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Prelude





Chapter 1

Introduction

The development of hardware and software regarding the Internet in the past
decade has enormous inuence on how people communicate with each other.
With up-to-date smart phones, users can share all kinds of information with
their peers almost in real time. The so-called online social media platforms act
as portals for the shared information and make them available almost anywhere
at any time on users’ devices. Twitter is one of the most popular social media
platforms, which focuses on short textual messages up to 140 characters. Many
web applications have emerged to help users attach images and video clips to
their messages within such limitation. In spite of this particular limitation, it
has become successful real-time broadcasting channels for users as small as
individuals talking about their lives or as big as companies and organizations
announcing important changes.

The popularization of social media drives a huge volume of data through
the platforms hosting it, including text messages, photos, video clips, etc. For
example, Twitter receives more than a half billion messages per day [5] and
Flickr as a photo sharing web site has a rate of 3.5 million new images uploaded
daily [69]. User contributed content keeps accumulating over time and is valued
as an important asset in di�erent domains. Business companies use it to learn
users’ interests and purchasing habit so that they can improve users’ purchasing
experience or deploy more e�ective and e�cient promotion [17]. Researchers
have been granted the opportunity to observe massive crowds in real time and
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1. Introduction

learn how they interact with each other and/or with the rest of the world.

1.1 Geographical Information in Social Media

Among various kinds of information going through these social media plat-
forms, geographical information is of particular interest, e.g., it presents how
users perceive their physical environment. Before the era of smart phones,
geographical information on the Internet has been generally presented in the
form of textual descriptions, e.g., addresses, city names, post codes, area code
in telephone numbers, etc. [27, 43]. Since the integration of positioning sensors
(e.g., GPS, A-GPS) in smart phones, a more precise way of describing a location
is adopted by social media platforms, i.e., geotags. A geotag is merely a pair
of coordinates (longitude and latitude) indicating where the device was at the
time when the position was inquired. When a user writes a message or takes
a photo, the positioning sensor on the user’s device will capture the current
location and generate a geotag and then the user will choose whether or not
to attach it to the message or the photo. For some applications, attaching
geotags is opt-in, e.g., Twitter, Flickr, while for some other applications this is
compulsory, e.g., Foursquare. Foursquare is a dedicated Location-based Social
Network.

Twitter introduced another type of geotags for representing Place of Interest
information in 2009[132]. Besides coordinates, these geotags contain more
information, e.g., names, addresses, cities in which the places are located. To
distinguish them from the ones containing merely coordinates, we refer to these
as POI-tags. They are more precise as the names of locations are explicitly
recorded which would be di�cult to derive from merely coordinates.

With geotags, it is more convenient and precise for users to express locations.
For example, when a user writes a tweet (a message delivered via Twitter) and
requests the application to mark (tag) it with a location, the application will
enable the location sensor (usually a GPS-chip) on the user’s device to �nd
the current location and then make the returned coordinates as a geotag for
the message. The message can be the user’s comment on the great experience
at a restaurant or a photo the user took at a place for the nice view. This
message with the geotag can later be viewed by the user’s friends when it is
delivered by Twitter. They can easily learn the whereabouts in the tweet by
checking the coordinates on any online map services, e.g., Google Maps. On
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1.2. Research Questions

top of geotags, POI-tags carry more information describing the entities at the
locations more precisely, e.g., names and addresses, by which they are easier to
be distinguished from other co-located ones, e.g., shops in a mall or a street.

The use of geographical information has become both popular and contro-
versial in the sphere of social media. Its popularity originates from its better
presentation of locations than any other forms. However, the exact precision
can reveal one’s daily trails to the public and become a threat to users’ privacy.
Both sides of the coin should be explored and investigated to make sure we
fully understand how it will a�ect users.

In this dissertation, we focus in particular on the geographical information
emerged and embedded in POI-tags on social media. We investigate the
connections between location information and other sources of information on
social media and how these connections can be used in real world applications.

1.2 Research Questions

Geotags bring up a new dimension of information to online social media which
can reveal relationships between users’ online behavior and the associated
contexts. This has triggered a lot of research in di�erent domains. One way of
looking into these relationships is to �nd the correlation between users’ words
and their locations. The correlation, if there is one, may extend the use of
geotags which has both positive and negative implications, i.e., improving
users’ online experience with more intelligent services, and paying the price
of potential abuse of users’ privacy. For example, a user may receive more
personalized recommendations of places based on the locations that other users
have been to and share similar interests with the user. On the other hand,
the correlation may lead to disclosing users’ current location without direct
evidence of where the users are. This put them or their property under threat.
Many studies have been carried out by researchers on these correlations. Cheng
et al. [31] and Ren et al. [124] studied the problem of predicting users’ home
town based on their messages on Twitter and Serdyukov et al. [135] tried to
predict the origin of a collection of photos retrieved from Flickr based on tags.
Their works all rely on coordinates in geotags at granularity of cities. With
POI-tags, the connection between user activities and locations where these
activities take place becomes more precise and clear and may enable more
precise prediction of users’ locations. This inspires the �rst research question
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1. Introduction

that we will discuss in this dissertation:

� RQ1: Can we predict a user’s location in terms of POIs based on his/her
messages on social media?

It can further be broken down to (a) What are the features can be used for
modelling a POI? (b) To what extent can locations be distinguished by the
models? (c) How well can the models predict the origin of the messages?

The gami�cation approach introduced by Foursquare1, a dedicated location-
based social network platform, makes users regularly geotag their messages,
so-called check-ins, to win badges and titles. These regularly posted POI-tags,
from a user, to some extent, imply the user’s moving trails. For example, a
user’s Twitter time line, a stream of messages posted by the user, may record
his/her visit to a caf�e at 8:03, a lecture room in university at 8:45 and the
library of the university at 15:34. Patterns may be observed in many similar
trails like this one and the correlation between the geotags may suggest (or
predict) future visits for this particular user. In general, this problem falls
into trajectory mining and prediction via di�erent sources of information. For
example, Zheng et al. [176] proposed Collaborative Filtering based location
recommendations based on GPS position logs. The work is based on data
collected by continually sampling of way points returned from GPS devices.
Geotags from social media are generally random samples of users’ locations.
Compared to GPS-trajectories, there are more missing parts of the observations
about users’ locations.

Correlations modelled from geotags have been used in research on location
recommendation. For example, Kurashima et al. [74] proposed Markov Models
combined with topic model for recommending routes to tourists based on
photos with geotags from Flickr. Similarly, Shi et al. [137] and Clements
et al. [36] recommend landmarks based on users’ own interests. These works
make prediction among locations that tourists are interested in and leave the
question open to more general types of locations. This in turn inspires the
second research question of this dissertation:

� RQ2: Can we predict users’ future visits to POIs by only using users’
visiting histories?

1https://foursquare.com
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1.2. Research Questions

This question involves two sub-questions to answer: (a) How can we model
user check-ins in both temporal and spatial dimensions? (b) How well can the
models predict users’ next move based on users’ previous check-ins?

Correlation between user behaviour and visited locations demonstrates the
interaction between users and locations, which may slip into users’ memory and
form the kind of knowledge that we call geo-expertise. For example, a user who
often goes to di�erent bars or pubs may know the di�erences between the bars
in town. This knowledge can be very useful, e.g., the user’s friend may rely on
his advice and recommendation for their graduation party. However, this kind
of knowledge can hardly be interpreted in written language [39] as there might
be too many di�erent aspects and their importance may vary vastly for di�erent
people. The result from previous studies suggest to �nd the person who is
an expert on the given topic instead of returning document containing direct
answers may help solve the problem.[13, 16, 161] Di�erent from the previous
studied expertise retrieval systems, in this study, geo-expertise retrieval systems
rely on non-textual information which has been barely explored before. This
leads to the third research question in this dissertation:

� RQ3: How can we model users’ knowledge about locations and build an
automated retrieval system based on POI information on social media?

This question can be ful�lled by answering the three sub-questions: (a) How
often, in which way, and to whom are people looking for, or giving POI advice?
(b) How should a candidate’s geo-expertise be determined via his/her check-in
pro�le? (c) How well do the automated retrieval methods perform in estimating
users’ geo-expertise?

Though the geographical information embedded in social media is useful
for sharing location information, location information has remained a scarce
resource because of the lack of contributions from users. Another reason is
that location information are treated as proprietary resource and scattered
among di�erent service providers who have not agreed on a standard schema
for storage, communication and sharing of such information. Part of the reason
is that there are few motivating applications available on the market and users
are not convinced of the bene�t from contributing geographical information.
As a result, the insu�cient data from the users may weaken the con�dence of
service providers making applications. This looped dependence is holding back
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1. Introduction

large scale utilization of geographical information on social media. Solving
these problems may help users bene�t more from using geotags.

Not only can the integration of geographical information help users better
share location information but also help public management organizations to
improve the understanding of their tasks. Many research works have been
carried out for discovering and extracting public events from social media,
e.g., earthquakes [131], oods [152]. Besides, these works also demonstrated
potentials in gathering minor disturbances in public space from citizens. For
example, water damage is one of the most important problems for cities sitting
around rivers, as storms can bring much more precipitation than what the
cities’ water system can handle. It would be useful to learn how storms a�ect
the city at a �ner granularity so that the improvements can be prioritized
accordingly and plans can be arranged ahead. That is:

� RQ4: How can we extract and make use of user contributed content on
social media for understanding water damage?

To approach this question, we investigate the following subquestions. (a) Can
Twitter be used as a sources of information for monitoring strong precipitation?
(b) What are the advantages and disadvantages of using Twitter as a resource of
water damage reports comparing to the o�cial water damage report registry?

During the course of the research presented in this dissertation, we found
there are needs of e�cient tools for visualizing multidimensional data. In
the domain of Information Retrieval and data related science such tools are
essential for data exploration, comprehension and communication, especially
visualization tools. Though there are many software and libraries with charting
and plotting functions, the existing ones either require a lot of coding skills
for making a nice chart or do not provide su�cient or uent human-data
interaction. For this study we also require that the tool can be embedded
in Web interface so that the data can be annotated for evaluation. Thus we
developed our own open source tool for better data charting, a solution which
is web based and requires a minimum knowledge for the users of this tool to
make a usable data charting interface featuring human-data interactivity.
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1.3. Main Contributions

1.3 Main Contributions

The main contributions of this dissertation are the models of the relationships
between geographical information and user behaviors published on social media.
There are three aspects of such relationships explored in this dissertation,
(a) the correlation between the messages sent by users and the origin of
locations where the messages were sent, (b) the correlation between users’
future visits and their visiting histories, and (c) the correlation between users’
knowledge about di�erent locations and their visiting histories. Diverse models
are discussed and tailored in order to capture the characteristics of these
correlations. Furthermore, we propose and demonstrate various techniques to
make use of diverse information sources and alleviate the sparsity problem in
the real data.

Throughout the dissertation we evaluate and compare the proposed models
and techniques in the setting of prediction systems using the real data col-
lected from online social media platforms, i.e., Twitter and Foursquare, and
demonstrate the feasibility and e�ectiveness of the predictive systems based
on these models.

In order to facilitate data exploration, we develop and open-source a social
media workbench for researchers in the community of social media, which can
be easily extended to other domain problems. The workbench is a exible yet
easy-to-use tool for exploring social media data by providing interactive access
to aggregated information via a Web user interface. We also make the code
and data sets (prepared and anonymized according to the term of use imposed
on these data sets) used in the experiments in this dissertation available online,
hopefully inspiring more research carried out in this domain.

1.4 The Outline of Dissertation

In the following chapters, we address the research questions presented in
the previous section. In Chapter 2, the related concepts and studies will be
introduced and discussed, as well as the services and APIs used for this study.
Chapter 3 is dedicated to the �rst research question and presents an approach
to predict user locations from a single Twitter message. We continue with the
problem of predicting user locations in Chapter 4, but from a di�erent angle,
in which we look into users’ mobile patterns and predict their future visits
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1. Introduction

based on their visiting history (the second research question). Since users may
get familiar with the places they visited and such knowledge can be helpful for
others, we investigate how the knowledge (called geo-expertise) can be estimated
and retrieved in Chapter 5. Besides individual users, organizations can bene�t
from the geographical information in social media. Thus in Chapter 6, we
present a study for extracting and comprehending water damages reported in
social media. To facilitate our research, an open-source and easy-to-use tool
has been developed in the course of this study and is detailed in Chapter 7.
Finally, we summarize our �ndings and discuss future routes along this study
in Chapter 8.

10



Chapter 2

Background

The development of Web and Internet technologies allows people to commu-
nicate easily in spite of distance. More and more applications and platforms
are available for users to communicate with each other, in ways which are very
di�erent from that of the pre-Internet era. Not only do the platforms convey
messages from one to another, the content of communication is also stored
online which the users can revisit at any later time, often publicly available.
Many di�erent types of media are used for communicating information, such
as photos, video clips and geotags.

There are in general two terms to refer to this new kind of platforms. Social
Media is one of the most commonly used terms, which is also what we use
in this dissertation to refer to these platforms. This term emphasizes one
of the important functions of such platforms, i.e., serving as channels for
user-generated content [71]. For example, Flickr1 is quali�ed as a social media
platform because its main purpose is to host users’ photo albums. Another
term often used is (Online) Social Networks, which emphasizes the function of
connecting people [26], i.e., to help people getting to know each other. For
example, this is the purpose of Facebook on which people are connected online
and the platform can also give suggestions on whom to follow based on mutual
friends. Some platforms have been designed for both purposes. Twitter2 is one

1https://flickr.com
2https://twitter.com
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2. Background

of such platforms. Many people use it for communicating with friends and there
are also accounts dedicated to spreading information. Though each platform
or application has its own focus, they all share some common characteristics:

� Users are encouraged to create content in varying types of media.

� Users are connected by online friendships via which they can acquire
content created by each other.

In this dissertation we focus more on the aspect of user generated content than
friendship networks. Thus we use social media to refer to the platforms that
we study in this dissertation.

The recent introduction of geotagging in social media platforms became
popular, via which users can express locations more precisely than before.
Geotags are a pair of coordinates in spatial reference, which are usually
obtained from positioning sensors such as GPS-enabled devices. Compared
to geotags, textual addresses and place names are sometimes vague, context
dependent and error-prone. For example, there are several supermarkets of
the same brand in the city of Delft and it would be unclear to only specify the
name of the supermarket, though it may be possible to infer which one from
the context. It is also much easier for machines to extract the locations from
the geotags in users’ messages or photos rather than inferring the information
from textual or visual features. Textual and visual features may be useless
for inferring the location, e.g., consider the case of news on Twitter or photos
taken indoor [89]. With geotags, users can attach a location to their messages,
photos, etc., which enables them to later recall the location or communicate
the location precisely to their fellows. Social media enabled by geotags also
provides an opportunity for researchers to study users’ accurate locations and
the derived knowledge can be used for assisting users’ daily lives. For example,

� recommending locations (e.g., [137]),

� recommending traveling routes (e.g., [74]),

� predicting social tie strength (e.g., [58]),

� recommending friends (e.g., [128, 60, 158]),

� improving local search (e.g., [100]),

12



2.1. Geographical Signal in Social Media

� identifying local experts (e.g., Chapter 5, [33])

2.1 Geographical Signal in Social Media

The introduction of geotags to the online world is a consequence of the wide-
spread availability of GPS-enabled devices such as smart phones and digital
cameras with GPS-recorders. Users with these devices can easily locate
themselves and post their locations online via geotagged tweets and photos.
These geotags stored online can associate the users to the locations they have
been to. For example, if a user uploads a photo with a geotag to Flickr and
makes it publicly visible, the user and his/her friends can later check where the
photo was taken. If users want to explore photos on Flickr, a map of photos
will show up, on which they can choose to zoom in to any area and browse the
photos taken in the area.

Twitter also supports that users mark tweets (messages sent to Twitter)
with a geotag representing a location. For example, a user may attach a geotag
to mark the location of the restaurant where he had his breakfast and tweet
about the special avoured co�ee. The geotags are usually generated via the
GPS-chips on users’ devices which record users’ current coordinates. When
the users’ followers look at the geotagged tweets, they will also see a small
map showing where the tweets were sent.

Twitter later improved geotags by including place entities (referred to in
this dissertation as Point-of-Interest tags, or POI-tags for short) which not
only have the spatial information (coordinates) but also the meta information
about the locations, such as the name of the place, the address. The meta
information about the location allows more precise description of a location
since it can disambiguate collocated places. For example, if two shops are
both located in a large shopping mall, they can hardly be distinguished by the
coordinates from the GPS as GPS are inaccurate for indoor use or the two
shops may be at the same coordinates but on di�erent oors. With the name
and category information embedded in POI-tags, it is possible for user to refer
to either shops in their messages without ambiguity.

Foursquare3 is one of the largest Location Based Social Networks (LBSN),
on which users can check-in at, comment on or leave a tip about a place. The

3http://foursquare.com
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2. Background

platform also encourages users to use this service by giving them badges and
titles when they achieve a certain amount of activity on the platform This may
be the reason it has become prosperous [134] and outdone its two competitors:
BrightKite4 and Gowalla5. BrightKite was one of the pioneers in the �eld of
LBSN, but ceased operations, and only a few studies were carried out on its
data, e.g., [85]. Gowalla was another LBSN around the same period of time as
BrightKite, upon whose data more studies were carried out [23, 168, 95, 60].
Among these three, Foursquare attracted more research on its data, examples
of which can be found in [113, 150, 88, 129, 86].

Besides the coordinates, names, addresses, etc., Foursquare also provides
a taxonomy of locations stored in its database. The taxonomy has 9 top
categories and each of them contain one or more subcategories at a lower level.
For example, under the category Food, there are Chinese Restaurant, American
Restaurant, etc. Some of these lower-level categories also have subcategories
(in �ner granularity). This meta information provides an opportunity for
researchers to learn about what kinds of activity users may carry out there
and/or their purpose of going there. Inferring location information from other
attributes is a challenging task. For example, De Waag is a restaurant in Delft
which used to be a weight house6 and the name does not have a connection to
its current function. Knowing the place is a restaurant can link it to dining
activity, and observations of a user checking in at a signi�cant number of POIs
in some area all classi�ed to this category may suggest evidence of the user’s
knowledge about dining in the corresponding neighbourhood.

These social media (social network) platforms have been developing very fast.
They change their interfaces, add new features and rede�ne their functions all
the time. This brought some issues for long-term consistency of data as some
resources may be not available for later access. Carrying out the studies for
this dissertation, we have been experiencing some of the changes. For example,
Twitter revoked the prior white-listing of university’s IP addresses, changed
the ways how locations are selected and presented in their Web interface, and
changed the authorization method. As to Foursquare, they rede�ned and
restructured the category labels, e.g., adding new categories, renaming existing
categories. Though the already collected data would not be a�ected, it would

4http://en.wikipedia.org/wiki/Brightkite
5http://en.wikipedia.org/wiki/Gowalla
6A place where commodities are o�cially weighed
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2.2. Related Works

undermine the consistency of continuous collected data for long periods, e.g.,
crawling data for several years. The data sets collected for the studies in this
dissertation are all in short periods and we tried to avoid the inuence of
changes by re-crawling.

2.2 Related Works

Location is useful information in a wide variety of applications, but it has been
rarely studied in the past, particularly due to the lack of recording devices or
the cost of precise positioning. Uncovering location information has become
feasible with the development of geotags in social media. Bhattacharya and
Das [25] proposed a probabilistic model for tracking mobile phone users in the
network to reduce the cost of paging. For e�ectively retrieving geographical
information from online resources, researchers have proposed many ways of
extracting and indexing and ranking pieces of information related to geography,
e.g., [29, 41, 4].

In the era that GPS chips are integrated to personal devices which are
a�ordable by normal users, it has become easier for researchers to obtain
large-scale mobility data from city residents to learn their patterns of mobility.
For example, �nding users’ home locations has been studied by a number of
researchers. Backstrom et al. [11] proposed to predict users’ home locations
via their friends in Facebook. Fink et al. [51] built models to predict blog
owners’ home locations based on place names mentioned in their posts. Cheng
et al. [31] tried to predict Twitter users’ home locations based on the local
words. Mahmud and Nichols [101] and Mahmud et al. [102] improved the
performance of the prediction by using temporal knowledge (time zone) and
textual knowledge (city names). Flatow et al. [52] approached the problem
of geotagging social media messages by modelling regions with N-grams from
the textual messages. They also found that the quality of models trained by
messages from di�erent sources may vary a lot.

Besides the users’ general active areas (home locations), �ne-grained mobility
patterns have also been explored. Gonz�alez et al. [59], Song et al. [140] and
Lu et al. [98] respectively studied and con�rmed the predictability of human
mobility based on mobile phone records. Herder and Siehndel [65] showed that
daily and weekly patterns can be observed clearly from the data of GeoLife GPS
Trajectory Dataset. As suggested by Cho et al. [34], periodical patterns and
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social ties can be useful features in the prediction of user locations. According
to Kulshrestha et al. [73], people are tied to their geographical locations
because of limitation of mobility, the inuence from their peers, their culture
background, etc.

The patterns of human mobility imply the possibility of characterizing
user preferences via their mobility pro�les. This triggered many studies on
recommending locations for users based on their visiting histories. Leung et al.
[80] proposed a location recommendation system based on activity (sequence
of visited stay points in GPS trajectories). Clements et al. [35, 36], Popescu
and Grefenstette [120] proposed models for recommending locations tailored
to individual tourist taste based on geotagged photos shared on Flickr. O’Hare
and Murdock [117] proposed to build smoothed language models for grid cells
over the map to improve location prediction for photos. Similar techniques
were also applied to online video clips with textual tags to determine location
where the videos were taken [77]. Kurashima et al. [75] proposed geo-topical
models for restaurants and landmarks based on data from online reviews and
geotagged photos. Based on temporal information from locations, Li and Sun
[82] proposed a method based on Conditional Random Fields to �nd location
entities in the messages.

Messages on LBSNs also have explicit expression of locations which can
be used for location recommendation/prediction. Berjani and Strufe [23]
studied location recommendation based on Gowalla data by modelling ratings
from users’ visits and then applying normal Collaborative Filtering techniques.
Ference et al. [50] speci�cally studied recommending locations when users are
out-of-town. Liu et al. [95] presented a location recommendation system based
on the category information. Besides these dedicated recommender systems
for locations, Yuan et al. [166] proposed a comprehensive probabilistic model
to incorporate various attributes related to social media messages, e.g., user,
location, vocabulary, time. With this model, they can predict any of the
attributes from the others. To alleviate the sparsity problem in geotagged
data from social media, Li and Pham [90] proposed an object function based
on ranking errors with matrix factorization and a stochastic gradient descent
method for learning the parameters. Hu et al. [67] found that the ratings of a
business can be a�ected by that of its neighbour’s and proposed a model to
incorporate such e�ect for better rating prediction. A detailed survey regarding
LBSNs and location recommendation can be found in [127] and [162].
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With GPS-enabled devices, users can know precisely where they are and let
the devices record their trajectories while they are moving. This gives research-
ers an opportunity to study user mobility at a �ner granularity, compared to
the data from mobile network providers. Yuan et al. [164] and Yuan et al. [165]
proposed a system to �nd the fastest route in a city for taxi drivers based on
the knowledge mined from GPS trajectories recorded from taxis. Veloso et al.
[151] analysed the same type of data (collected from Lisbon) and explored
the possible ways of raising taxi drivers’ income. This type of data is also
used to reveal the functions of regions (activities related to the regions) within
cities [163, 172] and a system was proposed by Giannotti et al. [57] to answer
general queries, such as how to predict areas of dense tra�c in the near future.
As to location recommendation, Zheng et al. [175] demonstrated how GPS
trajectories can be used in such systems. To ground all these applications,
some mining techniques have been developed for GPS trajectories. Tang et al.
[145] and Emrich et al. [46] proposed a method to improve the retrieving of
similar trajectories. Detailed surveys about the analysis of GPS trajectories
can be found in [119, 173].

Besides building prediction models, location information on social media is
used for visualizing mobility patterns in cities. Cranshaw et al. [38] demon-
strated a prototype system for revealing clusters of areas based on mobility
patterns from Foursquare users. Silva et al. [138] proposed a method to
visualize and classify cities based on transition graph of users.

Location information can also be inferred from other sources. Buyukokkten
et al. [27] studied and implemented a prototype system to recover the geograph-
ical scope of a Web resource using information from domain registries, such as
zip codes, telephone area codes and IP addresses. Bennett et al. [22] modelled
the spatial distribution of web site visitors and use the models to improve
location-centric web page retrieval. Mei et al. [108] proposed a probabilistic
model for summarizing blogs’ spatio-temporal theme patterns. Wang et al.
[155, 154] and Zong et al. [179] studied the location information in Web pages
and queries.

As many researchers become interested in the geographical information in
social media, there is an increasing need for a forum to compare the methods
and share the data, which are usually hard to acquire or preserve due to
the technical challenges or regulations. MediaEval7 is one of the European

7http://www.multimediaeval.org
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annual events for researchers to evaluate their methods on common multimedia
dataset and communicate their �ndings. Placing Task [47, 61, 122, 123] is one
of the running tasks in MediaEval. The data sets that have been used by the
task include geotagged video clips and geotagged photos. The participants
are expected to predict the location for each testing item in the test set by
their models trained with the textual and visual information in the training
set. The contextual suggestion track in TREC is another annual event for
geographical information retrieval. Di�erent from MediaEval Placing Task, this
event expects participants to rank suggestions of places to go according to the
pro�les of suggestion receivers and the contexts which are large metropolitans in
the US. Neither of the events have used data set from social media. One possible
reason is that redistribution of collected data from those large social media
platforms, e.g., Twitter, Facebook, Foursquare, is discouraged or prohibited.
For example, the participants of microblog track in TREC had to collect the
data themselves from Twitter API via the ids given by the track host [115].
To the best of our knowledge, there is no public available dataset suitable
for our studies, thus we had to collect our own data sets. Two close related
data set can be found in Cho et al. [34]’s paper or on SNAP8, which are
respectively collected from BrightKite and Gowalla. However, these two data
sets do not contain the meta information required in our study, such as category
information and location names.

