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Chapter 1
Introduction

Leo Hendrik Baekeland, born in 1863, was always at the head of his class. He grad-
uated at sixteen and received his doctor’s degree maxima cum laude when he was
still only twenty-one. By 1891, he had opened an office in the US as an independent
consultant and invented a type of photographic paper that could be developed under
artificial light. In 1899, Leo Baekeland was still struggling with his Velox photosen-
sitive manufacturing business. One day he received an invitation letter from George
Eastman-Kodak, who had established the Eastman Kodak Company in Rochester,
New York. George suggested that if Baekeland was willing to sell his Velox manu-
facturing company, he was welcome to visit him for a talk. During the long carriage
ride up to Rochester, Baekeland planned to ask for $50,000, but kept wondering if he
would be able to get even $25,000 for his manufacturing process. George Eastman
invited Leo Baekeland into his office, and fortunately for Baekeland, Eastman spoke
first and right away offered him one million dollars. Baekeland immediately took the
offer. He could now afford to do his research in a well-equipped laboratory and went
on to invent the first plastic, Bakelite.

1.1 Negotiation

Negotiation is a core activity in human society to form alliances, to reach trade agree-
ments, and to resolve conflicts. One cannot overstate the importance of negotiation
and the centrality it has taken in our everyday lives. People negotiate everywhere, in
business as well as their personal lives [1], mostly without realizing they do so [2].
Negotiation not only occurs in obvious instances, such as job negotiation, politics,
acquiring a house, or haggling at the marketplace. We also use it in various every-
day situations, such as setting a calendar date with a friend, asking for a refund, or
agreeing on a deadline.

The field of negotiation is an important topic of research in economics [3, 4],
artificial intelligence [5–10], game theory [3, 5, 6, 9, 11–13], and social psychol-
ogy [14]. The last two decades have seen a growing interest in the automation of
negotiation and e-negotiation systems [6, 8, 15–17], for example in the setting of
e-commerce [18–21]. This interest is fueled by the promise of automated agents
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2 1 Introduction

being able to negotiate on behalf of human negotiators, and to find better outcomes
than human negotiators [18, 21–25].

Negotiation agents can alleviate some of the efforts required of people during
negotiations and make negotiation problems more manageable and comprehensible
for negotiators [26]. The potential benefits of automation include the reduced time
and negotiation costs resulting from automation [21, 27–29], the potential increase
in negotiation usage since the user can avoid social confrontation [21, 30], the ability
to improve the negotiation skills of the user [24, 31, 32], and the possibility of finding
more interesting deals by exploration of the outcome space [21, 31]. There are also
many unexpected uses of automated negotiation; for example controlling the load in
an electrical grid [33], locating available parking spaces [34], playing Civilization
IV [35], routing telephone calls [2], or Mars rovers coordinating autonomously who
is better equipped for a given task [36]. Thus, success in developing an automated
agent with negotiation capabilities has great advantages and implications.

1.2 An Automated Negotiator

Automated negotiation research deals with two main topics [6, 37], which both have
received their fair share of attention in the field.

From a system design or mechanism design point of view, devising an effective
negotiation protocol is the most important concern (e.g. [2, 38–40]). Negotiation
protocols are the set of rules that govern the way the negotiation takes place. This
covers the number of participants and the valid actions of the participants in every
particular negotiation state (e.g., which messages can be sent by whom, to whom,
and at what stage). It also specifies the structure of the possible agreements, and what
operations are allowed to change the contents of proposed offers.

In other cases, such as in this thesis, the agent’s decision making model is the
dominant concern (e.g. [8, 41, 42]). The main focus here is on the reasoning modules
and strategies that the negotiating agents employ to make their decision in order to
achieve their objectives. When the protocol is such that it leaves room for strategic
reasoning, the success of a self-interested agent is determined by the effectiveness
of its decision making model.

In order to be successful, a negotiating agent needs to be able to perform a vari-
ety of tasks. First of all, the agent needs to be able to interact with the others in
a given negotiation setting that defines the different parameters of the negotiation
(see Fig. 1.1). During negotiation, the agent exchanges proposals with the other par-
ticipants in order to reach an acceptable agreement, which is a contract that all
negotiating parties agree upon. The range of contracts being negotiated over (i.e., the
set of all possible negotiation outcomes) is called the negotiation domain. Of course,
the proposals must be submitted according to certain rules and be valid according
to constraints set by the negotiation protocol. Every agent has preferences over the
negotiation domain, which define the particular negotiation scenario.
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Negotiation Setting
e.g., protocol, domain, preferences, time.

Negotiating Agent Opponent(s)

send and 
receive actions

Fig. 1.1 The setting for an automated negotiator

The agent designer can select a number of performance measures to assess the
success of a negotiating agent. The most popular way is to assign a certain utility to
the outcomes that are reached by the agent. Other measures that the agent designer
might choose are the duration of the negotiation (i.e., how fast the agent is able to
reach agreements), or fairness of the outcome (i.e., whether the agreement satisfies
all negotiation parties).

1.2.1 Generic Negotiation Strategies

With the constant introduction of new negotiation domains, negotiating agents may
encounter different types of opponents with different characteristics. Therefore, an
important research topic in automated negotiation is the design of agents that can
perform well in a variety of circumstances. Such generic automated negotiation
agents should be capable of negotiating proficiently within arbitrary negotiation
scenarios, with opponents that are diverse in their behavior.

A number of automated negotiation strategies have been proposed that are
designed to operate in specific and relatively simple scenarios and are often based
on simplifying assumptions (e.g., [32, 39, 43–46]). A typical example of such an
assumption is that the opponent strategies and preferences are known or partially
known. This is generally unrealistic, as negotiators tend to avoid revealing their pri-
vate information [47], because the shared information may be used to the revealer’s
disadvantage [48].

Examples of more general agent negotiators are increasingly available in the lit-
erature. Every year, automated negotiation agents are improving in various ways and
have proven to be successful in many regards (for an exposition, see Chap. 2 and
Appendix B). They all have their unique strengths and weaknesses and are based
on a variety of techniques, such as game-trees [49], generic trade-off algorithms
[43, 45], concession curves [50, 51], statistical analysis [52, 53], wavelet decompo-
sition [54–56], and Gaussian process regression [57–59].

Each technique is used for various aspects of the negotiation process, such as
preference learning, strategy prediction, making concessions, or choosing when to

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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accept. However, when testing the performance of the resulting agents, varying per-
formance measures for the negotiation outcome are used, but their inner components
are not inspected. This makes it very difficult to meaningfully compare the agents,
let alone their underlying techniques. As a result, we lack a reliable way to pin-
point the most effective constituents of a negotiating agent. This makes it virtually
impossible to determine the reasons for an agent’s success or to provide incremental
improvement over existing agent designs.
To put it succinctly:

Problem We lack a fundamental approach to build comparably effective, gen-
eral automated negotiators in an incremental fashion that enables us to under-
stand how their underlying techniques influence their performance.

1.3 Bidding, Learning, and Accepting

There is a wide variety of currently existing sophisticated agent strategies and archi-
tectures, but we show in this thesis that there is some common structure to their
overall design. For example, every agent decides whether the opponent’s offer is
acceptable, and if not, what offer should be proposed instead. In addition, when the
agent decides on the counter-offer, it considers its own utility, but it usually also takes
the opponent’s utility into account. We elaborate on this topic in Chap. 3, but for now
it suffices to say that we distinguish three distinct components of a negotiating agent
strategy, each of which we analyze separately in this thesis:

• Bidding strategy. Given the current negotiation state, what are the appropriate
bids to be made?

• Opponent model. How can we learn what the opponent wants, and how do we
take this into account?

• Acceptance strategy. Should we accept the opponent’s bid, reject it, or walk away
from the negotiation altogether?

There are two major advantages of distinguishing between the different compo-
nents of a negotiating agent’s strategy: first, given performance measures for the
individual components, it allows the study of the behavior and performance of the
components in isolation. For example, it becomes possible to compare the accu-
racy of the opponent modeling components of a set of agents, and to pinpoint the
best opponent model among them. Second, we can assemble, from already existing
components, new negotiating agents in a plug and play fashion (see Fig. 1.2), e.g.:
replacing the opponent model of an agent and then examining whether this makes
a difference in performance. Such a procedure enables us to combine the individual
components to systematically explore the space of possible negotiation strategies.
Finding a good negotiating strategy then boils down to deciding what to bid, how to
learn, and when to accept.

http://dx.doi.org/10.1007/978-3-319-28243-5_3
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Components of a Negotiating Agent

Negotiation Strategy Space

B idding 
Strategies

What concessions to 
make?

Opponent Modeling 
Techniques

What does the opponent 
want?

Acceptance 
Strategies

Should we accept or 
reject?

b1
b2

o1

o2

o3 a1
a2

a3

s1

s2 s3 s4 s5

s6

Fig. 1.2 The strategy space of automated negotiators can be explored by combining a bidding
strategy with an opponent model and an acceptance strategy

Due to possible dependencies between the components, the agent should be able
to combine them in a meaningful way; e.g., purposely selecting ‘exploratory offers’
to learn more about the opponent’s preferences, or considering the opponent’s future
behavior when deciding whether to accept the opponent’s bid. This means that in
order to be successful, a negotiating agent should not only have the three compo-
nents work effectively in an individual manner, but the agent also needs a powerful
architecture with which to assemble the components into a negotiation strategy.

1.4 Research Questions

The advantages of a component-based approach for an automated negotiator as out-
lined above have motivated our concrete research aim as follows:

Thesis Aim
The central aim of this thesis is to research effective ways for a general auto-
mated negotiating strategy to learn, to bid, and to accept and to develop a
compositional approach for evaluating and combining these components.
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Note that our thesis aim consists of two separate aspects: creating a component-
based approach, and using it to analyze and devise the components. That is, our
aim involves both a design and an analysis point of view that together contribute to
a more methodological approach for automated negotiation research. We will treat
both aspects separately and formulate a set of research questions for each of them.

1.4.1 Designing a Component-Based Automated Negotiation
Framework

To develop a compositional approach to evaluate and combine the components, we
need to design a negotiation environment that supports negotiation analysis and
that implements benchmarks for general automated negotiating strategies and their
components. In particular, we need to establish an agent decision making architecture
capable component-based negotiation behavior. For this, we need to understand how
the bidding, learning and accepting components of a negotiating agent relate to each
other and how to combine them in an effective way. Also, given the availability of
state of the art negotiation strategies, an important consideration is that existing agent
designs can be incorporated into our approach.

Thus, in order to achieve the design aspect of our aim, we address the following
questions:

Research Questions I
Designing a component-based automated negotiation framework.

How do we create a negotiation framework that:

1. supports new agent designs and provides insight into the effectiveness of
negotiation strategies;

2. facilitates evaluating and combining various negotiation strategy
components;

3. enables us to decompose existing, state of the art agent designs into distinct
components.

1.4.2 Analyzing the Negotiating Strategy Components

To analyze the components individually, it is necessary to formulate benchmarks
and predictors for the performance of the individual components. The performance
measures for the bidding strategy, opponent model, and acceptance strategy are likely
to be different for each case. With performance measures for every component, we
can specify solutions separately in a plug and play fashion. We will consider specific
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situations (and specific classes of opponents in particular) for which we can find
effective solutions, and in some cases, even optimal ones.

Of course, after analyzing the components individually, we need to consider
what happens if we assemble them again, and whether combining effective compo-
nents also improves the overall performance. There could be strong interdependency
between the components, and some components can prove to be more important to
consider than others.

We formulate three additional questions regarding the analysis aspect of our
research aim:

Research Questions II
Analyzing the negotiating strategy components: what to bid, how to learn,
and when to accept.

1. What measures can we use to compare and predict the performance of the
individual components?

2. Can we pinpoint classes of opponents against which we can find effec-
tive components? Can we formulate optimal solutions for any of the
components?

3. How does the performance of the components influence the negotiator’s
performance as a whole, and which components are most important?

1.5 Thesis Scope

Before we describe our research method to answer our research questions, we briefly
frame the scope of our work. We will elaborate extensively on our model of negoti-
ation (and on related possibilities) in Chap. 2.

This thesis focuses on bilateral negotiations (i.e., negotiations between two
agents), in which the agents exchange offers in turns. While the negotiation domain
is known by both agents, the preferences of each player is private information. The
agents seek to reach an agreement while aiming to satisfy their own preferences.

The heart of this thesis consists of the analysis of decision making procedures for a
negotiating agent in such a setting. More specifically, if we adhere to the classification
used by Lomuscio et al. [21], the focus of this thesis is as follows:

Thesis Scope
This thesis focuses on one-to-one negotiations with alternating offers on
multiple-issue domains, using self-interested agents with bounded rationality
and incomplete information.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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1.6 Dissertation Outline

We give a detailed overview of this thesis in the paragraphs below (see also Fig. 1.3).
A summary is available at the end of this section.

