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The heterogeneous information networks are omnipresent in real-world applications, which consist ofmultiple types of objects with
various rich semantic meaningful links among them. Community discovery is an effective method to extract the hidden structures
in networks. Usually, heterogeneous information networks are time-evolving, whose objects and links are dynamic and varying
gradually. In such time-evolving heterogeneous information networks, community discovery is a challenging topic and quite more
difficult than that in traditional static homogeneous information networks. In contrast to communities in traditional approaches,
which only contain one type of objects and links, communities in heterogeneous information networks contain multiple types
of dynamic objects and links. Recently, some studies focus on dynamic heterogeneous information networks and achieve some
satisfactory results. However, they assume that heterogeneous information networks usually follow some simple schemas, such as
bityped network and star network schema. In this paper, we propose a multityped community discovery method for time-evolving
heterogeneous information networks with general network schemas. A tensor decomposition framework, which integrates tensor
CP factorization with a temporal evolution regularization term, is designed tomodel themultityped communities and address their
evolution. Experimental results on both synthetic and real-world datasets demonstrate the efficiency of our framework.

1. Introduction

Most artificial online systems, such as World Wide Web,
social networks, and collaboration networks, can be repre-
sented as information networks, which describe the inter-
actions and relationships between numerous objects, for
example, hyperlinks between web pages, friendships between
users, and coauthorships between researchers. The informa-
tion network analysis is attracting an increasing number of
researchers from a variety of fields, such as social science
[1, 2], machine learning [3–5], and recommendation systems
[6, 7]. Community discovery is one of the most significant
focuses in information network analysis, which aims to dis-
cover interpretable hidden structures, patterns of interactions
among objects, and their evolution along with time in such

network. Although community detection in networks has
been studied for many years, most existing approaches are
designed to analyze static information network [1, 8, 9] and
homogeneous information network [10–12]. That is, there is
only one type of objects and links contained in the network,
and the objects and links are not time-varying.

However, in real-world scenarios, information networks
are typically heterogeneous and time-evolving. In contrast
to communities in traditional approaches, which only con-
tain one type of static objects and links, communities in
time-evolving heterogeneous information networks contain
multiple types of dynamic objects and links. For example,
the DBLP network, an open resource including most bib-
liographic information on computer science, is a typical
time-evolving heterogeneous information network. DBLP
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network contains four types of objects: author (𝐴), paper
(𝑃), venue (i.e., conference or journal) (𝑉), and term (𝑇).
The links between different object types represent different
semantic relationships, such as “an author wrote a paper”
and “a paper published in a conference.”Themost intriguing
communities in DBLP are research areas, which contain the
authors with similar research interests, the papers they wrote,
the conferences they attended, and the terms they used. With
the addition of new authors and newhot topics, the structures
of communities are dynamic and varying gradually.

Although the traditional community discovery methods
can be applied to time-evolving heterogeneous information
network by converting such network into a set of homo-
geneous information networks and aggregating the time-
evolving objects and links along with all timestamps into
one snapshot, the rich semantic relationships among different
object types and the dynamic property of the communities
are lost. In recent years, community discovery in time-
evolving heterogeneous information networks has emerged
as an outstanding challenge and attracted the attention of
many researchers. For instance, Sun et al. used net-clusters
[13] to describe the communities and proposed a Dirichlet
Process MixtureModel based algorithm named Evo-NetClus
[14, 15] to detect the communities in heterogeneous informa-
tion networks with star network schema. In the star network
schema, the links only appear between target objects and
attribute objects.

In this paper, we focus on community discovery in time-
evolving heterogeneous information networks with general
network schemas, which presents several challenges as fol-
lows:

(i) Heterogeneity: obviously, the communities in het-
erogeneous information networks are also heteroge-
neous, which contain multityped objects and links.

(ii) Time-varying: the communities are constantly chang-
ing, with new objects coming and old objects vanish-
ing. We assume that the evolution of communities at
two adjacent snapshots should be smooth.

(iii) Being suitable for general network schema: the net-
work schema of a heterogeneous information net-
work is often more complex than star network sche-
ma.The community discoverymethod should be able
to handle the general network schema.

(iv) Online mode: although some offline frameworks can
produce a global view of community evolution along
time by capturing all historical information, online
framework is more realistic.

To overcome the aforementioned challenges, we propose
a tensor decomposition framework for modeling the mul-
tityped communities and address their evolution in time-
evolving heterogeneous information networks with general
network schemas. Essentially, a time-evolving heterogeneous
information network consists of a sequence of network
snapshots. Wemodel the time-evolving heterogeneous infor-
mation network as a sequence of multiway arrays, that is,
tensors. Tensor is a highly effective and veracious approach
for modeling high-mode data, which can naturally express

the complex structures and interactions in heterogeneous
information networks. By integrating the tensor CP factor-
ization with a temporal evolution regularization term, the
multityped communities and their evolution along time can
be formalized as a tensor decomposition problem. A second-
order stochastic gradient descent algorithm is presented to
solve the problem, and the experimental results on both
synthetic and real-world datasets demonstrate the efficiency
of our framework.

The rest of this paper is organized as follows. In Section 2,
we discuss the related work on community discovery in time-
evolving heterogeneous information networks. Section 3 for-
malizes the problem as tensor decomposition, which inte-
grates tensor CP factorization with a temporal evolution reg-
ularization term. A second-order stochastic gradient descent
algorithm is presented in Section 4. Section 5 discusses some
implementation issues, including dead and new objects,
online deployment, and time complexity analysis. The exper-
imental results on both synthetic and real-world datasets are
presented in Section 6. Finally, the conclusions are drawn in
Section 7.

2. Related Work

Community discovery is a fundamental technique of infor-
mation network analysis. Many creative methods for discov-
ering communities in static and homogeneous network have
been deployed in the past decades. Stochastic block model
[16, 17] and mixed membership model [18] are powerful
probabilistic community discovery models for analyzing
static networks. These two models, however, lack capability
of time-evolving networks and cannot be directly used for
heterogeneous information networks.

Tracking the evolution of communities [11, 19] takes the
dynamic properties in time-evolving networks into consid-
eration. A commonly used framework [20–22] is to apply
the static community detection algorithms for each snap-
shot of the time-evolving networks and then generate the
evolution of communities by computing the match between
two adjacent snapshots. Another attempt to track community
evolution in time-evolving networks is multiobjective opti-
mization model [23–25], which integrates the measurement
of community quality and temporal smoothness into a
multiobjective cost function. Nevertheless, thesemethods are
designed for homogeneous networks.

Recently, the community discovery in heterogeneous
information networks has become a hot topic. Tang et al.
introduced the community evolution in multimode network
and proposed a framework which partitioned the multimode
network into a set of bityped networks [26, 27]. Sun et al. used
net-clusters [13] to describe the communities and proposed
Evo-NetClus [14, 15] to detect the communities automatically.
However, the net-clusters and Evo-NetClus are only suitable
for star network schema, where the links only appear between
target objects and attribute objects.

To analyze the heterogeneous information networks
with general network schemas, tensor factorization offers a
promising way for extracting hidden communities in such
networks. Tensor is an effective expression of complicated
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and interpretable structures among different dimensions in
heterogeneous information network. For instance, Lin et al.
proposed MetaGraph Factorization [28, 29] to detect the
communities from dynamic social networks. In addition,
a tensor factorization based mixed membership framework
[30] simulates the generation of communities asDirichlet dis-
tribution, which can identify the communities automatically.
However, this method needs to partition the heterogeneous
network into four parts artificially and organize them as
a 3-star network. Meanwhile, the 3-star count tensor must
be converted to an orthogonal symmetric tensor. Thus the
capability of this method to deal with time-evolving hetero-
geneous information networks could be degraded.

