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a b s t r a c t 

Electrostatic instability is one of the main features of many electrostatic MEMS and NEMS devices. In this paper, 

we investigate how the electrostatic instability of a plate-like electrode can be affected by a differential pressure. 

The results of this study indicate that the presence of differential pressure can have a significant influence on the 

equilibrium path, the number and location of unstable points, and the post-instability behavior. As a result, while 

the system is loaded and unloaded electrically, the electrostatic instability might lead to a snapping behavior. 

The noticed snapping behavior of a flat plate makes it very appealing for sensing and actuating applications. 

This study is based on both a semi-analytical framework and finite element simulations. The proposed analytical 

solution is shown to be accurate enough to be used as an effective tool for design. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Electrostatic instability (and bi-stability) is an important feature of

any electrostatic MEMS devices, sensors and actuators [1–3] . A solid

nderstanding of the electrostatic instability is essential to improve the

erformance such MEMS/NEMS devices and to obtain new designs for

ew applications. 

Electrostatic MEMS devices essentially consist of a simple parallel

late capacitor with at least one flexible electrode. When an electric

otential is applied to the capacitor, an attractive electrostatic load is

nduced between its electrodes. This load depends on the applied elec-

ric potential, the local distance between the electrodes, and the dielec-

ric constant of the medium separating them [4] . The electrostatic load

eads to deformation of the flexible electrode(s) to maintain the balance

etween electrostatic and elastic potentials. Thus, any small change in

he electric potential can generate mechanical movement of the flexible

late, which can be used for actuation [5] . 

Instability of an electrostatic MEMS device occurs mainly due to the

onlinearity in the electrostatic potential [6] . When the system becomes

nstable, any perturbation could lead to failure or pull-in of the flexible

lectrode. This stability phenomenon appears as a fold or a limit point

n the equilibrium curve of the system [7,8] . 

In certain electrostatic MEMS devices, e.g. microphones and pres-

ure sensors or actuators, it is essential to avoid pull-in effects, since the

ontact between the two electrodes induces failures, including short cir-
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uit, stick, wear, dielectric changing, and breakdown [6,9] . On the other

and, pull-in is a feature of MEMS/NEMS devices [2] which can also

rovide information on the mechanical and physical characteristics of

he system. Therefore, it has been introduced as a robust mechanism for

easuring the mechanical properties of nano-structures [10] , or sensing

he adsorbate stiffness in nano-mechanical resonators [11] . 

In order to avoid or employ the pull-in effect, an in-depth knowledge

f the stability behavior and an accurate determination of the pull-in

oltage of the structure is critically required. In engineering applica-

ions, to approximate the critical deformation of the electrode and to

redict the pull-in voltage, a simple 1-D spring-mass model is commonly

sed (see Fig. 1 ). In such a model, the instability occurs when due to

he deformation of the flexible electrode, the gap between the two elec-

rodes becomes two thirds of the initial gap [7,12,13] . This simplified

odel is commonly referred to as the ‘1/3 air gap rule ’. In practice, how-

ver, a membrane/plate structure is different from a simple spring mass

odel. It is a 2D structure which incorporates Poisson ratio effects, and

embrane stiffening effects. In addition, if the plate-like electrode de-

orms, the electrostatic load is no longer uniform. The 1/3 air gap model

nherently does not account for any of these effects. However, the criti-

al gap being equal to two-thirds of the initial gap size, is shown to be

he most conservative critical gap in MEMS capacitors [12] . 

The pull-in of circular clamped plate-like electrodes has been investi-

ated and formulated in many studies [9,12,14] . These studies are based

n simplifying assumptions, such as small and one-dimensional defor-
 the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Simple 1-D model typically used to approximate the critical deformation 

of the electrode in order to predict the pull-in voltage. 
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Fig. 2. Schematic of the cross section of the capacitor with one flexible electrode 

in a) undeformed configuration, and, b) deformed under combined electrostatic 

and differential pressure. 
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ation of the plate, or uniformity of the electrostatic load. Ultimately,

nite-difference and finite-element methods have been applied to solve

he resulted equations [9,15,16] . Different values for critical deforma-

ion were proposed for circular clamped electrodes, from 41.5% [9] or

1.6–45.6% [15] to 72–75% [16] depending on the thickness of the

late and simplifying assumptions. However, a comprehensive analytical

olution for pull-in voltage of a circular clamped plate, while consider-

ng the nonlinear membrane effects and non-uniformity of electrostatic

oad, is missing in the literature. 

The pull-in voltage and critical deflection of cantilever-, beam- or

late-like electrodes depend on the stiffness of the flexible component,

s well as the initial distance between the electrodes. A mechanical load

pplied to the component can directly affect both parameters, and con-

equently, influences the electrostatic instability of the system. The sen-

itivity of electrostatic instability to a mechanical load is the concept

ehind using pull-in instability as a mechanism for sensing, for exam-

le, temperature [17] , surface-stress [4] , or residual stresses in clamped

tructures [7] . Furthermore, MEMS sensors and actuators are frequently

esigned to operate under a mechanical load, such as in capacitive pres-

ure sensors. Sometimes, the additional mechanical load in these de-

ices is undesired, but also inevitable, such as thermal loads or residual

tresses in clamped structures. Therefore, an in-depth knowledge about

he effect of these mechanical loads on the stability of the micro me-

hanical component is paramount. 

