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1 INTRODUCTION AND MOTIVATION 

High-speed and upgraded conventional railway lines are expanding worldwide due to the 
emerging needs of rapid and sustainable public transit. The catenary system or the overhead 
contact line is the dominantly employed infrastructure in the traction power supply scheme for 
railway rolling stocks. With the growth of total mileage and operation speed, requirements on 
the condition monitoring of catenary system are consequently raising in both quantity and tech-
nology. Many researchers and engineers are focus on developing new techniques, such as non-
contact detections based on computer vision (Karakose et al. 2017, Cho et al. 2015) and laser 
projection (Liu et al. 2017), and physics-based detections based on contact force (Wang et al. 
2016) and pantograph acceleration (Carnevale et al. 2016) measurements, among others. By us-
ing fast and proper methodologies for feature extraction and pattern recognition, the autono-
mous and intelligent condition monitoring of catenary system is desired to be achieved in the fu-
ture. But so far, most of these measurements are developed and employed independently for 
specific purposes. In certain ways, they provide performance indicators for improving the cur-
rent collection quality while reducing the life cycle cost of catenary when effective maintenance 
is performed. Since they all serve the same purpose, various measurements and methodologies 
that are considered useful can be eventually integrated and constitute a diversified catenary con-
dition monitoring system (CCMS).  

Until now, the integration of the CCMS is a relatively new topic with few considerations. 
While in some cases multiple types of measurement are performed simultaneously in inspec-
tions, they are seldom analysed jointly. As a starting point, let us firstly recall the available 
measurements that are dedicated for catenary condition monitoring. For most railway infrastruc-
ture companies, the periodical measurements for catenary system are the geometrical parameters 
of contact wire, including the contact wire height, stagger and sometimes thickness. This is also 
regarded as the first level of CCMS (Carnevale et al. 2016). In this level, threshold-based crite-
ria are usually utilized to indicate the catenary condition and identify anomalies. It is based on 
the common knowledge and experience on whether the geometrical condition of contact wire is 
acceptable for normal operation. The second level of CCMS, as also suggested in the European 
Standard EN50317 (BS EN 50317), requires to measure the dynamic interaction between the ca-
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tenary and pantograph. Dynamic parameters such as pantograph-catenary contact force, contact 
point vertical displacement, pantograph vertical acceleration etc., are considered as the source of 
indicators that reflect the quality of interaction. Although these measurements are not yet widely 
employed by industry, they are by definition more directly linked with the performance of cate-
nary system comparing with the geometrical parameters (Vo Van et al. 2016).  

However, the utilizations of these measurement data treat different types of parameter as in-
dependent from each other. This makes the output performance indicators from a single type of 
data highly dependent on the reliability of data measurement. Thus, the output results could be 
too absolute and unique for engineers to make maintenance decisions and often turn out to be 
false alarms. In other words, the robustness of the output is low due to the lacks of data diversity 
and consideration of noise and other sources of stochasticity. To address this issue, the geomet-
rical and dynamic parameters can be adopted all together as the input for CCMS. In such a case, 
the integration of various parameters should be carried out considering the following relation-
ships. First, it should be based on the probabilistic relation between the data value or feature and 
the level of catenary condition, which is often predetermined empirically. Second, the different 
parameters are not independent variables anymore, but somewhat correlated with each other de-
pending on their physical meanings. It means that, for example, the contact wire height and the 
pantograph-catenary contact force, not only they can both reflect the catenary condition, but al-
so the former indicates the data reliability of the latter and thus discredit or support the output of 
the latter. 

In this context, instead of using indicators extracted by threshold-based criteria from the 
measured parameters separately and directly, this paper employs the Bayesian network (BN) 
(Jensen 1996) to establish a physics-based connection between the parameters and assess the ca-
tenary condition. A probabilistic directed graphical model is constructed that can describe and 
visualize the structure of the network. Based on historical measurement data of catenary system, 
the physics-based probabilistic relations between the indicators extracted from different parame-
ter are determined. The established BN can adequately utilize the various types of parameter 
and their correlations, as an example of CCMS integration. Meanwhile, the missing and error 
data problem in catenary measurements can be simultaneously addressed owing to the employ-
ment of multiple data sources. 

The rest of the paper is organized as follows. Section 2 briefly introduces the BN theory and 
presents the proposed BN for CCMS. Section 3 gives an example of application and discusses 
the preliminary results. Some conclusions and further developments are drawn in Section 4. 

2 METHODOLOGY 

2.1 Bayesian network 

BNs, also called directed graphical models, are a class of probabilistic graphical models. They 
are essentially graphs in which nodes represent random variables and the directed arcs between 
nodes represent conditional independence assumptions. A general probabilistic graphical model 
consists of N  variables (nodes) with a set P  of probability distribution functions for each 
variable and a set E  of dependencies (arcs) between variables. A BN is a directed and acyclic 
graph in which all the arcs must be pointing from a parent node to another node and there can-
not be any closed cycle constituted by the directed arcs and nodes (Jensen 1996).  
 

