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Abstract

To understand the sophisticated control mechanisms of the human’s endocrine system is a challenging task that is a crucial
step towards precise medical treatment of many dysfunctions and diseases. Although mathematical models describing the
endocrine system as a whole are still elusive, recently some substantial progress has been made in analyzing theoretically its
subsystems (or axes) that regulate the production of specific hormones. Secretion of many vital hormones, responsible for
growth, reproduction and metabolism, is orchestrated by feedback mechanisms that are similar in structure to the model of
simple genetic oscillators, proposed first by B.C. Goodwin. Unlike the celebrated Goodwin’s model, the endocrine regulation
mechanisms are in fact known to have non-cyclic structures and involve multiple feedbacks; a Goodwin-type model thus
represents only a part of such a complicated mechanism. In this paper, we examine a non-cyclic feedback system of hormonal
regulation, obtained from the classical Goodwin’s oscillator by introducing an additional negative feedback. We establish global
properties of this model and show, in particular, that the local instability of its unique equilibrium implies that almost all
system’s solutions oscillate; furthermore, under additional restrictions these solutions converge to periodic or homoclinic orbits.

Key words: Biomedical systems; Stability; Periodic solutions; Oscillations.

1 Introduction

Hormones are signaling molecules that are secreted by
glands, transported by blood, and involved in many
vital bodily functions. Sophisticated mechanisms of in-
teractions between glands and hormones couple them
into the endocrine system, whose mathematical mod-
eling remains a challenging problem. However, visible
progress has been made in modeling some of its subsys-
tems (or axes), responsible for the secretion of specific
hormones. In particular, the general control mechanisms
in hypothalamic-pituitary (HP) neurohormonal axes,

? The results have been partly reported at the IFAC Work-
shop on Periodic Control Systems PSYCO’16, Eindhoven,
The Netherlands. Corresponding author H. Taghvafard. Tel.:
+31 50 3634771.

Email addresses: taghvafard@gmail.com (Hadi
Taghvafard), anton.p.1982@ieee.org (Anton V.
Proskurnikov), m.cao@rug.nl (Ming Cao).

maintaining processes of growth, metabolism, reproduc-
tion and stress resistance, have been revealed (Evans
et al. 2009, Stear 1975). Regulatory centers in hypotha-
lamus produce neurohormones, called releasing hor-
mones or releasing factors (Stear 1975). Each of these
hormones stimulates the secretion of the corresponding
tropic hormone by the pituitary gland, which, in turn,
stimulates some target gland or organ to release the
effector hormone (Fig. 1b). Besides its direct signaling
functions, the effector hormone inhibits the production
of the corresponding releasing and tropic hormones.
These negative feedback loops maintain the concentra-
tions of all three hormones within certain limits.

The understanding of hormonal (in particular, testos-
terone and cortisol) regulation mechanisms leads to the
possibilities of efficient diagnosing and treatment of hor-
monal dysfunctions and diseases caused by them, such
as reproductive failures and prostate cancer (Evans et al.
2009), obesity and aging (Veldhuis 1999) and disorders
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Fig. 1. (a) The cyclic system of testosterone regula-
tion (Churilov et al. 2009, Smith 1980); (b) The structure of
a hypothalamic-pituitary axis (Stear 1975).

of the central nervous system (Bairagi et al. 2008). This
motivates the development of mathematical models,
portraying the complex behavior of hormonal axes.

The blood levels of hormones exhibit both circadian
(24-hour) and short-period oscillations (Keenan et al.
2000), resembling the dynamics of the celebrated Good-
win’s oscillator (Goodwin 1965). Considered as a “pro-
totypical biological oscillator” (Gonze & Abou-Jaoude
2013), Goodwin’s model has been extensively used to
describe the dynamics of HP axes, e.g. testosterone reg-
ulation (Smith 1980). For Goodwin’s model and more
general cyclic feedback systems, profound mathematical
results have been established, ensuring the existence of
periodic orbits (Hastings et al. 1977, Hori et al. 2011)
in the case where the (unique) system’s equilibrium is
unstable. For the classical model from (Goodwin 1965)
such an instability appears to be a restrictive condi-
tion; for example, the feedback is described by the con-
ventional Hill function (Gonze & Abou-Jaoude 2013)
with the corresponding Hill constant being required to
be greater than 8 (Smith 1980, Thron 1991). This re-
striction can be relaxed, taking into account transport
delays (Murray 2002), pulsatile secretion of neurohor-
mones (Churilov et al. 2014, 2009, Evans et al. 2009) and
stochastic noises (Keenan et al. 2000).