The dependency of the pull-in voltage of MEMS devices to external

echanical loads, such as a uniform transverse, or, in-plane load, has

een investigated in the literature [7,13,18–22] . Particularly, the effect

f a uniform differential pressure on the electrostatic instability of a cir-

ular micro plate has been studied as well [23] . The later, using a numer-

cal continuation scheme, calculated the combination of pressure and

oltage which can lead to the instability of the system. This study consid-

rs the differential and the electrostatic pressure to be in the same direc-

ion and it shows that the differential pressure always causes the system

o be more prone to instability. It should be noticed that the proposed

umerical method, even if highly accurate, is an expensive tools, and, for

ach new set of design parameters (radius or thickness) the simulation

as to be repeated. An accurate analytical model –if available– could

rovide a closed form solution for approximating the pull-in voltage and

he critical deformation almost without any time cost. In addition, it pro-

ides more insight to the problem which is favored for design purposes.

In this paper, we propose an analytical approximate methodology

o study the stability and pull-in behavior of a circular flexible elec-

rode, while, loaded with electrostatic and differential pressure. In this

nalysis, the direction of the pressure is not predefined. Instead, it is

onsidered to be a differential pressure positive when opposing the elec-

rostatic load, and negative otherwise. The non-linear stretching of the

hin plate and the non-uniformity of electrostatic load due to deflection

f the flexible plate, are incorporated in this solution. The accuracy of

he proposed analytical approximation is evaluated with a comparison

o the finite element simulations [24] . 

Using the proposed solutions, first, the instability and pull-in behav-

or of the electrode and its dependency on the electrode ’s thickness and

adius are discussed. Next, we explore how a differential pressure and

ts direction would affect equilibrium, stability, and the critical voltages

nd deflections. In addition, the post-instability behavior of the system
211 
nd possible snapping behavior will be addressed. We will show that

he presence of a differential pressure can trigger bi-stability in the sys-

em. The required criteria to attain the additional stable solution and

he snapping behavior, which can be of great interest for sensing and

ctuation purposes, will be thoroughly discussed. 

Finally, we shall remind that the effective elastic properties of struc-

ures at nano and sometimes even at micro scales are known to be

trongly size-dependent [25–29] . The classical continuum theory is in-

erently size in-dependent and hence, it cannot provide a good predic-

ion when the thickness of the plate is very small. For small length scales,

ize-dependent continuum theories that account for these scale effects

hould be utilized [30–36] . These theories, embed a material length

cale ( e 0 a ) which makes it possible to qualify the size of a structure

s large ” or small ” relative to its material length scale. If the size of the

tructure is relatively large, then the nonlocal or higher-order gradient

heories converge to classical elasticity theory and therefore, employing

he classical theory will lead to similar results. Once plasticity plays a

ole, another length scale should be considered [37] . In this paper, using

 strong nonlocal elasticity theory [35,38] , the possibility of capturing

he scaling effects in the proposed formulation is briefly investigated,

nd the size-dependence of stability of a micro-plate while subjected to

lectrostatic and differential pressure is addressed. 

. Analytical formulation 

The analytical model proposed here is based on a parallel plate ca-

acitor with a thin, circular, fully clamped plate as one electrode, while

he other is fixed and rigid. The shape of the capacitor is chosen to be cir-

ular, since the MEMS devices with a circular plate generally yield better

tructural flexibility as compared to rectangular plates. In addition, they

ave no corners or sharp edges which may induce high residual stresses

uring fabrication process [15] . The schematic of the assumed model is

hown in Fig. 2 . 

The radius of the flexible electrode is R and its thickness is h . It

s modeled with a linear elastic, homogeneous and isotropic material

odel. The Youngs modulus and Poisson ratio of the plate are denoted E

nd 𝜈, respectively. The plate is suspended over the grounded electrode

ith similar radius and the initial gap between the electrodes is d . The

late is loaded with a differential pressure P , and an electric potential V

s applied to the electrodes. 

The plate is modeled with von Kár ḿ ans plate theory, which accounts

or finite deflection but moderate rotations and is adequate for thin

lates [39] . The loads are conservative, which implies that first, to es-

imate the deflection in the equilibrium state, approximations based on

inimizing the total potential energy can be applied, and second, no dy-

amic consideration is required to assess stability of equilibriums. Mini-

izing the total potential energy is a variational problem and its solution

an be estimated using Ritz ’s method. In this method a parametrized

isplacement field satisfying the clamping boundary condition is con-

idered, whereas the unknown parameters are calculated by requiring

he total potential energy to be stationary. 
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Due to the axisymmetric condition in the problem at hand, the only

ppearing displacement components are the radial ( u ) and transverse

 w ) components. Although, the nonlinearity might cause the symmetry

o break up, we consider the symmetry to maintain during deformation.

his assumption has been verified using a finite element model which

ill be described in the next section. The clamping boundary condition

orces the displacement components and also the first derivative of the

ransverse displacement with respect to the radial coordinate to be equal

o zero at the boundaries. We adopt Timoshenko ’s simple approximate

isplacement field for uniformly loaded circular plates [40] , to approx-

mate the radial ( u ) and transverse ( w ) displacements: 

 = 𝐶 1 𝑑(1 − 𝜌2 ) 2 , 

𝑢 = 𝑅𝜌(1 − 𝜌)( 𝐶 2 + 𝐶 3 𝜌) , (1)

here 𝜌 = 

𝑟 

𝑅 
is the non-dimensional radial coordinate and, C i , ( i = 1–3,)

re the parameters to be calculated. Next, the associated total potential

nergy is evaluated. The total potential energy consists of four terms

amely, the electrostatic potential ( U e ), the potentials associated with

lastic deformation due to the bending ( U b ) and the stretching ( U s ) of

he plate, and the potential associated with the mechanical pressure ( W ):

