed as well. In order to enhance
the efficiency, the Jacobian and Hessian were also provided to the local solver.

Estimating the robust optimum rK on the metamodel, Equation (3.8), is also a com-
putationally intensive part of the algorithm since it requires computation of ŷmax as well.
EIc and rK use the same strategy, described above, for estimating ŷmax.

It should be noted here, that any type of global optimizer can be used to estimate
ŷmax. However, because ŷmax, Equation (3.9), has to found each time EIc needs to be
evaluated, it is best to use an approach that can use analytically supplied Jacobian and
Hessian of the Kriging predictor, since they can be computed very cheaply.

The global optimization of EIc and the outer global minimization for estimating the
optimal rK in Equation (3.8) are performed via the Matlab implementation of the Sim-
ulated Annealing algorithm [40].

The computational cost of evaluating EIe is much less than the calculation of EIc ,
Equation (3.18), since there is no internal optimization that has to be performed each
time EIe is evaluated. However, EIe requires a pre-computed value for the reference
global worst-case cost gK . Matlab implementation of the Simulated Annealing algo-
rithm [40] is again used for this global optimization.
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4
ROBUST OPTIMIZATION OF

UNCONSTRAINED PROBLEMS

4.1. INTRODUCTION
Many engineering problems based on expensive computer simulations are affected by
uncertainties. In addition, the distribution of the uncertainties of these problems is of-
ten not available and only the bounds of the uncertainty sets are known [1]. Robust
optimization [2] has to be performed on such problems in order to find an insensitive
solution. Unconstrained robust optimization involves min-max optimization where we
seek to minimize the maximum objective value with respect to the uncertainties in the
problem. The optimization is therefore nested in that the response to be minimized is
itself a result of a maximization. The nested nature of the optimization automatically
implies that the number of function calls required to find the robust optimum, even for
small problems, can be quite high. Applying robust optimization directly on expensive
simulation-based problems is therefore prohibitively costly.

Multiple classifications exist to distinguish uncertainties of different types. The avail-
able information separates probabilistic from bounded-but-unknown uncertainties [3].
In the former case, information on the probability distribution of uncertainties is avail-
able, while in the latter case distributions are unknown and only bounds on the uncer-
tainties are specified. Another often used classification distinguishes aleatory and epis-
temic uncertainties, referring to their origin and (ir)reducibility [4]. In this chapter, the
focus is on the way bounded-but-unknown uncertainties, of either aleatory or epistemic
type, affect the involved simulation models: through a direct modification of the de-
sign variables (implementation error) or through a model parameter (parametric uncer-
tainty) [5]. Although it is not strictly required, in this work all uncertainties are assumed
to be independent.

Robust optimization has typically been applied to convex problems of varying com-
plexity. The focus has generally been on addressing problems affected by parametric un-
certainties, i.e. uncertainties that affect the problem data. On the other hand, problems
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that involve bounded-but-unknown uncertainties directly affecting the design variables
of the problem have received considerably less attention. Robust optimization of prob-
lems under bounded-but-unknown parametric uncertainty and implementation error
has also not been analyzed in great detail insofar in literature. To the best of our knowl-
edge, this combined problem has previously only been explored by Bertsimas et al. [6, 7].
In the same setting, there has been relatively more work on this subject for uncertainties
whose probability distributions are known, see e.g. [8, 9].

The focus of this work is on efficient global robust optimization of expensive simulation-
based problems affected by both parametric uncertainty and implementation error. In
contrast to the typical scenario in robust optimization where the objective function is
known explicitly and is assumed to be convex, we address the scenario in which there is
a black-box function with no prior assumptions on the structure other than continuity.
This setting matches many practical problems encountered in industrial practice, where
simulation-based optimization is performed.

While deterministic optimization of expensive simulation-based problems has re-
ceived a lot of attention in literature [10, 11], robust optimization of such problems
has received less attention. Most recently Bertsimas et al. [7], Marzat et al. [12] and
ur Rehman et al. [13], ur Rehman and Langelaar [14] have considered robust optimiza-
tion of black-box functions. However, Bertsimas et al. do not consider the situation when
the simulations are expensive to evaluate. Ur Rehman et al. solve problems that are ei-
ther exclusively affected by implementation error only [13] or parametric uncertainties
only [14]. Marzat et al. [12] also propose an algorithm that addresses problems affected
by parametric uncertainties only.

To avoid the high computational costs involved in applying robust optimization di-
rectly on expensive simulation-based problems, cheap surrogate models of the simu-
lation can be constructed using intelligently placed sampling points. There are many
different techniques that can be used for creating a cheap response surface [15] such as
polynomial models, radial basis functions, Kriging and regression models.

Kriging [16] is an interpolation technique that uses a paramaterized Gaussian basis
function. The statistical framework of Kriging provides an estimator of the variance of
the Kriging interpolator. This variance has proven useful for adaptively sampling the
expensive simulation to quickly reach the deterministic optimum of the problem [10].
Jones et al. [17] used the variance estimate to develop an Expected Improvement (EI) cri-
terion and Efficient Global Optimization (EGO) procedure that adds infill samples such
that the global deterministic optimum is found using only a few expensive function eval-
uations. Our approach can be seen as an extension of the EGO procedure to the robust
optimization setting. There are, however, certain drawbacks in using Kriging. The com-
putational efficiency of constructing Kriging metamodels scales badly as the number of
samples and dimensions increase. Furthermore, the correlation matrix used in Kriging
often tends to suffer from ill-conditioning.

In this work, we extend the Kriging-based robust optimization algorithms proposed
by ur Rehman et al. [13], ur Rehman and Langelaar [14] to the case where the problem
is affected by both implementation error and parametric uncertainties. It is shown how
the expected improvement based adaptive sampling strategies proposed by the original
algorithms can be further adapted to suggest new infill sampling locations for problems
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affected by both types of uncertainties. We show that a clear performance improvement
can be achieved by directly addressing the problem with both uncertainties rather than
rewriting the problem as one affected by parametric uncertainties only. The proposed
method provides a novel infill sampling criterion that enables efficient global robust op-
timum of problems involving both parametric uncertainties and implementation error.

This chapter is organized as follows. Robust optimization of problems involving
parametric uncertainties and implementation error is introduced in Section 4.2. In Sec-
tion 4.3, an introduction to Kriging is followed by a brief explanation of the algorithm for
implementation error affected problems [13] and the algorithm for problems involving
parametric uncertainties [14]. The proposed approach for efficient global robust op-
timization of problems affected by both parametric uncertainties and implementation
error is introduced in Section 4.4. Finally, Sections 4.5 and 4.6 consist of the results and
conclusions, respectively.

4.2. ROBUST OPTIMIZATION OF PROBLEMS INVOLVING PARA-
METRIC UNCERTAINTIES AND IMPLEMENTATION ERROR

An unconstrained deterministic optimization problem may be defined as,

min
xc

f (xc ) (4.1)

where f (xc ) is the objective while xc is the set of control or design variables. As men-
tioned previously, uncertainties can be of two types, parametric uncertainties and im-
plementation errors. Parametric uncertainties can be described as the uncertainties in
the problem data. These uncertainties act in dimension(s) that are separate from the
control variables. Implementation errors, on the other hand, directly affect the control
variables.

We first define the robust optimization problem affected only by implementation
error. Now, assume that due to an error in implementation Δ ∈ U where U is the un-
certainty set, the design variables xc deviate to a new effective value xc +Δ. The robust
optimum is given by the minimization of the worst-case cost of the objective with re-
spect to the uncertainty set U . The problem can be expressed as,

min
xc∈Xc

max
Δ∈U

f (xc +Δ). (4.2)

ur Rehman et al. [13] addressed the above problem by employing a Kriging-based opti-
mization approach. To simplify the problem we make use of the fact that the implemen-
tation error resides in the same dimension as the design variables.

Next, the robust optimization problem affected only by parametric uncertainties is
introduced. Let xe ∈Xe be the set of parametric uncertainties or environment variables
against which the problem should be robust. In order to find the robust optimum the
worst-case cost of the objective with respect to the parametric uncertainties has to be
minimized. Robust optimization of a problem affected by parametric uncertainties can
formally be stated as

min
xc∈Xc

max
xe∈Xe

f (xc ,xe ), (4.3)
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where f (xc ,xe ) is the objective, xc is the set of control variables while xe is the set of
environment variables or parametric uncertainties. Robust optimization of black-box
functions affected by parametric uncertainties has been dealt with by Marzat et al. [12],
ur Rehman and Langelaar [14], Marzat et al. [18]. ur Rehman and Langelaar [14] again
used a Kriging-based optimization approach to tackle this problem.

In order to be robust against both implementation error and parametric uncertain-
ties, the worst-case cost of the objective with respect to both uncertainties has to be
minimized. The problem may be written as,

min
xc∈Xc

max
xe∈Xe, Δ∈U

f (xc +Δ,xe ). (4.4)

It should be noted that the problem affected by both implementation error and para-
metric uncertainties in Equation (4.4) can be rewritten in terms of Equation (4.3) since
an implementation error can also be treated as a parametric uncertainty. However, when
implementation errors are included as parametric uncertainties, the total number of
dimensions of the problem increases in response surface-based approaches [13]. This
leads to a higher budget requirement for the number of expensive function evaluations
needed to reach the robust optimum, because a higher dimensional space has to be sam-
pled. Therefore, when a problem is affected by both types of uncertainties, it is preferable
to solve Equation (4.4) instead of redefining the problem in terms of Equation (4.3).

4.3. ROBUST OPTIMIZATION OF UNCONSTRAINED EXPENSIVE

SIMULATION-BASED PROBLEMS

4.3.1. PRELIMINARY - KRIGING AND EGO
Kriging is an interpolation technique based on a statistical framework where the func-
tion response is assumed to be a normally distributed random variable. Details and full
derivation of Kriging model construction and prediction can be found in Sacks, J., Welch,
W., Mitchell, T. J., and Wynn [16]. In this section, a short qualitative description is pro-
vided of those aspects of Kriging that are essential in order to explain the Efficient Global
Optimization (EGO) algorithm. Some additional details and equations are provided in
the Appendix.

In Kriging, a parameterized Gaussian correlation function, Equation (24), is used to
describe the correlation between any two sample points. The parameters of the corre-
lation function are chosen such that the likelihood of the observed data is maximized.
Once the model parameters are obtained, Kriging estimates the interpolation between
the sample points that is most consistent with the observed data. This is performed by
maximizing the combined likelihood of the observed data and the predicted value. The
Kriging prediction, Equation (25), is denoted by ŷ .

The Mean Squared Error (MSE) in the prediction, Equation (26), can readily be com-
puted based on the underlying statistical assumptions. The term s2 is used to denote
this variance in the Kriging interpolator.

Jones et al. [17] proposed the Efficient Global Optimization (EGO) algorithm based
on the Kriging prediction ŷ(x) and variance s2(x). The idea is to reduce expensive func-
tion evaluations by adaptively adding new sample points in adequately chosen locations.
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1. Set NT, εEI, n
2. Choose ini-

tial samples
X = [x1, ...,xn]

3. Compute func-
tion response
y = [y1, ..., yn]

4. Construct Kriging
metamodel K f

5. Find xnew

6. Append xnew

to X and f (xnew )
to y, increment n

7. Stopping
criterion
reached?

8. Return xbest
yes

no

Figure 4.1: Flowchart shows the general steps involved in iterative Kriging-based optimization for deterministic
optimization using EI (EGO) [17], robust optimization under implementation error [13] and robust optimiza-
tion under parametric uncertainties [14].

In order to formulate EGO, the uncertainty in the predicted value ŷ(x) at a position x can
be described in terms of a normally distributed random variable Y (x) with mean ŷ(x)
and variance s2(x). Let ymin represent the minimum objective value in the observed
data. A lower value than ymin may be found at a position x if a part of the distribution
Y (x) lies below the current minimum. The expectation of this improvement I is found
by computing the expectation E [I (x)] = E [max(ymin−Y ,0)]. It can be shown [19] that the
expression for expected improvement is given by

E [I (x)] = (ymin − ŷ)Φ

(
ymin − ŷ

s

)
+ sφ

(
ymin − ŷ

s

)
(4.5)

where Φ(.) is the normal cumulative distribution function and φ(.) is the normal prob-
ability density function. The analytical expression in Equation (4.5) is computationally
cheap to evaluate. A global optimizer can be used to estimate the global maximizer of
EI. The expensive function is evaluated at the maximizer location and the metamodel is
rebuilt with the augmented set of samples and responses.

Figure 4.1 shows a flowchart of the EGO algorithm. A metamodel K f is initially built
based on the response f (x) at n initial sampling locations chosen via an appropriate
design of experiments strategy, e.g. space-filling. Step 5 involves the search for xnew ,
i.e. the global maximizer of EI. The algorithm involves an iterative approach where the
EI criterion is used to suggest new sampling locations at each iteration. The algorithm
terminates when either EImax, the maximum EI found, falls below the threshold εE I or
the total number of samples NT is consumed. At this stage, xbest, the sampling location
that gives the minimum objective value, is returned as the final solution.
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4.3.2. PROBLEMS AFFECTED BY IMPLEMENTATION ERROR ONLY
A robust optimization problem affected by implementation error was defined in Section
4.2 by Equation (4.2). This problem was tackled using a Kriging-based optimization ap-
proach by ur Rehman et al. [13]. For reference, a short description is provided here of the
algorithm proposed by ur Rehman et al. [13]. The method is referred to as EGRO-IE.

Essentially, the method for solving the problem affected by implementation error
is quite similar to the Efficient Global Optimization algorithm. The steps involved in
the approach can again be described in terms of the flowchart in Figure 4.1. However,
the method for identifying xnew is different from the one employed for deterministic
optimization. Step 5 is divided into two substeps, where in the first substep the global
robust optimum is estimated on the metamodel,

rK = min
xc∈Xc

max
Δ∈U

K f (x+Δ). (4.6)

In the second substep, we search for xnew by estimating the global maximizer of an
adapted expected improvement criterion. This adapted expected improvement crite-
rion is developed using rK as a reference to improve on. For each location at which the
adapted EI is applied, the worst-case Kriging prediction with respect to the uncertainty
set U is estimated on the metamodel. The global maximizer of the adapted EI, i.e. xnew ,
is found by searching for the location with the highest expectation of improvement for
the worst-case Kriging prediction over the reference robust optimum.

When one of the stopping criteria is met in Step 7, the algorithm returns xbest, the
location of the robust optimum found in the final iteration,

xbest = arg min
xc∈Xc

max
Δ∈U

K f (x+Δ). (4.7)

Ur Rehman et al. showed that the algorithm was significantly more efficient than com-
parable techniques in terms of the number of expensive function evaluations used to
reach the robust optimum. A complete description of the method and the numerical
results may be found in ur Rehman et al. [13].

4.3.3. PROBLEMS AFFECTED BY PARAMETRIC UNCERTAINTIES ONLY
Recently, ur Rehman and Langelaar [14] proposed a method known as EGRO for Efficient
Global Robust Optimization of problems affected by parametric uncertainties only. The
robust optimization problem is defined in Equation (4.3). Similar to EGO and to the
robust optimization under implementation error approach [13], the method employs an
iterative surrogate-based optimization approach. Again, the main concept behind the
algorithm can be explained using the flowchart in Figure 4.1.

Once the Kriging metamodel is constructed in Step 4, the new sampling location
xnew is searched for in Step 5. To find xnew , Ur Rehman et al. divided Step 5 into three
substeps. In the first substep, the robust optimum was estimated on the metamodel,

rK = min
xc∈Xc

max
xe∈Xe

K f (xc ,xe ). (4.8)

In the second substep, a new sampling location, xnew
c , in the control variable space Xc is

found. Finally, in the third substep the new sampling location, xnew
e , in the environment
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variable space Xe is identified. Adapted EI criteria are used to find the sampling location
in both Xc and Xe . Details on the derivation of the adapted EI criteria may be found
in ur Rehman and Langelaar [14]. The response at the new sampling location xnew =
(xnew

c ,xnew
e ) in the combined space (Xc ,Xe ) is then computed in Step 6.

The algorithm iteratively adds new adaptively sampled locations until either EImax,
the maximum EI found in the control variable space, falls below the threshold εE I or the
total number of samples NT is consumed. In Step 8, the location of the robust optimum
found on the metamodel in the final iteration is returned as the best solution,

xbest = arg min
xc∈Xc

max
xe∈Xe

K f (xc ,xe ). (4.9)

The EGRO algorithm compared favorably with contemporary methods for robust op-
timization of expensive simulation-based problems affected by parametric uncertain-
ties in terms of efficiency. A more in-depth description of the approach is provided in
ur Rehman and Langelaar [14].

4.3.4. NUMERICAL CASE STUDY: TREATING IMPLEMENTATION ERROR PROB-
LEMS AS PARAMETRIC UNCERTAINTY PROBLEMS

A problem affected by implementation error, Equation (4.2) can be rewritten as a prob-
lem affected by parametric uncertainties, Equation (4.3). However, as mentioned in Sec-
tion 4.2, this leads to an increases in the total number of dimensions of the problem.
Due to the increase in dimensions, a relatively larger number of expensive simulations is
needed to construct a high fidelity metamodel and to estimate the global robust solution.
It is instructive to investigate how much impact such a change in problem definition can
have on a problem affected by implementation error. The following three-dimensional
non-convex problem, from the work by ur Rehman et al. [13], is used for this purpose,

f (xc) =
(

xc2 − 5.1

4π
xc2 + 5

π
xc1 −6

)2

+10

((
1− 1

8π

)
cos(xc1)+1

)
+ (6xc3 −2)2 sin(12xc3 −4)+8xc3,

xc1 ∈ [−5,10], xc2 ∈ [0,15], xc3 ∈ [0,1]. (4.10)

ur Rehman et al. [13] assumed that each variable was independently affected by a ±12.5
percent maximum change due to implementation error. The robust optimum was es-
timated by ur Rehman et al. [13] via the EGRO-IE algorithm described in Section 4.3.2.
Latin Hypercube Sampling (LHS) was employed to initialize the algorithm with 10×nd =
30 expensive simulations. Since LHS is random, EGRO-IE was run 100 times and the
average result was analyzed. The algorithm was given a total budget of 120 expensive
simulations.

If the problem is expressed as one affected by parametric uncertainties, the number
of dimensions doubles to six. The updated problem has three design variables xc and



4

74 4. ROBUST OPTIMIZATION OF UNCONSTRAINED PROBLEMS

Table 4.1: Comparison of statistics based on 100 runs of EGRO-IE and LHS on numerical test problem.

Robust optimum Mean Standard deviation Expensive function evaluations

Reference 24.95 - -
EGRO-IE 24.98 0.027 120
EGRO 28.14 1.825 300

three parametric uncertainties xe ,

f (xc) =
(
(xc2 +xe2)− 5.1

4π
(xc2 +xe2)+ 5

π
(xc1 +xe1)−6

)2

+10

((
1− 1

8π

)
cos(xc1 +xe1)+1

)
+ (6(xc3 +xe3)−2)2 sin(12(xc3 +xe3)−4)+8(xc3 +xe3),

xc1 ∈ [−3.125,8.125], xc2 ∈ [1.875,13.125], xc3 ∈ [0.125,0.875],

xe1 ∈ [−1.875,1.875], xe2 ∈ [−1.875,1.875], xe3 ∈ [−0.125,0.125].
(4.11)

We use EGRO, ([14]), introduced in Section 4.3.3 to estimate the robust optimum of the
problem. LHS is again used to choose 10×nd = 60 initial sampling locations and EGRO
is allowed a total budget of 300 expensive function evaluations.

Table 4.1 shows the average result for 100 runs of EGRO-IE and EGRO applied on the
numerical test problem, Equation (4.10) and Equation 4.11 respectively. The reference
robust optimum estimated on the actual function is also provided. Despite the fact that
EGRO-IE uses only 120 expensive simulations compared to the 300 expensive simula-
tions employed by EGRO, the robust optimum found by EGRO-IE is much closer to the
reference optimum. The standard deviation over the 100 runs around the mean robust
value is also much smaller for EGRO-IE compared to the standard deviation for EGRO.

The primary reason for the dramatic difference in performance can be attributed
to the fact that EGRO-IE operates on a three dimensional function while EGRO is ap-
plied on a six dimensional problem. The number of expensive simulations needed to
construct a high fidelity metamodel for the three dimensional problem, Equation (4.10),
is much smaller compared to the number of expensive simulations required for the six
dimensional problem, Equation (4.11). Therefore EGRO-IE is a significantly more ef-
fective strategy compared to EGRO for estimating the robust optimum of implementa-
tion error affected problems. Furthermore, the result suggests that redefining Equation
(4.2) or Equation (4.4) in terms of Equation (4.4) can dramatically impact the efficiency
of a metamodel based strategy in estimating the robust optimum. This motivates the
method proposed in the present chapter, in which the strengths of both approaches are
combined.
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Figure 4.2: Flowchart shows the efficient global robust optimization algorithm for problems affected by imple-
mentation error and parametric uncertainties. The bold borders indicate that these steps are different from
the EGRO algorithm for robust optimization under parametric uncertainties [14].

ŷmax
rKŷmax,xe

xmax
c xnew
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ŷmax
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Figure 4.3: The Kriging metamodel of a two-dimensional function is shown in (a). The worst-case Kriging
prediction with respect to the parametric uncertainty is plotted in (b). The overall worst-case cost with respect
to both uncertainties is plotted in (c). Plot (d) shows EIc as a function of xc . The new control variable location
xnew

c is also indicated.

4.4. EFFICIENT GLOBAL ROBUST OPTIMIZATION UNDER PARA-
METRIC UNCERTAINTIES AND IMPLEMENTATION ERROR

In this work, we extend the discussed algorithms for robust optimization under imple-
mentation error [13] and robust optimization under parametric uncertainty [14] in order
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Figure 4.4: Plot (a) show a Kriging metamodel of a two dimensional function, along with the location of xnew
c .

The Kriging prediction at xnew
c , corresponding to the response along the black line in plot (a), is plotted with

respect to xe in (b). EIe is plotted in (c). The new environment variable location xnew
e is also indicated.

to efficiently address the problem affected by both uncertainties in Equation (4.4). Since
it is assumed that the function is expensive to evaluate, we devise a scheme that is based
on the construction of a surrogate model and the application of robust optimization on
the surrogate. Let K f be the Kriging model of the objective. Then the problem may be
written as

rK = min
xc∈Xc

max
xe∈Xe, Δ∈U

K f (xc +Δ,xe ). (4.12)

To accurately identify the global robust optimum it is paramount that Equation (4.12)
estimates Equation (4.4) very well, especially in the neighbourhood of the robust opti-
mum. To this end, we propose adapted expected improvement measures that suggest
infill sampling points such that the robust optimum, rK , found using Equation (4.12) is
close to the true robust optimum after relatively few function evaluations. The alterna-
tive to adaptive sampling is to use a fine initial global design of experiments, but as the
region of interest is a priori unknown this requires far more function evaluations.

Figure 4.2 shows a flowchart of the algorithm. It can be observed in Figure 4.2 that
the algorithm involves an initial surrogate construction phase followed by an iterative
process. The robust optimum is estimated on the metamodel at each iteration using
Equation (4.12). Thereafter, in Step 5b an adapted expected improvement criterion is
employed to find a suitable sampling location, xnew

c , in the control variables space. In
Step 5c an expected deterioration measure is used to suggest a new sampling location,
xnew

e , in the environment variables space. The process of Kriging model construction
and subsequent infill sampling is repeated until the condition statement in Step 7 is vi-
olated. At this point, the location of the robust optimum rK found on the last iteration
is returned as the final solution.

The flowchart in Figure 4.2 is globally identical to the flowchart for EGRO [14]. In-
ternally however, Step 5a and Step 5b are not the same for the two algorithms. While in
EGRO rK is found by using Equation (4.8), for the combined problem rK is estimated by
using Equation (4.12). The more important difference between the two algorithms is that
the adapted EI criterion used in EGRO to find xnew

c was derived for a problem affected
by parametric uncertainties only. On the other hand, the adapted expected improve-
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ment criterion EIc used in this work is derived for a problem affected by both parametric
uncertainties and implementation errors. Fundamentally, the rest of the algorithm is
the same as EGRO. We refer to the algorithm presented in this work as EGRO-C, where
C stands for the Combination of uncertainties that the algorithm addresses. In the fol-
lowing discussion, it will be shown how EIc is derived and how the adaptive sampling
enables the problem in Equation (4.4) to be solved efficiently.

4.4.1. IDENTIFYING CONTROL VARIABLE INFILL LOCATION xnew
c

Figure 4.3a shows a Kriging metamodel of a two-dimensional function involving a sin-
gle control variable and a single environment variable. We scale the range of the design
domain to a range of [0,1] across each dimension when constructing the metamodel
and do not consider extrapolation outside this domain. Let the control variable xc be
affected by an error in implementation Δ ∈U , where U ∈ [−0.05,0.05] for the scaled de-
sign domain x ∈ [0,1]. The worst-case Kriging prediction with respect to the parametric
uncertainty is given by

ŷmax,xe (xc ) = max
xe∈Xe

K f (xc ,xe ), (4.13)

and the corresponding maximizer in the environment variable space is denoted as xmax
e .

Figure 4.3b shows ŷmax,xe as a function of the control variable xc . Figure 4.3b also shows
the uncertainty set U at an arbitrary location on the plot. The maximum value obtained
within this uncertainty set gives the worst-case Kriging prediction with respect to both
implementation error and parametric uncertainty. The worst-case Kriging prediction
with respect to parametric uncertainty and implementation error can therefore be ex-
pressed as

ŷmax(xc ) = max
Δ∈U

ŷmax,xe (xc ). (4.14)

For the uncertainty set U at the arbitrary location in Figure 4.3b, ŷmax, indicated by a red
circle, is found on the left bound of the set. The corresponding location xmax

c where ŷmax

is found is also indicated on the plot. In general, the location xmax
c can be expressed as

xmax
c = xc +ar g max

Δ∈U
ŷmax,xe (xc ). (4.15)

Figure 4.3c shows ŷmax as a function of xc . The minimum value obtained on this plot
is the robust optimum on the metamodel, rK , since this represents the best worst-case
solution.

In order to find an expected improvement measure that suggests a new sampling lo-
cation in Xc , we make assumptions similar to those made in formulating the determinis-
tic EI [17]. A normally distributed random variable Ymax is used to model the uncertainty
in the value of the worst-case Kriging prediction ŷmax. The mean value for Ymax is given
by ŷmax while the variance is given by the Kriging mean squared error s2(xmax

c ,xmax
e ).

To find the new sampling location xnew
c in the control variable space, we seek the

location with the highest expectation of improvement over the current robust optimum.
The worst-case Kriging prediction ŷmax can improve upon the value of rK if Ymax <
rK . To find the expectation of this improvement we evaluate the expected value of the
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improvement Ic = max(rK −Ymax ,0),

E [Ic (xmax
c )]︸ ︷︷ ︸

EIc

=
∫Ic=∞

Ic=0
Ic

exp
(
− tc

2

2

)
�

2πs
d Ic , (4.16)

where

tc = rK − Ic − ŷmax

s
, s = s(xmax

c ,xmax
e ). (4.17)

The standard normal probability density function is given by

φ(z) = 1�
2π

exp

(−z2

2

)
. (4.18)

Using the definition of the standard normal probability density function, EIc can be ex-
pressed as,

E [Ic (xmax
c )] = (rK − ŷmax)

∫tc= rK −ŷmax
s

tc=−∞
φ(tc )d tc

− s
∫tc= rK −ŷmax

s

tc=−∞
tcφ(tc )d tc . (4.19)

The first integral in (4.19) is the normal cumulative distribution function Φ( rK −ŷmax
s ).

The second integral is determined by substituting z = −tc
2

2 . EIc can then be expressed as,

E [Ic (xmax
c )] = (rK − ŷmax)Φ

(
rK − ŷmax

s

)

+ sφ

(
rK − ŷmax

s

)
. (4.20)

The new control variable location is found by estimating the global maximizer of Equa-
tion (4.20). Figure 4.3d shows the expected improvement EIc as a function of xc . As in the
case of deterministic EI, the function is usually very multimodal. The new infill sampling
location xnew

c in the control variable space is shown on the plot.

4.4.2. IDENTIFYING ENVIRONMENT VARIABLE INFILL LOCATION xnew
e

In order to have a new infill location xnew at which to sample the expensive function, a
new environment variable location xnew

e has to be found to go along with xnew
c . Figure

4.4a shows the same Kriging model as Figure 4.3a. The solid black line on the plot in
Figure 4.4a indicates the location of xnew

c found via EIc . Figure 4.4b shows the plot of the
Kriging prediction at xnew

c as a function of xe only. The worst-case cost, gK , is indicated
on the plot. In general, the worst-case cost with respect to xe , for a given xnew

c , may be
expressed as

gK (xnew
c ,xe ) = max

xe∈Xe
K f (xnew

c ,xe ). (4.21)

An adapted expected deterioration criterion is needed for the environment variable space,
where the goal is to find the location with the highest expectation of deterioration over
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gK . Here, a deterioration would be considered the possibility of achieving a higher value
for the worst-case cost than gK , i.e. the most unfavourable situation. The criterion EIe

was developed in ur Rehman and Langelaar [14] to describe the expectation of this de-
terioration and is repeated here for completeness,

E [De (xnew
c ,xe )]︸ ︷︷ ︸

EIe

= (ŷ − gK )Φ

(
ŷ − gK

s

)
+ sφ

(
ŷ − gK

s

)
. (4.22)

The new environment variable location is found by estimating the global maximizer of
Equation (4.22). EIe is plotted as a function of xe in Figure 4.4c. The location of the
maximizer xnew

e is also indicated on the plot.

4.4.3. DISCUSSION
The process of finding xnew

c and xnew
e is represented by Step 5b and Step 5c, respectively,

in the flowchart in Figure 4.2. Once the infill location xnew consisting of (xnew
c ,xnew

e )
is found, the expensive function is evaluated at xnew in Step 6. Thereafter, if the total
number of samples is exhausted or if the global maximum value found for EIc is below a
predefined threshold, the algorithm terminates and the location of the robust optimum
found on the last iteration is returned. The optimizers used to obtain rK , xnew

c and xnew
e

are the same as the ones employed in EGRO [14]. We employ a multi-start gradient based
optimization strategy for the inner maximization of rK . Jacobian and Hessian informa-
tion is provided to the optimizer since it is cheaply available for the Kriging surface. Sim-
ulated annealing is used for optimization of EIc and EIe . For a detailed discussion of the
optimizer choices we refer interested readers to ur Rehman and Langelaar [14]. In ad-
dition, dedicated optimizers for robust optimization, such as the methods proposed by
Bertsimas et al. [7], Bertsimas and Nohadani [20], can also be used to estimate the robust
optimum rK at each iteration.