Although relatively well studied, cyclic models of HP
axes are restrictive, assuming the presence of only one
negative feedback loop, as illustrated by the models of
testosterone regulation (Fig. 1a), examined in (Churilov
et al. 2009, Smith 1980). The actual mechanism of an
HP axis in fact involves multiple feedback loops (Stear
1975): the effector hormones inhibit the secretion of both
releasing and tropic hormones, closing thus the long neg-
ative feedback loops (F1, F2 in Fig. 1b). Besides them,
the short feedback loop (F3) also exists, whose effect,
however, is ignored by most of the existing mathemati-
cal models of endocrine regulation (Bairagi et al. 2008,
Greenhalgh & Khan 2009, Liu & Deng 1991, Sriram et al.
2012, Vinther et al. 2011) since it is much weaker than
the long feedbacks and “most vulnerable” (Stear 1975)
among the three types of feedback mechanisms.

Mathematical models, taking the existence of multi-
ple feedback loops into account, have been proposed
for the testosterone (Greenhalgh & Khan 2009, Liu &
Deng 1991, Tanutpanit et al. 2015) and cortisol regu-
lation (Bairagi et al. 2008, Sriram et al. 2012, Vinther
et al. 2011). Similar models with multiple feedback
loops have been reported to describe the dynamics of
some metabolic pathways (Ghomsi et al. 2014, Sinha &
Ramaswamy 1987). Unlike the classical Goodwin’s os-
cillator, these models do not have the cyclic structure,
which makes the relevant results, ensuring the existence
or absence of periodic solutions (Hastings et al. 1977,
Hori et al. 2011, Thron 1991), inapplicable. Mathemati-
cal studies of such models have been limited to analysis
of local stability and Hopf bifurcations.

In this paper, we examine a model of hormonal regu-
lation with two negative feedbacks, originally proposed
in (Bairagi et al. 2008) to describe the mechanism of
cortisol regulation in the adrenal axis (hypothalamus-
pituitary-adrenal cortex). Our simulations (Section 5)
show its applicability to testosterone regulation model-
ing. The model is similar in structure to the classical
Goodwin’s oscillator, but involves two the negative feed-
backs (F1, F2 in Fig. 1b) from the effector hormone to
the releasing and tropic hormones. Unlike the original
model in (Bairagi et al. 2008), we do not restrict these
nonlinearities to be identical or Hill functions. To keep
the analysis concise, in this paper we neglect the trans-
port delays, discontinuities, describing the pulsatile se-
cretion of neurohormones, and the effects of stochas-
tic noises. For the model in question, we develop the
“global” theory, showing that its properties are similar
to those of the Goodwin’s oscillator, e.g. under some as-
sumptions, the local instability of the equilibrium im-
plies the existence of periodic orbits and, furthermore,
the convergence of almost any solution to such an orbit.

This paper is organized as follows. Section 2 introduces
the model in question, whose local stability properties
are examined in Section 3. Section 4 presents the main
results of the paper, concerned with global properties of
the system. Section 5 illustrates the model in question
by numerical simulations. The results of the paper are
proved in Section 6. Section 7 concludes the paper.

2 The Goodwin-Smith model and its extension

We start with the conventional Goodwin’s model (Good-
win 1965), describing a self-regulating system of three
chemicals, whose concentrations are denoted byR,L and
T and evolve in accordance with the following equations

Ṙ = −b1R+ f(T ),

L̇ = g1R− b2L, (1)

Ṫ = g2L− b3T.
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Our notation follows (Smith 1980), where Goodwin’s os-
cillator was proposed for modeling of the gonadal axis
in male (Fig. 1a) and R,L, T stood, respectively, for
the blood levels of the gonadotropin-releasing hormone
(GnRH), lutheinizing hormone (LH) and testosterone
(Te). The constants b1, b2, b3 > 0 are the clearing rates
of the corresponding chemicals, whereas the constants
g1, g2 > 0 and the nonnegative decreasing function f(T )
determine their production rates. Often f(·) stands for
the Hill function (Gonze & Abou-Jaoude 2013)

f(T ) =
K

1 + βTn
, K, β, n > 0. (2)

The releasing factor (R) drives the production of the
tropic hormone (L), which in turn stimulates the secre-
tion of the effector hormone (T ). The effector hormone
inhibits the production of the releasing factor: an in-
crease in T reduces the production rate Ṙ, and vice versa.