 = 𝑈 𝑒 + 𝑈 𝑏 + 𝑈 𝑠 − 𝑊 . (2)

ssuming the parallel-plate capacitor theory, the electrostatic potential

ollows as [2,41] : 

 𝑒 = − 𝜋𝜖𝑉 2 𝑅 

2 ∫
1 

0 

𝜌𝑑𝜌

𝑑 + 𝑤 

, (3)

here 𝜖 is the electric permittivity of the dielectric between the elec-

rodes. Notice that the local distance between the electrodes ( 𝑑 + 𝑤 )

s employed to calculate the electrostatic potential. Thus, the non-

niformity of the electrostatic load due to the deflection of the flexible

lectrode is incorporated. 

Provided that the micro-plate is isotropic and homogeneous, the

ending-extension coupling stiffness equals to zero. Therefore, the po-

entials associated with elastic deformation can be decoupled to the

ending energy ( U b ) and the stretching energy ( U s ) [39] : 

 𝑏 = 

𝜋𝐷 

𝑅 

2 ∫
1 

0 

( ( 

𝜕 2 𝑤 

𝜕𝜌2 

) 2 
+ 

( 

1 
𝜌

𝜕𝑤 

𝜕𝜌

) 2 

+ 

( 

2 𝜈
𝜌

𝜕𝑤 

𝜕𝜌

𝜕 2 𝑤 

𝜕𝜌2 

) ) 

𝜌𝑑𝜌, (4a)

 𝑠 = 

𝜋𝐸ℎ 

(1 − 𝜈2 ) ∫
1 

0 

( ( 

𝑢 

𝜌

) 2 

+ 

( 

𝜕𝑢 

𝜕𝜌
+ 

1 
2 𝑅 

( 

𝜕𝑤 

𝜕𝜌

) 2 
) 2 

+ 

2 𝜈𝑢 
𝜌

( 

𝜕𝑢 

𝜕𝜌
+ 

1 
2 𝑅 

( 

𝜕𝑤 

𝜕𝜌

) 2 
) ) 

𝜌𝑑𝜌, (4b)

here 𝐷 = 

𝐸ℎ 3 

12(1− 𝜈2 ) is the bending stiffness of the flexible plate. Notice

hat nonlinear membrane effects have been incorporated in the elastic

otential. 

As the rotations in the plate due to mechanical and electrostatic loads

re small, the pressure is assumed to be always perpendicular to the un-

eformed surface. Therefore, the potential associated with the pressure

an be calculated as: 

 = 2 𝜋𝑃 𝑅 

2 ∫
1 

0 
𝑤𝜌𝑑𝜌. (5)

y substituting Eq. (1) into Eqs. (3) –(5) , an approximation for the total

otential energy can be derived analytically. Since the analytical expres-

ion of the integral in Eq. (3) , depends on the sign of the parameter C 1 ,

e shall calculate the total potential energy and solve the problem for

 < 0 and C > 0, separately: 
1 1 

212 
 = − 𝜖𝑉 2 
𝜋𝑅 

2 

2 𝑑 
(ϝ ( 𝐶 1 ) 

)
− 𝑃 

𝜋𝑅 

2 𝑑 

3 
𝐶 1 

+ 

32 𝜋𝑑 2 

3 𝑅 

2 𝐷𝐶 

2 
1 + 

𝐸ℎ𝑅 

2 𝜋

(1 − 𝜈2 ) 
(
𝛼1 𝐶 

2 
2 

+ 𝛼2 𝐶 

2 
3 + 𝛼3 𝐶 2 𝐶 3 − 𝛼4 𝐶 

2 
1 𝐶 2 

𝑑 2 

𝑅 

2 

+ 𝛼5 𝐶 3 𝐶 

2 
1 
𝑑 2 

𝑅 

2 + 𝛼6 𝐶 

4 
1 
𝑑 4 

𝑅 

4 

) 

, (6) 

here, 𝛼i is introduced for compactness, with 𝛼1 = 0 . 250 , 𝛼2 = 0 . 117
3 = 0 . 300 , 𝛼4 = 0 . 068 , 𝛼5 = 0 . 055 , 𝛼6 = 0 . 305 . These parameters are de-

ermined by the selected basis-functions, and represent the linear and

onlinear stretching stiffness components in the strain energy. More-

ver, 

 ( 𝐶 1 ) = 

atanh 
√
− 𝐶 1 √

− 𝐶 1 
if 𝐶 1 < 0 , (7a)

 ( 𝐶 1 ) = 1 if 𝐶 1 = 0 , (7b)

 ( 𝐶 1 ) = 

atan 
√
𝐶 1 √

𝐶 1 
if 𝐶 1 > 0 . (7c)

Notice that ϝ ( x ) is a continuous and smooth function around zero.

ext, the stationary points of total potential energy ( U ) can be found by

quating its derivative to the unknown parameters ( C i ) to zero, 

𝜕𝑈 

𝜕𝐶 1 
= 

𝜕𝑈 

𝜕𝐶 2 
= 

𝜕𝑈 

𝜕𝐶 3 
= 0 . (8)

olving Eq. (8) for parameters C 2 and C 3 , leads to a relation between

he stretching of the electrode and its transverse deflection, independent

f the applied loads, V and P . As a matter of fact, C 2 and C 3 can be

alculated as a function of C 1 and substituted into Eq. (6) . Hence, the

egrees of freedom can be reduced to C 1 only, while incorporating the

n-plane deformation, as well. Then, equilibrium requires: 