2.3 Methodology

Language Models

Language modelling is one of the most commonly used methods in extracting
features from textual content, which is well-known in the information retrieval
community [167, 40]. The general idea is to model the probability of words
observed from a source, such as a document, a query, a tweet about a location.
By comparing the models from di�erent sources, one can obtain a similarity
measure on any two sources, e.g., a tweet and a location. We use this method
to approach the problem of predicting the origins of tweets from the textual
content.

8https://snap.stanford.edu
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Collaborative Filtering

Collaborative �ltering techniques are widely used for estimating missing values
in a matrix, which are used a lot in the recommender systems community
[2]. A common use case is recommending shopping items to users based on
historic purchases/ratings made by a group of similar users. The ratings are
represented by a matrix where each entry is a value indicating whether a user
have purchased an item or how much he/she likes the item. Then collaborative
�ltering methods can be applied to predict the most likely values of those
missing entries, and the corresponding items can then be ranked according to
the predicted values.

In general Collaborative �ltering methods can be categorized into the memory
based methods and the model based methods. The memory based methods
are in general easy to implement and perform relatively well. The model based
methods use various matrix factorization techniques to model users and items
and the missing values can be predicted by minimizing the di�erence between
the prediction (production of the factors) and the reference of the existing
ratings [136]. In the study of predicting location from users’ previous trails
(see Chapter 4), we adopt techniques based on memory based Collaborative
Filtering for its simplicity and e�ectiveness.

2.4 Privacy Issues

Online social networks were born with privacy issues, because they provide
a central repository of personal information [20]. Such information is semi
opened for general access to serve its use of social networks, which may result
in potential exploits. These online social network service providers allow
sharing information via di�erent media types, which triggers users’ interests
in using such services. However, using the function of sharing information in
multimedia also makes users to give out personal information. The motivation
for the providers is that the more users engaged in the system, the more
they can bene�t from precise targeted and long exposure advertisement. For
example, Facebook allows users’ to tag their friends’ faces in a photo and users
have limited control on whether or how their friends tag them. It may help
Facebook to learn more about the users via those tagged pictures and make
their advertisement system more e�ective. Regarding location based social
networks, Minch [109] enumerated thirteen issues ranging from collection and

19



2. Background

storage to regulation and application and Tang et al. [144] studied how users
perceive visual representations of locations with respect of privacy. Heatherly
et al. [63] demonstrated how privacy inference attacker can obtain personal
information from a vulnerable public dataset. Particularly, Xue et al. [159]
studied both prediction and protection of location inference.

Privacy is also a concern in the usage of geotags in social media. It is
relatively easy to connect users’ locations to their personal lives because the
activity normally carried out at a location is closely related to the function of
the location. For example, restaurants are for dinning, cinema are for watching
�lms, banks are related to money issues. As demonstrated by Soper [141],
there are many good applications that can be derived from analysis of human
mobility, especially for local mobile search [100], or mobile advertisement [42],
but it can also be exploited by criminals. Johanson [70] reported that posting
one’s holidays online may attract burglars’ attention, as it provides evidence of
that the owners are not home. Helped by advances of information technology
in social media, it seems that it would be easier for criminals to exploit the
information, e.g., they could harvest such information by searching holiday
posts in social media.

To address the concern, as suggested by Soper [141], the �rst step is to study
the impact of the technology, e.g., how likely users’ locations can be inferred
from their online social network behaviours. It is easy to ascertain that one is
on holiday if there is a message or photo with words or geotags stating that
its owner is not at home. It is not that obvious whether stating oneself is
enjoying watching a game can be a clue that the owner of the message will be
away from home for a couple of hours. Though resulting methods can disclose
more privacy from users’ public messages, it can also help service builders to
provide guidance for minimizing potential privacy leaks. For example, a client
application of social networks may warn you when you post messages revealing
too much personal information. Policy makers may also bene�t from explicit
evidence of how much private information can be learned from users’ public
social network behaviours so that they can detail how users’ privacy should
be protected. Otherwise, it may lead to unfair policy for either companies or
users.
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Chapter 3

From Tweets To Locations

The rise of social media makes new dimensions of information about users
available in the online world. Geographical information is one of those dimen-
sions, and has only recently become widely available. In general, this dimension
of information is contributed by users who want to share their experience at a
place, bookmark it or play games in the real world. In this chapter we discuss
the correlation between messages posted in online social media and the places
where they were posted from. Then we can answer our �rst research question
(RQ1), i.e., whether we can predict a user’s location in terms of POIs based
on his/her messages on social media.

3.1 Introduction

As introduced in Chapter 1, Twitter is one of the most popular social media
publishing and exchanging information online. Twitter allows users to pub-
lish messages of up to 140 characters, so-called tweets [76]. Besides textual
information, users of Twitter can also attach photos, videos, web pages by
including (shortened) links. When viewed through the Twitter API, a tweet is

This chapter is an extension to the publication \The where in the tweet" by W. LI,
P. Serdyukov, A. de Vries, C. Eickho� and M. Larson, in Proceedings of the 20th ACM
international conference on Information and knowledge management - CIKM ’11
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associated with various meta data including the pro�le of the author, the time
of posting, and in certain cases, location (coordinates) where the users sent the
tweet. With the assistance of modern technology (hand-held smart devices)
users of Twitter can get access to Twitter at almost any time and any place.

In March 2010, Twitter extended its API to provide more accurate geograph-
ical information for tweets. As shown in Figure 3.1, Users can specify their
locations by tagging a Place of Interest (POI) to their tweets, suggestions of
which are provided in the Twitter user interface. Each of this kind of tags
includes information about the place it represents, such as the name of the
place, the address, the city it locates at, etc. This service is not yet widely
used. According to the data from the microblog track of TREC 2011, there
are about 0.6% tweets marked with geotags and only 0.04% is marked with
POI-tags. One of the possible reasons that limits the adoption of geotags on
Twitter may be related to the privacy issues [178].

Figure 3.1: Twitter interface of selecting users’ current location1

1From https://blog.twitter.com/2010/twitter-places-more-context-
your-tweets
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3.1. Introduction

In this chapter, we investigate whether and how well such POI information
can be inferred from the textual and temporal information of a tweet. From
the perspective of service providers, this study may support them to learn
more information from users’ tweets. Such inferred location information may
provide accurate contexts for systems to better understand users’ needs, and
lead to more e�cient and e�ective interaction between systems and users. For
example, they may lead to better mobile search systems [177].

To users who are concerned more about their privacy, the results may serve
to raise the awareness that users might already leak location information in
their tweets through the textual and temporal information. This study may
provide evidence for those privacy concerning users about how much they may
expose their privacy through just their normal tweets.

The task, as we have de�ned, treats places not solely as points located in
space, but rather as tags implying the social function of that place. People
associate social functions with a place based on why they go there and what
they do there. It is our consideration of this semantics that makes our POI
prediction more meaningful and better interpretable than mere pairs of latitudes
and longitudes. For example, it is normal to have a restaurant and a sports
store collocated in the same large mall. The conventional perspective de�nes
a place by its geo-coordinates and is inherently not possible to di�erentiate
such collocated places. Both places may occupy the same geo-coordinates (on
di�erent oors) or nearly indistinguishable geo-coordinates (contiguous in the
same building). But for humans, it is a relevant distinction whether a tweet is
associated with a restaurant or with a shopping place for sports, because the
tweets may be composed of words from di�erent vocabulary for the two places.
Users may be more likely to tweet about food from a restaurant than from
an electronic device store. Thus in our work, we carefully avoid conation of
human-perceived places on the basis of geo-proximity.

In this chapter, speci�cally, our task is to rank a set of candidate POIs by
their relevance to a given tweet. Our assumption is that tweets from a place
usually follow a certain set of patterns, especially, in vocabulary which can
be modelled by Language Models. Due to the data source, we are facing a
two-fold sparsity.

1) From the perspective of tweets, the terms in a tweet, as limited by the
length of 140 characters, may be not as abundant as any documents

25



3. From Tweets To Locations

studied in other tasks to characterize the tweet itself, such as news
articles, blogs and web pages.

2) From the perspective of POIs, there might be insu�cient tweets for
building comprehensive models for POIs.

To alleviate the �rst problem, we use the temporal information embedded in
tweets, i.e., the timestamps when tweets are posted, as additional evidence
of its origin. The intuition is that places may have di�erent opening times,
e.g., bars are crowded during nights and food places peak during noons and
evenings. For the second one, we use the information from web pages returned
by search engines for each POI to enrich the corresponding Language Model,
as web pages closely related to a place would be ranked at the top positions
and they may share vocabularies with the tweets posted from the place.

3.2 Related Work

As shown in Chapter 2, since the rise of smart hand-held devices like smart
phones, and GPS-enabled digital cameras, more and more location related
applications and platforms become prosperous and it is much easier to record
ones’ geo-locations via these devices. This new source of information allow
scientists to study how geographical information is related to other aspects of
human activity and its potential application in Information Systems. Twitter
as one of the most popular social media platform introduced its own APIs for
location services to facilitate location sharing via POI-tagged tweets. With POI-
tags, users can share their experience at a location, bookmark the locations,
engage social games online about locations, share photos at the location,
etc. Not only does a POI tag contain a pair of coordinates indicating its
spatial position but it also includes information like the name of the place,
the human readable address and the city or state it locates in. Besides POI-
tags introduced by Twitter, there are other information sources that convey
geographical information, such as addresses of domain name holders in DNS
registration data, the addresses in bloggers’ pro�les, geotags embedded in
photos on Flickr, users’ check-ins on Foursquare, the place names in web pages.
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3.2.1 Geographical Information on Web

At the early stage of the Web, only limited geographical information was
available online. Buyukokkten et al. [27] proposed an interesting system using
a database of phone numbers of network administrators and a post code (zip
code) database to estimate the geographical location of a web site. Ding et al.
[43] studied the problem of estimating a geographical scope of web resources
(pages) by exploring the features like locations mentioned in the pages and the
links from pages with geographical scopes. McCurley [105] discussed various
features which can be explored to decide the geo-spatial context of a web
site, such as information from WHOIS services and DNS services, routers via
which the site is connected to the backbone networks, addresses, postal codes,
telephone numbers recognized from Web pages, names of geographic entities,
links between a page and other pages with geo-spatial contexts and META
tags authored manually in HTML pages.

Another interesting line of research concerns geographical named entities
mentioned in web pages. Amitay et al. [8] used a set of heuristics to identify
geographical entities speci�ed in a well de�ned gazetteer and assigned a focus
(geographical scope) for a page. Leidner et al. [79] proposed two heuristic
rules in disambiguation of geographical named entity (grounding place names).
Li et al. [83] and Li et al. [84] studied the ambiguity of geographical named
entities and proposed to construct a similarity graph of locations and names
and maximize the total score of assigning locations to names. Based upon these
studies, Purves et al. [121] and Arampatzis et al. [9] brought up an interesting
topic about learning region boundaries from textual content on Web. They
used trigger phrases to gather relationships between two geographical named
entities, and separated them into two group of points, i.e., inside and outside,
with which they then used an algorithm to decide the boundaries.

Compared to our work, these studies have focused on the geographical
orientation of Web pages and Web site, which have abundant textual clues
compared to tweets. The authors discusses various direct features regarding
the geographical information that can be used for their tasks, e.g., place
names, addresses registered. As for our task, we focus instead on those implicit
information such as vocabulary usage and time of check-in.
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3.2.2 Geographical Information in Photos

Naaman et al. [111] initiated a study on the correlation between tags and
locations and proposed a prototype system for retrieving photos by implicit
tagging and tag suggestion. The rise of social media and introduction of APIs
for geographical information stimulated a large body of research on using the
geographical distribution of photos. Hays and Efros [62] explored various visual
features to locate photo via k-Nearest-Neighbour (kNN) in a global settings,
such as direct matches of thumbnails, colour histogram, Texton histogram, line
features, Gist descriptors, Geometric context. Along the same line, Crandall
et al. [37] explored classi�cation using Support Vector Machines for both visual
features and textual features for locating a photo. They found that smoothing
visual features with photos taken around the same time by the same person
may help locating a photo. Di�erent from those two, Serdyukov et al. [135]
proposed a Language Model based method for estimating locations where
photos were taken. They built Language Models for each cell of the grid based
on coordinates and match them with the Language Models built for a given
photo.

In general, the tag based photo locating problem is close to that of locating
tweets. We followed the general settings of Serdyukov et al. [135], i.e., using
language models for locations. However, di�erent from the photo locating
problem, we do not explicitly consider spatial distance in our problem and
focus on locations at the level of POI-tags. This di�erence in levels enables
us to distinguish collocated indoor locations such as shops in a mall. It also
limits the use of smoothing techniques in spatial dimension as we are trying to
di�erentiate approximated locations. Thus we approach the sparsity problem
from another angle, detailed in Section 3.3.1.

3.2.3 Geographical Information on Social Media

The study of geographical signals in social media like Twitter began to intensify
when Twitter introduced their geographical APIs. Cheng et al. [31] looked
into the embedded geographical information in social media and proposed a
method of utilizing identi�ed local words to estimate a user’s home town at
city level. An interesting fact is pointed out by Hecht et al. [64] concluding
that the location entered by users was not as accurate as people had thought
before. They even found that those �elds may not relate to any geographical
location at all. Based on a Multinomial Na��ve Bayes Model and a 10,000-term
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vector space, they proposed a machine learning method of predicting the users’
home city. Leuski and Lavrenko [81] investigated a similar topic based on the
chat messages in an on-line game which resulted in a method of predicting
events at given virtual locations.

Similar to the argument for the studies in photo locating, Cheng et al.’s [31]
and Leuski and Lavrenko’s [81] works are based on coordinates which usually
su�er from the problem of coarse positioning. That is, they both modelled
locations at the level of cities while our task is locating tweets at a sub-city
level. We look into individual messages (tweets) which provide less information
than all the tweets from a user or a conversation.

3.2.4 Language Models for Information Retrieval

Besides used for locating photos [135], language modelling has been successfully
used in speech recognition, machine translation, part-of-speech tagging, and
information retrieval [167]. In general, there are two schemes of using language
models for the ranking of documents. One is directly based on the probability
of the language models generating a given query and the other one is based
on the similarity of two language models. As shown by Zhai [167], the latter
is actually a generalization of the former scheme. We use the latter one to
formalize the proposed method.

3.2.5 Sparsity in the Data

As pointed out by Cheng et al. [31] and Serdyukov et al. [135], occurrences of
words in geotagged tweets are sparse, i.e., many words only appear once in
the whole corpus. In both of these works, they tried to smooth their models in
the spatial dimension: the former de�ned local words and their weights across
space and the latter combined language models from neighbouring cells. The
problem is more severe in our task, because fewer tweets (only 0.04% of tweets)
have been tagged with a POI and the spatial proximities between POIs do not
necessarily indicate their similarities. Moreover, the distances between places
varies a lot at the sub-city level, and the distances between similar places are
not bounded. These problems limit the use of spatial proximity as similarity
for smoothing our models.

Sahami and Heilman [130] proposed a web-kernel similarity measurement for
short text snippets, which uses web search results to generate strong models for
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them. They queried the commercial search engine with candidate text snippets
and collected returned web pages as supplement to the models. Following
this idea we propose to use web pages related to location for building richer
models. Instead of querying with tweets, we query location names and collect
the returned pages for building language models for the given locations.

Another aspect we looked into to dig more evidence of tweets’ origin is
the time dimension. Twitter associates each tweet with a timestamp which
accurately records the time when the user post the tweet. Intuitively, users
as humans follow activity patterns in their daily lives, e.g., bars get crowded
around midnight and parks are popular on weekends. On the other hand,
almost all places have their own opening times and users rarely visit places
outside that time. Therefore, the timestamp embedded in tweets may have
useful information about where they come from.

3.3 Methods

In general, we consider predicting POI-tags of a tweet as a ranking problem,
in which POIs are ranked according to their relevance to a given tweet. A
series of models are built for POIs based on di�erent sources of evidence.
Based on these models, scores are assigned for each model according to a given
tweet. These models are then ranked by the scores and the higher a model
of POI is ranked the more likely the tweet is considered to be sent from the
corresponding place.

3.3.1 Dimension of Textual Information

To model the relevance of tweets in textual dimension, a unigram Language
Model is built for each POI based on the content of the tweets the POI is
attached to. Then, those Language Models corresponding to a set of candidate
POIs are ranked by their KL-divergences towards the Language Models built
from the content of a given tweet.

Formally, for each POI, a set of tweets fcig which it is attached to is collected,
i.e.,

Cl = fcijlci = lg:

The content of each tweet is represented by a set of random variables of terms
(unigram), i.e., ci = fWjg: Then the maximum-likelihood estimation is used
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for building the Language Model �l for the location l.

P (wj�l) =
1

n

nX

j=1

1(Wj = w)

where Wj 2 ci, ci 2 Cl and n is the size of the set of tweets in terms of the
number of words. 1(�) is an indicator function evaluated to 1 i� the input
condition is satis�ed.

Similarly, we can build a Language Model for a tweet P (W j�c) and compare
it with the Language Model for each POI by the KL-divergence between the
two models.

SKL(�ck�l) =
X

i

P (wij�c) log
P (wij�c)
P (wij�l)

Then the POIs are ranked by their KL-divergence to the tweet; the smaller
the divergence is, the higher the POI will be ranked.

Due to the limitation of tweet length, it is hard to build strong models for
those impoverished POIs using traditional text classi�cation methods, which
are typically based on domains that o�er numerous documents per category.
In this case, we turn to a potential rich source of evidence, i.e., web pages
about the location. In general a relevant page about a location contains
much lengthier information about the location than short tweets such as the
functionality of the location, the designated human activity at the location, the
relating items at the location. For example, the pages about cinema usually
have information about the cinema itself such as the facility, the �lms on
screening, characters in the �lms. The vocabulary used in web pages may also
match what users tweet about the locations. For another place, the topical
focus may be di�erent. As for restaurants, the related pages may render the
menus, the styles of decoration and food. For example, it may be likely that
users at a cinema post tweets regarding the �lm they have just watched or
the characters in a �lm which is also listed on the home page of the cinema.
It should also be noted that the mental setting of users for posting a tweet
from a place may be di�erent from publishing a web page about the place. As
revealed by Java et al. [68], most tweets are talking about daily routines and
what people are currently doing. Web pages regarding a place, on the other
hand, aim at describing the place in a more objective way. The vocabulary use
may be di�erent between these two di�erent sources of textual information.
Thus it is necessary to investigate how the combination of the two sources
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of information can a�ect the performance of predicting POIs of tweets. For
example, one of the geotagged tweets we collected from Ace Hotel New York
says:

Hanging out in the lobby working before my �rst meeting. If you’re
up, come say hi.

A web page returned by the search engine about the hotel highlighted some of
the words in the tweets:

. . . a fantastically detailed lobby . . . provides space for impromptu
meetings . . .

The correlations and di�erences are detailed in Section 3.3.3

Similar to modelling POIs with textual content of tweets, a Language Model
is built for each location with a set of relevant web pages returned from a
search engine.

P (wj l) =
1

n

nX

j=1

1(Wj = w)

where Wj is a random variable of words in the set of pages and n is the size of
the set of pages in terms of the number of words.

3.3.2 Dimension of Temporal Information

Human activity usually follows some patterns in daily lives. Accordingly,
locations related to certain activities also have visiting patterns. Such patterns
may be caused by the conventions and life styles, e.g., the time for lunch or
dinner, or by the opening time of a place such as dinning places or parks. As
shown in Figure 3.2, the temporal distribution of tweets from In & Out Burger
is very di�erent from that of Runyon Canyon Park within a day, which are
both located in Los Angeles. With such kind of knowledge, a tweet is more
likely coming from In & Out Burger than the park if it is posted around 11:30
pm.

Thus the temporal information embedded in these tweets is an important
source of evidence showing the origin of the tweets. On this basis, we propose
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Figure 3.2: The temporal distribution of tweets from In & Out Burger and
Runyon Canyon Park

a temporal model for ranking POIs, i.e., P (ljt�), where t� is the relative point
of time in a given cycle having a length of �. Applying Bayes’ law to the
conditional probability of time given a location, we can obtain the estimation
as follows:

P (ljt�) =
P (t�jl)P (l)
P (t�)

/ P (t�jl):

Besides daily cycles, we also consider two additional scales of cycles that
may inuence human activity, i.e., day, week and month. This is based on
the observation of general activity patterns of humans2. Thus, a timestamp of
tweet can be represented by a vector t =

�
td tw tm

�
, and

P (ljt) =
�
P (ljtd) P (ljtw) P (ljtm)

�
;

where td, tw, tm are respectively the relative point of time during a day, a week,
and a month. To estimate each component P (t�jl), we create a histogram out
of observed tweet timestamps from a location l. That is, for P (tdjl) we divid a
day into hourly bins and estimate the frequency of tweets posted during each

2See Section 3.4.1
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hour. Similarly, we estimate the frequency for each day in week cycles and for
each day in month cycles.

To combine the evidence from these three scales, we use linear combination,
i.e., weighed sum with a parameter �. In this study, we use a uniform set of
weights, i.e., � =

�
1=3 1=3 1=3

�
. That is, the score from time models is

St(l; t) = P (ljt)�T :

Then the location can be ranked according to the score St(l; t).

3.3.3 Combining Different Sources of Evidence

As shown, we have multiple sources of evidence for ranking POIs for a given
tweet, e.g., textual and temporal information . Similarly to the score function
for the temporal evidence, we use linear combination as a total score function of
both textual and temporal models. Since KL-divergence (for textual evidence)
scales di�erently with respect to di�erent sources (e.g., tweets, web pages),
we �rst normalize our ranking scores with respect to their own dimensions,
i.e., map the scores to [0; 1] and then linearly combine the scores for each POI.
Generally, let X be the score matrix where xij is the score of POIi given by
the jth model. The normalized matrix is given by X̂ =

�
x̂ij
�

where

x̂ij =

xij �min
j
xij

max
j
xij �min

j
xij

:

Then the ranking score is based on a linear combination of contributions from
all the component dimensions,

S = X̂�T :

Here, � is a weight vector controlling the contribution of the di�erent sources
of evidence in �nal rankings. We focus our investigation on the performance
that can be achieved without tuning the balance between dimensions, and thus
in our experiments, all the sources of evidence are weighted equally. Then, we
can rank POIs in a balanced manner taking multiple information sources into
account.
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3.4 Evaluation

In this section, we evaluate the proposed method based on experiments with a
collection of tweets from Twitter.

3.4.1 Data Preparation

For our experiment, we need to collect a reasonably large set of tweets with
POIs from Twitter’s APIs3. To achieve this, the following strategy is used:

1) Retrieve an initial set of tweets from Twitter’s stream API and �lter out
those without POI-tags.

2) Collect all the users who sent these tweets with POI-tags

3) Collect tweets from the users in the previous step via Twitter’s REST
API.

4) Collect all the POI-tags attached to these tweets.

5) Collect tweets by searching for the POI-tags gathered in the previous
step via Twitter’s Search API.

6) Update the data set with new incoming POI-tagged tweets and

7) Repeat Step 2)-6) to expand the dataset.

Following this strategy, we collected about 31.6 million tweets, crawling from
September 2010 to May 2011. However, there are only a small proportion of
tweets attached with POI-tags.

A close inspection suggests that most tweets with POI-tags originate from
Foursquare4, an online location sharing platform. Users of Foursquare can
check-in at places to share their experiences or bookmark the place. Moreover,
they can win titles (e.g., Mayorship) or special treatment (e.g., coupons) if
they check-in at a place many times5. Some of the check-in messages are

3http://dev.twitter.com
4https://foursquare.com
5http://mashable.com/2010/05/17/starbucks-foursquare-mayor-

specials/
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re-posted to users’ Twitter account and shown in Twitter with a POI-tag
to the place. These tweets often follow the pattern \I’m at <place name>.
https://4sq.com/XXXX", where the name of the place is embedded and the
short link containing a unique code to the page about the place on Foursquare.
These text snippets are usually automatically generated by Foursquare. In
general, for our experiment, it would be trivial to predict the origin of the tweets
having the POI names or code in their text content. Thus, we remove the links
started with \https://4sq.com" and the text snippets in the pattern \I’m at
<place name>.", i.e., we remove the tweets containing only the auto-generated
content.

In the end, we have collected for our experiments a dataset of 700,288 tweets
with POI-tags from 177,817 POIs, posted by 52,488 di�erent users. As shown
in Figure 3.3, the distribution of tweets follows the power law. Only a few
POIs (about 0.16%) are supported by more than 100 tweets and 93.11% of
POI-tags are used less than 10 times in our data set.
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Figure 3.3: Tweet distribution among POIs log-log scale

In our experiment, we focus on four big cities in the USA, namely, Chicago,
Los Angeles, New York and San Francisco, since these cities have more tweets
than other cities and more diverse users and POI-tags. For each city, we select
the top 10 popular POI-tags, including shops, restaurants, parks, cafeterias
and clubs. These POIs are selected because they have relatively rich sources
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of tweets (around 100-400) in our dataset.

3.4.2 Building Models

Before building language models for each POI-tag, we pre-process the textual
content of the tweets by streaming it through a stemming tokenizer with a
stop words �lter from WHOOSH6, which is used to extract terms from the
text. Then, for each POI-tag, we build a language model based on the terms
from the tweets with the POI-tag. In addition to textual evidence from tweets,
we also build a language model for each POI based on the relevant web pages
returned by a search engine. To achieve this, we query each POI name in
Microsoft Bing and gather the textual content of the top 30 returned web
pages with HTML tags being �ltered out. Similarly, we stream the textual
content of the web pages into the tokenizer and �lter pipeline to build language
models for each POI.