In this paper, we consider a generalization of Goodwin’s
oscillator (1), including two negative feedbacks

Ṙ = −b1R+ f1(T ),

L̇ = g1R− b2L+ f2(T ), (3)

Ṫ = g2L− b3T.

A special case of (3), where f1 and f2 stand for the
Hill nonlinearities with the same Hill constant n has
been proposed in (Bairagi et al. 2008) to describe the
dynamics of adrenal axis: R,L, T stand, respectively,
for the levels of corticotropin-releasing hormone (CRH),
adrenocorticotropic hormone (ACTH) and cortisol. The
nonlinearities f1 and f2 describe respectively the nega-
tive feedbacks F1 and F2 in Fig. 1b; the effect of short
negative feedback (F3) is neglected. Unlike (Bairagi et al.
2008), these nonlinear maps are not necessarily identical
or Hill functions. As discussed in (Vinther et al. 2011),
dealing with a similar model of cortisol regulation, the
natural assumptions on these functions are their non-
negativity (which prevents the solutions from leaving the
domain whereR,L, T ≥ 0). Moreover, it is natural to as-
sume that f1(T ) > 0 since “the feedbacks must not shut
down hormone production completely” (Vinther et al.
2011). Similar to the Goodwin’s model, two feedbacks
are inhibitory, which implies that f1 and f2 are non-
increasing. We thus adopt the following assumption.

Assumption 1 The functions f1 : [0;∞)→ (0;∞) and
f2 : [0;∞) → [0;∞) are continuously differentiable and
non-increasing, i.e. f ′1(T ), f ′2(T ) ≤ 0 for any T ≥ 0. The
parameters b1, b2, b3, g1, g2 > 0 are constant.

Notice that we allow that f2(T ) ≡ 0; all of the results, ob-
tained below, are thus applicable to the classical Good-
win’s oscillator (1). However, we are mainly interested
in the case where f2 6≡ 0, which leads to the non-cyclic

structure of the system and makes it impossible to use
mathematical tools developed for cyclic systems, such
as criteria for global stability and the existence of peri-
odic solutions existence (Hastings et al. 1977, Hori et al.
2011, Thron 1991). Unlike the existing works on multi-
feedback models of hormonal regulation (Bairagi et al.
2008, Greenhalgh & Khan 2009, Liu & Deng 1991, Sri-
ram et al. 2012, Tanutpanit et al. 2015, Vinther et al.
2011), our examination of model (3) is not limited to
local stability and bifurcation analyses. We are primar-
ily interested in the interplay between local and global
properties, revealed for the classical Goodwin’s oscilla-
tor, namely, the existence of oscillatory solutions, pro-
vided that the (only) system’s equilibrium is unstable.

3 Equilibria and local stability properties

Since R,L and T stand for the chemical concentrations,
one is interested in the solutions, staying in the positive
octant R(t), L(t), T (t) ≥ 0. Since fi(T ) ≤ fi(0) for all
T > 0, all solutions are bounded and exist up to ∞.

The following properties of the system’s equilibrium
can be proved (Taghvafard et al. 2016). Assump-
tion 1 implies that (3) has a unique equilibrium point
E0 = (R0, L0, T 0), where T 0 > 0 is the unique root of

b1b2b3
g1g2

T 0 −
[
f1(T 0) +

b1
g1
f2(T 0)

]
= 0, (4)

and R0 = 1
b1
f1(T 0), L0 = b3

g2
T 0. Denoting

Θ0 , a3 − a1a2 + g2
[
(b2 + b3)f ′2(T 0)− g1f ′1(T 0)

]
,

a1 , b1 + b2 + b3, a2 , b1b2 + b1b3 + b2b3, a3 , b1b2b3,
(5)

the local stability properties of the equilibrium are given
by the following lemma (Taghvafard et al. 2016).