In this work, we determined the Kriging worst-case cost ŷmax as a deterministic quan-
tity on the metamodel and then imposed a normal distribution on this quantity to for-
mulate the expected improvement criterion EIc . This has been introduced as an approx-
imation of the actual distribution of the maximum [21]. However, computing this ac-
tual distribution requires a prohibitively expensive process and moreover leads to an ex-
pected improvement expression that cannot be solved analytically. Both aspects would
significantly increase the computational cost of the algorithm, without necessarily im-
proving the convergence rate ur Rehman et al. [13], ur Rehman and Langelaar [14]. The
various test problems in the following section give evidence of the effectiveness of the
chosen approach.

We have chosen to add only a single sampling point at each iteration of the algorithm.
An alternative could have been to add several sample points at each iteration, particu-
larly when parallel evaluations are possible. For this purpose, locations that gave local
expected improvement in the robust optimum could have been chosen. In this scenario
all but one of the sampling points would have been added at suboptimal locations. This
suboptimal addition of sample points could potentially increase the number of expen-
sive simulations needed to determine the robust optimum. Therefore, we have preferred
to add only a single point based on the global maximum of EIc and EIe .
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Table 4.2: Reference results of all the test problems. The functions are listed in the Appendix.

Test function Xc Xe U xc xe Reference R.O nd

f1(xc ,xe ) [−5,5]2 [−5,5]2 [±12.5%]1 -0.4833 0.0833 13.942 4
-0.3167 -0.0833

f2(xc ,xe ) [−5,5]5 [−3,3]5 [±12.5%]1 0.2460 -0.0462 23.225 10
0.5040 -0.2202
0.1410 0.1446
-0.5240 0.1128
-0.3070 -0.0756

f3(xc ,xe ) [−5,10] [0,1] [±10%]2 3.4045 1 40.003 3
[0,15] 1.8855

4.5. RESULTS

4.5.1. TEST PROBLEMS
To evaluate the ability of the algorithm to add infill sampling points in such a way that
the global robust optimum is estimated efficiently, we test it on three numerical and one
engineering test problem. The numerical test problems are listed in Appendix B. Prob-
lems f1(xc ,xe ) and f2(xc ,xe ) are both assumed to be affected by a one dimensional im-
plementation error, U ∈ [±12.5%]1, that causes a deviation of up to 12.5% in the control
variables. Problem f3(xc ,xe ) is a function of two control variables and one environment
variable. The problem is assumed to be affected by a two dimensional implementation
error, U ∈ [±10%]2, that results in each control variable independently deviating by up
to 10%.

Table 4.2 gives the reference robust optimum location and objective value for each
numerical test problem. Column 1 lists the function number, while Columns 2 and 3
provide the domain of the control variables and environment variables, respectively. The
implementation error uncertainty set U is given in Column 4. The reference robust opti-
mum location in xc , xe and the corresponding robust optimum (R.O) value is provided in
Column 5, 6 and 7. The last column shows the number of dimensions for each problem.
Further discussion of the numerical results is provided in Section 4.5.2 below.

Although the number of dimensions of all the test problems may seem small in the
context of optimization problems in general, the problem size is actually quite challeng-
ing in a metamodel based robust optimization problem setting. Constructing a high fi-
delity metamodel of a non-convex problem with more than ten dimensions can require
thousands of expensive function evaluations even if the samples are being added using
an intelligent adaptive sampling scheme. Therefore, in this study we limit ourselves to
showcasing the method on problems of up to ten dimensions.

In addition to applying the algorithm on numerical test problem, it is also tested on
a challenging engineering example affected by uncertainties. The problem involves an
optical integrated circuit affected by fabrication variations. The device fabricated on the
integrated circuit is an optical filter that is affected by both implementation error and
parametric uncertainties. Not only is the optical filter expensive to simulate, but it is
also very sensitive to the uncertainties. Further details on this engineering problem are
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provided in Section 4.5.3.
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Figure 4.5: The robust optimum found on the metamodel at each iteration of the algorithm for problem
f2(xc ,xe ) and f3(xc ,xe ) is plotted. The error bars indicate the standard deviation around the average robust
optimum at each iteration. The plot also shows the objective value for the robust optimum on the reference
function.

4.5.2. ALGORITHM PERFORMANCE EVALUATION

Since the algorithm is initialized using a non-deterministic space filling technique (LHS),
we run each problem 100 times and analyse the average result. All the numerical prob-
lems are initialized with n = 20×nd samples. It should be mentioned here that the choice
of the number of initial samples employed is problem dependent. If the black-box prob-
lem is very non-linear, practitioners would be better served to use a larger number of
sample points to construct the initial metamodel. We examine the effect of the initial
sample set on EGRO-C by applying it on problem f3(xc ,xe ) with different numbers of
initial samples.

Table 4.3 shows the average numerical performance of the algorithm on each prob-
lem. Column 1 shows the function number, while Columns 2 and 3 give the average lo-
cation the robust optimum in the control variables and environment variables domain,
respectively. The mean robust optimum (R.O) value is provided in Column 4. The corre-
sponding standard deviation around the robust optimum is shown in Column 5. The last
column provides the total number of expensive function calls required by each problem.

Comparing the reference robust optimum objective value, Table 4.2 (Column 7), ver-
sus the average robust optimum found by the algorithm, Table 4.3 (Column 4), we ob-
serve that the result is almost exactly the same. The standard deviation around the ro-
bust optimum, Table 4.3 (Column 5), is also quite low for each test problem.

Figure 4.5(a) shows the average robust optimum estimated at each iteration by EGRO-
C for problem f2(xc ,xe ). The standard deviation around the mean value at each iteration
is also plotted using error bars. The plot shows that the algorithm converges slowly in
the first 30 iterations with the standard deviation going down significantly compared to
initial value at the first iteration. After 40 iterations the value for the average robust op-
timum also coincides with the reference result while the standard deviation goes down
even further. After about 50 iterations of the algorithm the standard deviation is small
enough such that it cannot be visually observed on the plot.
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Table 4.3: The average numerical performance of the algorithm based on 100 runs for each test problem. The
table shows the mean and standard deviation of the robust optimum along with the average robust optimum
locations in Xc and Xe . The total number of expensive function calls is given in the last column.

Test function Average xc Average xe Average R.O Standard deviation R.O Total evaluations n f

f1(xc ,xe ) -0.4850 0.0850
13.948 0.0042 120

-0.3150 -0.0850
f2(xc ,xe ) 0.1799 0.2569

23.267 0.0545 300
0.4700 0.3253
0.0898 0.2864
-0.5250 0.1230
-0.2747 -0.1279

f3(xc ,xe ) 3.4285 1
40.096 0.0811 100

1.833

Table 4.4: Comparison of statistics based on 100 runs of EGRO-C and LHS on problem f3(xc ,xe ).

Robust optimum Mean Standard deviation Expensive function evaluations

Reference 40.003 - -
EGRO-C 40.096 0.0811 100
LHS 46.127 5.1981 100

The same quantities are plotted for problem f3(xc ,xe ) in Figure 4.5(b). The standard
deviation starts at a relatively high value and does not diminish in the first 4 iterations.
However, it steadily goes down from the fifth iteration onwards. The average robust opti-
mum value stays relatively constant for the first 12 iterations. Thereafter it starts moving
towards the reference solution. By the 35th iteration, the average robust optimum has
converged to the reference robust optimum, while the standard deviation has fallen to a
value low enough such that it is not observable in the plot.

We compare the performance of EGRO-C with the construction of a metamodel us-
ing LHS and applying robust optimization on it. The comparison is made on the function
f3(xc ,xe ). f3(xc ,xe ) was allowed a budget of 100 expensive function calls, Table 4.3. For
a fair comparison we build a metamodel using LHS based on 100 function calls and es-
timate the robust optimum on the response surface. This process is repeated 100 times
since LHS is non-deterministic.

Table 4.4 shows the result of the comparison. Using the same total number of func-
tion calls, EGRO-C is able to construct a metamodel that enables the robust optimum to
be found with much greater accuracy compared to LHS. The mean for EGRO-C is signif-
icantly closer to the reference solution. Furthermore, the standard deviation around the
mean is also very low compared to the standard deviation based on 100 runs of LHS.

To investigate the impact of the initial sample size on the performance of EGRO-
C, we also apply the algorithm on problem f3(xc ,xe ) with different numbers of initial
samples n, chosen via LHS. The initial n samples are varied from n = 20 to n = 80 in steps
of 10 and the algorithm is applied 10 times on the problem for each sample set. EGRO-C
is allowed a total computational budget of 100 expensive function calls. Once the 100
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Figure 4.6: Top-view schematic of an optical ring resonator. Light is propagated inside the waveguides (black
path lines) on the basis of total internal reflection. A single ring resonator covers an area of approximately 1
mm2 on the chip. Reproduced with permission from ur Rehman and Langelaar [14].

expensive function calls (including the respective initial sample sets) are exhausted for
each case, the statistics of the robust optimum found are compared.

Table 4.5 shows the comparison of the mean robust optimum found by EGRO-C, af-
ter 100 expensive function calls, based on 10 runs on each sample set. The standard
deviation around the robust optimum is also given. For n = 20, EGRO-C runs for 80 it-
erations before the termination of the algorithm due to the threshold of 100 expensive
function calls. On the other hand, for n = 80, EGRO-C only runs for 20 iterations before
termination. It is interesting to note that the mean robust optimum closest to the refer-
ence solution, in Table 4.2, is found when n = 20. However, the lowest standard deviation
around the robust optimum is found for n = 50. It is clear from Table 4.5 that if we use
n = 60 samples or more, and thereby allow EGRO-C to run for 40 iterations or less, the
mean robust optimum found is not as accurate and has a larger relative standard devi-
ation. The worst solution is in fact found for n = 80. In terms of consistency, running
EGRO-C with n = 50 initial samples seems to give the best result when finding the robust
optimum of f3(xc ,xe ) with a total of 100 expensive function calls.

Table 4.5: Comparison of the average robust optimum found on problem f3(xc ,xe ), after 100 expensive sim-
ulations, when using different number of initial samples n. The average results are based on 10 runs on each
sample set. The acronym R.O. stands for Robust Optimum.

Initial samples n 20 30 40 50 60 70 80

Mean R.O. 40.0292 40.0459 40.0357 40.0348 40.0977 40.1915 41.0421
Standard deviation R.O. 0.0224 0.0389 0.0340 0.0085 0.0564 0.2575 1.1542

4.5.3. ENGINEERING PROBLEM: ROBUST OPTIMIZATION OF AN OPTICAL

FILTER
To test the algorithm in a practical setting, we apply it on an optical filter whose perfor-
mance is very sensitive to uncertainties. The filter is based on an integrated photonic
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Figure 4.7: Spectral response at the drop port of a ring resonator. B is the filter bandwidth of the resonator.
Reproduced with permission from ur Rehman and Langelaar [14].

microring resonator affected by fabrication variations in geometry. Figure 4.6 shows an
illustration of the top-view of the resonator which has two straight waveguides that are
separated by a ring-shaped waveguide. The waveguide consists of a stripe of Silicon
Nitride, typically of width 1 μm and thickness 25 to 100 nm, that is buried inside Sili-
con Dioxide, ([22]). Light propagates inside the waveguide due to the relatively higher
refractive index of Silicon Nitride compared to Silicon Dioxide. If we input light at a spe-
cific frequency into the in-port it will couple into the ring-shaped resonator, from where
it couples into the drop port, Figure 4.6. Resonance only occurs at certain frequencies,
therefore the ring resonator behaves like an optical filter.

A typical spectral response at the drop port of a ring resonator is shown in Figure 4.7.
An important parameter of interest is the filter bandwidth B , given by the bandwidth of
the spectral response at −3dB. For best performance, it is often desired to maximize B .
The bandwidth is very sensitive to deviations in the ring resonator geometry which can
occur due to fabrication defects. In this work, we aim to estimate the robust optimum of
the filter bandwidth using as few expensive simulations as possible. We employ a com-
mercial software package ([23]) in order to simulate the ring resonator. Each simulation
takes approximately 10 minutes.

The set of control variables of the problem is xc ∈ [w g L]. w is the width of the
waveguides while g is the gap between the straight and the ring section. L is the length
of the straight coupling section in the ring. The problem has one implementation error,
Δw ∈ U and one parametric uncertainty Δt . Δw is a geometrical deviation caused by
under- or overetching during fabrication and affects both the gap g and the width w . The
uncertainty in the out-of-plane thickness of the waveguide is given by Δt . The robust
optimization problem is defined as,

min
w,g,L

max
Δt,Δw∈U

−B , (4.23)

where w ∈ [0.9,1.27]μm, g ∈ [0.9,1.4]μm and L ∈ [100,300]μm. The range of the imple-
mentation error uncertainty set U is [−0.1,0.1]μm while the parametric uncertainty set
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Figure 4.8: The best worst-case bandwidth found on the metamodel at each iteration of the algorithm is plotted
with respect to the number of iterations.

Table 4.6: Comparison of the robust optimum found by EGRO, EGRO-C and the deterministic optimum found
by EGO for the filter bandwidth. Higher bandwidth values (B) are preferred.

Optimum w g L Δw Δt Nominal B Worst-case B Expensive simulations

Nominal (EGO) 1.071 1.045 300 −0.1 −0.003 405.8 GHz 19.5 GHz 150
Robust (EGRO) 1 1.032 233.64 −0.1 0.003 254.1 GHz 23.3 GHz 150
Robust (EGRO-C) 1.043 1.000 244.18 −0.1 0.003 376.4 GHz 30.8 GHz 100

is given by Δt ∈ [−3,3]nm. The thickness of the waveguides without considering uncer-
tainties is t = 32nm.

ur Rehman and Langelaar [14] applied EGRO on the same engineering problem to es-
timate the robust optimum. However, the implementation errorΔw ∈U was treated as a
parametric uncertainty. We compare the performance of EGRO-C with EGRO and focus
on the number of expensive simulations needed by the two algorithms to estimate the
robust optimum. ur Rehman and Langelaar [14] also estimated the nominal optimum
of the problem via EGO. In this work, the nominal performance at the robust optimum
found by EGRO-C is also compared against the nominal optimum estimated by EGO.

EGRO-C is initialized with 50 samples chosen via LHS. The algorithm is assigned a to-
tal budget of 100 expensive simulations, which translates to 50 iterations. These settings
are in agreement with the earlier study.

Table 4.6 shows a comparison of the robust optimum estimated by EGRO, EGRO-C
and the deterministic optimum found by EGO for the filter bandwidth. Column 2 to 4
provide the optimal location for the design variables for each algorithm. The worst-case
locations for the uncertainties Δw and Δt are given in Column 5 and 6, while Column 7
and 8 show the nominal and worst-case filter bandwidth B found at the corresponding
optimal location for each algorithm. The last column show the number of expensive
simulations used by each algorithm. The quantities Δw and Δt and the nominal, worst-
case B are found on the actual simulator ([23]) after each algorithm finishes.

Comparing the worst-case bandwidth B of EGRO and EGRO-C we note that EGRO-
C finds a higher value for B even though it used 50 less expensive simulations than the
number used by EGRO. As expected, both EGRO and EGRO-C have a higher worst-case
bandwidth than that found by EGO. One the other hand, the nominal bandwidth of EGO
is higher than the corresponding number for EGRO and EGRO-C.

The result clearly indicates that EGRO-C estimates a relatively better robust optimum
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than that found by EGRO using fewer expensive simulations. This seems to suggest that,
at least in this case, by rewriting the problem that is affected by both parametric un-
certainty and implementation error as one affected only by parametric uncertainties we
make the problem more difficult to optimize. As previously mentioned, this can primar-
ily be attributed to the increased difficulty of constructing a high fidelity metamodel of
a problem with relatively higher number of dimensions. This explains why EGRO is not
able to find a higher value for the worst-case bandwidth despite using more expensive
function calls.

Figure 4.8 shows a plot of the best worst-case bandwidth found on the metamodel
at each iteration of EGRO-C. From the first iteration to the 25th iteration the objective
changes quite significantly. Thereafter there is not much change in the best worst-case
solution and the trend is sustained until termination at 50 iterations. The fact that the
value of the worst-case bandwidth found on the metamodel is slightly lower than the
worst-case bandwidth found on the expensive simulator, Table 4.6, suggests that the
metamodel ideally needs more than 100 expensive simulations to exactly describe the
neighbourhood of the optimum. However, for practical purposes in this application ex-
ample the robust optimum obtained after 100 simulations is certainly sufficiently accu-
rate.

4.6. CONCLUSION
In this work we addressed robust optimization of expensive computer simulation based
problems affected by implementation error and parametric uncertainties. A sound infill
sampling criterion was developed such that the global robust optimum of the problem
could be estimated using only a few expensive function calls. The algorithm was based
on the construction and iterative update of a Kriging metamodel of the problem. The
infill sampling scheme was developed by modifying the expected improvement criterion
so that it was tailored towards estimating the robust optimum instead of the nominal
optimum.

The effectiveness of the algorithm was tested on multiple numerical examples as well
as on an engineering problem. The algorithm was run 100 times on each of the numer-
ical problems and it managed to consistently converge to the reference global robust
optimum on all the problems using relatively few expensive function calls. It was shown
that the standard deviation around the average robust optimum estimated by the algo-
rithm was also quite low, demonstrating the reliability of the approach. It was also shown
that, in comparison to the proposed approach, treatment of implementation errors as
parametric uncertainties significantly increases the complexity of a robust optimization
problem and leads to reduced accuracy for fixed sampling budgets.

The engineering problem involved robust optimization of the bandwidth of an opti-
cal filter that can be fabricated using an optical integrated circuit. The device was sen-
sitive to manufacturing uncertainties that affected both the design variables and the pa-
rameters of the problem. The algorithm’s performance on the problem was compared
against a redefined version of the robust optimization problem that was affected by only
parametric uncertainties (ur Rehman and Langelaar [14]). It was shown that the pro-
posed technique found a superior robust optimum in one-third less number of expen-
sive function calls.
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The algorithm, in its current form, can only be applied on problems that do not in-
volve constraints. We aim to extend the infill sampling criterion presented in this work
to the general case of robust optimization of constrained problems involving both type
of uncertainties i.e. implementation error and parametric uncertainties.

Appendix A: Kriging

In Kriging, the following Gaussian correlation function describes the correlation be-
tween any two sample points,

Corr
[
Y (xi ),Y (x j )

]= exp

(
−

k∑
q=1

θq
∣∣xi q −x j q

∣∣p

)
(24)

where xi and x j are any two locations in the domain and k represents the total number
of dimensions of the problem. We fix p to a constant value of 2. The values for θq , μ
and σ2 are chosen such that the likelihood of the observed data is maximized using an
optimization-based fitting process. The Maximum Likelihood Estimate (MLE) for the
prediction ŷ is given by

ŷ(x) = μ̂+ rTR−1(y−1μ̂) (25)

where μ̂ is the estimated value for the mean, R is the N ×N correlation matrix between
the N sample points, r is the vector of correlations between the observed data and the
new prediction, while y is the observed response. The correlation vector r and the corre-
lation matrix R are computed using equation (24).

The variance in the Kriging interpolator is found by computing the Mean Squared
Error (MSE) in the prediction. This is given by

s2(x) = σ̂2
[

1− rTR−1r+ 1−1TR−1r

1TR−11

]
, (26)

The MSE ŝ2(x) is zero at sample point locations since the Kriging prediction interpolates
through the true function value at these locations.

Appendix B: Test problems

The test problems on which the algorithm is applied are provided below.

f1(xc,xe) = 5(x2
c1 +x2

c2)− (x2
e1 +x2

e2)+xc1(−xe1 +xe2 +5)+xc2(xe1 −xe2 +3). (27)

f2(xc,xe) = 2xc1xc5 +3xc4xc2 +xc5xc3 +5x2
c4 +5x2

c5 −xc4(xe4 −xe5 −5)

+xc5(xe4 −xe5 +3)+
3∑

i=1
xei (x2

ci −1)−
5∑

i=1
(x2

ei ) (28)

f3(xc,xe) =
(

xc2 − 5.1

4π
xc2 + 5

π
xc1 −6

)2

+10

((
1− 1

8π

)
cos(xc1)+1

)
+ (6xe1 −2)2 sin(12xe1 −4)+8xe1,

xc1 ∈ [−5,10], xc2 ∈ [0,15], xe1 ∈ [0,1]. (29)
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5
ROBUST OPTIMIZATION OF

CONSTRAINED PROBLEMS

5.1. INTRODUCTION
Robustness against uncertainties in a problem is steadily rising as an important aspect
in the field of optimization. Uncertainties can be dealt with in different ways depending
on the level of information available about the problem. If the probability distributions
of all uncertainties are known then the problem is usually addressed with the so called
Stochastic Programming approach [1].

However, often full probabilistic data is not available, but bounds on the uncertain-
ties can be given. Such uncertainties are denoted as bounded-but-unknown [2, 3]. Ro-
bust optimization can tackle problems of this nature. Robust optimization involves the
search for the best worst-case cost, i.e. the minimization of the maximum realizable
value of the objective with respect to the uncertainty set, subject to the non-violation
of the worst-case constraints. Robust optimization of expensive simulation-based prob-
lems is especially challenging since the nested optimization process, when applied to
expensive problems, can potentially be very inefficient.

In this work, we present a novel approach for efficient global robust optimization of
expensive simulation-based constrained problems affected by bounded-but-unknown
uncertainties. The method operates on a surrogate model of the expensive problem
which is iteratively improved based on novel infill sampling criteria adapted for con-
strained robust optimization. The present algorithm enables efficient and accurate de-
termination of the global robust optimum of constrained problems.

Abundant research has been performed in recent decades on robust optimization
of problems affected by uncertainties in their problem data. However, much of this
work has been focused on solving convex problems. Considerable progress has there-
fore been made in robust optimization of linear, convex-quadratic, conic-quadratic and
semi-definite problems [4]. In contrast, literature related to robust optimization of non-
convex problems affected by uncertainties is relatively limited. Bertsimas et al. recently
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treated robust optimization of non-convex problems with constraints, but the method
is aimed at identifying local robust optima only [5]. Additionally, the approach assumes
that gradients are available. In general, however, the availability of gradients cannot al-
ways be guaranteed.

A vast number of practical problems affected by uncertainties is non-convex. Fur-
thermore, the objective function of such problems is often not explicitly known and
therefore has to be treated as a black-box. Such a scenario is typically observed when
the objective is a result of a computer simulation. An additional difficulty often encoun-
tered is that the inherent simulation is computationally expensive to perform. This fur-
ther prevents the application of robust optimization in engineering practice.

Applying optimization directly on expensive computer simulations is prohibitively
expensive. This is especially true in the case of robust optimization, since robust opti-
mization involves solving a nested min-max optimization problem where the objective
to be optimized is itself a result of an optimization. The problem to be tackled therefore
renders itself suitable to a surrogate-based optimization strategy where a cheap model
is initially constructed via Design of Experiments (DoE) and thereafter, the model is up-
dated using an infill sampling criterion.

Of the various surrogate-based modeling techniques that exist, for the proposed method
we employ Kriging [6]. The statistical framework of Kriging provides an estimator of the
variance of the Kriging interpolator. Using this potential error, different metrics have
been proposed to adaptively sample the design domain such that the deterministic op-
timum of an unconstrained problem can be found efficiently. The metric of Probability
of Improvement (PI) and Expected Improvement (EI) have been shown to be sound sta-
tistical infill sampling criteria. By constructing an initial metamodel using a suitable DoE
[7] and then employing EI, Jones et al. showed that the deterministic global optimum of
an unconstrained problem can be found using relatively few expensive simulations [8].
Jones et al. used the term Efficient Global Optimization to refer to this method.

In order to apply deterministic optimization on an expensive simulation-based prob-
lem with constraints, additional surrogates could be constructed for each constraint. In
the Kriging framework, an adaptive sampling scheme for a constrained problem was first
explored by Schonlau [9]. Based on the Kriging variance, the method suggests a metric
of Probability of Feasibility (PF) for each constraint, analogous to the Probability of Im-
provement in the objective. The product of probability of feasibility of the constraints
and expected improvement of the objective can then be used to suggest new sampling
locations. [10, 11] showed that by employing this approach the deterministic global op-
timum of a constrained problem can be found using relatively few expensive function
evaluations.

In addition to providing a basis for an adaptive sampling scheme, Kriging also has
the advantage that it generally exhibits superior performance compared to polynomial
models when robustness is taken into account [12]. However, a disadvantage of Kriging
is that the correlation matrix it generates is prone to ill-conditioning, which may require
stabilization [13]. Moreover, Kriging is also known to underestimate the variance in its
interpolation [14].

To the best of our knowledge, an infill sampling based approach for surrogate-based
global robust optimization of computationally expensive constrained problems affected
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by uncertainties has not been previously explored. Recently, Marzat et al. demonstrated
algorithms for tackling expensive simulation-based problems problems [15, 16]. Ur Rehman
et al. also showcased an approach for estimating the global robust optimum of these
problems [17, 18]. However this set of methods is limited to unconstrained problems.
There is a strong need to address the constrained case since most practical problems
affected by uncertainties are, more often than not, subject to constraints. The consid-
ered uncertainties are bounded-but-unknown and can affect the parameters as well as
the design variables of the problem. Uncertainties affecting the parameters are known
as parametric uncertainties. Implementation errors refer to uncertainties that directly
affect the design variables.

The primary contribution of this work is to provide a sound criterion for infill sam-
pling of expensive simulation-based constrained problems such that a feasible global
robust optimum can be found cheaply. We restrict the focus to problems involving in-
equality constraints since equality constraints that are affected by uncertainty cannot
be satisfied in general. The metamodels of the objective and the constraints are built
using Kriging. We derive adapted versions of expected improvement and probability of
feasibility to reflect the need for an infill criterion that is suitable for robust optimization
instead of deterministic optimization.

The average convergence and mean performance of the method is tested statistically
by applying it 100 times on several numerical problems. In addition, the algorithm is ap-
plied on an engineering problem that involves an optical filter realized on an integrated
circuit which is affected by bounded-but-unknown fabrication uncertainties.

This chapter is organized as follows. Robust optimization of problems with con-
straints is introduced in Section 5.2. Section 5.3 provides a brief description of Kriging
as well as expected improvement and probability of feasibility along with their use in
unconstrained and constrained deterministic optimization. We introduce the proposed
algorithm for efficient global robust optimization of constrained problems in Section 5.4.
Finally, Section 5.5 and 5.6 contain the results and conclusions, respectively.

5.2. ROBUST OPTIMIZATION OF PROBLEMS WITH CONSTRAINTS
A nominal optimization problem subject to constraints may be defined as,

min
xc

f (x)

s.t. h j (xc ) ≤ 0 ∀ j , (5.1)

where xc ∈ Xc is the set of design variables, f (x) is the objective function and h j (xc ) is
the set of constraints. If the problem is affected by implementation error Δ ∈U , with U

as the uncertainty set, then this directly impacts the design variables. In this scenario,
the robust optimization problem is given by,

min
xc

max
Δ

f (xc +Δ)

s.t. max
Δ

h j (xc +Δ) ≤ 0 ∀ j . (5.2)

The above formulation shows that robust optimization involves minimizing the worst-
case cost instead of the nominal cost. Let us now assume that the problem is affected by
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uncertainties in the problem data only. These parametric uncertainties can be modeled
using a set of environment variables xe ∈ Xe where Xe is the uncertainty set. A robust
optimization problem subject to constraints can then be written as,

min
xc

max
xe

f (xc ,xe )

s.t. max
xe

h j (xc ,xe ) ≤ 0 ∀ j . (5.3)

Observing the above equation, we note that the worst-case constraints with respect to the
uncertainty set Xe should not be violated in order to find a feasible solution. Therefore,
the global robust optimum would be the location that provides the best worst-case cost,
given that that location does not violate the worst-case constraints.

For some problems, uncertainties could impact both the design variables and the pa-
rameters. In this case, the solution has to be robust against parametric uncertainties as
well as implementation error. The robust optimization problem, subject to constraints,
for this general problem is given by

min
xc

max
xe,Δ

f (xc +Δ,xe )

s.t. max
xe,Δ

h j (xc +Δ,xe ) ≤ 0 ∀ j . (5.4)

The objective function and the constraints are considered to be non-convex. Fur-
thermore, we assume that the function and the constraints are based on the response
of an expensive computer simulation. Therefore, the ultimate goal of this work is to es-
timate a feasible global robust optimum of the constrained problem in Equation (5.4)
using a relatively small number of expensive simulations. This is performed by operat-
ing on cheap Kriging models of the objective and constraints instead of on the expensive
computer simulation. The problem is expressed as

min
xc

max
xe,Δ

K f (xc +Δ,xe )

s.t. max
xe,Δ

H j (xc +Δ,xe ) ≤ 0 ∀ j , (5.5)

where K f is the Kriging model of the objective and H j ∀ j are the Kriging models of the
constraints. In order to estimate the global robust optimum accurately, the surrogate
models need to approximate the corresponding reference functions very well, especially
in the neighbourhood of the robust optimum. Extra emphasis needs to be paid to the
metamodel error in the constraint models H j ∀ j , since a feasible robust optimum on
the metamodel should ideally also be feasible on the true function.

In the following section, we will discuss Kriging and its application on determinis-
tic optimization of constrained problems. This will provide a basis for the algorithm
proposed in Section 4, which strives to solve Equation (5.4). The scheme uses infill sam-
pling criteria based on Kriging that enable Equation (5.5) to approximate Equation (5.4)
increasingly well in potential regions of interest for global robust optimization of a given
problem.
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5.3. KRIGING-BASED DETERMINISTIC OPTIMIZATION OF CON-
STRAINED PROBLEMS

5.3.1. KRIGING
A very brief description of the metamodelling technique known as Kriging is provided
herein. For detailed explanation concerning the model construction and interpolation
please refer to [6].

Kriging is an interpolation technique that assumes that the function response at any
position in the design domain can be described as a normally distributed random vari-
able. It employs a tunable Gaussian basis function, Equation (22), to describe the corre-
lation between any two sample points. Optimal values for the tunable parameters of this
basis function are found by maximizing the likelihood of obtaining the observed data.
Using this tunable basis function, the Kriging prediction, ŷ , is estimated by maximizing
the combined likelihood of the observed data and the predicted value, Equation (23).
The statistical basis of Kriging provides an estimate of the variance, s2, in the Kriging
interpolator, Equation (24).

1. Set NT, n, εEI, εPI
2. Choose initial

samples X = [x1, ...,xn]

3. Compute response
for objective f (x) and
constraints h j(x) ∀ j

4. Construct Krig-
ing metamodels
K f and H j ∀ j

5. Find xnew by
maximizing EIF

6. Append xnew,
f (xnew), h j(xnew) ∀ j

to corresponding
sets, increment n

7. Stopping
criterion
reached?

8. Return xbest
yes

no

Figure 5.1: Flowchart of deterministic optimization using constrained EI. The algorithm finds the nominal
optimum of a constrained problem with relatively few function calls of an expensive to evaluate function.

5.3.2. DETERMINISTIC UNCONSTRAINED OPTIMIZATION
Rather than working with a predetermined and static set of samples, it proves more ef-
ficient to adaptively extend the set of samples to refine the approximation. The combi-
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nation of the Kriging interpolator and its variance has been successfully used to devise
adaptive sampling schemes for efficient optimization of black-box functions. Jones et al.
proposed the Efficient Global Optimization (EGO) algorithm [8] for deterministic uncon-
strained optimization based on the Kriging framework. Their method used the adaptive
sampling criterion of Expected Improvement (EI).