Quick Read Guide
For the reader in a hurry, we suggest the following quick read guide for this
thesis:

1. Skip the Background chapter entirely, but read the summaries of Appendix
A about Genius (p. 215) and Appendix B about ANAC (p. 223).

2. Read the full chapter about the BOA framework (Chap. 3, p. 53).
3. Choose one chapter for each component of the BOA framework. We rec-

ommend Chap. 5 on optimal acceptance policies (p. 91), Chap. 7 on per-
formance and accuracy of learning methods (p. 129), and Chap. 8 on the
classification of bidding strategies (p. 147).

4. Read Sect. 10.4 (p. 186) on how the BOA components fit together.
5. End with our concluding chapter (p. 195).

Putting the Pieces Together

Validation

BOA framework 3

AOB

Genius

ANAC

A

B

8, 9

10

6, 7 4, 5

11

Fig. 1.3 A graphical representation of the outline of this thesis. Genius (Appendix A) lays the
groundwork for ANAC (Appendix B), and the BOA framework (Chap. 3) builds on top of both
of them. In turn, all three support the pillars to component analysis of Bidding (Chaps. 8 and 9),
Opponent modeling (Chaps. 6 and 7), and Accepting (Chaps. 4 and 5). We put the pieces together
in Chap. 10, culminating in the validation of the BOA framework (Chap. 11)
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1.6.1 The Fundamentals

We start Chap. 2 by briefly discussing the background and related work in automated
negotiation. We give definitions of the basic terminology used in negotiation literature
and we discuss prime examples of existing automated negotiation architectures and
strategies. We focus specifically on existing bidding strategies, opponent models
and acceptance strategies, and on combining a set of components to explore the
negotiation strategy space.

We conclude the background chapter by describing several methodologies for
evaluating and comparing negotiation strategies and components. Among our dis-
cussed evaluation methods are performance and accuracy measures, agent competi-
tions, and analytical software to assess the outcome of the negotiation. We conclude
with a discussion of several evaluation methodologies of negotiation strategies, with
an emphasis on performance and accuracy measures.

1.6.2 The BOA Architecture

Chapter 3 describes the BOA architecture, in which we can develop and integrate
the different components of a negotiating agent into one negotiating strategy. We
use the BOA architecture to explore the space of possible strategies by studying and
recombining different state of the art strategy components.

The BOA architecture is integrated seamlessly into a generic negotiation envi-
ronment called Genius (Appendix A), which is a flexible software environment that
facilitates the design, evaluation and analysis of negotiation strategies. Genius pro-
vides full support for a diversity of different negotiation protocols, scenarios, and
agents, which we amend with analytical tools and various existing agents, negotiation
scenarios, and protocols from literature. The implementation of the BOA architec-
ture offers the user the ability to create and combine newly developed components
using a graphical user interface.

To explore the negotiation strategy space of the negotiation research community,
we require a variety of different state of the art negotiating agents, and we need to for-
mulate objective evaluation criteria for them. Appendix B describes the organization
and insights gained from four instances of a yearly international negotiation com-
petition (ANAC) held between 2010 and 2013 in conjunction with the International
Conference on Autonomous Agents and Multiagent Systems (AAMAS). ANAC acts
as an evaluation tool for negotiation strategies, and encourages the design of nego-
tiation strategies and scenarios. Moreover, through ANAC we learn new, improved
approaches to effective agent designs, which are accessible as benchmarks for the
negotiation research community. We organize the competition, but we also partici-
pate in it, through which we foster our ties with the automated negotiation community.
The agents, domains, and scores of ANAC are used in most chapters of this thesis
and are discussed in detail in Appendix C–F.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_3
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With Genius, ANAC and the BOA architecture in place, we embark on the task to
re-implement more than 20 agents from literature and ANAC and to decouple them
to fit into the BOA architecture without introducing any changes in their behavior.
This enables us to do two things: first of all, it allows us to independently analyze
the components of every decoupled negotiation strategy; second, we can proceed to
mix and match different BOA components to create new negotiation strategies. Such
a procedure makes it possible to systematically search for an effective automated
negotiator.

1.6.3 Analyzing the Components of an Automated Negotiator

In Chaps. 4–9, we focus on the first benefit of the BOA architecture: seeking out the
best of each BOA component. For each of the three components, we find and analyze
the best ones for specific cases, and in the case of bidding and acceptance strategies,
we devise optimal ways of doing so.

In Chap. 4, we study and classify all current approaches regarding acceptance
strategies, and we pinpoint the ones that perform best, together with reasons why
they work well. In Chap. 5, we adopt a more principled approach by applying optimal
stopping theory to calculate the optimal decision on the acceptance of an offer.

We study the performance of a variety of different opponent models in Chap. 6,
identifying the best preference learning techniques. We consider opponent models
from both a performance and an accuracy perspective in Chap. 7, and we pinpoint
the accuracy measures that are the best predictors for good performance of opponent
modeling techniques.

Finally, we take two different approaches to gain more insight into effective bid-
ding strategies. In Chap. 8, we present a new classification method for negotiation
strategies, based on their pattern of concession making, and we formulate guidelines
on how agents should bid in order to be successful. We focus on optimal bidding
strategies in Chap. 9. We apply optimal stopping theory again, this time to find conces-
sion sequences that maximize the utility for the bidder against particular opponents.
We show there is an interesting connection between optimal bidding and optimal
acceptance strategies, in the sense that they are mirrored versions of each other.

1.6.4 Putting the Pieces Together

Lastly, after analyzing all components separately, we put the pieces back together
again in Chap. 10, showing that the BOA framework leads to significant improve-
ments in agent design. We win ANAC 2013, which had 19 participating teams from
8 international institutions, with an agent that is designed using the BOA framework
and is informed by our analysis of the different components. We take all BOA com-
ponents accumulated so far, including the best ones, and combine them all together
to explore the space of negotiation strategies. We test the performance of every

http://dx.doi.org/10.1007/978-3-319-28243-5_4
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http://dx.doi.org/10.1007/978-3-319-28243-5_10
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component and perform statistical analysis to see whether the best components
together lead to the best agent, and which components contribute most significantly
to the end result.

Dissertation outline summary

1. Design a component-based negotiation architecture (BOA);
2. Establish a negotiation environment (Genius) and integrate the BOA archi-

tecture in it;
3. Organize a negotiation competition (ANAC);
4. Fit existing, state of the art negotiating agents (including ANAC agents)

into the BOA framework;
5. Analyze and optimize all BOA components independently;
6. Recombine the BOA components, evaluate the component contributions,

and benchmark the resulting agents.
7. Validate the BOA framework and demonstrate its value by winning ANAC

2013 with a BOA agent.

1.7 Contributions

The most important contributions of this thesis are listed below. We elaborate on
each contribution in our conclusions in Chap. 11.

Contributions

1. Introducing a component-based negotiation architecture to systematically
explore the space of automated negotiation strategies (Chap. 3).

2. Developing design, evaluation and benchmarking methods for negotiation
agents (Appendix A and B).

3. Classifying and comparing acceptance strategies and formulating optimal
acceptance strategies (Chaps. 4 and 5).

4. Identifying the most effective and accurate learning methods, and deter-
mining the best methods to predict their performance (Chaps. 6 and 7).

5. Formulating optimal bidding strategies and categorizing concession
behavior (Chaps. 8 and 9).

6. Quantifying the importance and interactions of the components of a nego-
tiating agent (Chap. 10).

7. Validating the BOA architecture and demonstrating its success in exploring
the negotiation space (Chaps. 10 and 11).
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Chapter 2
Background

Abstract In this chapter, we discuss briefly the background and related work in
automated negotiation. We begin with definitions of the key aspects of automated
negotiation, such as the negotiation domain, the protocol, and the preferences. We
discuss what it means for a negotiating agent to employ a negotiation strategy and we
highlight several prime examples of existing negotiation strategies. We also discuss
a number of high-level negotiation architectures and how they can assist in explor-
ing the negotiation strategy space. We focus specifically on the three components
we distinguish in the Chap. 1, namely the various ways in which current negotiation
strategies bid, learn, and accept. We conclude the background chapter by describing
several methodologies for evaluating and comparing negotiation strategies and com-
ponents. Among our discussed evaluation methods are performance and accuracy
measures, agent competitions, and analytical software to assess the outcome of the
negotiation.

2.1 Introduction

Negotiation is a common and important process for making decisions and resolving
conflicts. People encounter negotiation situations everywhere, from specific situ-
ations such as job negotiations and hostage crises situations [1] to more general
situations such as resource and task allocation mechanisms [2–4], conflict resolution
mechanisms [5, 6], and decentralized information services [7, 8].

In recent years, the fact that negotiation covers many aspects of our lives has
led to an increasing focus on the design of automated negotiators; i.e., autonomous
agents capable of negotiating with other agents in a specific environment [7, 9]. This
interest has been growing since the beginning of the 1980 s with the work of early
adopters such as Smith’s Contract Net Protocol [4], Sycara’s persuader [10, 11],
Robinson’s oz [12], and the work by Rosenschein [13] and Klein [14].

In this chapter, we discuss briefly the background and related work in automated
negotiation. We will begin with definitions of the basic terminology used in this
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field in Sect. 2.2. In the subsequent Sect. 2.3, we discuss several prime examples of
existing negotiation strategies and their architecture. In Sect. 2.4 we discuss several
ways of evaluating negotiation strategies.

2.2 Terminology

The defining elements of a bilateral negotiation are depicted in Fig. 2.1. A bilateral
automated negotiation concerns a negotiation between two agents, usually called A
and B. The party that is negotiated with is also called the partner or opponent.

The negotiation setting consists of the negotiation protocol—the rules of
encounter—, the negotiating agents, and the negotiation scenario. The negotia-
tion takes place in a negotiation domain, which specifies all possible outcomes (the
so-called outcome space). Furthermore, every agent in the scenario has a preference
profile, which expresses the preference relations between the possible outcomes.
Together, this defines the negotiation scenario that takes place between the agents.
The negotiation scenario and protocol specify the possible actions an agent can
perform in a given negotiation state.

2.2.1 Negotiation Domain

The negotiation domain—or outcome space—is denoted by � and defines the set
of possible negotiation outcomes. The domain size is the number of possible out-
comes |�|. A negotiation domain consists of one or more issues, which are the main
resources or considerations that need to be resolved through negotiation; for exam-
ple, the price or the color of a car that is for sale. Issues are also sometimes referred

Fig. 2.1 Overview of the defining elements of an automated bilateral negotiation
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to as attributes, but we reserve the latter term for opponent attributes, which are
properties that may be useful to model to gain an advantage in a negotiation.

To reach an agreement, the agents must settle on a specific alternative or value for
each negotiated issue. That is, an agreement on n issues is an outcome that is accepted
by both parties of the form ω = 〈ω1, . . . , ωn〉, where ωi denotes a value associated
with the i th issue. We will focus mainly on settings with a finite set of discrete values
per issue. A partial agreement is an agreement on a subset of the issues. We say
that an outcome space defined by a single issue is a single-issue negotiation, and a
multi-issue negotiation otherwise.

2.2.2 Negotiation Protocol

A negotiation protocol fixes the rules of encounter [15], specifying which actions each
agent can perform at any given moment. Put another way, it specifies the admissible
negotiation moves. There are a number of bilateral negotiation protocols. We do not
aim to provide a complete overview of all protocols, instead we refer to Lomuscio et
al. [16] for an overview of high-level parameters used to classify them, and to Marsa-
Maestre et al. [17] for guidelines on how to choose the most appropriate protocol to
a particular negotiation problem.

An often used negotiation protocol in bilateral automated negotiation is the alter-
nating offers protocol [18, 19]. This protocol dictates that the two negotiating agents
propose outcomes, also called bids or offers, in turns. That is, the agents create a
bidding history: one agent proposes an offer, after which the other agent proposes
a counter-offer, and this process is repeated until the negotiation is finished, for
example by time running out, or by one of the parties accepting.

We use the alternating offers protocol throughout this thesis because of its simplic-
ity, and moreover, it is a protocol which is widely studied and used in the literature,
both in game-theoretic and heuristic settings (a non-exhaustive list includes [7, 18,
20–22]).