Lemma 2 System (3) has the unique equilibrium E0 in
the positive octant. In both cases of Θ0 < 0 and Θ0 > 0,
the equilibriumE0 is hyperbolic 1 . If Θ0 = 0, then the two
eigenvalues are complex-conjugated imaginary numbers.

In general biochemical systems locally stable equilibria
may coexist with periodic solutions. At the same time,
for Goodwin’s oscillator (1) the necessary and sufficient
for local stability and sufficient conditions of the global
stability are in fact very close (Thron 1991), so the equi-
librium’s instability is often considered as the require-
ment of the biological feasibility. It is known, for in-
stance, that Goodwin’s oscillators with unstable equi-
libria have periodic orbits (Hastings et al. 1977, Hori

1 An equilibrium p of the system ẋ = f(x) is hyperbolic if
the Jacobian f ′(p) has no eigenvalues with zero real parts.
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et al. 2011). After the publication of the seminal Good-
win’s paper (Goodwin 1965), it was noticed (Griffith
1968, Smith 1980, Thron 1991) that for the Hill non-
linearity (2) the equilibrium can be unstable (for some
choice of the parameters bi, gi) if and only if n > 8. The
following theorem extends the latter result to the gen-
eralized system (3) and arbitrary decreasing functions
f1(T ), f2(T ). We introduce an auxiliary function

M(T ) , −Tf ′1(T )/f1(T ) > 0, ∀T > 0. (6)

Theorem 3 Let the functions f1, f2 satisfy Assump-
tion 1. Then the following statements hold:

(1) if M(T ) < 8 ∀T > 0 then Θ0 < 0 for any choice of
bi, gi > 0: the equilibrium of (3) is stable;

(2) if M(T ) ≤ 8∀T > 0 then Θ0 ≤ 0 for any bi, gi > 0;
the inequality is strict if f2(T ) > 0 for any T > 0;

(3) if M(T ) > 8 for some T > 0 then there exist pa-
rameters bi, gi such that the equilibrium is unstable
(Θ0 > 0) and, furthermore, the system has at least
one non-constant periodic solution.

Theorem 3 will be proved in Section 6. For the usual
Goodwin-Smith model (1) it has been established
in (Smith 1980). The existence of periodic solutions in
statement (3) is based on the Hopf bifurcation theo-
rem (Poore 1976). However, the proof substantially dif-
fers from most of the existing results on the Hopf bifur-
cation analysis in delayed biological oscillators (Green-
halgh & Khan 2009, Sun et al. 2016), proving the bifur-
cations at the “critical” delay values, under which the
equilibrium loses its stability. In the undelayed case, it is
non-trivial to construct a one-parameter family of sys-
tems (3), satisfying the conditions of the Hopf bifurca-
tion theorem. For model (1), such a parametrization has
been proposed in (Smith 1980), however, the complete
proof of the bifurcation existence has remained elusive.

Remark 4 Theorem 3 does not imply that a periodic
solution exists for any system (3) with unstable equi-
librium. The corresponding strong result holds for cyclic
systems (Hastings et al. 1977, Hori et al. 2011). In Sec-
tion 4 we extend it to the broad class of system (3), whose
nonlinearities f2(·) satisfy a special slope restriction.

Remark 5 Although the conditions ensuring the equilib-
rium’s global attractivity in the positive octant are close
to the local stability, the Hopf bifurcation analysis in Sec-
tion 6 shows that in the case where M(T ) > 8, there al-
ways exists a set of parameters bi and gi, for which (3)
has a periodic solution in spite of the locally stable equi-
librium. The existence of cycles for M(T ) ≤ 8 seems to
be an open problem even for the Goodwin’s model (1).

Applying Theorem 3 to the case where f1(T ) is the Hill

function (2), one has M(T ) = −Tf
′
1(T )

f1(T ) = n βTn

1+βTn and

the condition M(T ) > 8 reduces to the well-known con-
dition n > 8. Although Hill’s exponents n > 4 are often
considered to be non-realistic, Goodwin’s models with
n > 8 adequately describe some metabolic reactions
and also arise from model reduction procedures (Gonze
& Abou-Jaoude 2013), approximating a long chain of
chemical reactions by a lower-dimensional system.