The EI criterion is developed by assuming that the uncertainty in the predicted value
ŷ(x) at a position x can be described in terms of a normally distributed random variable
Y (x). The Kriging interpolator ŷ(x) is assumed to be the mean of this random variable
while the variance is assumed to be given by the Kriging mean squared error s2(x). There
is a possibility for improving on the current observed minimum, ymin, if a part of the
distribution Y (x) lies below ymin. Let this improvement be denoted by I . Finding the
expectation of the improvement I , i.e. E [I (x)] = E [max(ymin−Y ,0)], gives us the expected
improvement. A cheaply computable analytical expression may be derived for the EI
[19],

E [I (x)] = (ymin − ŷ)Φ

(
ymin − ŷ

s

)
+ sφ

(
ymin − ŷ

s

)
(5.6)

where Φ(.) is the normal cumulative distribution function and φ(.) is the normal proba-
bility density function. A global optimizer can be used to estimate the global maximizer
of EI. The expensive function is evaluated at the maximizer location and the metamodel
is rebuilt with the augmented set of samples and responses. By iteratively sampling the
metamodel using EI the global deterministic optimum of the problem can be found in
relatively few iterations.

5.3.3. DETERMINISTIC CONSTRAINED OPTIMIZATION
The constraints are also considered to be a result of an expensive computer simulation.
Therefore, a cheap model has to be built for them as well. An option could be to include
each constraint as a penalty term, but for more complex constraints this approach does
not work well [11].

In order to deal with constraints a measure known as Probability of Feasibility (PF)
was developed by [9]. The criterion is analogous to the probability of improvement for
the objective. Let the constraint metamodel be denoted by H (x) and the Kriging pre-
diction by ĥ(x). To derive the expression for probability of feasibility, it is again assumed
that the uncertainty in the predicted value ĥ(x) at a position x can be described in terms
of a normally distributed random variable H(x) with mean ĥ(x) and variance s2(x). The
measure gives the area of the distribution H(x) that is below the constraint limit hmin or
P [F (x) < hmin]. For a single constraint the probability of feasibility is given by

P [F (x) < hmin] =Φ

(
hmin − ĥ

s

)
. (5.7)

Typically, the constraint expression is rearranged so that the constraint limit hmin = 0.
Just like expected improvement and probability of improvement, the probability of fea-
sibility is an analytical expression that is cheaply computable. The probability of fea-
sibility is basically a metric that gives an indication of possible feasible regions in the
domain.
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The product of expected improvement in the objective and the probability of feasibil-
ity of the constraint can then provide a suitable infill criterion for constrained problems
[10, 11],

EIF = E [I (x)]P [F (x) < hmi n]. (5.8)

By estimating the global maximizer of the constrained expected improvement, EIF , a
suitable location at which to sample both the objective metamodel and constraint meta-
models can be found. The method can readily be extended to multiple constraints by
using the total probability of feasibility, which is given by the product of the individual
probability of feasibility of each constraint.

Figure 5.1 shows the flowchart of the algorithm for deterministic optimization of con-
strained problems using Kriging and adaptive sampling. The algorithm is initialized in
Step 1. A suitable Design of Experiments strategy is used to choose the initial sampling
regions in Step 2. Once the responses of the objective and the constraints are found, the
Kriging models are constructed in Step 4. Thereafter, the global maximizer of EIF is es-
timated and this is assigned as the new location to be sampled, xnew . The response of
the objective and the constraints at xnew are computed in Step 6. The process of con-
structing the objective and constraint metamodels and adaptively sampling the domain
is repeated until the stopping criterion in Step 7 is reached. A possible stopping criterion
could be the point at which n = NT. Alternatively, depending on the sampling criterion
used, the algorithm may be stopped when either the maximum EIF falls below εEI.At this
stage, the feasible sample corresponding to the minimum objective value is returned as
the solution xbest. This algorithm has successfully been demonstrated on deterministic
constrained problems by [10, 11]. Parr et al. used EIF as the infill sampling criterion in
their work.

5.4. EFFICIENT GLOBAL ROBUST OPTIMIZATION OF CONSTRAINED

PROBLEMS
A scheme for Kriging-based deterministic optimization of expensive simulation-based
constrained problems was introduced in the previous section. We now propose an effi-
cient technique, based on Kriging, for global robust optimization of expensive simulation-
based constrained problems.

In this section, it is shown how the robust optimum can be found for a problem af-
fected by parametric uncertainties only, Equation (5.3). The basic principle of the al-
gorithm does not change even if the problem to be solved is affected by implementa-
tion error only, Equation (5.2) or is affected by both implementation error and paramet-
ric uncertainties, Equation (5.4). For clarity, we focus our discussion on an algorithm
that solves Equation (5.3). Separate treatment of implementation error can result in ef-
ficiency improvement. We refer to [17] for a detailed discussion of this aspect.

Figure 5.2 illustrates the steps that are involved in estimating the robust optimum.
The foundation of the method is the same as the one for deterministic Kriging-based
optimization. Both approaches depend on the same initialization phase, i.e. Step 1 to
Step 4 are identical. This is followed by an iterative surrogate update process where a
single new adaptive sample is added in each iteration.

The significant difference between the two methods is the actual process by which
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1. Set n, εEI, NT
2. Choose initial

samples X = [x1, ...,xn]

3. Compute response
for objective f (x) and
constraints h j(x) ∀ j

4. Construct Krig-
ing metamodels
K f and H j ∀ j

5a. Find robust opti-
mum rK on metamodel

5b. Find xnew
c by max-

imizing the best worst-
case constrained EI

5c. Find xnew
e by

maximizing worst-case
constrained ED

6. Append xnew,
f (xnew), h j(xnew) ∀ j

to corresponding
sets, increment n

7. Stopping
criterion
reached?

8. Return xbest = arg rKno
yes

Figure 5.2: Flowchart shows the algorithm for efficient global robust optimization of constrained problems.
The steps with the bold borders represent the changes that have been made to the algorithm in Figure 5.1 in
order to reflect the fact that we are searching for a robust optimum.

this new sample xnew is found at each iteration. In deterministic optimization, the search
for xnew simply involved maximizing Equation (5.8). However for robust optimization
this process has to be broken down into several steps. A reference metric for the robust
optimum is first required. This is given by the constrained robust optimum, rK , on the
metamodel.

When estimating the robust optimum rK on the metamodel, the effect of the meta-
model error also has to be included. In particular, errors in the constraint surrogate can
result in an infeasible solution being chosen as the robust optimum. To mitigate the ef-
fect of the metamodel error, [12] suggested a method that makes use of the variance in
the Kriging interpolator of the constraints. The strategy basically involved adding the
standard deviation of the constraint metamodel to the Kriging prediction of the con-
straint. This would result in a more conservative constraint metamodel, especially in
regions with high uncertainty and thereby reduce the chance of obtaining an infeasible
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rK

ŷmax

Feasible region Feasible region

x e

xc xc

(a) (b)

Figure 5.3: Plot (a) shows a Kriging metamodel of a two-dimensional function. The constraint boundary of
the constraint metamodel is also plotted. The infeasible region is given by the area covered by the black lines.
Plot (b) shows the worst-case Kriging metamodel as well as the worst-case constraint boundary. The infeasible
region in (b) is shaded in pink. The robust optimum location is also indicated on the plot.

solution. The robust optimum rK is therefore found via,

min
xc

max
xe

K f (xc ,xe )

s.t. max
xe

H j (xc ,xe )+κ s j (xc ,xe ) ≤ 0 ∀ j , (5.9)

where s j (xc ,xe ) is the metamodel standard deviation for the j th constraint metamodel at
location (xc ,xe ). The parameter κ, chosen between [0,1] is a measure of how conserva-
tive we want to be with respect to the metamodel error. A value of zero for κ means that
the metamodel error is not included, while higher values indicate a more conservative
approach.

xnew
c

E
I c

PF
c

E
I c

h

xc xc xc

(a) (b) (c)

Figure 5.4: Plot (a) shows the expected improvement, EIc , in the objective. The Probability of Feasibility of the
constraint is plotted in (b). Plot (c) shows the product of EIc and PFc . The new control variable location xnew

c
is also indicated.
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After locating rK , the search is divided into two parts. First, the optimal sampling
location in the control variable space, Xc , is found and then we search for the optimal
sampling location in the environment variable space, Xe . The adaptive sampling mea-
sures needed to perform this search are also suitably adapted for estimating regions of
interests for locating the robust optimum rather than the deterministic optimum.

5.4.1. OPTIMAL SAMPLING LOCATION IN Xc
The optimal sampling location xnew

c ∈Xc should be the infill location corresponding to
the highest expectation of improvement over the current constrained robust optimum
rK , Equation (5.9). The search for xnew

c is performed in Step 5b of the flowchart in Figure
5.2.

To illustrate how this sampling location is found, we make use of an example function
of a single control variable xc and a single environment variable xe . The problem has one
constraint, which is also a function of both xc and xe . Figure 5.3(a) shows the Kriging
metamodel K f of the two dimensional function, based on a set of initial samples and
responses. The plot also contains the constraint boundary of the constraint metamodel
H . The feasible region is also indicated on the plot. The construction of the Kriging
metamodel of the objective and the constraint, Equation (5.9), involves going through
Step 1 to Step 4 of the flowchart in Figure 5.2.

Figure 5.3(b), on the other hand, shows the worst-case Kriging metamodel ŷmax ,

ŷmax (xc ) = max
xe∈Xe

K f (xc ,xe ). (5.10)

The maximizer of Equation (5.10) is denoted by xmax
e . The region where the worst-case

constraint, ĥmax , has a predicted response greater than the constraint limit is indicated
in pink in Figure 5.3(b),

ĥmax (xc ) = max
xe∈Xe

H (xc ,xe ). (5.11)

The minimum value for ŷmax within the feasible region gives the constrained robust op-
timum rK . The process of estimating the robust optimum corresponds to Step 5a in the
flowchart in Figure 5.2.

A constrained expected improvement criterion is required for identifying a promis-
ing location at which to sample in Xc . Following the method described for deterministic
optimization, this would involve obtaining an expected improvement expression for the
objective and a probability of feasibility for the constraint.

To formulate the EI in the objective, it is assumed that the uncertainty in the worst-
case Kriging prediction ŷmax, at any location (xc ,xmax

e ), can be described in terms of a
normally distributed random variable Ymax with mean ŷmax and variance s2(xc ,xmax

e ).
We can improve over the current robust optimum rK when Ymax < rK . It was shown by
[18] that the expectation of this improvement, Ic , is given by

E [Ic (xc )]︸ ︷︷ ︸
EIc

= (rK − ŷmax)Φ

(
rK − ŷmax

s

)

+ sφ

(
rK − ŷmax

s

)
. (5.12)
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The plot in Figure 5.4(a) shows the expected improvement EIc as a function of the
control variable xc .

To come up with the probability of feasibility expression, we again make use of a nor-
mal distribution to model the uncertainty in the worst-case constraint, ĥmax . Therefore,
the uncertainty in the worst-case constraint, ĥmax , at any location (xc ,xmax

e ) is treated
in terms of a normally distributed random variable Hmax with mean ĥmax and variance
s2(xc ,xmax

e ). The probability of feasibility is then given by the area of the distribution
Hmax that is below the constraint limit hmi n . The expression for a single constraint can
be written as,

P [Fc (xc)]︸ ︷︷ ︸
PFc

=Φ

(
hmin − ĥmax

s

)
. (5.13)

The plot in Figure 5.4(b) shows the probability of feasibility PFc as a function of the con-
trol variable xc when hmi n is considered to be at the constraint limit.

As in deterministic constrained optimization, a suitable infill criterion in Xc can be
found by maximizing the product of the expected improvement, EIc , in the objective and
the probability of feasibility, PFc , in the constraint,

EIch = E [Ic (xc )] P [Fc (xc)]. (5.14)

The new sampling location, xnew
c ∈Xc is obtained by determining the global maximizer

of Equation (5.14). Multiple constraints are handled by using the total probability of
feasibility which is given by the probability of feasibility of each constraint. Figure 5.4(c)
shows a plot of EIch . The new control variable location xnew

c , given by the location of
the global maximum, is also indicated. xnew

c is determined in Step 5b in the flowchart in
Figure 5.2.

5.4.2. OPTIMAL SAMPLING LOCATION IN Xe
After choosing xnew

c , the algorithm searches for the optimal infill sampling location,
xnew

e , in the environment variable space Xe . Figure 5.5(a) shows the same Kriging meta-
model of the objective and the constraint boundary of the constraint metamodel along
with the feasible region. The location of xnew

c is also shown on the plot. Figure 5.5(b)
shows the Kriging prediction of the objective at xnew

c , corresponding to the line of plot
(a), plotted with respect to xe . The worst-case cost gK is also shown on the plot. The
worst-case is given by,

gK (xnew
c ,xe ) = max

xe∈Xe
K f (xnew

c ,xe ). (5.15)

Figure 5.5(c) shows the Kriging prediction of the constraint at xnew
c . Again the worst-

case constraint value gH is also shown on the plot. In general, the worst-case constraint
value is given by,

gH (xnew
c ,xe ) = max

xe∈Xe
H (xnew

c ,xe ). (5.16)

An adaptive sampling criterion is needed in the environment variable space to sug-
gest xnew

e . Choosing xnew
e involves finding a location that could potentially give a higher,

i.e. more pessimistic, value than gK and gH . This is the goal since the aim is to find the
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xnew
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Figure 5.5: Plot (a) shows the same Kriging metamodel along with the constraint boundary of the constraint
metamodel and the infeasible region, covered by the black lines. The location of xnew

c is also shown. The
Kriging prediction at xnew

c , corresponding to the response along the red line in plot (a), is plotted with respect
to xe in (b). Plot (c) shows the Kriging prediction of the constraint at xnew

c .

most adverse situation in the environment variable space Xe . An expected deterioration
(ED) criterion for the objective should therefore help identify a location with the highest
expected value relative to gK . Similarly, an ED measure for the constraint should aid in
estimating a location with the highest expected constraint value relative to gH .

In an earlier work [18] the authors have derived the expression for the expected de-
terioration in the objective with respect to the environment variable space. This is given

xnew
e

E
D

e

E
D

h

E
D

eh

xe xe xe

(a) (b) (c)

Figure 5.6: Plot (a) shows the expected deterioration, EIe , in the objective with respect to the environment vari-
able. EDh is plotted in (b). Plot (c) shows the constrained expected deterioration EDeh . The new environment
variable location xnew

e is also indicated.
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by,

E [De (xnew
c ,xe )]︸ ︷︷ ︸

EIe

= (ŷ − gK )Φ

(
ŷ − gK

s

)

+ sφ

(
ŷ − gK

s

)
. (5.17)

The plot in Figure 5.6(a) shows the expected deterioration, EIe , as a function of the envi-
ronment variable, xe . The expected deterioration in the constraint is completely analo-
gous to EIe in the objective. The expression is given by,

E [Dh(xnew
c ,xe )]︸ ︷︷ ︸

EDh

= (ĥ − gH )Φ

(
ĥ − gH

s

)

+ sφ

(
ĥ − gH

s

)
. (5.18)

In the case of multiple constraints, the total expected deterioration in the constraint,
EDh , can be found by taking the product of the individual ED for each constraint. The
plot in Figure 5.6(b) shows the expected deterioration EDh in the constraint as a function
of the environment variable xe .

The new sampling location xnew
e can be found by determining the maximizer of the

product of the expected deterioration in the objective, EIe , and the expected deteriora-
tion in the constraint, EDh ,

EDeh = E [De (xnew
c ,xe )] E [Dh(xnew

c ,xe )]. (5.19)

Figure 5.6(c) shows a plot of the product EDeh along with the location of the new en-
vironment variable location, xnew

e . Step 5c in the flowchart in Figure 5.2 involves the
search for the new environment variable, xnew

e .

5.4.3. IMPLEMENTATION ASPECTS
Once xnew is identified, the objective and the constraints are evaluated using the expen-
sive simulation at the new location. Thereafter, if the stopping criterion has not been
reached yet, the metamodel is rebuilt and the process of searching for xnew

c and xnew
e

is repeated. The algorithm is stopped when the total number of function evaluations
available NT is exhausted. Additionally, the algorithm can also be terminated if the ro-
bust optimum, rK , found over the last few iterations, does not change significantly. For
this purpose, we maintain a history set, Sh , that consists of the robust optimum found
at each iteration.

Apart from its use as a termination criterion, the history set can aid in the search for
the robust optimum. Whenever a new search for the robust optimum rK is initiated
at a particular iteration, the starting points for the search can include the history set,
Sh , of the robust optima locations found in the previous iterations. In this manner, it
is ensured that a possible robust optimum location found in previous iterations is not
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missed by the global search in the current iteration. By doing so, we also systematically
reduce the estimation error of the internal global optimizers.

Once the algorithm terminates, the location of the robust optimum, rK , found at the
last iteration is returned as the final solution. The result from the final iteration is chosen
instead of any other iteration since the last iteration includes the most information about
the problem.

5.5. RESULTS

5.5.1. TESTING METHODOLOGY

In order to test the ability of the algorithm to reliably and efficiently converge to the
global robust optimum, its numerical performance is evaluated on five analytical test
problems and one engineering case study. The test problems are provided in the Ap-
pendix. The objective functions for the first four problems are well known benchmark
problems which were originally employed as test problems for unconstrained min-max
optimization by [20]. The corresponding expressions for the constraints have been cho-
sen such that a feasible solution exists for all problems while, at the same time, ensuring
that the global robust optimum is not given by a trivial solution.

We assess the ability of the method to find the robust optimum of a constrained prob-
lem by testing it on Problem P1, P2 and P4. All three problems have a single constraint.
To get insight into the capacity of the technique to handle more constraints, it is tested
on Problem P3 and P5, which have two inequality constraints. Similarly, the ability of
the algorithm to deal with different kinds of constraints is analyzed by choosing some
constraints to be nonlinear, e.g. P1 and P2, while keeping others linear, e.g. P4. Addi-
tionally, P3 has both linear and nonlinear constraints. Another important aspect is the
evaluation of the scalability of the algorithm. To this end, Problem P4, which is a func-
tion of 10 dimensions in both the objective and the constraint, is used as a test case. P1,
P2 and P3 are a function of 2 control variables and 2 environment variables, while P10 is
a function of 5 control variables and 5 environment variables. Note that while a problem
with 10 variables may not qualify as a large problem in deterministic optimization, it is
substantially more challenging in the robust case. The nested nature of robust optimiza-
tion makes that computational costs increase significantly faster with problem size than
in the deterministic case.

Since the initial sampling, performed via space-filling, is random, the results of each
run may be different. However, the method should be able to converge regardless of the
initial samples. In order to test the repeatability and reproducibility of the algorithm, it is
run 100 times on each test problem and the statistical results are analyzed. The number
of initial samples n are chosen as n = 10×nd , where nd is the number of dimensions of
the problem. The maximum function evaluations available, NT, is set to 150 for P1, P2
and P3. For the larger problem P4, NT = 450.

The algorithm’s performance is also tested on a polynomial problem proposed by
Bertsimas et al. as a test case for robust optimization of constrained problems [5]. The
test case, listed as problem P5 in the Appendix, is a 2-dimensional non-convex problem
with two non-linear constraints. The problem is assumed to be affected by implemen-
tation error Δ = [Δxc1 Δxc2] such that ‖Δ‖2 ≤ 0.5. The uncertainty set, which takes the
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Figure 5.7: Plot (a) shows contour lines of the reference function and constraints for problem P5 along with
the location of the robust optimum, indicated by the small green circle. Plot (b) shows contour lines of the
Kriging prediction of the function and constraints along with the location of the robust optimum on the Kriging
surface, (small green circle). The big red circle, in both plots, indicates the extent of the 2-norm uncertainty
set. The red square, in the two plots, shows the location of the best worst-case cost for the objective. Finally,
the magenta squares, in both plots, indicate the worst-case cost with respect to the constraints.

form of a circle, is convex. The maximum function evaluations for P5 is set to NT = 65.

In addition to testing it on analytical benchmark problems, the algorithm is also ap-
plied on an engineering case study. The problem consists of an optical filter based on
a ring resonator that is fabricated as an optical integrated circuit. The fabrication is af-
fected by variations. The behavior of the filter is highly sensitive to these manufacturing
uncertainties. Therefore the problem lends itself to evaluation of the effectiveness of the
algorithm in a practical situation.

5.5.2. NUMERICAL PERFORMANCE EVALUATION

A TYPICAL EXAMPLE

Before discussing the statistical performance of the algorithm, we visually compare the
metamodel and the robust optimum at the final iteration of the algorithm against the
reference function for problem P5. Test problem P5 was used by Bertsimas et al. to
demonstrate their method on robust optimization of constrained problems [5]. In this
work, we use the problem simply as a benchmark example. The purpose therefore is
not to compare the proposed method against the approach of Bertsimas et al., since
their approach is complimentary to this work and can be integrated with the presented
algorithm.

The test problem is non-linear and non-convex. Therefore it serves as a challenging
test case to analyze the ability of the proposed algorithm to estimate the global robust
optimum efficiently. Problem P5 is affected by implementation error Δ = [Δxc1 Δxc2] ∈
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Table 5.1: Reference results of all the test problems. The functions are listed in the Appendix. nh represents
the number of constraints in the problem. f (xc ,xe ) is the optimum objective value. nd gives the total number
of dimensions.

Problem no. nh Xc Xe xc xe f nd

P1 1 [−5,5]2 [−5,5]2 -3.9462 0.6251 87.19 4
-2.6972 -0.6247

P2 1 [−5,5]2 [−5,5]2 -1.1005 0.3051 44.87 4
-1.5803 2.5455

P3 2 [−5,5]2 [−5,5]2 -0.3502 -0.0509 59.59 4
2.5 5

P4 1 [−5,5]5 [−3,3]5 -2.0935 1.6765 -0.3866 10
1.8516 1.2508
-1.4695 0.5925
-1.0453 0.6599
0.2691 -0.6599

P5 2 [−0.5,3.5]2 - 0.228 - 7.09 2
0.912

Table 5.2: The average numerical performance of the algorithm based on 100 runs evaluated on the test prob-
lems provided in the Appendix. The table shows the mean and standard deviation of the robust optimum along
with the average robust optimum locations in Xc and Xe . The total number of evaluations on the expensive
function is shown and the number of dimensions nd are also shown.

Problem no. Mean xc Mean xe Mean f SD f Total evaluations nd Infeasible solutions

P1 -3.8042 0.6521
87.11 0.271 77 4 2%

-2.6736 -0.6306
P2 -1.0256 0.2655

44.99 1.513 83 4 1%
0.1478 2.7550

P3 -0.3497 0.0474
59.65 0.2699 67 4 0%

2.5017 5.0000
P4 -2.1160 1.7102

-0.3945 0.0227 392 10 0%
1.8492 1.1378
-1.4000 0.5209
-1.0605 0.7449
0.2625 -0.6598

P5 0.2321
- 7.162 0.058 60 2 3%

0.9243



5.5. RESULTS

5

107

U such that ‖Δ‖2 ≤ 0.5. Since the problem has only 2 control variables that are both
affected by implementation error, it is easy to visualize the function and constraints sur-
face. Figure 5.7(a) shows a contour plot of the reference function and constraints for
problem P5. Figure 5.7(b) shows the contour plot of the Kriging prediction of P5 after 45
iterations of the algorithm and 65 expensive simulations have been performed. On both
plots, the location of the global robust optimum is given by a green circle. The robust
optimum is circumscribed by a red circle in both Figure 5.7(a) and Figure 5.7(b). The re-
gion bounded by this red circle is the 2-norm uncertainty set, ‖Δ‖2 ≤ 0.5. The red square,
in the two plots, shows the location of the best worst-case cost for the objective. On the
other hand, the magenta squares, in both plots, indicate regions with the highest risk of
potential constraint violation for each constraint.

Visually, Figure 5.7(a) and 5.7(b) seem quite similar. The location of the reference
robust optimum as well as the best worst-case cost with respect to the objective also
visually matches on both plots. The sample points are added to the problem in such a
way that the Kriging prediction for the objective and the constraints is trustworthy in
the local region in the neighborhood of the robust optimum. The figure shows that the
algorithm samples the expensive function in such a way that after 65 simulations it is
able to accurately estimate the location of the global robust optimum. Additionally, the
constrained expected improvement criterion ensures that the whole design domain is
explored and a potential solution is not missed due to any inaccuracy in local regions. In
the next subsection it will be shown, based on 100 runs of the algorithm on problem P5,
that the proposed approach shows consistent convergence to the robust optimum.

BENCHMARK STATISTICS

The reference robust optima and their corresponding locations for the five numerical
test problems are shown in Table 5.1. These optima were obtained by direct robust opti-
mization using the analytical expressions, i.e. without metamodel error. The number of
constraints, nh , is shown in column 2 while the number of total dimensions of the prob-
lem nd is given in the last column. The domain size in Xc and Xe is provided in column
3 and 4, respectively. Column 5 shows the robust optimum location for xc while column
6 gives the robust optimum location for xe . The robust optimum objective value is given
by f (xc ,xe ) in the second last column.

It is important to realize that the worst-case location for xe is different for the objec-
tive as opposed to the worst-case value for xe in the case of a constraint. The locations
for xe listed in the table represent only the robust optimum location in Xe . On the other
hand, the maximizer in Xe for each constraint has not been listed.

Table 5.2 shows the average numerical performance of the proposed approach based
on 100 runs of each test problem. The problem number is given by the first column.
The second and third column provide the mean robust optimum location in Xc and Xe

based on the 100 runs, respectively. The mean and standard deviation of the objective
value at the robust optimum for each function are given in column four and five, respec-
tively. The average total number of expensive function evaluations required to achieve
this average performance is given in the sixth column. The second last column gives the
number of dimensions of each problem.

The ratio of the mean robust optimum objective value (column 4 in Table 5.2) to the
reference robust optimum (column 7 in Table 5.1) is plotted in Fig. 5.8 for the five test
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Figure 5.8: Ratio of the mean robust optimum, found by the algorithm based on 100 runs, to the reference ro-
bust optimum is plotted. The error bars show the standard deviation around the mean value for each problem.
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Figure 5.9: The robust optimum found on the metamodel at each iteration of the algorithm for problem P1 is
plotted. The metamodel is initially constructed using only 10 initial samples. The plot also shows the objective
value for the robust optimum on the reference function.

problems. The error bars indicate the standard deviation around the optimum for each
test problem. The standard deviation varies dramatically from one problem to another.
This difference is a function of the local gradient in the neighborhood of the robust op-
timum for the individual problems. Obviously, higher gradients lead to greater relative
deviation even when there is a small change in the design variables. In this context,
the location of the robust optimum and their relative accuracy is also highlighted. In
almost all cases, the numbers compare quite well with the reference optima locations.
Where there are larger local deviations in a particular variable, this can be attributed to
the fact that the objective could be locally very flat with respect to that variable in the
neighborhood of the robust optimum. Additionally, in some cases two different values
of a particular variable can lead to the same robust optimum. This is the case for xc2 for
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problem P2. Therefore, the average value for xc2 for problem P2 is completely different
from the reference location.

It is also pertinent to point out that the average locations given in Table 5.2 are only
meant to show the mean closeness of the result found to the reference location. Since
the locations are averages they cannot be used to evaluate the feasibility of the final so-
lution. The last column in Table 5.2 shows the percentage of solutions that were found to
be infeasible when evaluated on the respective functions as a post-processing step. The
results indicate that the number of optimization results that are feasible on the meta-
model but infeasible on the reference function is, in general, very low.

The most crucial numbers in Table 5.2 are given in the sixth column. This column
states the total number of evaluations required, on average, to estimate the robust op-
timum.We note that the total number of function evaluations is quite small for all five
problems. Apart from problem P5, all of the problems require less than 4 samples per
dimension. The largest problem, P10, in fact requires much less than 2 samples per di-
mension, (210 = 1024 samples), to achieve the reported average performance.

INDIVIDUAL RUN ANALYSIS

Apart from studying the average performance, it is instructive to analyze individual runs
for the different test cases. For problem P1, we compare the effect of choosing different
number of starting points on the intermediate accuracy of the metamodel at each iter-
ation as well as on the convergence of the algorithm. To this end, Figure 5.9 shows the
robust optimum found on the objective metamodel for the problem P1 when the meta-
model is initialized with only 10 initial samples. The corresponding robust optimum
location’s objective value on the reference function f (xc ,xe ) at each iteration is also plot-
ted. As expected, in the beginning the robust optimum on the metamodel and the cor-
responding objective value on f (xc ,xe ) do not match. But steadily, the values become
closer to each other until by about the 15th iteration they are almost the same. Figure
5.10 shows the same plot for problem P1, but now the number of initial samples is 40.
It is interesting to observe that the robust optima found on the metamodel and the ref-
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Figure 5.10: The robust optimum found on the metamodel at each iteration of the algorithm for problem P1
is plotted. The metamodel is initially constructed using 40 initial samples. The plot also shows the objective
value for the robust optimum on the reference function.
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Figure 5.11: The robust optimum location for xc1 and xc2 found on the metamodel at each iteration of the
algorithm for problem P2 is shown. The robust optimum has been reached by the 15th iteration even though
the location of xc2 changes in the following iterations as well.

erence function are already indistinguishable from the first iteration. But this does not
automatically guarantee that the algorithm will converge to the robust optimum faster
than for the 10 initial samples, Figure 5.9. In fact, in this particular case, the algorithm
converges at the same speed for both runs This suggests that having a larger number of
samples for the initial space filling step does not always lead to faster convergence.

Comparison of problem P2 and problem P3 is also enlightening since the two prob-
lems have the same objective function and the same first constraint. Problem P3 has a
second linear constraint that is not present in P2. It was mentioned in the discussion of
the average results in Table 5.2 that xc2 in P2 can attain two values. This is exhibited by
Figure 5.11 which shows that while xc1 has attained a constant value by 15th iteration,
xc2 sometimes jumps up and down. The algorithm has also converged to the robust
optimum by the 15th iteration. It is easy to observe why this happens by turning our at-
tention to the function f (xc ,xe ) in problem P2 in the Appendix. It can be seen that xc2
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Figure 5.12: The robust optimum location for xc1 and xc2 found on the metamodel at each iteration of the
algorithm for problem P3 is plotted. The robust optimum has been reached by the 15th iteration.
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appears only once in the objective function and it makes an appearance as a quadratic
term. The domain of xc2 in Xc is [−5,5] as shown by Table 5.1. The quadratic term and
the symmetric domain suggests that as long as the constraint function does not hinder
xc2 from taking both positive and negative versions of its optimum location, both lo-
cations will be equally optimal. Therefore, xc2 is able to attain a value of 1.58 or −1.58
without affecting the robust optimum objective value.
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Figure 5.13: The robust optimum found on the metamodel at each iteration of the algorithm is plotted for
problem P4. The metamodel is initially constructed using 100 initial samples. The plot also shows the objective
value for the robust optimum on the reference function.