An important feature that differentiates protocols is their usage and definition
of the deadline of a negotiation. The deadline of a negotiation refers to the time
before which an agreement must be reached to achieve an outcome better than the
best alternative to a negotiated agreement [23]. Each agent can have its own private
deadline, or the deadline can be shared among the agents. The deadline may be
specified as a maximum number of rounds [24], or alternatively as a real-time target.
Note that when the negotiation happens in real time, the time required to reach
an agreement depends on the deliberation time of the agents (i.e., the amount of
computation required to evaluate an offer and produce a counter offer).

As in [25, 26], we supplement the alternating-offers protocol with a common
global real time line, represented here by T = [0, D]. We stipulate that the deadline
has been reached when t = D, at which moment both agents receive utility 0.

We represent by xt
A→B the negotiation outcome proposed by agent A to agent B

at time t . A negotiation thread or negotiation trace (cf. [26, 27]) between two agents
A and B at time t ∈ T is defined as a finite sequence
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H t
A↔B := (

xt1
p1→p2

, xt2
p2→p3

, xt3
p3→p4

, . . . , xtn
pn→pn+1

)
,

where

1. The offers are ordered over time T : tk ≤ tl for k ≤ l.
2. The offers are alternating between the agents: pk = pk+2 ∈ {A, B} for all k.
3. All ti represent instances of time T , with tn ≤ t ,
4. The agents exchange complete offers: xtk

pk →pk+1
∈ � for k ∈ {1, . . . , n}.

Additionally, the last element of H t
A↔B may be equal to one of the particles

{Accept, End}. We will say a negotiation thread is active if this is not the case.
When agent A receives an offer xt

B→A from agent B sent at time t , it has to decide
at a later time t ′ > t whether to accept the offer, or to send a counter-offer xt ′

A→B .
Given a negotiation thread H t

A↔B between agents A and B, we can express the action
performed by A with a decision function [25, 26]. The resulting action is used to
extend the current negotiation thread between the two agents. If the agent does not
accept the current offer, and the deadline has not been reached, it will prepare a
counter-offer by using a negotiation strategy or tactic to generate new values for the
negotiable issues (see Sect. 2.3).

Various alternative versions of the alternating offers protocol have been used
in automated negotiation, extending the default protocol, and imposing additional
constraints; for example, in a variant called the monotonic concession protocol [15,
28], agents are required to initially disclose information about their preference order
associated with each issue and the offers proposed by each agent must be a sequence
of concessions, i.e.: each consecutive offer has less utility for the agent than the
previous one. Other examples are the three protocols discussed by Fatima et al.
[29] that differ in the way the issues are negotiated: simultaneously in bundles, in
parallel but independently, and sequentially. The first alternative is shown to lead to
the highest quality outcomes. A final example is relevant for our work in Chap. 9 on
optimal concession curves, namely a protocol in which only one offer can be made.
In such a situation, the negotiation can be seen as an instance of the ultimatum game,
in which a player proposes a deal that the other player may only accept or refuse
[30]. In [31], a similar bargaining model is explored as well; that is, models with
one-sided incomplete information and one sided offers. It investigates the role of
confrontation in negotiations and uses optimal stopping is to decide whether or not
to invoke conflict. The setting of Chap. 9 can also be found in [32], which presents
an alternating offer protocol for bilateral bargaining with imperfect information and
deadline constraints.

2.2.3 Preference Profiles

Negotiating agents are assumed to have a preference profile, which is a preference
order ≥ that ranks the outcomes in the outcome space. Preferences are said to be
ordinal when they are fully specified by a preference order. Together with the domain
they make up the negotiation scenario.

http://dx.doi.org/10.1007/978-3-319-28243-5_9
http://dx.doi.org/10.1007/978-3-319-28243-5_9
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An outcome ω′ is said to be weakly preferred over an outcome ω if ω′ ≥ ω.
If in addition ω � ω′, then ω′ is strictly preferred over ω, denoted ω′ > ω. An
agent is said to be indifferent between two outcomes if ω′ ≥ ω and ω ≥ ω′. In that
case, we also say that these outcomes are equally valued and we write ω′ ∼ ω. An
indifference curve or iso-curve is a set of outcomes that are equally valued by an
agent. In a total preference order, one outcome is always (weakly) preferred over the
other outcome for any outcome pair, which means there are no undefined preference
relations. Finally, an outcome ω is Pareto optimal if there exists no outcome ω′ that is
preferred by an agent without making another agent worse off [23]. For two players
A and B with respective preference orders ≥A and ≥B , this means that there is no
outcome ω′ such that:

(
ω′ >A ω ∧ ω′ ≥B ω

) ∨ (
ω′ >B ω ∧ ω′ ≥A ω

)
.

An outcome that is Pareto optimal is also said to be Pareto efficient. When an outcome
is not Pareto efficient, there is potential, through re-negotiation, to reach a more
preferred outcome for at least one of the agents without reducing the value for the
other.

The outcome space can become quite large, which means it is usually not viable
to explicitly state an agent’s preference for every alternative. For this reason, there
are more succinct preference representations for preferences [33, 34].

A well-known and compact way to represent preference orders is the formalism of
conditional preference networks (CP-nets) [35–37]. CP-nets are graphical models, in
which each node represents an negotiation issue and each edge denotes preferential
dependency between issues. If there is an edge from issue i to issue j , the preferences
for j depend on the specific value for issue i . To express conditional preferences,
each issue is associated with a conditional preference table, which represents a total
order of possible values for that issue, given its parents’ values.

A preference profile may be specified as a list of ordering relations, but it is more
common in the literature to express the agent’s preferences by a utility function. A
utility function assigns a utility value to every possible outcome, yielding a cardinal
preference structure.

Cardinal preferences are ‘richer’ than ordinal preferences in the sense that ordinal
preferences can only compare between different alternatives, while cardinal pref-
erences allow for expressing the intensity of every preference [33]. Any cardinal
preference induces an ordinal preference, as every utility function u defines an order
ω′ ≥ ω if and only if u(ω′) ≥ u(ω).

Some learning techniques make additional assumptions about the structure of
the utility function [38], the most common in negotiation being that the utility of a
multi-issue outcome is calculated by means of a linear additive function that evaluates
each issue separately [23, 38, 39]. Hence, the contribution of every issue to the utility
is linear and does not depend on the values of other issues. The utility u(ω) of an
outcome ω = 〈ω1, . . . , ωn〉 ∈ � can be computed as a weighted sum from evaluation
functions ei (ωi ) as follows:



20 2 Background

u(ω) =
n∑

i=1

wi · ei (ωi ), (2.1)

where the wi are normalized weights (i.e.
∑

wi = 1). Linear additive utility functions
make explicit that different issues can be of different importance to a negotiating agent
and can be used to efficiently calculate the utility of a bid at the cost of expressive
power, as they cannot represent interaction effects (or dependencies) between issues
[36].

A common alternative is to make use of non-linear utility functions to capture
more complex relations between offers at the cost of additional computational com-
plexity. Non-linear negotiation is an emerging area within automated negotiation
that considers multiple inter-dependent issues [40, 41]. Typically this leads to larger,
richer outcome spaces in comparison to linear additive utility functions. A key fac-
tor in non-linear spaces is the ability of a negotiator to make a proper evaluation
of a proposal, as the utility calculation of an offer might even prove NP-hard [42].
Examples of this type of work can be found in [43–46].

For non-linear utility functions in particular, a number of preference representa-
tions have been formulated to avoid listing the exponentially many alternatives with
their utility assessment [33]. The utility of a deal can be expressed as the sum of
the utility values of all the constraints (i.e., regions in the outcome space) that are
satisfied [43, 47]. These constraints may in turn exhibit additional structure, such as
being represented by hyper-graphs [48]. One can also decompose the utility function
into subclusters of individual issues, such that the utility of an agreement is equal
to the sum of the sub-utilities of different clusters [46]. This is a special case of a
utility structure called k-additivity, in which the utility assigned to a deal can be
represented as the sum of basic utilities of subsets with cardinality ≤ k [49]. For
example, for k = 2, the utility u(ω1, ω2, ω3) might be expressed as the utility value
of the individual issues u1(ω1) + u2(ω2) + u3(ω3) (as in the linear additive case),
plus their 2-way interaction effects u4(ω1, ω2) + u5(ω1, ω3) + u6(ω2, ω3). This is in
turn closely related to the OR and XOR languages for bidding in auctions [50], in
which the utility is specified for a specific set of clusters, together with rules on how
to combine them into utility functions on the whole outcome space.

In our setting, both the domain and preferences stay fixed during a single nego-
tiation encounter, but while the domain is common knowledge to the negotiating
parties, the preferences of each player is private information. This means that the
players do not have access to the utility function of the opponent. In more detail,
even the opponent’s orderings of the issues are unknown, and the agents are not
provided with any prior distribution over the utility functions. However, the players
can attempt to learn during the negotiation encounter.

The preference profile of an agent may also specify a reservation value. The reser-
vation value is the minimal utility that the agent still deems an acceptable outcome.
That is, the reservation value is equal to the utility of the best alternative to no agree-
ment. A bid with a utility lower than the reservation value should not be offered
or accepted by any rational agent. In a single-issue domain, the negotiation is often
about the price P of a good [25, 27, 51, 52]. In that case, agent A and B usually take



2.2 Terminology 21

the roles of buyer B and seller S, and their reservation values are specified by their
reservation prices RPB and RPS . RPB denotes the highest price a buyer is willing to
pay, while R PS is the lowest price at which a seller is willing to sell.

The negotiator’s nearness to a deadline is only one example of time pressure
[53], which is defined as a negotiator’s desire to end the negotiation quickly [54].
Another way to model time pressure is to supplement the negotiation scenario with a
discount factor. Let d in [0, 1] be the discount factor and let t in [0, 1] be the current
normalized time. We compute the discounted utility ud(ω) from the undiscounted
utility u(ω) as follows:

ud(ω) = u(ω) · dt . (2.2)

If d = 1, the utility is not affected by time, and such a scenario is considered to be
undiscounted, while if d is very small, there is high pressure on the agents to reach
an agreement. Note that discount factors are part of the scenario, are known to both
agents and are always symmetric (i.e. d always has the same value for both agents).

The reasons for having deadlines and discount factors are both pragmatic and
to make the negotiation more interesting from a theoretical perspective. Without a
deadline or discount factor, the negotiators have no incentive to accept an offer, and so
the negotiation might go on forever. Also, with unlimited time an agent may simply
try a large number of proposals to learn the opponent’s preferences. In addition, as
opposed to having a fixed number of rounds, both the discount factor and deadline
are measured in real time. This, in turn, introduces another factor of uncertainty since
it is now unclear how many negotiation rounds there will be, and how much time
an opponent requires to compute a counter offer. Also, this computational time will
typically change depending on the size of the outcome space.

2.2.4 Outcome Spaces

A useful way to visualize the preferences of both players simultaneously is by means
of an outcome space plot (Fig. 2.2). The axes of the outcome space plot represent
the utilities of player A and B, and every possible outcome ω ∈ � maps to a point
(u A(ω), uB(ω)). The line that connects all of the Pareto optimal agreements is the
Pareto frontier.

Note that the visualization of the outcome space together with the Pareto frontier
is only possible from an external point of view. In particular, the agents themselves
are not aware of the opponent utility of bids in the outcome space and do not know
the location of the Pareto frontier.

From Fig. 2.2 we can immediately observe certain characteristics of the negoti-
ation scenario. For example, the domain size, whether the bids are spread out over
the domain, and the relative occurrence of Pareto optimal outcomes.

One important measure is the bid distribution, which is defined as the mean
distance to the Pareto frontier. A scenario with a high bid distribution has a high



22 2 Background

Fig. 2.2 A typical example
of an outcome space between
agents A and B

percentage of outcomes far from the Pareto frontier. This is defined formally as:

distribution(�) =
∑

ω∈�

minp∈�P d(ω, p)

|�| , (2.3)

where �P ⊆ � is the set of Pareto efficient possible outcomes.
There are a number of special outcomes in the outcome space. Of course, the best

result would be the outcome ω at which both parties would receive their maximum
utility. This would lead to complete satisfaction of both parties, but unfortunately,
this is usually not a possible outcome.