3.4.3 The Ability of Differentiation

Our �rst task is to �nd out whether POIs can be distinguished through the
language models built from tweets. We split the set of tweets from each POI
into two equally large subsets and build a language model for each subset. The
distance between two POIs is then calculated by the KL-Divergence between
the two language models, i.e., the distance between the language model built
from the �rst subset of tweets of a POI and that from the second subset. The
distances are rendered into a confusion matrix for the set of POI-tags from
each of the four cities. The confusion matrix for Chicago is shown, as an
example, in Figure 3.4, in which the lighter a cell is, the farther the models
are apart from each other in KL-divergence, i.e., the more di�erent the two
models are.

Signi�cant di�erences can be observed between all pairs of POIs except for
those that compares to itself. This observation supports our assumption that
language models are able to capture the di�erences between POIs. To put it
in another way, the words used in tweets are more similar among that from
the same POI than across POIs. From the �gure, we can also observe that
some pairs of language models are more like each other than other pairs, e.g.,
AMC River East 21 and Century Center Cinema which are both cinemas. For

6http://whoosh.ca
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Figure 3.4: Confusion Matrix for POIs in Chicago

another example, the language models of Lakeview Athletic Club and Bally
Total Fitness are closer in terms of KL-divergence and they are both �tness
place. This implies that tweets from similar POIs (in terms of human activities
or functionality) are also similar. This �ts into the assumption that tweet
vocabulary is to some extent in accordance with the place where they are.

3.4.4 Evaluation Methodology

For evaluation, we prepare the training and test data as follows. We select the
top 10 places from each of the four cities to assure there are enough tweets
for building the models. Then from each place in a city we randomly select
a set of tweets in a size of s as the training dataset and other 10 tweets as
the test dataset. For each city, we have s� 10 tweets for training the model
and 100 tweets for testing. We build models from the tweets in the training
dataset according to Section 3.3. Then each tweet in the test dataset is queried
against the model, which will produce a ranking list of the 10 POIs in the
corresponding city.

To evaluate the proposed models, we use a modi�ed precision curve. Di�erent
from typical retrieval systems which usually have multiple relevant items, in
our task, there is only a single POI-tag considered relevant (i.e., the reference
place). The higher the reference POI is ranked, the better the ranking method
performs. In our evaluation, we choose to use the frequency of the reference
POI being ranked above the p-th place. Then a curve is plotted to show the
relation between the frequency and the threshold p. The larger the area under
the curve, the better the ranking model performs.
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To verify the statistical signi�cance of the di�erence between the proposed
methods, we use Wilcoxon Signed-Rank test [21]. For each tweet in the test set
we record and compare the ranking positions of the reference POI (i.e., that
is attached to the tweet) from di�erent methods. Then we test the ranking
positions with Wilcoxon Signed-Rank tests and consider those pairs of methods
giving p-value < 0.05 as having statistical di�erences in performance.

3.4.5 Experiments

In this section, we will show the experimental performance of the proposed
methods and discuss di�erent factors that can a�ect the performance.

Models Trained With Su�cient Tweets

To evaluate the performance of the proposed methods, we �rst train the models
with su�cient number of tweets (s = 100). The results are shown in Figure 3.5.
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Figure 3.5: Ranking with rich set of tweets

The evaluation results are positive (41%{54% better than random baseline
under P@1) in all four cities when we have enough tweets to build strong
models for POI-tags.

39



3. From Tweets To Locations

A close inspection on the dataset suggests three types of tweets which the
proposed models do not work well with:

1) The tweets whose content is short and do not carry any location-speci�c
information, such as \Thank you", \yaaaa".

2) Words with a strong relationship to a place may not appear often enough
when the data size is small, e.g., \swim" usually implies �tness, however,
it only appears in 3 tweets in the dataset.

3) Tweets that contain only transient terms for a location, i.e., words relate
to a place for a short while and then rarely come back again, i.e., the
title of a �lm.

In general, the failure of prediction happens when neither models nor the
given tweets contain location related terms. To alleviate the problem, a large
quantity of tweets is needed for training comprehensive models for POI-tags.

Sparsity

As mentioned before, the sparsity of the data has potentials to a�ect the
performance of the proposed models in our task. To show how much data
sparsity can a�ect the ranking performance, we reduce the number of tweets s
used for training the models and compare how the models perform at di�erent
levels of sparsity (i.e., POIs at di�erent levels of popularity). The results of
this modi�ed setting are shown in Figure 3.6, which renders deterioration of
performance when the number of tweets used for training drops. Particularly,
for the case s = 10, the model degenerates to a random baseline (shown as
the diagonal line in the chart). Therefore, we turn to our additional source of
information.

Smoothing with Additional Sources of Evidence

As mentioned, to deal with the sparsity problem we proposed to use two addition
sources of information for modelling POI-tags, i.e., web pages returned by a
search engine and the posting time of tweets.

To integrate the models enriched by web pages, we rank the candidate POIs
for a given tweet by both models trained with tweets and models trained with
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Figure 3.6: Ranking at di�erent levels of sparsity

web pages related to POI-tags. Then the scores from the two set of models
are combined (see Section 3.3.3) to generate the �nal ranking. The curves in
Figure 3.7 shows that the evidence coming from web pages can help increase
the performance (around 10% increase in P@3) of ranking when POI-tags are
supported by only a few tweets (s = 5). On the other hand, it degrades the
performance somehow in the case that POI-tags have su�cient supporting
tweets (s = 100).

A positive example for web page based smoothing can be found with the
place Lakeview Athletic Club7. It is ranked higher by the web-enriched models
than by the models trained only with tweets. An opposite case is observed in
the place Nokia Theatre8 which is better ranked by models trained with pure
tweets than by web-enriched models. An inspection on the tweets suggests
that the di�erence may be attributed to the gap between vocabulary use in
tweets and web pages or the lack of extractable textual information from web
pages. Continuing with the negative example, most of the tweets from the
theatre are talking about ongoing shows while the top three web pages from

7http://chicagoathleticclubs.com/locations/lakeview
8http://www.nokiatheatrelalive.com/about
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Figure 3.7: Web-enriched rankings

the search engine are as follows. The top page returned is its home page which
includes only big Flash objects without much textual information extractable
and the second page is about a related theatre (Best Buy Theatre). The third
page is a Wikipedia page about the theatre. All of them do not have much
textual information about the shows and thus can not match the content of
the tweets.

To alleviate these problems, a �lter should be used to insure the textual
content in the web pages returned by search engine and its relevance to the
POI-tags. Moreover, a better tuned weight parameter may help balance the
diversity and consistency of using the two sources of evidence, i.e., tweets and
web pages.

Another source of evidence is the temporal information embedded in tweets.
The experiment results of the proposed models enriched by temporal in-
formation is shown in Figure 3.8, in which the model is compared with the
web-enriched models and models trained with su�cient tweets. As can be seen,
the time model can further improve the performance of both language models
of POIs having su�cient tweets and web-enriched models. However, the time
model is also a�ected by sparsity problems, therefore it cannot substantially
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increase ranking performance (around 10% increase in P@3). Looking into the
POIs that the model does not work well with, we �nd that some POIs like In
& Out Burger and Best Buy are always busy and cannot be characterized by
the time model.

This experiment shows evidence that the proposed method can distinguish
between tweets sent from the top 10 POIs of each city. However, the data
samples are relatively small in the experiment set up due to data sparsity.
Looking into the data in the experiment, we �nd that the POIs used in the
experiment vary in their kinds. For example, there are two clubs, two gym
centers, two cinemas, two o�ce buildings, a stadium, and a tech shop in the
data set of Chicago. In general, a POI category (e.g.., clubs) is associated
with more tweets than a single POI in that category does, and POI categories
often carry useful information about human activities. Thus, we also explore
the proposed method for predicting tweet origins in terms of POI categories,
which is detailed in the next section.
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Figure 3.8: Ranking with comprehensive models

3.4.6 Predicting Location Categories

As mentioned in Section 3.3.1, each location has its own function in human
society, a restaurant for dining, a cinema for watching �lms, etc. Thus it is
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possible that the function of the location can be reected from users’ check-ins,
via words used in the tweets and the time when the tweets are posted. To
verify the conjecture, we collected the category information from Foursquare
[54] for the locations in the dataset, via searching the names of the location
around the coordinates with Foursquare’s APIs. The returned places are with
categories like Fast Food, Art Museum. However, some locations in our dataset
have no corresponding category information in Foursquare’s database, thus
the dataset of tweets with categorized POI-tag is smaller than the location
dataset. The key statistics are shown in Table 3.1.

Table 3.1: The statistics of geo-tagged tweets with location category information

Entity Number

Tweets 382 654
Locations 52 775
Users 36 150
Location Categories 306

We use the same approach to model each location category and predict the
category information of test tweets. As shown in Figure 3.9, the number of
tweets used for building the models of location categories vastly inuence the
performance of prediction. Similar patterns are observed, i.e., the more tweets
used for building the models, the better the prediction is.

In general, though the prediction performance is better than random guess
(which produces a diagonal line), the category prediction is not as good as
location prediction. This may be due to that the tweets from the same location
are more coherent than those from diverse locations belong to the same category.
It is likely that the model of a location category is trained with tweets from a
group of locations and is tested by tweets from a di�erent group of locations,
though both belong to the same location category.

3.5 Conclusion

In this chapter, we have shown the viability of applying a ranking approach to
the prediction of the POIs of tweets’ origin at location level within a city. Using
a language modelling method, we can achieve better performance given enough
tweets for building models of a POI-tag than random guess. For those POIs
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Figure 3.9: Ranking location category

not associated with su�cient tweets, we show that using web-enriched models
can signi�cantly improve ranking performance by combining the prediction
from models trained with tweets and models trained with web pages. We
also demonstrate the use of temporal information to improve the prediction
performance. In spite of the sparsity problems, the proposed temporal models
can improve the performance of prediction in all circumstances, e.g., su�cient
tweets, insu�cient tweets, with or without web-enrichment. In general, we
conclude that POI-tagged tweets have a strong correlation with their place
of origin, which can be predicted from the textual and temporal information.
Moreover, we also veri�ed the conjecture that the functions of locations are
also related to the tweets where they were sent from.

To answer the research questions, we use words from both tweets and
web searches and temporal features to build models of POIs (RQ1a) and
also demonstrate the ability of both textual feature and temporal feature to
distinguish POIs (RQ1b). In the experiments we show that the proposed
models can achieve better performance than the random baseline(RQ1c).

There are still challenges in this task. The web-enriched models have their
own limitation if there are su�cient tweets for modelling a POI-tag. Presum-
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ably, the gap between tweet vocabulary and web vocabulary regarding the
same location severely a�ects the performance of prediction. It is challenging
to decide on a good parameter for blending in the information from the web
source. It is not clear what role the web source will play if the prediction is in
a larger pool of POI-tags.

The users’ identity, online friendships may be good resources of evidence for
locating a tweet, which should be included in the future work along this line.
The parameters used in combining scores can be tuned according to di�erent
places since places of di�erent categories may have their own preference on the
sources of evidence.

It should also be pointed out that the privacy disclosure can be harder
to avoid in current social media era. This study demonstrates how location
information can be inferred from other aspects of messages from social media.
This may also lead to studies and applications that can warn users when their
activity leads to potential privacy leaking.
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Chapter 4

From Past Locations To
The Future

Previously, we have shown empirically that the content of tweets can be
exploited to predict locations or their associated properties (categories). In
this chapter we look into the problem of predicting the origins of tweets from a
di�erent angle, that is, trails. Then we can answer the second research question
(RQ2), i.e., whether we can predict users’ future visits to POIs by only using
users’ visiting histories.

4.1 Trails as Activity Patterns

As an intuition, everyday, a city resident need to visit several places to accom-
plish daily routines, e.g., work, food, clothes and entertainment. However, the
sequence of visiting all these places usually depends on their own schedule of
a day. For example, a student may have di�erent types of places to go to on
working days, such as the lecture rooms, the canteen and the apartment. In the
weekend, a trail through the city centre, a cinema and followed by a restaurant,

This work is an extension of the publication \Want a co�ee? Predicting Users’ Trails"
by W. Li, C. Eickho� and A. de Vries, in Proceedings of the 35th international ACM SIGIR
conference on Research and development in information retrieval - SIGIR ’12
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is more likely. Since sharing location has become a trend, many users post
about the locations they visit on social networks, like Twitter, Foursquare1,
Facebook2. This grants researchers an opportunity to study the mobility of
city residents though the public data provided by online social networks. The
knowledge derived from that data may lead to applications that are more
context-aware.

Twitter, as one of the most popular online social network platforms, provides
APIs for geo-information, via which users can attach a location to their posting
messages. In general there are two levels of information regarding the location
provided by two types of tags. Low level location information is encoded in
geotags which are purely the coordinates which can only represent physical
locations. High level information is encoded in Point of Interest (POI-tags)
which are composed of more human friendly information like names of places,
addresses, etc. Geotags are usually attached automatically by the devices if
users approve it, while POI-tags are manually selected from a list of suggestions
based on the user’s current location. The geo-information APIs and the
presentation of geotags and POI-tags have been adjusted a couple of times
which may be due to the concern of privacy.

Besides general online social networks like Twitter, location based social net-
works focus speci�cally on the function of sharing user locations. Foursquare as
one of the leading location based social networks includes category information
in their POI-tags which can be accessed though their public APIs. The cat-
egory information embedded in Foursquare’s POI-tags reveals the connections
between the location and users’ activities. For example, a location labelled
as a restaurant is related to the activity of dining while shops are related
to buying and selling stu�. While a clue of what the place is for may have
been embedded in names, a lot of places are named very distinctively so that
consumers are more likely to remember them. Understanding a place’s role
can be more easily achieved through manual labels, provided by Foursquare.

A reasonable prediction of user locations in terms of activity (estimated from
the POI category) would support accurate context modelling for context-aware
applications. One example of such applications would be precise targeted
advertisement. Such systems can display advertisement more relevant to users’
activity which may be more persuasive rather than listing all kinds of places

1https://foursquare.com
2https://facebook.com
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around the place. It would even be better if the system could know ahead
about what users are going to do in the near future and response accordingly.
For example, it would be more useful to show advertisements about bars when
knowing a user is going for a drink after work rather than showing bars when
the user is already in a bar.

In this chapter, we will look into how to predict users’ next locations in
terms of categories based on their previous visits. Geotagged tweets are sparse
in the Twitter sphere which are only 4.3% and POI-tagged tweets are even
sparser which contribute to 0.03% according to the data set provided by TREC
2011 [115]. Besides, even the active users of POI-tags do not check-in at every
place they visit, which leaves \holes" in their trails and makes the trails even
more sparse.

4.2 Trail Prediction

Consistent with the previous chapter, we refer to an online message with a POI-
tag as a check-in, formally represented as hl; ti. In this chapter, we focus on the
location types rather than individual locations, therefore, l represents the cat-
egory of the location indicated in a POI-tag; t is the timestamp when the check-
in is made. A user’s trail is de�ned as the set of check-ins made by the user u,
i.e., fhl; tijhl; ti 2 Cug. For example, a trail from a university student can be rep-
resented as fhUniversity; 8 : 00i; hFood; 12 : 43i; hUniversity; 13 : 30ig. With
this, we make an estimation on how likely a message tagged with a library
POI will appear in this trail (check-in set) during the evening. This is based
on the knowledge that a typical trail of students usually has a check-in at a
university library during the evening.

Formally, based on a set of location categories L and a trail hli; tii where
li 2 L and ti is a timestamp, we would like to rank all location categories in L
according to the likelihood they will be observed at a give timestamp queried.
The problem of trail prediction is then de�ned as a prediction problem, where
given a trail of a user Cu and a query time, we predict the category of next
location that the user will visit.
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4.3 Related Work

Before the rise of smart phones and social media, to study human mobility,
subjects either wore GPS-loggers to record their trajectories [174, 110] or
were tracked though cellular networks [25, 10, 107]. For cellular networks, it
is important to track users’ location in terms of base stations as they need
to be paged for incoming calls. The �rst study on predicting mobile users’
behaviours to reduce the paging tra�c in cellular networks was carried out by
Bhattacharya and Das [25] and they proposed Markov Chains based models
for the problem. As for recorded GPS-trajectories, Ashbrook and Starner
[10] showed that second-order Markov Chains have the best precision among
nth-order Markov Chains.

Instead of physical locations, the environment that users are surrounded
with (also known as contexts) usually provides much richer information and
many researchers have tried to infer context information based on coordinates.
Meeuwissen et al. [107] showed that in the setting of inferring and predicting
mobile users’ context based on cellular network position trajectories, a predic-
tion by partially matching the trails is better in continual updating datasets.
By analysing recorded trajectories, the transportation type (walk/bus/car/
bike) can be distinguished in each segment of trajectories (see [174]). Monreale
et al. [110] tried to predict future visits for cars from recorded GPS-trajectories
by building a pre�x tree on the collected trajectories. Lv et al. [99] studied
temporal features of trajectories (e.g., dwell time, visiting frequency) which
were then used for estimating the semantic categories of locations. Based on
GPS-trajectories, Zheng et al. [175] try to recommend locations or activities
to users based on users’ historical visits and correlations between locations.
Later, by abstracting stay regions from trajectories, they proposed methods to
recommend locations and activities to users based on their current location
[171]. As GPS trajectories may be sampled at a low rate which may introduce
uncertainty, Zheng et al. [170] proposed a History Route Inference System to
reduce such uncertainty. These studies based on fully recorded trajectories
which covered all the locations the subjects had been to. Trails embedded in
social networks usually reect only part of the trajectories, or, in other words,
these can be seen as trajectories with many missing values.

As Location-based Social Networks have become popular, user contributed
location information not only enables other users to �nd out interesting loca-
tions but also provides a huge volume of data about locations and user mobility.
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Such data triggered a large number of studies on location recommendation
and prediction. Flickr is a popular online photo sharing service where many
photos are shared with geotags (geographical coordinates). By clustering
those geotagged photos into landmarks, it is possible to make personalized
recommendation of landmarks to users [137, 36].

Since Twitter started supporting geotags, researchers have been able to
locate users’ home towns by the vocabulary used in geotagged tweets [31].
Mahmud and Nichols [101] later investigated di�erent features such as place
names and hashtags for the same problem. Bao et al. [18] used Foursquare tips
for recommending locations based on matching users’ preferences and experts’
preferences. As Foursquare’s check-ins and Twitter’s POI-tags carry more
accurate information about the users’ locations, more knowledge can be learned
from users’ mobility, such as cyclic visiting patterns [32, 113], regional visiting
patterns [38]. The inuence between users can also be used for recommending
new locations [56]. Similarly, Sadilek et al. [128] studied the relation between
friendships and locations and tried to estimate users’ locations based on their
friends’ locations. All these location recommender systems focused on the
exact locations and the time range for the prediction is very large and loosely
limited, e.g., in months or even years. In our trail prediction, we focus on the
category information and the predicted visits are in a short time frame, e.g.,
in hours.

A closely related work is carried out by Kurashima et al. [74] who combined
Markov models with a topical model based on geotagged photos on Flickr for
recommending the landmark visited next. Cheng et al. [30] studied the same
problem and they integrated visual clues from photos in their personalized
location recommendations, i.e., they classify the users by the facial attributes
extracted from the photos. Their tasks are in general similar to ours, which
is predicting users’ future activities. However, we focus on the category of
locations within a city while they focus on individual locations. The photos
on Flickr of which a trajectory is composed of usually falls into a small set
of categories of locations which are more popular for tourists. The check-ins
on the other hand, are more diverse in categories of locations, ranging from
restaurants to universities.
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4.4 Methodology

As mentioned in the example in the previous section, student trails may share
a lot in common. The evidence presented by Gao et al. [56] suggests that
users have more similar interests within their local circles than to arbitrary
users. Similarities between users can be an important factor in predicting user
mobility.

In both Noulas et al.’s work [113] and Chapter 3, check-in behaviour shows a
correlation with time. For example, a lot of check-ins originate in caf�e locations
in the morning, while supermarkets dominate the early evening. Noulas et al.
[113] also illustrated the di�erence in check-in distribution between weekdays
and weekends. The temporal information is also an important factor to include
in predicting user mobility.

Users’ daily trails may also depend on many other factors, such as the days
of the week, local culture, their own social circles, age groups and gender. The
variety of factors that may be related to user mobility patterns motivates us
to focus on a data-driven approach and model the similarity between users
purely based on their life style reected in their trails.

In this section, two di�erent approaches to the problem are discussed. In
general, a user’s trail can be seen as a sequence of transitions between di�erent
location categories (activities), which can be modelled by Markov Chains. We
propose a simple method based on Markov Chains to predict users’ trails.
From another perspective, as users’ trails reect their life styles, the trails
can be seen as users’ interests of going somewhere or performing an activity
at a certain time. We propose therefore a second approach to the problem
with a Collaborative Filtering based method, as Collaborative Filtering has
been shown e�ective for predicting user interests in items [136]. In this study,
the performance of both approaches are evaluated empirically on real data
collected from Twitter and Foursquare.

4.4.1 Markov Chain Models

As shown by Kurashima et al. [74], Markov Chain Models can be used for
recommending tourism routes based on geotagged Flickr photos, which in
general is also a trail predicting problem, i.e., predicting the trail a user would
follow during his/her tour. In our trail prediction problem, the category of
locations a user checked-in at can be seen as a state. Check-in at another
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category of location infers a transition to another state. Formally, let a trail be
a sequence of location categories represented by random variables Xi indicating
the location category. Predicting the next location category at which a user
would check-in will then be based on the following conditional probability.

MMC = P (xijxi�1; xi�2; : : : ; x0)

By applying the �rst-order time invariant principle (Markov Chain Model), we
have:

MMC = P (xijxi�1; xi�2; : : : ; x0) = P (xijxi�1)

Then location categories are ranked according to the conditional probability
P (xijxi�1). In this model, the timestamps in a trail of check-ins are simpli�ed
to the chronological order of the states of location categories visited.

To estimate P (xijxi�1), we use simply the Maximum-likelihood estimation:

P (xijxi�1) =
j
S
u2Ufhcj ; ckijhcj ; cki 2 Ru; lcj = xi�1; lck = xigj
j
S
u2Ufhcj ; ckijhcj ; cki 2 Ru; lcj = xi�1gj

where Ru = fhcj ; ckijcj ; ck 2 Cu;@c0 2 Cu : tcj � tc0 � tckg includes all pairs
of consecutive check-ins in the user’s trail, cj and ck are check-ins, u indicate
a user, tc and lc are respectively the timestamp and location category of a
check-in.

4.4.2 Collaborative Filtering

Collaborative �ltering is a successful technique developed in recommender
systems [93], where users’ interests on un-purchased/un-rated items are es-
timated. General location recommender systems have applied Collaborative
Filtering algorithms, see e.g., [137, 36, 18]. Trail prediction can be seen as
�nding out users’ interests in visiting certain categories of locations at certain
times. This analogy inspired us to use Collaborative Filtering for the trail
prediction problem. Collaborative Filtering is suitable in cases with missing
values, a problem that also presents in our data due to the hidden part in
trails because users may not check-in at every place they visit.

Interest Pro�les

Collaborative Filtering models user interests based on their ratings on di�erent
items. The items that the algorithm predicts the users will rate highly but

53



4. From Past Locations To The Future

have not yet bought/watched/read/etc., are then recommended to the users.
In trail prediction problem, instead of ratings towards an item, we consider
check-ins as ratings towards visiting a location of a certain category at a certain
time. Predicting a user’s future trail can then be interpreted as predicting
the user’s interest in visiting a location of some category in some future time
window.

Many di�erent approaches have been proposed for improving the performance
of general and task-speci�c Collaborative Filtering based methods. In our
experiments, we base our methods on the class of memory-based Collaborative
Filtering, which measures similarities between neighboring data points, and
predict rating on a given item by aggregating ratings from similar data points
(users or items) [125, 133]. While alternatives may be considered in future
research, memory-based Collaborative Filtering has the advantages of good
performance and ease of implementation, providing a suitable baseline to
explore.

As shown in Section 4.2, the trail is composed of check-ins which is a set of
points in both location and time dimension. A method to converting point sets
to vectors is needed to de�ne a similarity measure on two trails in memory-
based Collaborative Filtering methods. In the experiment, we discretize time
dimension into slots for vectorizing trails.

Formally, each user’s check-in pro�le is represented by a matrix rjLj�m, in
which the value of each entry rl;t represents the likelihood that the user is
at a location with associated category l at time slot t. Thus, a check-in at a
location will indicate that the user is at the location and the time slot of the
location category will be increased by 1.

For a given trail r, the top n similar trails ~R are selected and aggregated with
the following formula. This estimates the user’s interests towards a location at
a certain point of time, when going along the given trail:

r̂ =
1Pn

i=1 fsim(ri; r)

nX

i=1

fsim(~ri; r)ri

where fsim(�; �) is a function for measuring the similarity of two vectors. In
this study the commonly used cosine function has been taken as the similarity
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function.

fsim(x;y) = cos(x;y) =

P
xij � yijqP
x2
ij

qP
y2
ij

The estimation r̂l;t is used for ranking the location category l as a prediction
at the time point t, which is noted as

MCF = r̂l;t:

Trail Smoothing

Check-ins are only snapshots (sample points) of users’ trajectories and they
are too sparse for training models. To address this problem, we use smoothing
techniques to propagate the positive evidence of users’ presence to the neigh-
bouring time slots, which can be considered as reconstructing actual trails
from snapshots. The intuition is that when a user checks in at a location at
some point of time, the user does not merely stay at the location for a very
short time. On the contrary, the user usually stays there for longer time, which
reects the user’s interest in the place where the user checks-in. Inspired by
such a heuristic, we assume that users usually stay at the location around the
time point they check-in at for, e.g., one hour.

To model how likely a user stays at the location at a point of time that is
di�erent from the time point when the check-in is made at the location, we use
a bell curve function to approximate the likelihood. The bell curve function is
de�ned as follows:

K(t) = e�
t2
h ;

where h is a parameter to control the span of the curve.