The situation changes, however, when the second constraint is taken into account in
problem P3. Figure 5.12 shows the optimum robust optimum location for xc1 and xc2.
The algorithm has converged to the robust optimum by the 15th iteration for this run.
With the presence of the second constraint, xc2 is not allowed to have a value below 2.5
which means that we no longer observe the phenomenon exhibited in Figure 5.11.

To investigate how the metamodel accuracy is affected by the number of dimensions
in a problem, we check how the algorithm fares on the 10 dimensional problem. Fig-
ure 5.13 shows the robust optimum found on the objective metamodel for the problem
P4 when the metamodel is initialized with 100 initial samples. Again, the correspond-
ing robust optimum location’s objective value on the reference function is also plotted.
From iteration 1 to iteration 50, the objective values on the metamodel and the reference
function are often completely different. Steadily, from iteration 51 to iteration 100, the
metamodel starts giving a more accurate picture of the reference function. By the 150th

iteration, the two plots are practically indistinguishable. It is clear that by the 200th iter-
ation, the algorithm has converged to the robust optimum, and the same result is given
by the reference function, as exhibited by the overlap of the plots.

5.5.3. ENGINEERING CASE STUDY: ROBUST OPTIMIZATION OF AN OPTICAL

FILTER
The algorithm is applied on an engineering problem that is very sensitive to uncertain-
ties. The problem involves an optical filter that is fabricated as part of an optical inte-
grated circuit. A schematic of the integrated device is shown in Fig.5.14. Light is input
at the in-port, Fig. 5.14. Light is guided, via the principle of total internal reflection, in
a relatively higher refractive index layer of SiN, black path in Fig. 5.14, that is embedded
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Figure 5.14: Top-view schematic of an optical ring resonator. The area occupied by this integrated photonic
device is less than 1 mm2. Reproduced with permission from [18].
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Extinction Ratio (re ) of the ring resonator are also indicated on the plot.
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Table 5.3: Comparison of the robust optimum found by the proposed approach with the deterministic opti-
mum for the filter bandwidth. Higher values for B indicated better performance.

Optimum w g L Δw Δt Nominal B Worst-case B Expensive simulations

Nominal 1.11 1.259 220.48 −0.1 −0.003 6.16 GHz Infeasible 225
Robust 1.17 1.088 108.70 0 −0.003 3.42 GHz 2.19 GHz 225

in a lower refractive index medium SiO2. The path through which the light is guided is
known as a waveguide. The device is affected by fabrication defects that directly impact
the geometry of the cross section of the waveguide. These fabrication defects, in turn,
affect the optical performance of the device.

The filter is realized by placing a ring shaped waveguide in between two straight
waveguides. When the waveguides are within a certain proximity, light at particular
wavelengths is coupled from the straight waveguide into the ring-shaped waveguide
and from thereon it couples again into the other straight waveguide. Details related to
the physics and operation of ring resonators may be found in the work by [21]. The re-
sponse, Fig. 5.15 at the drop port shows that the filter resonates at a certain frequency
and drops the power at other frequencies. In this work, we are interested in optimizing
the bandwidth, B , of the filter at -3dB, Fig. 5.15. The problem involves two constraints
related to the Insertion loss I L and the extinction ratio re , Fig. 5.15. A commercial soft-
ware package, [22], is used to simulate the optical filter. The cost of a single simulation
is approximately ten minutes.

The quantities of interest are very sensitive to deviations caused by fabrication de-
fects. Therefore, performing robust optimization on the device can lead to significant
improvement in the overall yield. The problem is affected by both implementation error
type uncertainties and parametric uncertainties. The design variables of the problem
are xc ∈ [w g L] where w is the width of the waveguides while g is the gap between the
straight and the ring section, Fig. 5.14. L is the length of the straight coupling section
in the ring. An implementation error, Δw ∈ U affects both the gap g and the width w .
The parametric uncertainty Δt is the uncertainty in the out-of-plane thickness of the
waveguide. The robust optimization problem is defined as,

min
w,g,L

max
Δt,Δw∈U

−B ,

s.t. max
Δt,Δw∈U

− re +10dB ≤ 0

max
Δt,Δw∈U

I L+20dB ≤ 0 (5.20)

where w ∈ [0.9,1.27]μm, g ∈ [0.9,1.4]μm and L ∈ [100,300]μm. The range of the imple-
mentation error uncertainty set U is [−0.1,0.1]μm while the parametric uncertainty set
is given by Δt ∈ [−3,3]nm. The nominal waveguide thickness is t = 32nm and the radius
of the ring section is 600μm.

The proposed method is applied to identify the robust optimum of the filter. The re-
sult is compared to the nominal optimum of the problem that is determined by applying
the nominal optimization using constrained expected improvement [10]. The optimiza-
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tion problem without uncertainties is defined as,

min
w,g,L

−B ,

s.t. − re +10dB ≤ 0

I L+20dB ≤ 0. (5.21)

Both optimization runs are allowed a total of 225 expensive simulations, equivalent to
37.5 hours of simulation time. A large number of total simulations is used since the prob-
lem is quite non-linear. Table 5.3 shows a comparison of the robust optimum estimated
by the proposed approach with the deterministic optimum found via constrained ex-
pected improvement [10]. Column 2 to 4 provide the optimal locations for W , g and L
for both algorithms. Column 5 and 6 give the worst-case location with respect to the
objective in ΔW and Δt . The next two columns show the nominal and worst-case band-
width for the two methods. Apart from the worst-case location for the nominal optimum
all other solutions were found to be feasible since neither of the two constraints was vi-
olated. The feasibility as well as the actual value of the bandwidth B for the nominal
worst-case location was found on the simulator as a post processing step. The nomi-
nal optimum is found at the boundary of the first constraint, therefore the worst-case
bandwidth at nominal location turns out to be infeasible.

It is interesting to note that the worst-case location with respect to the objective for
the robust optimum does not occur at the boundary of the set Δw . This shows that the
behavior of the function inside the uncertainty set is non-convex. While the nominal
performance of the robust optimum is suboptimal compared to the nominal optimum,
the robust solution has the advantage that it remains feasible even in the worst case.

5.6. CONCLUSION
In this work, we have presented a novel technique for efficient global robust optimiza-
tion of expensive simulation based problems involving constraints. The efficiency of
the approach derives from the surrogate-based optimization strategy employed. Krig-
ing was chosen as the surrogate due to the availability of an estimate of the error in the
interpolator.

We extended the applicability of the Kriging-based constrained optimization frame-
work to the non-deterministic case, where the problem was affected by uncertainties in
its parameters. Adapted infill sampling criteria for expected improvement and proba-
bility of feasibility were developed that enabled fast convergence to the global robust
optimum of constrained problems. The proposed technique provides a viable alterna-
tive to fixed Design of Experiments based approaches. The fact that the metamodels
are iteratively improved in regions of interest for robust optimization gives the proposed
technique a significant advantage over traditional DoE based strategies. The efficiency
of the adaptive sampling scheme is particularly important for higher dimensional prob-
lems, for which typical space-filling techniques fail to obtain a reasonable solution using
a limited number of simulations. In addition to its robustness against the error arising
from parametric uncertainties, the method was also made robust against metamodel
error using the strategy suggested by [12]. It is pertinent to point out here that the ap-
plicability of the method described in this work is not limited to Kriging. Instead, any



5.6. CONCLUSION 115

interpolation strategy that also provides an error estimate in the interpolation can re-
place the Kriging framework employed in the proposed technique.

Several benchmark problems were used to analyze the numerical performance of the
algorithm. Due to the random nature of the initial sampling, the algorithm was run 100
times on each test problem and the statistical results were investigated. It was shown
that the algorithm exhibited efficient reliable convergence to the global robust optimum
for all test problems. In addition, the algorithm was also applied on an engineering prob-
lem where the bandwidth of an optical filter was optimized. It was shown that while the
nominal optimum of the problem gives an infeasible solution in the worst-case, the ro-
bust optimum always remains feasible even when considering the uncertainties.

While the method was applied on cheap models developed via Kriging, the approach
can equally easily be applied using any other interpolation method that provides an error
estimate in the interpolation. The proposed technique is therefore widely applicable and
presents a novel opportunity to efficiently investigate robust optimization of different
expensive computer simulation based problems affected by uncertainties.

Appendix A: Kriging

The basis function in Kriging is given by the following Gaussian correlation function,

Corr
[
Y (xi ),Y (x j )

]= exp

(
−

k∑
q=1

θq
∣∣xi q −x j q

∣∣p

)
(22)

where xi and x j are any two locations in the domain and k represents the total number of
dimensions of the problem. The parameter p is assigned a constant value of 2. θq , μ and
σ2 are varied such that the likelihood of the observed data is maximized. The Maximum
Likelihood Estimate (MLE) for the prediction ŷ is given by

ŷ(x) = μ̂+ rTR−1(y−1μ̂) (23)

where μ̂ is the estimated value for the mean, R is the N ×N correlation matrix between
the N sample points, r is the vector of correlations between the observed data and the
new prediction, while y is the observed response. The correlation vector r and the corre-
lation matrix R may be found via equation (22).

The Mean Squared Error (MSE) in the Kriging prediction is given by

s2(x) = σ̂2
[

1− rTR−1r+ 1−1TR−1r

1TR−11

]
, (24)

The MSE s2(x) is zero at sample point locations because the true function value is known
at these locations.

Appendix B: Test problems

The following test problems have been used to test the ability of the algorithm to con-
verge to the global robust optimum. The objective functions, P1 to P4, were originally
used as example problems for unconstrained min-max optimization in [20].
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P1

f (xc,xe) = 5(x2
c1 +x2

c2)− (x2
e1 +x2

e2)

+xc1(−xe1 +xe2 +5)+xc2(xe1 −xe2 +3).

h(xc,xe) =−x2
c1 +5xc2 −xe1 +x2

e2 −1. (25)

P2

f (xc,xe) = 4(xc1 −2)2 −2x2
e1 +x2

c1xe1 −x2
e2 +2x2

c2xe2.

h(xc,xe) = 5xc1 −x2
c2 +xe1 +xe2 −2.

(26)

P3

f (xc,xe) = 4(xc1 −2)2 −2x2
e1 +x2

c1xe1 −x2
e2 +2x2

c2xe2.

h1(xc,xe) = 5xc1 −x2
c2 +xe1 +xe2 −2.

h2(xc,xe) =−2xc2 +xe1. (27)

P4

f (xc,xe) = 2xc1xc5 +3xc4xc2 +xc5xc3 +5x2
c4

+5x2
c5 −xc4(xe4 −xe5 −5)

+xc5(xe4 −xe5 +3)+
3∑

i=1
xei (x2

ci −1)−
5∑

i=1
(x2

ei ).

h(xc,xe) = 5xc1 −xc2 +xc3 +xc4

−xc5 +xe1 −xe2 +xe3 +xe4 −xe5. (28)

P5

f (xc) = 2x6
c1 −12.2x5

c1 +21.2x4
c1 +6.2xc1 −6.4x3

c1

−4.7x2
c1 +x6

c2 −11x5
c2 +43.3x4

c2 −10xc2 −74.8x3
c2 +56.9x2

c2

−4.1xc1xc2 −0.1x2
c2x2

c1 +0.4x2
c2xc1 +0.4x2

c1xc2.

h1(xc) = (xc1 −1.5)4 + (xc2 −1.5)4 −10.125.

h2(xc) =−(2.5−xc1)3 − (xc2 +1.5)3 +15.75. (29)

Problem P5 is affected by implementation error Δ = [Δxc1 Δxc2] ∈ U such that ‖Δ‖2 ≤
0.5.
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6
DETERMINISTIC OPTIMIZATION OF

SYSTEMS WITH INDEPENDENT

COMPONENTS

6.1. INTRODUCTION
Optimization of systems has been dealt with in different ways depending on the problem
type. The field of multidisciplinary design optimization has evolved at a fast rate in the
past decades with the development of various methods and techniques to address opti-
mization of systems with many components or disciplines. In multidisciplinary design
optimization the primary focus has been on optimization of systems involving multi-
ple interactions between disciplines which are coupled with one another via coupling
variables. Various techniques have been developed that aid in maintaining consistency
between these disciplines during the optimization process [1].

A majority of systems falls under the category of a problem where multiple com-
ponents have complex interactions with one another. However, a subset of engineering
and non-engineering systems consists of components that are not interdependent. Such
systems may contain several components but the response of these components can
be evaluated independently of one another. In other words, the bi-level problem has a
hierarchical structure where, at the lower level, each component in the system is only
a function of design variables and there is no exchange of coupling variables between
components. In this scenario there is no requirement for maintaining consistency be-
tween the different disciplines or components and the system optimization process is
therefore much simpler.

In addition, components could be expensive to evaluate but the system transforma-
tion may be cheap. Systems of this type are common in the field of integrated optics [2].
The response of integrated optical components such as power splitters, directional cou-
plers and phase shifters can be obtained independently of other components. Finding
the component response usually requires computationally expensive electromagnetic
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simulations. Multiple such components can be used to develop complex integrated op-
tical systems. An example of such a system is an integrated optical serial ring resonator
[3].

This work addresses optimization of hierarchical systems based on independent com-
ponents that are expensive to evaluate. It is assumed that, once the component re-
sponses are available, the system response is cheap to compute. In order to optimize the
system we construct response surfaces of the underlying components. The accuracy of
the response surfaces depends on the number of samples and their locations. The chal-
lenge is to perform the optimization with a desired accuracy at very low computational
cost. The response surfaces are built using Kriging [4]. Kriging provides an estimator of
the mean squared error in its interpolation. This mean squared error was used by Jones
et al. [5] to develop the Expected Improvement (EI) criterion. The EI criterion enables
adaptive sampling of unconstrained problems in order to estimate the optimum using a
few expensive simulations.

We develop a system level expected improvement criterion that is derived from a sys-
tem level Mean Squared Error (MSE). The system MSE is found by performing a linear
transformation of the component level mean squared error generated by each compo-
nent metamodel. The system level EI suggests a potential location to be adaptively sam-
pled at each iteration of the algorithm and the component metamodels are updated at
the corresponding location. The iterative update of the component metamodels results
in a higher fidelity system response with each passing iteration. The process enables the
optimum of the system to be estimated using only a few component simulation calls.

Metamodels have often been used in multidisciplinary optimization [6]. Improv-
ing systems by adaptively sampling component metamodels is also a fairly well known
concept [7, 8]. Optimization of multilevel decomposed systems that have a hierarchi-
cal structure has also received attention [9]. Similarly, [10] employed different strategies
for component metamodel construction and update for system level optimization. Re-
search has also been previously performed on partitioning expensive problems with a
large number of variables so that they can be treated using component metamodels in a
multilevel system framework [11]. On the other hand, [12] specifically studied the quan-
tification of error at system level due to component level metamodels in a hierarchical
system.

This work also aims to optimize a multi-level problem with a hierarchical structure.
The bi-level problem consists of a cheap system transformation at the upper level and
expensive component models at the lower level. To our knowledge, there has been no
previous work on a system level expected improvement based sampling strategy for opti-
mization of systems involving expensive to simulate components that are independent
of each other. The proposed approach can efficiently optimize such systems, with the
caveat that the number of component variables is not so large such that high fidelity
component metamodels cannot be built using a reasonable number of simulations.

The method is especially relevant for systems in which the component behavior is
easier to approximate than system behavior. Also, it may be advantageous to employ
the technique in situations where many similar components are present in the system
since a single metamodel can then often replace multiple components. Furthermore,
the approach is attractive for fields in which the systems are typically composed of a
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selection of a small set of components.

The chapter is organized as follows. The system level optimization problem of sys-
tems with independent components is described in Section 6.2. In Section 6.3, we in-
troduce Kriging and Efficient Global Optimization and then present the system level ex-
pected improvement approach for adaptive sampling of the system. The algorithm is
tested on several well known numerical test problems and the result is analyzed in Sec-
tion 6.4. Finally, Section 6.5 contains the conclusions and suggestions for future work.

6.2. OPTIMIZATION OF SYSTEMS WITH INDEPENDENT COMPO-
NENTS

We introduce unconstrained optimization of the system in this section, but the method
also applies to constrained problems. Let S represent the response of a system of a set of
N uncoupled components c. Each component ci , where {i |i ∈N, i ≤N }, is a function
of design variables xi ∈Xi ⊆X. Since design variables could potentially be shared across
components, the sets X1 to XN may or may not be disjoint. In addition, some design
variables xs ∈Xs may only be present at system level, or may be present at both compo-
nent and system level. The union of sets Xi ∀ i ∈N and Xs is the set X. We define design
variables that are only present in a single component as local variables. Design variables
that are present in multiple component or at both component and system level are re-
ferred to as global variables. The optimization of the system response can be written
as,

min
x∈X

S(c1(x1),c2(x2),c3(x3), . . . ,cN (xN ),xs ). (6.1)

If the system response is based on expensive to simulate components, then applying op-
timization directly on the system response is prohibitively costly. A more viable option
instead is to construct lower dimensional (i.e. cheaper) metamodels Kci of the compo-
nents and to apply optimization on the resulting system,

min
x∈X

SK (Kc1(x1),Kc2(x2), . . . ,KcN (xN ),xs ). (6.2)

The process is visualized in Figure 6.1. In this work, we construct the metamod-
els using Kriging which provides an estimator of the error in its interpolation. We then
adaptively sample the component metamodels in such a way that the system optimum
is found using only a limited number of expensive simulations of the components.

The fidelity of the system response that is based on component metamodels will
heavily depend on the error of the underlying component response surfaces. Further-
more, the relative amount of system error is also governed by the operation that is per-
formed on the component responses in order to arrive at the system response. This op-
eration could turn a small component error into a large error contribution on the system
level and vice versa. Therefore, it is important that any adaptive sampling of the compo-
nents takes into account the error generated at system level. In the following section we
show how such an adaptive sampling scheme can be developed.
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x2x1 xNxs

Kc2Kc1 . . . KcN

Optimizer

SK

Figure 6.1: Process of optimization of the system based on metamodels of the independent components is
shown.

6.3. INFILL SAMPLING CRITERION FOR SYSTEM LEVEL OPTI-
MIZATION

6.3.1. KRIGING AND EFFICIENT GLOBAL OPTIMIZATION

KRIGING

Kriging is a metamodelling method that constructs the most likely interpolation through
a set of responses based on certain statistical assumptions. The most important of these
assumptions is that the function response is a normally distributed random variable.
However, Kriging is also a popular method for constructing response surfaces of fully de-
terministic simulation results [13]. Before introducing our new method in Section 6.3.2,
we provide a condensed explanation of the main steps in Kriging metamodel construc-
tion. Some equations are included in the Appendix, for reference. Sacks et al. [4] provide
a full description of Kriging.

Kriging uses a tunable basis function which usually takes the form of a parameter-
ized Gaussian correlation function, Equation (30), to measure the correlation between
sample points. Maximum likelihood estimation (MLE) is used to estimate the parame-
ters that best explain the observed responses. Kriging prediction ŷ , Equation (31), at a
previously unsampled location is then also performed using maximum likelihood esti-
mation.

An important aspect of Kriging is that a potential error in the interpolation can be
estimated. This Mean Squared Error (MSE) in the prediction is given by Equation (32).
The error is basically inversely proportional to the curvature of the likelihood function
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1. Set NT, εEI, n
2. Choose initial

samples X = [x1, ...,xn]
3. Compute function

response y = [y1, ...,yn]

4. Construct Kriging
metamodel K f

5. Find xnew by
maximizing EI

6. Append xnew
to X and f (xnew)
to y, increment n

7. Stopping
criterion
reached?

8. Return xbest
yes

no

Figure 6.2: Flowchart shows the steps involved in Efficient Global Optimization [5].

used for the Kriging prediction.

EFFICIENT GLOBAL OPTIMIZATION

The combination of the Kriging prediction ŷ(x) and MSE s2(x) can be used to adaptively
sample the design domain in order to quickly estimate the global minimum [5]. One of
the most effective Kriging based adaptive sampling criteria is that of Expected Improve-
ment (EI). EI is formulated by assuming that the metamodel uncertainty in response
ŷ(x) at x may be expressed as a normally distributed random variable Y (x) with mean
ŷ(x) and variance s2(x). An improvement can be made over the current observed mini-
mum ymin at x if some part of Y (x) is below ymin. The Probability of Improvement (PI)
over ymin may be expressed as,

P [I (x)] =Φ

(
ymin − ŷ

s

)
. (6.3)

A new sampling location that gives the highest probability of improvement over ymin can
be found by maximizing Equation (6.3).

A more refined method of sampling involves finding the expectation of the amount of
improvement over ymin. The expected improvement can be calculated by taking the ex-
pectation E [I (x)] = E [max(ymin−Y ,0)]. A cheap analytical expression for EI can be found
in terms of the normal cumulative distribution function Φ(.) and the normal probabil-
ity density function φ(.) [14]. The expected improvement over the minimum observed
response at any location x is

E [I (x)] = (ymin − ŷ)Φ

(
ymin − ŷ

s

)
+ sφ

(
ymin − ŷ

s

)
. (6.4)

A new sampling location that gives the maximum expected improvement can be found
by estimating the maximizer of Equation (6.4).
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The adaptive sampling strategy can be explained using the flowchart in Figure 6.2. An
initial metamodel K f is constructed using n samples chosen via Design of Experiments,
e.g. Latin Hypercube sampling (LHS). Equation (6.4) is then maximized to estimate the
new adaptive sampling location xnew . The sampling location and response is added to
the set and the metamodel is constructed again with the augmented set of samples and
responses until either EImax, the maximum EI at the last iteration, becomes less than εE I

or the computational budget NT is exhausted. The algorithm is referred to as Efficient
Global Optimization (EGO) [5]. This EGO algorithm forms the main inspiration for the
present work.

OPTIMIZATION OF CONSTRAINED PROBLEMS

An infill sampling strategy based on Kriging for computationally expensive constrained
problems was first suggested by [15]. The method involved building metamodels of the
objective and constraints and iteratively improving both sets of metamodels via a single
adaptive sampling scheme. This infill sampling criterion was simply a product of prob-
ability of improvement in the objective and a probability of feasibility for the constraint.

The probability of feasibility measure operates in much the same way as the proba-
bility of improvement for the objective. Metamodels are built for the expensive to eval-
uate constraint(s). Let the Kriging prediction and MSE for such a constraint metamodel
be given by ĥ(x) and s2(x). The metamodel uncertainty for each constraint metamodel
is again described in terms of a normally distributed random variable H(x) with mean
ĥ(x) and variance s2(x).

Let hmi n be the constraint limit. The standard notation for constrained problems
usually assigns hmi n to be equal to zero. The constrained problem at x remains feasible
as long as the constraint is less than or equal to zero.

The probability of feasibility is given by the area of the distribution H(x) that is below
the constraint limit hmi n ,

P [F (x) < hmi n] =Φ

(
hmi n − ĥ

s

)
. (6.5)

A possible choice for a new feasible sampling criterion for a constrained problem can
then be the product of the probability of improvement of the objective and the probabil-
ity of feasibility of constraints. For a problem with a single constraint this may be written
as,

PIF = P [I (x)]P [F (x) < hmi n] (6.6)

Alternatively, the expected improvement in the objective can be multiplied by the prod-
uct of the probability of feasibility of the constraints,

E IF = E [I (x)]P [F (x) < hmi n]. (6.7)

6.3.2. SYSTEM LEVEL EI CRITERION
The aim of this work is to optimize Equation (6.2) by means of building and iteratively
improving a set of component metamodels such that the optimum of the original system
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problem, Equation (6.1), is estimated. An additional goal is to solve system problems in-
volving constraints. Changes required in the iterative sampling strategy to accommodate
this goal are discussed in Section 6.3.3.

The algorithm is initialized by building Kriging metamodels of all components based
on a set of initial samples. In a software implementation, these could also be pre-built
library metamodels. The mean squared error of the individual component metamodels,
denoted as s2

i (x), is given by Equation (32). Let the system level response be given by

ŷsys = SK (ŷ1(x1), ŷ2(x2), . . . , ŷN (xN ),xs ), (6.8)

where ŷi is the Kriging prediction of each component Kci .
In order to update the metamodels in regions of interest for system optimization,

an adaptive sampling strategy at system level is required. To derive such a system infill
sampling criterion, an error estimate is needed of the system level response, Equation
(6.8).

The EI criterion in Section (6.3.1) was found by assuming that the uncertainty in the
predicted value ŷ(x) at a position x can be described in terms of a normally distributed
random variable Y (x) with mean given by the Kriging prediction ŷ(x) and variance given
by the Kriging MSE s2(x). Following the same process, we assume that the uncertainty in
the system level response ŷsys at a position x can be expressed in terms of a random vari-
able Ys y s (x) with mean ŷsys and variance s2

s y s . Furthermore, we retain the assumption
that the uncertainty in the predicted value of each component Kci can be described as
a normally distributed random variable Yi (x) with mean given by the Kriging prediction
ŷi and variance given by the Kriging MSE s2

i .
The random variable describing system level uncertainty, Ys y s (x), can basically be

described in terms of the system operation on the component level random variables
Y = [Y1,Y2, . . . ,YN ] and the deterministic system variable xs ,

Ys y s (x) = SK (Y1(x1),Y2(x2), . . . ,YN (xN ),xs ), (6.9)

where the normal random variables Y1(x1),Y2(x2), . . . ,YN (xN ) are independent. A linear
approximation of the right hand side of Equation (6.9) can be derived by performing the
Taylor series expansion of SK (Y,xs ) about the mean values ŷi of Y and truncating the
series to include only the linear terms, i.e. the first two terms,

SK (Y,xs ) = SK (ŷ1, ŷ2, . . . , ŷN ,xs )+
N∑
i=1

(Yi − ŷi )
∂SK

∂Yi

∣∣∣
ŷi

. (6.10)

Since the above expansion is linear, Ys y s is a normal random variable [16]. It can be
shown [17] that the first order mean of Ys y s is given by

E(Ys y s ) = ŷsys = SK [ŷ1, ŷ2, . . . , ŷN ,xs ] (6.11)

and the first order variance of Ys y s is given by

Var(Ys y s ) = s2
s y s =

N∑
i=1

b2
i s2

i ,

where bi = ∂SK

∂Yi

∣∣∣
ŷi

. (6.12)
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The derivatives bi can be computed cheaply using finite difference in case of black-box
system functions, or analytically otherwise. This is based on the assumption that the
components are expensive to evaluate, but the system is cheap. Since Ys y s is normally
distributed, an analytical expression similar to EI, Equation (6.4), can be derived for the
system level expected improvement as well.

Let the optimum on the system response, Equation (6.2), be denoted by dK . We
can improve on the value dK if Ys y s < dK . The expectation of this improvement, Is y s =
max(dK −Ys y s ,0), can be found by

E [Is y s (x)]︸ ︷︷ ︸
EIs y s

=
∫Is y s=∞

Is y s=0
Is y s

exp

(
− t 2

s y s

2

)
�

2πss y s
d Is y s , (6.13)

where

ts y s =
dK − Is y s − ŷsys

ss y s
. (6.14)

The standard normal probability density function is given by

φ(z) = 1�
2π

exp

(−z2

2

)
. (6.15)

Plugging in Equation (6.15) into Equation (6.13), EIs y s can be written as,

E [Is y s (x)] = (dK − ŷsys)
∫ts y s= dK −ŷsys

ss y s

ts y s=−∞
φ(ts y s )d ts y s − ss y s

∫ts y s= dK −ŷsys
ss y s

ts y s=−∞
ts y sφ(ts y s )d ts y s .

(6.16)

The first integral in Equation (6.16) can be recognized as the normal cumulative distri-

bution function Φ(
dK −ŷsys

ss y s
). The second integral can be solved by using the substitution

z = −t 2
s y s

2 . The final analytical expression for the infill sampling criterion at system level,
EIs y s , is

E [Is y s (x)] = (dK − ŷsys)Φ

(
dK − ŷsys

ss y s

)
+ ss y sφ

(
dK − ŷsys

ss y s

)
. (6.17)

The location of the global maximum of Equation (6.17) gives the next infill sampling
location xnew .

The algorithm is referred to as Bilevel Efficient Global Optimization (BEGO). We il-
lustrate the main idea of the algorithm via the following illustrative example,

S(c(x)) = sin(c1(x))+cos(c2(x)),

where c1(x) = 10x4, c2(x) = 10(1−x)3, x ∈ [0,1]. (6.18)

The system response is a function of two components that in turn are a function of
the same variable x. Figure 6.3 shows the plot of S(c(x)), c1(x) and c2(x). The system
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Figure 6.3: The components c1(x) and c2(x) and the system response S(c(x)) are plotted in the domain x ∈ [0,1].
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Figure 6.4: The Kriging metamodel of components c1(x) and c2(x) and the system response SK are plotted
along with their respective error estimate in (a), (b) and (c). Plot (d) shows the system expected improvement
EIs y s .

response has three local minima, two of which are very close in terms of their objective
value.

We construct Kriging metamodels of the components c1(x) and c2(x) based on a set
of initial samples. The true component and system responses are treated as black-box.
The system response based on metamodels may be expressed as,

SK (Kc(x)) = sin(Kc1(x))+cos(Kc2(x)),

x ∈ [0,1]. (6.19)

Figure 6.4 shows the Kriging metamodels, Kc1 and Kc2, of the components c1 and
c2 along with the system response SK and the system expected improvement EIs y s . The
metamodels have been initialized with three samples. The mean squared error for Kc1

and Kc2 and the error estimate for SK are also shown in plots (a), (b) and (c), respec-
tively. The error estimate for SK is constructed from the individual errors of Kc1 and
Kc2, by employing the linear transformation, Equation 6.12, at each value of x.

As expected, the error estimates are zero at the sample locations in plots (a), (b) and
(c). Similarly, the plot of EIs y s shows that no improvement is expected at locations that
have already been sampled. EIs y s is maximum at x = 0 and this would be chosen as the
new infill sampling location for this iteration of the algorithm.
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Figure 6.5 shows a flowchart of the main steps involved in system optimization using
Kriging based system expected improvement. It closely resembles the EGO flowchart,
in Figure 6.2, but important differences should be noted. After constructing the compo-
nent metamodels in Step 4, the new infill sampling location xnew is estimated in Step 5.
This involves a few substeps. Firstly, the deterministic optimum, dK on SK has to be es-
timated. Thereafter, the linear transformation of the component level mean squared er-
ror(s) is performed to estimate the system level error, s2

s y s . The system error estimate s2
s y s

is used along with the deterministic optimum dK to evaluate EIs y s in Equation (6.17).
The global maximum of Equation (6.17) gives the new sampling location xnew . In Step 6
the component response is evaluated at xnew . If the stopping criterion has been reached
already then the argument of dK , the minimizer of SK , is returned as the final system
optimum, otherwise the algorithm returns to Step 4 and the loop is repeated until termi-
nation.