Our prior works in [31–33] have also focused on clus-
tering heterogeneous information networks based on tensor
decomposition, which can cluster multityped objects simul-
taneously in heterogeneous information networks. However,
these methods treat the heterogeneous information networks
as static networks and integrate the time-evolving networks
into one snapshot, which lose the dynamic properties among
multityped objects and links.

Another line related to our work is on the incremental
tensor factorization [34]. Though tensor factorization has
been widely studied in many domains, such as image pro-
cessing [35] and computer vision [36], the incremental tensor
factorization is still a challenging intellectual task [34]. Sun
et al. proposed a general framework of incremental tensor
analysis [34] for mining higher-order data streaming, which
included three methods: dynamic tensor analysis, streaming
tensor analysis, and window-based tensor analysis. Even
though the higher-order data streaming can be effectively
analyzed in such framework, the smooth evolution of latent
patterns cannot be guaranteed.

3. Problem Formulation

Following the works by Sun et al. in [15] and our prior work
[33], we first introduce some definitions of heterogeneous
information networks and tensor construction from a given
heterogeneous information network.

A heterogeneous information network [15] is a graph 𝐺 =(𝑉, 𝐸) consisting of more than one type of objects 𝑉 or
links 𝐸. Assume that 𝑉 belongs to 𝑁 object types V ={V(𝑛)}𝑁𝑛=1, and 𝐸 belongs to 𝑀 link types E = {R(𝑚)}𝑀𝑚=1.
That is, in a heterogeneous information network, 𝑁 > 1 or𝑀 > 1. Otherwise, the network becomes a homogeneous
information network.

TheV(𝑛) indicates the set of objects from the 𝑛th type.We
denote an arbitrary object inV(𝑛) as V(𝑛)𝑖𝑛 , for 𝑖𝑛 = 1, 2, . . . , 𝐼𝑛;𝑛 = 1, 2, . . . , 𝑁, where 𝐼𝑛 is the number of objects in type
V(𝑛); that is, 𝐼𝑛 = |V(𝑛)|. Thus, the total number of objects
in the heterogeneous information network 𝐺 is given by 𝐼 =∑𝑁𝑛=1 𝐼𝑛.

The network schema [15] for a given heterogeneous
information network 𝐺 = (𝑉, 𝐸) is a metatemplate that
indicates the formation of object types V and link types E in
the network. The network schema is denoted by 𝑆𝐺 = {V ,E}.
In other words, 𝐺 = (𝑉, 𝐸) is an instance of 𝑆𝐺 = {V ,E}.

Publish

Paper

Author

Venue

ContainWrite

Term

Figure 1: A typical star network schema extracted from DBLP
network.

For example, the star network schema shown in Figure 1 is
a typical network schema, in which four types of objects are
contained, that is, author, paper, venue, and term. In Figure 1,
paper is target object, and the others are attribute objects.The
feature of star network schema is that the links in the network
only appear between target object and attribute objects.

A gene-network [33], denoted by𝜙, is aminimum instance
of 𝑆𝐺 = {V ,E} in the set of subnetworks of 𝐺 = (𝑉, 𝐸).
It is noteworthy that a gene-network is an integrated se-
mantic relation in the heterogeneous information network,
which is quite different from gene regulatory network in
Bioinformatics [37]. For example, a gene-network in
DBLP network, denoted by 𝜙 = ({V(𝐴)𝑖 , V(𝑃)𝑗 , V(𝑉)𝑙 , V(𝑇)𝑚 },{⟨V(𝐴)𝑖 , V(𝑃)𝑗 ⟩, ⟨V(𝑃)𝑗 , V(𝑉)𝑙 ⟩, ⟨V(𝑃)𝑗 , V(𝑇)𝑚 ⟩}), represents an integrated
semantic relation; that is, “an author V(𝐴)𝑖 writes a paper V(𝑃)𝑗 ,
which contains the term V(𝑇)𝑚 and is published in the venue
V(𝑉)𝑙 .” For simplicity, we can mark the gene-network 𝜙 by the
subscripts of objects in 𝜙, that is, 𝜙𝑖,𝑗,𝑙,𝑚.

Following our prior work [33], a 𝑁th order tensor X ∈
R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 can be constructed according to the distribution
of gene-networks, where eachmode ofX represents one type
of objects in the network 𝐺. An arbitrary element 𝑥𝑖1𝑖2⋅⋅⋅𝑖𝑁 ∈{0, 1} is an indicator of whether the corresponding gene-
network 𝜙𝑖1 ,𝑖2,...,𝑖𝑁 exists, where 𝑖𝑛 = 1, 2, . . . , 𝐼𝑛, for 𝑛 =1, 2, . . . , 𝑁, is the index of an object in typeV(𝑛).

𝑥𝑖1𝑖2 ⋅⋅⋅𝑖𝑁 = {{{
1, if ∃𝜙𝑖1 ,𝑖2 ,...,𝑖𝑁 ;0, otherwise. (1)

The time-evolving heterogeneous information networks
can be segmented into a network sequence according to
a series of snapshots. The heterogeneous information net-
work associated with timestamp 𝑡 can be denoted as𝐺(𝑡) = (𝑉(𝑡), 𝐸(𝑡)); then the network sequence is GS =(𝐺(1), 𝐺(2), . . . , 𝐺(𝑡), . . .). Thereby, the tensor representation
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Author
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Figure 2:An instance ofmultityped communities inDBLPnetwork.

of the network sequence is X(1),X(2), . . . ,X(𝑡), . . .. Actually,
X(𝑡) ∈ {0, 1}𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is the hyper-adjacency tensor of the
given heterogeneous information network at the 𝑡th times-
tamp, which indicates the distribution of gene-networks.

The community in heterogeneous information network is
called multityped community, which is more complex than
that in homogeneous information network. A multityped
community is a set of gene-networks that share the same
features and connect together. In other words, a multityped
community contains all associated types of objects and links.
As shown in Figure 2, the multityped communities about
research areas in DBLP network consist of the authors
with similar research interests, the papers they wrote, the
conferences they attended, and the terms they used. In
each multityped community, the authors, papers, venues,
and terms are connected to each other and organized as
gene-networks. In fact, the objects may belong to several
multityped communities since some gene-networks coming
from different multityped communities may share the same
objects. For example, a famous scientist can cooperate with
other researchers within different areas by publishing many
interdisciplinary papers; that is, the famous scientist will be
contained inmany gene-networks across differentmultityped
communities.

The problem of multityped community discovery from
such a network sequence can be decomposed into two
subproblems: (A) detect the multityped communities in each
network snapshot, and (B)model the evolution ofmultityped
communities over time.