 
Figure 1. A BN with probabilities omitted. 
 

A simple BN is depicted in Figure 1 when N=3, E={(A,B),(A,C),(B,C)} and the probability 
functions of variables A, B and C are known. This is a BN because the arcs are directed and 
there are no closed cycles in the topology. As a counterexample, there will be a closed cycle if 
the arc pointing from variable A to C is reversed, resulting in a cyclic graph. The directions of 
arcs denote that the probability of B is conditioned on A and the probability of C is conditioned 
on both A and B, so that the joint distribution of all the variables is 
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By the defined rules, BNs with arbitrary topologies can be constructed for specific applications. 
In general, given variables X=X1,…,XN, the joint probability function for any BN is the product 
of the probabilities of each variable given its parents’ values (if there is any parent node) 
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In a constructed BN, the probability of each value of a variable can be computed through ex-
act or approximate inference when values of other variables are known based on the Bayes' the-
orem. However in most cases, the probability distributions of variables are unknown prior to in-
ference. To address this issue, learning is introduced to BNs to determine the probability 
distributions (Heckerman 1998). The learning method employed in this paper is presented fol-
lowing the construction of the network topology for CCMS. 

2.2 Bayesian network for CCMS 

BNs are increasingly utilized for system fault diagnosis with the superiority in dealing with un-
certainty problems (Cai et al. 2017). For the catenary system, there are multiple types of param-
eters measured for condition monitoring, while each measurement has its own uncertainty and 
error. These uncertainties and errors are subsequently introduced to the extracted performance 
indicators, which eventually influences the assessment of catenary condition. Inaccurate as-
sessments can be misleading for decision making and thus waste many efforts and budgets. By 
using the BN to combine all the available measurements as inputs, an integrated performance 
indicator can be formed as the output. This output is theoretically more reliable than using any 
measurement solely, because of the inherent joint probability distribution established by arbi-
trary topology. 
 

 
Figure 2. The BN for CCMS with probabilities omitted. 
 

As an attempt to construct a BN for the CCMS, five types of parameter are employed in this 
paper, namely the contact wire stagger, contact wire height, pantograph head (pan-head) dis-
placement, pan-head vertical acceleration and pantograph-catenary contact force. The indicators 
extracted from the parameters are hereafter referred as variable X1 to X5, respectively. According 
to the physical meaning of the parameters and their effects in pantograph-catenary interaction, 
their relationships between each other and the output Y, which is the level of catenary condition 
in this model, are constructed as depicted in the graphical model in Figure 2. The five types of 
parameter, denoting the inputs for catenary condition assessment, are all considered as parent 
nodes for the output Y. Among these parameters, the contact wire stagger is the only one de-
scribing the catenary geometry in the horizontal direction. It is thus regarded only as a parent 
node for the output but independent from the other parameters. In the vertical direction, the 
height, displacement, acceleration and contact force are associated according to their relevancies 
to the most important parameter for catenary condition monitoring, namely the pantograph-
catenary contact force. Concretely, because the contact wire height is the static and initial condi-
tion for the pantograph-catenary contact, it can be regarded as the parent node of the pan-head 
displacement during the sliding contact. This displacement can be regarded the parent node of 
the pan-head acceleration, since it is directly correlated with the pan-head acceleration as a re-
flection of the pan-head vibration. As a main cause for the contact force fluctuation, the pan-
head acceleration contributes directly to the contact force in the form of inertia force. It can thus 



be regarded as a parent node for the contact force. Consequently, a cascaded path that associates 
the parameters in the order of their relevancies with the contact force is constructed. It starts 
with the static height and points to the dynamic displacement, then to the pan-head acceleration, 
and finally to the contact force. This path is acting as a mechanism to enhance the reliability of 
node values, because the node values are conditioned on the corresponding and cascaded parent 
nodes. 

To make the constructed BN inferable, the probabilities of each node should be determined. 
For the five types of parameter, their probability functions are unknown but can be learned from 
the statistics of historical measurement data. The node values are indicators extracted by thresh-
old-based criteria dedicated for different parameters. Table 1 gives an example of threshold-
based criteria that are employed for the measurement data used this paper. The indicator value 
from 1 to 4 describes the severity of parameter deviation comparing with the desired values that 
correspond to the indicator value 1. With the extracted indicators, the BN contains six variables 
among which five are observable from measurement data and the output variable is unobserva-
ble. In such a case with partial observability, the probability distributions of the variables can be 
learned based on the expectation-maximization (EM) algorithm (Lauritzen 1995). Briefly, it 
contains two steps. The first one is the expectation that calls an inference routine to compute the 
expected sufficient statistics. Then, the second step estimates the conditional probability func-
tions similar to the case of full observability as 
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where k and j denote the possible values of Xi and the parents of Xi, respectively. Nevertheless, 
the output variable must have some initial values as its boundaries before estimating the proba-
bility distribution. This can be done by considering two extreme cases in which assign Y=1 
when all its parent nodes are 1 and assign Y=4 when all its parent nodes are 4, representing the 
best and the worst level of catenary condition, respectively.  