6.3.3. CONSTRAINED OPTIMIZATION OF SYSTEMS
If the system involves constraints then the sampling criterion must also be adapted to
deal with these constraints. Similar to the formulation of system-level EI above, a prob-
ability of feasibility measure at system level can be derived to ensure that samples are
added in areas of interest for constrained optimization instead of unconstrained opti-
mization.

Let Sh represent the transformation of the component metamodels in order to get
the constraint response ĥs y s .

ĥs y s = Sh(ŷ1(x1), ŷ2(x2), . . . , ŷN (xN ),xs ). (6.20)

The error in the constraint response ĥs y s can be derived in a manner that is completely
analogous to the system error, ss y s , found for the objective. The system level variance for
the constraint is denoted by s2

h . The probability of feasibility, PFs y s , for the constraint Sh

can be expressed as,

P [F (x) < hmi n] =Φ

(
hmi n − ĥs y s

sh

)
. (6.21)

where hmi n is the constraint limit that dictates whether the constraint is feasible or in-
feasible. The product of the system level expected improvement EIs y s and the system
level probability of feasibility, PFs y s , gives a criterion for sampling a constrained prob-
lem. For a single constraint this criterion can simply be expressed as,

EIs f = EIs y s .PFs y s . (6.22)

The maximizer of Equation (6.22) is then sampled before constructing the component
metamodels again. If there are multiple constraints, the product of individual probabil-
ity of feasibility of all constraints will replace PFs y s in Equation (6.22).

6.4. RESULTS

6.4.1. NUMERICAL PERFORMANCE EVALUATION
The algorithm is tested on several test problems to investigate its ability to estimate the
deterministic optimum of the system accurately and consistently. The performance of
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Figure 6.5: Flowchart shows the steps involved in system optimization.

the algorithm is compared against treating the entire system as a component and ap-
plying optimization using the EGO method [5]. In the following discussion we refer to
the system decomposed into several components with the term DEC, (DEComposed),
and the system treated as a single component with the term SAC, where SAC stands
for System-As-Component. Similarly, we compare the performance of the approach
with a Latin Hypercube based sampling scheme for approximate response construction
and optimization of the SAC response. The advantages of using an adaptive sampling
scheme for the decomposed system problem are exhibited by comparing the effective-
ness of the method with optimizing a system response for a constrained problem based
on component metamodels built via LHS.

ALGORITHM EVOLUTION EXAMPLE

Before performing an in-depth analysis, we illustrate the evolution of the algorithm on
the one-variable system that consisted of two non-linear components. The problem was
introduced in Section 6.3, Equation (6.18). The plot of the reference components and
system response was given in Figure 6.3.

Figure 6.6 shows five iterations of the algorithm, after it has been initialized with
three samples at 0.25, 0.5 and 0.75 within the domain x ∈ [0,1]. The component meta-
models and the system response along with their respective error estimates are given in
plot (a), (b) and (c) for each iteration. Plot (d) shows the system expected improvement
found at each iteration. Each subsequent iteration updates the component metamodel
with xnew , the location of the maximum value for EIs y s attained in the previous itera-
tion. By the 5th iteration the maximum EIs y s falls to an insignificantly small value and
the global optimum of the problem, S = −1, is found at x = 0.0196. The error estimates
for the components and system response also drop fast. At the 5th iteration the compo-
nent metamodels and the system response SK match the reference in Figure 6.3 and the
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Figure 6.6: The evolution of the method is shown as new sampling points are added at each iteration. The
Kriging metamodel of components c1(x) and c2(x) and the system response SK are plotted along with their
respective error estimate in (a), (b) and (c). Plot (d) shows the system expected improvement EIs y s .
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Figure 6.7: Comparison of the average number of simulations, based on 20 runs, needed by DEC and SAC to
converge to the optimum of the problem.

respective error estimates are also very low.
The DEC and SAC algorithms were applied 20 times on the illustrative system prob-

lem S1. Both methods were initialized with two random sampling locations for each run.
The average number of iterations needed by DEC to converge to the optimum was 6.6
while the corresponding number of iterations for SAC was 14.5. In part, this disparity is
caused by the difference in nonlinearity of the system and component responses, which
require varying amounts of samples to approximate appropriately. To further illustrate
this aspect, additional test problems are discussed below.

UNCONSTRAINED TEST PROBLEMS

The algorithm is tested on a set of one-dimensional systems based on the following nu-
merical problem,

Sp [c(x)] = sin(c1(x))+cos(c2(x)),

c1(x) = px, c2(x) = (75−p)x, x ∈ [0,1], (6.23)

where p changes from p = 0 to p = 70 in steps of 10. This results in 8 different system
problems with different values of the frequency p. Figure 6.7 shows the number of iter-
ations needed to find the optimum for each of these 8 problems by SAC and DEC. Each
problem was initialized with two random sampling locations for both SAC and DEC. In
order to ensure that the result is not skewed by fortuitously hitting the optimum, both
algorithm are only terminated when the optimal solution is repeated over 2 consecutive
iterations. The bar chart shows the average performance over 20 runs for both meth-
ods. DEC found the optimum for each problem using less than 5 iterations. On the other
hand SAC needed more than 15 iterations in all cases. For all values of p, the functions
had multiple local optima that were relatively close to each other, so the problem was
relatively difficult to optimize even in one variable.

A question that arises from the clear difference between the performance of DEC
and SAC in Figure 6.7 is why DEC does so much better than SAC on all problems. The
fact is that the metamodels that DEC has to build are very simple linear functions that
require only relatively few function calls to fit. On the other hand SAC has to construct
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Figure 6.8: The average number of simulations, based on 20 runs, needed by DEC and SAC to converge to the
optimum of the problem. The horizontal axis is the value of problem parameter q .

the metamodel of the system response which is highly nonlinear. Therefore SAC requires
many more iterations to fit the response well enough to estimate the optimum correctly.

To test this argument, we apply the following problem on SAC and DEC,

Sq [c(x)] = c1(x)+c2(x),

c1(x) = (5(x −0.5))2 +20sin(qx), c2(x) = (5(x −0.5))2 −20sin(qx), x ∈ [0,1], (6.24)

where the frequency q changes from q = 10 to q = 100 in steps of 10. This results in
ten problems with differing frequency of the components. The system transformation is
linear while the component responses are highly nonlinear. It should be noted however
that if SAC is used to optimize Equation (6.24) then the response is always linear and
always the same, no matter what value is chosen for q . This is due to the fact that the
sinusoidal parts of the components cancel each other at system level.

Both SAC and DEC are initialized with two random samples. Again, in order to ensure
that the algorithm is not terminated when the algorithm accidentally finds the optimum,
both algorithms are stopped when the optimum is repeated over two consecutive itera-
tions. Based on an average of 20 runs SAC requires only 5 total function calls to locate
the optimum. Figure 6.8 shows the performance of DEC for different values of q . For all
values of q , DEC requires more simulations than SAC to converge to the optimum. But
interestingly the difference between the performance of SAC and DEC is not as dramatic
in Figure 6.8 as was the case for the problems shown in Figure 6.7.

The algorithm is next tested on the three-hump camel function, which is an estab-
lished test problem [18] for unconstrained optimization in two dimensions,

fcamel = 2x2
1 −1.05x4

1 +
x6

1

6
+x1x2 +x2

2,

xi ∈ [−5,5]∀i ∈N . (6.25)

In the decomposed system level problem, we assume that there are three expensive com-
ponents and the rest of the function is cheap to compute. The problem is decomposed
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Table 6.1: Comparison of adaptive system optimization of decomposed Camel problem, Equation (6.26), ver-
sus application of LHS on the original Camel function, Equation (6.25). The mean and standard deviation of
the global optimum found by each method is shown based on 100 runs.

Optimum Mean Standard deviation Expensive function evaluations

Reference 0 - -
Adaptive system sampling 0.00 0.001 12
Latin Hypercube sampling 1.02 0.015 12

and written in terms of the system and components as,

Scamel [c(x)] = 2c1(x1)−1.05c2
1 (x1)+ c3

1 (x1)

6
+ c2(x1, x2)+ c3(x2),

c1(x1) = x2
1, c2(x1, x2) = x1x2, c3(x2) = x2

2,

xi ∈ [−5,5]∀i ∈N . (6.26)

The proposed algorithm is applied 100 times on the system in Equation (6.26). The
component models are constructed using 4 initial Latin Hypercube samples (LHS). The
number of expensive simulations is limited to 12. Therefore the algorithm can run for 8
iterations.

The mean performance of the 100 runs of the system level approach is compared
against applying optimization on a Kriging metamodel of the original function in Equa-
tion (6.25) which is constructed using 12 expensive simulations chosen via LHS. The
Kriging metamodel is also constructed 100 times based on 100 different combinations
of LHS samples and the mean performance is analyzed.

Table 6.1 shows the comparison of the two approaches along with the reference global
optimum of the function. The mean and standard deviation of the objective value at the
global optimum location found by both methods are shown. The objective values shown
have been generated on the original function, Equation (6.25), as a post-processing step.
The mean optimum found by adaptive system sampling approach for the decomposed
problem is closer to the reference solution than the one found by LHS. In addition, the
standard deviation for the system sampling scheme is also much lower compared to the
one found by using LHS. This indicates that performing adaptive system sampling of the
decomposed problem in Equation (6.26) is more efficient than applying LHS on the orig-
inal problem in Equation (6.25). However, a comparison of the performance of LHS and
the adaptive sampling scheme on a decomposed problem would also be interesting. In
the following subsection we show this comparison for the more widely applicable case
of a constrained problem.



6

136 6. DETERMINISTIC OPTIMIZATION OF SYSTEMS WITH INDEPENDENT COMPONENTS

CONSTRAINED TEST PROBLEM

The algorithm is now applied on a constrained benchmark problem. The objective is a
modified version of the Rastrigin function. The constrained problem is given below,

f (x) = 0.01

(
100+

10∑
i=1

[
x2

i −10cos(0.2πxi )
])2

(6.27)

s.t. 35−
4∑

i=1
xi 
 0,

xi ∈ [−5.12,5.12]∀i ∈N .

The problem consists of 10 variables. We choose to decompose the problem into a sys-
tem with four expensive components. Based on this decomposition, the system can be
written as,

S [c(x)] = 0.01(100+ c1 −10c2 + c3 −10c4)2 (6.28)

s.t. 35− c1 ≤ 0,

c1 =
4∑

i=1
x2

i , c2 =
4∑

i=1
cos(0.2πxi ), c3 =

10∑
i=5

x2
i , c4 =

10∑
i=5

cos(0.2πxi ),

xi ∈ [−5.12,5.12]∀i ∈N .

The system non-linearly transforms the response of the four non-linear components.
The components c1 and c2 are a function of four variables which are shared across both
the components. On the other hand, c3 and c4 are a function of six different variables,
which are also shared across these two components. The component c1 makes an ap-
pearance in both the objective and the constraint. The metamodel of c1 can therefore
be used for both the system transformation, SK , of the objective as well as in the system
transformation, Sh , of the constraint.

The decomposed problem in Equation (6.28) is used to compare the performance
of BEGO with an LHS based strategy. For this problem, metamodels are made for the
component response instead of the system response for the LHS based approach as well.
Both methods are run 20 times on the proposed problem, Equation (6.28), and the mean
performance is compared.

In the case of BEGO, the component metamodels are initialized with a different num-
ber of samples based on the number of dimensions of the component. The four dimen-
sional components c1 and c2 are initialized with 20 samples, while the six dimensional
components c3 and c4 are initialized with 30 samples. The algorithm is allowed to run
for 80 iterations. This means that at termination, 100 samples would have been added
to Kc1 and Kc2, while Kc3 and Kc4 would be based on 110 samples.

The LHS based approach is therefore given a total budget of 100 samples for c1 and
c2 and 110 samples for c3 and c4. The system response SK based on the LHS based
metamodels is optimized and the average result of the 20 runs is analyzed.

We also compare the performance for the case in which both LHS and BEGO are
given 25 less expensive simulations. This means that BEGO is terminated after 55 iter-
ations. On the other hand, for LHS Kc1 and Kc2 are constructed based on 75 samples
and Kc3 and Kc4 are built using 85 samples.
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Figure 6.9: The mean and standard deviation of the global optimum found on each iteration of BEGO based
on the 20 runs for the test problem defined in Equation (6.28).

Figure 6.9 shows the average global optimum found at each iteration of BEGO, based
on 20 runs. The objective is evaluated, as a post-processing step, on the reference system
response based on the optimal location found at each iteration of BEGO. The reference
global optimum is also found on the reference system. The errorbars indicate the stan-
dard deviation around the optimum. After about 60 iterations of BEGO, the algorithm
has converged to a value close to the reference global optimum and the standard devia-
tion is also relatively low.

Table 6.2 shows the comparison of the statistics of the global optimum found by LHS
and BEGO. Once again the objective values given here have been found by evaluating the
optima found by each method on the reference system response as a post-processing
step. The results indicate that BEGO performs better than LHS in terms of mean close-
ness of the optimum to the reference solution, given the same number of component
evaluations. The standard deviation of BEGO is also lower than for LHS. Interestingly,
for LHS with a higher number of samples, 2 out of the 20 optimal locations found result
in a constraint violation. On the other hand, the optimal locations of BEGO do not vi-
olate the constraint for any of the 20 runs. Comparing the result of the higher number
of evaluations (second set of rows in Table 6.2) with the result for the lower number of
evaluations, we note that convergence is steadily taking place for both approaches. The
mean and standard deviation for BEGO based on the lower number of evaluations are
both better than the corresponding numbers for LHS with a higher number of evalua-
tions.

Using the constrained and unconstrained problems, we have evaluated the perfor-
mance of BEGO in different settings. The method converges well on the problems and
also performs better than a space-filling based strategy. The primary advantage of the
adaptive technique lies in reducing the computational budget needed to find the global
optimum. Since each extra component simulation significantly increases the time and
computational costs of optimization, any amount of reduction in these costs brings sig-
nificant efficiency improvement. We now test the algorithm in a more practical setting
by applying it on an engineering problem.
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Table 6.2: Comparison of the mean and standard deviation of the global optimum found by BEGO and LHS
based on 20 runs.

Optimum Reference BEGO LHS Evaluations c1, c2 Evaluations c3, c4

Mean 46.03 47.43 48.89 75 85
Standard deviation - 0.97 2.12 75 85
Constraint violations - 0 0 75 85

Mean 46.03 46.93 47.70 100 110
Standard deviation - 0.66 1.34 100 110
Constraint violations - 0 2 100 110

6.4.2. ENGINEERING PROBLEM: DETERMINISTIC OPTIMIZATION OF AN OP-
TICAL FILTER

c1, c2

c3, c4

c5, c6

c1, c2

c3, c4

c5, c6

L

L

L

g1

g2

g3

In Through

w

Figure 6.10: Top-view schematic of a second order serial optical ring resonator. The cloud encompasses the
complete system. The colored boxes, on the other hand, represent the six expensive to evaluate components.

BACKGROUND OF THE PROBLEM

We perform system optimization of an integrated photonic serial ring resonator that be-
haves as an optical filter. Light is confined in a high refractive index SiN core layer which
is buried inside a relatively lower refractive index SiO2 cladding layer. The light is guided
inside these optical integrated circuits via the principle of total internal reflection. Fig-
ure 6.10 shows the top-view schematic of the system. When light at a certain wavelength
is launched into the waveguide (black paths lines) at the ‘In’ port, it partially couples
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into the adjacent waveguide. This coupled light travels through the first ring section and
partially couples again into the second ring section. A portion of this coupled light is
dropped at the ‘Drop’ port. The rest of the light exits via the ‘Through’ port.

The amount of coupling can be varied by changing the gap and the length of the
coupling sections (area enclosed by the colored boxes in Figure 6.10). This change in
coupling gives rise to a change in the optical response at the ‘Drop’ and ‘Through’ port.
Different optical filter responses can therefore be generated by varying the coupling ratio
of each coupler. The objective in this study is to achieve the band-pass filter response
given in Figure 6.11 at the ‘Through’ port.

In order to compute the power coupling ratio of the coupler, two expensive electro-
magnetic simulations have to be performed. The first simulation computes the power
coupling ratio, PL0, when the coupling length is zero. The second simulation computes
the beat length, Lπ, which is defined as the coupling length needed to completely couple
light from the first waveguide into the second waveguide and back into the first waveg-
uide. Since the exchange of light between adjacent waveguides follows a sinusoidal
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Figure 6.11: Desired band-pass filter spectral response (red line) of the serial ring resonator. No preference is
specified in the intervals [0.1,0.2] and [0.8,0.9].
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Figure 6.12: Power coupling ratio as a function of the coupler length for a certain coupler gap.
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curve, the two parameters, PL0 and Lπ, are enough to compute the coupled power at
any coupling length given a certain gap [19]. Figure 6.12 shows the power coupling ratio
as a function of the coupling length based on a certain simulated value of PL0 and Lπ for
a given gap.

Once the power coupling ratio of each coupler is known, the transfer function at the
‘Through’ port can be cheaply computed as a function of the normalized frequency using
scattering matrix analysis [3]. Let H(n f ) represent the transfer function for the normal-
ized frequency n f ∈ [0 1]. We can then define a system objective for the desired bandpass
spectral response as,

min
x∈X

1−b

2

∥∥H̄stop1
∥∥

p +b
[

1−∥∥1− H̄pass
∥∥

p

]
+ 1−b

2

∥∥H̄stop2
∥∥

p , (6.29)

where H̄stop1, H̄pass and H̄stop2 represent the vector of responses for n f ∈ [0 0.1], n f ∈
[0.2 0.8] and n f ∈ [0.9 1], respectively. The five design variables of the problem, depicted
in Figure 6.10, are x ∈ [w g1 g2 g3 L], where w ∈ [1 1.15]μm, L ∈ [0 2400]μm and all the
gaps are in the range [1 1.3]μm, . If p is large then the objective basically involves mini-
mization of the weighed sum of the maximum value in the two stop bands and the min-
imum value in the pass-band. The p-norm is used instead of the maximum and min-
imum value in order to ensure that the objective remains continuously differentiable.
The weights are based on the value of b. In this work, we choose p = 20 and b = 0.6.

SYSTEM OPTIMIZATION

The system response, S, can be modeled in terms of two expensive components that are
repeated three times in the second order resonator since each coupler requires two ex-
pensive simulations and there are three couplers in the system. Figure 6.10 shows the six
components c1 to c6 as well as the five design variables of the problem [w g1 g2 g3 L].
We treat the responses PL0 and Lπ, generated from each coupling section, as the com-
ponents of the problem since this suits the mathematical structure of this problem. The
expensive components are only a function of the width and the respective gaps. The
components c1, c3 and c5 give the power coupling ratio PL0 for each coupler while the
beat length Lπ for each coupler is found by components c2, c4 and c6.

A commercial electromagnetic solver, PhoeniX Software, is used to compute PL0 and
Lπ. Both simulations require approximately 10 minutes. Initial Kriging metamodels for
c1 and c2 are built based on nd = 9 samples for w and g1 chosen via Latin Hypercube
sampling. We assign g2 and g3 the same initial sample values as g1. Since the design do-
main for all the components is the same we can essentially use Kc1 as the approximate
response for PL0 for all three components c1, c3 and c5. Similarly Kc2 can be used to give
the beat length Lπ for components c2, c4 and c6.

Once the component metamodels that predict the value for PL0 and Lπ for each cou-
pler have been constructed, the following operations to evaluate the system objective are
performed at system level. In order to evaluate the objective to be optimized, Equation
(6.29), the power coupling ratio of each coupler is needed. This operation is performed
on system level since the value of PL0 and Lπ can cheaply be predicted by the Kriging
metamodels for each coupler. The computation of the transfer function via scattering
matrix analysis involves simple operations on small matrices and is therefore also per-
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Figure 6.13: Plot shows the approximate system response and the reference system response at the global
optimum found by BEGO.

formed on system level. Once the transfer function is known, it has to be plugged into
Equation (6.29) to find the system objective.

A total computational budget of 21 expensive simulations for evaluating PL0 and Lπ

is reserved in addition to the 9 initial simulations. At each iteration of the system algo-
rithm, PL0 and Lπ is simulated three times for the three different combinations [w g1],
[w g2] and [w g3] of the location for infill sampling suggested by the algorithm. The to-
tal number of simulations available translates to 7 iterations of the system optimization
algorithm since 7×3 = 21 simulations. The three new PL0 responses at each iteration are
all added to the Kriging metamodel Kc1. On the other hand, Kc2 is augmented with the
set of three new beat length responses Lπ at each iteration.

Table 6.3: The location of the global optimum is given along with the objective on the approximate system and
the reference system

w g1 g2 g3 L SK S

Optimum 1.0699 1.085 1.100 1.084 1940.2 0.0159 0.0160

Figure 6.13 shows the optimal system response found after 7 iterations of BEGO. The
approximate system response SK is plotted along with the system response obtained
when the optimal result is fed into the expensive component simulators. It can be seen
from the figure that the system response based on the component metamodels closely

Table 6.4: The response of the individual components at the global optimum are given for the metamodels and
the reference simulator.

Components c1(PL0) c3(PL0) c5(PL0) c2(Lπ) c4(Lπ) c6(Lπ)

Reference 0.1203 0.1126 0.1203 903.45 937.83 903.45
Kriging 0.1203 0.1130 0.1203 903.62 938.00 903.62
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resembles the actual system response at the global optimum. The optimum found by
BEGO seems to perform quite well in the pass band region, i.e. almost all the light in
the normalized frequency region [0.2 0.8] is being passed through. The amount of power
in the stop bands [0 0.1], [0.9 1] is still not very low. This is to be expected since we
are optimizing a second order filter, i.e. there are only two rings in the serial resonator
structure. Increasing the filter order will further improve the performance.

Table 6.3 shows the location at which the global optimum of the serial ring resonator
is found. Although we do not impose the restriction that g3 = g1, the optimal result pro-
duces a resonator with symmetric gaps. The numerical objective value for S and SK

confirm the result shown in Figure 6.13. Table 6.4 gives the response of the individual
components at the global optimum. As expected, the Kriging metamodel responses for
PL0 and Lπ for each directional coupler section is close to the reference component re-
sponse.

6.5. CONCLUSION
In this work, we have developed an efficient strategy for global optimization of systems
involving independent components. The approach, referred to as BEGO, targets systems
involving expensive to evaluate components that do not interact with each other. Krig-
ing metamodels were employed to construct the response of the expensive components.
A novel system level infill sampling strategy was derived in order to sample the compo-
nents in regions of interest for system optimization. A linear Taylor series approximation
of the system transformation of the Kriging components was performed in order to ob-
tain an analytical expression for system level expected improvement. The infill sampling
criterion was modified for constrained system optimization by deriving a system level
probability of feasibility for each constraint.

The system level optimization approach was first compared with treating the prob-
lem as a component and applying Efficient Global Optimization [5] for obtaining the
optimum. Similarly, the effectiveness of the technique was compared with building a re-
sponse surface of the system via LHS and globally optimizing the cheap response. Both
comparisons exhibited that, in general, there is clear efficiency improvement when op-
timization is performed on the decomposed problem. However , if the component re-
sponses are highly nonlinear and the system response is linear then decomposition may
not always result in efficiency improvement.

We demonstrated the advantages of using an adaptive sampling scheme for the de-
composed system problem by comparing the effectiveness of the strategy with perform-
ing optimization of a system response based on component metamodels constructed
using Latin Hypercube sampling. The two approaches were applied on a modified and
constrained version of the Rastrigin function. Based on an average of 20 runs, BEGO
converged comparatively faster to the optimum of the problem as opposed to the Latin
Hypercube sampling based optimization strategy.

In addition, BEGO was applied on an engineering system involving an optical filter
based on an integrated photonic serial ring resonator. The engineering problem con-
sisted of a system with six uncoupled components. It was shown that BEGO was able
to determine the global optimum of the system problem using only a limited number of
expensive component simulations.
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The algorithm is especially relevant for problems in which many multiple compo-
nents are part of the system. In this scenario the same metamodel can be used to con-
struct the response for the multiple components. Another advantage of employing the
bilevel framework is that the number of dimensions for each component metamodel is
often much lower than the total dimension size at system level. This enables the ap-
proximate system response to converge fast to the actual response with each passing
component level simulation. Since the component response is treated as a black-box,
the method is applicable to any hierarchical system with low dimensional components.

Appendix A: Kriging

The correlation between sample points is given by the following expression

Corr
[
Y (xi ),Y (x j )

]= exp

(
−

k∑
q=1

θq
∣∣xi q −x j q

∣∣2

)
(30)

where xi and x j are any two locations in the domain and k is the number of dimensions
and θq , μ, σ2 are the parameters estimated via Maximum Likelihood Estimation. The
Kriging prediction ŷ is expressed as

ŷ(x) = μ̂+ rTR−1(y−1μ̂) (31)

where μ̂ is the estimated mean, R is the N×N correlation matrix between the N samples,
r is the vector of correlations between the observed data and the new prediction and y is
the observed response. Equation (30) is used to find R and r.

The Mean Squared Error (MSE) estimate in the Kriging prediction is expressed as,

s2(x) = σ̂2
[

1− rTR−1r+ 1−1TR−1r

1TR−11

]
, (32)

where σ̂2 is the Maximum Likelihood Estimate (MLE) of σ2.
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7
ROBUST OPTIMIZATION OF

SYSTEMS WITH INDEPENDENT

COMPONENTS

7.1. INTRODUCTION
The optimization of systems consisting of multiple subsystems or disciplines with com-
plex interaction between them has historically been addressed within the framework of
Multidisciplinary Design Optimization (MDO) [1]. MDO basically involves decomposi-
tion of the system into components or disciplines, and the development of algorithms
to improve both the inter-disciplinary consistency and system optimality. While the sys-
tem optimization work has typically focused on deterministic problems, many practical
engineering problems also involve uncertainties. Specific approaches have been devel-
oped to deal with the resulting non-deterministic system optimization problem [2], re-
cent examples include for example the work by [3–5].

However, problems affected by uncertainties could also consist of systems with in-
dependent components. In this subclass, each component affects the response of the
system but there is no coupling between components. In this chapter, we consider the
scenario where the components are computationally expensive to simulate but the com-
putation of the system response from component output is inexpensive. System opti-
mization under uncertainty of these problems therefore also becomes a computationally
intensive task, despite the cheap system evaluation step.

An efficient approach for robust optimization of systems with expensive to simulate
independent components could directly benefit many problems within the discipline of
integrated photonics. On-chip systems are designed to process photonic signals for ex-
ample data communication, signal conditioning or measurement purposes. These sys-
tems consist of interconnected basic components such as directional couplers [6] and
MMI couplers [7]. The component responses as a function of design parameters are ex-
pensive to evaluate. However, once the component responses are available, a computa-
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tionally cheap system transformation of the component response can generate complex
systems such as interferometers and optical filters [8]. Equivalent engineering problems
that could be decomposed in this way may also be present in other disciplines.

A complicating factor is the presence of uncertainties in the problem. The system
optimum should be robust with respect to these uncertainties. The probability distribu-
tions of the uncertainties in the problem may either be known completely or only the
intervals of the uncertainties may be available. The latter situation involving bounded-
but-unknown uncertainties typically occurs in the field of integrated photonics where
the probability distribution of the fabrication uncertainties is protected information of
the foundries. In this scenario, robust optimization [9] has to be applied in order to esti-
mate a relatively insensitive optimal solution.

Since robust optimization involves solving a nested optimization problem, applying
it directly on a system based on expensive subsystems is prohibitively costly. A viable
strategy for optimizing this class of problems is to replace the expensive subsystems with
cheaper models. Optimization under uncertainty can then be applied on the system
response derived from the cheaper surrogate subsystems. Such a strategy would be even
more beneficial if the component responses are relatively simpler to approximate than
the system response.

System optimization using metamodels at subsystem level is an attractive approach
for efficiently estimating an optimum. As an additional benefit, if the system has mul-
tiple copies of the same component, a single metamodel could replace all the compo-
nents. Furthermore, since the metamodels are built at component level they are much
lower dimensional than the number of variables of the system. The curse of dimension-
ality, therefore, does not impact this approach as acutely as would be the case if a single
metamodel of the system response is constructed. Additionally, much fewer samples
are usually needed to build a high fidelity metamodel for the lower dimensional compo-
nents.

However, the introduction of metamodel error at subsystem level could lead to an
inaccurate estimation of the optimum. In order to mitigate this problem, the subsystem
level metamodels could adaptively be improved in regions of interest and the optimum
could be estimated via an iterative procedure. But identifying sampling locations at sub-
system level based on the response at system level is a non-trivial exercise. The most op-
timal sample placement not only depends on the subsystem response but also on how
it transforms into the system level response. Critically, any subsystem level metamodel
error would also undergo a transformation. Therefore, simply adding sample points at
locations where the subsystem level metamodel error is high is not a sound approach.

Metamodels have commonly been used in system optimization due to the compu-
tational complexity of evaluating certain component level responses [10, 11]. System
robust optimization based on component metamodels has been explored previously by
[12]. There has also been work on methods for improving the approximate system re-
sponse by adaptively sampling the components so that the system robust optimum is
found [3, 13]. This set of work was focused on the typical scenario in which the system
has components that exchange coupling variables with one another. We instead focus
exclusively on systems with independent components, which allows us to formulate an
efficient approach by exploiting the specific structure of this class of problems.
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This chapter presents an infill sampling strategy in order to sample component meta-
models such that the global robust optimum of systems with expensive to evaluate inde-
pendent components is found efficiently. We address the problem by constructing meta-
models of each component and adaptively sampling the metamodels at each iteration
based on a system level infill sampling criterion. The metamodels are built via Kriging
[14], which also provides an estimator for the error in the component metamodels. A
first order transformation is performed on the component mean squared error to obtain
a system level error estimator. This error estimator is used together with the current sys-
tem robust optimum to derive system level Expected Improvement (EI) criteria for the
design variables and uncertainties in the problem. It is important to point out here that
no metamodel is constructed at system level. The optimization and infill sampling pro-
cesses are driven by the actual computed cheap system responses and EI values, without
interpolation.

The proposed approach builds on the component level EI criterion for deterministic
optimization suggested by [15] and its extension to robust optimization by [16], as well
as on the system level EI criterion for deterministic optimization recently introduced by
[17]. The primary novelty of this work is the extension of the work by [17] to the sce-
nario in which the system problem is affected by uncertainties. The technique is applied
on a constrained benchmark robust optimization problem as well as on an engineering
example of an integrated photonic serial ring resonator affected by fabrication uncer-
tainties. The method efficiently converges to the robust optimum of the problem using
a limited computational budget.

This chapter is organized as follows. The system level robust optimization problem
is introduced in Section 7.2. Section 7.3 provides a background for Kriging and adaptive
sampling strategies previously developed for deterministic and robust optimization at
device and system level. We introduce the proposed infill sampling criteria for robust
optimization of systems with independent components in Section 7.4. Finally, Sections
7.5 and 7.6 contain the results and conclusion, respectively.