There are four reasons motivating us to choose this speci�c function. The �rst
is that the function gradually goes to a lower value when t goes o� the centre,
which represents that the likelihood a user stays at the location diminishes
when no further check-ins are observed at the location. The second is that the
function goes down slowly when t is leaving the centre and goes down faster
when it is further away from the centre, and then gradually approaches to
zero. This indicates that there is a time range around the check-in, within
which the user is very likely to stay and the likelihood will steeply drop when
t is beyond the range and the range can be controlled by h which can be
considered as a bandwidth parameter. The third reason is that the maximum
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Figure 4.1: The bell curve function (h = 2)

value 1 is achieved at t = 0, which indicates that the user is absolutely at the
location when a check-in made by the user is observed. The fourth is that
the function is easy to achieve in a simple mathematical formula. As can be
seen in Figure 4.1, a check-in observed at a point of time will bring up the
likelihood of the user being at the same location around the time.

For multiple check-ins at locations belonging to the same category, we
aggregate the bell curves for each check-in:

rl;t =
nX

i=1

1(l = li)K(t� ti) (4.1)

By this smoothing step, we can to some extend alleviate the problem of
sparsity in the data set and we refer to the collaborative �ltering method with
smoothing as MCF�K .

Figure 4.2 shows a smoothed trail, which contains 6 check-ins at 6 di�erent
locations respectively belonging to 5 categories. The two horizontal axes
respectively represent the time dimension and location category dimension of
the trail and the perpendicular axis represents the likelihood of user being at
the location at the time. For example, the rising surface at bar and around
00:00* means that the user was very likely in a bar around those time slots. In
the experiments, the smoothing is only applied to time dimension. A smoothing
method for category will be explored in the future work, e.g., a method based
on topical similarity between categories.

* indicates the next day
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Figure 4.2: A kernel density estimation of trail (h = 2 hours)

4.4.3 Baselines

To show the e�ectiveness of our proposed models, we construct three baselines
for the problem. For classi�cation problems, an important baseline to consider
is simply to use the major class (MM ) as the prediction. In general, predicting
the next location category can be seen as a classi�cation problem where the
category of the location that users visit most often can be a good baseline.
Inspired by the general check-in patterns of a day, we devise a simple baseline
by incorporating temporal information, i.e., using the major class at a given
time as the prediction (MTM ). Besides, by manually inspecting a subset of
the data, we observed that there are some consecutive posting of tweets from
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the same location. This motivates a baseline (ML) of always use the last seen
location categories as the prediction of the future check-in.

4.5 Data

As explained in Section 4.1, Foursquare has a rich source of location information
including category information which largely reects users’ activities at various
places. It allows users to post their current locations and share them with
friends. Such posts are usually referred to as check-ins. Due to privacy concerns,
Foursquare only allows users’ friends to view their check-ins and, thus, it is
not possible to get access to su�cient data from Foursquare. To this end,
we turn to POI-tags in tweets which can be accessed via Twitter’s APIs. As
an observation, a large proportion of POI-tagged tweets are from Foursquare
due to its automatic tweeting function, by enabling which users can instruct
Foursquare to post their check-ins on their Twitter account. These POI-
tagged tweets from Foursquare carry the information about the geographical
entities from Foursquare, though the two location databases may use di�erent
identi�ers for the same location. Thus we collect a set of POI-tagged tweets
and then try to match the geographical entities from both sides so that we can
map Twitter’s POI-tags to Foursquare’s location categories. Using the data
collecting strategy in Section 3.4.1, we collected about 1.2 million POI-tagged
tweets from 62 thousands users posted from 236 thousands locations.

To collect the category information for all the locations represented by these
collected POI-tags, we search each location via Foursquare’s API3 by its name
and coordinates, with a �lter indicating that only places within 100 meters
around the provided coordinates should be returned. Because the same location
may appear with slightly di�erent names and coordinates in the two data
sources, a simple matching algorithm is used to match them up. Based on
a linear combination of textual distance of the names (Levenshtein distance)
and spatial distance (Euclid distance of geo-coordinates), we select the closest
location entity in Foursquare for each Twitter POI-tag. After matching up the
locations there are still 14.3% locations from Twitter that cannot be labelled
with a category which leaves 8.6% of the tweets with POI-tags uncategorized.
The missing categories arise due to locations without a Foursquare category
or locations that cannot be matched to locations on Foursquare. We removed

3https://developer.foursquare.com/docs/venues/search
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4.5. Data

from our experiments the POI-tags that cannot be matched to any categories
and the tweets to which they attach. Because we are only interested in users
who actively use geotags for their tweets, we only keep the tweets whose owners
have more than 5 POI-tagged tweets. This results in a dataset of 326 782
POI-tagged tweets posted by 11 087 users from 24 632 locations.

Category information on Foursquare is organized in a hierarchy of in total
400 categories and 9 of them are the top categories which the rest belongs to.
Table 4.1 lists the 9 top categories with some examples of direct subcategories
and the number of direct subcategories. As shown, the categories reect the
function aspect of locations, i.e., a check-in is able to be categorized according
to the potential activities that could be performed at the location. Within each
top category, the number of subcategories varies. For example, the category of
Food has Sandwiches and Chinese as subcategories. Some of the subcategories
are further divided. We consider two settings regarding the categories used in
the experiments. The �rst setting uses categories without the hierarchy, i.e.,
we use the category originally associated with each location which results in
400 candidate categories for prediction. In the second setting, we replace the
category with the top category it belongs to in the hierarchy for each location
which results in 9 top categories as candidates for prediction.

As shown in Chapter 3, most of the POI-tags are locations in densely
populated areas, usually big cities. We focus our analysis on the four major
cities which contribute the most POI-tagged tweets, i.e., New York (NY),
Chicago (CH), San Francisco (SF), Los Angeles (LA). Table 4.2 shows the
breakdown of the numbers for each of the 4 cities. Similar to the previous
studies (Chapter 3), New York has the largest number of active geotag users
on Twitter, which contributes the largest volume of geotagged tweets.

Figure 4.3 shows the distribution of the collected check-ins, using di�erent
colors for each top category of locations attached to the check-ins. It can be
seen that the check-ins depict the outline of the city, especially for the down
town areas, e.g., Manhattan area in New York. For places in the category of
Travel & Transport (marked in purple), most of them are near the down town
area. The remote cluster to the south west of Los Angeles is the International
Airport where many facilities are marked as the category. On the other hand,
places in the category of Shops & Services spread more uniformly. There are
also small clusters marked in blue which are places in the category of Colleges
& University, e.g., the ones around the coordinates (87.60°W, 41.80°N) in
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Table 4.2: The statistics of the data set for experiments

City Tweets POIs Users

New York 148992 10200 5537
Chicago 70997 5574 2113

Los Angeles 52195 4432 2220
San Francisco 54594 4426 2305

Chicago are places in University of Chicago.
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Figure 4.3: POI distributions in the four cities

Similar to the datasets reported by Cheng et al. [32] and Ye et al. [160], our
data set renders users’ cyclic patterns of check-in behaviours, e.g., day cycles
and week cycles. Particularly, as shown in Figure 4.4 check-in volume starts
to rise around 5:00 and slopes down after midnight. Two spikes correspond
to check-ins at places for Food around 12:30 and 20:00 and places of Nightlife
Spot become crowded after 18:00. In general, places for Food are more popular
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for check-ins than other categories.

00:00 06:00 12:00 18:00 23:00
0

2000

4000

6000

8000

10000

12000

# 
of

 C
he

ck
-in

s

NY

00:00 06:00 12:00 18:00 23:00
0

500

1000

1500

2000

2500

3000

3500

4000

4500
CH

00:00 06:00 12:00 18:00 23:00

Hours

0

500

1000

1500

2000

2500

3000

3500

4000

4500

# 
of

 C
he

ck
-in

s

LA

00:00 06:00 12:00 18:00 23:00

Hours

0

500

1000

1500

2000

2500

3000

3500

4000

4500
SF

College & University
Food
Residence
Travel & Transport
Shop & Service
Arts & Entertainment
Great Outdoors
Nightlife Spot
Professional & Other Places

Figure 4.4: Check-in distribution over local time in working days

On weekend days, shown in Figure 4.5, we observe slight di�erences from
check-in behaviour of working days. The rise of check-in volume is 2 hours later
at 8:00, and lunch time in general moves to 13:00. Places in the category of
Shops & Services are visited more often in the morning than in the afternoons
during weekends. Visits at this type of places are more evenly distributed on
working days, slightly biased towards evenings. The places in the category
of Nightlife Spot receive more check-ins in the evenings of working days than
that in the mornings and afternoons of working days, compared to the smooth
distribution of check-ins during weekends.

As can be seen in Figure 4.6, Day-wise weekly cycles do not show as clear
patterns as hour-wise daily cycles. In general, we observe more visits to Food
places and Nightlife Spots in the weekends. The reduction of check-ins on
Sundays can be explained by the tradition of resting on that day.

Daily cyclic patterns of check-in behaviour inspires us to consider trails in a
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Figure 4.5: Check-in distribution over local time in weekends

length of day. As shown in Figure 4.7, the number of check-ins in daily trails
follows the power law, i.e., there is a large proportion of daily trails containing
very few check-ins.

Trails represented by check-ins have several intrinsic di�erences from other
types of trails/trajectories: (1) The trails of check-ins are sparse and random
snapshots of users’ daily mobility. Unlike GPS recorded trajectories, check-ins
are totally volunteered records of a user being at di�erent locations. There is no
obligation for users of location based social networks to report their positions.
This means that the collected data reects only a part of users’ actual trails
and there are many missing data between users’ check-ins. (2) Triggers causing
users to check-in may be more diverse than those to take geotagged photos used
in travel route recommendation. Photos tend to be taken for bringing back
memories later on, forming a natural representation of the value of going there.
Usually the more users post a photo from a location, the more that place is
liked. This embedded signal of worthiness and liking can easily be transferred
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Figure 4.6: Check-in distribution over week days
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to other tourists and that is the signal that recommendation is based upon.
Due to the gami�cation strategy adopted by Foursquare, however, users may
compete for virtual titles and badges by checking-in at otherwise irrelevant
places. They may also check-in because they like the place and want to share it
with their friends; and they may simply have a conversation with each message
being a check-in, i.e., chatting on Foursquare. These di�erent characteristics of
check-in data from other sources of user trajectory information bring challenges
to this study.

4.6 Evaluation

To evaluate the proposed methods for predicting users’ locations, we conduct
two series of experiments. The �rst series of experiments is based on the top 9
category labels de�ned by Foursquare’s location category hierarchy and each
of the 9 labels is propagated to POI-tags whose category labels belong to it in
the hierarchy. The second series of experiments is based on the category labels
assigned by Foursquare which are all subcategories to the top 9 categories.
Both series of experiments are carried out for the four major US cities, i.e.,
New York (NY), Chicago (CH), Los Angeles (LA), San Francisco (SF), which
is due to the reason that, as mentioned in Section 4.5, the locations in these
cities are popular among the users in the data we collected. The experiments
are conducted using 10-fold cross validation. The folds are cut along the user
dimension of the data, which means there is no user overlap between the
folds, to make sure that the experiment results can be generalized to di�erent
user sets. It reveals the commonality of check-in behaviour between di�erent
users and also demonstrates the performance of the proposed methods under
minimum privacy intrusion. Similar to the previous chapter, Mean Reciprocal
Rank (MRR) is used for evaluating our methods since there is only one relevant
location category for each testing trail in the ground truth.

4.6.1 Trail Set Preparation for CF

For the Markov Chain based method and baselines, training and testing trails
can be simpli�ed as pairs of consecutive check-ins posted by users in training
set and testing set respectively. For the proposed collaborative �ltering based
methods, trails are composed of check-ins over a certain period. As observed in
Section 4.5, users’ check-in behaviours are strongly related to day cycles. Thus
we focus on the trails of 24 hours long in the evaluation. Both the training trail
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set and testing trail set are dynamically composed according to the reference
check-in. That is, given a reference check-in from the testing set, a testing
trail is composed by grouping the check-ins within a certain length of period
(e.g., 24 hours) before the timestamp of the reference check-in. Check-ins in
the training set are grouped into trails so that they are aligned with the given
testing trail, i.e., both training trails and the given testing trail start and end
at the same time within a day. This is based on the consideration that users’
activities are largely determined by the time of day. For example, given a
24-hour testing trail with the reference check-in at 10:21 Feb 22, 2011, the
check-ins in the training set are grouped into trails such that each trail starts
at 10:22 and ends at 10:21 the next day.

Because of the dynamic grouping, it would be ine�cient to prepare the
training set for each testing trail. Thus, we develop the following strategy
for training set preparation. The check-ins are �rst grouped into trails of 24
hours, from midnight to midnight. Then all consecutive pairs of these trails
are concatenated to form double trails, i.e., the trails of doubled lengths. Each
of the double trails has a half overlapped with the preceding double trail and
another half overlapped with the succeeding one. With these double trails, we
can dynamically extract aligned training trails, i.e., for each testing trail, each
aligned training trail can be extracted from one of these double-length trails.

4.6.2 Experimental Results

In this section, we present the results of the methods introduced in the previous
sections, i.e., using the major class as prediction (MM ), using temporal major
class as prediction (MTM ), using the last visit as prediction (ML), Markov
Chain based method (MMC) and Collaborative Filtering based methods
(MCF without smoothing and MCF�K with smoothing). Based on the trails
extracted respectively from both training set and testing set, we evaluated
the proposed methods as well as the baselines with Mean Reciprocal Ranking
(MRR). The reason of using MRR as the evaluation method is that there is
only one correct (relevant) category in the resulting rank lists. MRR has been
used in similar settings, for example in TREC tracks for the evaluation of
question answering and contextual suggestions. The MRR scores are listed
in Table 4.3 and Table 4.4 respectively for trails at two levels of categories.
The parameters used for MCF�K are h = 0:5 hour (bandwidth), n = all
(number of neighbours) in experiments at the top-level of location categories
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and h = 4 hour, n = all in experiments at the lower-level of location categories.
It can be seen that MCF�K performs the best among all the methods at both
levels of the category hierarchy. The collaborative �ltering method without
smoothing performs the worst, because the sparsity dramatically increases
when converting the trails into matrix presentation. Such a big di�erence in
performance demonstrates the necessities of the smoothing technique for the
collaborative �ltering method.

Table 4.3: The MRR scores on 9-top-category trails

Model NY CH LA SF

ML 0.4932 0.5425 0.5209 0.5552
MM 0.5481 0.5437 0.5928 0.5751
MTM 0.5705 0.5891 0.5987 0.6066
MMC 0.5647 0.6049 0.6100 0.6564
MCF 0.5227 0.5217 0.4481 0.5519

MCF�K 0.5985 0.6398 0.6162 0.6747

Table 4.4: The MRR scores on 400-category trails

Model NY CH LA SF

ML 0.1593 0.2349 0.1723 0.2343
MM 0.1469 0.1862 0.1425 0.1933
MTM 0.1724 0.2172 0.1526 0.2244
MMC 0.2270 0.3025 0.2279 0.3139
MCF 0.0863 0.1354 0.0755 0.1529
MCF�K 0.2432 0.3124 0.2304 0.3308

Markov Chain based method (MMC) performs the second best among these
methods except in New York and it is more computationally e�cient than the
Collaborative Filtering based methods. MTM outperforms MMC with the
New York data set at the top-level location categories and is the third best
in the other cities. On the other hand, ML performs better than MTM at
the lower-level location categories except for New York. This suggests that
there are quite some trails in which the reference check-in is at the same
location category as the preceding check-in, i.e., there are quite some check-ins
belonging to the same location category.
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The di�erences in MRR scores for the evaluated methods are all statistically
signi�cant (tested by Wilcoxon Signed Rank Test p < 0:05), except for the
di�erence between MMC and MCF�K on the check-ins from Los Angeles at
the lower-level categories.

4.6.3 Discussion

In this section, we will discuss how the parameters can a�ect the performance
of MCF�K .

Making prediction of a location category given a trail using memory-based
Collaborative Filtering relies on the neighbours of the trail to provide an
estimation of the user’s interest. In the trail prediction problem, the number
of neighbours can a�ect the estimation. As shown in Figure 4.8 and Figure 4.9,
a small number of neighbours may not produce accurate estimation. With
the number of neighbours going up, the performance of MCF�K increase as
well. This is due to the weighted combination of neighbours in which dissimilar
trails will contribute little to the estimation of future trails. However, the
performance becomes stable after n reaches 2000.

As explained in Section 4.4.2, the bandwidth parameter h can be interpreted
as an approximation of the average length of the time span users stay at a
place. Figure 4.10 shows the performance of MCF�K predicting the top-level
location categories and Figure 4.11 for the lower-level location categories. The
parameter resulting the best performance is 0.5 hours. Since the parameter is
roughly the width of one side bell curve, h = 0:5 hour resembles an average
time span of 1 hour that users are assumed to stay at a location. As for the
lower level categories, the best parameters is around 4 hours, which is much
longer than that of the top level categories. An explanation is that the data set
for the lower level categories is more sparse than that of the top level categories
and the temporal factors are less important than the evidence of having been
to a place. CF-K performs better with stronger smoothing parameters, as they
can di�erentiate the case where two users having never been to places under
the same category and the case where two users having been to the same place
but at di�erent points of time.
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Figure 4.8: The performance of MCF�K with di�erent number of neighbours
for estimation at the top level of categories

4.7 Conclusion

In this chapter, we have investigated the problem of trail prediction from the
perspective of location categories. Di�erent from previous studies on location
recommendation and travel route recommendation, we focus on the category
information of the locations posted on Twitter. The location categories in
general resemble the functions of locations and are strongly connected with
human activities.

In general there are two major challenges in solving the problem. The �rst
challenge is that there is no public dataset that connects all users’ check-
ins, locations and category information. Thus to prepare the dataset, we
matched two sources of information, i.e., POI-tags from Twitter and category
information from Foursquare, and released the ids for public use. The second
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Figure 4.9: The performance of MCF�K with di�erent number of neighbours
for estimation at the lower level of categories

challenge is that the data is very sparse considering that the problem we try to
solve involves both temporal and spatial dimensions. We resolve this problem
by introducing a smoothing technique which tries to approximate users’ real
trails. Then we transform the problem of trail prediction into rating prediction
in recommender systems by considering each pair of location category and point
of time as an item for rating (RQ2a). By applying memory-based collaborative
�ltering, we can predict users’ rating on all the location categories at a given
time.

To demonstrate the e�ectiveness of the proposed methods (RQ2b), we
include several baseline methods which are inspired by the investigation over
the dataset. These include using the majority class as Prediction (MM ), using
the temporal majority class as prediction (MTM ), using the Last check-in as
prediction (ML). Besides these, we also include a Markov Chain model, as it
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Figure 4.10: The performance of CF-K with di�erent bandwidths for the top
level categories

is reported to be useful in predicting users’ travel routes.

By evaluating the studied methods on the collected data, we �nd that
the proposed methods perform the best in all the four cities at both levels
of location categories. The Markov Chain based method is competitive in
this problem, which also has the merit of e�ciency. The experiments show
that the lower-level location categories are more sparse than the top-level
location categories and require a large bandwidth for smoothing. The number
of neighbours used for estimating users’ future visits are insensitive when it is
large enough (n > 2000).
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Figure 4.11: The performance of CF-K with di�erent bandwidths for the top
level categories
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Chapter 5

From Location To
Geo-expertise

When a user checks-in at a place via a location-based social network, the
action of checking-in is not merely a notation of the user sharing the information
of his/her being there. The physical attendance at the location also suggests
that the user gets familiar with the location and its environment, at least
to some extend. In this chapter, we consider check-ins as links to relate the
locations users have visited to their knowledge about the locations. With this
interpretation of check-ins, we present ways of measuring users’ expertise (i.e.,
geo-expertise) and evaluate the performance of proposed methods. Then we
can answer the third research question (RQ3), i.e., how we can model users’
knowledge about locations and build an automated retrieval system based on
POI information on social media.

Part of this work was published as \Geo-spatial Domain Expertise in Microblogs" by
W. Li, C. Eickho� and A. de Vries, in Advances in Information Retrieval - ECIR ’14, pp.
487{492, and part was published as \Probabilistic Local Expert Retrieval" by W. Li, A. de
Vries and C. Eickho�, in Advances in Information Retrieval - ECIR ’16, pp. 227{239
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5. From Location To Geo-expertise

5.1 Introduction

When a person comes to a new city, he/she is confronted with a lot of challenges
regarding the new environment, especially when he/she wants to �nd the right
places for diverse occasions, such as birthday parties, family get-together.
Some people enjoy wandering around the city and discovering new places by
themselves, even though they may not always be prepared for all occasions.
Not everyone can a�ord that or think it is worth doing so. Even those who grew
up in the city may not be aware of where to �nd some places/facilities they
need. Besides, exploring by oneself is an elaborate and costly task, involving a
lot of time and e�ort, as cities can be large and may change over time. This
poses us a problem of ful�lling users’ needs of knowledge regarding locations
in a city.

5.1.1 Geo-expertise: A definition

In this study we refer to the knowledge facilitating ones’ lives or staying in a
city or a town as geo-expertise. One example application of such knowledge is
illustrated in the following scenario.

Mike moves to a city for his new job and he does not know much
about the city. One day, his friend comes to visit him and Mike
would like to invite him to a nice dinner. Although he frequents a
few places, he wants something special in his new neighbourhood
for this occasion. How can he get informed?

5.1.2 Do We Have A Solution Already?

The ultimate goal of geo-expertise retrieval is to give users advice on places to
go. This in general is aligned with the goal of location recommender systems,
i.e., recommending the locations that a user may be interested in paying a
visit. For example, Shi et al. [137] and Clements et al. [36] proposed systems
for recommending landmarks based on users’ past visits. Some studies also
looked into recommending groups of locations, e.g., Kurashima et al. [74] and
Lu et al. [97] proposed systems that can help users plan their travels based on
geotagged photos. However, these systems have several drawbacks in ful�lling
users’ needs of geo-expertise. They usually do not consider users’ speci�c needs
in each case and only cover a few types of locations (e.g., restaurants, tourist
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attractions). Their recommendations are returned without explanation, due to
the complex latent factors employed in algorithms. They cannot answer users’
needs in an elaborative and interactive way which hinder the development of
query expression.

Though users can turn to review websites such as TripAdvisor1 and Yelp2

or general purposed search engines for information about locations, there is
few automated system for users to query for location information. The lack
of automated systems for answering users’ needs of geo-expertise is because
of relevant information (e.g., that is necessary for assessing relevance of a
venue) may just not be freely accessible in digital format. The information
is neither considered important for documentation nor easy to document in
a written language [39]. For example, it might be either trivial or hard to
explicitly document the feel and look in a restaurant or the kind of regular
visitors to a pub in written language. Instead of asking the computer to �nd
every piece of text about a location which may still only cover a few aspects of
it, users may alternatively turn to a person who is familiar with the locations
the user queries about. In this case, it is essential to determine which person
is a promising candidate for answering questions about a location.

In the example scenario, if Mike happens to know that one of his colleagues
has been to a lot of local restaurants, that colleague would be a good candidate
to answer Mike’s information need. Such knowledge about whether one’s friends
have been to a place before become much easier to obtain with the development
of online social networks. It also brings the opportunity of automated searching
for the right person who could answer a user’s questions.

The expansion of online social circles and increase of short-/long-distance
travelling makes it hard for one to catch up with all his fellows’ recent discoveries
in real life, e.g., via chatting. On the other hand, online social networks enable
automated ways of analysing the life traces of users’ friends. In this study, we
use these traces to recommend the most appropriate friends for ful�lling the
needs of geo-expertise. That is, an automated system can be employed for
processing all friends’ message feeds and rank them based on their knowledge
for answering questions about queried places.

The task of expertise retrieval has �rst been addressed in the domain of

1http://www.tripadvisor.com
2http://www.yelp.com
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enterprises managing and optimizing human resources (detailed in [16, 161]).
Early expert retrieval systems require experts to manually �ll out questionnaires
about their expertise to create so-called expert pro�les. Later, automated
systems were employed for building and updating such pro�les and probabilistic
models were introduced for estimating candidates’ expertise based on the
documents they authored, e.g., [16, 48, 49, 28, 153]. These studies focused
on expertise regarding general topics, while ours focuses on location related
knowledge. Cheng et al. [33] also proposed �nding local experts as a retrieval
problem, for which they combined models for local authority and models for
topical authority to rank candidates based on data collected from Twitter
API. In their settings, queries are keywords with a location to specify the
spatial proximity. The needed expertise is not limited to the location related
in their system, e.g., \technology in New York". In our settings all queries are
interpreted in locations (e.g., a speci�c restaurant or a type of restaurants) to
which users are interested in paying a visit. And the candidates returned to
the query must have been to the locations at least once.

Another type of closely related systems to expertise retrieval is found on
online questions & answers platforms, such as Quora3, Stackoverow4, Yahoo
Answers5. These platforms rely on e�ective methods to route questions to the
most suitable answerers, since it is not practical to let answerers go through
all questions on the platform to �nd those he/she can answer. These platforms
also provide researchers with an opportunity to access to public data about
users’ expertise. In particular, the data includes evidence for evaluation, i.e.,
whether a candidate gives a satisfactory answer to the question he/she has been
asked. Based on this kind of data, Liu et al. [94] proposed to use Language
Models to pro�le candidates, Zhang et al. [169] used heuristic features from
asker-answerer networks to rank candidates, and Horowitz and Kamvar [66]
used probabilistic models similar to the approach by Balog et al. [16] in their
social search engine Aardvark. Aardvark as a Q&A platform based on instant
messaging system implemented a LocationSensitiveClassi�er to decide whether
a question needs experts from a certain spatial area. Though they did not
detail the algorithm of the classi�er [66], the example in the paper renders
it as place entity recognition and matching. The studies based on data from
Q&A platforms also focused on textual and social network features but did not

3http://www.quora.com
4http://stackoverflow.com
5https://answers.yahoo.com
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explore candidates’ visiting history which we consider as an important factor
in geo-expertise retrieval tasks.