𝜕𝑈 

𝜕𝐶 1 
= 0 , (9)

hich leads to: 

− 𝜖𝑉 2 
𝜋𝑅 

2 

2 𝑑 

( 

1 
2 𝐶 1 (1 + 𝐶 1 ) 

− 

ϝ ( 𝐶 1 ) 
2 𝐶 1 

) 

+ 

64 𝜋
3 

( 𝑑 
𝑅 

) 
2 
𝐷 

( 

𝐶 1 + 0 . 488 ( 𝑑 
ℎ 
) 
2 
𝐶 

3 
1 

) 

− 𝑃 
𝜋𝑅 

3 

3 
𝑑 

𝑅 

= 0 . (10) 

t is worth to note that in Eq. (10) , two sources of nonlinearity are in-

orporated: (1) the cubic term due to the geometrical nonlinearity and,

2) the nonlinearity of electrostatic load. Due to the presence of non-

inearity, multiple equilibrium states might be found for one load case

P and V). Therefore, the equilibrium path might exhibit one or even

ore bifurcations, at which solution branches meet. The stability of the

olution can be defined by the sign of the second derivative of the total

otential energy with respect to the only degree of freedom left ( C 1 ).

n fact, the system is stable, when the second derivative is positive, and

nstable, if it is negative. 

The critical point(s) can be calculated by equating the second deriva-

ive of the total potential energy with respect to the only degree of free-

om to zero. This, from a physics point of view, means that the system

ould have no stiffness in the direction of the subjected degree of free-

om. Therefore, the second derivative of the total potential energy at

he critical points can be calculated as: 

𝜕 2 𝑈 

𝜕𝐶 1 
2 = − 𝜖𝑉 2 

𝜋𝑅 

2 

2 𝑑 

( 

− 

5 𝐶 1 + 3 
4 ( 𝐶 1 + 1) 2 𝐶 1 

2 
+ 

3 ϝ ( 𝐶 1 ) 
4 𝐶 1 

2 

) 

+ 

64 𝜋𝑑 2 

3 𝑅 

2 𝐷 

( 

1 + 𝛼7 

(
𝑑 

ℎ 

)2 
𝐶 1 

2 
) 

= 0 . (11) 
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here 𝛼7 = 1 . 464 . 
Recall that at the critical points, the system is still in equilibrium.

hus, Eqs. (10) and (11) should be solved simultaneously in order to

alculate the critical deflection(s) and voltage(s). The critical value of

oltage and deflection are denoted with superscribe cr . With such an

nalytical solution, one can accurately approximate the voltage level(s)

t which instability occurs as a function of the material properties, the

eometrical parameters, and the applied differential pressure. It is worth

oting that since Eqs. (10) and (11) are both highly nonlinear in C 1 ,

olving these equations numerically is relatively difficult. Therefore, as

n alternative, one can simply solve these equations for P and V for a

easible range of critical 𝐶 

𝑐𝑟 
1 (e.g. -0.99 to +1). This approach will result

n obtaining 𝐶 

𝑐𝑟 
1 as a numeric function of P and V . 

. Finite element analysis 

To verify the results of the analytical estimation, a 3D circular elec-

rode was modeled using finite elements (COMSOL Multiphysics [24] ).

n the model, the electrode is considered to be flexible, clamped on the

dge and it was discretized with solid elements using free tetrahedral

eshing. The material properties and specifications of the model, that

re used for the test case for this solution, are: 𝐸 = 80 GPa, 𝜈 = 0 . 2 ,
= 8 . 854 × 10 −12 m 

−3 kg −1 s 4 A 

2 and 𝑑 = 2 μm. To study the effect of the

imensions of the electrode, different combinations of thickness and ra-

ius have been studied. 

The electrostatic and differential pressures have been applied as

oundary loads to the plate, as P and 𝜖 − 𝑉 2 
2( 𝑑+ 𝑤 ) 2 , where w is the transverse

isplacement field of the micro-plate and V is a variable representing the

oltage. In the solid mechanics module, a global equation is introduced

o define the voltage (V) as a function of the average deflection of the

late. Hence, the required electric potential to maintain the equilibrium

f the plate for a specified average deflection ( w 0 ) can be calculated. 

This calculation is repeated over a range of average deflections and

s a result, the equilibrium path of the system is achieved. It should be

oticed that in the finite element model, the symmetry of the displace-

ent field is not imposed to the system. However, the displacement field

ppears to be axi-symmetric for both the resulting stable and unstable

olution branches. The results from this model is compared with the

roposed analytical solution in the “Results and discussion ”. 

. Scaling effects 

In order to use the formulation proposed in Section 2 for design pur-

oses, one should consider a thickness range at which the elastic coeffi-

ients for bulk materials can still be employed. Otherwise, a proper size

ependent theory shall be employed to capture the scale effects in the

ormulation. 