7.2. ROBUST OPTIMIZATION OF SYSTEMS WITH INDEPENDENT

COMPONENTS
A system response S based on N uncoupled components c can be described as

S(c1(xd1),c2(xd2),c3(xd3), . . . ,cN (xdN ),xd s ), (7.1)

where each component ci , {i |i ∈N, i ≤N }, is a function of xdi ∈Xdi ⊆Xd . Some design
variables, xd s ∈ XdS of the problem appear directly at the system level. The union of
Xdi ∀ i ∈N and XdS gives the total design space Xd .

The components in the system are independent since they do not exchange any cou-
pling variables with one another and only affect the system response. However, it is
pertinent to note here that the component level design variables, xdi ∈ Xdi , may affect
multiple components. Similarly, the system level variables xd s may be present in some
components as well. Consequently, the sets Xd1 to XdN will not necessarily be disjoint.
Design variables that appear only in one component may be considered as local design
variables while shared variables are global design variables.
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If the system problem is affected by uncertainties then these may impact the com-
ponent level response as well as the system response. Let xe ∈ Xe describe the set of
parametric uncertainties or environment variables.

The system response for an uncertain system based on independent components
may be written as

S(c1(xd1,xe1),c2(xd2,xe2),c3(xd3,xe3), . . . ,cN (xdN ,xeN ),xd s ,xes ), (7.2)

where xei ∈Xei ⊆Xe . A subset, xes ∈XeS , of uncertainties appear at system level. Uncer-
tainties can be component-specific or may affect multiple components.

In this work, we address the case in which only intervals of the uncertainties are
known while the probability distribution is not available. Robust optimization at sys-
tem level then requires the estimation of the best worst-case cost for S [9]. In this sec-
tion, for clarity we discuss unconstrained robust optimization only. However, the pro-
posed approach is applicable to constrained problems as well. We expand upon the
constrained optimization case in Section 7.4.3. Finding the best worst-case cost for the
unconstrained problem involves the following nested optimization procedure,

min
xd∈Xd

max
xe∈Xe

S(c(xd ,xe ),xd s ,xes ). (7.3)

xd2,xe2xd1,xe1 xdN ,xeNxds,xes

xdi: Design
variables

xei: Environment
variables

Kc2Kc1 . . . KcN
Kci: Component
Kriging metamodels

Robust optimizer

SK

SK : Approximate
system response

Figure 7.1: Robust optimization of the approximate system response based on component metamodels.
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Minimizing the worst-case cost is computationally intensive since estimating the worst-
case cost also requires a global optimization procedure. In this scenario it becomes im-
perative that the system response is cheap to compute. If the underlying components
are expensive to evaluate then they can be replaced by metamodels in order to ensure
a cheap system level objective evaluation. Robust optimization of a system with cheap
independent component metamodels can be described as,

min
xd∈Xd

max
xe∈Xe

SK (Kc1(xd1,xe1),Kc2(xd2,xe2), . . . ,KcN (xdN ,xeN ),xd s ,xes ). (7.4)

where Kci represents the metamodel of component ci . Figure 7.1 shows the process
of robust optimization of the system problem and depicts the relationship between the
approximate system response SK and the underlying components. Note that no meta-
model is constructed at system level.

The aim of this work is to estimate the global robust optimum of S by applying robust
optimization on SK , Equation (7.4). As soon as the expensive components are replaced
by metamodels, the error inherent in them is also introduced in the system response,
SK . A strategy to iteratively improve the component metamodels in regions of interest
for system level global robust optimization is therefore required.

Finding such a system level infill sampling criterion is non-trivial since a small meta-
model error at component level could result in a large error at system level due to the
transformation from component to system level. In addition, to help locate the global
robust optimum, the samples should be added in such a way that the impact of the para-
metric uncertainties, xe , on the system response is also included. Any formulation of a
system level infill sampling strategy must therefore take these effects into consideration.
In this scenario, an interpolation method that provides a sound error estimator in the in-
terpolation is needed to help formulate a suitable infill sampling criteria. Kriging is one
of the interpolation techniques that provide an interpolation error estimate. While it is
based on statistical principles of maximum likelihood, Kriging has proven to also be a
valuable and successful procedure for interpolation of deterministic data, e.g. response
surfaces [18, 19].

7.3. BACKGROUND
In this section, we provide a brief background of Kriging [14], Component level Efficient
Global Optimization [15], Component level Efficient Global Robust Optimization [16]
and System level Efficient Global Optimization [17]. Experts in these areas may skip to
the next section to directly peruse the novel method proposed in this work.

7.3.1. KRIGING
Kriging is a mathematical modeling technique that interpolates the response between
samples via a linear combination of tunable basis functions. The statistical approach
employed by Kriging enables the estimation of the potential error in the interpolated
model. This mean squared error is an essential ingredient in the derivation of adaptive
sampling strategies for iteratively improving the response surface. A very concise de-
scription of fundamental aspects in Kriging based optimization is provided here. For
detailed derivation readers are referred to the work by [14].
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The statistical framework of Kriging utilizes the starting assumption that the function
response is a normally distributed random variable. The tunable basis function used in
Kriging usually takes the form of a parameterized Gaussian correlation function. The
Gaussian correlation function between any two points xi and x j in the domain is given
by

Corr
[
Y (xi ),Y (x j )

]= exp

(
−

k∑
q=1

θq
∣∣xi q −x j q

∣∣2

)
. (7.5)

θq , μ and σ2 are the parameters found via Maximum Likelihood Estimation while k is

the total number of dimensions. The estimates for θq , μ and σ2 are denoted by θ̂q , μ̂ and
σ̂2 respectively.

The Kriging prediction is also derived using maximum likelihood estimation [14].
The prediction is expressed in terms of the vector of observed responses y, the correla-
tion matrix R between the N sample points and the correlation vector, r, between the
observed data and the new unsampled location,

ŷ(x) = μ̂+ rTR−1(y−1μ̂). (7.6)

Equation (7.5) is used to find the matrix R and the vector r.
The potential Mean Squared Error (MSE) in the Kriging interpolation, Equation (7.7),

is also derived based on the underlying statistical assumptions. The error in the Kriging
interpolation is given by,

s2(x) = σ̂2
[

1− rTR−1r+ 1−1TR−1r

1TR−11

]
. (7.7)

7.3.2. COMPONENT LEVEL EFFICIENT GLOBAL OPTIMIZATION
The combination of the Kriging predictor and Mean Squared Error can be used for bal-
ancing exploration and exploitation of the metamodel [20]. The adaptive sampling strat-
egy of Expected Improvement (EI), proposed by [15], effectively balances the need for
exploring regions with high potential error with the requirement of sampling areas that
could help in estimating the optimal location. The sampling strategy enables the global
minimum of an unconstrained problem to be found in relatively few expensive function
calls.

The EI criterion was developed by assuming that the uncertainty in the Kriging pre-
diction, ŷ(x), takes the form of a normal random variable whose mean and variance is
given by the Kriging prediction ŷ(x) and MSE s2(x), respectively.Using this information
along with the knowledge of the current minimum amongst the observed data, ymin, en-
ables the formulation of an expectation of improvement over ymin. An improvement I
over ymin could be possible at a position x if a portion of the distribution Y (x) lies below
ymin. The probability of this improvement is given by the area of the normal distribution
below the current minimum ymin. The expectation, E [I (x)] = E [max(ymin −Y ,0)], of im-
provement [21] is given by the first moment of this area. Mathematically, the EI may be
written as,

E [I (x)] = (ymin − ŷ)Φ

(
ymin − ŷ

s

)
+ sφ

(
ymin − ŷ

s

)
(7.8)
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where Φ(.) is the normal cumulative distribution function and φ(.) is the normal proba-
bility density function. If the term before the addition sign on the right side is high then
emphasis will be placed on local search. On the other hand, if the term after the addition
sign is relatively high then exploration in areas with large potential error will be priori-
tized. By performing global optimization on the cheap to evaluate expression in (7.8) a
location that maximizes the expected improvement can be estimated.

Efficient Global Optimization (EGO) [15], Algorithm 1, uses expected improvement
to adaptively sample the expensive function so that the global optimum is found us-
ing relatively few iterations. The initial sampling locations are found via a space filling
technique such as Latin Hypercube sampling. The algorithm runs until either the total
number of simulations NT is exhausted or the maximum EI falls below the threshold εEI.

7.3.3. COMPONENT LEVEL EFFICIENT GLOBAL ROBUST OPTIMIZATION
[16] extended the EGO algorithm to the non-deterministic case. They proposed a method
known as Efficient Global Robust Optimization (EGRO) which specifically targeted prob-
lems affected by bounded-but-unknown parametric uncertainties. The response was
assumed to originate from an expensive to simulate black-box function. An iterative
sampling strategy similar to the deterministic EI was employed in order to efficiently
estimate the global robust optimum of the following problem,

min
xd∈Xd

max
xe∈Xe

f (xd ,xe ), (7.9)

where xd ∈Xd are the design variables and xe ∈Xe are the parametric uncertainties. Al-
gorithm 2 shows the essential steps in EGRO. The proposed adaptive sampling strategy
involved a separate infill sampling criterion, EId , for the control variable and a different
infill sampling criterion, EIe , for the parametric uncertainties. EId was geared towards
computing the expectation of improvement over the current robust optimum rK . On
the other hand, the expectation of deterioration EIe involved evaluating the expectation

Algorithm 1 Component level Efficient Global Optimization

1: n ← Number of initial samples
2: NT ← Total number of simulations
3: εEI ← Expected Improvement threshold
4: Choose initial samples X = [x1, ...,xn]
5: Compute function response y = [y1, ..., yn]
6: while n < NT and EImax > εEI do
7: Construct Kriging metamodel K f

8: ymin ← Minimum value in set of observed responses
9: Estimate xnew by maximizing E I on metamodel.

10: EImax ← max(E [I (x)])
11: Append xnew to X and f (xnew ) to y
12: n ← n +1.
13: Return xbest = arg ymi n .
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Algorithm 2 Component level Efficient Global Robust Optimization

1: n ← Number of initial samples
2: NT ← Total number of simulations
3: εEI ← Expected Improvement threshold
4: Choose initial samples X = [x1, ...,xn]
5: Compute function response y = [y1, ..., yn]
6: while n < NT and EImax

d > εEI do
7: Construct Kriging metamodel K f

8: Estimate global robust optimum rK on metamodel
9: Estimate xnew

d by maximizing EId

10: EImax
d ← max(EId )

11: Estimate xnew
e by maximizing EIe

12: Append xnew = (xnew
d , xnew

e ) to X and f (xnew ) to y
13: n ← n +1.
14: Return xbest = arg rK .

of finding a worse value than the predicted worst-case cost at the control variable sam-
pling location, xnew

d . On termination of the algorithm, the argument of the best worst-
case cost found, rK , was returned as the final solution.

7.3.4. BILEVEL EFFICIENT GLOBAL OPTIMIZATION (BEGO)
Recently, [17] proposed an adaptive sampling strategy for global optimization of sys-
tems with independent components, i.e. minimization of Equation (7.1). A system level
error was needed in order to derive a system level expected improvement criterion. The
approach is based on a linear transformation of the Kriging error predicted at the com-
ponent level to arrive at a system level error estimator.

Algorithm 3 System level Efficient Global Optimization for unconstrained problems

1: ni ← Number of initial samples for ith component
2: N ← Total number of iterations
3: Choose initial samples Xi∀N

4: Compute response on components ci to cN

5: j ← 0
6: while j < N do
7: Construct Kriging metamodels Kci∀N

8: Estimate global minimum dK on system response SK

9: Estimate xnew by maximizing EIs y s

10: Compute response on components at xnew

11: j ← j +1.

12: Return xbest = arg dK .

The system level error estimator was used to predict the expectation of improvement
over the current global optimum, dK , on the system response. Algorithm 3 shows the



7.4. BILEVEL EFFICIENT GLOBAL ROBUST OPTIMIZATION (BEGRO)

7

153

steps in BEGO. Details related to the derivation of EIs y s and the implementation of the
algorithm may be found in [17].

Algorithm 4 System level Efficient Global Robust Optimization for unconstrained prob-
lems

1: ni ← Number of initial samples for ith component
2: N ← Total number of iterations
3: Choose initial samples Xi∀N

4: Compute response on components ci to cN

5: j ← 0
6: while j < N do
7: Construct Kriging metamodels Kci∀N

8: Estimate global robust optimum r s y s
K on system response SK

9: Estimate xnew
d by maximizing EIs y s,d

10: Estimate xnew
e by maximizing EDs y s,e

11: Compute response on components at xnew = (xnew
d , xnew

e )
12: j ← j +1.

13: Return xbest = arg r s y s
K .

7.4. BILEVEL EFFICIENT GLOBAL ROBUST OPTIMIZATION (BE-
GRO)

In this work we aim to combine component level EGRO, (Algorithm 2, [16]), with System
level EGO, (Algorithm 3, [17] ), to arrive at a system level efficient global robust optimiza-
tion strategy. Algorithm 4 shows the main steps involved in this process. The responses
of the components are computed (Step 4) based on initial samples chosen via Latin Hy-
percube sampling (Step 3). Each component metamodel can have a different number
of initial samples. Thereafter, the main loop of the algorithm is initiated in Step 6. The
algorithm is referred to as Bilevel Efficient Global Robust Optimization (BEGRO).

Kriging metamodels are constructed for all components based on the set of samples
and responses in Step 7. At the next step, the global robust optimum, r s y s

K , is estimated
on the system response, Equation (7.4), based on the component metamodels.

The two main steps of the proposed algorithm are Step 9 and Step 10. The new sam-
ple points in the control variable space Xd and parametric uncertainties space Xe are
estimated in these two steps. In order to perform this, a separate system level expected
improvement criterion is derived to find the new set of control variable samples, xnew

d ,
and a separate system level expected deterioration criterion is derived to find the new set
of parametric uncertainty samples, xnew

e . The approach is similar to the one described
for Component level EGRO, Algorithm 2, in that separate criteria are derived for the con-
trol variable space and the parametric uncertainties space.

7.4.1. ESTIMATION OF xnew
d

A system level adaptive sampling scheme in the control variable space, Xd , should ide-
ally provide the most likely location that will improve over the current global system level
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robust optimum, r s y s
K . Such an infill sampling criterion would need some measure of the

system level error estimate for the response SK .
A system level error estimate depends not only on the error in the individual com-

ponent metamodels but also on the transformation that takes place from component
to system level. An error estimator is available for each component metamodel, Kci ,
via the Kriging mean squared error, s2

i (xd ,xe ), found using Equation (7.7). Following the
approach of [17] for System level EGO, we perform a linear transformation of the com-
ponent error to find a system level error estimate.

Let ŷi represent the Kriging prediction for the i th component metamodel Kci . Then
the system level response, ŷsys, can be expressed as,

ŷsys = SK (ŷ1(xd1,xe1), ŷ2(xd2,xe2), . . . , ŷN (xdN ,xeN ),xcs ,xes ). (7.10)

In the derivation of an EI criterion for the component level EGO algorithm described in
Section 7.3.2 it was assumed that the metamodel uncertainty in the component response
can be described in terms of a normally distributed random variable. We hold on to this
assumption in order to derive a system level robust EI criterion. In addition we assume
that the error in the system level response, ŷsys, can be modeled as a normal random
variable with mean ŷsys and variance s2

s y s , where s2
s y s is a system level mean squared

error.
For multiple components, this means that the metamodel uncertainty in the pre-

dicted response of each component Kci can be described as a normally distributed ran-
dom variable Yi (xdi ) with mean given by the Kriging prediction ŷi and variance given
by the Kriging MSE s2

i . It is emphasized here that the uncertainty being referred to is
the metamodel uncertainty and not the parametric uncertainty Xe , whose distribution
is bounded-but-unknown.

In this setting, the system response can also be defined as a random variable Ys y s (xd ,xe ),
which may be expressed as a system transformation of the independent component level
random variables Y = [Y1,Y2, . . . ,YN ] and the deterministic system variables (xcs ,xes ),

Ys y s (xd ,xe ) = SK (Y,xcs ,xes ). (7.11)

The system operation may or may not be linear. A non-linear transformation will cause
the component level normal distributions to transform non-linearly as well. In such a
scenario Ys y s would no longer be normally distributed. This would make valuation of
quantities such as expected improvement computationally cumbersome.

In order to maintain a normal distribution for Ys y s , a linear approximation of Equa-
tion (7.11) can be applied. We linearize the expression by performing a Taylor series ex-
pansion of SK (Y,xcs ,xes ) about the mean values ŷi of Y and retaining the first two terms
only,

SK (Y,xcs ,xes ) = SK (ŷ1, ŷ2, . . . , ŷN ,xcs ,xes )+
N∑
i=1

(Yi − ŷi )
∂SK

∂Yi

∣∣∣
ŷi

. (7.12)

The mean of the linear expression for Ys y s is the system level response [22],

E(Ys y s ) = ŷsys = SK (ŷ1, ŷ2, . . . , ŷN ,xcs ,xes ) (7.13)
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while the variance is given by

Var(Ys y s ) = s2
s y s =

N∑
i=1

b2
i s2

i ,

where bi = ∂SK

∂Yi

∣∣∣
ŷi

. (7.14)

Finite difference can be used on the inexpensive system-level functions to numerically
approximate the derivatives bi .

Using the system level error estimate s2
s y s we can derive an EI criterion in Xd . r s y s

K

represents the best worst-case cost on the system response. To improve over r s y s
K a loca-

tion is sought that could potentially have a lower worst-case cost. Let ŷmax
sys (xd ) represent

the worst-case cost for a given value of xd ,

ŷmax
sys (xd ) = max

xe∈Xe
SK . (7.15)

The corresponding location in Xe where the worst-case cost is obtained is given by xmax
e .

Let Y max
s y s represent the normal distribution at (xd ,xmax

e ). The mean and standard devi-
ation at Y max

s y s is denoted by ŷmax
sys and smax

s y s , respectively.

Having defined the nomenclature, an improvement over r s y s
K can now formally be

written as Is y s = max(r s y s
K −Y max

s y s ,0). The expected value of this improvement is [16],

E [Is y s (xd )]︸ ︷︷ ︸
EIs y s,d

=
∫Is y s=∞

Is y s=0
Is y s

exp

(
− t 2

s y s

2

)
�

2πsmax
s y s

d Is y s , (7.16)

where

ts y s =
r s y s
K − Is y s − ŷmax

sys

smax
s y s

. (7.17)

The integration in Equation (7.16) can be solved by substitution [16]. The final ana-
lytical expression for EIs y s,d can be written in terms of the normal cumulative distribu-
tion function Φ and the normal probability density function φ as

E [Is y s (xd )] = (r s y s
K − ŷmax

sys )Φ

(
r s y s
K − ŷmax

sys

smax
s y s

)
+ smax

s y s φ

(
r s y s
K − ŷmax

sys

smax
s y s

)
. (7.18)

The global maximizer, xnew
d , of Equation (7.18) is estimated in Step 9 of Algorithm 4 to

give the new infill sample in Xd .

7.4.2. ESTIMATION OF xnew
e

The infill sample xnew
d in Xd provides the location expected to give the highest improve-

ment in the best worst-case system level response. Given the infill sampling location
xnew

d in Xd , we now find an infill sampling location in Xe . Let g s y s
K represent the worst-

case cost at xnew
d evaluated on the system response SK ,

g s y s
K = max

xe∈Xe
SK (xnew

d ,xe ). (7.19)
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An expected deterioration criterion in Xe is proposed which estimates the location
with the highest expectation of deterioration over g s y s

K . In this scenario, a deterioration

means finding a higher value than g s y s
K . This deterioration may mathematically be ex-

pressed as De = max(Ys y s − g s y s
K ,0). The expectation of this deterioration can be derived

in exactly the same way as EIs y s,d . The expectation of deterioration is given by,

E [De (xnew
d ,xe )]︸ ︷︷ ︸

EDs y s,e

=
∫Ie=∞

Ie=0
De

exp
(
− te

2

2

)
�

2πss y s
dDe , (7.20)

where

te =
ŷsys − Ie − g s y s

K

ss y s
, ss y s = ss y s (xnew

d ,xe ). (7.21)

Following exactly the same steps as described for deriving EIs y s,d , the final expression
becomes,

E [De (xnew
d ,xe )]︸ ︷︷ ︸

EDs y s,e

= (ŷsys − g s y s
K )Φ

(
ŷsys − g s y s

K

ss y s

)
+ ss y sφ

(
ŷsys − g s y s

K

ss y s

)
. (7.22)

The new sampling location in Xe is found in Step 10 of Algorithm 4. The response of
the components at the new location xnew = (xnew

d , xnew
e ) is computed. The loop contin-

ues until the total number of iterations N are completed. At this stage, the argument of
the robust optimum r s y s

K is returned as the final solution.

Algorithm 5 System level Efficient Global Robust Optimization for constrained problems

1: ni ← Number of initial samples for ith component
2: N ← Total number of iterations
3: Choose initial samples Xi∀N

4: Compute response on components ci to cN

5: j ← 0
6: while j < N do
7: Construct Kriging metamodels Kci∀N

8: Estimate constrained global robust optimum r s y s
K

9: Estimate xnew
d by maximizing EIsc

10: Estimate xnew
e by maximizing EDse

11: Compute response on components at xnew = (xnew
d , xnew

e )
12: j ← j +1.

13: Return xbest = arg r s y s
K .

7.4.3. INFILL SAMPLING CRITERIA FOR CONSTRAINED SYSTEMS
The infill sampling criteria EIs y s,d and EDs y s,e described in Section 7.4.1 and Section
7.4.2 would have to be modified if the system optimization problem involves constraints.
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The modifications are needed to incorporate the presence of constraints in the design
domain so that a feasible global robust optimum is reached efficiently.

A Probability of Feasibility (PF) measure was developed by [23] for constrained opti-
mization problems in order to perform infill sampling on objective and constraint meta-
models. The infill sampling strategy was basically a product of the EI in the objective,
Equation (7.8), and the probability of feasibility of the constraint [24]. [25] extended this
constrained EI strategy to the case where the robust optimum was sought for the con-
strained problem. Recently, [17] derived a system level constrained EI criterion for global
optimization of systems with constraints.

In this work, separate constrained EI expressions are found for Xd and Xe . Given a
problem with a single inequality constraint, let ĥs y s represent the system level constraint
response based on component metamodels,

ĥs y s = Sh(ŷ1(x1), ŷ2(x2), . . . , ŷN (xN ),xcs ,xes ). (7.23)

where Sh is the system operation performed to find the constraint response. The sys-
tem constraint error, sh , can be found for the constraint response ĥs y s using the same
derivation as was used to find ss y s , Section 7.4.1. Once sh is known, the derivation of
the infill sampling criteria for both Xd and Xe is completely equivalent to the procedure
described by [25]. The final expression for constrained system expected improvement,
EIsc , in Xd is,

EIsc = EIs y s,d .PFs y s,d , (7.24)

where

P [F (xd ) < hmi n]︸ ︷︷ ︸
PFs y s,d

=Φ

(
hmi n − ĥmax

s y s

sh

)
. (7.25)

hmi n is the constraint limit, ĥmax
s y s is the worst-case prediction for the constraint at xd and

sh is the system error at the corresponding location where the worst-case was found.
The expression for constrained system expected deterioration, EDse , in Xe is,

EDse = EDs y s,e ·EDs y s,h , (7.26)

where

E [Dh(xnew
d ,x)]︸ ︷︷ ︸

EDs y s,h

= (ĥs y s − g s y s
h )Φ

(
ĥs y s − g s y s

h

ss y s

)
+ ss y sφ

(
ĥs y s − g s y s

h

ss y s

)
. (7.27)

g s y s
h represents the worst-case constraint value found at xnew

d .
The infill sampling criteria EIsc and EDse enable the constrained system level prob-

lem to be sampled in such a way that a feasible global system robust optimum is esti-
mated efficiently. The derivation of EIsc and EDse is analogous to the infill criteria at
device level, Algorithm 2. Details may be found in the work by [25]. Algorithm 5 shows
the steps that need to be taken in order to find the system robust optimum for a con-
strained problem.
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7.5. RESULTS
The algorithm is applied on one constrained benchmark problem and on an engineer-
ing case study. The benchmark problem used in this work was previously employed by
the authors to demonstrate component level robust optimization [25]. BEGRO is tested
on an engineering problem of an optical filter realized on a photonic integrated circuit.
The problem is an interesting test case since the filter performance is very sensitive with
respect to the fabrication variations in the geometry of the photonic integrated circuit.

7.5.1. NUMERICAL TEST PROBLEM
The following constrained test problem is used to demonstrate the algorithm [25],

f (xd ,xe ) = 2xd1xd5 +3xd4xd2 +xd5xd3 +5x2
d4 +5x2

d5 −xd4(xe4 −xe5 −5) (7.28)

+xd5(xe4 −xe5 +3)+
3∑

i=1
xei (x2

di −1)−
5∑

i=1
(x2

ei ),

s.t. 5xd1 −xd2 +xd3 +xd4 −xd5 +xe1 −xe2 +xe3 +xe4 −xe5 ≤ 0,

Xd ∈ [−5,5], Xe ∈ [−3,3].

The problem consists of ten variables, all of which are present in both the objective and
the constraint. While the constraint is a linear function, the objective is nonlinear.

For system level optimization, the problem is decomposed into expensive and cheap
parts. We assume that the system level problem has a total of five expensive components.
Four of these components are present in the objective while the fifth component belongs
to the constraint. The system problem is defined as,

S [c(xd ,xe )] = c1 + c2 + c3 − c4 −xd4(xe4 −xe5 −5)+xd5(xe4 −xe5 +3), (7.29)

s.t. c5 −xd5 −xe5 ≤ 0,

c1(xd ) = 2xd1xd5 +3xd4xd2, c2(xd ) = xd5xd3 +5x2
d4 +5x2

d5,

c3(xd ,xe ) =
3∑

i=1
xei (x2

di −1), c4(xe ) =
5∑

i=1
(x2

ei ),

c5(xd ,xe ) = 5xd1 −xd2 +xd3 +xd4 +xe1 −xe2 +xe3 +xe4,

Xd ∈ [−5,5], Xe ∈ [−3,3].

The control variables, xd4, xd5 and the environment variables xe4, xe5 are present at
both component level and system level. All the variables are also present in multiple
components. The component c2 has the fewest number of variables, i.e. 3. On the other
hand, component c5, which is present in the constraint, is a function of eight variables.
Some components are a function of both control variables and environment variables,
e.g. c3, c5. Others are exclusively a function of control variables or environment vari-
ables, e.g. c1, c2, c4. The original problem, Equation (7.28), is decomposed into the
system problem, Equation (7.29), in a manner such that all aspects of the system level
algorithm may be tested.

BEGRO is applied on the decomposed problem, Equation (7.29). The initial compo-
nent metamodel are constructed using LHS. Since the initial random sampling is non-
deterministic, the algorithm is applied 20 times on the problem and the statistics of the
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Figure 7.2: The robust optimum found on the approximate system response at each iteration of the algorithm
is plotted. The error bars indicate the standard deviation around the average robust optimum at each iteration.
The robust optimum found on the reference function is also plotted.

solution found are analyzed. The number of initial samples is different for each compo-
nent and is given by ni = 10× number of dimensions of the ith component. Therefore, c1

is initialized with only 40 samples, while c5 is initialized with 80 samples. The total num-
ber of iterations of the algorithm is limited to 60. All the components are sampled at the
respective infill sampling location at each iteration. The total number of samples used at
termination by each component is 60+10×number of dimensions of the ith component.

The result found by BEGRO is compared against system level optimization of the
problem, Equation 7.29, based on component metamodels constructed only using LHS.
Once again, due to the non-deterministic sampling, the method is run 20 times. The LHS
approach is also allowed the same total computational budget, i.e. the components are
initialized with ni = 60+10×number of dimensions of the ith component. Finally, the
solution is also compared against using component level Efficient Global Robust Opti-
mization (EGRO) [25] on the original 10-dimensional problem, Equation (7.28).

Figure 7.2 shows the average robust optimum of the 20 BEGRO runs based on the
optimal location found on SK at each iteration. The objective value is found on the ref-
erence function as a post processing step. The errorbars indicate the standard deviation
around the mean value. The reference robust optimum found on the reference function,
Equation (7.28), without introducing metamodels is also plotted in Figure 7.2. The value
of the reference robust optimum is -0.3866. In general, the approximate system response
may also find robust optimal locations that underestimate the actual worst-case cost.
Additionally, the solutions found in the beginning may also violate the constraint. The
algorithm takes about 40 iterations before convergence is observed. For the first 25 iter-
ations the standard deviation remains fairly constant. Thereafter it starts to drop. After a
further 15 iterations, the mean robust optimum corresponds to the reference optimum
and the standard deviation has also dropped significantly.

Table 7.1 shows the mean and standard deviation of the robust optimum found using
the three methods, BEGRO, LHS and EGRO. As mentioned previously, BEGRO and LHS
are allowed the same total computational budget. For both methods, Kc5, the meta-
model with the highest number of samples, is allowed a total of 140 simulations. On
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Table 7.1: Table shows the mean and standard deviation of the robust optimum found using the three meth-
ods, BEGRO, EGRO and LHS. The reference objective at the robust optimum is also given. The maximum
evaluations for the metamodels in each method are also provided.

Optimum Reference BEGRO LHS EGRO

Mean -0.3866 -0.397 -2.563 -0.395
Standard deviation - 0.012 3.644 0.023
Constraint violations 0 0 0
Maximum metamodel evaluations - 140 140 392

the other hand, since EGRO has to be applied directly on the original problem, Equa-
tion (7.28), it is allowed a much higher computational budget. The result shown in Ta-
ble 7.1 for EGRO is based on a metamodel of the objective and constraint in Equation
(7.28) built using 392 evaluations [25]. The system metamodel built for EGRO is relatively
higher dimensional than the component metamodel for BEGO and LHS. Therefore, after
140 iterations of EGRO, the solution is still very far from convergence. We allow EGRO
to continue running to see how long it takes before reaching a result that is comparable
with BEGRO.

Given the same computational budget BEGRO finds a solution that is much closer to
the reference robust optimum than the average found via the LHS based approach. The
standard deviation for BEGRO is also orders of magnitude lower. The results for the LHS
approach seem to indicate that the best worst-case cost was underestimated in general.
The fact that the mean solution of LHS is lower than the robust optimum found on the
reference function also shows that the solution is quite inaccurate.

The accuracy of the average results of EGRO and BEGRO is almost the same. How-
ever, the highest number of component simulations in BEGRO was 140 for c5. On the
other hand, the result of EGRO is based on 392 evaluations of the objective and con-
straints, Equation (7.28). The superior performance of BEGRO is to be expected since
metamodels are made of low dimensional components. Finally, it is important to note
that none of the methods give infeasible solutions. This seems to suggest that the linear
constraint response is relatively simple to model given the computational budget.

7.5.2. ENGINEERING PROBLEM: ROBUST OPTIMIZATION OF AN OPTICAL

FILTER

SERIAL RING RESONATOR OPERATION

A photonic integrated circuit (PIC) enables the confinement and propagation of light
based on the principle of total internal reflection. The light travels within high refractive
waveguides that are surrounded by material that has a lower refractive index. In this
work, the photonic integrated circuit is based on TripleX based waveguides [26]. The
waveguide consists of a high refractive index SiN layer buried in SiO2 which has a lower
refractive index.

