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Comparison of emission of CO, equivalents (TgCO,/year)
comprises CO,, CH,, NO,, SF,, HFCs, CFCs
(without gases from the Montreal Protocol)

Country % Change
/ Type 1990 m 2010 2015 1990-2015

Germany 1251 1043 28% N
France 550 556 517 464 -16% N
Europe 5641 5151 4773 4307 -24% N
International

2014 + (o)
Aviation 545 682 759 340 54% z

Data: unfccc.int
 International Aviation lea, 2016
« emits eq.CO, comparable to a large EU country
» shows large increase in emissions
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Air traffic emissions at cruise

Combustion products « depending on operating conditions
- at cruise altitude

» H0 Soot
coz s°2 UHC

1.25kg 3.15kg 14g 1g 37g 0.04g

(per kg kerosene)

IPCC (1999)
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Climate impacts via non-CO, effects
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Popovicheva et al. (2004)
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Atmospheric effects of aviation
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Radiative Forcing in 2005 from historical aviation emission
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i DLR

100

Carbon Dioxide,

NO, emissions,

and contrail cirrus are
main contributors to
aviation induced RF.

Level of Scientific
Understanding (LoSU)
varies between
individual effects

Grewe et al. (2017)

Data are based on Lee et al
(2009) with update from
various more recent
publications
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How do contrails form? 50 - 1 r - :

e persistent contrails

45
Formation depends on O short-living contrails
=y i
e
»-  Atmospheric condition - |
Temperature/Humidity
30 8

¥ Too dry/warm N Cirrus
= No contrails

20
» Too humid/cold

= Cirrus already exists

water vapour partial pressure [Pa]
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Contrail Dimension also depends on aircraft type
(weight basically controlls the strenght of vortex

Ice crystal number concentrations
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Chemistry
Air chemistry

Combustion products - depending on operating conditions
- at cruise altitude

» H,0 Soot
// Produces ozone
/ Destroys methane
1.25kg 3.15kg 14g 1g 37g 13 g D4g
(per kg kerosene) 4
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Chemical regimes for methane loss
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Grewe et al. (2017)
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Radiative Forcing from aviation NO, Emission [mW/m?2]

Methane has a perturbation lifetime of 12 years
Here a steady-state is assumed: Methane responses immediately to NO, emission
Mhyre et al. (2011) (QUANTIFY): Taking the lifetime into account, delays the impact

Lee ot al. | Additional | Methane
2009 Processes | Lifetime

NO,—~>Ozone 6.3 26.3 26.3
NO,~>Methane -12.5 -12.5 -8.1
Methane->Ozone -4.0 ~-2.6
Methane—>H,0 ~-2.5 ~-1.6
Total 13.8 7.3 14.0
Summary:
- New processes (Methane->0zone/H,0) reduce NOx RF NO, emissions

- Appropriate consideration of methane lifetime enhance NOx RF are relevant
- EI-NOx generally increases
- Fuel consumption increases

DLR
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Aerosols impact on clouds is still uncertain !

« Two potential effects are identified

* Impact on ice clouds (cirrus)
» Impact on low level tropical clouds

 All results depend on the initial characteristics of soot and
sulphur emissions:
» Additional cirrus forms only if the emitted soot has the ability
to act as good ice nucleii.
» Low level clouds are altered by sulphate droplet only if the
fuel contains enough sulphur and a large number of very
small particles are emitted.

» Both effects, if they occur, potentially cool!
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Aviation’s impact on global mean 2m-temperature
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Air traffic contributes to climate change by roughly 5%.
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Mitigating the climate impact of aviation:
Some recent studies

- Technological Measures:
- Fuel efficiency
- Emission reduction
- Alternative fuels

- Operational Measures:
- Avoiding climate sensitive regions
- Intermediate Stop Operations
- Climate restricted airspaces

- Economical Measures
- Market-Based Measures
- Carbon off-setting
- Climate — Charged Areas

i DLR
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DLR-Project CATS:
Climate Compatible Air Transport System
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Koch et al., 2011

| Dahlmannet I. 2016
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CATS-optimisation approach

e Variation of initial cruise altitude and speed
* Optimal relation between costs and climate
» Definition of new design point

* Optimisation of the new aircraft for this new design point

A

ICA

Koch, 2013

>

4 Origin
DLR
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A330: Potential of a climate change reduction: CATS-results
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(Koch et al., 2011)
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CATS Final results

Cumulative potential for all routes operated by redesigned A/C
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Different weather situations:
Evolution of aircraft NO,

GpH 250hPa 8th January

55°N
50°N Weather type #3
\ "Weak and
- tilted jet"

40°N
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25°N

82000 84000 86000 88000 ©0000 92000 94000 66000 98000 100000 102000104000

What happens if an aircraft emits
NO, at location A compared to location B?

i DLR
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Evolution of O, [ppt] following a NO, pulse

A: 250hPa, 40°N, 60°W, 12 UTC B: 250hPa, 40°N, 30°W, 12 UTC
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Avoiding climate sensitive regions: The approach

Traffic scenario:
Roughly 800 North Atlantic Flights
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Climatology based on 8 representative weather pattern
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Grewe et al. (2017)
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Air traffic management for environment: SESAR al
SESAR/H2020-Project ATMAE
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Matthes et al. (2017)

ATMA4E Overview > Sigrun Matthes, DLR > Intermediate Review, 18 May 2017 24
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Air traffic management for environment: SESAR al
SESAR/H2020-Project ATMAE
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Summary

« Enhanced knowledge on the processes related to aviation emissions.

« More than 50% of the climate impact from aviation due to non-CO,, effects.

e Uncertainties remain, but may be better understood.

e This allows a zooming in:

» From effects of global aviation to effects of regional emissions
* From global climate change to regional temperature changes

e More mitigation studies, which include non-CO, effects.

» Climate-sensitive areas could substantially reduce the climate impact of aviation
at low cost increase.

e Outlook: Forecasting of non-CO, effects on a daily basis,

i DLR
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