In social networks, topic inuencers, whose words are valued more than
others and widely propagated can be considered as a kind of experts. For
example, such inuencers draw a lot of attention to certain products and may
a�ect users purchasing those products. This indicates implicit interaction
between experts (inuencers) and knowledge seekers (buyers). Identifying
those inuencers may help users �nd out more about a topic. There are several
studies in this direction, such as [143, 156, 118, 157, 116]

In general, the above discussed studies can be categorized in three groups.
The �rst group focuses on text-based features and tries to build formal prob-
abilistic models from the text authored by candidate experts. Fang and Zhai
[48], Fang et al. [49] tried to formalize the models in a probabilistic way based
on topic generation models and candidate generation models via document
retrieval. Balog and de Rijke [15] proposed non-local features (e.g., IDF, query
expansions) that may help better estimate the prior. Liu et al. [94] considered
a candidate’s pro�le on previous questions as a document and convert the
expertise retrieval problem to a general information retrieval problem, i.e.,
retrieving the answerer whose pro�les best matches the questions. Balog et al.
[16] reviewed studies regarding modelling the association between topics and
candidates, which also involves natural language processing, entity recognition,
entity disambiguation, etc. Wagner et al. [153] proposed a LDA based method
for identifying experts on a topic among Twitter users and suggested using
external resources other than tweet content for identifying candidates’ expertise
in order to overcome the high amounts of noise pertaining to the domain. Some
other works also tried to approach the problem through graph models, which
consider the email conversation between candidates [28] or the co-occurrence of
candidates in documents [14]. The studied methods in this group are based on
solid probabilistic models which are proved to be successful. They inspired us
to use probabilistic models for modelling geo-expertise. However, geo-expertise
and location information are not always presented in textual format. For
example, the types of locations are rarely mentioned in the textual content of
the messages that relate to the location, and location names do not always
reveal their functions (e.g., Exit is a nightclub) or only indirectly (e.g., NY
Pizza is in the category of Italian food). We approach the problem by building
models based on candidates’ check-in pro�les which explicitly links a location
(with category information) to the visitors’ knowledge.
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The second group of studies focuses on heuristic and non-textual features
combined with machine learning techniques. Zhang et al. [169] proposed a
PageRank like method for expertise ranking in asker-answerer relationship
networks in community-based Q&A and their method shows promising per-
formance on a set of more than 100 users from Java Developer Forum. Agarwal
et al. [3] proposed a method of scoring bloggers’ inuence based on heuristic
indicators (i.e., in-link, out-link, number of comments and post length) and
evaluated them by the data crawled from Digg6. Weng et al. [156] combined
knowledge from topics (distilled by LDA) and social networks to produce a
topic-speci�c network and used random walk methods to �nd topic-speci�c
inuential users (experts on a topic). Lehmann and Castillo [78] studied how
to identify news story curators on Twitter based on random forest models with
the heuristic non-textual features (e.g., followers, lists, retweets) selected by
an information-gain based method. Tinati et al. [147] created a more �ner
categorization of users, namely, idea starter, ampli�er, curator, commentator,
viewer, which de�ne types of human experts in topics. Smirnova [139] extends
author-topic based models with the friendship on social networks for retrieving
experts which is shown to outperform the ones without the extension. Sun
and Ng [143] proposed a method of identifying inuential users on Twitter by
creating a post-graph out of inuential posts on a given topic, transforming
it into user graph and then measuring users’ inuence by both graphs. Pal
and Counts [118] used 17 social features (in 4 groups), e.g., number of tweets,
number of hastags, to identify authoritative users via Gaussian Mixture Models.
Overbey et al. [116] proposed a method for identifying inuential users (based
on graphs of retweeting) in a particular event, i.e., Egyptian Revolution, and
analysed the method against the tweets collected during the time of the event
whose authors are tagged as living in the country. A closely-related project,
named Aardvark7, routes questions between Instant Messenger (IM) users, as
Horowitz and Kamvar [66] explained, by employing a classi�er for recognizing
location entities embedded in the questions. For example, it can prompt to the
users living in Utrecht (e.g., by looking at the candidate’s pro�le) a question
regarding cinemas in Utrecht in the Netherlands.

Bao et al. [18] proposed a method to �nd local experts having knowledge
about a category of locations. They applied Hyperlink Inference Topic Search

6http://digg.com
7Aardvark was ceased by Google in September, 2011. http://googleblog.blogspot.

nl/2011/09/fall-spring-clean.html
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algorithm on the user-location matrix. The algorithm will eliminate users who
only have check-ins at less-known places. However, the algorithm only served
as a feature for selecting user pro�les for location recommendation. Though
the feature shows a positive e�ect on the �nal recommendation performance
and e�ciency, it is not clearly shown whether the candidates labelled with a
high score are really experts as perceived by normal people. Thus we include
their algorithm as a baseline in this study which is detailed in Section 5.3.6.

The studied methods in this group inspired us to explore the relevant features
to solve the problem of geo-expertise retrieval, such as number and recency of
check-ins. However, we did not include social links explicitly in our proposed
methods due to the sparsity in the data we collected. We leave it for future work
and a possible direction is to explore the usage of social links as a candidate
prior.

The third group tries to modelling candidates’ behaviour directly based
on external evidence of performing expertise. Bar-Haim et al. [19] tried to
identify stock experts on Twitter by evaluating their expertise according to
stock market events and their tweeted buys and sells. Whiting et al. [157]
suggested to use changes of Wikipedia pages as clues to real-time event topics,
then retrieve tweets containing (stable and temporally important) terms and
consider the authors (with more followers) of these tweets as inuential Twitter
users. These studies rely on particular sources of direct evidence which is not
easy to replicate on the data from other domains. Though, they inspired us to
send out evaluation questionnaires to the retrieved candidates from our system
and let them to directly evaluate themselves with respect to the geo-expertise
they were queried about.

5.1.3 Check-ins As Evidence Of Expertise

In the previous chapter, we show that modern city inhabitants usually go to
several places on a daily basis, e.g., places for food and for entertainment.
The repeated attendances at a place may reinforce their impression about the
place and the physical environment around it. Such impression is likely to
turn into a long-term memory and transform into the knowledge about the
place. Mainstream online social networks enable users to share their locations
by check-ins, which we consider as a suitable indicator of geo-expertise, since
they provide direct evidence of users’ physical attendance of the place.
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As there have been few previous studies speci�cally focusing on the domain
of geo-expertise retrieval, we �rst carry out a study to establish the real-world
needs of a solution to the problem (RQ3a), for which we designed and handed
out a survey to general users of the Internet and ask their opinion on the type
of information needs. The outcome of the survey strongly suggests, among
average users, the needs of a geo-expertise retrieval system. Based on the
answers to the survey, we propose and investigate four probabilistic model
based methods of estimating geo-expertise from candidate pro�les (RQ3b).
To evaluate the proposed methods, we select a set of topics at random, rank
candidates according to these topics, pool the top k candidates retrieved for
each query, collect annotation of pooled topic-candidate pairs, and evaluated
the proposed methods based on the annotation (RQ3c). The following sections
detail the answers to these questions.

5.1.4 The problem of geo-expertise retrieval

In the previous section, we de�ne geo-expertise as knowledge regarding locations.
Here, a topic is either a speci�c location or a category of locations within a
geographical scope, e.g., the Blue Ribbon Fried Chicken in New York and
Chinese Restaurants in Los Angeles. The former ones are referred to as
POI topics, which relate to knowledge regarding a particular location. The
knowledge to potential inquiries about that location may include the opening
time, the special menu, the service quality, etc. The latter ones are referred to as
category topics, which relate to knowledge regarding the locations in a speci�c
category as a whole, such as theme or decoration di�erence between locations
in the given category. The successful candidate to the given topic should
be able to recommend a location for a give occasion (e.g., birthday, dating)
considering some given constraints (e.g., parking spaces, facility availability).
A candidate ranked at a top position by the system should be able to answer
more questions than those lower ranked candidates.

5.2 Understanding Geo-Spatial Expertise

In order to have a better understanding of users’ needs of geo-expertise retrieval
systems (RQ3a), we handed out a survey via CrowdFlower8. The survey is
composed of questions of two types, namely, questions related to demographics

8http://crowdflower.com
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and questions related to geo-expertise seeking experiences. A number of options
were o�ered for each question, as well as the possibility to give free-text answers
if no given option was deemed applicable. Participants were also invited to
select more than one option if applicable.

The participants were informed about our privacy con�dentiality policy
and asked to be honest with all the questions. A total of 199 forms were
received within one week. In the following, we discuss the main �ndings and
implications derived from the survey.

5.2.1 Participant Demographics

To review the representativeness of the participants in the survey, we include
questions about the demographics at the beginning of our questionnaires. The
questions and options are listed as follows.

� Age: Under 18, 18{28, 29{38, 39{48, Over 48

� Gender: Male, Female

� Country: (Free text)

� Experience of Social Network: Twitter, Facebook, LinkedIn, Foursquare,
Google Plus, Path, Other

� Usage of Social Network: Several times a day, Once a day, Once the
other day, Once per week, Once per month, I seldom use online social
networks, Other

� Sharing Locations: Not at all, Once in a while, Regularly, Frequently

Figure 5.1 shows the general demographics of our participants in terms of
(a) age, (b) gender and (c) country. As can be seen, most of our participants
are between 18 and 38 years old and both genders are well represented. As
of country dimension, we see most of them are from the Netherlands and the
second largest group is from the US. Though the participants are not evenly
distributed, we consider they can reassemble to some extend the Internet users.

Besides the questions about basic demographics, we also include questions
towards participants’ experience on online social networks. As shown in
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Figure 5.1: Demographic
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Figure 5.2: Usage of online social network platforms

Figure 5.2, Facebook has the most users in our participants and Twitter
follows.9 This pattern matches the outline given in the report by Duggan and
Smith [44].

Many of the participants visit online social networks frequently (Figure 5.3).
As for sharing location, very few of them actively post information about their
locations, though many of them claim they have experiences of using such
features (Figure 5.4).

9The labels starting with A., B., etc. are the provided choices for the question, where
others are from the answers of free text input.
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Figure 5.3: Social network engagement
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Figure 5.4: Sharing locations on social networks

5.2.2 Perception of Online Geo-expertise Seeking

To answer whether there are general needs of geo-expertise, we investigate how
this types of tasks are perceived by online users. To this end, we included
the following questions to outline participants’ real life experience of seeking
advice about locations.

1. How often do you research places for speci�c occasions?
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2. How often do you ask your friends, family, colleagues or any other people
for advice about a place to go?

3. Attitude towards looking for help: Asking friends (online or o�ine),
colleague, family, using review sites.

4. Preference of means: Send online message (Twitter, IM, Facebook Mes-
sage), Emails/Telephone/SMS, Face to face or in person.

5. Preference of candidates: Family, colleagues, Friends, Online Friends
(not known o�ine), Blogs

We summarize the key �ndings in the survey as follows. As shown in
Figure 5.5, looking for places is a common demand which accounts for 89% of
the participants. One of the participants reported that he/she would like to go
where his/her friends go. This leads to an interesting question to investigate in
the future, i.e., what alternative method do people use for �nding places to go
besides rational decision based on the information acquired about the places.

According to Figure 5.6, up to 84% of the participants see the usefulness
of others’ advice on a place to go, i.e., geo-expertise; only 16% participants
would like to research the problem by their own. These �ndings con�rm our
assumption about the potential bene�ts of geo-expertise retrieval systems.
When participants consider the advice given by others, trust is their main
concern. Figure 5.7 shows a clear preference among the participants favouring
family and friends over on-line contacts or even unknown review websites.
When they decide to ask for help on geo-expertise, the most favourite way is to
talk in person, followed by telecommunication/Email and online social networks
(Figure 5.8). From Figure 5.9, we can observe that telling friends about needs
of geo-expertise is preferred over the means of searching for geo-expertise
online, which is followed by asking online friends and posting questions on
forums/Q&A. There are some participants who prefer Googling it when they
have needs of geo-expertise. Combined with other similar responses (e.g.,
search online), those who prefer researching the problem themselves account
for about 8% of the participant population.

To sum up, there is a demand of geo-expertise retrieval system according to
the survey responses. Participants would trust the advice from their family
or friends, i.e., those who are close to them, other than any strangers online
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or professional review writers. This suggests that we should consider social
circles in our proposed geo-expertise retrieval system. However, due to the
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Figure 5.8: Channel preference for geo-expertise

sparsity in the data we collected, we decide to focus on candidates’ visiting
histories rather than how close they are with the geo-expertise seekers.
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Figure 5.9: Means of searching for geo-expertise

5.3 Methodology

Geotags have been commonly used in social media to enable users sharing their
locations. Geotagged tweets also provide evidence of users’ physical presence
at a place. For example, a tweet, \I really love sandwiches here", with a
POI-tag Blue Barn Gourmet shows that the user has been to the place Blue
Barn Gourment and the user has had sandwiches there, and experienced the
food and environment at the place. Such experience or knowledge may be
useful for others, for example, for those who are visiting the area and planning
to have a brief business lunch there. Though the check-ins are single time
points of users’ actual trails in the physical world, they reveal part of their
visits. The interaction between users and locations in the form of check-ins
suggests however that these users have paid considerable attention to those
locations and were willing to make e�ort to check-in at the location. Such
attention implies that users perceive more about their physical surroundings
which means they notice more details about the location than those locations
that they have no interests in checking-in at.
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Technically, it is possible for one to fake his/her check-ins, but we presume
that such check-ins would be rare on social network platforms. First, faking
one’s location on a smart phone is beyond normal users’ knowledge. Second,
the purpose of using a social network platform is to communicate and share
interests between friends, and faking one’s location is not going to be highly
appreciated in friend circles.

The only issue is that companies and organizations also use social networks
for advertisements and promotions. Some of them may also bind a location to
their messages and these accounts probably will not provide useful response to
any users who want to know about the locations. By calculating the speed
of moving from one check-in location to another, we eliminate those accounts
having a pair of check-ins implying a speed of over 700 kph. This threshold is
chosen because it is roughly the speed of aircraft and any higher speed between
two check-ins means it is not likely to be a normal user account. In this way
some promotion/branding accounts for large companies and having check-ins
all over the country will be eliminated. There may be accounts from small
local companies in the dataset, and we presume they are managed by the ones
live around the place and can be potential sources of location advice. For
example, users may consult the account representing a local restaurant for the
information about it.

5.3.1 Motivation

In our aforementioned survey, we include a poll for the preferences regarding
intuitive methods for geo-expertise retrieval and see how the participants
perceive the task. The following criteria are listed in a survey question.
Participants are asked to assign a score for each of them ranging from 1 (not
important) to 5 (very important).

� Within-topic Activity: The total number of visits at a given place
(or category) should be above a certain number.

� Number of Visited Place: The total number of places visited should
be above a certain number.

� Within-topic Recency: There should be recent visits at a given place.
Otherwise the candidate may not know much about the current status
of the place.
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� Within-topic Diversity: There should be visits at many di�erent
places in a category if a given topic is about a category of locations.
Otherwise the candidate may only know things about a speci�c location
rather than the entire category to which the location belongs.

� Visits in Other Cities: There should be check-ins at places in other
cities for a given category.

� Spatial Distribution: The visited places should cover most part of the
city. Otherwise the user may only know places in a small area.

The result of this poll is shown in Figure 5.10. The top three criteria matches
the methods we proposed in Section 5.3, which are respectively Within-topic
Recency, Within-topic Activity, Within-topic Diversity. It should be noted
that the participants of this survey also annotated the ground truth for the
experiment afterwards.

0 50 100 150 200

Within-topic Recency

Within-topic Activity

Number of Visited Place

Within-topic Diversity

Spatial Distribution

Visits in Other Cities 5
4
3
2
1

Figure 5.10: Criteria for determining geo-expertise

In the open-ended feedback on our survey questionnaires, the participants
also provided us with some interesting ideas that worth exploring in future
work. One of the participants would like to consider the average frequency of
a candidate visiting the location about the given topic. Candidates regularly
visiting a place may know better about the location than those who recently
have paid several visits to the location.
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Another participant suggested to higher rank those whose visits are generally
more geo-spatially widely spread. It is presumed that if a candidate has been
to many di�erent countries or regions, they will know more about locations,
as they may visit some locations without checking-in at them. An interesting
direction along this is to consider about users’ regional/cultural knowledge. A
user would give good advice about Italian restaurant if he has been to Italy.
However, these semantic links are beyond the scope of this study.

There is also a suggestion of including in consideration the ratio between
relevant posts and irrelevant posts in one’s Twitter timeline. This involves
inspection on textual features of candidates’ pro�les. It is a method of identi-
fying users’ topical interests. However, in this study we focus on the temporal
and spatial domain of check-ins and may explore this direction in the future.

Several of the participants mentioned that the shared interests and friendships
should be considered between the query issuer and the candidate experts. This
is based on the same reasoning on the trust and common interests between
friends and/or families as discussed in the previous section. It is an interesting
direction to explore in the future for personalized geo-expertise retrieval.

In this study, we focus on only the candidates’ check-ins pro�les and propose
to model their knowledge by considering three aspects, i.e., the knowledge
about locations, the knowledge about di�erences between locations and the
recency of knowledge. The following sections explain how these intuitions are
expressed computationally.

5.3.2 Within-Topic Activity

The �rst method we propose considers only the candidates’ check-in activities.
We take a co-occurrence modelling approach, inspired by expert �nding via
text documents [48]. To be speci�c, we rank a candidate u by the probability
of him/her having geo-expertise on the given topic q, i.e., P (ujq). We estimate
the conditional probability by aggregating over users’ check-ins at all possible
locations (l), that is

P (ujq) =
X

l

P (ujl; q)P (ljq):
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Assuming conditional independence of the candidate u and the query topic q
given the location l, i.e., P (ujl; q) = P (ujl), we obtain

P (ujq) =
X

l

P (ujl)P (ljq):

As for P (ujl), we apply the Bayesian Rule which gives

P (ujl) / P (lju)P (u)

where we assume a uniform prior for P (l).

Putting these together, we obtain

P (ujq) rank
====

X

l

P (ljq)P (lju)P (u): (5.1)

P (u) is the query-independent expertise and we estimate it by the number of
check-ins a user posted online, i.e.,

P (u) =
Nu

N
where Nu and N are respectively the number of check-ins posted by the
candidate u and the number of check-ins in total. Intuitively, the more a
candidate posts his/her check-ins, the more we trust the model built from
his/her check-in pro�les. The conditional probability P (ljq) captures users’
query intent, i.e., the possible locations users want to know via issuing the
query. In our setting of geo-expertise, the query is a location or a type of
locations. So the conditional probability can be estimated by

P (ljq) =

8
<

:

1

jLqj
if l 2 Lq;

0 otherwise;

where Lq is the set of locations matching the query. To estimate P (lju), we
use

P (lju) =
Nl;u

Nu
;

where Nl;u is the number of check-ins the candidate u made at the location l.
Then the scoring function can be derived from simplifying Eq. 5.1, that is

Sn(u; q) =
1

jLqj �N

X

l2Lq

Nl;u
rank

====
X

l2Lq

Nl;u :
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Intuitively, the more check-ins a candidate has at the queried location(s) in
Lq the more likely he/she is interested in the locations and knows more about
them.

5.3.3 Within-Topic Diversity

Our second method uses the language model referred to as Model 1 in [16],
that is

P (�ujq) / P (qj�u)P (�u):

where �u is a Language Model of a candidate based on his/her check-in
pro�le. To estimate P (qj�u), we assume the independence between the locations
representing the underlying information needs through the given query, that is

P (qj�u) =
Y

l2Lq

P (lj�u) =
Y

l2Lq

Nl;u

Nu
: (5.2)

For the prior P (�u), we use

P (u) =
N jLq j
u

P
u02U N

jLq j
u0

;

so it will simplify the scoring function, that is

P (qju) =
N jLq j
u

P
u02U N

jLq j
u0

Y

l2Lq

Nl;u

Nu
:

By applying the logarithm (to avoid underow in computation), we obtain

logP (qju) = log
1

P
u02U N

jLq j
u0

+
X

l2Lq

logNl;u
rank

====
X

l2lq

logNl;u:

The following smoothed version is used as the scoring function of this method
to di�erentiate the pro�les containing visits to di�erent numbers of locations
but each location has been visited only once.

Sd(u; q) =
X

l2lq

log(Nl;u + 1):
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The above scoring function indicates that check-ins at diverse locations
(within the queried location sets) will increase the score more than check-ins
at the same location. It means that a candidate will gain a higher score on
geo-expertise if he/she makes check-ins at a variety of locations. This �ts into
the intuition that candidates with experience at variety of locations may know
more about the type of queried locations, and may give more comprehensive
information to satisfy the users’ needs. For example, if one wants to ask about
Italian restaurants, those who have been to a lot of Italian restaurants in town
will be more suitable candidates than those who have only been to the same
restaurant a lot. The former may be able to tell the di�erences and provide
more useful advice in choosing an Italian restaurant. On the contrary, the
latter, who have a lot of check-ins at a single Italian restaurant may not be
familiar with other restaurants.

The prior P (u) is selected for the score function so that the candidate-
dependent denominator in the conditional probability P (lju) will be cancelled
when combined with the prior. This is because Language models represent
users’ topical focus rather than users’ knowledge, i.e., they are biased towards
the shorter pro�le, when two pro�les have the same amount of relevant check-
ins. Check-ins are positive evidence of candidates knowing about a location
and knowing about another location should not a�ect the knowledge acquired
from the former one. For example, if a candidate has been to two places A and
B each for n times while another candidate only has been to A for n times, it
is not reasonable to assume that the latter candidate having more knowledge
about the place A than that of the former candidate, even if the latter has
focused on the place A more.

5.3.4 Within-Topic Recency

Experts are humans and rely on their memories to support their expertise.
Therefore, we should take into account the fact that 1) people forget the
knowledge they once gained and have not been familiarized with it for a while,
and 2) the world is changing as time goes by, e.g., restaurants may have new
chefs, old buildings may have been replaced. The longer it is since the creation
of the memory, the more likely the memory becomes inaccurate.

To incorporate such e�ects, we model the candidates’ memory by P (cju),
which indicates the probability that candidate u can recall his/her visit rep-
resented by the check-in c. As suggested in the domain of psychology, human
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memory can be assumed to decay exponentially [96]. For simplicity, in this
study we use a straightforward exponential decay function to represent the
retention of individual check-ins, by which we obtain:

Pt(cju) =
e��(t�tc)

P
c2Cu

e��(t�tc) ;

where t is the time of query and tc is the time when the user posted the
check-in. Similarly, we de�ne a prior for each candidate as follows

Pt(u) =

P
c2Cu

e��(t�tc)
P

c2C e��(t�tc)

The decay of the weight on check-ins models our belief on how up-to-date
the information is, while the prior reects the average recency of knowledge
borne by the whole community on the social network. Then for estimating the
candidates’ expertise, we weight each check-in according to its recency, i.e.,
we marginalize the user’s old check-ins.

Pt(lju) =
X

c2Cu

P (ljc)Pt(cju) =
X

c2Cu

1(lc = l)e��(t�tc)

e��(t�tc) ; (5.3)

where 1(�) is an indicator function, which equals 1 if and only if the condition
in the parentheses evaluates to true. Given these two estimations, we obtain

Sr(u; q) = Pt(ujq)

=
X

l2L

Pt(ujl)P (ljq)

rank
====

X

l2L

Pt(lju)Pt(u)P (ljq)

rank
====

X

l2Lq

X

c:lc=l;c2Cu

e��(t�tc):

As can be seen Sr down-weights the older check-ins’ contribution to candidates’
expertise due to the fact that they may be vaguely memorized and become
unreliable. Parameter � that controls the amount of decay is �xed to 1

150 at a
granularity of days and we leave the �ne tuning of this parameter for future
work.
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5.3.5 Combining Recency and Diversity

Diversity and recency of check-ins can be both important factors in estimating
one’s expertise about locations. Thus, we propose a combination of the two
features introduced in Section 5.3.3 and 5.3.4. In Eq. 5.2, the conditional
probability can be transformed into

P (qju) =
X

c2Cu

P (ljc; u)P (cju)

=
X

c2Cu

P (ljc)P (cju)

=
X

c2Cu

1(lc = l)P (cju);

in which we assume the candidate and location are conditionally independent
given a check-in (i.e., applied on the second equal sign). Then we estimate the
conditional probability P (cju) with Eq. 5.3.

P (cju) =
e��(t�tc)

P
c2Cu

e��(t�tc) :

Thus,

P (qju) =
Y

l2Lq

X

c2Cu

1(lc = l)e��(t�tc)
P

c2Cu
e��(t�tc) :

Similar to the prior probability used in the diversity method,

P (u) =
(
P

c2Cu
e(��(t�tc)))jLq j

(
P

c2C e��(t�tu))jLq j
:
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By replacing the counter parts with these into Eq. 5.2 and applying logarithm
on both sides of the equation we obtain

Sd(u; q) = log
(
P

c2Cu
e��(t�tc))jLq j

(
P

c2C e��(t�tu))jLq j

Y

l2Lq

P
c2Cu

1(lu = l)e��(t�tc)
P

c2Cu
e��(t�tc)

= log
(
P

c2Cu
e��(t�tc))jLq j

(
P

c2C e��(t�tu))jLq j
�

Q
l2Lq

(
P

c2Cu
1(lu = l)e��(t�tc))

(
P

c2Cu
e��(t�tc))jLq j

= log
1

(
P

c2C e��(t�tc))jLq j
+
X

l2Lq

log
X

c2Cu

1(l = lc)e��(t�tc)

rank
====

X

l2Lq

log
X

c2Cu

1(l = lc)e��(t�tc):

The decaying parameter � is set to the same value as the one used in the
Within-Topic Recency method.

5.3.6 Iterative Inference Model (Hub)

Bao et al. [18] proposed a model for estimating one’s knowledge about locations
based on Hyperlink-Induced Topic Search, an approach originally designed for
link analysis on Web pages [72]. The model de�nes two properties for users
and locations respectively, i.e., hub scores for users and authority scores for
locations. The hub score indicates how well a user can serve as an information
source about a place and the authority score presents how popular a place is.
We implement a normalized version of the algorithm and focus on hub scores
for users (candidates) which is used as an estimation of users’ expertise and

are calculated as Sh(u; l) = h(n+1)
u;l , where

h(n+1) =
MTM � h(n)

kMTM � h(n) k
:

and k � k is the norm of a vector.