There are also a number of definitions for what constitutes a fair outcome for
both players [23]. The Nash solution is defined as the outcome that maximizes the
product of the utilities of agents A and B:

ωNash = max
ω∈�

u A(ω) · uB(ω). (2.4)

An alternative is the Kalai-Smorodinsky solution, which is defined as:

ωKalai = min
ω∈�

(
u A(ω)

uB(ω)
− u A(ω)

uB(ω)

)
. (2.5)

The opposition of the negotiation scenario is determined by the minimum distance
from the Kalai-Smorodinsky solution to the point ω.1 Formally:

1There are various ways to define the opposition of a scenario (see [55]), but as in [56], we will
employ a definition based on distance measures throughout the thesis. Another popular definition
is: opposition(�) = minω∈� d(ω, ω).
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opposition(�) = d(ωKalai, ω) (2.6)

where � is the set of all possible outcomes, and d(ω1, ω2) gives the Euclidean
distance between two points ω1, ω2 in the outcome space, as defined in Eq. (2.7).

d(ω1, ω2) =
√

(u A(ω1) − u A(ω2))2 + (uB(ω1) − uB(ω2))2, (2.7)

When a gain for one party can be achieved only at a loss for the other party (i.e., when
the preferences are conflicting), the negotiation scenario is said to be competitive, or
to have strong opposition. Conversely, in a cooperative scenario (or: a scenario with
weak opposition), both parties achieve either losses or gains simultaneously.

2.3 Negotiating Strategies

A negotiating agent employs a negotiation strategy to determine its action in a given
negotiation state. Research on general agent negotiators has given rise to a broad
variety of negotiation strategies that have already been established both in literature
and in implementations, (e.g. [27, 57–61]). The strategies of the agents usually vary
from equilibrium strategies in a game theoretical setting to more heuristic approaches.
Here we focus in particular on self-interested, boundedly rational agents that are
able to conduct bilateral negotiations with incomplete information (following the
classification of [16]).

Examples of such general agent negotiators in the literature include, among others:
Zeng and Sycara [52], who introduce a generic agent called Bazaar; Faratin et al.
[58], who propose an agent that is able to make trade-offs in negotiations and is
motivated by maximizing the joint utility of the outcome (that is, the agents are
utility maximizers that seek Pareto-optimal agreements); Karp et al. [62], who take a
game-theoretic view and propose a negotiation strategy based on game-trees; Jonker
et al. [60], who propose a a concession oriented strategy called ABMP; and Lin et
al. [63], who propose an agent negotiator called QOAgent.

The ANAC competition that we hosted brought forth an additional 60 advanced
negotiation strategies (see Appendix B on ANAC and Appendices C–F for agent
descriptions). Notable ANAC agent strategies include: Agent K [64, 65], which cal-
culates its target utility based on the average and variance of previous bids and
employs a sophisticated acceptance strategy; IAMHaggler [66–68], which uses
Gaussian process regression technique to predict the opponent’s behavior; CUHK
Agent [69, 70], which adaptively adjusts its acceptance threshold based on domain
and opponent analysis; OMAC Agent [71–74], which models the opponent using
wavelet decomposition and cubic smoothing spline; The Fawkes, which combines
the best bidding, learning, and accepting strategy components; and finally, Meta-
Agent [75–77], which, for any given negotiation domain, dynamically selects the
most successful ANAC agent to produce an offer.
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In Chap. 3, we introduce a component-based architecture for negotiating agents,
so we start by describing literature that investigates and evaluates such components.
There are two categories of relevant work we highlight here: literature detailing the
architecture of a negotiating agent’s strategy (Sect. 2.3.1); and work that explores
and combines a set of negotiation strategy components to find better strategies
(Sect. 2.3.2).

Our component-based architecture consists of three basic components: a bidding
strategy, which determines which concession should be made in a negotiation state;
an acceptance strategy, which is used by an agent to determine whether an opponent’s
offer should be accepted; and optionally an opponent model, which can be used
both by the bidding strategy and acceptance strategy to reach a better outcome by
exploiting knowledge about the opponent. We provide some background on each of
the components in Sects. 2.3.3–2.3.5.

2.3.1 Architecture of Negotiation Strategies

To our knowledge, there is little work in literature describing the generic components
of a negotiation strategy architecture, at a similar level of detail as our BOA archi-
tecture, which is outlined in Chap. 3. For example, Bartolini et al. [78] and Dumas
et al. [79] treat the negotiation strategy as a singular component.

Jonker et al. [60] present an agent architecture for multi attribute negotiation,
where each component represents a specific process within the behavior of the agent,
e.g.: attribute evaluation, bid utility determination, utility planning, and attribute
planning. There are some similarities between the two architectures; for example, the
utility planning and attribute planning component correspond to the bidding strategy
component in our architecture. In contrast to our work however, Jonker et al. focus
on tactics for finding a counter offer and do not discuss acceptance strategies. The
fact that our architecture allows this, makes it possible to find better strategies to
accept (see Chaps. 4 and 5).

Ashri et al. [80] introduce a general architecture for negotiation agents, discussing
components that resemble our architecture; components such as a proposal evalua-
tor and response generator resemble an acceptance condition and bidding strategy
respectively. However, the negotiation strategy is described from a BDI-agent per-
spective (in terms of motivation and mental attitudes).

Hindriks et al. [81] introduce an architecture for negotiation agents in combination
with a negotiation system architecture. Parts of the agent architecture correspond to
our architecture, but they treat the acceptance strategy and bidding strategy as a
singular component, and their focus is primarily on how the agent framework can be
integrated into a larger system.

http://dx.doi.org/10.1007/978-3-319-28243-5_3
http://dx.doi.org/10.1007/978-3-319-28243-5_3
http://dx.doi.org/10.1007/978-3-319-28243-5_4
http://dx.doi.org/10.1007/978-3-319-28243-5_5
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2.3.2 Negotiation Strategy Space Exploration

There are various ways to explore the automated negotiation strategy space by com-
bining a set of negotiation strategies.

Faratin et al. [27] analyze the performance of pure negotiation tactics on single
issue domains in a bilateral negotiation setting. The decision function of the pure
tactic is then treated as a component around which the full strategy is built. While
they discuss how tactics can be linearly combined, the performance of the combined
tactics is not analyzed.

Some authors use genetic algorithms to automatically combine certain tactics or
strategies. This approach is different to how we combine components using the BOA
framework, however they do share certain traits, as they view a strategy consisting
of different components and combine them in order to produce a better performing
strategy. For example, Matos et al. [82] employ a set of baseline negotiation strategies
that are time dependent, resource dependent, and behavior dependent [27], all with
varying parameters. The negotiation strategies are encoded as chromosomes and
combined linearly, after which they are used by a genetic algorithm to analyze the
effectiveness of the strategies. The fitness of an agent is its score in a negotiation
competition. This approach analyzes acceptance criteria that only specify a utility
interval of acceptable values, and hence do not take time into account. The agents
also do not employ explicit opponent modeling.

Eymann [83] also uses genetic algorithms with more complex negotiating strate-
gies, evolving six parameters that influence the bidding strategy. The genetic algo-
rithm uses the current negotiation strategy of the agent and the opponent strategy with
the highest average income to create a new strategy, similar to other genetic algorithm
approaches (see Beam and Segev [84] for a discussion of genetic algorithms in auto-
mated negotiation). The genetic algorithm approach mainly treats the negotiation
strategy optimization as a search problem in which the parameters of a small set of
strategies are tuned by a genetic algorithm. In Chap. 3, we analyze a more complex
space of newly developed negotiation strategies, as our pool of surveyed negotiation
strategies consists of strategies introduced in the ANAC competition, as well as the
strategies discussed by Faratin et al. (see Sect. 2.3.3). Furthermore, our work com-
bines different components instead of complete strategies or strategy parameters and
also investigates the importance of particular components (see Chap. 10).

Ros and Sierra obtain promising results in [85] with a negotiation strategy
that combines two components: a concession based strategy (either time-based or
behavior-based [27]) that decreases a utility threshold to achieve an agreement, and
a trade-off strategy [58] that searches for a satisfactory proposal. Our work in this
thesis differs with Sierra et al. as we consider a much wider array of agents of which
we are able to change the opponent model as well.

Finally, Ilany and Gal [75–77] take the approach of selecting the best strategy
from a predefined set of agents, based on the characteristics of a domain. Through
machine learning this agent is optimized to choose the best strategy for that particular
domain. The difference with our work is that they combine whole strategies, whereas

http://dx.doi.org/10.1007/978-3-319-28243-5_3
http://dx.doi.org/10.1007/978-3-319-28243-5_10
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the BOA architecture combines the components of strategies. Our contribution is to
define and implement an architecture that allows to easily vary all main components
of a negotiating agent. Especially in Chap. 10, we study the effects of a much larger
group of state of the art negotiation components than has been done before.

Another way to explore the space of negotiation strategies is to classify them
according to their behavior. We do so in Chap. 8, in which we present a new clas-
sification method for negotiation strategies, based on their pattern of concession
making. This chapter is inspired by ideas presented in [86] (of which parts originally
appeared in unpublished work by Kersten in 2005). In [86], four dual negotiation
orientations are distinguished, depending on the negotiator’s own orientation and that
of the negotiating partner. Both orientations can be either competitive or cooperative,
leading to four different labels: Competitor, Yielder, Exploiter, and Cooperator. In
Chap. 8, we re-use these labels to name the stance of a negotiator against different
kinds of opponents. However in our work, the negotiators are assumed to have dif-
ferent responses to different observed behavior by the other party. Therefore, instead
of the negotiator having one particular stance during the negotiation, the position of
the negotiators can change in response to the competitiveness of the opponent. For
example, a negotiator may be both an Exploiter (against a Cooperator), and a Yielder
(against a Competitor). The negotiator would then be called an Inverter, as he takes
on the reverse role of his opponent.

In [87], a classification scheme is given for electronic commerce negotiation,
including characteristics of the negotiating agents. It is argued that agents can act
in a self-interested way, or altruistically, or strike a balance in between. This choice
is then seen as a component of the bidding strategy of the agent, which ultimately
decides how and when to place offers, or when to withdraw, etc. Although the paper
makes this distinction in bidding characteristics, it does not provide a definition or a
way to quantify them.

Thomas [88] defines five conflict–handling modes that can be applied to negotia-
tion: competing, collaborating, compromising, avoiding, and accommodating. Simi-
lar to our work in Chap. 8, the classification method uses two underlying dimensions.
However, the underlying dimensions are different, namely: assertiveness (attempt-
ing to satisfy one’s own concerns), and cooperativeness (attempting to satisfy other’s
concerns). This classification method is phrased in qualitative, intentional terms of
the conflict-handler. Similarly, Zachariassen [89] distinguishes negotiation strategies
into two strategy types: distributive and integrative. This description also focuses
on the approach used by the negotiators. Our work has a different focus from both
papers, centering around quantitative negotiation characteristics in response to agents
having either high and low concession rates. Furthermore, we do not classify nego-
tiation strategies in a binary way (either cooperative or non-cooperative), but we
employ a continuous spectrum in our approach to classify the full space of negotia-
tion strategies.

http://dx.doi.org/10.1007/978-3-319-28243-5_10
http://dx.doi.org/10.1007/978-3-319-28243-5_8
http://dx.doi.org/10.1007/978-3-319-28243-5_8
http://dx.doi.org/10.1007/978-3-319-28243-5_8
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2.3.3 Bidding Strategies

The bidding strategy, also called negotiation tactic or concession strategy, is usually
a complex strategy component. Two types of negotiation tactics are very common:
time-dependent tactics and behavior-dependent tactics. Each tactic uses a decision
function, which maps the negotiation state to a target utility. Next, the agent can
search for a bid with a utility close to the target utility and offer this bid to the
opponent (Fig. 2.3).

2.3.3.1 Time-Dependent Tactics

Functions which return an offer solely based on time are called time-dependent
tactics. The standard time-dependent strategy calculates a target utility u(t) at every
turn, based on the current time t . Perhaps the most popular time-based decision
function can be found in [20, 27], which, depending on the current normalized time
t ∈ [0, 1], makes a bid with utility closest to

u(t) = Pmin + (Pmax − Pmin) · (1 − F(t)), (2.8)

where
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Fig. 2.3 Target utility through time of time-dependent tactics with concession factor e ∈ {0.2, 0.5,

1, 2, 5}
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F(t) = k + (1 − k) · t1/e.

The constants Pmin, Pmax ∈ [0, 1] control the range of the proposed offers, and
k ∈ [0, 1] determines the value of the first proposal. For 0 < e < 1, the agent
concedes only at the end of the negotiation and is called Boulware. If e ≥ 1, the
function concedes quickly to the reservation value, and the agent is then called a
Conceder.

For k = 0 and e = 1, we obtain a very simple conceding tactic called Conceder
Linear. It reduces Eq. (2.8) to

u(t) = Pmin + (Pmax − Pmin) · (1 − t),

so that the agent linearly reduces its demanded utility from Pmax to Pmin as time
passes.

In many of our experiments in later chapters, we set k = 0, and Pmax, Pmin are
respectively set to the maximum and minimum utility that can be obtained in the
negotiation scenario. The specification of these strategies given in [20, 27] does
not involve any opponent modeling; that is, given the target utility, a random bid is
offered with a utility closest to it. Time-dependent tactics accept if and only if the
opponent’s bid is better than the target utility.