Here, we briefly discuss the scaling effects on the obtained formu-

ation using a strong nonlocal plate formulation [38,42,43] . Assuming

hat the radius of the plate is much larger than its thickness, and the

tress derivatives in radial direction are small, we can neglect the non-

ocal effects in in-plane direction. Therefore, the scaling modification

actor provided by Ref. [35] can be adopted for imposing the scaling

ffects on the bending and stretching rigidities of the plate as a function

f its thickness: 

= 

1 
𝜂
√
𝜋

(
exp (− 𝜂2 ) − 1 

)
+ erf ( 𝜂) , (12)

nd, 

= erf ( 𝜂) − 

1 √
𝜋

( 

2 
𝜂
exp (− 𝜂2 ) + (3 𝜂−1 − 2 𝜂−3 )(1 − exp (− 𝜂2 )) 

) 

. (13)

here erf is the error function, 𝜂 = 

ℎ 

𝑒 0 𝑎 
as e 0 a is the material length scale,

nd the obtained 𝜆 and 𝛽 are the modification factors for stretching and

ending rigidities, respectively. These factors are obtained by using a

hree dimensional strong nonlocal formulation and a Gaussian nonlocal
213 
ernel for a plate of which the radius is much larger than the thickness.

ore details of the derivation of these factors can be found in Ref. [35] .

As a consequence of employing these factors, the stretching and

ending energy terms in Eqs. (4b) and (4a) can be modified. Follow-

ng the procedure as discussed in Section 2 results in equilibrium and

nstability conditions: 

𝜕𝑈 

𝜕𝐶 1 
= − 𝜖𝑉 2 

𝜋𝑅 

2 

2 𝑑 

( 

1 
2 𝐶 1 (1 + 𝐶 1 ) 

− 

ϝ ( 𝐶 1 ) 
2 𝐶 1 

) 

+ 

64 𝜋
3 

(
𝑑 

𝑅 

)2 
𝐷 

( 

𝜆𝐶 1 + 0 . 488 𝛽
(
𝑑 

ℎ 

)2 
𝐶 

3 
1 

) 

− 𝑃 
𝜋𝑅 

3 

3 
𝑑 

𝑅 

= 0 . (14) 

𝜕 2 𝑈 

𝜕𝐶 1 
2 = − 𝜖𝑉 2 

𝜋𝑅 

2 

2 𝑑 

( 

− 

5 𝐶 1 + 3 
4 ( 𝐶 1 + 1) 2 𝐶 1 

2 
+ 

3 ϝ ( 𝐶 1 ) 
4 𝐶 1 

2 

) 

+ 

64 𝜋𝑑 2 

3 𝑅 

2 𝐷 

( 

𝜆 + 𝛼7 𝛽
(
𝑑 

ℎ 

)2 
𝐶 1 

2 
) 

= 0 . (15) 

n order to obtain the size dependent critical deflection(s) and volt-

ge(s), Eqs. (14) and (15) should be solved simultaneously. In the next

ection, we will briefly discuss the effects of using the proposed formu-

ation, and capturing the scaling effects, on the stability assessment of a

icro-plate while subjected to differential and electrostatic pressures. 

. Results and discussion 

In this section, the influence of a uniform pressure on the critical de-

ection and voltage of a parallel plate capacitor with a circular flexible

lectrode, will be studied. The results of the proposed analytical approx-

mation will be discussed and compared with finite element simulations.

or this purpose, normalized load parameters are introduced as: 

normalized voltage: 𝑉 ′ = 𝑉 

√ 

12 𝜖𝑅 

4 (1 − 𝜈2 ) 
𝑑 6 𝐸 

, 

ormalized pressure: 𝑃 ′ = 𝑃 
1 − 𝜈2 

𝐸 

. (16) 

n addition, the maximum deflection of the plate is normalized with the

nitial gap size d . 

First, consider the case with no pressure ( 𝑃 ′ = 0 ). The corresponding

eflection deformation is modeled as expressed by Eq. (1) . The maxi-

um deflection occurs at the midpoint ( 𝜌 = 0 ), and is equal to C 1 d . 

Fig. 3 shows the change of the midpoint deflection as a function of

he applied voltage. The presented curves are determined analytically

or different thicknesses of the flexible electrode. The results of the fi-

ite element simulations are also shown in this figure, and as can be

bserved, they confirm the accuracy of the approximate analytical so-

ution. The error between these two solutions in worst case ( ℎ ∕ 𝑑 = 0 . 1 )
ccurs at the limit point and is less than 8%. In fact, the accuracy of the

nalytical solution is better for thicker electrodes. 

As Fig. 3 indicates, the deflection of the midpoint of the flexible elec-

rode increases monotonically with the applied voltage until the system

eaches a limit point or saddle-node bifurcation. At this critical point,

he system becomes unstable, and if the voltage is increased, it leads to

ull-in. 

It can be observed from Fig. 3 that the critical defection depends

n the thickness of the structure. In fact, solving Eqs. (10) and (11) for

 = 0 , results in a critical deflection ( 𝑤 
𝑐𝑟 

𝑑 
= 𝐶 

𝑐𝑟 
1 ) which is only a function

f h / d . This function is shown in Fig. 4 . The critical deflection calculated

ith the proposed method varies between 51–71% of the initial gap be-

ween the electrodes and is always higher than 1/3 of the initial gap

hich is calculated with a simple 1D spring model. This, as mentioned

efore, is because modeling the elastic restoring forces with a linear

pring does not account for the non-uniform electrostatic force on the
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Fig. 3. The equilibrium path of the midpoint of the circular flexible electrode 

for different thicknesses, and radius 𝑅 = 100 μm. —— stable equilibrium, - - - - 

unstable equilibrium, and finite element simulations (COMSOL Multi- 

physics). 

Fig. 4. The normalized critical deflection at the midpoint of a circular plate 

with radius 𝑅 = 100 μm, as a function of its normalized thickness h / d . 
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Fig. 5. The normalized pull-in voltage of a circular plate with radius 𝑅 = 100 
μm, as a function of its normalized thickness h / d calculated with different meth- 

ods. 