5.3.7 Candidate Profiling

As a mainstream location-based social network, Foursquare attempts to increase
user engagement by encouraging users, through gami�cation, to check-in at a
location far more times than they actually need to. For example, users who
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have the most check-ins at a place can win the mayor title of the place. To
investigate the e�ect of this twisted relation between check-ins and visits, we
de�ne a di�erent type of candidate pro�le, i.e., Active-day Pro�le (referred to
as +A while +C is used to refer to original check-in pro�les). It is a subset of
a user’s check-ins which is de�ned as :

C+A
u = fcjc 2 Cu; 6 9c0 2 Cu : lc = lc0 ; tc < tc0 < dtceDg

where d�eD is a ceiling function towards midnights. Informally, the Active Day
pro�le contains only the last check-in within each day at each place, reducing
the inuence of multiple check-ins at the same place.

5.4 Evaluation

To obtain a quantitative evaluation of the proposed methods as we raised in
RQ3c, we conduct experiments on a con�gurable system with the implementa-
tion of the proposed methods and baselines. Each con�guration combines a
method and a pro�le type and we run experiments on all possible combinations.
The system accepts a topic which is composed of a location or type of locations
and a scope of city, and returns a list of related candidate experts according
to the topic. The rank of candidates is determined by the system according to
their geo-expertise on the topic estimated by the methods mentioned in the
previous sections. The lists of returned candidates from di�erent con�gurations
are then pooled (see Section 5.4.2) and annotated (see Section 5.4.4). Based
on the annotation on all candidate-topic pairs, the proposed methods and
baselines are evaluated for their performance in retrieving geo-experts.

The data is collected from Twitter10 and Foursquare11 through their public
APIs. We �lter out the POI-tagged messages from Twitter and match the
locations with that from Foursquare, so we can have each POI-tag associated
with a category de�ned by Foursquare (see Section 5.4.1). Then we prepare a
set of topics based on the data collected which is detailed in Section 5.4.2.

Two sources of annotation are used in the evaluation. One is from the
pooled candidates via Twitter, i.e., we directly ask the experts retrieved by the
system whether they consider themselves having knowledge about the topic.
(see Section 5.4.3) The other is from a third-party annotation, i.e., online or

10https://dev.twitter.com
11https://developer.foursquare.com
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o�ine recruited participants are asked to annotate the retrieved candidates
according to the topic. (see Section 5.4.4)

With the annotated topic-candidate pairs, we measure the performance
of the proposed systems by P@1, P@5 and MAP, which are widely used in
di�erent studies regarding information retrieval. A random baseline is also
included in the evaluation to demonstrate the e�ectiveness of the proposed
methods.

In principle, a better solution of evaluating the methods would be based on
the outcome of the interaction between users and candidates [126]. However, in
expertise seeking tasks, the real interactions between users and candidates are
hard to capture, as they may communicate through other channels, e.g., o�ine
meetings [16]. Though, in an online environment, it is likely that the expertise
seekers and experts will have conversation online, e.g., via Twitter. It would
either take too long or be complicated to collect meaningful data points for
evaluation due to the small group of initial users, potential misunderstanding
of the purpose of the system and no real stimulation of using it.

5.4.1 Dataset

We reuse the dataset collected for previous studies (described in Chapter 4),
namely a collection of POI-tagged tweets from the four cities, New York,
Chicago, Los Angeles, San Francisco. Since evaluating one’s geo-expertise
requires a full pro�le of user check-ins, which was not the intent of the previous
dataset, we extended it to include users’ full check-in pro�les. Besides, in the
experiments, we focus on the active users of POI-tagged tweets, i.e., those
who have posted a fairly number of POI-tagged tweets. We presume they hold
a positive attitude towards sharing their locations and also knowledge about
locations on social media. Thus, the users who have more than 5 POI-tagged
tweets in the previous dataset are collected and we queried their full check-in
pro�les via Twitter’s public API to form the dataset used in this study. This
results in a dataset containing 1.3M check-ins from 8K users.

As shown in Figure 5.11, the check-in distribution among users does not
follow the power law, because this dataset biases towards active users. Table 5.1
summarises the statistics of users and their check-ins collected from each of
the four cities.
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Figure 5.11: Check-in distribution

Table 5.1: Users and check-ins for each of the four city

Region Check-ins POIs Users

San Francisco 113 613 6 349 2 877
New York 391 509 24 582 4 881

Los Angeles 202 770 18 740 3 508
Chicago 163 722 12 157 2 474

5.4.2 Topics

To prepare a set of topics for evaluation, we use strati�ed sampling to put
together a seed set of location categories and POIs, based on their popularity
in the dataset. Speci�cally, two strata are composed respectively for popular
POIs (top 10%) and less popular POIs (90%). POIs are selected at random
using a uniform distribution per stratum, and the number of samples taken is
in accordance with the size of the stratum. As for category topics, we include
all 9 top categories (e.g., Food) and apply 10%:90% strati�ed sampling to the
categories at the lower levels (e.g., Chinese Food, Mexico Food). This results
in a seed set of total 275 topics for all 4 cities. We remove POIs/categories
which have less than 5 visitors and whose names are obscure (Building, Home
Private, Field, Professional & Other, Residence). Finally, we obtain 95 topics
from 4 cities in total, among which there are 71 category topics and 24 POI
topics.
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Pooling

There are 11 system con�gurations for evaluation, as shown in Table 5.2. We
build a pool of all the candidates that are ranked in the top 5 positions in
any of the returned rank lists from any con�guration of the system. This pool
contains 1588 topic-candidate pairs in total.

Table 5.2: Systems to be evaluated

Abrreviation Method Pro�le Type

WTA+C Within-topic Activity Checkin Pro�le
WTD+C Within-topic Diversity Checkin Pro�le
WTR+C Within-topic Recency Checkin Pro�le
WTRD+C Within-topic Diversity + Recency Checkin Pro�le
Hub+C Hub score Checkin Pro�le
WTA+A Within-topic Activity Active-day Pro�le
WTD+A Within-topic Diversity Active-day Pro�le
WTR+A Within-topic Recency Active-day Pro�le
WTRD+A Within-topic Diversity + Recency Active-day Pro�le
Hub+A Hub score Active-day Pro�le
Rand Random {

5.4.3 Self-Evaluation Through Social Channel

A nice feature about online social networks is that people can connects easily
with each other. This gives us an opportunity to evaluate our system from a
unique angle, i.e., by simply asking the candidates. We presented each of the
pooled candidates with our model’s predictions of their individual expertise
and asked them to judge their actual knowledge about the topic on a 5-point
scale from 1 (\I do not know about this") to 5 (\I am an expert").

A group of 10 candidates volunteered to work with us. Six participants
indicated high expertise (Grades 4{5) in the topics predicted by our method.
Another three reported reasonable competency (Grade 3) towards the predicted
topics. Only a single participant indicated mild expertise (Grade 2) towards
the predictions.

This method is proven harder than recruiting annotators from elsewhere, as
candidates might resist answering requests from us as we are totally stranger
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to them.

5.4.4 Third-Party Evaluation

Crowdsourcing is an approach of distributing small tasks that require human
intelligence. The task workers are paid small amounts of money in return. In
the information retrieval community, crowdsourcing is popular for assessing
ranking list returned by studied systems [7, 6]. There are two main reasons
for IR scientists using crowdsourcing platforms to collect ground truth, which
are: 1) it is easy to hire a group of workers, 2) Population from which the
workers are sampled may be more representative than the usual approach to
hire assessors close to the science community, which may reduce bias. In this
way, researchers can evaluate their systems by the data annotated by humans
and compare the scores between di�erent systems. We also adopt this way for
evaluating our system.

We setup a job on CrowdFlower and direct workers to our annotation system.
They were asked to read the instruction and our policy of privacy and answer
a survey as described in the previous section. Then they work on a batch of
ten topic-candidate pairs per iteration. In the end, they are provided with a
code that can be redeemed on CrowdFlower to receive their credits.

However, crowdsourcing ground truth annotation faces challenges in quality
control and the potential for workers to perform badly due to cheating or
lack of task comprehension, leading to managing e�ort and cost overhead[45].
Thus we designed and implemented an interactive annotation system for this
task, which is detailed in the following section. The annotation system detects
annotators’ error-prone behaviour and issue a warning to explain what is
wrong. To be speci�c, it tracks annotators’ mouse movement and clicks and
requires a minimum number of mouse clicks and mouse travel distance. When
an error-prone submission is detected, the annotator will receive a full screen
message reminding them of the need to inspect a candidate’s pro�le prior to
submitting the assessment.

Annotation System

As mentioned in the previous section, we implemented an annotation system for
collecting ground truth. As suggested by Liao et al. [91], insu�cient information
may lead to low quality judgements from assessors. Our annotation interface
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is designed to allow annotators to explore candidate check-in pro�les as shown
in Figure 5.12. With the interface we try to mitigate the chances of leading
the participants to bias towards our desired assessment. It is designed to allow
them to follow their own way of making judgements based on the displayed
evidence. The variety of charts can make sure participants are able to inspect
as many perspective as they consider important. The interactiveness give them
the freedom of investigating candidate pro�les in any scales they want. Here
are the list of key features of the annotation interface:

� render statistics rather than raw data,

� depict as many aspects as possible regarding candidates’ check-in pro�les,

� arrange charts in a compact yet tidy way to reduce confusion,

� enable interactivity between annotators and the interface to facilitate
exible inspection, and

� to provide error-prone behaviour detection and warning.

The implementation (detailed in Chapter 7) is based on Django, a web
application framework based on Python, and hosted on Google App Engine, in
which the back end serves the data and the front end aggregates the statistics
and makes charts. To achieve high interactivity, the front end weaves together
several JavaScript libraries including cross�lter, dc.js, d3.js, gmap. The back
end includes a layer wrapping over Google Apple Engine’s DB Datastore12

to provide data used by the front end, e.g., the candidates, topics, check-ins
and annotations. The back end also manages the ow of annotation, e.g.,
routing between information pages and annotation pages, tracking annotators’
contribution.

Each retrieved candidate expert is rendered in a page from a number of
di�erent perspectives based on their check-in pro�les. Annotators are asked to
review the check-ins by interacting with the charts displayed on the page. They
are then asked to assign a score indicating whether they think the candidate is
capable of answering questions, if being asked, about the locations or the types
of locations. \5" indicates that the candidate knows the topic very well and
\1" indicates that the candidate is not a suitable person to answer questions

12https://developers.google.com/appengine/docs/python/datastore
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Figure 5.12: The interface of annotation system for geo-expertise

about the topic. Before annotators start, a brief introduction is presented to
help them learn how to use the interface and what kind of interactions are
supported (Figure 5.13).

Annotation Analysis

We have carried out three runs of annotation. The �rst run (CF) has been
carried out on CrowdFlower where each participant is paid 0.5 USD per task,
since each task contains 10 topic-candidate pairs to annotate and may take
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Figure 5.13: The instruction presented before annotation tasks

about 30 minutes to �nish13. The annotators for the second (U1) and third
(U2) runs are university students and sta�14 from Delft University15, who
volunteered to participate in the experiments. The general statistics of all the
three batches are shown in Table 5.3. The �rst two runs cover the whole pool
of topic-candidate pairs while the third one covers only about a half of the
pool. The third one is reserved for assuring the agreement between annotators.

The raw scores between 1 and 5 assigned by the annotators are converted
to binary annotations by a threshold at 3, i.e., topic-candidate pairs that
assigned with a score of 4 or 5 indicate that the candidates are experts on the
topic, while 3 or lower indicates non-experts. Then we evaluate the agreement
between the binary versions of the three annotation runs via Cohen’ Kappa

13http://crowdresearch.org/blog/?p=9039
14Including bachelor students, master students, PhD students, postdocs, and assistant

professors
15Including faculties of TBM, CiTG, 3mE, OTB, BK, TNW, LR, IO, EWI
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Figure 5.14: The instruction presented before annotation tasks (continued)

Table 5.3: Crowdsourcing Annotation Runs

Runs Sources Judges Tasks Topics Candidates

CF CrowdFlower 86 1588 95 1121
U1 University 116 1588 95 1121
U2 University 105 749 95 616

[53]. As shown in Table 5.4, the three runs only achieve slight agreement. This
may be caused by the uncertainty of the criteria used by di�erent annotators.
Many factors can be important in judging one’s geo-expertise and annotators
may not agree on one single criterion for determining geo-expertise. We further
investigate how much the annotators agree on de�nite cases, i.e., the topic-
candidate pairs that are assigned with score 1 or 5, the result of which is shown
in Table 5.5. In these cases, Run U1 and U2 have moderate agreement. The
increase of agreement may be due to the reason that annotators hesitate less
when assessing the candidates with very strong or very weak check-in pro�les.
However, when the pro�le owners are of neither cases, the annotators may
struggle in choosing criterion and this may lead to disagreement between the
annotators.
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Table 5.4: The agreement between annotation runs

Kappa CF U1 U2

CF 1.0000 0.1223 0.1762
U1 1.0000 0.1912
U2 1.0000

Table 5.5: The agreement between annotation runs based on de�nite topic-
candidate pairs (extreme values on the rating scale)

Kappa CF U1 U2

CF 1.0000 0.4271 0.3734
U1 1.0000 0.4887
U2 1.0000

Table 5.6: The agreement between annotation runs based on de�nite topic-
candidate pairs (extreme values on the rating scale) from the random baseline

CFvsU1 CFvsU2 U1vsU2

WTA 0.4700 0.2702 0.3725
WTD 0.6370 0.2935 0.5000
WTR 0.5006 0.2666 0.3178

WTRD 0.4391 0.1447 0.3314
Rand -0.0270 0.1886 0.1983
Hub 0.5500 0.5333 0.5000

A closer look at the de�nite topic-candidate pairs shows that the annotators
hardly agreed on the ones generated by the random baseline systems, as shown
in Table 5.6. As for the proposed methods and the Hub-Authority based
method, we found annotators achieve fair and moderate agreement on the
de�nite topic-candidate pairs. To sum, annotators are inclined to agree when
they have strong opinions on whether or not a candidate holds the geo-expertise
in the query.
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5.4.5 Quantitative Evaluation

We carry out separate evaluations on both sets of annotations (CrwodFlower
recruited workers and the university sta� and students) in order to avoid
having to make an arbitrary choice on merging di�erent opinions from di�erent
annotators. trec eval 16 is used for the evaluation. As mentioned before,
the annotations are converted into binary values, in which topic-candidate
(topic-document) pairs assigned with score 4 or 5 are considered relevant and
those with score 1, 2, or 3 are considered as irrelevant. Furthermore, we test
the statistical signi�cance of di�erences between the evaluation scores using
the Wilcoxon Signed Rank Test (� < 0:05).

Evaluation Based on CrowdFlower Annotation

As shown in Table 5.7, under P@1 and P@5, the con�guration of WTD+A
performs the best, and under MAP the con�guration of WTA+C performs
the best. The con�gurations of these two methods focus on the experience
the candidates have cumulated via check-ins, which is valued more by the
annotators in this experiment. Though, many survey participants indicated
that recency is an important factor to consider, the scores of the corresponding
systems (WTR and WTRD) are not as high as the systems with WTA and
WTD. This may be due to the fact that the candidates who are new in the
location based social networks have only a few recent check-ins regarding the
given topic and are not considered as an expert, while some other candidates
who stopped checking-in recently but have a lot of diverse check-ins in the
past are considered as experts. In general, all the proposed methods with both
types of pro�les signi�cantly outperform the random baseline. This suggests
that the proposed methods are e�ective in retrieving geo-expertise. However,
the annotators from crowdsourcing channel do not show a very clear preference
between the proposed methods and we do not observe uniform preferences
between the two pro�le types. This may suggest that the two types of pro�les
do not diverge much and the check-in gami�cation does not have an observable
inuence on assessing candidates’ geo-expertise.

16http://trec.nist.gov/trec_eval/
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Table 5.7: The evaluation results based on CF annotation

Method Pro�le MAP P@1 P@5

WTA +A 0.2750 0.4211 0.3979
+C 0.2771 0.4316 0.3895

WTD +A 0.2340 0.4789 0.4197
+C 0.2280 0.4507 0.4169

WTR +A 0.2442 0.3789 0.3747
+C 0.2508 0.4211 0.3768

WTRD +A 0.2434 0.4316 0.3684
+C 0.2491 0.4421 0.3726

Hub +A 0.2327 0.4507 0.4113
+C 0.2363 0.4366 0.4028

Rand { 0.1343 0.2316 0.2063

Evaluation Based on University Annotation

Similarly, we conduct the evaluation based on the university annotation (U1)
and the results are shown in Table 5.8. The annotators also prefer the con-
�guration with WTD under P@1 and P@5 and the con�guration with WTA
under MAP, though no signi�cant di�erences between the con�gurations with
these two methods are observed. The proposed methods and the hub-authority
based method are all signi�cantly better than the random baseline. Di�erent
from the evaluation based on the CF annotation, there is a clear preference of
the proposed methods (ones with WTD, WTA, or WTRD) to the con�guration
with the hub-authority based method, i.e., the di�erence between them are
signi�cant under P@5 and MAP while not under P@1. As among the con�g-
urations with the three methods, WTD, WTA, WTRD, we do not observe
signi�cant di�erences. As for the two types of pro�les, the di�erences between
them in the con�gurations with the same method are not signi�cant.

Summary

With the group of annotators from the University, we can observe clear prefer-
ence towards the proposed methods over Bao et al.’s [18] method (Hub) and
the random baseline. With more diverse annotation from the crowdsourcing
channel, the advantages of the proposed methods become vague and insigni-
�cant. The uncertainty of the criteria, which is introduced by allowing the
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Table 5.8: The evaluation results based on U1 annotation

Method Pro�le MAP P@1 P@5

WTA +A 0.3218 0.5579 0.4463
+C 0.3147 0.5579 0.4337

WTD +A 0.2878 0.5775 0.4817
+C 0.2908 0.5915 0.4845

WTR +A 0.2814 0.5263 0.4042
+C 0.2824 0.5368 0.4063

WTRD +A 0.2862 0.5368 0.4042
+C 0.2919 0.5368 0.4168

Hub +A 0.2041 0.5211 0.3859
+C 0.2045 0.5493 0.3831

Rand { 0.1041 0.1579 0.1600

annotators freely choose their own criteria, leads to diverge of judgements and
no signi�cant di�erences in the evaluation.

The pro�le types, which are introduced due to the concern of check-in
gami�cation, do not improve the performance. This suggests that the gami�c-
ation of check-in behaviours may not a�ect much on assessing the candidates’
geo-expertise. Regarding the experiment settings, crowdsourcing shows its ad-
vantage in e�cient recruiting, while controlled groups shows better annotation
agreement.

5.5 Conclusion

In this chapter, we presented a novel type of domain expertise regarding
location knowledge which focuses on Points of Interest (POI) and their cat-
egories. We conducted a qualitative user study and investigated, via online
questionnaire based survey, the way in which Twitter and other communication
channels are used for searching, receiving and giving location-related advice
and recommendations. Doing so, we found the need of geo-expertise from the
participants in our user study. As reported, there is a general needs of geo-
expertise and on-line communication with close friends and families or even the
wider social network are the major channels for obtaining advice (RQ3a). We
also presented survey participants with examples of Twitter streams and asked
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them to judge the expertise of the showcased user towards a number of topics,
as well as, to explain which criteria inuenced their decision. Within-topic
coverage and diversity turned out to be the most frequently named features.

On the basis of these qualitative insights, we designed three automatic
retrieval methods based on probabilistic models for ranking domain expertise
(RQ3b). We evaluated the methods based on the annotations from both the
crowdsourcing channel (CrowdFlower) and the university sta� and students.
By carefully designing and implementing the annotation system, we keep the
balance between too little information that may lead annotators to biased
decision and too much information that overloads annotators with details. With
the annotation collected, we quantitatively evaluate the proposed methods.

Though the overall interrater agreement is not high between the crowd-
sourcing annotators and the university annotators, they agree more (moderate
agreement) on de�nite cases that they give either \1" or \5" scores. This may
imply that the middle-class in the candidate population causes the disagree-
ment, which is a consequence of the open setting in the annotation system
where various criteria are allowed. As shown in the evaluation (RQ3c), the
annotators from the university have a more clear preference of the methods
which are in favour of candidates with a more diverse check-in pro�le. On the
other hand, there is no signi�cant di�erence between the methods based on
active-day pro�les and check-in pro�les, the former of which is presumed to be
a better representation of users’ location knowledge, since the gami�cation of
check-ins may twist users towards non-engaged presences at a location.

The evaluation shows promising results of the proposed methods and en-
courages future quantitative con�rmation in a Web-scale setting. A dedicated
geo-expertise retrieval system can be implemented based on Twitter/Foursquare
API, in which users can authorize the application to analyse their check-in
pro�le and search in their friend circles for geo-expertise. We can then ask
users to assign a score to their geo-expertise and/or their fellows’ geo-expertise
retrieved by the system. In this way, di�erent methods can be evaluated and
compared under real scenarios.
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Chapter 6

Geo-tagged Tweeting for
Water Damage

Environmental monitoring is an import aspect of modern city management
and various devices are deployed for e�ective data collecting. Users of online
social networks post various kinds of messages, from personal feelings, sel�es
(self-portrait photos1) to announcements, news. It is also likely that users post
messages regarding topics that city planner and management team care about.
The potential advantage of this new channel is that the social network users can
be seen as a sensor network which is readily deployed and covers most of urban
areas. The question is whether this new channel is potentially supplement to
the current deployed ICT infrastructures for environmental monitoring and
management. In this chapter, we investigate the fourth research question
(RQ4), i.e., whether and how we can extract and make use of user contributed
content on social media for understanding water damage? We present a case
study of comparing water damage related tweets with the registered damage
reports from municipalities. We take two large cities in the Netherlands as
examples, namely, Amsterdam and Rotterdam, and investigate the correlation
between messages from Twitter and two incidents of extreme weather hit the
two cities respectively.

1http://en.wikipedia.org/wiki/Selfie

113

http://en.wikipedia.org/wiki/Selfie


6. Geo-tagged Tweeting for Water Damage

6.1 Introduction

Water damages such as oods, broken pipes become an essential problem
for modern cities, especially under climate changing. A practical way is to
mitigate the problem by running risk management on this issue which requires
to incorporate �ne-grained and real-time data sources. As a case study, we
focus on two cities in the Netherlands, i.e., Amsterdam and Rotterdam, which
are the top two largest cities in the Netherlands.

Both municipalities run damage reporting systems which register residents’
reports on public facility issues such as oods, ponds, etc. However, the
registration of such reports takes a lot of man-hours and scattered small issues
may not be investigated due to the lack of motivation to report or busy lines
of the systems. Social networks accumulate a large volume of information
regarding individual users’ experience, which may be a potential resource for
gathering information about water damage in urban areas.

6.2 Related Works

In crisis management, many researchers have looked into social media sources
for real-time information regarding incidents. For example, Sakaki et al. [131]
proposed a set of temporal and spatial models based on probabilistic models
for detecting disasters on Twitter, e.g., earthquakes, typhoons, which have
national impacts. Starbird et al. [142], Vieweg et al. [152] analyse the textual
features of tweets related to two speci�c incidents, the Oklahoma Grass�res
and the Red River Valley Floods. Abel et al. [1] demonstrated a system for
enriching messages from emergency broadcasting services with tweets related
to them. Maxwell et al. [104] demonstrated a system for detection of crisis
from real time tweet stream and synthesized di�erent sources of information
on one monitor interface, such as videos, maps, and text messages. Di�erent
from these studies, we focus on the spatial and temporal analysis of the tweets
related to strong precipitation within cities. We compare di�erent sources of
information, investigate the correlations between them in terms of space and
time for both short-term and long-term analysis.

SHINE2 is a research project in Delft University of Technology which aims
at utilizing heterogeneous information networks for better urban management.

2http://shine.tudelft.nl
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Heavy rainfall is one of the studied cases demonstrating how di�erent types of
resources can be combined for better understanding and decision making. For
example, Gaitan et al. [55] combined information from radar measurements,
laser precipitation monitors, automatic weather stations and damage reports
to �nd vulnerabilities in the city of Rotterdam. The study in this chapter
evaluates the value of social media in this context.

6.3 Data

In this case study, we rely on two main sources of data, i.e., the records of
damage reports from the municipalities and tweets regarding rainfalls and
water damage in the cities. In order to investigate the spatial and temporal
distribution of these two data sets, we compare the data sources with o�cial
census data and weather records. In this section we briey introduce the
selected incidents and the four sources of data used in our analysis.

6.3.1 Storm Incidents

The fast-grown user base of social media enables researchers to observe human
behaviours at a large scale. We presume that the strong precipitation would
a�ect users of social media and the reaction may be recorded in their messages
on social media such as Twitter. Then these message can be used as a
complementary information sources for city management.

Due to the di�culty of collecting tweets related to water damage in general,
we focus on two selected incidents of storms which hit the two cities in the
past years. The �rst incident we look into is a storm hitting Amsterdam on
July 14, 2012 [112, 146]. The severe precipitation caused many areas being
ooded and a tunnel being closed for a short time. A lot of reports of ooded
basements were recorded by the municipality of Amsterdam. We choose a time
window from July 11 to 17, 2012 for investigation.

As for Rotterdam, we investigate the storm on October 13, 2013, which
caused a lot of damage to Rotterdam and nearby areas around the city [106, 114].
Similarly, the precipitation ooded many areas, temporarily stopped the metro
tra�c and many reports were recorded by the municipality during those days.
For this incident, we choose a time window from October 11 to 17, 2013 as
our investigation range.
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6.3.2 Damage Reports

In the cities of Rotterdam and Amsterdam, residents can report water related
problems in public space, such as oods, sewage problems, to municipalities
via online forms3 or phone calls. Usually, a report contains a series number, to
identify the time of registration, the street name, the house number (for indic-
ating the location of the incident), etc. Available records from the Rotterdam
municipality range from 2004 to 2013, and the records from Amsterdam range
from 2012 to 2014.