The fabrication of the PICs requires subnanometer precision and is prone to manu-
facturing uncertainties. These uncertainties affect the geometry of the fabricated waveg-
uides, often causing the width and thickness of the waveguide to dilate or shrink. This
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Figure 7.3: Top-view schematic of an integrated optical ring resonator.

change in geometry significantly impacts the optical performance of the PICs.

Amongst the multitude of applications that such photonic integrated circuits have,
the optical filtering of light as a function of wavelength is especially important within
optical telecommunication. Optical filters can be realized via multi-ring resonators. A
schematic of a multi-ring resonators system is shown in Figure 7.3. The black optical
paths indicate the waveguides through which light propagates.

When the waveguides are brought in close proximity to one another, any light present
can partially or fully couple from one waveguide to the other. These sections are known
as directional couplers. These directional couplers are enclosed by colored boxes in
the illustration in Figure 7.3. The coupling between adjacent waveguides enables light,
launched at the ‘In’ port, to propagate through the multi-ring resonator and partially
exit at the Drop port. The remaining light exits at the ‘Through’ port. The coupling is not
only a function of the wavelength of the input light but also of the gap and length of the
waveguide coupling section.

Figure 7.4 shows the amount of coupled power as a function of the coupler length for
a fixed gap between the waveguides in the coupler. The curve follows a sinusoidal trend.
The length of waveguide needed for light to couple completely from one waveguide to
the other and back to the original waveguide is known as Lπ and is indicated in Figure
7.4. Some power is also coupled when the length of the coupling section itself is zero.
In this case the light is being coupled by interaction between the adjacent waveguides
leading to the coupled section. We refer to this contribution of the waveguide leads by
PL0. For a fixed gap, width and thickness, knowledge of the two parameters PL0 and
Lπ is enough to predict the coupled power for any coupler length. This is because the
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Figure 7.4: Power coupling ratio as a function of the coupler length for a certain coupler gap. This represents
the response of the directional coupler section.

exchange of power between the waveguides is sinusoidal.
In this work we are interested in achieving the bandpass filter characteristic shown

in Figure 7.5 at the Through port of the serial ring resonator. The optical performance
of the resonator can actively be optimized by changing the gap between the waveguides,
the width of the waveguides and the length of the coupling section. In this example, we
consider the resonator geometry to be symmetric, i.e. g3 = g1. This means that there
are only two variables, g1 and g2, for the gap. The design variables of the problem are
xd ∈ [w g1 g2 L], where w ∈ [1 1.15]μm, L ∈ [0 2400]μm and the gaps g1, g2 ∈ [1 1.3]μm.
The bandpass filter response must remain robust with respect to the parametric uncer-
tainties, i.e. the width and thickness variations that could occur during the fabrication
process. The parametric uncertainties xe ∈ [Δw, Δt ] reside in the sets [−0.1 0.1]μm and
[−0.003 0.003]μm respectively.

To find the optimal robust design, BEGRO is also run on the serial ring resonator
considering both fabrication uncertainties and simulation error. The calculation of PL0

is based on an approximate coupled mode approximation model. This computation is
prone to error in simulation. On the other hand, we do not consider simulation error
in Lπ, since that is a much higher fidelity simulation. The simulation error in the prob-
lem is also treated as a parametric uncertainty. We assume a Δ f ∈ ±5% uncertainty in
the simulation of PL0. The fact that we consider a symmetric structure for the serial ring
resonator, in which g3 = g1, means that there are fewer possible combinations of com-
ponent level simulation error against which the system has to be robust.

The robust optimization problem for the spectral response H(n f ) at the ‘Through’
port may be written as,

min
xd∈Xd

max
xe∈Xe

1−b

2

∥∥H̄stop1
∥∥

p +b
[

1−∥∥1− H̄pass
∥∥

p

]
+ 1−b

2

∥∥H̄stop2
∥∥

p , (7.30)

where H̄stop1, H̄pass and H̄stop2 represent the vector of responses for the normalized
frequencies n f ∈ [0 0.1], n f ∈ [0.2 0.8] and n f ∈ [0.9 1], respectively.

The objective is a weighed sum of the approximate maximum response in the stop
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Figure 7.5: Desired band-pass filter spectral response (red line) of the serial ring resonator. No preference is
specified in the intervals [0.1,0.2] and [0.8,0.9].

bands and the approximate minimum in the pass band. We choose b = 0.6 as the weight
for the pass band contribution to the objective. The parameter p in the p-norm expres-
sion which approximates the maximum is given a value of 20. The p-norm is used in-
stead of simply finding the maximum of the vector in each band so that the computation
of the worst-case cost (inner maximization in Xe ) takes place on a continuous function.
The outer minimization in Equation (7.30) could become nondifferentiable regardless
of the choice of the objective itself, so taking the p-norm does not necessarily enable a
smoother function for that case.

BEGRO
Computing the response of the directional coupler sections in the serial ring resonator
for different geometry parameters requires expensive simulations. The response of each
directional coupler, Figure 7.4, depends on the value of PL0 and Lπ. Computation of
PL0 and Lπ requires expensive electromagnetic simulation for each configuration of the
waveguide geometry and gap between waveguides. Figure 7.4 indicates that each direc-
tional coupler is built based on two expensive components.

A commercial electromagnetic solver, PhoeniX Software [27], is used to simulate the
components PL0 and Lπ. Each simulation requires 10 minutes of computation time.
Once these parameters are known for each directional coupler, the ‘Through’ port spec-
tral response can be found via scattering matrix analysis. Details concerning the compu-
tation of the system response may be found in [28]. Since this evaluation is inexpensive,
it can be performed at system level.

The serial ring resonator shown in Figure 7.3 consists of six components. Compo-
nents c1, c3 and c5 give the initial power PL0, while c2, c4 and c6 provide the beat length
Lπ for each coupler. Under the assumption that g3 = g1, the number of unique compo-
nents reduces to 4, since c5 and c6 are then just copies of c1 and c2, respectively.

BEGRO is applied on the serial ring resonator to estimate a robust optimum for the
desired bandpass filter response given in Figure 7.5. We first consider the case where
only fabrication uncertainties are present while there is no simulation error. Initial Krig-
ing metamodels, Kc1 and Kc2, are constructed for PL0 and Lπ based on the design vari-
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ables [w g1] and parametric uncertainties [Δw Δt ]. 60 initial samples are chosen for
this purpose using Latin Hypercube sampling. The algorithm is allowed a total com-
putational budget of 180 expensive simulations for PL0 and Lπ, excluding the initial 60
simulations used for space filling. At each iteration, the infill sampling criterion will pro-
vide new sampling locations for [w g1 g2 L] and [Δw Δt ]. This means that PL0 and Lπ will
be simulated twice for the two different combinations, [w g1 Δw Δt ] and [w g2 Δw Δt ],
at each iteration. Therefore, the algorithm will run for 90 iterations, before the 180 ex-
pensive simulations are exhausted. The same setting is also used for robust optimization
when considering simulation error as a parametric uncertainty.
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Figure 7.6: The approximate system response at the deterministic optimum is compared to the response found
on the reference system based on the expensive simulation of PL0 and Lπ.

Kc1 and Kc2 can basically be used to estimate the coupled power at a certain length
for any directional coupler in the system since the domain of xd and xe is the same for
all the directional couplers. Therefore, separate metamodels are not needed for each
instance of the directional coupler in the serial ring resonator system. This also means
that the multiple simulations performed at each iteration for PL0 and Lπ can be used
to improve Kc1 and Kc2 only, instead of constructing separate metamodels. This sit-
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Figure 7.7: The approximate system response and the reference system response is plotted at the nominal
location of the robust optimum (without considering simulation error).
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uation where similar components are present in a given photonic integrated system is
quite common. Therefore, using a single metamodel for multiple components further
improves the efficiency.

The result of the application of BEGRO on the serial ring resonator is compared
against deterministic optimization of the same problem using BEGO [17]. Since uncer-
tainties are not considered in the deterministic problem, the component metamodels
Kc1 and Kc2 for PL0 and Lπ have to be constructed in the control variable design space
Xd only. The algorithm is therefore allowed a reduced total budget of 60 expensive simu-
lations [17]. The serial ring resonator is considered to be symmetric for the deterministic
optimization problem as well. Figure 7.6 shows the performance of the optimal deter-
ministic design, evaluated using the approximate system response based on the Kriging
component metamodels as well as with the reference system response. The plot suggests
that the component metamodels are fairly accurate at the deterministic optimum so that
the approximate and reference system responses are also quite similar. The filter atten-
uates the power in the stop-band while allowing most of the power to be present in the
pass-band. Using a higher order ring resonator would enable even stronger attenuation
in the stop-bands and better performance in the pass-bands.

Figure 7.7 shows the same comparison at the nominal location for the robust opti-
mum found by BEGRO. Visually, the approximate and reference system response com-
pare quite well. Once again, this indicates that the component metamodels Kc1 and
Kc2 have a high fidelity in the neighborhood of the robust optimum. Furthermore, this
suggests that the metamodels have been effectively sampled in the region of the robust
optimum via the infill sampling criterion.

The performance of the deterministic and robust optimum at the respective worst-
case location is shown in Figure 7.8. It is interesting to note that there is hardly any re-
jection of frequencies in the band stop regions for the deterministic optimum. Similarly,
the performance in the pass-band has also worsened considerably. The deterioration
in performance, when moving from the nominal location, Figure 7.6, to the worst-case
location, Figure 7.8, is quite dramatic for the deterministic optimum. The numerical ob-
jective is 0.7545, where a value of 1 is theoretically the worst possible objective. In the
case of the robust optimum, the filter response has also deteriorated, but not as much as
it did for the deterministic optimum. Almost all the light is passed through in the pass-
band. The rejection in the stop band is, however, not as strong anymore. The numerical
objective is still a much lower value, 0.2226, than the worst-case cost for the determinis-
tic optimum. Table 7.1 summarizes the comparison between the deterministic and the
robust solution. The table also provides also provides the location at which the respec-
tive solutions were obtained.

BEGRO was also applied on the same problem with simulation error in the compo-
nents c2 and c4 which give the beat length Lπ for each coupler section. The simulation
error in c6 would be the same as the one in c2, since c6 is a copy of c2 when g3 = g1„ Fig-
ure 7.3. The Δ f ∈±5% simulation error is also treated as a parametric uncertainty. Even
when including simulation error, the same robust optimum, as is given in Table 7.1 was
found to be the most robust location. However, the worst-case cost now goes up to 0.246
from 0.2226 due to the inclusion of the uncertainty in simulation.
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Figure 7.8: The system level response at the deterministic and the robust optimum (without considering sim-
ulation error), assuming that the worst-case fabrication takes place.

Table 7.2: The deterministic and robust optimum objective is compared at the nominal and worst-case loca-
tions. The values for Δw and Δt give the location at which the worst-case objective was found for each design.
The last two columns provide the nominal and worst-case objective.

Optimum w g1 g2 g3 L Δw Δt Nominal Worst-case

Deterministic 1.1250 1.1321 1.1122 1.1321 1897.7 -0.0268 -0.0027 0.0166 0.7545
Robust 1.0731 1.00 1.2715 1.00 130.299 -0.1 -0.003 0.0645 0.2226

7.6. CONCLUSION
We proposed a strategy for global robust optimization of systems involving computa-
tionally expensive components, that are independent in the sense that they do not ex-
change any coupling variables. The method was directed at problems involving bounded-
but-unknown uncertainties, i.e. the bounds of the uncertainties were available, however
the distribution of the uncertainties is unknown.

The independent component metamodels were constructed using Kriging and the
approximate system response was obtained via the transformation of the cheap Krig-
ing metamodels. A system level expected improvement and expected deterioration cri-
terion was developed for the control variable and environment variable space, respec-
tively. These criteria were based on a system level error estimate which was obtained via
a linear system transformation of the respective errors of the components.

Since the component metamodels will usually have a much smaller dimension than
the total number of dimensions of the system, only a few component simulations are
needed to construct high fidelity surrogate responses. In addition, if the system has
many components that are the same, a single metamodel can be used as a cheap re-
placement for all of them. These aspects mean that the proposed strategy can be used
for optimizing systems with relatively large problem sizes.

The approach was run 20 times on a constrained benchmark problem with differ-
ent initial samples found via LHS. The adaptive sampling scheme was allowed to run for
60 iterations on the problem. The average optimum found on the approximate system
response corresponded well with the reference solution at termination. Significantly,
the proposed method performed much better than the conventional strategy of con-
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structing a metamodel of the system and applying robust optimization on the resulting
response. This was demonstrated by comparing the numerical results of the technique
with Efficient Global Robust Optimization [16].

An engineering case study of a second order serial ring resonator affected by manu-
facturing uncertainties was employed to demonstrate the applicability of the technique
in a practical setting. The objective was to achieve a certain bandpass optical filter per-
formance. The optical performance was very sensitive to the variations in geometry
caused by the imperfect fabrication process. The system could be decomposed into
six components of which only two were unique. BEGRO was applied on this system
and it was shown that the proposed adaptive sampling scheme enabled the algorithm to
quickly reach the system robust optimum.

Since the method is based on the assumption that the component metamodels are
constructed using black-box expensive responses, there is no restriction on the type of
problem that can be tackled by the algorithm. The only caveat is that the system should
involve independent low dimensional component models. The proposed method can
be employed for robust optimization of this particular class of systems. For this purpose,
pre-built libraries of initial component metamodels could be employed. The proposed
optimal infill sampling criteria can then be used to refine the component models in rel-
evant regions for system robust optimization for each specific design problem.
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8
ROBUST OPTIMIZATION FOR

INTEGRATED PHOTONIC SYSTEMS

8.1. INTRODUCTION
Integrated photonic devices and systems are prone to manufacturing uncertainties which
are an unavoidable aspect of fabrication. If designers do not account for the geometri-
cal variations that can arise in fabrication, the fabricated structure fails to perform ac-
cording to the designed specifications. Design-for-Manufacturing (DfM) strategies for
integrated photonics therefore have a potential to increase the overall yield and simul-
taneously reduce the cost of production. However, in order to perform this, information
about the capability of the fabrication process is needed. Ideally, designers should have
access to data related to the probability distribution of the uncertainties in fabrication.
However, such probability data is usually classified and is not disclosed by foundries to
external designers. In this case, designers often only know the tolerances of the fabrica-
tion process. In other words, the bounds on the fabrication uncertainties are known, but
their distribution is unknown.

In the scenario that the uncertainties are bounded-but-unknown [1], robust opti-
mization is an established approach to find a fault-tolerant design. Robust optimization
involves finding the best worst-case performance. The design is optimized so that the
best performance is achieved given that the worst-case uncertainty with respect to the
performance metric is realized. The design found using this method is therefore not
insensitive, but has a certain guaranteed minimum performance.

To determine the robust optimum, an iterative optimization process is required. An
additional challenge in integrated photonic optimization is that the underlying electro-
magnetic simulation may be computationally expensive. Repeatedly changing the de-
sign parameters and rerunning the simulation to find the optimal design can therefore
be prohibitively costly. In order to circumvent this problem, an inexpensive approximate
model of the simulation can be constructed and the optimization can be performed on
the cheap model. Amongst the available methods for mathematical modeling, Kriging

173
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[2] is a strong candidate since it provides an estimator for the approximation error. Using
these estimates, the cheap model, otherwise known as a metamodel, can adaptively be
improved by simulating the integrated photonic device response in regions of the design
domain that are relevant to robust optimization.

The described approximation approach can efficiently find the robust optimum of
an integrated photonic device such as an MMI coupler [3, 4] or a single ring resonator
[5]. But in order for the approach to be scalable it should also be able to produce a robust
solution for large integrated photonic systems consisting of different components.

Research has been performed on finding tolerant designs for different integrated
photonic devices [6–11]. However, most of these approaches have been focused on non-
generic methods that only address a particular integrated photonic device. A scalable
and generic approach for robust optimization of integrated photonic systems is still lack-
ing.

In this work, we propose a system level robust optimization technique for efficiently
identifying robust designs for integrated photonic systems. A cheap system model is
constructed for this purpose based on mathematical models of the components. Since
the approach is not based on a specific model, a robust optimum for any integrated
photonic component or system can readily be found without altering the underlying
method. The only restriction is that the structure of the system should be such, that
the behavior of the components is independent from one another. This means that e.g.
heaters that cause crosstalk between components cannot be included. Fortunately, for
the majority of integrated photonic systems, this condition is met. The robust optimum
found on the cheap system model should match the result on the reference simulation.
To ensure this, the system response is iteratively improved by simulating the underlying
components, using a combination of the system level error estimate and the predicted
response, in areas that could potentially contain the system robust optimum. We em-
ploy a sound mathematical criterion to select the best locations in the design space for
refinement, in order to minimize the computational effort of the process.

The proposed approach is suited to problems for which the system simulation is
cheap and the component behavior is simpler to approximate than the system response.
Systems with multiple identical components are especially strong candidates since a sin-
gle metamodel can then replace the components. Once metamodels have been built for
the components, the system is arbitrarily scalable at low computational cost. A library
of pre-built component models (the initial samples used here) could be provided in a
software package, or built by the user. These pre-built models only need to be refined for
each specific case.

We showcase the method by performing robust optimization of optical filters, that
can be seen as examples of integrated photonic systems consisting of several compo-
nents. Second order and third order serial ring resonators based on single stripe TripleX
technology are used for this purpose [12]. Kriging metamodels of the directional cou-
pler sections of the resonators are constructed since simulating the directional coupler
is computationally expensive. The suitability of the approach is demonstrated by com-
paring the robust solution found with the deterministic optimum, i.e. the optimum
achieved when optimizing without taking fabrication uncertainties into account.

There has been previous work on optimization of ring resonators based optical filters
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Figure 8.1: A second order serial ring resonator is illustrated. The width w , the vector of gaps g and the length L
are the design variables of the problem. The variations in width Δw and in thickness, Δt are the uncertainties
with respect to which the design has to be robust.

[13–16]. Different approaches have been used for optimization. In [13], the placement
of poles and zeros of the transfer function is optimized via trial and error. In [14], a per-
turbation based approach is employed to vary known mean coupling ratios in order to
find the optimal design. However, these methods optimize the filter performance as a
function of the coupling ratio of each directional coupler in the system. Optimization
is not performed with respect to the geometrical parameters. Uncertainties in the ge-
ometry due to fabrication variations are therefore also not taken into account. In the
present work, the filter is optimized directly as a function of the geometry, meanwhile
the robustness with respect to the variations in geometry is also ensured. We have cho-
sen serial ring resonators merely as demonstrators of the application of the proposed
approach. The method can readily be applied on other integrated photonic systems as
well as on a large class of engineering systems in general. For instance, once component
metamodels are available for expensive to evaluate devices such as directional couplers,
MMI couplers, large systems such as interferometers or optical add drop multiplexers
consisting of many rings can be robustly optimized at low computational cost.

8.2. APPLICATION: SERIAL RING RESONATORS
In this work, we are interested in performing robust optimization of optical filters based
on serial ring resonators. Fig.8.1 shows an illustration of a second-order serial ring res-
onator. The serial ring resonators are simulated using a single stripe TripleX waveguide
[12] with designed thickness of 32nm. The directional couplers are extremely sensitive
to variation at this thickness. This means that if the nominal performance is optimized
then even slight variations in the geometry can cause the designed device to not operate
as expected.

The design variables of the problem are the gaps, g1 to gn between the n directional
couplers, the width of the waveguides and the length L of the directional couplers. The
width w ∈ [11.15]μm, the gaps g1, g2 . . . gn ∈ [1 1.3]μm and the length L ∈ [0 2400]μm.
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The width range is chosen such that the waveguide always remains single mode. The
width and thickness variations caused by the imperfect fabrication process are denoted
by [Δw,Δt ]. For this process Δw ∈ [−0.1 0.1]μm and Δt ∈ [−3 3]nm. The set of design
variables (control variables) is denoted by xd , while the set of parametric uncertainties
(environment variables) is represented by xe .

The filter performance should be robust with respect to the parametric uncertainties
which impact the cross-sectional geometry, i.e. width and thickness variation. This in-
volves finding the right combination of the design variables that leads to the most robust
design.

Computing the response at the Through or Drop port basically involves simple lin-
ear algebra and matrix manipulation once the power coupling ratio is known for each
coupler section [14]. Let PL0 represent the power coupling ratio when L = 0μm. We de-
note the beat length by Lπ. Computing the power coupling ratio of a directional coupler,
given a length L and a certain geometry for the cross-section, can be time consuming, as
computation of PL0 and Lπ requires numerical simulation. A commercial electromag-
netic solver, PhoeniX Software [17], is used to simulate both quantities. A coupled mode
theory model is employed to simulate PL0. On the other hand, Lπ is found using a mode
solver. Both simulations require approximately 10 minutes.

Once PL0 and Lπ are known for a given geometry, the power coupling ratio for any
length L is cheap to compute. The scattering matrix analysis that follows, in order to find
the serial ring resonator response is also not computationally expensive.

We therefore make a clear distinction between the computationally expensive and
cheap parts of the system. We construct metamodels of the expensive components, i.e.
response of PL0 and Lπ, given the design variables and the parametric uncertainties. The
power coupling ratio given by the combination of the cheap models is then used as an
input to the scattering matrix analysis in order to get the system response for the serial
ring resonator.

xd2,xe2xd1,xe1xds,xes

c2c1

Kc2Kc1

Robust optimizer

SK

Figure 8.2: The process of robust optimization of the approximate system response based on Kriging models
of expensive components is shown.
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Figure 8.3: Kriging model of a one-dimensional function based on three samples. The predicted Kriging mean
squared error is also shown in the plot. As expected, the predicted error is zero at the sample points.

Robust optimization can then be efficiently applied on the approximate system re-
sponse. The robust optimum should converge to the solution that would have been
found on the reference simulators. This convergence requires improvement of the cheap
system response by adding more data points from the expensive simulation in strate-
gically important regions until an initially specified budget for total simulations is ex-
hausted. In what follows, we expand upon the robust optimization method and the pro-
posed approach for adaptively improving the system response.

8.3. SYSTEM ROBUST OPTIMIZATION
Let SK represent a system based on components c1 to cN . Since the components are ex-
pensive to simulate, we construct Kriging metamodels Kc1 to KcN of the components
based on a set of simulated responses. Robust optimization is applied on the approxi-
mate system response generated from the underlying Kriging metamodels.

Fig. 8.2 visually depicts the relationship between the design variables, xd , the para-
metric uncertainties, xe , and the components, system response. Since we construct
metamodels for only PL0 and Lπ, Fig. 8.2 shows only two component metamodels Kc1

and Kc2. Once we have the cheap models for PL0 and Lπ as a function of width, gap
and thickness, the response for all the directional couplers in the serial ring resonator
can be found since they share the same domain in the design variables [w gi ] and the
uncertainties [Δw,Δt ]. Fig. 8.2 shows that some variables and uncertainties (xcs ,xes )
can directly impact the system response SK . For the serial ring resonator problem, the
length L is a system level design variable since it does not impact the response of PL0 and
Lπ, but it has an influence on the system response.

The robust optimizer operates on the system response SK and tries to find a rela-
tively insensitive solution by optimizing the design variables. The system level robust
optimization problem in general may be expressed as,

min
xd∈Xd

max
xe∈Xe

SK (Kc1(xd1,xe1),Kc2(xd2,xe2),

. . . ,KcN (xdN ,xeN ),xd s ,xes ). (8.1)

where xd1 to xdN are the design variables of component metamodel Kc1 to KcN . The
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parametric uncertainties xe1 to xeN affect the component metamodels Kc1 to KcN ,
respectively. The design variables xd s and the parametric uncertainties xes directly af-
fect the system response, Fig. 8.2. Xd and Xe are the domains for xd and xe , respec-
tively. Equation (8.1) shows that the robust optimization problem is a nested optimiza-
tion problem where the objective of the outer minimization itself involves an inner global
maximization. This fact means that the efficient use of metamodeling techniques is es-
sential to determine robust designs at affordable computational costs.

8.4. ADAPTIVE IMPROVEMENT OF APPROXIMATE SYSTEM

8.4.1. COMPONENT METAMODELS: KRIGING

Kriging is an interpolation technique with a statistical basis [2]. An important property
of Kriging is that it provides an estimate for the interpolation error. Fig. 8.3 shows a Krig-
ing metamodel of a one-dimensional function based on three samples of a reference
function. The black dashed line is the predicted Kriging interpolation ŷ . The figure also
shows the predicted interpolation error, s2, given by the solid blue line. The interpola-
tion error is zero at the sample points and increases as the distance between the sample
points increases.

The combination of the Kriging prediction ŷ and the interpolation error, s2, can be
used to iteratively improve the metamodel so that the minimum of the expensive func-
tion is found efficiently. Jones et al. [18] devised such a method for adaptively improving
the metamodel in regions of interest for optimization. The method assumes that the
metamodel uncertainty in the response, ŷ , at any position x in the domain can be mod-
eled as a normal random variable with mean ŷ and variance s2, Fig. 8.4.

Fig. 8.5 shows this random variable superimposed on the Kriging prediction curve.
The area shaded in pink quantifies the predicted probability of improvement over the
current observed minimum, ymi n , if an expensive simulation is performed for that lo-
cation. If we take the first moment of area of the shaded region, we get the expected
improvement over ymi n . By maximizing the expected improvement (EI) criterion for
the whole domain, a sampling location is found that provides the highest predicted im-
provement over ymi n . Performing EI maximization over several iterations, with a new
simulation point corresponding to the maximum EI value added at each iteration, en-
ables the global minimum to be found efficiently.

8.4.2. SYSTEM LEVEL ROBUST EXPECTED IMPROVEMENT

The authors extended the EGO approach suggested by Jones et al. to the system level
[19]. We proposed an approach for robust optimization of a system based on compo-
nent metamodels, and verified it on different problems. A system level robust expected
improvement criterion was derived which enabled iterative sampling of the expensive
components such that the system robust optimum was found efficiently. Here we sum-
marize the main steps of the method, for detailed derivation the reader is referred to
[19].

To derive the system level robust EI criterion, a system level error estimate in the ap-
proximate system response SK is needed. In order to find a system level error estimator
ss y s , a linear Taylor series expansion of SK was performed.
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Let r s y s
K represent the best worst-case cost on the system response, determined using

Equation (8.1). To improve over r s y s
K a location is sought that could potentially have a

lower worst-case cost. Let ŷmax
sys (xd ) represent the worst-case cost for a given value of xd ,

ŷmax
sys (xd ) = max

xe∈Xe
SK . (8.2)

The corresponding location in Xe where the worst-case cost is obtained is given by xmax
e .

The derived system level error estimator ss y s was used in combination with the sys-
tem response, ŷsys, to give infill sampling criteria in the design variable range Xd and
parametric uncertainties range, Xe . A system level robust expected improvement crite-
rion was developed in Xd to suggest locations with the highest expectation of improving
over the current robust optimum r s y s

K .

EId (xd ) = (r s y s
K − ŷmax

sys )Φ

(
r s y s
K − ŷmax

sys

smax
s y s

)
+ smax

s y s φ

(
r s y s
K − ŷmax

sys

smax
s y s

)
. (8.3)

On the other had, a system level worst-case expected deterioration criterion was
developed for the parametric uncertainty space Xe which suggested locations with the
highest expectation of deterioration in the worst-case system response at xnew

d .

EIe (xnew
d ,x) = (ŷsys − g s y s

K )Φ

(
ŷsys − g s y s

K

ss y s

)
+ ss y sφ

(
ŷsys − g s y s

K

ss y s

)
. (8.4)

The combination of EId and EIe can be used to suggest a sampling location in Xd and
Xe , respectively. To do this, the maximum for EId and EIe in the respective domains Xd

and Xe is found. This is the location at which the response is evaluated on the expensive
simulation. New component metamodels are constructed with the augmented set of
samples and responses. The process of maximizing EId , EIe and sampling the expensive
simulation is repeated until the total number of expensive simulations are exhausted. At
this point, the location for the robust optimum, rK , found at the last iteration is returned
as the final solution. Details related to the derivation and the actual algorithm may be
found in [19].

s−s ŷ

Figure 8.4: An example of a normally distributed random variable which models the uncertainty in the Kriging
prediction ŷ for a given location x. The variance of the random variable is given by the Kriging mean squared
error s2.
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8.5. RESULTS
The algorithm is demonstrated on second order and third order TripleX based ring res-
onators. The objective is a bandpass filter response at the Through port. Let H(n f ) rep-
resent the spectral response at the Through port. We normalize the frequency with re-
spect to the free spectral range of the serial ring resonator. For the normalized frequency
n f ∈ [0 1], the aim is to achieve complete rejection in the stop-bands range [0 0.1], [0.9 1]
and allow power to pass in the pass-band range [0.2 0.8]. Strictly, a bandpass filter should
ideally pass all frequencies in a certain range and reject frequencies outside that range.
However, since we are considering only low (second and third) order filters in this work,
the frequency ranges [0.1 0.2] and [0.8 0.9] are reserved for the slow roll-off.

The robust optimization problem may be written as,

min
w,g,L

max
Δw,Δt

1−b

2

∥∥H̄stop1
∥∥

p + (8.5)

b
[

1−∥∥1− H̄pass
∥∥

p

]
+ 1−b

2

∥∥H̄stop2
∥∥

p ,

where H̄stop1, H̄pass and H̄stop2 represent the vector of responses for the normalized fre-
quencies n f ∈ [0 0.1], n f ∈ [0.2 0.8] and n f ∈ [0.9 1], respectively. We take the p-norm
of the vector of responses, H̄stop1 and H̄stop2, in the stop bands. The p-norm approx-
imates the maximum value for H̄stop1 and H̄stop2 in the respective stop band ranges.
For the pass band, the p-norm is used to approximate the minimum value for H̄pass in
n f ∈ [0.2 0.8]. The sum found is dependent on the weight b. In this work, we choose
b = 0.6 and p = 20. The objective in Equation (8.5) is basically a weighed sum of the
approximate maximum in H̄stop1, H̄stop2 and the approximate minimum in H̄pass . The
robust optimization involves finding the best worst-case cost of this weighed sum.

The robust optimum is compared against the optimal solution found when the un-
certainties are not part of the optimization problem. Equation (8.6) shows the nominal

0 1
0

25

ymin

Minimum valuex

P[I(x)]

Figure 8.5: The probability of improvement over the minimum observed response ymi n is shown for a certain
location in the design domain.
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optimization problem definition,

min
w,g,L

1−b

2

∥∥H̄stop1
∥∥

p + (8.6)

b
[

1−∥∥1− H̄pass
∥∥

p

]
+ 1−b

2

∥∥H̄stop2
∥∥

p .

In the above problem the weighed sum is simply minimized with respect to the design
variables w,g,L without considering the impact of the uncertainties.

The algorithm is demonstrated by applying it on a second order and third order serial
ring resonator. The robust solution is compared against the deterministic optimum. The
optimal locations found on the cheap system response are also fed into the expensive
electromagnetic simulators as a post-processing step in order to verify the fidelity of the
solution.