(A) Multityped Community Discovery in Each Network Snap-
shot. Without loss of generality, we take the 𝑡th network

snapshot 𝐺(𝑡) as an example. Let {C(𝑡)𝑘 }𝐾𝑘=1 denote 𝐾 hidden
multityped communities in the network 𝐺(𝑡) and 𝑢(𝑛,𝑡)𝑖𝑛,𝑘 repre-
sent the probability that the 𝑖𝑛th object in type V(𝑛) belongs
to the 𝑘th community at the 𝑡th timestamp. Denote

u(𝑛,𝑡)𝑘 = [𝑢(𝑛,𝑡)1,𝑘 , 𝑢(𝑛,𝑡)2,𝑘 , . . . , 𝑢(𝑛,𝑡)𝐼𝑛 ,𝑘 ]⊤ ∈ R
𝐼𝑛 . (2)

Following our prior work [33], a multityped community can
be represented as

C
(𝑡)
𝑘 = u(1,𝑡)𝑘 ∘ u(2,𝑡)𝑘 ∘ ⋅ ⋅ ⋅ ∘ u(𝑁,𝑡)𝑘 , (3)

where ∘ is the outer product of two vectors. Actually, the
multityped community C

(𝑡)
𝑘 is a rank-one tensor with the

same size of X(𝑡). Equation (3) indicates the gene-networks
and the probability of associated objects belonging to the 𝑘th
community.Thereby, we can approximateX(𝑡) through a sum
of 𝐾 rank-one tensors; that is,

X
(𝑡) ≈ 𝐾∑
𝑘=1

C
(𝑡)
𝑘 = 𝐾∑
𝑘=1

u(1,𝑡)𝑘 ∘ u(2,𝑡)𝑘 ∘ ⋅ ⋅ ⋅ ∘ u(𝑁,𝑡)𝑘 . (4)

Obviously, (4) is a tensor CP factorization. Let factor
matrix U(𝑛,𝑡) = [u(𝑛,𝑡)1 , u(𝑛,𝑡)2 , . . . , u(𝑛,𝑡)𝐾 ] ∈ R𝐼𝑛×𝐾 be the latent
community membership matrix for the 𝑛th type of objects at
timestamp 𝑡, where 𝑛 = 1, 2, . . . , 𝑁. We denote

⟦U(1,𝑡),U(2,𝑡), . . . ,U(𝑁,𝑡)⟧
≡ 𝐾∑
𝑘=1

u(1,𝑡)𝑘 ∘ u(2,𝑡)𝑘 ∘ ⋅ ⋅ ⋅ ∘ u(𝑁,𝑡)𝑘 . (5)

Byminimizing the Frobenius norm of the difference between
X(𝑡) and its CP approximation, the multityped community
discovery in each network snapshot can be formulated as an
optimization problem:

min 12 󵄩󵄩󵄩󵄩󵄩X(𝑡) − ⟦U(1,𝑡),U(2,𝑡), . . . ,U(𝑁,𝑡)⟧󵄩󵄩󵄩󵄩󵄩2𝐹 ,
s.t. 𝐾∑

𝑘=1

𝑢(𝑛,𝑡)𝑖𝑛,𝑘 = 1, ∀𝑛, ∀𝑖𝑛,
𝑢(𝑛,𝑡)𝑖𝑛,𝑘 ∈ [0, 1] , ∀𝑛, ∀𝑖𝑛, ∀𝑘,
𝐼𝑛∑
𝑖𝑛=1

𝑢(𝑛,𝑡)𝑖𝑛,𝑘 > 0, ∀𝑛, ∀𝑘,
(6)

where 𝑖𝑛 = 1, 2, . . . , 𝐼𝑛; 𝑛 = 1, 2, . . . , 𝑁; and 𝑘 = 1, 2, . . . , 𝐾.
The first and second constraints in (6) guarantee that 𝑢(𝑛,𝑡)𝑖𝑛 ,𝑘 is
the probability. The last constraint in (6) ensures that each
multityped community consists of all associated types of
objects.

(B) Multityped Community Evolution over Time. Equation
(6) just performs the multityped community discovery at
each timestamp independently and does not consider their
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smooth evolution at two adjacent snapshots. We denote the
objective function in (6) as 𝑓(𝑡); that is,

𝑓(𝑡) = 12 󵄩󵄩󵄩󵄩󵄩X(𝑡) − ⟦U(1,𝑡),U(2,𝑡), . . . ,U(𝑁,𝑡)⟧󵄩󵄩󵄩󵄩󵄩2𝐹 . (7)

In order to ensure that the evolution of the multityped
communities is smooth, a temporal evolution regularization
term 𝑔(𝑡) is introduced.

𝑔(𝑡) = 𝜆2 𝑁∑𝑛=1 󵄩󵄩󵄩󵄩󵄩U(𝑛,𝑡) − U(𝑛,𝑡−1)󵄩󵄩󵄩󵄩󵄩2𝐹 , (8)

where 𝜆 > 0 is a temporally regularized parameter. Indeed,𝑔(𝑡) is a first-order Markov assumption, which forces the
multityped communities at current timestamp to resemble
that at previous snapshot.

Denote the objective function as

L
(𝑡) = 𝑓(𝑡) + 𝑔(𝑡)
= 12 󵄩󵄩󵄩󵄩󵄩X(𝑡) − ⟦U(1,𝑡),U(2,𝑡), . . . ,U(𝑁,𝑡)⟧󵄩󵄩󵄩󵄩󵄩2𝐹
+ 𝜆2 𝑁∑𝑛=1 󵄩󵄩󵄩󵄩󵄩U(𝑛,𝑡) − U(𝑛,𝑡−1)󵄩󵄩󵄩󵄩󵄩2𝐹 .

(9)

Therefore, the problem of multityped community discovery
in time-evolving heterogeneous information networks can be
formulated as

min
U(1,𝑡) ,U(2,𝑡) ,...,U(𝑁,𝑡)

L
(𝑡)

s.t. 𝐾∑
𝑘=1

𝑢(𝑛,𝑡)𝑖𝑛 ,𝑘 = 1, ∀𝑛, ∀𝑖𝑛,
𝑢(𝑛,𝑡)𝑖𝑛,𝑘 ∈ [0, 1] , ∀𝑛, ∀𝑖𝑛, ∀𝑘,
𝐼𝑛∑
𝑖𝑛=1

𝑢(𝑛,𝑡)𝑖𝑛 ,𝑘 > 0, ∀𝑛, ∀𝑘.
(10)

Here, {U(𝑛,𝑡−1)}𝑁𝑛=1 are constants at current timestamp 𝑡,
which are solved at previous timestamp.When 𝑡 = 1, we have
no a priori knowledge about themultityped communities.We
set U(𝑛,𝑡=0) = 0, for 𝑛 = 1, 2, . . . , 𝑁. Thus, 𝑔(𝑡=1) becomes

𝑔(𝑡=1) = 𝜆2 𝑁∑𝑛=1 󵄩󵄩󵄩󵄩󵄩U(𝑛,𝑡)󵄩󵄩󵄩󵄩󵄩2𝐹 . (11)

It is worth noting that 𝑔(𝑡=1) is also a Tikhonov regularization
term [38], which ensures the sparsity of the factor matrices
and makes the optimization solution easy to be found.
Moreover, when 𝑡 = 1, problem (10) degrades into the same
form as we proposed in [33]. That is, the work in [33] is the
special case for static networks.

4. Algorithm

The stochastic gradient descent algorithm is an efficient tool
for optimizing tensor factorization [33, 39]. However, the
first-order stochastic gradient descent algorithm has a poor
convergence speed near the optimal point. It has been proven
that the second-order stochastic algorithm has not only a
faster convergence speed but also better robustness with
respect to the learning rate [33]. The SOSClus proposed in
[33] is a second-order stochastic algorithm which has been
well studied for the case of 𝑡 = 1 in (10), that is, static
heterogeneous information networks. Here, we present a
second-order stochastic gradient descent algorithm, named
SOSComm, for the time-evolving case, which is an extension
of SOSClus. In this section, some multilinear operators and
tensor algebra for tensor factorization will be used, which can
be found in [40].