Fig. 6. The midpoint deflection of the circular flexible electrode with thickness 

ℎ = 0 . 2 μm and radius 𝑅 = 100 μm as a function of applied voltage, for differ- 

ential pressures in different directions. —— stable equilibrium, - - - - unstable 

equilibrium. 
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late after deflection, and, the nonlinear stiffening effect of the flexi-

le electrode. The latter effect is more pronounced for thinner plates,

ausing 𝑤 
𝑐𝑟 

𝑑 
to be larger. 

The critical voltage of the system, depends on the material proper-

ies and the dimensions of the capacitor. Solving Eqs. (10) and (11) for

 = 0 shows that the pull-in voltage is proportional to 1/ R 

2 , which is

n agreement with the experimental results presented by [44] . The nor-

alized critical voltage as defined using Eq. (16) , only depends on the

ormalized thickness, see Fig. 5 . For comparison, the finite element re-

ults and the results of a simple solution based on 1/3-air-gap theory

ith uniform electrostatic load (as explained in [12] ), are also shown.

t is worth to note that the results presented in this graph are closely sim-

lar (5% different) to the classical limit provided by Ansari et al. [20] .

n the latter, the authors have employed couple stress and strain gradi-

nt elasticity theory to obtain the size dependent pull-in characteristics

or a micro-plate with ℎ ∕ 𝑑 = 0 . 83 . However, since the geometric nonlin-

arity is not considered in the mentioned article, the obtained critical

eflections are significantly different. 

For thinner plates where the nonlinear stiffening effect is more sig-

ificant, the simple 1D linear spring model (1/3-air-gap rule) predicts

 significantly lower critical voltage as compared to the finite element

olution; while, the approximate analytical solution presented here can
214 
redict very precise results. However, although the critical voltage cal-

ulated with the 1D linear spring model is inaccurate for the circular

embranes, it provides a more conservative approximation for the crit-

cal deflection. 

Next, consider the case where a differential pressure, positive in op-

osing direction of the electrostatic load, is applied ( P ′ ≠0). This time,

wo load parameters, i.e. pressure and electrostatic load are involved

n the stability analysis. In order to calculate the limit voltage, we pre-

erved the pressure and consider the voltage as the varying load param-

ter. The midpoint deflection of the electrode as a function of applied

oltage is shown for three different differential pressures in Fig. 6 . 

In fact, pressurizing the flexible electrode can significantly affect the

hape of the equilibrium path: first of all, a mechanical pressure leads

o an initial deflection in the plate when 𝑉 = 0 . This initial deflection

epends on the amount and direction of the applied pressure. Second,

 differential pressure might influence the position and/or number of

imit points. 

As Fig. 6 shows, when a negative (downward in Fig. 2 ) pressure is

pplied, the pull-in voltage drops and the critical deflection slightly in-

reases. This is because a negative differential pressure decreases the av-

rage initial distance between the electrodes. Though, the overall shape

f the equilibrium path remains the same. 
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Fig. 7. The midpoint deflection of the circular flexible electrode with thickness 

ℎ = 0 . 2 μm and radius 𝑅 = 100 μm as a function of applied voltage, when 𝑃 ′ = 
2 × 10 −9 . 
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Fig. 8. The midpoint deflection of the circular flexible electrode with thickness 

ℎ = 0 . 2 μm and radius 𝑅 = 100 μm as a function of applied voltage, for different 

positive pressures. —— stable equilibrium, - - - - unstable equilibrium. 

Fig. 9. The critical voltage(s) for a test case with thickness ℎ = 0 . 2 μm and radius 

𝑅 = 100 μm, as a function of the applied mechanical pressure. 
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For positive pressures, however, the shape of the equilibrium path

ight differ significantly (see 𝑃 ′ = 2 × 10 −9 in Fig. 6 ). In such a case, the

ystem exhibits one or three saddle-node bifurcations in its equilibrium

ath [39] . One limit point (Point C in Fig. 6 ) is close to the limit point in

n unloaded system, i.e. 𝑃 ′ = 0 . Only, due to the initial deflection of the

late and the associated additional geometrical stiffness, this limit point

ccurs at a slightly different voltage and deflection. We refer to this

ritical point as the “ultimate ” limit point. Another limit point occurs

arlier when the deflection of the plate is still in the positive direction

Point A in Fig. 6 ). We shall refer to this point as the “primary ” limit

oint. The other limit point is a local minimum in the applied voltage

Point B). If we ramp up the voltage on the upper stable branch around

oint A, or, ramp down the voltage on the lower stable branch around

oint B, the system might jump from one stable configuration to the

ther. 

Similar bi-stability behavior has been observed for shallow arched

tructures [45] . These structures may exhibit two different stable con-

gurations under the same applied electrostatic load and they can snap

rom one to the other. For the problem at hand, the pressure is causing

he initially flat flexible electrode to behave like an arched structure. 

In order to verify the analytical approximate, the equilibrium path

alculated by the finite element model is provided in Fig. 7 . The results

f the numerical solution confirm the accuracy of the approximate an-

lytical solution. The error between these two solutions appears to be

he most at the ultimate limit point (approximately 4%). Similar to the

ase of no pressure, the accuracy of the analytical solution is better for

hicker electrodes. 