2.3.3.2 Baseline Tactics

The Hardliner strategy (also known as take-it-or-leave-it, sit-and-wait [90] or Hard-
ball [91]) can be viewed as an extreme type of time-dependent tactic. This strategy
simply makes a bid of maximum utility for itself and never concedes, and is therefore
the most competitive strategy that can be implemented.

Random Walker (also known as the Zero Intelligence strategy [92]) generates
random bids and thus provides the extreme case of a maximally unpredictable oppo-
nent. Because of its limited capabilities, it can also serve as a useful baseline strategy
when testing the efficacy of other negotiation strategies.

2.3.3.3 Behavior-Dependent Tactics

Faratin et al. introduce a well-known set of behavior-dependent tactics or imitative
tactics in [27]. The most well-known example of a behavior-dependent tactic is the
Tit for Tat strategy, which tries to reproduce the opponent’s behavior of the previous
negotiation rounds by reciprocating the opponent’s concessions. Thus, Tit for Tat is
a strategy of cooperation based on reciprocity [93].

Tit for Tat has been applied and found successful in many other games, including
the Iterated Prisoner’s Dilemma game [94]. It is considered to be a very robust
strategy, mainly because of the following three features:
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1. It is never the first to defect (i.e., it plays nice as long as the the opponent plays
nice as well);

2. It can be provoked into retaliation by a defection of the opponent;
3. However, it is forgiving after just one act of retaliation.

In total three tactics are defined: Relative Tit for Tat, Random Absolute Tit for Tat,
and Averaged Tit for Tat. The Relative Tit for Tat agent mimics the opponent in a
percentage-wise fashion by proportionally replicating the opponent’s concession that
was performed δ ≥ 1 steps ago. The decision function of Relative Tit for Tat is as
follows:

xtn+1
a→b[ j] = min

(
max

(
xtn−2δ

b→a[ j]
xtn−2δ+2

b→a [ j] xtn−1
a→b[ j], mina

j

)
, maxa

j

)
(2.9)

The formula specifies the value for each issue j for the next bid for the opponent xtn+1
a→b

at time step tn+1, and depends on the previous opponent offers xtn−2δ

b→a[ j] and xtn−2δ+2
b→a [ j]

in proportion to its own previous offer xtn−1
b→a[ j]. The min and max functions are used

to ensure that the value of each issue stays within the acceptable range. The main
weakness of the decision function is that a percentage concession by the opponent
on a specific issue is in general unequal in utility compared to the same concession
by the agent.

The standard Tit for Tat strategies from [27] do not employ any learning methods,
but this work has been subsequently extended by the Nice Tit for Tat agent [95]
and the Nice Mirroring Strategy [96]. These strategies achieve more effective results
by combining a simple Tit for Tat response mechanism with learning techniques to
propose offers closer to the Pareto frontier. These approaches can be viewed as simple
examples of the ideas we explore in Sect. 3, where we study arbitrary combinations
of concession strategies with learning methods.

2.3.4 Acceptance Strategies

All negotiation agent implementations have to deal with the question of when to
accept. In many cases, the agent accepts a proposal when the value of the offered
contract is higher than the offer it is ready to send out at that moment in time. This is
a significant case, in which the bidding strategy effectively dictates the acceptance
strategy. Examples include the time-dependent negotiation strategies defined in [85]
(e.g. the Boulware and Conceder tactics). The same principle is used in the equi-
librium strategies of [20] and for the Trade-off agent [58]. Agent K [64] employs
a more sophisticated method to decide when to accept. Its acceptance strategy (or
acceptance mechanism) is based on the mean and variance of all received offers. It
then tries to determine the best offer it might receive in the future and sets its proposal
target accordingly. We refer to the agent descriptions in C.1 and D.1 in the Appendix
for more descriptions of acceptance strategies.

http://dx.doi.org/10.1007/978-3-319-28243-5_3
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We treat acceptance mechanism design in more detail in Chap. 4, where we present
a model for accepting offers and where we compare state-of-the-art acceptance con-
ditions of a large set of negotiation strategies. Our negotiation model builds upon the
model of [26], where one specific acceptance condition is studied. We take a more
general approach in Chaps. 4 and 5, in which the agent utilizes a generic acceptance
mechanism where the current time and the entire bidding history is considered.

We only consider the alternating offers protocol in this thesis, but there are multi-
ple other accepting strategies available for other methods of reaching an agreement.
In a multi-party setting, the problem of when to accept is more complex, as the
outside options become dynamic; however, the presence of a mediator can reduce
some of the complexity by taking over the role of finding acceptable agreements, for
example through letting the agents vote on whether a proposed contract is accept-
able [44]. It may then be sufficient for an agent to simply accept anything above
its reservation value. In the same way, when richer protocols are employed (e.g.,
when communication is possible, for instance in persuasive, or argumentation-based
negotiation [8, 97]), the acceptance dilemma may be easier to resolve, as agents have
more knowledge about the acceptability of offers. Lastly, in traditional negotiation
protocols such as alternating offers, once a contract is settled upon, it is binding.
However, a more general approach is to allow decommitment, i.e. backing out of the
negotiation after finding a superior option elsewhere, usually at the cost of a penalty
[98]. This requires complex acceptance strategies for committing and decommitting
to agreements in a concurrent way, which has recently opened up new research in
this area [99–101].

2.3.4.1 Optimal Stopping

When we move from real-time negotiation to round-based negotiations, it becomes
possible to adopt optimal acceptance strategies through backward inductive reason-
ing; the most well-known solution being that agreement is reached immediately in
the first round [19]. In a real-time setting, it is generally unknown when the last offer
has been made, and this makes it difficult to find optimal acceptance conditions for
this setting.

In Chap. 5 we explore this idea, and we present the first work that deals with the
optimal decision on the acceptance of an offer in a negotiation setting of incomplete
information. In many settings of complete information ([19] is a typical example)
the deal is usually formed right away and as such, sequential decisions whether to
accept do not come into play. In [52], a sequential decision making framework is
also employed, using similar arguments for using it as we do. Furthermore, they
also choose actions that maximize the expected payoff using a recursive formula;
however, their approach uses Bayesian learning techniques and does not provide
solutions specifically aimed at acceptance strategies. The work by Fatima et al. [25]
also treats optimal strategies in an incomplete information setting, but it primarily
focuses on bidding strategies in the context of unknown deadlines and reservation
values, and does not deal with acceptance strategies. Research that comes closest
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to our work on optimal acceptance strategies is presented in [31], where optimal
stopping is employed to decide when a party should reach an agreement in the context
of conflict resolution. In contrast to our work, the scope of the paper is limited to
simple bargaining games, and deals with one-sided incomplete information only.

We come back to optimal stopping and sequential decision making in Chap. 9
when we formulate optimal concession curves. To the best of our knowledge, that is
the first work that makes usage of the optimal stopping rule to generate offers in an
incomplete information setting and compares it to other concession techniques, where
other previous work makes use of optimal stopping theory to formulate acceptance
strategies in different settings [102–104]; for instance deciding to accept sequential
job offers while trying to maximize the sum of the payments of all accepted jobs
[104]. The major difference with optimal acceptance policies and our work in Chap. 9
is that we use the optimal stopping rule for concessions, instead of focusing on the
optimal time to accept. Our work in Chap. 9 is defined more as the complimentary
version of our approach in Chap. 5, in the sense that our formulation of optimal
bidding rules happen to resemble optimal acceptance rules. Another key point is that
we do not assume that the players’ strategies are fixed, which allows us to formulate
optimal bidding strategies against certain types of accepting strategies.

2.3.5 Opponent Models

An opponent model is an abstracted description of a player (and/or of a player’s
behavior) during the game [105]. There are many different types of opponent models;
for instance, a model can describe the opponent’s preferences, strategy, weaknesses,
knowledge, and so on. We present here a short background on learning techniques and
evaluation techniques in negotiation for our setting; for a more detailed exposition
we refer to our survey on this topic [106].

In negotiation, opponent modeling often revolves around three questions:

• Preference estimation. What does the opponent want?
• Strategy prediction. What will the opponent do, and when?
• Opponent classification. What kind of player is the opponent, and how should

we act accordingly?

The above questions are often highly related. For example, some form of preference
estimation is needed in order to adequately interpret the opponent’s actions. Then,
knowing how the opponent acted according to its own utility, we can deduce its
strategy, which in turn can help predict what the agent will do in the future. We will
mainly focus on preference modeling in this thesis, although our architecture can
accommodate for the other types of opponent models as well (see Chaps. 6 and 7).

Constructing an opponent model may alternatively be viewed as a classification
problem where the type of the opponent needs to be determined from a range of
possibilities [107]; one example being the work by Lin et al. [63]. Here the type of an
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opponent refers to all opponent attributes that may be modeled to gain an advantage
in the game.

Opponent modeling can be performed online or offline, depending on the avail-
ability of historical data. Offline models are created before the negotiation starts,
using previously obtained data from earlier negotiations. Online models are con-
structed from knowledge that is collected during a single negotiation session, which
is the focus of this thesis. A major challenge in online opponent modeling is that the
model needs to be constructed from a limited amount of exchanged bids, and real-
time deadlines may pose the additional challenge of having to construct the model
as fast as possible. Even though there are large differences between the models, a
common set of high level motivations behind their construction can be identified.
There are the following motivations for why opponent models are used in automated
negotiation:

1. Augment behavior-based tactics [95, 96, 108, 109] An opponent model can
assist in improving the performance of behavior-based tactics, as the opponent’s
concessions can then be estimated and reciprocated more accurately. Based on
move classification, behavior-based strategies such as the Tit for Tat strategy
(see Sect. 2.3.3.3) can be applied. In addition, in a negotiation where the oppo-
nent’s preferences are private, an agent’s concession might accidentally result in
a decrease in utility for the opponent as well. Such an offer is called unfortunate
[108], and can be avoided by better estimating the opponent’s preferences.

2. Avoid non-agreement [28, 110–120] In most negotiations, reaching an agree-
ment is preferred over not reaching a deal. The opponent’s previous moves can
be analyzed to estimate the minimal concessions required to ensure acceptance.

3. Find a counter-strategy [68, 69, 72, 73, 110, 111, 121–133] The opponent
can be exploited in multiple ways with the assistance of an opponent model.
One way is to estimate the opponent’s reservation value in an attempt to obtain
the minimal negotiation outcome the opponent will settle for. Alternatively, an
estimate of the opponent’s deadline can be used to elicit concessions from the
opponent by stalling the negotiation, provided of course that the agent has a later
deadline. Theoretical results are available that specify which counter-strategy to
use depending on the information known about the opponent [25, 82, 134].

4. Maximize social welfare [46, 51, 52, 63, 112–115, 118–120, 135–141] In a
cooperative environment, agents aim for a fair result. An agent can use an estimate
of the opponent’s preference profile to maximize the chances of a good outcome
for both.

5. Propose Pareto optimal bids [28, 46, 67, 95, 96, 109, 118, 135, 137, 140, 142–
152] Pareto optimality of an offer ensures the offer cannot be improved for both
players at the same time. When an agent considers multiple similarly preferred
offers to send out to the opponent, offering a Pareto optimal bid can lead to an
earlier and mutually beneficial agreement.

6. Reduce negotiation costs [46, 51, 52, 109, 110, 113, 115, 119, 120, 135–137,
139–141, 148, 153–155] In general it costs time and resources to negotiate, and
using an estimate of the opponent’s preference profile or negotiation strategy
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can aid in reducing these costs. An agent may even decide that the estimated
negotiation costs are too high to warrant a potential agreement, and prematurely
end the negotiation.

We found that existing work on opponent models can fulfill any of the goals above by
learning a combination of six opponent attributes, which we have listed in Table 2.1.
The notion of an opponent model as a component of a negotiation strategy has been
discussed by many of these authors. However, to our knowledge, there is limited
work in which the performance of different types of opponent models is compared
as we do in Chaps. 6 and 7. One example is the work by Papaioannou et al. [116],
who evaluate a set of opponent strategy prediction techniques in terms of resulting
performance gain.

2.4 Evaluation Methodologies

We now introduce the methodologies we use in subsequent chapters to evaluate nego-
tiation strategies. The first evaluation method is analytical software to analyze the
performance and dynamics of agents, and the outcome of the negotiation (Sect. 2.4.1).
The second is a method to benchmark and objectively evaluate negotiation agents in
a competitive setting (Sect. 2.4.2). Together, they provide an environment to apply a
range of performance measures (Sect. 2.4.3) to measure the performance of a negoti-
ation strategy. Lastly, we discuss measures for learning methods, including accuracy
measures (Sect. 2.4.4).