When 𝑡 > 1, the snapshot of the current heterogeneous
information network X(𝑡) and the previous community
membership matrices {U(𝑛,𝑡−1)}𝑁𝑛=1 are known. To compute
the factor matrix U(𝑛,𝑡), we can rewrite L(𝑡) in (10) by
matricization of X(𝑡) along the 𝑛th mode. According to (7),
(8), and (9), we have

L
(𝑡)
(𝑛) = 𝑓(𝑡)(𝑛) + 𝑔(𝑡)(𝑛), (12)

where

𝑓(𝑡)(𝑛) = 12 󵄩󵄩󵄩󵄩󵄩󵄩X(𝑡)(𝑛) − U(𝑛,𝑡) (⊙(/𝑛)U)⊤󵄩󵄩󵄩󵄩󵄩󵄩2𝐹 ,𝑔(𝑡)(𝑛) = 𝑔(𝑡). (13)

TheX(𝑡)(𝑛) ∈ R
𝐼𝑛×∏

𝑁

𝑚=1
𝑚 ̸=𝑛
𝐼𝑚
is the matricization ofX(𝑡) along the𝑛thmode, and the symbol⊙ indicates theKhatri-Rao product

of twomatrices. Given twomatricesA ∈ R𝐼×𝐾 andB ∈ R𝐽×𝐾,
their Khatri-Rao product is amatrix of size 𝐼𝐽×𝐾 and defined
by

A ⊙ B = [[[[[[[

𝑎11b:,1 𝑎12b:,2 ⋅ ⋅ ⋅ 𝑎1𝐾b:,𝐾𝑎21b:,1 𝑎22b:,2 ⋅ ⋅ ⋅ 𝑎2𝐾b:,𝐾... ... d
...𝑎𝐼1b:,1 𝑎𝐼2b:,2 ⋅ ⋅ ⋅ 𝑎𝐼𝐾b:,𝐾

]]]]]]]
, (14)

where 𝑎𝑖𝑘, 𝑖 = 1, 2, . . . , 𝐼, 𝑘 = 1, 2, . . . , 𝐾, is an element of
A, and b:,𝑘 ∈ R𝐽, 𝑘 = 𝑘 = 1, 2, . . . , 𝐾, is a column of B. In
particular, we denote the Khatri-Rao product of a series of
matrices except U(𝑛,𝑡) as

⊙(/𝑛)U = U(𝑁,𝑡) ⊙ ⋅ ⋅ ⋅ ⊙ U(𝑛+1,𝑡) ⊙ U(𝑛−1,𝑡) ⊙ ⋅ ⋅ ⋅ ⊙ U(1,𝑡). (15)

Since the partial derivative of𝑓(𝑡)(𝑛) with respect toU(𝑛,𝑡) has
been given in [33], we introduce the result directly.

𝜕𝑓(𝑡)(𝑛)𝜕U(𝑛,𝑡) = −X(𝑡)(𝑛) (⊙(/𝑛)U) + U(𝑛,𝑡)Γ(𝑛,𝑡), (16)
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where

Γ(𝑛,𝑡) ≡ (⊙(/𝑛)U)⊤ (⊙(/𝑛)U)
= ((U(1,𝑡))⊤U(1,𝑡)) ∗ ⋅ ⋅ ⋅ ∗ ((U(𝑛−1,𝑡))⊤U(𝑛−1,𝑡))
∗ ((U(𝑛+1,𝑡))⊤U(𝑛+1)) ∗ ⋅ ⋅ ⋅
∗ ((U(𝑁,𝑡))⊤U(𝑁,𝑡)) ,

(17)

and symbol ∗ is Hadamard product, also named element-
wise product of two matrices with the same dimension.

The partial derivative of 𝑔(𝑡)(𝑛) with respect to U(𝑛,𝑡) is

𝜕𝑔(𝑡)(𝑛)𝜕U(𝑛,𝑡) = 𝜆𝜕 󵄩󵄩󵄩󵄩󵄩U(𝑛,𝑡) − U(𝑛,𝑡−1)󵄩󵄩󵄩󵄩󵄩2𝐹2𝜕U(𝑛,𝑡)
= 𝜆𝜕Tr ((U(𝑛,𝑡) − U(𝑛,𝑡−1)) (U(𝑛,𝑡) − U(𝑛,𝑡−1))⊤)2𝜕U(𝑛,𝑡)
= 𝜆𝜕Tr (U(𝑛,𝑡) (U(𝑛,𝑡))⊤)2𝜕U(𝑛,𝑡)
− 𝜆𝜕Tr (U(𝑛,𝑡) (U(𝑛,𝑡−1))⊤)𝜕U(𝑛,𝑡)
+ 𝜆𝜕Tr (U(𝑛,𝑡−1) (U(𝑛,𝑡−1))⊤)2𝜕U(𝑛,𝑡)= 𝜆 (U(𝑛,𝑡) − U(𝑛,𝑡−1)) .

(18)

Therefore, the partial derivative of L(𝑡)(𝑛) with respect to
U(𝑛,𝑡) is given by

𝜕L(𝑡)(𝑛)𝜕U(𝑛,𝑡) = −X(𝑡)(𝑛) (⊙(/𝑛)U) + U(𝑛,𝑡) (Γ(𝑛,𝑡) + 𝜆I)
− 𝜆U(𝑛,𝑡−1), (19)

where I is a unit matrix. And the second-order partial
derivative ofL(𝑡)(𝑛) with respect to U(𝑛,𝑡) can be obtained as

𝜕2L(𝑡)(𝑛)𝜕2U(𝑛,𝑡) = Γ(𝑛,𝑡) + 𝜆I. (20)

Recalling the update rule of the second-order stochastic
algorithm [33, 41], we have

U(𝑛,𝑡) ←󳨀 U(𝑛,𝑡) − 𝜂( 𝜕2L(𝑡)(𝑛)𝜕2U(𝑛,𝑡))
−1 𝜕L(𝑡)(𝑛)𝜕U(𝑛,𝑡)

= 𝜂 (X(𝑡)(𝑛) (⊙(/𝑛)U) + 𝜆U(𝑛,𝑡−1)) (Γ(𝑛,𝑡) + 𝜆I)−1
+ (1 − 𝜂)U(𝑛,𝑡),

(21)

where 𝜂 is named learning rate or step size with a positive
number.

When 𝑡 = 1, (21) has the same form as SOSClus. That
is, the SOSComm is an extension of SOSClus for time-
evolving heterogeneous information networks. To satisfy the
constraints in (10), the factor matrices derived by (21) should
be normalized as

𝑢(𝑛,𝑡)𝑖𝑛 ,𝑘 ←󳨀 𝑢(𝑛,𝑡)𝑖𝑛,𝑘∑𝐾𝑘=1 𝑢(𝑛,𝑡)𝑖𝑛,𝑘 . (22)

For the current network 𝐺(𝑡), based on the tensor rep-
resentation X(𝑡) and the previous community membership
matrices {U(𝑛,𝑡−1)}𝑁𝑛=1, the alternating optimization can be
used to updateU(𝑛,𝑡) according to (21) and (22), while all other
variables are fixed. The community membership matrices{U(𝑛,𝑡)}𝑁𝑛=1 obtained by (21) and (22) are the approximations.
We also need to recover the discrete communitymembership
matrices from the approximations in some cases, which can
be achieved by applying𝐾-means to the factormatrices. Con-
veniently, we can simply assign each object to the multityped
community which has the largest entry in the corresponding
row of factor matrix. After that, the multityped communities
consist of gene-networks that can be extracted according
to (3). Therefore, the pseudocode of SOSComm is given in
Algorithm 1.