After the system passes the primary limit point, the post-instability

ehavior strongly depends on the applied pressure. Fig. 8 shows the mid-

oint deflection as a function of applied voltage, for different positive

ressures. It can be observed that the primary limit point can only be

oticed if the pressure is higher than a certain threshold. If the applied

ressure is too small (see 𝑃 ′ = 0 . 6 × 10 −9 in Fig. 8 ), then, the shape of

he equilibrium path changes slightly, and the primary instability is not

bserved. For higher pressure, though, the primary limit point exists. 

For moderate pressures, the primary limit voltage is lower than the

ltimate limit voltage. Therefore, the instability leads to the snapping

ehavior discussed before (see 𝑃 ′ = 2 . 4 × 10 −9 in Fig. 8 ). For larger pres-

ures, the primary critical voltage exceeds the ultimate pull-in voltage

nd thus, a small perturbation may lead to pull-in of the flexible elec-

rode (see 𝑃 ′ = 4 . 8 × 10 −9 ). For larger pressures, the so-called secondary

nd ultimate limit points totally vanish. 
215 
If during the electrostatic loading, a snap-trough occurs from the up-

er stable branch to the lower branch (e.g. for 𝑃 ′ = 2 . 4 × 10 −9 in Fig. 8 ),

he unloading of the system can also lead to a snap-back from the lower

table branch to the upper one. However, the snap back occurs at a lower

oltage at the secondary limit point. This limit point is only observed

or the pressure range that both primary and ultimate limit points are

resent. 

Clearly, the critical voltage(s) and limit deflection(s) depend on the

pplied mechanical pressure. The variation of the limit voltage(s) versus

he applied mechanical pressure is shown in Fig. 9 . As can be seen, the

esults of analytical and finite element simulations are in good agree-

ent, which again demonstrates the accuracy of the approximate solu-

ion. 

In Fig. 9 , for negative pressures, only one limit point is observed

hich is associated with the ultimate limit point or the pull-in of the

exible electrode. In this region ( P ′ < 0), there is a near-linear relation

etween the pull-in voltage and the applied pressure. The pull-in voltage

onotonically decreases with increasing the amplitude of the pressure

n negative (downward) direction. 

For positive pressures, three different regions can be observed. First,

or very small pressures, only the ultimate limit point is observed. This

s associated with the limit point for 𝑃 ′ = 0 . 6 × 10 −9 in Fig. 8 . Then,

here is a region in which the system exhibits all three limit points. The
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Fig. 10. The critical deflection(s) of the test case with thickness ℎ = 0 . 2 μm and 

radius 𝑅 = 100 μm, as a function of the applied mechanical pressure. 
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Fig. 11. The pressure range in order to trigger the primary limit point and the 

snap-through, as a function of thickness of the flexible electrode, with 𝑅 = 100 
μm. 

Fig. 12. The pressure range in order to trigger the primary limit point and the 

snap-through, as a function of thickness of the flexible electrode, for different 

radii. 
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xamples of 𝑃 ′ = 2 . 4 × 10 −9 , 4 . 8 × 10 −9 and 7 . 2 × 10 −9 in Fig. 8 belong to

his region. Depending on the value of the applied pressure, the primary

imit voltage might be less or more than the ultimate limit voltage. This

efines the post-instability behavior of the system. The final region in

ig. 9 is the pressure range at which again the system exhibits only one

imit point, which is associated with the so-called primary limit point.

he example of 𝑃 ′ = 9 . 6 × 10 −9 in Fig. 8 belongs to this region. 

Fig. 10 shows how the critical deflections vary with the applied me-

hanical pressure. It can be observed that the primary critical deflection

aries between 0–50% of the initial gap size in the positive direction. At

he ultimate pull-in point, the deflection of the plate is 65–73% of the

nitial gap size. 

The snapping of the flat flexible electrode, when sweeping the ap-

lied voltage up and down, is an interesting phenomenon that could be

sed in electrostatically driven switches, sensors and actuators. How-

ver, as explained, only a certain range of pressure allows for existence

f this behavior. The range of pressures allowing for snapping mainly

epends on the mechanical properties of the flexible electrode and its

imensions (thickness and radius). 

It should be noticed that snap-through is a dynamic process and

hen the flexible plate is snapping from an unstable to a stable state, it

as nonzero velocity. However, since the load system is conservative, no

ynamic consideration is required to assess stability. Instead, the total

otential energy is a good criteria to ensure that the dynamic process

oes or does not lead to failure: If the total potential energy at the primary

imit point exceeds the potential at the ultimate limit point, the exceeding

nergy appears as kinetic energy causing an overshoot to occur. 

Fig. 11 illustrates the required combination of differential pressure

nd thickness of the plate, in order to observe the snap-through phenom-

na. This graph is determined using both analytical and FEM solutions

or the test case at hand. The good agreement between the solutions

gain demonstrates the accuracy of the analytical approximate. 

As Fig. 11 shows, if the pressure is too low, the primary limit point

s not observed; and if the pressure is too high, then the primary limit

oltage exceeds the ultimate limit voltage and the system would fail

fter reaching the first instability. 

If the pressure is high enough, the ultimate and secondary limit

oints vanish and snap-back behavior will not be observed either. How-

ver, one can conclude from Figs. 8 and 9 that the pressure range for

aving snap-through in loading is a subset of the range for having the

nap-back in unloading. In fact, if the snapping in loading is observed,

he occurrence of snap-back in unloading is certain. 