For deterministic optimization, it was assumed that the ring resonator structure is
symmetric. This means that in the case of second order resonator g3 = g1 . Similarly, for
the third order resonator, g4 = g1 and g3 = g2. For robust optimization both the cases,
one assuming symmetry and another without symmetry of the gaps, were considered.
It was found that for both cases, the best worst-case objective obtained was relatively
the same. Therefore, the greater flexibility of choosing unsymmetrical gap values does
not automatically lead to a greater chance of a better solution. In this scenario, it makes
sense to perform robust optimization using symmetric gaps, since this reduces the total
number of design variables in the problem. In this work, the robust optimization results
shown are based on symmetric resonators.

8.5.1. SECOND ORDER SERIAL RING RESONATOR
Robust optimization is applied on the cheap system response of the second order res-
onator. The approximate response is generated by applying scattering matrix analysis
on the power coupling ratio for each directional coupler found via the component meta-
models for PL0 and Lπ. The robust optimization algorithm is started by constructing
the initial component metamodels for PL0 and Lπ. The metamodels are built based on
60 initial expensive simulations of the couple mode theory model (PL0) and the mode
solver (Lπ). The locations for the design variables w , g and the uncertainties [Δw Δt ]
is chosen in the combined design variable and uncertainties space. The initial locations
are chosen via Latin Hypercube sampling (LHS) [20], a type of Design of Experiments.
Since L is a system level design variable, it does not have to be sampled.

The algorithm is allowed a total computational budget of 240 expensive simulations
for both PL0 and Lπ. This means the method can run for 60 iterations, since three such
simulations are run at each iteration for the three different gaps g1, g2 and g3.

A system level deterministic optimization algorithm [21] is applied on the problem
for comparison with the robust solution. The approach is also based on adaptive im-
provement of component metamodels. Since uncertainties are not included in the prob-
lem definition in the deterministic case, the total number of variables is only limited to
the design variables w , g and L. A total computational budget of 60 expensive simula-
tions is available. The initial metamodels for PL0 and Lπ are constructed based on 10
locations for w and g chosen via LHS. Note that due to the lower dimensionality of the



8

182 8. ROBUST OPTIMIZATION FOR INTEGRATED PHOTONIC SYSTEMS

Table 8.1: A comparison of the robust and nominal optima for the second order and the third order filters is
given.

Optimum w g1 g2 g3 g4 L Δw Δt Nominal Worst-case

Nominal second order 1.1250 1.1321 1.1122 1.1321 1897.7 -0.0268 -0.0027 0.0166 0.7545
Robust second order 1.0731 1.00 1.2715 1.00 130.299 -0.0168 0.003 0.0645 0.2274
Nominal third order 1.0746 1.1583 1.1796 1.1796 1.1583 2390.9 0.1 0.0027 0.0089 0.8975
Robust third order 1.1356 1.0190 1.2990 1.2990 1.0190 230.573 0.1 -0.003 0.0255 0.1510

deterministic problem, fewer samples are needed compared to the robust case.
The approximate system response based on the component metamodels for PL0 and

Lπ is plotted in Fig. 8.6 at the deterministic optimum. The system response at the deter-
ministic optimum based on simulation of PL0 and Lπ on the actual simulator, PhoeniX
Software [17], is also plotted. As expected, the approximate system response is quite
close to the reference solution.

The same comparison is plotted for the robust optimum at the nominal location.
Once again, the solution found on the actual simulator is quite similar to the approx-
imate system response. This shows that the component metamodels predict PL0 and
Lπ with high fidelity in the neighborhood of the robust optimum. Comparing Fig. 8.7
with Fig. 8.6 it may appear that the robust solution is a better solution at the nominal
location than the deterministic optimum in Fig. 8.6. However, the numerical objective
value for the deterministic optimum is lower than it is for the robust optimum since the
highest value in both the stop bands is lower for the deterministic optimum than the
corresponding highest value in the stop bands for the robust solution.

Fig. 8.8 shows the comparison of the deterministic (dashed black line) and the robust
optimal solution (solid blue line) assuming that the worst-case fabricated structure is re-
alized. The ideal band-pass response is indicated in red. The figure shows that, for the
worst possible changes in ΔW and Δt , the filter performance for the deterministic op-
timum deteriorates dramatically. A significant portion of light is passing through in the
stop bands and there is very little attenuation. Although, the filter still passes some light
in the pass band, the performance is significantly worse compared to the performance
at the nominal location, Figure 8.6.

In comparison, the worst-case solution for the robust filter (solid blue line) gives
much better performance in the pass band, since all the light is allowed to pass in the
range of frequencies between n f ∈ [0.2 0.8].The filter performance could be better since
the frequencies in the stop band are not completely attenuated. The slow roll off means
that a large amount of light is still being passed through in the regions of the stop bands
that are closer to the pass band. However, it should be stressed that this is the worst
possible filter performance that can be realized at the robust optimum assuming that
structure is fabricated in a way that is most detrimental to the filter performance. For
any other fabrication error in thickness and width, the performance would be better
than the solution provided in the figure.

8.5.2. THIRD ORDER SERIAL RING RESONATOR
The deterministic and robust optimization algorithms are applied on a third order res-
onator as well. The same computational budget is allocated for both problems as was
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Figure 8.6: Comparison of the approximate system response and the reference system response is shown for
the solution obtained by the deterministic optimization algorithm.
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Figure 8.7: Comparison of the approximate system response and the reference system response is shown at
the nominal location of the robust optimum.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

P
ow

er
 −

 T
hr

ou
gh

 p
or

t

Normalized frequency

Robust − worst case
Deterministic − worst case

Figure 8.8: Spectral response at the Through port of the second order serial ring resonator for the deterministic
and the robust optimum, assuming that the worst-case fabrication error is realized.
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Figure 8.9: Spectral response at the Through port of the third order serial ring resonator for the deterministic
and the robust optimum, assuming that the worst-case fabrication error is realized.

used for the second order resonator problem. We do not need to increase the com-
putational budget since the underlying component metamodels are made for a single
directional coupler. That directional coupler response can be reused for all the direc-
tional couplers in the system since all the couplers share the same design variables and
uncertainties domain. The order of the resonator can therefore be increased arbitrar-
ily without incurring high computational costs. This scalability at low cost is one of the
primary attractions of the system based approach described in this work.

Fig. 8.9 compares the worst-case filter performance for the deterministic and robust
optimum. There is hardly any rejection of frequencies in the stop bands for the deter-
ministic optimum (dashed black line). The pass band performance is significantly better
than the deterministic optimum for the second order resonator, Fig. 8.8. On the other
hand, the worst-case filter response for the robust optimum shows much better attenu-
ation of the light in the stop band. The performance for the robust optimum in the stop
bands is also much better than the corresponding result for the robust optimum on the
second order ring resonator, Fig. 8.8. However, the pass-band performance of the filter
for the robust solution is far from ideal since quite a lot of power is lost.

Table 8.1 shows a numerical comparison of the second order and third order nominal
and robust designs. The optimal design variable locations for w, g, L are given in Col-
umn 2 to Column 7. Column 8 and 9 provide the location for the fabrication uncertain-
ties [Δw Δt ] at which the worst-case filter performance is found for the different optima.
The last two columns give the numerical performance at the nominal and the worst-case
location for the second and third order nominal and robust optimal solutions.

Turning our attention to the objective value at the nominal location, second last col-
umn in Table 8.1, we note that the nominal optimum provides a better (lower) solution
for both the second and the third order resonators than the robust optimum. However, if
the worst possible fabrication with respect to the objective were to occur, then the robust
optimal solution deteriorates much less than the nominal solution for both the second
and the third order ring resonators, last column. This indicates that, even if the robust
optimum is nominally suboptimal, it performs much better in the worst-case than the
nominal solution. As expected, the numerical solution for the robust optimum of the
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third order filter is better than the robust solution for the second order filter. If higher or-
der filters were robustly optimized, the best worst-case filter performance could further
improve. Note that the same cannot be said for the deterministic optimum.

Columns 8 and 9 show the value for [Δw Δt ] at which the worst-case response was
found. Apart from the worst-case location for the robust optimum of the third order ring
resonator, all the other worst-case locations occur in the interior of the uncertainty set.

8.6. CONCLUSION
A robust optimization framework for efficiently designing manufacturable integrated
photonic systems has been proposed in this work. The method is based on an iterative
optimization strategy that optimizes an approximate system response based on mathe-
matical modeling using Kriging. The approach is scalable since it depends on construct-
ing mathematical models of integrated photonic components and using them in a sys-
tem instead of building new inexpensive models of every new system that is considered.
It was shown via an integrated photonic system example of second order and third order
TripleX based serial ring resonators that the approach can efficiently and consistently
find a robust design that is relatively insensitive to fabrication deviations. In this exam-
ple, the robust design showed a lower nominal performance, but a significantly better
worst-case performance. In practice, this would translate into substantially higher yields
on integrated photonic systems optimized for robustness. Since the method is based on
constructing metamodels of black-box components, the technique can readily be em-
ployed for efficient global robust optimization of any integrated photonic system.
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9
CONCLUSION AND FUTURE

OUTLOOK

9.1. RECAP
In this thesis, we have striven to add to the body of work focused on efficient approaches
for robust optimization of expensive components as well as deterministic and robust op-
timization of certain class of expensive to evaluate systems. The primary applications of
this work were integrated photonic devices and systems affected by uncertainties. How-
ever, the methods proposed in this thesis are generic and can be applied to equivalent
problems in other fields.

Deterministic and robust optimization of expensive to simulate problems can drain
resources and consume a lot of time. In this work, we proposed application of optimiza-
tion on cheap models of the expensive response. For this purpose, an iterative optimiza-
tion strategy was employed which enabled adaptive improvement of the cheap model in
areas of interest.

The metamodels in this work were constructed using Kriging. This choice was pri-
marily motivated by the statistical basis of Kriging, which enables the interpolation er-
ror to be estimated. This interpolation error estimator was an important quantity in the
derivation of the infill sampling criteria for all the component and system level problems
shown in this work.

The most significant contribution of this thesis at device level was the derivation
of sound infill sampling criteria for robust optimization of computationally expensive
problems. Distinction was made between problems that were affected only by varia-
tions in the design variables or problem parameter and problems that were affected by
both uncertainty types. For these different settings, we proposed strategies for robust
optimization of unconstrained and constrained problems.

The infill sampling criteria in the design variables domain were based on the expec-
tation of improvement over the best worst-case cost found on the metamodel response.
A separate infill sampling criterion was developed for the parametric uncertainty do-

189
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main. In this domain, the location with the highest expectation of deterioration in the
worst-case cost was sought. Different criteria were suggested for unconstrained and
constrained optimization problems. The component level algorithms were rigorously
tested on several benchmark problems as well as on new test problems proposed by
the author. The statistical performance of the proposed approaches was often orders of
magnitude better than comparable techniques in terms of the number of expensive sim-
ulations needed to reach the global robust optimum. The algorithms were also used to
find unconstrained and constrained robust optima of TripleX based single ring resonator
problems. The ease of applicability of the techniques for global robust optimization of
integrated photonic devices was thereby exhibited.

Efficient means of global deterministic optimization were developed for systems con-
sisting of computationally expensive components. It was shown that for systems involv-
ing components that do not interact with each other, a viable system level expected im-
provement criterion can be derived for deterministic optimization. The system level ef-
ficient global optimization method discussed in Chapter 6 was the only algorithm in this
thesis that targeted problems without uncertainties. To our knowledge, this was the first
time that a system level expected improvement criterion was proposed for global opti-
mization of systems with independent components. An equivalent expected improve-
ment criterion for deterministic optimization existed at device level [1] and has exten-
sively been used in literature, including in this work. But the lack of an equivalent sys-
tem level strategy motivated the proposed algorithm. We demonstrated the method on
unconstrained and constrained numerical problems. The relevance of the approach for
optimization of integrated photonic systems was shown by applying it on a TripleX based
serial ring resonator example. The objective of achieving a bandpass filter response was
achieved using only a few expensive electromagnetic simulations.

The system level algorithm was extended to unconstrained and constrained systems
involving uncertainties. Novel infill sampling criteria were developed which enabled ef-
ficient global system level robust optimization. A system level expected improvement
criterion in the design domain and a system level expected deterioration criterion in the
parametric uncertainty domain were suggested for this purpose. We applied the algo-
rithm on the TripleX serial ring resonator example and demonstrated the benefit of in-
cluding uncertainties in the problem formulation in terms of finding a robust design. In
addition, simulation error was also included in the formulation by treating it as a para-
metric uncertainty.

Integrated photonic designers can use the suite of algorithms proposed in this work
to perform efficient global robust optimization of components and systems. The frame-
work has been developed in such a way that switching from one device to another should
not require any change in strategy. Similarly, moving from device to system level should
require minimal effort on the part of the designer.

Since the algorithms are demonstrated on black-box component and system level
problems, they can be applied in several other engineering and non-engineering do-
mains. The most important caveat that must be taken into account is that the framework
is based on surrogate modeling techniques. Like all metamodel based methods, the ap-
proaches described in this work can only handle small problem sizes. This is especially
more relevant to problems for which the robust optimum is sought, since robust opti-
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mization is an innately expensive exercise. This effectively means that at component
level the proposed techniques are not suitable for problems having more than ten to
twenty design variables and uncertainties. The curse of dimensionality is mitigated in
the case of the system level deterministic and robust optimization since metamodels are
constructed at component level for those problems. The system level algorithms can
therefore handle relatively larger problem sizes. However, the extent to which the prob-
lem size can increase such that the algorithms work well on the problem has not been
extensively tested in this work. At system level, only a subclass of problems that do not
have any interaction between components can be optimized using the algorithms pro-
posed in this work. If there is any interaction between the components then the system
has to be optimized using techniques developed in the field of multidisciplinary opti-
mization [2].

9.2. CONCLUSION
The proposed algorithms should be employed for problems for which the simulation
costs are significantly high compared to the internal computational requirements of the
techniques. If the underlying device or system is not very expensive to simulate, then
the process of applying the methods to find a robust optimum may in fact be quite slow.
This is due to the fact that the internal global robust optimization performed on the
cheap model on each iteration can also be computationally costly.

We can conclude from the multiple investigations in this work that infill sampling
criteria are vastly superior in terms of enabling the robust optimum to be found in rel-
atively few expensive simulations when compared to a space-filling based metamodel
construction and subsequent robust optimization strategy. Designers can use pre-built
libraries of initial metamodels constructed using a space-filling strategy. The proposed
optimal infill sampling criteria can then be used to refine the component models in rel-
evant regions for robust optimization for each specific design problem.

It was shown that efficiency gains can be made when treating implementation errors
separately from parametric uncertainties. This was primarily because the implementa-
tion errors reside in the same dimension as the design variables while parametric uncer-
tainties add to the total number of dimensions of the problem. Treating implementation
errors as parametric uncertainties increases the total number of dimensions of the prob-
lem. This increases the cost of constructing a high fidelity metamodel.

For system level problems we chose an appropriate decomposition of the system
model in terms of cheap and expensive parts. Metamodels were built for the expen-
sive components in the model. This bi-level problem was robustly optimized. It was
shown that appropriately selecting parts of the model so that they can be represented
by metamodels and applying optimization on the resulting decomposed system can be
significantly more efficient than employing optimization methods that treat the system
as a single entity.

The comparison of the robust optimum with the deterministic solution for the cho-
sen integrated photonic components and systems exhibited that the robust solution was
relatively much less sensitive to uncertainties. The results indicated that the field of in-
tegrated photonics can greatly benefit from the use of a robust design approach. Using
robust design strategies could significantly increase the yield of integrated photonic de-
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vices and systems. The device level robust optimization techniques proposed in this the-
sis should enable robust designs to be obtained for integrated photonic components in
an efficient manner. The system level approach was shown to be arbitrariy scalable since
it was dependent on constructing mathematical models of integrated photonic compo-
nents and employing them in a system instead of constructing new models of each new
system. The generic and scalable nature of the system level algorithm should enable de-
signers to efficiently apply the methods to different types of integrated photonic systems
without significant additional implementation effort.

9.3. FUTURE OUTLOOK
There are several directions that could be taken to further refine the methods that have
been described in this work. In what follows, we will expand upon both the obvious and
more subtle improvements that could be made to the proposed techniques. The recom-
mendations are divided in four main sections: 1. Kriging metamodel construction and
optimization, 2. Enhanced strategies for differing simulation types, 3. Optimization of
systems with interacting components and 4. Robust optimization - mitigating conserva-
tive results.

1. Kriging metamodel construction and optimization

The iterative robust optimization strategy proposed in this work requires a global
robust optimum to be estimated on the cheap component or system response at
each iteration. Even though the response on the metamodels is cheap to compute,
determining the global best worst-case cost involves a nested min-max optimiza-
tion which is an inherently expensive process. Methods and techniques to glob-
ally optimize radial basis functions in general, and Kriging models in particular,
would vastly improve the efficiency of the proposed techniques. With regards to
this, the fact that radial basis functions can basically be written as a difference of
convex functions could be an exploitable property [3, 4]. Kriging models or radial
basis functions are basically a weighted sum of basis functions whose individual
minimum is known. The information of the individual minima and the weights
attached to each basis function could be helpful in enabling intelligent starting
points to be chosen for gradient based local optimization such that the global opti-
mum is found. Another innovative research direction involving the use of a Gaus-
sian transform to smoothen the radial basis function model in order to ease the
search for the global optimum is also worth exploring further [5].

Kriging has been employed in this work for metamodel construction. The statisti-
cal approach of Kriging suffers from certain issues that also could hamper the per-
formance of the proposed technique. For instance, the correlation matrix tends
to become singular as points are added close to one another. Kriging also tends
to underestimate the error in interpolation [6]. Furthermore, as the data sets for
metamodel construction become larger, the Kriging correlation matrices occupy
greater memory space and the speed of computing the metamodel response be-
comes slower. Improvements made to the underlying Kriging approach would di-
rectly benefit the proposed techniques. The methods proposed in this work are
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not essentially tied to Kriging since any interpolation strategy that provides an in-
terpolation error can be used in place of Kriging.

2. Enhanced strategies for differing simulation types

All the algorithms proposed in this work are based on the addition of only a single
new expensive sample per iteration. It may be beneficial to extend the techniques
to problems for which multiple expensive simulations can be run at the same time
on different processors so that a parallel framework can take full advantage of the
methods. A simple way to perform this for constrained problems would be to
come up with Pareto fronts for the expected improvement in the objective and
the probability of feasibility for the constraints and to sample at multiple Pareto
optimal infill sampling locations. Similar work on this topic has been done in the
context of deterministic optimization by Parr et al. [7, 8].

The proposed approaches assume that only the response of the black-box compo-
nent is sampled at each iteration while the derivatives of the problem are not avail-
able. However, problems for which the gradient is cheaply available could benefit
from a gradient enhanced adaptive optimization strategy [9, 10]. Extension of the
techniques so that they can fully exploit potential availability of derivatives could
be useful.

Simulations can also have variable fidelity. In this work, we have not considered
this aspect. Simulation error has already been included in the proposed tech-
niques as a parametric uncertainty. But extension of the algorithms so that they
can harness multi-fidelity simulations to their advantage could also be a valu-
able addition [11]. Co-Kriging, which is a type of Kriging that can handle multi-
fidelity samples could be a direction that can be explored in this context [12].
Space mapping is another strategy that has been widely used, especially in the
electromagnetic domain, for problems based on multi-fidelity simulations [13].
Integrated photonic problems can also be simulated at different fidelity by chang-
ing the mesh size. Therefore, algorithms that use multi-fidelity simulations for
efficient global robust optimization could directly benefit integrated photonics.
When multi-fidelity simulations are employed then the error in the different sim-
ulation types will also be distinct. This aspect will have to be taken into account
when performing robust optimization with respect to simulation error.

3. Optimization of systems with interacting components

The system level strategy proposed in this work can only handle systems in which
the components do not interact with each other. While such a definition is suffi-
cient for system optimization of integrated photonic problems, many engineering
systems in general fall outside this category since they consist of dependent com-
ponents. Optimization of systems with interacting components has traditionally
been addressed within multidisciplinary optimization [2]. A means of bringing to-
gether the decades of research in multidisciplinary optimization [14, 15] with the
system strategies discussed in this work could lead to a wider scope of application
of the system algorithm. Deriving system level infill sampling criteria such as ex-
pected improvement for optimization of systems with expensive to evaluate inter-
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acting components is a challenging problem. This is partially because the interac-
tion between surrogates of the expensive components impacts the error estimate
of each component metamodel in complex ways.

4. Robust optimization - mitigating conservative results

An important aspect of robust optimization is that it can often lead to conservative
results. In this context, there are certain methods that could mitigate this prob-
lem. Amongst these techniques, globalized robust optimization [16] seems to be
a promising approach. The method is used to find a solution that is robust on
average by using smaller subsets within the larger uncertainty sets. Another inter-
esting research direction is that of adjustable robust optimization, which involves
making a clear distinction between variables whose values must be specified im-
mediately i.e. ’here and now’, and variables that can be adjusted later i.e. ’wait
and see’ [17]. This approach can be complemented with a folding horizon strategy
where robust optimization is performed in steps as more information streams in
concerning the problem such that the uncertainties in the problem reduce over
time.

Adjustable robust optimization with folding horizon could prove to be an effec-
tive strategy in the case of integrated photonics because devices and systems are
usually fabricated via a multi-stage process that can take several weeks. Within the
fabrication process flow, the deposition of the waveguide layer at a designed thick-
ness may take place early. The thickness of the layer can be measured at this early
stage and robust devices and systems can then be designed given the measured
thickness. In this manner, the thickness no longer remains an uncertainty with
respect to which the problem has to be robust. Since the total number of uncer-
tainties are reduced, a less conservative robust optimum can be found. A possible
disadvantage in this scenario is that the designer has to produce the robust devices
and systems in a short time frame so that the fabrication process is not delayed.

A suite of algorithms has been developed in this work for robust optimization of com-
putationally expensive components and systems. By adopting the proposed adaptive
sampling strategies, designers can produce robust devices and systems using limited
computational and time resources. In particular, the proposed techniques should be
able to address the design challenges that may surface when performing high volume
production of integrated photonic devices and systems. The employed hierarchical sys-
tem definition was broad enough to encompass a wide array of systems in integrated
photonics as well as a subset of systems in general. Incorporating the most relevant sug-
gestions for further research to the specific requirements of a particular discipline should
also allow the algorithms to be suitable for a larger set of fields.
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SUMMARY

Design for manufacturing has become a key strategy for fulfilling the goal of achieving
high yield and quality in production. The focus is on designing devices and system in
such a way that, even if the manufacturing process inherently has certain defects, the
manufactured product performs better than a certain minimal performance level. For
this process to be successful, the designer needs access to the different ways in which
defects can appear in the design during manufacturing and the extent to which they can
impact the final design.

The amount of information available about these uncertainties largely governs the
means by which and the extent to which the designer can create a robust design. If
the uncertainties are bounded-but-unknown, robust optimization can be applied to find
the best worst-case cost. Since robust optimization involves solving a nested min-max
optimization problem, applying it directly on uncertain problems based on expensive
computer simulations is prohibitively costly. Therefore an alternative strategy has to be
employed in order to realize robust designs.

In this thesis, novel efficient global robust optimization techniques are proposed for
finding robust designs for devices and systems based on expensive computer simula-
tions. At device level, the computationally expensive problem is treated as a black-box.
A cheap mathematical model of the expensive simulation is initially constructed using
the Kriging interpolation method. This metamodel is adaptively sampled via novel infill
sampling criteria that are based on the Kriging interpolation prediction and correspond-
ing error estimate. The iterative strategy enables the robust optimum of the problem to
be found efficiently. At each iteration, the derived infill sampling criterion in the design
variables domain provides a new location that is most likely to give the highest improve-
ment over the robust optimum. On the other hand, the infill sampling criterion in the
uncertainties domain gives the location that is most likely to lead to the highest dete-
rioration in the worst-case cost. Separate optimal approaches are devised for uncon-
strained and constrained problems affected by different uncertainty types.

A hierarchical structure is assumed for the problem at system level. This means that
the responses of the components can be obtained independently of one another. Prob-
lems for which the component responses are expensive to simulate and the system eval-
uation is cheap are specifically targeted. For this problem setting, novel infill sampling
criteria are derived for deterministic and robust optimization problems. For this pur-
pose, cheap models are constructed via Kriging at component level. A linear approxima-
tion of the transformation that occurs from component to system level is used to derive a
system level error estimator. This error estimator is used together with the cheap system
level response in order to formulate the infill sampling criteria.

A primary application of the methods discussed in this work is robust optimization
of integrated photonic devices and systems. The device level algorithms are applied on a
TripleX based single ring resonator example. Similarly, at system level, TripleX based se-
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rial ring resonators are employed to demonstrate the concept. The results at both device
and system level indicate that the proposed robust optimization strategies can enable
much higher yield for integrated photonic problems. Since the techniques are efficient,
generic and scalable, they can be applied on disparate integrated photonic systems with-
out incurring extra effort on the part of the designer.

The algorithms proposed in this work can be applied to a wide range of components
and systems in engineering and non-engineering disciplines. This is due to the fact
that very limited assumptions have been made concerning the problem setting, partic-
ularly at device level. Systems that have a hierarchical nature can readily be optimized,
with and without uncertainty considerations, using the proposed strategies. Practition-
ers have to take into account, however, that the algorithms are based on metamodel
construction at device level. Therefore, problems with a significant number of design
variables and uncertainties at device level would be difficult to optimize using a limited
number of simulations. The system level algorithms, on the other hand, can handle a
much higher threshold on the number of design variables and uncertainties since meta-
models have to be constructed at component level in that case.



SAMENVATTING

Ontwerpen voor fabricage (design for manufacturing) is uitgegroeid tot een belangrijke
strategie om een hoge opbrengst te bereiken en de kwaliteit van de productie te waarbor-
gen. De nadruk ligt op het op zodanige wijze ontwerpen van apparaten en systemen dat,
zelfs indien het productieproces bepaalde fouten bevat, het vervaardigde product beter
presteert dan een bepaald minimum prestatieniveau. Dit proces heeft alleen kans van
slagen als de ontwerper kennis heeft van de verschillende manieren waarop defecten in
het ontwerp kunnen ontstaan tijdens de fabricage en de mate waarin ze het uiteindelijke
product kunnen beïnvloeden.

De hoeveelheid informatie die beschikbaar is over deze onzekerheden bepaalt gro-
tendeels de wijze waarop en de mate waarin de ontwerper een robuust ontwerp kan ma-
ken. Indien de onzekerheden begrensd maar hun kansverdelingen onbekend zijn, kan
robuuste optimalisatie worden toegepast om de beste worst-case cost te vinden. Daar
robuuste optimalisatie inhoudt dat er een ingebed min-max optimalisatieprobleem op-
gelost dient te worden, is het direct toepassen ervan op problemen met onzekerheden
gebaseerd op intensieve computersimulaties zeer tijdrovend en daarmee niet praktisch
inzetbaar. Daarom moet er een alternatieve strategie worden toegepast om robuuste
ontwerpen te verwezenlijken.

In dit proefschrift worden nieuwe efficiënte robuuste optimalisatietechnieken voor-
gesteld voor het vinden van robuuste ontwerpen voor componenten en systemen op ba-
sis van intensieve computersimulaties. Op componentniveau wordt het simulatiemodel
beschouwd als een black-box. Allereerst wordt een goedkoop wiskundig model van de
intensieve simulatie opgebouwd met de Kriging interpolatiemethode. Dit metamodel
wordt adaptief getest via nieuw ontwikkelde infill testcriteria gebaseerd op de Kriging
interpolatievoorspelling en de bijbehorende foutschatting. De iteratieve strategie maakt
het mogelijk om het robuuste optimum van het probleem op efficiënte wijze te vinden.
Bij elke iteratie geeft het infill testcriterium in het ontwerpvariabelen domein een nieuw
ontwerp waarvan verwacht kan worden dat het de grootste verbetering van het robuuste
optimum zal geven. Daarentegen zal het infill testcriterium in het onzekerheden domein
het ontwerp selecteren dat hoogstwaarschijnlijk zal leiden tot de grootste verslechtering
van de worst-case cost. Aparte optimale benaderingen zijn ontwikkeld voor problemen
zonder en met beperkende nevenwoorwaarden die door verschillende soorten onzeker-
heden worden beïnvloed.

Voor problemen op systeemniveau wordt uitgegaan van een hiërarchische structuur.
Dit betekent dat de reacties van de componenten onafhankelijk van elkaar kunnen wor-
den verkregen. Speciale aandacht wordt besteed aan problemen waarvoor de compo-
nentreacties tijdrovend zijn om te simuleren en de systeemsimulatie goedkoop is. Voor
deze probleemstelling zijn nieuwe infill testcriteria ontwikkeld voor deterministische en
robuuste optimalisatieproblemen. Hierbij worden benaderingsmodellen opgesteld met
behulp van Kriging op componentniveau. Er is een lineaire benadering gebruikt van de
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transformatie die plaatsvindt van component- naar systeemniveau om de foutschatter
op systeemniveau af te leiden. Deze foutschatter wordt samen met de benaderde com-
ponentsreacties op systeemniveau gebruikt om de infill testcriteria te formuleren.

Een primaire toepassing van de methoden die in dit werk worden besproken is de
robuuste optimalisatie van geïntegreerde optische componenten en systemen. De al-
goritmen op componentniveau worden toegepast op het voorbeeld van een enkele ring
resonator gebaseerd op TripleX. Het concept wordt eveneens gedemonstreerd op sys-
teemniveau, op Triplex-gebaseerde seriële ring resonatoren. De resultaten op zowel
component- als systeemniveau geven aan dat de voorgestelde robuuste optimalisatie
strategieën een veel beter rendement opleveren voor geïntegreerde optische problemen.
Omdat de technieken efficiënt, schaalbaar en generiek zijn, kunnen ze worden toege-
past op ongelijksoortige geïntegreerde optische systemen zonder extra inspanning van
de ontwerper.

De in dit werk voorgestelde algoritmen kunnen worden toegepast op een breed scala
van componenten en systemen in de techniek en in niet-technische disciplines. Dit
vanwege het feit dat er zeer weinig veronderstellingen gemaakt zijn over de structuur
van het probleem, vooral op componentniveau. Systemen van hiërarchische aard kun-
nen met de voorgestelde strategieën worden geoptimaliseerd, met en zonder onzeker-
heden. Bij toepassing dient er echter rekening mee te worden houden dat de algorit-
men gebaseerd zijn op metamodel constructie op componentniveau. Om die reden zijn
problemen met een groot aantal ontwerpvariabelen en onzekerheden op component-
niveau moeilijk te optimaliseren met een beperkt aantal simulaties. De algoritmen op
systeemniveau, daarentegen, kunnen een veel groter aantal ontwerpvariabelen en on-
zekerheden verwerken, omdat in dat geval metamodellen moeten worden opgesteld op
componentniveau.
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