 
Table 1. Threshold-based criteria for different parameters. 

Parameter 
Indicator values based on thresholds 

1 2 3 4 

Stagger (mm) [-300,300] [301,310] 
or [-310,-301] 

[311,320]  
or [-320,-311] Other values 

Height (mm) [5800,5900] [5770,5799] 
or [5901,5930] 

[5740,5769]  
or [5931,5960] Other values 

Displacement (mm) [5950,6050] [5925,5949] 
or [6051,6075] 

[5900,5924]  
or [6076,6100] Other values 

Acceleration (g) [-5,5] [5.01,7.5] 
or [-7.5,-5.01] 

[7.51,10]  
or [-10,-7.51] Other values 

Contact force (N) [50, 140] [140.1,160]  
or [30,49.9] 

[10,29.9]  
or [160.1,180] Other values 

3 EXAMPLE OF APPLICATION 

3.1 Input and output 

The employed sample data are measured from a conventional railway line in China. The data 
are preselected to be measured under the approximately constant operation speed 100km/h, be-
cause the thresholds for dynamics parameters are sensitive to the variation of speed, whose in-
fluence is not yet considered in this study. A total number of 7323 continuous samples of the 
five observed variables, with the initial values of output assigned as mentioned above, are input 
into the BN to learn the probability distributions of the six variables based on the EM algorithm. 
Figure 3 depicts a part of the sample measurement data and the corresponding indicators based 
on the threshold-based criteria. 

The constructed BN with probabilities known can be used as an integrated CCMS by input-
ting indicators extracted from new measurements. As a result, the probabilities of the possible 
values of output, namely the level of catenary condition can be given by inference. In this case, 



a new continuous measurement with 1000 samples of the five types of parameter are used as in-
put to obtain the probabilities of the output, which can be used as an integrated indicator for ca-
tenary condition assessment. 
 

 
Figure 3. Partial sample data (left) and the corresponding indicators (right) used for BN learning. 

3.2 Result discussion  

The computation is carried out in MATLAB based on the BN toolbox developed by Murphy 
(Murphy 2001). The probabilities distributions of the BN are obtained based on the sample data. 
The distributions are the probabilities of the each value of the six variables when one or more 
values of the variables are known. In this study, the output is considered unobservable while the 
other five variables are observed as inputs. So for example, when X1= X2= X3= X4=1 and X5=4, 
the probabilities of that Y equals to 1, 2, 3 or 4 is estimated to be 0.0069, 0.3064, 0.3382 and 
0.3543 respectively. It can be seen that with only the force indicator reflects a bad condition of 
catenary while other indicators show the opposite, the probability of Y=4 is largely discredited 
and allocated that of Y equals to 2 or 3. The probabilities in other cases are available but not 
shown due to the limitation of paper length. 

 

 
Figure 4. Indicators of new measurements (X1, X2, X3, X4 and X5) and the corresponding output values 
with the highest probability. 

The indicators of new measurements depicted in Figure 4 are input into the BN. The estimat-
ed values of output Y with the highest probabilities among the four possible values are depicted 
at the bottom of Figure 4. From the values of output, it can be seen that there are four regions 
with high values indicate a bad condition of catenary. All of them are supported by at least two 



input variables with high values, except for the one located between 700 and 800, which is only 
supported by the indicator value of stagger. This is because that the stagger is in the horizontal 
direction and not associated with other inputs. Thus, when the stagger is abnormal, the likeli-
hood of bad catenary condition is high, which matches experiences in practice. Meanwhile, due 
to the lack of support from other inputs, the abnormal values circled by the dashed lines are ig-
nored with the output still being 1. It can be seen that the BN in a way integrates the five types 
of indicator while considers the significance and relevancy of them. 

4 CONCLUSION AND OUTLOOK 

This study proposes a Bayesian network to build an integrated CCMS using five types of cate-
nary parameter. By associating the parameters based on their physical meanings and relevan-
cies, the topology of the BN is built with an output representing the level of catenary condition. 
The probability distributions of the BN are learned from sample measurement data based on the 
EM algorithm. Preliminary results show that the model can adequately integrate the five types 
of parameter and output the level of catenary condition to facilitate maintenance decision mak-
ing with certain robustness. 

There are several aspects to improve the BN in the future. The accuracy of the BN can be im-
proved by expanding the sample size used for learning. The phase differences of dynamic pa-
rameters may cause time differences in the data series, which can be addressed by using time 
translations. Also, indicators computed from threshold-based criteria can be optimized by con-
sidering the influence of speed variation during measurements. 
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