4 Oscillatory properties of the solutions

In the case of the classical Goodwin-Smith model (1)
(f2 ≡ 0), it is widely known that the local instabil-
ity implies the existence of at least one periodic trajec-
tory. A general result from (Hastings et al. 1977) estab-
lishes this for a general cyclic system (with a sufficiently
smooth right-hand side). The cyclic structure of the sys-
tem and the equilibrium’s instability imply the existence
of an invariant toroidal domain (Hastings et al. 1977),
and closed orbits in it correspond to fixed points of the
Poincaré map. This result, however, is not applicable to
system (3). Another approach, used in (Hori et al. 2011)
to examine oscillations in genetic regulatory circuits, em-
ploys elegant results by Mallet-Parret (Mallet-Paret &
Sell 1996, Mallet-Paret & Smith 1990), extending the
Poincaré-Bendixson theory to Goodwin-type systems.

At the same time, when Θ0 > 0, one is able to prove that
almost all solutions are oscillatory in the sense that they
are bounded yet non-convergent. This oscillatory prop-
erty was introduced by V.A. Yakubovich (Yakubovich
1973).

4.1 Yakubovich-oscillatory solutions

We start with the definition (Pogromsky et al. 1999).

Definition 6 A bounded function % : [0;∞) → R
is called Y -oscillatory (Yakubovich-oscillatory), if
lim
t→∞

%(t) < lim
t→∞

%(t). A bounded map x : [0;∞) → Rm

is Y-oscillatory if some its element xi(·) is Y -oscillatory.

Using Theorem 1 in (Pogromsky et al. 1999), and Lemma
2, the following result is derived.

Lemma 7 Suppose that system (3) has an unstable
equilibrium (Θ0 > 0). Then for any initial condition
(R(0), L(0), T (0)), except for the points from some set
of zero Lebesgue measure, the corresponding solution
(R(t), L(t), T (t)) is Y-oscillatory as t→∞.

Any periodic solution is Y-oscillatory, and the same
holds for solutions converging to periodic orbits. In gen-
eral, a dynamical system can have other Y -oscillatory
solutions, e.g. showing chaotic behavior. It is known,
however, that solutions of the conventional Goodwin-
Smith model (1) and many other cyclic feedback sys-
tems (Hori et al. 2011) in fact exhibit a very regular
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behavior, similar to that of planar (two-dimensional)
systems (Mallet-Paret & Sell 1996, Mallet-Paret &
Smith 1990). A natural question, addressed in the next
subsection, is the applicability of the Mallet-Parret’s
theory to the extended model (3).

4.2 The Mallet-Parret theorem for the extended
Goodwin-Smith model: the structure of ω-limit set

The widely-known Poincaré-Bendixson theory for pla-
nar autonomous (time-invariant) systems states that the
ω-limit set of a bounded solution can be a closed orbit, an
equilibrium point or union of several equilibria and hete-
roclinic 2 trajectories, converging to them (it is possible
that ω(x) is a union of an equilibrium and homoclinic
trajectory, converging to it). Although this result is not
applicable to the system of order 3 or higher, it remains
valid for cyclic systems (Hori et al. 2011, Mallet-Paret
& Smith 1990) and some tridiagonal systems (Elkhader
1992, Mallet-Paret & Sell 1996). For the reader’s conve-
nience, we formulate the corresponding result.

Consider the dynamical system of order N + 1, where
N ≥ 2, described by the equations

ẋ0 = h0(x0, x1)

ẋi = hi(xi−1, xi, xi+1), i = 1, . . . , N − 1

ẋN = hN (xN−1, xN , x0),

(7)

Here the functions h0(ξ, ζ) and hi(η, ξ, ζ), (i =
1, . . . , N), are C1-smooth and strictly monotone in ζ;
the functions hi(η, ξ, ζ) for i = 1, . . . , N are also non-
strictly monotone in η. That is, the ith chemical (where
i ≥ 1) influences the production rate of the (i − 1)th
one, and the 0th chemical influences the production of
the Nth one. Chemical i (where i < N) may influence
the production of chemical (i + 1), however, it is al-

lowed that ∂hi+1

∂xi
≡ 0. The central assumption is that if

the influences between “adjacent” chemicals are equally
signed (being either both stimulatory or inhibitory)