5. Implementation Issues

5.1. New Objects Coming and Old Objects Vanishing. In
realistic scenarios, objects in time-evolving heterogeneous
information networks have various lifecycles. With the life-
cycles beginning and end, new objects are born and join
the network while old objects die and leave. The framework
designed above does not consider the various lifecycles of
objects, which assumes that the objects in a network remain
unchanged and keep active. Here, we discuss more realistic
cases that new objects coming and old objects vanishing in a
time-evolving heterogeneous information network.

Note that the tensor representation X(𝑡) is a distribution
of gene-networks in the heterogeneous information network,
whose elements indicate whether the gene-networks exist
or not. If the lifecycle of a new object V(𝑛)𝐼𝑛+1 begins at the𝑡th timestamp, it will join the network and become active.
Since the size of U(𝑛,𝑡) becomes (𝐼𝑛 + 1) × 𝐾 and only
the previous factor matrix U(𝑛,𝑡−1) is used to regularize the
temporal smoothness, we can add an all-zero row to the
corresponding position on U(𝑛,𝑡−1) when updating U(𝑛,𝑡).

If the lifecycle of a specified object V(𝑛)𝑖𝑛 ends at the 𝑡th
timestamp, it will not appear in any gene-network in the
network. According to (1), 𝑥:,...,𝑖𝑛,...,: = 0. That is, each
element in the hyperplane, which is perpendicular to the𝑛th dimensionality and passes the 𝑖𝑛th point of the 𝑛th
dimensionality in the tensor space, is zero. Therefore, we set
all entries in the 𝑖𝑛th row ofU(𝑛,𝑡) equal to zero; that is, 𝑢(𝑛,𝑡)𝑖𝑛 ,𝑘 =0 for 𝑘 = 1, 2, . . . , 𝐾. However, this operation makes the
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Input: the tensor representation of the current network
X(𝑡), the number of multi-typed communities 𝐾,
temporally regularization parameter 𝜆, the community
membership matrices for the previous network snapshot{U(𝑛,𝑡−1)}𝑁𝑛=1, and maximum iterations MaxIter.

Output: community membership matrices for the current
network snapshot {U(𝑛,𝑡)}𝑁𝑛=1 and multi-typed
communities {C(𝑡)𝑘 }𝐾𝑘=1.

(1) Set {U(𝑛,𝑡)}𝑁𝑛=1 ← {U(𝑛,𝑡−1)}𝑁𝑛=1;
(2) Set iter ← 1;
(3) repeat
(4) for 𝑛 ← 1 to 𝑁 do
(5) Set 𝜂 ← 1/(iter + 1);
(6) Update U(𝑛,𝑡) according to (21);
(7) Normalize U(𝑛,𝑡) according to (22);
(8) end for
(9) Set iter ← iter + 1;
(10) until L(𝑡) unchanged or iter = MaxIter
(11) Recover the discrete community membership matrices

from {U(𝑛,𝑡)}𝑁𝑛=1 (optional).
(12) Extract the multi-typed communities {C(𝑡)𝑘 }𝐾𝑘=1 according to (3).

Algorithm 1: SOSComm.

factor matrixU(𝑛,𝑡) dissatisfy the first constraint in (10). Since
our framework is an approximation and the dead objects will
never appear in any multityped community (according to
(3)), we can loosen the first constraint in (10) as

𝐾∑
𝑘=1

𝑢(𝑛,𝑡)𝑖𝑛,𝑘 ≤ 1, ∀𝑛, ∀𝑖𝑛, (23)

which does not affect the performance of recovering the
discrete community membership matrices from {U(𝑛,𝑡)}𝑁𝑛=1
and extracting the multityped communities {C(𝑡)𝑘 }𝐾𝑘=1.
5.2. Online Deployment. The snapshots in the network
sequence of time-evolving heterogeneous information net-
works are coming in a streamway, whichmakes the storage of
the whole network sequence unrealistic. Fortunately, we only
use the new network snapshot and the previous community
membership matrices to update the model, which makes
SOSComm easy to deploy online. However, three issues
should be taken into account.

Firstly, the initialization of factor matrices has a large
impact on the efficiency of SOSComm. A good initialization
may reduce the number of iterations significantly. In practice,
previous communitymembershipmatrices served as the start
when updating the current factor matrices is a good choice.
That is, set

{U(𝑛,𝑡)}𝑁
𝑛=1

←󳨀 {U(𝑛,𝑡−1)}𝑁
𝑛=1

, (24)

in the beginning of the algorithm. See line (1) in Algorithm 1.
Secondly, the second-order stochastic gradient descent

algorithm has a fast convergence speed [33, 41] with good
initialization, which will be proven in the experiments in

Section 6. And the factor matrices obtained by SOSComm
are the approximations to community membership matrices.
Therefore, we can set the maximum iteration to be a very
small positive integer.

Finally, the sparsity of heterogeneous information net-
work should be used to speed up the calculation. According
to (21), the primary computation cost for updating U(𝑛,𝑡) is
calculating a series of Khatri-Rao products, that is, (⊙(/𝑛)U).
If we store all the elements of X(𝑡) and calculate the Khatri-
Rao product of the 𝑁 − 1 factor matrices orderly, it will
be a very expensive calculation because the largest scale of
intermediate results will reach 𝐾 × ∏𝑁𝑛=1𝐼𝑛. Actually, the
heterogeneous information networks are usually very sparse;
namely, a great amount of elements in tensorX are zeros. By
consideringX(𝑡)(𝑛)(⊙(/𝑛)U) ∈ R𝐼𝑛×𝐾 as a whole, the elements of
X
(𝑡)
(𝑛)(⊙(/𝑛)U) are given by

(X(𝑡)(𝑛) (⊙(/𝑛)U))𝑖𝑛,𝑘 = ∑
{𝑖𝑚}
𝑁

𝑙=1
𝑙 ̸=𝑛

(𝑥𝑖𝑛,∏𝑁𝑙=1
𝑙 ̸=𝑛

𝑖𝑙

𝑁∏
𝑙=1
𝑙 ̸=𝑛

𝑢(𝑙,𝑡)𝑖𝑙 ,𝑘). (25)

Obviously, when 𝑥𝑖𝑛 ,∏𝑁𝑙=1
𝑙 ̸=𝑛

𝑖𝑙
= 0, we can directly set

(X(𝑡)(𝑛)(⊙(/𝑛)U))𝑖𝑛,𝑘 = 0; that is, the following calculation of
Khatri-Rao products is unnecessary.Thus, by considering the
sparsity, only nonzero elements in X need to be stored and
calculated.

5.3. Time Complexity Analysis. The primary computation
cost for updating the factor matrices in each iteration of SOS-
Comm is calculating three part: X(𝑡)(𝑛)(⊙(/𝑛)U), (Γ(𝑛,𝑡) + 𝜆I)−1,
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and the product of them. Firstly, for calculatingX(𝑡)(𝑛)(⊙(/𝑛)U),
only nonzero elements inX need to be concerned.Therefore,
the time complexity is 𝑂(𝑛𝑛𝑧(X)𝐼𝑛𝐾), where 𝑛𝑛𝑧(X) is the
number of nonzero elements inX and also is the total num-
ber of gene-networks in the network. Secondly, according
to (17), since a series of matrix-matrix multiplications and
Hadamard products are used to replace numerous Khatri-
Rao products, calculating Γ(𝑛,𝑡) costs 𝑂((𝐼 − 𝐼𝑛)𝐾2), where𝐼 = ∑𝑛 𝐼𝑛 is the total number of objects in the network.
Thus, the time complexity for calculating the inverse matrix
of (Γ(𝑛,𝑡) + 𝜆I) is 𝑂(((𝐼 − 𝐼𝑛)𝐾2) + 𝐾3). Finally, the product of
X
(𝑡)
(𝑛)(⊙(/𝑛)U) + 𝜆U(𝑛,𝑡−1) and (Γ(𝑛,𝑡) + 𝜆I)−1 is a matrix-matrix