2.4.1 Environments for Evaluating Negotiating Agents

As we have built a generic environment for designing and evaluating agent nego-
tiators called Genius [165] (see Appendix A), we briefly review related work that
is explicitly aimed at the evaluation of various agent negotiators. Most of the work
reported herein concerns the evaluation of various strategies for negotiation used
by such agents. Although some results were obtained by game-theoretic analy-
sis (e.g. [7, 15]), most results were obtained by means of simulation (e.g. [166–
168]). Devaux and Paraschiv [166] present work that compares agents negotiating in
internet agent-based markets. In particular, they compare a strategy of their own
agent with behavioral based strategies taken from the literature [27]. The simula-
tions are performed in an abstract domain where agents need to negotiate the price
of a product. Similarly, Henderson et al. [168] present results of the performance of
various negotiation strategies in a simulated car hire scenario. Finally, Matos et al.
[82] conducted experiments to determine the most successful strategies using an evo-
lutionary approach in an abstract domain called the service-oriented domain. Even
though several of the approaches use an abstract domain with a range of parameters
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Table 2.1 An overview of learning techniques and methods that help to learn six different opponent
attributes

Opponent attributes Procedure Learning techniques

Reservation value Bidding strategy estimation Bayesian learning [51, 52,
110, 119, 120, 130, 133, 141]

Non-linear regression [111,
121, 125, 133]

Deadline Bidding strategy estimation Bayesian learning [110, 119,
133]

Non-linear regression [110,
119, 125, 133]

Issue preference order Measuring similarity between
offers

Bayesian learning [28]

Kernel density estimation
[136, 156]

Heuristics [143, 147]

Knowledge of bidding strategy Simplified genetic algorithm
[112]

Outcome preference order Classification Bayesian learning [63, 67, 95,
109, 138, 146, 150, 157, 158]

Data mining aggregate
preferences

Random variable estimation
[113, 140]

Graph theory [46, 148]

Bayesian network [149]

Logical reasoning and
heuristics

Heuristics [69, 144, 145,
151–155, 159]

Bidding strategy Regression
analysis

Non-linear regression [111,
116, 121, 123, 125, 133, 160]

Polynomial interpolation [116]

Genetic algorithms [117]

Bayesian networks [127]

Time series forecasting Derivatives [122, 139]

Signal processing [68, 72, 73,
129, 132, 161]

Neural networks [114,
116–118, 126, 162–164]

Markov chains [128]

Acceptance strategy Interpolation of acceptance
probability

Polynomial interpolation [131]

Kernel density estimation
[115]

Bayesian learning [137]

Neural networks [124]
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that may be varied, we argue that the focus on a single domain in most simulations is
restrictive. A similar argument to this end has been put forward in [56]. The analysis
of agent negotiators in multiple domains may significantly improve the performance
of such agents.

Manistersky et al. [169] discuss how people who design agent negotiators change
their design over time. They study how students changed their design of a trading
agent that negotiates in an open environment. After initial design of their agents,
human designers obtained additional information about the performance of their
agents by receiving logs of negotiations between their agents and agents designed
by others. These logs provided the means to analyze the negotiation behavior, and
an opportunity to improve the performance of the agents. The Genius environment
discussed in Appendix A provides a tool that supports such analysis, subsequent
improvement of the design, and structures the enhancement process.

Part of Genius’ functionality has been described in [170, 171], and our work
[165] outlined in Appendix A is a natural extension of this research. Since then, we
have extended Genius with all ANAC resources and new functionality described
in Appendix B (e.g., negotiation strategies, protocols, scenarios, discount factors,
reservation values), the BOA architecture and agent components from Chap. 3, the
acceptance strategies from Chaps. 4 and 5, and the performance and accuracy mea-
sures described in Chaps. 6 and 7.

With regard to systems that facilitate the actual design of agents or agent strategies
in negotiations, few systems are close to Genius. Most of the systems that may
be related to its main focus are negotiation support systems (e.g., the Interactive
Computer-Assisted Negotiation Support system (ICANS) presented in [172], the
InterNeg Support Program for Intercultural REsearch (INSPIRE)), however, Genius
advances the state-of-the-art by also providing evaluation mechanisms that allow a
quick and simple evaluation of strategies and the facilitation of automated negotiator’s
design. INSPIRE, by Kersten and Noronha [173], is a Web-based negotiation support
system with the primary goal of facilitating negotiation research in an international
setting. The system enables negotiation between two people, collects data about
negotiations and has some basic functionality for the analysis of the agreements,
such as calculation of the utility of an agreement and exchanged offers. However,
unlike Genius, it does not allow integration of an automated negotiating agent and
thus does not include repositories of agents as we propose. Perhaps Neg-o-Net [174]
is more similar to Genius than all the other support systems. The Neg-o-Net model
is a generic agent-based computational simulation model for capturing multi-agent
negotiations concerning resource and environmental management decisions. The
Neg-o-Net model includes both a negotiation algorithm and some agent models. An
agent’s preferences are modeled using digraphs (scripts). Nodes represent states of the
agent that can be achieved by performing actions (arcs). Each state is evaluated using
utility functions. The user can modify the agent’s script to model his/her preferences
w.r.t. states and actions. While Neg-o-Net is similar to Genius, there are at least two
important differences. First, they currently do not support the incorporation of human
negotiators, but only automated ones. Second, they do not provide any evaluation
mechanism of the strategies as Genius provides.
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A recent development worth noting is the Negowiki project [17, 175], which aims
to unify current approaches in negotiation research by creating a collection of stan-
dardized negotiation scenarios. Negowiki is an online framework where researchers
can share negotiation scenarios and results. As in Genius, analysis of the results
is provided, so that researchers can compute a set of metrics over the results of the
negotiation (e.g. Pareto optimality, fairness; we elaborate more on this in Sect. 2.4.3).
All scenarios offered by Negowiki are also available for download in Genius format.

2.4.2 Negotiating Agent Competitions

A competition can act as a useful and open benchmarking tool to evaluate and com-
pare negotiation agents, as evidenced by successful competitions to advance the
state-of-the-art in artificial intelligence such as the Computer Poker Competition
[176], the Iterated Prisoner’s Dilemma game [94] and the Trading Agent Competi-
tion [177]. Following in their footsteps, we organized four annual instances of the
International Automated Negotiating Agents Competition (ANAC).

We elaborate on the goals and results of the competition in Appendix B. Here, we
provide a short description of related competitions and outline the differences with
ANAC.

2.4.2.1 The Trading Agent Competition

Four games of the Trading Agent Competition (TAC) relate to automated negotiating
agents [177–181], and some elements of TAC have similar challenges as posed by
ANAC:

TAC SCM TAC Supply Chain Management was designed to simulate a dynamic
supply chain environment. Agents have to compete to secure customer orders and
components required for production. In order to do so, the agents have to plan and
coordinate their activities across the supply chain. Participants face the complexities
of supply chains, which admits a variety of bidding and negotiation strategies.

TAC Ad Auctions In the TAC Ad Auctions, game entrants design and implement
bidding strategies for advertisers in a simulated sponsoring environment. The agents
have to bid against each other to get an ad placement that is related to certain keyword
combinations in a web search tool. The advertiser strategies have to decide which
keywords to bid on, and what prices to offer. Therefore, the strategies have to optimize
their data analysis and bidding tactics to maximize their profit.

TAC Market Design TAC Market Design or The CAT Competition is a reverse of
the normal TAC game: as an entrant you define the rules for matching buyers and
sellers, while the trading agents are created by the organizers of the competition.
Entrants have to compete against each other to build a robust market mechanism that
attracts buyers and sellers.
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Power TAC Having started in 2011, Power TAC is a fairly recent addition to the
TAC games. It is built around a competitive market simulation platform with the
goal to direct policy making and to develop and validate intelligent agent technology
for trading. It models a electrical energy market, where competing business entities
offer energy services to customers.

The challenges posed by TAC are similar as in ANAC, especially the games of
TAC Ad Auctions and Power TAC. The games of TAC can get very complex and the
domains of the games are specifically chosen to model a certain scenario of a trading
agent problem. Contrastingly, the entrants of ANAC have to consider very generic
negotiation domains when they design their agents. On the one hand, this makes
ANAC very accessible, as there are no domain-dependent details the participants
have to know about. On the other hand, it is very difficult to develop an agent that
negotiates well under such a wide variety of circumstances, especially with the unique
challenges ANAC poses, which include one-shot bilateral negotiations with a real
timeline, combined with incomplete information of the opponent’s preferences.

2.4.2.2 The Agent Reputation Trust Competition

The Agent Reputation Trust Competition (ART) [182, 183] is also a negotiating
agent competition with a testbed that allows the comparison of different strategies.
The ART competition simulates a business environment for software agents that use
the reputation concept to buy advices about paintings. Each agent in the game is a
service provider responsible for selling its opinions when requested. The agent can
exchange information with other agents to improve the quality of their appraisals. The
challenge is to perceive when an agent can be trusted and to establish a trustworthy
reputation. Compared to ANAC, the focus of ART is more on trust: the goal is to
perceive which agents can be trusted in a negotiation process and what reputation
should be attributed to each agent.

2.4.3 Evaluating Performance of Negotiation Strategies

The ultimate aim of a negotiation strategy is to increase overall performance of the
negotiation, which is why performance measures are used to evaluate a negotiator’s
success. Performance measures evaluate the quality of the outcome, usually measured
in utility gain, or distance of the agreement to the Pareto frontier. With this method,
the success of an opponent model is expressed in terms of the negotiation result
(as opposed to the whole negotiation process; for this we refer to Sect. 2.4.4) The
paragraphs below provide an overview of the performance measures in related work.

Average utility. Average utility is by far the most popular performance measure and
is used by many authors (e.g., [28, 63, 69, 72, 73, 96, 108–111, 115, 117, 119,
120, 122–126, 128, 129, 131–133, 135, 136, 138, 140–142, 146, 147, 150, 151,
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156]). A common application is to consider the average utility of an agent with and
without opponent model against a group of opponents on several domains (see for
example [28, 69, 73]). Note that the average utility of an agent directly depends on
the negotiation setting (as we will see in following chapters), which therefore should
be chosen with care.

Distance to a fair outcome. Other authors are concerned with achieving a fair
outcome [96, 108, 135, 139], which is especially important if there will be future
negotiations between the parties.

Distance to a fair outcome is then calculated as the average Euclidean distance
to a fair solution (as defined in Sect. 2.2.4), such as the distance to Nash solution
[96, 108, 135, 139] or distance to Kalai-Smorodinsky [96, 108, 135]. As with the
average utility measure, the negotiation setting strongly influences the result [184,
185].

Distance to Pareto frontier. An opponent model of the opponent’s preferences aids
in identifying Pareto optimal bids. For this type of model—assuming it is applied
by a bidding strategy that takes the opponent’s utility into account—the distance to
the nearest Pareto optimal bid directly correlates with the model’s quality (see for
example [28, 109, 118, 135, 137]). Minimizing this distance to the Pareto-optimal
frontier improves fairness and the probability of acceptance.

Joint utility. An alternative method to measure the fairness of an outcome is to cal-
culate the joint utility [51, 52, 63, 112–115, 118–120, 136–139, 141]. The majority
of the authors simply use the sum of the utility of the final outcome for the agents
(see for example [63, 138]). An alternative used by several authors [51, 52, 114,
141] is to consider the normalized joint utility:

ujoint = (P − R PS)(R PB − P)

(R PB − R PS)2
. (2.10)

In this equation, P is the agreed upon price, and R PB and R PS are the reservation
prices of the buyer and seller respectively. Note that this definition is only applicable
to single-issue negotiations. An alternative measure for multi-issue negotiations used
by Jazayeriy et al. [112] is the geometric mean:

ujoint = √
u A · uB, (2.11)

where u A and uB are the utilities achieved by the agents. An attractive property of
this metric is that when the utilities are highly unbalanced, this formula better reflects
unfairness than by simply calculating the sum of the utilities.

Percentage of agreements. An opponent model may lead to better bids being offered
to the opponent, possibly avoiding non-agreement. In situations where an agreement
is always better than no agreement, the percentage of agreements is a direct measure
of success (see for example [28, 46, 110–121, 127, 133, 140, 144, 148, 155]). An
important disadvantage is that the acceptance ratio does not capture the quality of
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the agreement. Agrawal and Chari, Buffett et al., and Mudgal and Vassileva use a
related measure in which they calculate how often one agent outperforms the other
with regard to the final outcome [121, 127, 144]. A disadvantage of this method
is that an agent might outperform other agents, but still reach a bad outcome. An
alternative metric is applied by Robu and Poutré [46, 148], which calculates how
often an outcome is reached that maximizes social welfare.