∂hi+1

∂xi

∂hi
∂xi+1

≥ 0, ∀i = 0, 1, . . . , N − 1. (8)

Applying a simple change of variables, without loss of
generality (Mallet-Paret & Sell 1996) assume that

∂hi(η, ξ, ζ)

∂η
≥ 0, δi

∂hi(η, ξ, ζ)

∂ζ
> 0, δi =

{
1, i < N,

±1, i = N.
(9)

2 Given a dynamical system ẋ = f(x) ∈ Rm, its heteroclinic
solution is a globally defined non-constant solution x(t) :
(−∞;∞)→ Rm, whose limits at ∞ and −∞ are equilibria.
If these limits coincide, the solution is called homoclinic.

We are interested in tridiagonal systems (7) with a single
equilibrium, for which the result of (Mallet-Paret & Sell
1996, Theorem 2.1) reduces 3 to the following lemma.

Lemma 8 Let the C1-smooth nonlinearities hi in (7)
satisfy the conditions (8) and the system has only one
equilibrium. Then theω-limit set of any bounded solution
can have one of the following structural types: (a) closed
orbit; (b) union of the equilibrium point and a homoclinic
trajectory; (c) the equilibrium point (singleton).

Note that the “sign-symmetry” assumption (8) is vio-
lated in system (3): the effector hormone’s (T) produc-
tion is driven by the tropic hormone (L) and, at the same
time, inhibits the secretion of L (Fig. 1a). So Lemma 8
cannot be directly applied to system (3). To overcome
this problem, we show that there exists a one-to-one
mapping (R,L, T )→ (x0, x1, x2) which transforms sys-
tem (3) into the “canonical” form (9) with N = 3 and
δN = −1. This allows to prove our main result.

Theorem 9 Suppose that Assumption 1 holds and

sup
T≥0
|f ′2(T )| ≤ (b3 − b2)2

4g2
. (10)

Then any solution of (3) has the ω-limit set of one of
the three types, listed in Lemma 8. If the equilibrium is
unstable, then almost any solution converges to either a
periodic orbit or the closure of a homoclinic trajectory.

It should be noticed that (10) automatically holds for the
classical Goodwin’s oscillator (1) (and, more generally,
when f2 is constant); Furthermore, if the equilibrium is
unstable, system (1) cannot have homoclinic orbits (Hori
et al. 2011). This leads to the following corollary.

Corollary 10 If system (1) has an unstable equilibrium,
then it also has a (non-trivial) periodic orbit. Moreover,
almost any solution converges to such an orbit.

Whereas the first statement of Corollary 10 has been es-
tablished for a very broad class of cyclic systems (Hast-
ings et al. 1977), the second statement, confirmed by
numerical simulations, still has not been proved mathe-
matically. For a general system (3), the inequality (10)
restricts the slope of the nonlinear function f2(·). Nu-
merical experiments, shown in Section 5, show that this
condition is only sufficient, and the solutions’ may con-
verge to the periodic orbit even when it is violated.

3 Formally, the paper (Mallet-Paret & Sell 1996) deals with
delay systems, explicitly assuming that the delay is non-zero.
The results are, however, valid for tridiagonal systems (7)
without delays; as mentioned in (Mallet-Paret & Sell 1996,
p. 442), the corresponding result (under some additional
restrictions) has been established in (Elkhader 1992).
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5 Numerical simulation

In this section, we give a numerical simulation, which
allows to compare the behaviors of systems (1) and (3).
The model parameters b1 = 0.1 min−1, b2 = 0.015
min−1, b3 = 0.023 min−1, g1 = 5 min−1 and g2 = 0.01
min−1 are chosen to comply with the experimental data
reported in (Cartwright & Husain 1986, Das et al. 1994).