multiplication, where (X(𝑡)(𝑛)(⊙(/𝑛)U) + 𝜆U(𝑛,𝑡−1)) ∈ R𝐼𝑛×𝐾 and((Γ(𝑛,𝑡) + 𝜆I)−1) ∈ R𝐾×𝐾, so, the time complexity is 𝑂(𝐼𝑛𝐾2).
To summarize, the time complexity for SOSComm in

each iteration is𝑂(𝑛𝑛𝑧(X)𝐼𝐾+𝑁𝐼𝐾2+𝑁𝐾3), where 𝑛𝑛𝑧(X)
is the total number of gene-networks, 𝐼 is the total number of
objects,𝑁 is the number of object types, and𝐾 is the number
of multityped communities. Since 𝐾 ≪ 𝐼 and 𝑁 ≪ 𝐼, the
time complexity for SOSComm is nearly 𝑂(𝑛𝑛𝑧(X)𝐼).
6. Experiments and Results

In this section, the proposed SOSComm is evaluated on
both synthetic and real-world datasets. We demonstrate the
efficiency of SOSComm formultityped community discovery
in time-evolving heterogeneous information networks with
general network schemas and further compare the per-
formances with several other state-of-the-art community
discovery methods. The experiments are simulated by
MATLAB R2015a (version 8.5.0, 64-bit), with the MATLAB
Tensor Toolbox (version 2.6, http://www.sandia.gov/∼
tgkolda/TensorToolbox/). The code and datasets used in ex-
periments are available online https://github.com/tianshuil-
ideyu/SOSComm.

6.1. Experiments on Synthetic Datasets

6.1.1. Dataset Description. Typically, the real-world heteroge-
neous information networks are often without ground-truth
of community membership. Furthermore, due to the large
scale and sparsity, it is impossible to manually assign the
community labels to objects in a real-world network. There-
fore, several synthetic networks with detailed community
structures are resorted to demonstrate the effectiveness of
SOSComm.

We construct four synthetic networks with different
parameters as the initial networks, that is, the network
snapshots at 𝑡 = 1. In order to obtain more realistic
synthetic networks, the interactions between objects are
assumed to follow Zipf ’s law (see details online: https://en
.wikipedia.org/wiki/Zipf ’s law), which denotes the distribu-
tion of gene-networks in networks. The parameters are as
follows, and the details of the synthetic networks at the first
timestamp are shown in Table 1:

(i) 𝑁 is the number of object types in networks.
(ii) 𝐾 is the number of multityped communities.

Table 1: The synthetic datasets.

Synthetic
datasets 𝑁 𝐾 𝑆 𝐷
Syn1 2 2 1𝑀 = 1000 × 1000 0.1%
Syn2 2 4 10𝑀 = 1000 × 10000 0.01%
Syn3 4 2 100𝑀 = 100 × 100 × 100 × 100 0.1%
Syn4 4 4 1000𝑀 = 100 × 100 × 100 × 1000 0.01%

(iii) 𝑆 is the network scale, and 𝑆 = 𝐼1 × 𝐼2 × ⋅ ⋅ ⋅ × 𝐼𝑁.
(iv) 𝐷 is the tensor density, and𝐷 = 𝑛𝑛𝑧(X)/𝑆.
To simulate the smooth evolution of multityped com-

munities, each synthetic network is evolved into a network
sequence with 10 timestamps. Within each evolution, a per-
centage (from 5% to 10%) of the objects from each type
change their community memberships by interacting with
other objects in different communities randomly at each
timestamp.

For completeness, we also randomly generate from 10%
to 15% new objects coming and old objects vanishing in Syn4
at each timestamp. With new objects coming and interacting
with other objects, many new gene-networks are generated.
Meanwhile, with old objects vanishing, they will not appear
in any gene-network in the network.

6.1.2. Comparative Methods and Experimental Setting. The
performances of SOSComm on synthetic networks are com-
pared with two state-of-the-art baselines:

(1) SOSClus (see [33]): an offline clustering framework
for static heterogeneous information networks, which
treats every snapshot in the network sequence inde-
pendently without the temporal evolution regulariza-
tion term.

(2) CEMNTR (see [26, 27]): a framework of commu-
nity evolution in multimode network with temporal
evolution regularization term, denoted as CEMNTR.
CEMNTR partitions the multimode network into a
set of bityped networks and detects communities in
each bityped network via block model approximation
with temporal regularization.

Both the baselines and SOSComm share the same stop-
ping conditions; that is, the change of corresponding objec-
tive function is less than 10−6 and the maximum iterations
MaxIter = 10000. The experiments in our prior work [33]
have shown that the second-order stochastic gradient descent
has good robustness with respect to the learning rate. Hence,
we set the learning rate 𝜂 = 1/(iter+1) for both SOSClus and
SOSComm. As CEMNTR needs to partition the networks
into a set of bityped networks, we divide each network
snapshot in Syn3 and Syn4 into 3 bityped networks and
construct the adjacent matrices for each pair of object
types.

Since the ground-truth of the community structures in
the synthetic networks is known, we adopt the Normalized

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/
https://github.com/tianshuilideyu/SOSComm
https://github.com/tianshuilideyu/SOSComm
https://en.wikipedia.org/wiki/Zipf’s_law
https://en.wikipedia.org/wiki/Zipf’s_law
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Figure 3: The performances of SOSComm on 4 synthetic networks
with different 𝐾.
Mutual Information (NMI) [42] as the metric to evalu-
ate the performances. NMI is a measurement of mutual
dependence information between multityped community
membership and the ground-truth, which ranges from 0
to 1. The larger the value of NMI is, the better the result
is.

6.1.3. Experimental Results. We set the temporally regular-
ized parameter 𝜆 = 1.0 for SOSComm and CEMNTR.
Since the number of multicommunities 𝐾 is an important
parameter for SOSComm, we evaluate the performance with
different𝐾 on the 4 synthetic networks firstly.With𝐾 varying
from 1 to 10, the average values of NMIs of SOSComm on
the 4 synthetic networks are shown in Figure 3. Obviously, on
Syn1 and Syn3, SOSComm performs best when 𝐾 = 2, and
on Syn2 and Syn4, SOSComm performs best when 𝐾 = 4.
The results are consistent with the real setting for synthetic
networks in Table 1; that is, the real number of multityped
communities is 2 for Syn1 and Syn3, and 4 for Syn2 and
Syn4.With the widening gap between𝐾 and the real number
of multityped communities, SOSComm performs worse and
worse in all synthetic networks.

In the following experiments, we fix𝐾 as the real number
of multityped communities in each synthetic network. The
comparison of NMIs for SOSComm and two baselines on the
4 synthetic networks is shown in Figure 4. In Figure 4, each
subgraph shows NMIs of the three methods on each network
snapshot in corresponding synthetic network. The tendency
of the NMI curve turns out the ability of tracing communities
evolution. From the 4 subgraphs in Figure 4, we find that
SOSComm performs best on NMI and tracing communi-
ties evolution. Since no knowledge of previous community
membership at the first timestamp is available, SOSComm
and SOSClus share the same starting point on the 4 synthetic
networks. Moreover, with the time evolving, SOSComm can
trace the evolution of multityped communities closely, while

the NMIs of SOSClus and CEMNTR on the 4 synthetic
networks decline steadily.