The textual addresses in the records can not be directly used in spatial
analysis. To translate the addresses to pairs of coordinates in space, we use
the geocoding service provided by PDOK4. The geocoding service allows free
text input and returns coordinates in EPSG:28992, which is a standardized
o�cial projection for maps of the Netherlands5.

However, not all the records can be processed correctly by the online geo-
coding service. For example, some of the records have no house number or
misspelt street names. For records without house number or with a house
number of zero, we queried with just the street names, in response to which the
service will return the geometric center of the street. We rely on the geocoding
service for handling misspellings of street names. PDOK is used as the primary
geocoding service and for addresses not geocodable by this service we use
a back up from Google Geocoding API6. For example, Hudsonstraat xxxx7,
Rotterdam is a valid address that is not correctly geocoded by the services
provided by PDOK but can be geocoded by Google’s service. Even though,
there are still records (2.6% for Amsterdam, 0.09% for Rotterdam) that can not
be associated with a location. Some of them basically have no valid addresses
registered. There are also misformatted timestamps registered in the records.
For these records, we assigned them with the time of the proceeding records
(via their IDs).

In this study, we only look into the e�ective records, i.e., having both valid

3http://www.gis.rotterdam.nl/msb.meldingenopkaart/
MeldingenOpKaart.aspx

4https://www.pdok.nl/nl/producten/pdok-services/uitleg-over-
services

5http://epsg.io/28992
6https://developers.google.com/maps/documentation/geocoding
7The house number is anonymized
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timestamps and geocoded addresses. Table 6.1 shows the basic statistics about
the records provided by both municipalities.

Table 6.1: The statistics of the registered records about water problems from
Amsterdam and Rotterdam

Amsterdam Rotterdam

Total Records 6 181 46 355
First Date 01-JAN-2012 01-JAN-2004
Last Date 10-JUN-2012 31-DEC-2013

Unique Addresses 4 650 21 424
Geocoded via PDOK 4 207 19 928
Geocoded via Google 336 1 491

E�ective Records 6 023 38 657

6.3.3 Tweets Related to Water Problems

Twitter as one of the most popular social media, accumulates half a billion
tweets per day. It is neither practical nor feasible to retrieve all the tweets
for analysis. In this case study we focus on two incidents and collect tweets
relevant to these two incidents. To achieve this, we use several search services
for potentially relevant tweets, �lter out those quali�ed for analysis and then
have them annotated manually.

Table 6.2: Keywords related to heavy rains and water damages

Keywords

blank hoost overlast
overstroming overstroomd plas
regen riool sloot
verstopt water giet
kolk neerslag onweer
wateroverlast

As a starting point, a list of keywords regarding rainfalls and water damage
is compiled by two native Dutch speaker, as shown in Table 6.2. Then for each
keyword in the list, we respectively queried three tweet search services, i.e.,
Twitter Search, Topsy, Twiqs.nl [148].
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Twitter provides a search API for accessing tweets by keywords, allowing to
specify the location by the parameter geocode. However, the API can not be
used in this case study since it only indexes tweets in last few days up to the
time of query (6 to 9 days according to the o�cial document8). The studied
incidents are both much earlier beyond the capacity of the index.

The web interface of Twitter returns older tweets9. So we scrape the data
from the web interfaces via a simple script querying HTML pages from Twitter.
The queries used for collecting tweets are in the format: <keyword> nearby :\<city
name> Netherlands" within:15mi since:<begin> until :<end>. It means tweets
containing the keywords, have a related geotag locating within 15 miles from
the city centre, and have been posted during the given time period. However,
the returned tweets do not all satisfy the given constraints on the location, as
Twitter also tries to return tweets from users who have the queried locations
in their pro�le10.

Besides the o�cial Search API, we also used two other services. Topsy11 is a
search engine for tweets that claimed to have a full archive of tweets since 2006.
Optional constraints on various dimensions are provided on the interface, such
as locations and keywords. We use another script for automatically querying
Topsy with the keywords. As Topsy stripes o� geotag information from the
returned tweets, we have to consult Twitter REST APIs for the geotags of the
returned tweet IDs.

We also use the tweet search service from Twiqs.nl12 for collecting tweets
related to water problems. It is a dedicated service for indexing Dutch tweets
streamed by sample endpoint of Twitter Stream API, which carries about 1%
of the whole tweet stream going through Twitter. It has an option to harvest
IDs of geotagged tweets posted within a give period. Then we retrieved the
full tweet objects with these tweet IDs via Twitter REST APIs.

We combined tweets from di�erent sources for each incident and semi-
automatically labelled all relevant tweets with the following steps: i) Applying
a keyword �lter on the set of data with the keyword list. ii) Applying a

8https://dev.twitter.com/rest/public/search
9https://blog.twitter.com/2013/now-showing-older-tweets-in-

search-results
10https://dev.twitter.com/rest/public/search
11http://topsy.com
12http://twiqs.nl
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spatial-temporal �lter to keep only the tweets that are posted during the time
and in either cities.13 iii) Annotating the relevance of each tweet (by a native
Dutch speaker). By the three steps, we have collected a set of geotagged tweets
related to water problems. During Step iii, our annotator noticed that there
are tweets posted from channels dedicating to broadcasting emergencies, as
both cities have o�cial web sites for real time updates of received reports of
emergencies. These tweets are categorized as auto tweets by the annotator.
A brief summary of statistics of the tweets regarding these steps are listed in
Table 6.3.

Table 6.3: The statistics of collected tweets regarding the two incidents re-
spectively

Amsterdam Rotterdam

Twitter Search 40 30
Topsy 62 212

Twiqs.nl 55 222

Unique Tweets 99 288
Relevant Tweets 46 263

Auto Tweets 3 186

Signi�cant di�erence in quantity is observed between the two sets of tweets
for Amsterdam and Rotterdam. Our explanation to the di�erences is that
the set of tweets for Amsterdam are one year earlier than that for Rotterdam.
Twitter has a policy to protect users’ privacy that forbid any services to store
the tweets that users command to delete and the longer ago the tweet is the
more likely they have been removed. Another factor could be the rise of
popularity of both Twitter and location sharing. That is, more people used
Twitter and especially geotags in 2013 than 2012.

For short, we use the term tweets to refer to the relevant tweets unless
otherwise speci�ed in the rest of this chapter.

6.3.4 Residential Population

Since the water damage reports are �led by residents in the cities, it is likely
that the distribution of damage reports correlates with the population density

13The spatial �lter is based on the boundaries provided by PDOK
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distribution. Intuitively, the less the residents live in an area, the less likely an
incident will be discovered and reported. To investigate such correlation we
retrieved from PDOK services the resident population distributions for both
cities. The data is provided as a shape �le storing the numbers of residents
registered (in 2013) in grids of 100 meters by 100 meters cells, as shown in
Figure 6.1 and Figure 6.2. The colored squares representing the density of the
residents in log scale from light green (5{10 residents) to red (500+ residents).
The orange dotted lines in the �gures show the boundaries of municipalities.

Figure 6.1: The population distribution of Amsterdam, Netherlands

Figure 6.2: The population distribution of Rotterdam, Netherlands

As can be seen in both municipalities, there are large areas with nearly no
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residents. For example, the north west part of Amsterdam and the south east
part of Rotterdam are less populated because they are port areas. It should
also be noted that Rotterdam city also includes the bank of the river until the
sea which is not fully shown in the �gure.

6.3.5 Precipitation

Water damage is usually considered relevant to the incidents of strong precip-
itation. To investigate the strength of the correlation between water damage
reported and the precipitation in the cities, we used archived weather data
from KNMI14, which provides hourly precipitation records. Since there is
no weather station in the municipality of Amsterdam, we use the data from
the nearest weather station (i.e., Schiphol) as an approximation of the data
from the city. As for Rotterdam, we use the data from the weather station in
Rotterdam.

6.4 Analysis

In this section, we demonstrate some analysis with the data obtained from
di�erent sources including the tweets we collected.

6.4.1 Long-Term Analysis

Strong precipitation is usually a signi�cant cause of water damage in delta
cities like Amsterdam and Rotterdam. Based on the data from the records of
reported water damage and the weather station, we investigate the correlation
between them. In this case study we use Pearson correlation:

r =

P
(xi � �x)(yi � �y)

pP
(xi � �x)2

pP
(yi � �y)2

Though water damage in cities are more likely caused by short and strong
precipitation, the correlation at monthly scale can give better understanding
of how the trend of climate change will a�ect the facilitate currently used in
urban areas. Figure 6.3 and Figure 6.4 show comparisons between the monthly
precipitation and the frequency of reports. The correlations are respectively

14http://www.knmi.nl/klimatologie/daggegevens/download.html
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0.8443 (Amsterdam) and 0.6951 (Rotterdam). The �gures con�rm strong
correlation between the reported water problems and precipitation in a month
granularity.
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Figure 6.3: Comparison between the precipitation and reports of water prob-
lems in Amsterdam
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Figure 6.4: Comparison between the precipitation and reports of water prob-
lems in Rotterdam

We also tried 3 other comparison of smaller granularities, i.e., weekly, daily
and hourly and shifting the data in temporal dimension in order to compensate
the time gap between the precipitation and the damage reports. There are
two reasons we include the shifting in our comparison. First, the weather
station is away from the urban area which may introduce time di�erence when
use the data from it as an estimation of the precipitation in the urban area.
Second, there may be a general delay of reporting due to the reluctant of action
(reporting) when the water damage happens to public facility, especially, when
the system is not easy to access (e.g., looking for the right phone number or
website). As shown in Figure 6.5 and Figure 6.6, the general trend is that the
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Figure 6.5: Correlation between the time-shifted precipitation and the reports
in Amsterdam

correlation decrease when the granularity of comparison gets smaller. This may
be due to the uncertainty of when the damages were observed and reported
and the Pearson correlation is not good at capturing this kind of uncertainty.
An interesting �nding is that at hour granularity, the correlation goes to a
peak (0.158) if applying a 4-hour shift, though it is very weak. This particular
peak may worth further investigation.
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Figure 6.6: Correlation between the time-shifted precipitation and the reports
in Rotterdam
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In order to estimate the correlation between reported issues (from either
damage report channel or Twitter) and population, we use Kernel Density
Estimation to associate a spatial point with a probability that the reported
issue happened there. Then we calculate correlation with Pearson correlation
between the estimated spatial distribution of either reports or tweets and the
population density in both cities.

For the KDE we use a Gaussian kernel with a factor l estimated via Silver-
man’s rules15, i.e.,

f̂(x) =
1

2�n
p
jl2�2j

X

xi2X

e�
1
2 (xi�x)��2l�2(xi�x)

where X is a set of vectors representing geo-spatial points, l =
�n(d+2)

4
�� 1

d+4 ,
and � = cov(X;X).

Figure 6.7 and Figure 6.8 show comparisons between the resident distribution
and the density of reports. The density of reports is estimated by Kernel
Density Estimation with a bandwidth manually selected. The correlations
between the distributions of reports and population density are respectively
0.4893 (Amsterdam) and 0.5070 (Rotterdam). The correlation between the
distribution of reports and resident population density is moderate, weaker
than the correlation with precipitation data from the weather station.

6.4.2 Short-term analysis

As mentioned in Section 6.3.1, two time periods have been selected for Amster-
dam and Rotterdam respectively, during which severe storms hit the two cities.
In this section, we demonstrate how the perception of these two incidents
is represented on social media, by comparing them to the reports of water
damage recorded o�cially.

Similarly to the long-term analysis, we compare the temporal (hourly)
distribution of tweets mentioning rain and water issues with the precipitation
recorded during the same time. As shown in Figure 6.9 and Figure 6.10, tweets
bursts are closely aligned in time with the precipitation bursts recorded at

15Implemented in http://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.gaussian_kde.html
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Figure 6.7: The distribution of reports from Amsterdam 2012{2014
(bw=0.0005)

Figure 6.8: The distribution of reports from Rotterdam 2004{2014 (bw=0.05)

weather stations. The bursts in the time series of damage reports are some
time behind the strong precipitation.

As shown in Table 6.4 and Table 6.5, the time series from tweets are closer
correlated to precipitation than the time series of damage reports in both cities
and the correlations are respectively 0.4527 (tweets) and 0.0082 (reports) in

126



6.4. Analysis

Amsterdam and 0.3067 (tweets) and -0.0553 (reports) in Rotterdam.

Table 6.4: The correlation between precipitation, tweets and reports in Ams-
terdam

Precipitation Tweets Reports

Precipitation 1.0000 0.4527 0.0082
Tweets 0.4527 1.0000 0.0784

Reports 0.0082 0.0784 1.0000
Tweets (-1h) 0.4947 0.3727 0.0426

Reports (-3h) 0.3574 0.1728 0.2769

Table 6.5: The correlation between precipitation, tweets and reports in Rotter-
dam

Precipitation Tweets Reports

Precipitation 1.0000 0.3067 -0.0553
Tweets 0.3067 1.0000 0.1092

Reports -0.0553 0.1092 1.0000
Reports (-1h) 0.0544 0.1387 0.4776

We tried to align the time series of damage report from both social channel
and o�cial channel with precipitation. It is found that for Amsterdam the
correlation between them reaches a maximum of 0.3573 when the time series
of reports is moved backward in time of 3 hours. As for Rotterdam, the
maximum correlation of 0.0544 is achieved when moving the report time series
backward in a hour. By aligning the time series of tweets, we achieve in
Amsterdam a maximum correlation of 0.4947 when moving the time series
backwards in time of a hour. In Rotterdam, the time series of tweets achieves
the maximum without moving. In general, the correlation between the tweets
and the precipitation are higher than that of the reports.

We also compare the correlation at day granularity, and observe higher
correlation between the tweets and the precipitation in both cities, 0.7214
for Amsterdam and 0.7591 for Rotterdam, than that of reports, 0.4516 for
Amsterdam and -0.0526 for Rotterdam. The extreme low value for the correla-
tion may due to the delay of access to reporting issues, as when we shift the
report back in one day we have a much hight correlation, i.e., 0.7702. This
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Figure 6.9: The temporal (hourly) distribution of tweets, reports and precipit-
ation in Amsterdam

Figure 6.10: The temporal (hourly) distribution of tweets, reports and precip-
itation in Rotterdam

observation may imply that the Twitter users are more focus on the heavy
rain, as the correlation between the reports and the tweets are in the middle
between themselves and the precipitation in both cities. Respectively, they are
0.6883 for Amsterdam and 0.317816 for Rotterdam.

We further investigate the spatial correlations between the tweet messages
concerning water problems, water damage reports and the resident population

16Based on the tweets and the reports on the same days
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density.

Figure 6.11 and Figure 6.12 show the spatial distributions of the reports
and the tweets during the incidents.

Figure 6.11: The spatial distribution of tweets and the reports in Amsterdam
during Jul 11{17, 2012

Figure 6.12: The spatial distribution of tweets and the reports in Rotterdam
during Oct 11{17, 2013
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In both �gures, contours are used for depicting the density of reports while
the triangle symbols mark the origins of relevant tweets. The two cities have
di�erent patterns. In Amsterdam, the tweets are more widely spread than
the reports and very few tweets showed up in the most severely a�ected areas
according to the reports. The correlation between tweet locations and report
locations is 0.4464. On the other hand, in Rotterdam, the tweets and the
reports collocate more closely, i.e., their correlation is 0.6731. In both cities,
the spatial correlation between the tweets and the population (0.2649 for
Amsterdam and 0.3084 for Rotterdam) are lower than that of the reports
and the population (0.4064 for Amsterdam and 0.3613 for Rotterdam). This
suggests that for the selected incidents, the tweets we collected are more closely
related to reports than to the population density.

Some of the tweets (71%) related to water problem are from the accounts
held by the municipality which are dedicated to broadcasting emergencies.
These tweets (referred to as auto tweets) are also from o�cial channels rather
than social channels. So we further investigate the tweets from normal user
accounts (re�erred to as non-auto tweets) by manually labelling the collected
tweets. As shown in Figure 6.13, though a few auto tweets are removed from
the dense area of reports, the general distribution is close to the reports. In
numbers, the correlations between non-auto tweets and the reports (0.6129)
and the population (0.3179) do not vary much from that of the general relevant
tweets.

The overall �ndings support the idea that signals from social media may
be suited for predictions related to water management issues. As the weather
information has relatively course-grained location information (one weather
station per city in our case), social media may serve as a complementary source
of information to water managers in the municipality.

6.5 Conclusion

Water management is an essential problem for modern cities, e.g., Amsterdam
and Rotterdam in the Netherlands. In this chapter we present a case study
in both cities analysing the registered records about water damages as well
as the messages from Twitter regarding strong precipitation. We �nd tweets
regarding speci�c incidents of strong precipitation which shows the possibility
of using social media as a source of information regarding infrastructure damage
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Figure 6.13: The spatial distribution of non-auto tweets and the reports in
Rotterdam during Oct 11{17, 2013

management in public space (RQ4a).

The tweets response to the precipitation relatively sooner than the o�cial
damage reports which suggests that social media may have advantages in
real-time analysis (RQ4b). Additionally, we found that the two information
sources of water issues are more closely correlated than either of them with
the population density. That is the posts of water issues from social media
channel are not severely biased towards population density in space. This
shows another evidence that it is possible to use social media to capture water
issues in cities. However, we need more e�ective methods to pick up the signal
regarding water problem from social media, as the sparsity of the collected
data may lead to bias.

Based on the analysis shown in this chapter, we may devise automated
monitoring algorithms for water damage or any other types of defects to the
public infrastructures of cities. The gathered information from such automated
monitoring systems can be used to improve the management of public space
in cities. It may also support emergency management in extreme weather
incidents, i.e., prioritizing tasks that may have vast e�ects and/or predict the
propagation of certain problems identi�ed in historical data.
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Chapter 7

Social Media Workbench

For scientists studying social media, it is important to get themselves fa-
miliarized with the data they have. However, such a process is generally
e�ort consuming and tends to involve ad hoc data management tasks such as
creating temporary �les for aggregated or �ltered data and data visualization.
These tasks are e�ort consuming if researchers use the standard data scientists’
toolkit. In this chapter, we present a tool1 for interactively exploring dataset,
especially datasets from social media, with essential ability of customization,
extension, etc.

7.1 Introduction

For more than a decade, social media services have experienced massive growth
rates and are now in regular use by a majority of the developed countries’
population. Looking for new ways to understand human behaviour, various
disciplines in the science community have turned their attention to analysing
the resulting data. For example, Twitter, as one of the most popular online

This work was published as \Interactive Summarization of Social Media" by W. Li, C.
Eickho� and A. de Vries in Proceeding of Fifth Information Interaction in Context Symposium
- IIiX’14

1https://github.com/spacelis/portraitist2
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social media platforms boasts more than 200 million active users producing
half a billion tweets (short messages, photos, web links, etc. ) per day in
2013 [149]. The service inspired a wealth of interesting studies, such as
detecting earthquake-related events [131], investigating how people inuence
each other on social media [12] and predicting users’ mobility [87]. Many
of these quantitative, data-driven studies are enabled by the high degree
of diversity, coverage and scale at which information is available on Twitter.
Qualitative approaches, however, may regard these exact properties as obstacles.
They often involve the exploration of a set of carefully chosen, focused samples.
Under this setting, how should one select the right test subjects among millions
of users? How should the available data be adequately partitioned? And, �nally,
how should the research insights be abstracted and communicated to third
parties? The numerous individuals and research groups around the globe that
rely on samples from, e.g., Twitter and YouTube, as a scienti�c resource have
come up with their very own, individual solutions to these questions. In this
chapter, we briey describe an extensible open-source workbench to facilitate
exploration of data samples in an interactive manner. The workbench provides
researchers, data architects and users with an easy handle on understanding
data collected from Twitter through private crawls; encouraging reuse of code
within the research community.

7.2 Related Tools

In general, three types of tools each of which cover a part of the functions we
try to achieve in our Social Media Workbench. The most closely related tools
are those visualizing a set of social media data to reveal certain properties
of social media which can be used for helping users discover the change of
trends or emergent events. Another type of tools are the general purpose
charting Web Apps which serve as the online equivalence of spreadsheet chart
makers. The third type includes various charting libraries available online
which simplify the process of chart making for software developers.

7.2.1 Social Media Visualization

The great popularity of online social media resources among researchers calls
for a diverse arsenal of tools for data organization and visualization. Marcus
et al. [103] proposed a system called TwitInfo for analysing and visualizing
the shifting sentiment of Twitter streams. It shows the distribution of tweets
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over time, their sentiment categories, a map for geotagged tweets and a list of
relevant tweets given a query. Tweet Sentiment Visualization App2 visualizes
tweets alongside a sentiment chart for classi�ed tweets, maps of geographic
spread and word clouds. Sentiment140 3 also shows sentiment classi�cation of
tweets, using a number of pie and bar charts. Socialmention4 o�ers sentiment
visualization including social inuence indicators. The commercial service
UberVU 5 provides a wide range of analysis tools for brand management and
marketing e�orts. Besides those sentiment-centric visualization tools, many
other systems exist for social media visualization. Livehoods6 is an interactive
map of user mobility based on check-ins from Foursquare in eight selected met-
ropolitan areas. Vizify7 is a personal pro�ling assistant that can automatically
generate infographics showing aspects such as favourite topics, living locations,
connectivity, etc. TwiqsNL8 is a Hadoop-based search engine for Dutch tweets
collected from Twitter’s Streaming API, which depicts tweets matching query
�lters like keywords or hash-tags in distributions over time, locations and user
categories, as well as the textual content in a word cloud. Crisees [104] is
proposed for monitoring realtime social events on Twitter, especially for crisis
discovery. It is composed of a list view of tweets related to a queried event, a
map showing the whereabouts of those tweets and a list of related media. Eddi
[24] is a Twitter client optimized towards better tweet reading experience. It
groups tweets into topics and showing them along with a trending timeline
and a word cloud.

Each of these tools is tailored for their speci�c purposes and they are neither
open source nor easy to customize for other applications.

7.2.2 Online Chart Generating Tools

There is a wide range of online chart generation solutions that accept arbitrary
data streams in standardized formats. Some are Web-based versions of spread-

2http://www.csc.ncsu.edu/faculty/healey/tweet_viz/tweet_app
3http://www.sentiment140.com
4http://www.socialmention.com
5https://www.ubervu.com
6http://livehoods.net
7http://vizify.com
8http://twiqs.nl
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sheet applications, e.g., iCharts9, Chart Maker10. Some more sophisticated
ones o�er greater control over design and layout and facilitate generation of
posters and infographics. Popular examples include Infogra.me11, Piktochart12

and VANNGAGE 13. These tools only provide limited means of importing
data, and often lack the ability for automatic data aggregation. Users have to
manually input data points in each chart and their interactivity is limited.

Many Eyes14 and StatPlanet15 are two online applications that are similar
to our social media workbench. They have both been designed for interactive
data visualization. Many Eyes is hosted by IBM as a Java applet-based Web
application. It supports 17 types of charts and endorses users for sharing their
dataset and inferred charts. The main drawback of the application is that
charts cannot be connected for interactive operation, so interactions on one
chart do not propagate to other display elements. StatPlanet supports such
propagation of interaction on a set of charts, but the Flash based interface is
limited to geographical visualization and not customizable. Additionally, both
of them require users to manually input data and do not support retrieving
data from third party websites.

7.2.3 JavaScript Libraries

Better exibility can be achieved by programming a tool with existing JavaS-
cript charting libraries, such as D3.js16. However, existing libraries vary in the
required programming e�ort and the power of data presentation (e.g., colour
themes, interactivity). We measure programming e�ort in four dimensions,
namely, the number of types of built-in charts, the related technology, the
support of Domain Speci�c Language based (DSL-based) templates and the
interactivity. The built-in charts can save a lot of time and e�ort if they can
�t into the use case. The more types of built-in charts a library supports, the
more likely the charts one needs has been already implemented. The related
technologies indicate what knowledge is required if one wants to program a

9http://www.icharts.net
10http://almaer.com/chartmaker
11http://infogra.me
12http://piktochart.com
13http://vanngage.co
14http://www-958.ibm.com/software/data/cognos/manyeyes
15http://www.statsilk.com
16http://d3js.org
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tool based on the library. The support of DSL-based templates can reduce the
programming e�ort by allowing one to use simple language to compose a tool
rather-than learning a general purposed programming language. The power of
a library is measured by the interactivity supported by the charts it makes.
It renders how much more a library can provide for data exploration besides
plotting a static chart, e.g., zooming into a part of the chart. An ideal library
should have as many types of built-in charts as possible, rely on a small set of
technologies, support DSL-based templates and provide as much interactivity
as possible.

Table 7.1 lists popular charting libraries for Web development and their
strengths and limitations in the 4 dimensions. As shown, DC.js17 is a good
candidate for researchers to build an exploration tool with. But still it requires
one to learn JavaScript to use it in a data exploration tool.

Thus, in this chapter, we present our workbench which is built on top of
DC.js and we design and integrate a DSL-based template system to simplify
tool building process. Our workbench requires only knowledge about the simple
DSL we designed for the chart layouts on a user interface.

7.3 System Details

The rest of this Chapter details the Social Media Workbench, a tool developed
in response to the shortcomings of the three types of approaches discussed
above. Our proposed workbench is designed and implemented towards a system
that can help users compose comprehensive interfaces containing interactively
connected charts of di�erent types. To this end, it provides a simple domain
speci�c language (DSL) for composing charts so that users can focus more on
what types of charts are suitable for their tasks rather than how to program
them. Easy modular expansion, embedding and modi�cation are also con-
sidered in the �rst place and a small set of APIs are designed for integrating
more charts into the system. For example, we integrate a word cloud drawing
library wordcloud2.js18 and an interactive map library GMaps.js19 for plotting
over Google Maps. All these charting modules are encapsulated as directives

17https://github.com/dc-js/dc.js
18http://timdream.org/wordcloud2.js
19http://hpneo.github.io/gmaps
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enabled by AngularJS 20, which can then be used as a DSL for composing a
workbench for exploring social media dataset. We would like to stress that the
proposed system is not \yet another library for online chart generation". It is
designed for facilitating researchers to e�ciently build a prototype interface
for aggregating and analysing, for example, Twitter data.