Fig. 12 shows the admissible combinations of the applied pressure

nd thickness for existence of snapping, for different radii of the elec-
216 
rode. As can be observed for smaller radii of the electrode (for example,

 ∕ 𝑑 = 40 in Fig. 12 ) a wide range of pressures might result in snap-

hrough behavior. However, for larger electrodes the range of admissi-

le pressures drops. It is interesting that the required thickness, resulting

n snap-through, is always less than 33% of the gap size. For a thicker

lectrode, the primary instability, if observed, leads to direct pull-in. 

Although the snap-through has been illustrated for constant pres-

ures and a varying voltage, a similar behavior will be observed if the

oltage is preserved and the pressure is varied. The midpoint deflection

f the electrode as a function of the applied pressure, for different volt-

ges, is provided in Fig. 13 . It can be observed from Fig. 13 that for any

oltage larger than zero, at least one limit point exists in the equilib-

ium path (e.g. Point A for V ’= 0.45). However, for larger voltages, two

ther limit points might appear. For example, in Fig. 13 , in the curve

orresponding to V ’= 0.45, if we vary the pressure around Point B or C,

he system snaps from a positive to a negative deflection, or vice versa.

or very large voltages, on the other hand, varying the pressure over the

imit points leads to pull-in of the system. 
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Fig. 13. The midpoint deflection of the circular flexible electrode with thickness 

ℎ = 0 . 2 μm and radius 𝑅 = 100 μm as a function of the applied pressure. ——

stable equilibrium, - - - - unstable equilibrium. 

Fig. 14. The midpoint deflection of the circular flexible electrode obtained by 

nonlocal continuum theory with different material length scales as a function of 

applied voltage, for ℎ = 0 . 2 μm, 𝑅 = 100 μm, and 𝑃 ′ = 2 × 10 −9 . 
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It is worth to point out that the compliance of the system to a differ-

ntial pressure is minimum in case no voltage is applied to the capacitor.

ith a voltage increase the stiffness of the system drops, and finally at

 critical voltage, the system allows for snap-through behavior. When

nap-through occurs, the system has zero stiffness. The snap-through

nd bi-stable behavior noticed for pressurized clamped electrodes, can

e employed in sensing and actuation applications. This phenomenon

an benefit from high sensitivity due to low compliance, and robustness

nd simplicity of pull-in voltage measurements. 

Finally, it should be noted that the hypothetical properties that were

tilized for illustrating the results are close to those of gold or aluminum

hin films. For these two materials, scale effects are not significant at the

hicknesses used in the present study [26–29] . Therefore, provided that

e restrict the material to aluminum and gold or other similarly be-

aving materials, the classical continuum theory can be employed at

he discussed length scales. However, for smaller length scales, a size-

ependent continuum theory shall be utilized. Here, we briefly show the

esults of using a nonlocal plate theory together with the proposed for-

ulation to capture the effects of scaling on assessment of the stability

f the micro-plate. Fig. 14 shows how the predicted size dependent de-

ection varies with the applied voltage. For comparison the results for

ifferent material length scales from classical limit ( 𝑒 𝑎 ∕ ℎ = 0 ) to the
0 

217 
imit of application of the nonlocal theory ( 𝑒 0 𝑎 ∕ ℎ = 1 ) are illustrated

n this graph. It can be observed that the three limit points (primary,

econdary and ultimate limit points) still exist in the equilibrium path

f the micro-plate obtained by non-local theory. This figure shows that

hen the thickness of the micro-plate gets comparable to the material

ength scale, (i) the initial deflection increases, (ii) the critical voltages

ecrease, and (iii) the critical deflections slightly increase. It is note-

orthy that these results are qualitatively in agreement with the results

rovided by Ref. [30] which investigates the size-dependent dynamic

ull-in analysis of micro-plates using modified couple stress theory. 

. Conclusions 

In this paper, an analytical model was proposed for a circular flexible

lectrode in a parallel plate capacitor, while it is loaded with a differen-

ial pressure. Using this approximate solution, a stability analysis was

erformed on the effect of pressure on the critical voltage and deflec-

ion. In the proposed model, the geometrical non-linearity of the flexible

lectrode was taken into account. 

The results suggest that a pressure can trigger additional limit points

nd an unstable solution branch to occur. The post-instability behavior

fter reaching the first limit point, depends on load parameters, thick-

ess and radius of the electrode and the air gap. After the primary limit

oint, the system might snap to a new stable configuration, or, exhibit

ull-in. 

It is worth to mention here that when snap-through occurs, the sys-

em has very small stiffness, and is mechanically very compliant. This

ondition makes the system very suitable for sensing applications. In

articular, the sensitivity of the limit voltages to the pressure can be

mployed to measure the pressure. However, we stress here that even

ithout observation of instability, the combination of positive pressure

nd electrostatic load on the flexible electrode results in a high compli-

nce of the system, which may be very appealing for sensing applica-

ions. 

Moreover, to capture the size dependency of stability of a micro-plate

hile loaded with electrostatic and differential pressures, a formulation

n framework of nonlocal continuum theory has been suggested. This

ormulation includes the scaling effects of the thickness of the micro-

late and hence, it is suitable for being used for smaller length scales

here the application of classical continuum theory is limited. The re-

ults of the size-dependent model exhibit similar aspects of the mechan-

cal behavior of the plate such as the additional limit points and snap-

hrough behavior. Consequently, the demonstrated behavior could serve

s a basis for novel micro as well as nano electro mechanical systems.

sing the primary instability of pressurized electrodes in sensing or actu-

tion can benefit from the robustness and simplicity of pull-in measure-

ents, and in addition, it can benefit from the snap-through behavior

hich prevents the system from failure. 
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