The functions f1(T ), f2(T ) are chosen of the Hill-
type. Following (Das et al. 1994), the parameters of
f1 are considered to be K1 = β1 = n = 20. To show
the effect of the additional feedback f2 on the os-
cillations of hormones, its parameters are chosen to
be K2 = n = 20 and β2 = 10. A straightforward
calculation shows that the equilibria of systems (1)
and (3) are given by EGS = (0.0098, 3.2529, 1.4143)
and ENew = (0.0094, 3.2589, 1.4169), respectively.
Moreover, the quantity Θ0, defined in (5), for sys-
tems (1) and (3) is given by ΘGS

0 = 1.5207 × 10−4

and ΘNew
0 = 1.1590 × 10−4, confirming the insta-

bility of equilibria. Both systems (1) and (3) are
plotted in Fig. 2 for a time period of 24 hours
with the same parameters and initial conditions
(R(0), L(0), T (0)) = (1 pg/ml, 6 ng/ml, 2 ng/ml).
Although nonlinearity f2 considered in the example
does not satisfy condition (10), system (3) still have
oscillatory behavior for parameters bi and gi considered
above. As it is observed in Fig. 2, after some time, both
amplitude and period of the oscillations of R,L and
T in system (3) become less than the corresponding
ones in system (1). The amplitudes of oscillation for
systems (1) and (3), calculated numerically, are given
by AGS ≈ (52 pg/ml, 3.64 ng/ml, 0.58 ng/ml), and
ANew ≈ (41.75 pg/ml, 3.04 ng/ml, 0.46 ng/ml), re-
spectively. Furthermore, the periods of oscillation for
systems (1) and (3) are given by PGS ≈ 1.870 and
PNew ≈ 1.755. So the feedback f2(·) influences both the
amplitude and period of oscillations.

6 Proofs of Theorems 3 and 9

We start with the proof of Theorem 3, extending the
proofs from (Griffith 1968) and (Smith 1980). The proof
employs the widely known McLaurin’s inequality for the
case of three variables implies (Smith 1980) that

(b1 + b2 + b3)(b1b2 + b1b3 + b2b3)

b1b2b3
≥ 9. (11)

Another result, used in the proof, is the Hopf bifurcation
theorem (Poore 1976). This theorem deals with a one-
parameter family of dynamical systems

ẋ = F (x, µ), µ ∈ (−ε; ε). (12)

It is assumed that for µ = 0, the system has an equilib-
rium at x0, for which F (x, µ) is C1-smooth in the vicin-
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Fig. 2. Red and blue plots show numerical simulations of
systems (1) and (3), respectively, with the same initial con-
ditions and parameter values.

ity of (x0, 0), the Jacobian matrix DxF (x0, 0) has a pair
of simple imaginary eigenvalues ±ıω0 (where ω0 6= 0)
and all other eigenvalues have non-zero real parts. The
implicit function theorem implies that for µ ≈ 0 there
exists an equilibrium point x(µ) of system (12) such that
x(0) = x0. The corresponding Jacobian DxF (x(µ), µ)
has a pair of complex-conjugated eigenvalues α(µ) ±
ıω(µ) with α(0) = 0 and ω(0) = ω0. The Hopf bifurca-
tion theorem is as follows (Poore 1976, Theorem 2.3).

Theorem 11 If α′(0) 6= 0, the dynamical system (12)
undergoes the Hopf bifurcation at µ = 0, that is, there
exist ε0 > 0 such that for any µ ∈ (−ε0, ε0) \ {0} sys-
tem (12) has a non-trivial periodic solution.

Proof of Theorem 3. Let (R0, L0, T 0) be an equilibrium
of (3) for some choice of bi, gi > 0. Using (4), one has

g2 =
b1b2b3T

0

g1f1(T 0) + b1f2(T 0)
. (13)

Substituting (13) into (5) and dividing by (b1b2b3), the
inequality (11) and Assumption 1 imply the following

Θ0

b1b2b3
=

T 0(b2 + b3)f ′2(T 0)

g1f1(T 0) + b1f2(T 0)︸ ︷︷ ︸
≤0

+
g1(−T 0f ′1(T 0))

g1f1(T 0) + b1f2(T 0)︸ ︷︷ ︸
≤M(T 0)

− (b1 + b2 + b3)(b1b2 + b1b3 + b2b3)

b1b2b3
+ 1 ≤M(T 0)− 8.