Time of agreement. Various authors measure the duration of the negotiation or the
communication load (e.g. [46, 51, 52, 109, 110, 113–115, 119, 120, 135–137, 139–
141, 148, 153–155]), because in practical settings there is often a non-negligible cost
associated with both. Opponent models can lead to earlier agreements, and thereby
reduce costs. An important disadvantage of this metric is that while an opponent
model may lead to an earlier agreement, the quality of the outcome for the agent
might be lower.

Trajectory analysis. The quality of bidding strategies can be measured by analyzing
the percentage and relative frequency of certain types of moves [96, 108, 109]. For
example, unfortunate moves are offers that decrease the utility for both agents at the
same time. Theoretically, a perfect opponent model of the opponent’s preferences
would allow an agent to prevent any such unfortunate moves. A disadvantage of this
method is that it highly depends on the concession strategy that is used in combination
with the opponent model.

2.4.4 Evaluating Learning Methods

The performance measures discussed in Sect. 2.3.5 are benchmarks for an entire
negotiation strategy, but they are also often used to test the efficacy of one specific
component, the most prevalent being the learning component. The simplest approach
is to compare a novel learning technique with a set of baseline strategies. In [146]
for example, the performance of the opponent model is estimated by embedding it
in a strategy and comparing the average utility against two baseline strategies. The
modeling technique discussed by [63] introduces a model for a similar protocol, but in
this case the baseline is set by humans. Zeng and Sycara [52] measure performance in
terms of social welfare, but focus on single-issue negotiations in which they compare
the performance of three settings: both learn, neither learn, and only the buyer learns.
Finally, [158] evaluates the accuracy of a model against simple baseline strategies
in terms of the likelihood that the correct class is estimated to which the opponent’s
preference profile belongs.

The performance of an opponent model can also be tested against other models
or against a theoretical lower or upper bound, as we do in Chap. 6. For example,
Coehoorn and Jennings [136] evaluate the performance of their opponent model
using a standard bidding strategy that can be used both with and without a model. The
performance of the strategy is evaluated in three settings: without knowledge, with
perfect knowledge, and when using an offline opponent model. This work is similar

http://dx.doi.org/10.1007/978-3-319-28243-5_6
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to our work in Chap. 6, however, it differs in the fact that we focus on online opponent
modeling, and our setting is especially challenging as it involves the time/exploration
trade-off. Another example is the work by [113], which introduces two opponent
models for e-recommendation in a multi-object negotiation.Finally, [56] defines two
accuracy measures and uses these measures to analyze the accuracy of two opponent
models. The main differences are that in Chap. 6, we focus on the more general
type of multi-issue negotiations, we focus on a larger set of performance measures,
and pay more attention to the factors that influence the performance of the model.
Furthermore, as far as we know, our work is the first to compare and analyze such a
large set of state-of-the art models of the opponent’s preference profile.

2.4.4.1 Accuracy Measures

As performance measures are only indirect measures of the negotiating agent’s qual-
ity, other measures, such as accuracy measures can also be included for the purpose of
benchmarking learning techniques. Accuracy measures are direct measures of learn-
ing quality, as they quantify the difference between the estimate and the estimated;
i.e., they determine the quality of a model by quantifying how well the opponent
model represents the real preferences of the opponent. An example is the correlation
between the estimated and the real outcome space, or the percentage of correctly
inferred Pareto optimal outcomes. We describe here the accuracy measures for pref-
erence modeling methods, as we come back to them in Chap. 7, where we compare
the accuracy of various preference modeling techniques, using established accuracy
measures.

For example, Carbonneau et al. [162] calculate the Pearson correlation between
the real and estimated utility of the opponent’s next bid. Hindriks and Tykhonov [56]
extend this approach by measuring the Pearson correlation of the whole outcome
space and discuss analogous definitions for the ranking distance. Our method in
Chap. 7 incorporates both measures. An alternative approach is to measure the dis-
tance between elements of two preference profiles. For example Jazayeriy et al. [112]
introduce such measures for the learning error of issue weights. We have incorpo-
rated these measures in our method, and we also apply the same measures to quantify
the similarity between two full bid spaces.

Finally, there exist accuracy measures tailored to specific learning methods. Buf-
fett and Spencer [157] for example, define a metric for opponent models that use
Bayesian learning. The measure is defined as the average likelihood that the correct
hypothesis is chosen from the set of candidate hypotheses. Since we employ models
in Chaps. 6 and 7 that are based on a wide range of learning techniques, we do not
incorporate measures specific to a particular learning method.

We also quantify the relationship between accuracy and performance in Chap. 7.
In related work by Coehoorn and Jennings [136], a model is introduced that esti-
mates the opponent’s issue weights and the influence of small prediction errors on
performance is investigated. The method in this thesis takes this a step further, as
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we analyze the relation between an exhaustive set of accuracy measures—including
accuracy of the issue weights—and performance.

Similarity between issue weights We can measure the accuracy of models that esti-
mate the issue weights of the opponent’s preference profile in several ways [56, 112,
142]. All of them use a distance metric between the issue weights w = (w1, . . . , wn)

of the real opponent preferences uop and the issue weights w′ = (w′
1, . . . , w′

n) of the
estimated preferences u′

op. One way to do so is to measure the distance between the
issue weight vectors [112]:

dEuclidean(w, w′) =
√√√√

n∑

i=1

(wi − w′
i )

2. (2.12)

Of course, this measure can be used for scalars as well. When modeling the opponent’s
deadline (or reservation value) x ∈ R with an estimate x ′, Eq. (2.12) simplifies to

dEuclidean(x, x ′) = |x − x ′|. (2.13)

Another way is to check whether the issue weights are ranked correctly [56] by
evaluating all possible pairs of issues i1, . . . , in:

drank(w, w′) = 1

n2

n∑

j=1

n∑

k=1

c(ik, i j ), (2.14)

where c(ik, i j ) is the conflict indicator function, which is equal to one when the
ranking of the weights of issues ik and i j differs between the two profiles, and zero
otherwise. An alternative is to measure the correlation between the vectors [56]:

dPearson(w, w′) =

n∑

i=1

(wi − w)(w′
i − w′)

√√√
√

n∑

i=1

(wi − w)2
n∑

i=1

(w′
i − w′)2

. (2.15)

Note that this expression may be undefined, for example when all weights are equal.

Similarity between preference profiles When opponent models estimate the oppo-
nent’s preferences fully (e.g. [56, 142, 148, 157–159]), the quality of these models
depends on the similarity between the real uop and estimated opponent’s preference
profile u′

op for all bids in the outcome space �. One approach is to calculate the
average distance between all outcomes in � [142]:

dabs(uop, u′
op) = 1

|�|
∑

ω∈�

|ω − ω′|. (2.16)
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However, in practice, the correct ranking of the bids can be sufficient already. An
alternative is therefore to use the ranking distance of bids measure that compares all
preference orderings in a pairwise fashion [56]:

drank(uop, u′
op) = 1

|�|2
∑

ω∈�,ω′∈�

c≺u,≺u′(ω, ω′), (2.17)

where c≺u,≺u′ is the conflict indicator function, which is equal to one when the
ranking of the outcomes ω and ω′ differs between the two profiles, and zero otherwise.
Identically, Buffett et al. count the amount of correctly estimated preference relations
[157, 158]. A disadvantage of these approaches is their scalability because all possible
outcome pairs need to be compared. This problem can be overcome by using a
Monte Carlo simulation; however, a more efficient solution can be to use the Pearson
correlation of bids [56], which is defined as follows:

dPearson(uop, u′
op) =

∑

ω∈�

(uop(ω) − uop)(u′
op(ω) − u′

op)

√∑

ω∈�

(uop(ω) − uop)2
∑

ω∈�

(u′
op(ω) − u′

op)2
(2.18)

A downside of this measure, although unlikely to occur in practice, is that it is not
defined for all inputs, for example when all bids are estimated to have the same utility.

This chapter is based on the following publications: [95, 106, 165, 184–188]
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435 of Studies in Computational Intelligence, pages 229–233. Springer Berlin Heidelberg, 2013

Tim Baarslag, Mark J.C. Hendrikx, Koen V. Hindriks, and Catholijn M. Jonker. Learning about
the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling
techniques. Autonomous Agents and Multi-Agent Systems, pages 1–50, 2015

Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen V. Hindriks, and Catholijn M. Jonker.
Genius: An integrated environment for supporting the design of generic automated negotiators.
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Chapter 3
A Component-Based Architecture
to Explore the Space of Negotiation
Strategies

Abstract In order to study the performance of the individual components of a nego-
tiation strategy, we introduce an architecture that distinguishes three components
which together constitute a negotiation strategy: the bidding strategy (B), the oppo-
nent model (O), and the acceptance strategy (A). When decoupled, the components
of different strategies can be recombined to create new strategies. This then allows
to pinpoint additional structure in most agent designs and to explore the space of
automated negotiating agents. In order to study the performance of the individual
components of a negotiation strategy, we introduce an architecture that distinguishes
three components which together constitute a negotiation strategy: the bidding strat-
egy (B), the opponent model (O), and the acceptance strategy (A). When decoupled,
the components of different strategies can be recombined to create new strategies.
This then allows to pinpoint additional structure in most agent designs and to explore
the space of automated negotiating agents. We implemented our BOA architecture
in a generic evaluation environment for negotiating agents (Appendix A), and we
amended it with the strategy components of the International Automated Negotiating
Agents Competition (Appendix B). In doing so, we have a rich evaluation tool at
our disposal, together with a repository that contains many negotiating agents and
scenarios. The contribution of this chapter is threefold: first, we show that exist-
ing state-of-the-art agents are compatible with this architecture by re-implementing
them in the new framework; second, as an application of our architecture, we sys-
tematically explore the space of possible strategies by recombining different strategy
components, resulting in negotiation strategies that improve upon the current state-
of-the-art in automated negotiation; finally, we show how the BOA architecture can
be applied to evaluate the performance of strategy components and create novel
negotiation strategies that outperform the state of the art.

3.1 Introduction

In recent years, many new automated negotiation agents have been developed in
the search for an effective, generic automated negotiator. There is now a large
body of negotiation strategies available, and with the emergence of the International
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Automated Negotiating Agents Competition (ANAC, see Appendix B), new strate-
gies are generated on a yearly basis.

While methods exist to determine the best negotiation agent given a set of agents
(cf. Sect. 2.4), we still do not know which type of agent is most effective in general,
and especially why. It is impossible to exhaustively search the large (in fact, infinite)
space of negotiation strategies; therefore, there is a need for a systematic way of
searching this space for effective candidates.

Many of the sophisticated agent strategies that currently exist are comprised of a
fixed set of modules. Generally, a distinction can be made between three different
modules: one module that decides whether the opponent’s bid is acceptable; one
that decides what set of bids could be proposed next; and finally, one that tries to
guess the opponent’s preferences and takes this into account when selecting an offer
to send out. The negotiation strategy is a result of the complex interaction between
these components, of which the individual performance may vary significantly. For
instance, an agent may contain a module that predicts the opponent’s preferences
very well, but utility-wise, the agent may still perform badly because it concedes far
too quickly.

This entails that overall performance measures, such as average utility obtained in
a tournament, make it hard to pinpoint which components of an agent work well. To
date, no efficient method exists to identify to which of the components the success
of a negotiating agent can be attributed. Finding such a method would allow to
develop better negotiation strategies, resulting in better agreements; the idea being
that well-performing components together will constitute a well-performing agent.

To tackle this problem, we propose to analyze three components of the agent
design separately. We show that most of the currently existing negotiating agents
can be fitted into the so-called BOA architecture by putting together three main
components in a particular way; namely: a Bidding strategy, an Opponent model,
and an Acceptance condition. We support this claim by re-implementing, among
others, the ANAC agents to fit into our architecture. Furthermore, we show that the
BOA agents are equivalent to their original counterparts.

The advantages of fitting agents into the BOA architecture are threefold: first,
it allows the study of the behavior and performance of the individual components;
second, it allows to systematically explore the space of possible negotiation strate-
gies; third, the identification of isolated components simplifies the creation of new
negotiation strategies.

Finally, we demonstrate the value of our architecture by assembling, from already
existing components, new negotiating agents that perform better than the agents
from which they are created. This shows that by recombining the best performing
components, the BOA architecture can yield better performing agents.