As shown in Figure 4(d), with the new objects coming
and old objects vanishing in the network at each timestamp,
the NMIs of SOSClus and CEMNTR on Syn4 drop sharply;
in detail, NMI of SOSClus drops from 1.0 to 0.2865 and
NMI of CEMNTR drops from 0.8099 to 0.0976. Meanwhile,
NMI of SOSComm keeps smooth relatively. This reveals
that SOSComm can handle the time-evolving heterogeneous
information networks with new objects coming and old
objects vanishing effectively.

The convergence speed is also a significant focus for
studying the performances of our framework. We run
SOSComm on Syn3 and Syn4 with 𝜆 = 1.0 and analyze the
changes of the objective functionL(𝑡) between adjacent iter-
ations, denoted as error = |L(𝑡)iter+1 − L

(𝑡)
iter|/L(𝑡)iter, for all

timestamps in the two network sequences. When the errors
almost keep constant, the algorithm converges. Figure 5
shows the experimental results of error, where each subgraph
displays the convergence speed of SOSComm on Syn3 and
Syn4 at corresponding timestamp. In Figure 5, we can see that
SOSComm converges quickly on both Syn3 and Syn4 at all
timestamps. Particularly, SOSCommhas convergedwhen the
iterations are less than 10 in all subgraphs, which is a good
property for online deployment.

The temporally regularized parameter 𝜆 in (10) controls
the impact of historical information on the current commu-
nity distribution. The larger the 𝜆 is, the more significant the
impact is. To study the influence of temporally regularized
parameter 𝜆 tuning, we apply SOSComm on Syn4 with 𝜆
varying from 0.1 to 100. The average values of NMIs and
iterations on all network snapshots over all timestamps are
shown in Figure 6, where the coordinates of 𝑥-axis are based
on a logarithmic transformation. As shown in Figure 6, the
NMIs and iterations maintain the satisfactory results when 𝜆
is less than 10. However, when 𝜆 > 10 and keeps increasing,
the performances of NMIs and iterations become worse
quickly.That is, the historical information dominates and the
algorithm consumes more resources to smooth the time-
evolving communities, when the temporally regularized pa-
rameter 𝜆 is too large. Certainly, the temporally regularized
parameter contributes to multityped communities detection
by considering the temporal informationwhen 𝜆 ranges from
0.1 to 10.

To conclude, the experiments on the 4 time-evolving syn-
thetic networks demonstrate that SOSComm outperforms
the SOSClus and CEMNTR. With a fast convergence speed,
SOSComm can trace the evolution of multityped communi-
ties in the 4 synthetic networks accurately. In particular, on
Syn4, with the new objects coming and old objects vanishing
in the network, SOSComm can detect the multityped com-
munities evolution well, while the performances of SOSClus
and CEMNTR deteriorate rapidly as time goes on. The
performances of NMIs for SOSComm on the 4 synthetic
networks with different 𝐾 show that SOSComm is sensitive
to 𝐾. The 𝐾 is closer to the real number of multityped
of communities, so SOSComm performs better. Moreover,
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Figure 4: The comparison of the performances of NMIs for SOSComm, SOSClus, and CEMNTR at each timestamp on the 4 synthetic
networks.

when 𝜆 ranges from 0.1 to 10, the performances of SOSComm
are satisfactory.

6.2. Experiments on Real-World Dataset

6.2.1. Dataset Description. Here, we compare the perfor-
mances of SOSComm with the baselines on real-world
dataset. The real-world dataset is a 25-year DBLP network
sequence, which is collected by Tang et al. [27] and available
online: http://www.leitang.net/heterogeneous network.html.
In the 25-year DBLP dataset, the papers published from 1980
to 2004 are extracted, and all related authors, terms (words
contained in the papers’ titles), and venues (the conferences
or journals the papers published in) are included. The low

frequency used and stop words have been abandoned. In the
real-world dataset, the 25-year DBLP network is segmented
into 25 network snapshots according to the publication year
associated with each paper. After that, we construct a 4-
mode tensor for each network snapshot, where the 4 modes
of the tensors represent the papers, authors, venues, and
terms, respectively. Table 2 shows the number of papers,
authors, venues, terms, and gene-networks in each network
snapshot of the 25-year DBLP dataset. Meanwhile, each row
in Table 2 indicates the size of the corresponding tensor. For
example, the size of the tensor for year = 2004 is 69,021 ×
105,292 × 1,238 × 9,153, with 1,182,458 nonzero elements. It
is worth noting that there is no ground-truth of community
memberships in the real-world dataset, because it is difficult

http://www.leitang.net/heterogeneous_network.html
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Figure 5: The changes of the objective function between adjacent iterations for SOSComm on Syn3 and Syn4 at each timestamp.
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Figure 6: The average values of NMIs and iterations of SOSComm
on Syn4 with different 𝜆s.

and unrealistic to label the massive objects in a real-world
network automatically or even manually.

6.2.2. Evaluation Metrics. Different from the synthetic net-
works, NMI cannot be adopted as the metric to evaluate
the performances due to the lack of ground-truth of com-
munity membership in the real-world dataset. In fact, to
evaluate the detection of community evolution is challenging.
Alternatively, we extend the modularity 𝑄 [43, 44], a widely
used metric of measuring the quality of communities in a
homogenous network, to the high-order tensor space, so that
the extended modularity 𝑄 is suitable for the heterogeneous
information networks. In a network, the high modularity
reflects dense connections among vertices within a commu-
nity and sparse connections among vertices across different
communities.

Following the work of [44], modularity𝑄 is defined as the
fraction of the edges that fall within the given communities
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Table 2: The details of the real-world dataset.

Year Type
Paper Author Venue Term Gene-network

Number
1980 2783 3400 80 2994 21814
1981 3693 4630 95 3511 31156
1982 3525 4418 89 3451 30228
1983 3872 5066 100 3742 33790
1984 4299 5674 106 3917 38060
1985 5076 6630 124 4238 45081
1986 5531 7539 145 4505 51625
1987 6368 8871 170 4929 60488
1988 7522 10415 195 5169 72363
1989 8665 11856 213 5562 85161
1990 10332 14801 243 6005 105975
1991 11435 16107 268 6134 116875
1992 13654 19546 323 6609 147849
1993 15183 22130 363 6870 171968
1994 16860 25160 380 7197 201015
1995 18532 27737 418 7469 225549
1996 21611 31828 472 7828 266749
1997 25492 38684 551 8233 338227
1998 26133 40595 584 8352 351770
1999 29082 45201 634 8515 401446
2000 34500 53735 718 8721 492333
2001 40402 62770 852 8948 601616
2002 47322 72126 957 9059 720623
2003 60833 92843 1144 9198 978413
2004 69021 105292 1238 9153 1182458

minus the expected fraction of randomization of these edges
with the fixed degree of each vertex. We directly give the
calculation of modularity 𝑄 in [44]:

𝑄 = 12𝑒∑V,𝑤(𝑎V𝑤 − 𝑑V𝑑𝑤2𝑒 ) 𝛿 (V, 𝑤) , (26)

where 𝑒 is the total number of edges in the whole network,𝑎V𝑚 is an element of adjacent matrix A ∈ {0, 1}𝑁×𝑁, and𝑑V denotes the degree of vertices V. The function 𝛿(V, 𝑤)
indicates whether the vertices V and 𝑤 are in the same
community or not. The value of 𝑄 falls in the range [−0.5, 1),
which can be negative. In practice, when the value of𝑄 ranges
from 0.3 to 0.7, the quality of community is satisfactory.