(14)
The inequality (14) is strict unless b1 = b2 = b3 and
f2(T 0) = f ′2(T 0) = 0, implying thus statements 1 and 2.

We are now going to prove statement 3. Supposing that
M(T 0) > 8 for some T 0 > 0, let R0 = 1

b1
f1(T 0) and

L0 = b3
g2
T 0. It can be easily noticed from (4) that any

system (3), whose parameters satisfy the condition (13),

6



has the equilibrium at (R0, L0, T 0). We are now going
to design a one-parameter family of systems (3) with
this equilibrium. To do this, we fix b1 = b2 = b3 = b
(where b > 0 is chosen arbitrarily) and determine g2
from (13), leaving the parameter g1 > 0 free. It can be
easily noticed from (14) that Θ0 = Θ0(g1) is a smooth
and strict increasing function of g1, lim

g1→0
Θ0(g1) < 0 and

lim
g1→∞

Θ0(g1) = M(T 0) − 8 > 0. Thus for sufficiently

large g1 > 0, the system has an unstable equilibrium
point. Furthermore, for ε > 0 sufficiently small, the im-
age of Θ0(·) contains the interval (−ε; ε); therefore, one
can define the smooth inverse function g1 = g1(µ) in
such a way that Θ0(g1(µ)) = µ for any µ = (−ε; ε).

We now claim that the one-parameter family of sys-
tems (3) with b1 = b2 = b3 = b > 0, g1 = g1(µ) and
g2 = g2(µ) determined by (13) satisfies the conditions of
Hopf bifurcation theorem (Theorem 11). By definition,
the Routh-Hurwitz discriminant (5), corresponding to
a specific µ, equals Θ0(g1(µ)) = µ; by Lemma 2 the
system with µ = 0 has a pair of pure imaginary eigen-
values. Considering the extension of these eigenvalues
α(µ)± ıω(µ) for µ ≈ 0, and introducing ai by (5), it can
be shown (Taghvafard et al. 2016, Appendix A) that

2α(µ)
[
(a1 + 2α(µ))2 + (a2 − g2(µ)f ′2(T 0))

]
= µ (15)

Differentiating (15) at µ = 0 and recalling that α(0) = 0,
one shows that α′(0) = 1

2[a21+(a2−g2(0)f ′
2(T

0)]
> 0. Hence

for µ ∈ (0; ε0) (where ε0 > 0) the constructed system (3)
has an unstable equilibrium at (R0, L0, T 0) and at least
one periodic solution. Notice that for µ ∈ (−ε0; 0) the
system also has a periodic solution in spite of the equi-
librium’s local stability (see Remark 5). 2

Proof of Theorem 9.

The proof is based on the linear change of variables
(R,L, T ) 7→ (x0, x1, x2), where x0 , T , x1 , L + aT

and x2 , R and a ∈ R is a constant to be specified later.
Under this transformation, (3) shapes into (7), where

h0(x0, x1) , g2(x1 − ax0)− b3x0,
h1(x0, x1, x2) ,

(
a(b2 − b3)− a2g2

)
x0 + f2(x0)+

+ g1x2 + (ag2 − b2)x1,

h2(x1, x2, x0) , −b1x2 + f1(x0).

Since g1, g2 > 0, the conditions (9) hold if ∂h1

∂x0
≥ a(b2 −

b3)− g2a2− sup |f ′2(x0)| ≥ 0. Due to the condition (10),
this inequality can be provided by choosing appropriate
a ∈ R. Theorem 9 now follows from Lemmas 7 and 8. 2

7 Conclusions and future works

A mathematical model for endocrine regulation has been
examined, which extends the conventional Goodwin’s
model by introducing an additional negative feedback.
We have studied the local properties of the extended
model and their relations to global properties, showing
that the (locally) unstable equilibrium implies that al-
most all solutions oscillate and (under some conditions)
converge to periodic orbits. The results are based on the
general criterion of oscillation existence (Smith 1980)
and the Mallet-Parret theory (Mallet-Paret & Sell 1996);
they can be extended to many other models, e.g. the
model from (Vinther et al. 2011). The relevant exten-
sions are however beyond the scope of this manuscript
due to the page limit. Further extensions of the model,
including transport delays and pulsatile feedback are the
subject of ongoing research.
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