7.3.1 Features

The key features of the proposed Social Media Workbench are:

� Easy composition of new chart layout with built-in directive tags.

� It can be used as a standalone application as well as embedded in another
interface.

� It is possible to load data from local storage or 3rd party APIs on the y.

� Built-in pie, line, bar charts, word clouds and maps.

� Drill down operations for data via charts.

� APIs for extending and embedding the workbench into another Web
application.

� Source code available under MIT License.

Figure 7.2 shows an example interface of the Social Media Workbench, sum-
marizing a user’s activity in terms of a number of pie charts, bar charts for
displaying his/her check-in time lines as well as categorical and geo-spatial
spread on an interactive map. All charts in the interface are dynamic; inter-
acting with any of the charts (e.g., clicking on a slice in a pie chart) triggers
immediate updates of all other charts (e.g., focusing on the selected share of
data). The chart layout can be easily customized through template editing. As
an example (see Listing 7.1), a tweet word cloud could be inserted by simply
adding a single tag.

Listing 7.1: A example snippet of Social Media Workbench template

...

20http://angularjs.org
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<tagcloud name="MyTags" id="tagcloud" data-dimension="text"></
tagcloud>

...

7.3.2 Architecture

The workbench is built as a Web application to make optimal use of state-of-
the-art technology and allows for exible platform-independent deployment
either locally or on any popular Platform as a Service (PaaS). As shown in
Figure 7.1, the workbench consists of a front-end and a back-end.

Computation of statistics and chart plotting are accomplished on the JavaS-
cript front end. From the data stream provided by data APIs, the front end will
extract properties of each item in the stream and send them to corresponding
charts. When the user selects, for example, a particular category of places, a
�lter will be applied to the stream of items where only the matched items will
account for the update and all other charts will be synchronized to the new
selection criteria.

The back end is a dedicated server for hosting data APIs, providing easy
handles on data from Google Datastore or other data APIs online (e.g., Twitter).
For example, users can feed a list of tweet IDs or user IDs or search queries
for the workbench to automatically obtain all the corresponding tweets.

The front end and back end are decoupled by simple REST APIs, through
which JSON formatted data is communicated between them. The resulting
workbench can either run as a standalone application (with data served by
built-in back end running on Python) or be embedded in another application
where the front end pulls JSON formatted stream of data from that application.
The detailed usage can be found in Appendix A.

Interface Customization

The front end, for the purpose of analyzing existing data from an API access
point, can be used for tailoring the interface to one’s own needs. The interface
is merely a HTML page with embedded directives (DSL). Each directive
represents a chart that will be displayed when the page is loaded in a modern
browser (e.g., Google Chrome21). The datasource directive is a mandatory

21https://www.google.com/intl/en/chrome/browser
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DC.js

Directives (AngularJS)

Google MapsPies Bars

D3.js Crossfilter

Data Source
WidgetWord Clouds

Backend (Files and REST APIs)

Wordcloud2.js Gmaps.js

Figure 7.1: The Architecture of Social Media Workbench

component for the interface, as it stores the data coming from the back-end
and serves as a data provider to all other charts on the interface. For example,
one can customize the interface with a bar chart, a pie chart and a datasource.
When a user loads the interface, the datasource directive will ask the back-end
for data which is con�gured when composing the interface. When the data is
ready, the data will be pulled by all the chart components for updating their
chart.

All the charting and datasource components on the interface as well as other
underlying libraries are managed by RequireJS 22. RequireJS is a library for
managing module loading and dependency in a JavaScript application. Any
extension can be easily integrated to the system by adding a dependency
declaration in the con�guration �le of RequireJS.

Backend

The back end is decoupled from the front end. The provided back end is a
default minimal server suited for simple data crawling from Twitter API and
handling the storage of the tweets retrieved. Users can replace it with any
Web framework. For example, users can load the interface from their local
�le system and con�gure the datasource to pull a local CSV or JSON �le as

22http://requirejs.org
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alternative data stream. For more complex cases, users can setup their own
data API server with each endpoint (a URL) serving a subset of the data in
their database. In general, the front end only requires a URL that points to a
REST service that provides data in CSV or JSON format.

7.4 Example Systems

In this section we demonstrate our workbench in two di�erent projects to show
its exibility and ease of customization.

7.4.1 Geo-Spatial Summaries

The workbench was originally used for assessing users’ expertise towards Points
of Interest (POI) discussed in Chapter 5 [86]. The assessment task is a complex
process in which assessors are required to look deeply into users’ check-in
pro�les, each of which can be composed of up to thousands of individual
geotagged tweets. It would not be e�ective nor e�cient to let assessors go
through all available tweets to �nd out whether the user knows about a given
place or a type of places. Instead, we created an interface based on the
proposed workbench to show as many dimensions of a pro�le as possible,
without exceeding or cluttering the con�nes of a single page. The aggregated
diagram lets assessors focus on the actual check-ins rather than the content of
tweets.

As shown in Figure 7.2, we include in the interface 4 pie charts for showing
the distribution of check-ins across di�erent types of locations and a chart of
geotagged tweets distributed over time. Additionally, we provide a map to
show the spatial distribution of check-ins. Our assessors can use this interface
to comfortably inspect di�erent dimensions of a user’s check-in pro�le. For
example, they can click on any part of the pie charts to select a type of place.
Other charts including the map will immediately show only the check-ins at the
selected type of places. After exploring a user’s pro�le, assessors are required
to evaluate the user’s expertise for each given place or type of places, based on
the visualized summarization and assign the scores accordingly at the top of
the interface.

We o�er a re�ned and comprehensive interface for the assessors to avoid
biased answers caused by lack of information or by obtrusive interfaces. For
this project, we include charts and maps in the workbench to display the
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Figure 7.2: The geo-expertise annotation interface
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users’ pro�les in as many dimensions as possible. Moreover, the interactivity
of our proposed workbench helps assessors to look into di�erent dimensions
and form their own ways of exploring pro�les for the tasks. For example, when
assessors are evaluating a users’ expertise towards a place, they may also want
to know users’ check-ins at other similar types of places. The selection can be
narrowed down to include only the desired type of places with a single click.
The category distribution of check-ins and all other charts will be immediately
updated to the new selection. In the original study, we encouraged assessors
to explore new ways of using the workbench, for example, looking into the
check-in distributions only in the past month by selecting check-ins on the bar
chart, or investigating check-ins in di�erent cities by clicking on the pie chart
for check-in distribution over cities. By giving assessors freedom to explore
the data, we hope to minimize the possibility of leading them towards false
conclusions.

7.4.2 Complaints Discovery in Social Channel

We used the same workbench for the project discussed in Chapter 6, which
leverages social media channels to collect complaints about damages caused by
heavy rain in Amsterdam and Rotterdam in the Netherlands. Based on these
complaints the municipalities may discover vulnerable locations in urban areas
and then try to improve them.

As the �rst step in the pilot study, we needed a tool for exploring social
media for potential textual features characterizing rain damage related tweets.
To realize this objective, we composed an interface based on the previously
described workbench for summarizing the tweets relevant to a given search
query. With this tool, we identi�ed keywords for retrieving tweets regarding
heavy rain damages so that we can monitor such keywords on the Twitter
Streaming API.

In this application of the Social Media Workbench, we include a bar chart,
a word cloud and a structured data table. The bar chart shows the time
distribution of relevant tweets, the word cloud contains frequent words in the
selected tweets and the data table will show tweets sorted by their relevance
towards the �lter queries. A thin wrapper over a 3rd party full-text search
library (Whoosh23) enabled the selection of relevant tweets through a REST

23https://bitbucket.org/mchaput/whoosh/
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API. Alternatively, we could even have used a complete self-contained IR
system running in the browser as recently prototyped by Lin [92].

Figure 7.3 shows an example query of wateroverlast, the Dutch word for
ood. As can be seen, the volume of relevant tweets peaks after the 11th of
October 2013, the day on which an exceptionally heavy storm hit the city
of Rotterdam. We can either zoom into a particular day to check the word
distribution of tweets by selecting a speci�c range on the time line, or select
another word as a new query by clicking on that word in the word cloud. With
this tool, we re�ned the keyword set to monitor and collect more tweets about
upcoming complaints.

Figure 7.3: Water Complaints pro�ling tool
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7.5 Conclusion

We described the �rst version of the Social Media Workbench, an open-source
system that is designed to help researchers explore large social media data sets
originating from platforms such as Twitter. The current version of the tool
along with the two described use cases focuses mainly on meta information
such as geotags that are associated with tweets. The tool is an ongoing
engineering e�ort, and we plan to integrate more content-related aggregation
and summarization functions, such as latent semantic analysis or unsupervised
clustering functionality based on user de�ned �elds. In this way, we hope
to reduce the need for code replication throughout the research community
by giving a exible, easy-to-adapt environment for qualitative research on
potentially large-scale datasets.
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Chapter 8

Conclusion

Social media is a new channel for people to acquire and share information online.
The diversity of user contributed information can help both researchers and
product developers to better understand users’ behaviour. In this dissertation,
we have focused on the geographical information presented in geotags (POI-
tags) on social media and explored di�erent aspects regarding such information
to demonstrate how it can be used for inferring user activities.

8.1 The Answers

At the beginning of this dissertation we identi�ed four research questions, and
we explored the solutions in the previous chapters.

8.1.1 Content-based Location Prediction

Our �rst question regards whether it is possible to predict users’ locations
based on the content of messages they send. From the experiment, we �nd it is
possible to distinguish locations from each other by the tweets originated from
them and predict users’ locations based on the content in their tweets. Due to
the sparsity of the data collected from Twitter, we proposed to retrieve external
evidence for the textual features, i.e., using the text from the Web pages about
each location to enrich the models we build for them. The performance of
the enriched models shows statistically signi�cant improvement (around 10%
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in P@3) over the simple ones when there is only a few tweets. The marginal
improvement is due to the divergent vocabulary of the text from web sources.
It may relieve the problem if we only include high-quality resources on the
Web.

Besides the textual features, we also explored temporal features for the
locations, inspired by the fact that places have their own preferred visiting
time, e.g., parks during days while bars during nights. As shown in the
experiments, the temporal feature can further improve the precision of the
prediction but did not improve the performance much. This may relate to the
same level of sparsity if we try to build models for less popular locations. It
might be useful to smooth the time model from similar locations.

8.1.2 Trail-based Location Prediction

As inspired by the mobile pattern shared by city residents, we looked into the
problem of whether it is possible to predict users’ future visits based on his/her
visiting history at the level of location categories. Since this is the �rst study
on location category prediction, we borrowed ideas from other domain and
devised several models based on intuition and observations. We also developed
a Collaborative Filtering method based on users’ temporal spatial matrices
together with a smoothing technique for the problem.

As shown in the experiments, the proposed method successfully improves
the performance of predicting users’ future locations based on their visiting
histories. Speci�cally, the collaborative �ltering based method (CF-K) achieves
around 1{5% improvement in MRR scores in predicting users’ visits in terms of
the top-categories of locations compared to that of Markov Chain models (MC)
and 1{7% improvements in predicting visits in terms of lower-level categories
of locations. The advantages of the collaborative �ltering based methods are
that they include longer histories of users’ visits and are able to handle the
introduced noise. In both experiment settings, the two methods (CF-K and
MC) have similar performance on the data from Los Angeles. We suspect
it is due to that a large proportion of check-ins in the data are from the
international airport in Los Angeles.
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8.1.3 Geo-expertise Retrieval

An interesting aspect about the geotags embedded in social media is that it
implies users’ physical presence at di�erent locations which can be converted
into users’ knowledge about the locations. Such knowledge is hard to document
or digitalize, which necessitates expertise retrieval systems so that users can
obtain the knowledge from the experts. Thus we studied how an e�ective
geo-expertise retrieval system can be built. As a pilot study we run surveys
to collect people’s opinion about the problem and the results con�rmed our
conjecture about the needs of such systems. As concluded in the survey,
three features are considered as the most important models for determining
whether a user knows about a location or a type of locations. We build models
according to these three criteria based on probabilistic inference. Then an
evaluation is carried out for these criteria and also for the methods derived
from others’ study. According to the annotated data acquired respectively
via crowdsourcing and from university students and sta�, we found that the
proposed methods make better predictions of geo-expertise than the random
baselines. Speci�cally, we found the best methods increase the performance by
106% (WTD+A) in P@1 scores on the data from the CrowdFlower platform
while by 274% on the data from the university student/sta�. However, the
di�erence between the proposed criteria is much smaller. This may be a result
of the open-ended annotation, as assessors might not agree on a single criterion.
To further investigate the di�erence, data from a real running system may
provide a better source of evidence.

8.1.4 Monitoring Extreme Weather on Social Media

Besides studies on bene�ting individual users online, we also conducted research
in helping organizations better understand urban lives. A collaborated project
was carried out for studying the reports of water damage caused by storms in
social media. As shown in Chapter 6, there were not many Twitter messages
about water damage collected during our study. However, the trend and spatial
distribution have slight correlation with the o�cial register of water damage
reports. The lack of tweets may lead to the low correlation, which may be
caused by the di�erent focus of social media.

To improve the quality of the data from the social media channel, it may
be useful to raise the awareness of using the channel to report water damage.
Another way to collect more evidence from the social media channel is to
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improve the methods in discovering water damage reports on Twitter and
estimating the locations regarding the reports.

8.1.5 An Interactive Social Media Workbench

In respect to the recurring need for data visualization tools during the course
of our study, we developed a Web based interface for visualizing the data
collected from the social media. It enabled us to show the data to annot-
ators in the way that they can interactively explore the data. The tool
is open source licensed and can be obtained from https://github.com/
spacelis/portraitist2.

8.1.6 The Privacy

The abundant information that can be derived from geo-spatial data shows
promising evidence of helping people in various ways, e.g., recommending places
to visit, context-aware searching, and suggesting new social ties. However,
such abundant information is also considered as a very important part of users’
privacy. As stated in Section 4.1, locations, especially in terms of POIs, usually
reect what kinds of activities users may carry out at di�erent places. The
visiting patterns may also reveal other aspects of users’ everyday life, e.g.,
purchasing habits, working and living areas, and level of income. These types
of information can be very sensitive and can be exploited for crimes such as
identity fraud. The more users engage on those platforms the more personal
information they give out and the more likely they may get into trouble when
such information is abused.

In the study presented in this dissertation, though the data set collected for
the experiments is a small fraction of the entire data ocean accumulated on
Twitter, it has already shown the possibility of location inference based on
users’ check-ins. In Chapter 3, we demonstrated that location information can
be inferred from the content of users’ tweets. In Chapter 4, we demonstrated
that the missing part of users’ trails can be recovered based on their visiting
histories. The positive results, unfortunately, show the possibility that users
can be tracked by their service providers and criminals may exploit the services
and look for targets (especially, IR technology is available for such data). This
dissertation can be seen as a reminder to both users and social network service
providers that the accumulated online personal information is more than just
the data itself.
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With the dilemma between openness and privacy, researchers are urged to
investigate how to prevent the exploitation of users’ privacy and how such
prevention would a�ect user experience with various services.

8.2 Future Challenges and Applications

Along the line of the study presented in this dissertation, there are many
possible future routes to follow. In the work of Chapter 3 and Chapter 4, users
are purely treated as sets of check-ins and other aspects are not considered in
the prediction. However, intuitively, other personal information may provide
prior knowledge or evidence for estimating users’ (future) whereabouts. For
example, users put some text on their Twitter page to describe themselves,
which may contain the users’ hobby, profession, gender, etc. The information
from this source can be very useful in inferring users’ location, but the source
can be noisy since there is no constraint on what users can put in the text box.
It is worthwhile and challenging to investigate how such information can be
integrated to the existing location prediction models.

Though we focused on non-textual information in users’ check-in tweets, it
would be interesting to investigate how to pick up signals in tweets that may
imply a future visit to a location. For example, it would be a strong implication
of a future visit when a user tweets about the tickets of his favourite band
he just got. Though it appears to be easy for human to learn the connection
between the information in the tweet and the future visit, it is hard to generalize
such heuristic in the form of algorithms.

The context-aware prediction is also an interesting direction for the problem
of location prediction. The situation surrounding a user can provide information
about the user’s whereabouts and can also be a useful indicator, for example,
to deduce the user’s mood and feeling which may motivate them to go to
certain places. However, the context can vary from application to application
as it is usually inferred from other sources of information, such as moving
speed, weather condition. It would be challenging to identify the context from
the signal collected and integrate the context into the predicting algorithm.

Along the line of research on geo-expertise, an application based on Twitter
or Foursquare can be developed so that the needs of geo-expertise and the
e�ectiveness of the system can be studied. As mentioned by several participants
in the experiment, trust and common preferences play a very important role in
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geo-expertise seeking. Thus evidence from non-geographical features may also
help the system achieve better retrieval results by introducing candidates to
the users who trust them or share similar interests. It would be challenging to
integrate these factors into the probabilistic models we designed in Chapter 5.
Besides, some experts may know a lot about the queried locations, but they
may be either reluctant or too busy to help the knowledge seekers. It would be
interesting to integrate this factor into the model of expertise retrieval since
the ultimate goal is to �nd the right person to answer the question rather than
a person knowing a lot but would not share his/her knowledge. Though there
are already quite some credit systems in Q&A like platforms, but these credit
systems presumably focus on the quality of the answers. It is not clear how
e�ective they are in the setting of geo-expertise retrieval and this needs further
study.

Besides the directions along with the work presented in this dissertation,
geographical information in social media is also an important information
source for other applications. Companies, organizations and government can
save a lot of e�ort if they can make use of the mobility information extracted
from social media. For example, users’ trails reected in their geotagged
messages on social media can be used to �nd potential sites for new shops,
advertising boards or public facilities. If there is a site that the shoppers
(identi�ed via their tweet streams) of a brand of supermarkets visit a lot, it
might be a good place for displaying advertisement or even opening a new
branch. However, it might require careful inspection on di�erent types of
visitors, for example, a user that has many check-ins at a supermarket can just
be a sta� member in that supermarket.
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Appendix A

Social Media Workbench
Manual

A customizable and extensible work bench for exploring data from social media,
a.k.a. Social Media Workbench1.

A.1 How to use

The minimum example of using the Social Media Workbench can be found in
client/example directory. The server directory contains a server based on
the Flask framework2 which serves data to the client and also acts as a proxy
to Twitter’s API. Simply running the server will demonstrate the example.

A.1.1 Setup Javascript Libraries for Client

The client relies on several third party Javascript libraries managed by Bower3.
The con�guration of dependent libraries is in bower.json . Use the following
command to grab a copy of all required libraries:

bower install

1https://github.com/spacelis/portraitist2
2http://flask.pocoo.org
3http://bower.io
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A.1.2 Configuration and Running Server

For running the server, some python libraries listed in requirement.txt are
needed. It can be simply installed by the following command.

pip install -r requirement.txt

Running the server by issuing:

python twitter proxy.py

Then go to the link http://localhost:9090/examples/example.
html.

A.1.3 An Example

The code in Listing A.1 shows how to de�ned the UI that corresponds to
Figure A.1 where a set of tweets retrieved from Twitter is rendered in the
charts:

� a tag cloud showing the words in the tweets,

� a timeline showing when these tweets were posted,

� a pie chart of users’ tweets,

� and a map showing the origin of the tweets.

This example uses Twitter’s Search API as a source of data. When user
click on the button \Load", a set of tweets in JSON format will be retrieved
from Twitter. An example of a JSON tweet is shown in Listing A.1.

Listing A.1: An example of UI layout con�guration

<!DOCTYPE html>
<html>

<head>
</head>
<body>

<div ng-controller="ResourceCtrl as ctrl">
<datasource name="Data Source" id="datasource" data-url="http

://localhost:9090/tp/1.1/search/tweets.json?geocode
=37.781157,-122.398720,1mi"></datasource>

<tagcloud name="MyTags" id="tagcloud" data-dimension="text"></
tagcloud>
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<timeline name="Timeline" id="timeline" data-dimension="
created_at" data-scale="hour"></timeline>

<piechart name="User" id="piechart" data-dimension="user.
screen_name"></piechart>

<googlemap name="TweetMap" id="map" data-dimension="geo.@1,geo
.@0" ></googlemap>

</div>
<script data-main="/js/portraitist" src="/lib/requirejs/require.

js"></script>
<link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.

css" type="text/css">
<link rel="stylesheet" href="/lib/dc.js/dc.css" type="text/css">

</body>
</html>

Listing A.2: A JSON example

{
"created_at":"Tue Mar 18 09:14:13 +0000 2014",
"id":445850650027786240,
"id_str":"445850650027786240",
"text":"I’m at Faculty Electrical Engineering, Mathematics and

Computer Science - @delftuniversity (Delft, Zuid-Holland)
http:\/\/t.co\/UNP9m7cApn",

...
"user":{

"id":127747814,
"name":"SpaceLi",
"screen_name":"spacelis",
...

}
},
"geo":{

"type":"Point",
"coordinates":[

51.99882337,
4.37355868

]
},
"coordinates":{

...
},
"place":{

...
},
...

}
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Figure A.1: An example of UI

180



A.2. Customization

A.2 Customization

The charting layouts relies on directive s facilitated by AngularJS4. Thus,
it is easy to customize the layout of charts and/or the dimensions each chart
depicts. They can be arranged by a HTML page with the following links
ensuring import of the RequireJS5 and the CSS of DC.js6 and Bootstrap7.

<script data-main="/js/portraitist"
src="/lib/requirejs/require.js"></script>

<link rel="stylesheet"
href="/lib/bootstrap/dist/css/bootstrap.css"
type="text/css">

<link rel="stylesheet"
href="/lib/dc.js/dc.css" type="text/css">

A.2.1 Directives

Each chart is loaded in a directive with some settings that can be passed
through both attributes of directives and setting dialogues in the interfaces.
Currently, 4 types of charts are available and more are coming. They are pie
charts, timelines, tagclouds, maps. They all rely on a data source directive for
gathering data from API endpoints.

� datasource is a widget for grabbing data from API endpoints, mapping
to subset of �elds, currently supporting both JSON and CSV formats.

� tagcloud can capture the vocabulary of textual �elds and depict the
words used in the �elds.

� timeline is a bar chart depicting time series which groups data into
di�erent bins according to the given unit of time, e.g., hours, days.

� piechart can be used to show the distribution of values in a give �eld.

� googlemap shows a map of geographical data which requires pairs of
coordinates.

4https://anguarjs.org
5http://requirejs.org
6https://github.com/dcjs/dcjs
7https://getbootstrap.com

181

https://anguarjs.org
http://requirejs.org
https://github.com/dcjs/dcjs
https://getbootstrap.com


A. Social Media Workbench Manual

All these directives can be arranged by customized HTML pages for inter-
active exploration or annotation.

A.2.2 Integration of New Charts

The data managing is based on Cross�lter8 and all the charts should cre-
ate a dimension by passing a function for value accessing and then us-
ing that dimension for accessing the �ltered data with dimension.top()
or dimension.bottom() A directive can be created by following the built-in
ones with a few adaptations. The new chart should also register itself to
the global chart render/redraw handler manager via register renderer and
register redrawer so that the new chart will be redrawed on �ltered data

when users interact with other charts.

8https://github.com/square/crossfilter
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Summary

This thesis carried out two major investigations on how the geographical
information generated by users in social media can be used to model and predict
human behaviours. The �rst investigation regards the mobility patterns of
social media users, which utilizes the relations between geographical information
and other sources of information, e.g., textual information and temporal
information (Chapter 3) as well as users’ trajectory patterns, in predicting
the locations of users’ future visits (Chapter 4). The experimental results
con�rm the predictability of human movement and the proposed methods for
predicting users’ locations are demonstrated to outperform the state-of-the-art
via evaluations with the data collected from social media platforms (Twitter
and Foursquare). The second investigation regards the geo-knowledge that
users may gain from physical visits to locations (Chapter 5). The thesis �rst
presented a discussion on how such knowledge can be modelled from users’
check-in posts on social media and then approached this problem from both
theoretical and practical points of view. Probabilistic models were built and
tested via a con�gurable system on which all the models were implemented.
To evaluate the proposed models, a data set of ground truth was collected
by annotation from two di�erent sources (i.e., a crowdsourcing platform and
university students/sta�). The evaluation show that the proposed models
outperform the approaches from related research.





Summanvent

Het proefschrift draagt twee vooraanstaande onderzoeken over hoe, door
gebruikers gegenereerde, geogra�sche informatie in sociale media gebruikt
kan worden om menselijk gedrag te voorspellen en modelleren. Het eerste
onderzoek omvat mobiliteitspatronen van sociale media gebruikers, welke de
relatie tussen geogra�sche informatie en andere informatie bronnen benut.
Bijvoorbeeld tekstuele- en tijdsgebonden informatie (Hoofdstuk 3), maar ook
traject patronen van gebruikers om de locatie van toekomstige bezoeken te
voorspellen (Hoofdstuk 4). De experimentele resultaten bevestigen de voor-
spelbaarheid van menselijke bewegingspatronen. Empirische evaluatie van
de verzamelde sociale media data (Twitter en Foursquare) onthult dat de
voorgestelde benadering beter presteert dan de gevestigde methodes. Het
tweede onderzoek omvat de geogra�sche kennis die gebruikers winnen door het
fysiek bezoeken van locaties (Hoofdstuk 5). Het proefschrift bediscussieerd
hoe deze kennis van gebruiker ’check-in posts’ op sociale media, gemodelleerd
kan worden. Vervolgens benaderen wij het probleem van een zowel theoretisch
als praktisch standpunt. Onze probabilistische modellen werden getest op een
con�gureerbaar systeem. Om de voorgestelde modellen te evalueren, hebben
wij een data set samengesteld via een enquete aan een universiteit en op een
crowdsourcing platform. De evaluatie laat zien dat de voorgestelde methodes
beter werken dan benadering van gerelateerde onderzoeken.
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