Without loss of generality, we take the heterogeneous
information network at the 𝑡th timestamp as an example
and ignore the superscript of timestamp in the following
discussion. In our framework, each nonzero element of
tensor X maps a gene-network in the given heterogeneous
information network, while the outer product of a series
of the 𝑘th column in the corresponding factor matrices
indicates the distribution of the 𝑘th multityped community

for gene-networks; that is, C𝑘 = u(1)𝑘 ∘ u(2)𝑘 ∘ ⋅ ⋅ ⋅ ∘ u(𝑁)𝑘 . In
other words, a gene-network is the minimum unit in our
framework. Then, a new graph Φ reflecting the connections
of gene-networks is formed, in which each gene-network in
the original heterogeneous information network is treated
as a vertex. In other words, the vertices in Φ are the gene-
networks in original heterogeneous information network. If
two vertices 𝜙 and 𝜑 are connected or an edge between 𝜙 and𝜑 exists in Φ, this means that the gene-networks denoted by𝜙 and 𝜑 in the original heterogeneous information network
share one or more same objects.

Accordingly, the modularity 𝑄 can be used to evaluate
the quality of communities in Φ. Since the vertices in Φ
are in one-to-one correspondence with gene-networks in
original heterogeneous information network, the multityped
communities C𝑘|𝐾𝑘=1 consisting of gene-networks in original
heterogeneous information network are also the partition of
communities inΦ. Let 𝐽denote the total number of vertices inΦ; that is, 𝐽 = 𝑛𝑛𝑧(X).The adjacentmatrix ofΦ becomesA ∈{0, 1}𝐽×𝐽, whose element 𝑎𝜙𝜑 indicates whether 𝜙 connects to𝜑 or not. Here, the adjacent matrix A is a symmetric matrix
with all zeros diagonal; that is, 𝑎𝜙𝜑 = 𝑎𝜑𝜙 and 𝑎𝜙𝜙 = 0.
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Figure 7: The performances of SOSComm on the 25-year DBLP
network with different𝐾.

Thereby, the total number of edges in Φ is 𝑒 =(1/2)∑𝜙𝜑 𝑎𝜙𝜑, and the degree of 𝜙 is 𝑑𝜙 = ∑𝜑 𝑎𝜙𝜑. According
to (26), the extended modularity 𝑄 (also denoted by 𝑄) can
be calculated by

𝑄 = 12𝑒∑
𝜙,𝜑

(𝑎𝜙𝜑 − 𝑑𝜙𝑑𝜑2𝑒 ) 𝛿 (𝜙, 𝜑) . (27)

If 𝜙 and𝜑 are in the samemultityped community, 𝛿(𝜙, 𝜑) = 1.
Otherwise, 𝛿(𝜙, 𝜑) = 0.
6.2.3. Experimental Results. Firstly, The baselines and SOS-
Comm are deployed in offline mode in order to learn their
best performances on multityped communities discovery.
That is, the baselines and SOSComm are iterated on each
network snapshot until they converge. In the offline mode,
we share the same comparative methods and experimental
setting as that in experiments on synthetic networks; that is,
the change of corresponding objective function is less than10−6 and the maximum iterations MaxIter = 10000. We set
the temporally regularized parameter 𝜆 = 1.0 for SOSComm
and CEMNTR.

To seek out the suitable number of multityped com-
munities, we perform the SOSComm on the 25-year DBLP
network with different𝐾. Figure 7 gives the average values of
modularity 𝑄 on the 25 timestamps with 𝐾 varying from 1
to 50. In Figure 7, when 14 ≤ 𝐾 ≤ 31, 𝑄 ≥ 0.3. Though the
average values of modularity 𝑄 are almost equal when 𝐾 =18, 19, 20, 21, 22, and 23, themaximumof𝑄 is obtainedwhen𝐾 = 20. Therefore, in the following experiments, the number
of multityped communities in the 25-year DBLP network is
fixed to 20.

The comparison of modularity 𝑄 for the baselines and
SOSComm in offline mode is shown in Figure 8. SOSComm
performs the best modularity 𝑄 on each network snapshot.
With the time evolving, SOSComm traces the evolution of
multityped communities more and more closely, while the
modularity 𝑄 of SOSClus keeps low all the time and the
modularity 𝑄 of CEMNTR declines steadily.
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Figure 8: The comparison of modularity 𝑄 for SOSComm,
SOSClus, and CEMNTR in offline mode.
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Figure 9: The comparison of modularity 𝑄 for SOSComm,
SOSClus, and CEMNTR in online mode.

Secondly, we learn the performances of SOSComm in
online mode. In the online mode, the maximum iteration is
limited to 5. The comparison of modularity 𝑄 for the base-
lines and SOSComm in online mode is shown in Figure 9.
Although the modularity 𝑄 of SOSComm has declined
relatively to that in offline mode, its performance is still the
best.

In addition, Figure 10 shows the comparison of modu-
larity 𝑄 for SOSComm in offline mode and online mode. In
Figure 10, we can find that the performance of SOSComm in
online mode is not worse than that in offline mode. Before
2000, the two curves almost overlap. With the explosive
growth of the tensors in the last 5 years, the modularity 𝑄 of
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Table 3: The running time of the three methods on the real-world dataset in online mode.

Year Method
SOSClus CEMNTR SOSComm

Time (s)
1980 10.27 0.9472 1.59
1981 6.14 1.4157 1.24
1982 6.10 1.41 1.25
1983 6.19 1.53 1.33
1984 6.07 1.63 1.36
1985 6.20 1.76 1.35
1986 6.27 1.98 1.35
1987 6.36 2.16 1.66
1988 6.38 2.66 1.37
1989 6.55 2.92 3.10
1990 6.75 3.90 6.73
1991 6.85 3.49 5.46
1992 8.31 4.18 4.13
1993 8.83 4.70 7.37
1994 9.48 6.08 4.34
1995 11.34 5.82 12.06
1996 12.66 12.12 8.26
1997 14.02 14.00 4.92
1998 17.94 14.52 8.31
1999 20.36 9.02 5.19
2000 33.79 11.31 19.50
2001 24.96 12.87 12.26
2002 27.54 49.05 15.52
2003 28.93 19.18 17.90
2004 36.71 21.94 10.67
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Figure 10: The comparison of modularity 𝑄 for SOSComm in
offline mode and online mode.

SOSComm in online mode is slightly less than that in offline
mode. Table 3 summarizes the running time of the baselines
and SOSComm in online mode. CEMNTR and SOSComm,

as shown in Table 3, yield the obvious advantages.Most of the
time, SOSComm is the fastest.

To summarize, the experiments on the 25-year DBLP
dataset show that SOSComm outperforms the SOSClus and
CEMNTR.With a largermodularity𝑄, SOSCommcandetect
the multityped communities and trace their evolution in the
25-yearDBLPnetwork. In particular, the experimental results
of online mode demonstrate that SOSComm has the best
performances on modularity 𝑄 and running time. That is,
SOSComm has a good property of online deployment.

7. Conclusion

In this paper, a novel online framework for multityped
community discovery in time-evolving heterogeneous infor-
mation network without the restriction of network schema
is proposed. Each snapshot of the network sequence is
expressed as a tensor, and the multityped community is
modeled as a rank-one tensor. Then, the problem of mul-
tityped community discovery is formalized as a tensor
decomposition, which integrates the tensor CP factorization
with a temporal evolution regularization term. In addition, a
second-order stochastic gradient descent algorithm, named
SOSComm, is designed to address the tensor decomposition.
In this framework, the community membership matrices
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of all types of objects, the multityped communities, and
their evolutions over time can be obtained simultaneously.
Whether in offline or online mode, the proposed algorithm
outperformed the other state-of-the-art methods.
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