The remainder of this chapter is organized as follows. In Sect. 3.2, the BOA
agent architecture is introduced, and we outline a research agenda on how to employ
it. Section 3.3 provides evidence that many of the currently existing agents fit into
the BOA architecture, and discusses challenges in decoupling existing negotiation
strategies. Finally, in Sect. 3.4 we discuss lessons learned and provide directions on
how we will apply the BOA framework in later chapters.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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3.2 The BOA Agent Architecture

In the last decade, many different negotiation strategies have been introduced in the
pursuit of a versatile and effective automated negotiator (see related work in Sect. 2.3).
Despite this diversity, there is some common structure to the overall design of the
agents. For example, every agent decides whether the opponent’s offer is acceptable,
and if not, what offer should be proposed instead. When the agent decides to make
a counter-offer, it considers its own utility, but it usually also takes the opponent’s
utility into account.

Current work often focuses on optimizing the negotiation strategy as a whole. We
propose to direct our attention to a component-based approach, especially now that
we have access to a large repository of mutually comparable negotiation strategies
due to ANAC. This approach has several advantages:

1. Given measures for the effectiveness of the individual components of a negotiation
strategy, we are able to pinpoint the most promising components, which gives
insight into the reasons for success of the strategy;

2. Focusing on the most effective components helps to systematically search the
space of negotiation strategies by recombining them into new strategies.

In this section, we outline the key components of the BOA agent framework and
we outline a research agenda on applying it to current agent design.

3.2.1 The BOA Agent

Based on a survey of literature and the implementations of currently existing nego-
tiation agents, we have identified three main components of a general negotiation
strategy: a bidding strategy, possibly an opponent model, and an acceptance condi-
tion (BOA). The elements of a BOA agent are visualized in Fig. 3.1.

We make a distinction between two types of components: elements that are part of
the agent’s negotiation environment, and components that are part of the agent itself.
The negotiation environment includes the bidding history of the ongoing negotiation,
the negotiation domain, which holds the information of possible bids and other

Fig. 3.1 The BOA architecture negotiation flow

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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negotiation constraints, and the preferences described by the utility spaces of the
agents (all of which are defined in Chap. 2).

In order to fit an agent into the BOA architecture, it should be possible to distin-
guish these components in the agent design1:

1. Bidding strategy (B). At each turn, the bidding strategy determines the counter
offer by first generating a set of bids, depending on factors such as the opponent’s
offers, a target threshold, time, and so on. Note that during this stage, the agent
only considers what concessions it deems appropriate given its own preferences.
The bidding strategy can consult the opponent model (if present) by passing one
or multiple bids to see how they compare within the estimated opponent’s utility
space.
Input: opponent utility of bids, negotiation history.
Output: provisional upcoming bid ω.

2. Opponent model (O). An opponent model is a learning technique that constructs a
model of the opponent’s preferences. In our approach, the opponent model should
be able to estimate the opponent’s utility of any given bid. The BOA architec-
ture focuses on opponent models which estimate the (partial) preference profile,
because most existing available implementations fit in this category; however,
in principle, our architecture can accommodate for the other types of opponent
models as well and may use the preference model to learn other attributes as well
(e.g., predicting the opponent’s strategy).
Input: set of bids B, negotiation history.
Output: estimated opponent utility of the bids in B.

3. Acceptance Condition (A). The acceptance condition decides whether the oppo-
nent’s offer should be accepted. If the opponent’s bid is not accepted, the bid
generated by the bidding strategy is offered instead.
Input: provisional upcoming bid ω, negotiation history.
Output: accept, or send out the upcoming bid ω.

The components interact in the following way (the full process is visualized in
Fig. 3.1): when receiving the opponent’s bid, the BOA agent first updates the bidding
history and opponent model, maximizing the information known about the environ-
ment and opponent.

Given the opponent bid, the bidding strategy determines the counter offer by first
generating a set of bids with a similar preference for the agent. Note that during this
stage, the agent only considers what concessions it deems appropriate given its own
preferences. The bidding strategy then uses the opponent model (if present) to select
a bid from this set by taking the opponent’s utility into account.

Finally, the acceptance condition decides whether the opponent’s action should
be accepted. If the opponent’s bid is not accepted by the acceptance condition, then
the bid generated by the bidding strategy is offered instead. At first glance, it may
seem counter-intuitive to make this decision at the end of the agent’s deliberation
cycle. Clearly, deciding upon acceptance at the beginning would have the advantage

1An exposition of the agents we fitted into our framework is given in the next section, which will
further motivate the choices made below.
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Fig. 3.2 The bidding
strategy sets a target utility
range, which is a subset of
all acceptable outcomes.
From these outcomes, the
opponent model selects the
offers that are also good for
the opponent

of not wasting resources on generating an offer that might never be sent out. However,
generating an offer first allows us to employ acceptance conditions that depend on
the utility of the counter bid that is ready to be sent out. This method is widely
used in existing agents, as we shall see in our exposition of acceptance conditions
in Chap. 4. Such acceptance mechanisms can make a more informed decision by
postponing their decision on accepting until the last step; therefore, and given our
aim to incorporate as many agent designs as possible, we adopt this approach in our
architecture.

To better understand how the different components work together, we might view
the negotiation process as a search problem, where the negotiation strategy explores
the outcome space for a contract that both parties are willing to agree upon (Fig. 3.2).
The bidding strategy controls the rate of concession by setting the target utility
range (B), which determines the general location of the offer in the outcome space
according to the agent’s own utility. The opponent model can restrict this area even
further, by refining the possible offers to bids that are near the Pareto frontier, and
hence are good for the opponent (O). Finally, the acceptance condition defines the
area that consists of all acceptable outcomes (A), depending on the jump the agent
is willing to make towards the opponent in order to reach an agreement.

3.2.2 Employing the BOA Architecture

We have implemented the BOA architecture as an extension of the Genius frame-
work [1] that we outline in Appendix A. The framework was developed as a research

http://dx.doi.org/10.1007/978-3-319-28243-5_4
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tool to facilitate the design of negotiation strategies and to aid in the evaluation of
negotiation algorithms. It provides a flexible and easy to use environment for imple-
menting agents and negotiation strategies as well as running negotiations. Genius
can further aid the development of a negotiation agents by acting as an analytical
toolbox, providing a variety of tools to analyze the negotiation agents performance,
based on the outcome and dynamics of the negotiation. The BOA architecture has
been integrated seamlessly into the Genius framework, offering the user the ability
to create and apply newly developed components using a graphical user interface as
depicted in Fig. 3.3. From the perspective of Genius, a negotiation agent is identi-
cal to a BOA agent, and therefore both types of agents can participate in the same
tournament.

In addition, we organized four annual negotiation competitions (ANAC) that had
more than 60 international participants in total. ANAC makes a wide variety of
benchmark negotiation strategies and scenarios available to the research community,
which we used to strengthen the capabilities of the BOA architecture. The repository
of strategies currently contains more than 40 automated negotiation strategies, such
as all ANAC 2010–2013 agents described in appendices C–F, the ABMP strategy [2],
the Zero Intelligence strategy [3], the QO-strategy [4], the Bayesian strategy [5],

Fig. 3.3 The BOA components window in Genius gives an overview of all BOA components in
the repository. New components can be added and removed using a graphical user interface. All
components can be combined to create new negotiation agents, which then can be evaluated in the
analytical toolbox of Genius
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and others. The repositories of domains and of agents allows us to test the agents on
the different domains and against different kinds of strategies.

The framework enables us to follow at least two approaches: first of all, it allows
us to independently analyze the components of every negotiation strategy that fits
in to our architecture. For example, by re-implementing the ANAC agents in the
BOA architecture, it becomes possible to compare the accuracy of all ANAC oppo-
nent models, and to pinpoint the best opponent model among them. Following this
approach, we are able to identify categories of opponent models that outperform
others; naturally, this helps to build better agents in the future.

Secondly, we can proceed to mix different BOA components, e.g.: replace the
opponent model of the runner-up of ANAC by a different opponent model and then
examine whether this makes a difference in placement. Such a procedure enables us
to assess the reasons for an agent’s success, and makes it possible to systematically
search for an effective automated negotiator.

The first part of the approach gives insight in what components are best in isolation;
the second part gives us understanding of their influence on the agent as a whole. At
the same time, both approaches raise some key theoretical questions, such as:

1. Can the BOA components be identified in all, or at least most, current negotiating
agents?

2. How do we measure the performance of the components? Can a single best
component be identified, or does this strongly depend on the other components?

3. If the individual components perform better than others (with respect to some
performance measure), does combining them in an agent also improve the agent’s
performance?

In this chapter we do not aim to fully answer all of the above questions; instead,
we outline a research agenda for the rest of this thesis, and introduce the BOA
architecture as a tool that can be used towards answering these questions.

Nonetheless, in the next section, we will provide empirical support for an affirma-
tive answer to the first theoretical question: indeed, in many cases the components
of the BOA architecture can be identified in current agents, and we will also provide
reasons for when this is not the case.

The answer to the second question depends on the component under consideration:
for an opponent model, it is straightforward to measure its effectiveness [6] (and we
will do so in Chaps. 6 and 7): the closer the opponent model is to the actual profile
of the opponent, the better it is. The performance of the other two components of
the BOA architecture is better measured in terms of utility obtained in negotiation
(as will do for acceptance strategies in Chaps. 4 and 5 and for bidding strategies
in Chap. 8), as there seems no clear alternative method to define the effectiveness
of the acceptance condition or bidding strategy in isolation. In any case, the BOA
architecture can be used as a research tool to help answer such theoretical questions.

Regarding the third question: suppose we take the best performing bidding strat-
egy, equip it with the most faithful opponent model, and combine this with the most
effective acceptance condition; it would seem reasonable to assume this combination
results in an effective negotiator. We elaborate on this conjecture in Chap. 10.

http://dx.doi.org/10.1007/978-3-319-28243-5_6
http://dx.doi.org/10.1007/978-3-319-28243-5_7
http://dx.doi.org/10.1007/978-3-319-28243-5_4
http://dx.doi.org/10.1007/978-3-319-28243-5_5
http://dx.doi.org/10.1007/978-3-319-28243-5_8
http://dx.doi.org/10.1007/978-3-319-28243-5_10
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3.3 Decoupling Existing Agents

In this section we provide empirical evidence that many of the currently existing
agents can be decoupled by separating the components of a set of state of the art
agents. This section serves three goals: first, we discuss how existing agents can be
decoupled into a BOA agent; second, we argue that the BOA architecture design is
appropriate, as most agents will turn out to fit in our architecture; third, we discuss
and apply a method to determine if the sum of the components—the BOA agent—is
equal in behavior to the original agent.

3.3.1 Identifying the Components

In this section we identify the components of 21 negotiating agents, taken from the
ANAC competition of 2010–2012 as described in Appendix B. We selected these
agents as they represent the state of the art in automated negotiation, having been
implemented by various negotiation experts.

Since the agents were not designed with decoupling in mind, all agents had to be re-
implemented to be supported by the BOA architecture. Our decoupling methodology
was to adapt an agent’s algorithm to enable it to switch its components, without
changing the agent’s functionality. A method call to specific functionality, such as
code specifying when to accept, was replaced by a more generic call to the acceptance
mechanism, which can then be swapped at will. The contract of the generic calls
are defined by the expected input and output of every component, as outlined in
Sect. 3.2.1.

As an example to illustrate the components within a strategy, we use IAMhag-
gler2011 [7], which finished third in ANAC 2011 (see Appendix D). When it receives
an offer, the acceptance condition of IAMhaggler2011 will only accept bids that
have a utility higher than a certain predefined value. After that, IAMHaggler2011
employs an opponent model to approximate the rate at which the opponent con-
cedes, by inspecting the past offered bids. In order to finally choose a counter bid to
offer to the opponent, IAMhaggler2011 first decides on a target utility, based on its
own concession rate, which is determined in such a way that the expected utility is
optimized.

The first step in decoupling an agent is to determine which components can be
identified. For example, in the ANAC 2010 agent FSEGA (Appendix C), an accep-
tance condition, a bidding strategy, and an opponent model can all be identified.
The acceptance condition combines simple, utility-based criteria (defined later in
this thesis as ACconst and ACprev; see Chap. 4), and can be easily decoupled in our
architecture. The opponent model is a variant of the Bayesian opponent model [5, 8]
(which we define later in Sect. 6.4.2), which is used to optimize the opponent utility
of a bid. Since this usage is consistent with our architecture (i.e., the opponent model
provides opponent utility information), the model can be replaced by a call to the

http://dx.doi.org/10.1007/978-3-319-28243-5_4
http://dx.doi.org/10.1007/978-3-319-28243-5_6
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generic opponent model interface. The final step is to change the bidding strategy to
use the generic opponent model and acceptance conditions instead of its own specific
implementation. In addition to this, the opponent model and acceptance condition
need to be altered to allow the other bidding strategies to use it. Other agents can be
decoupled using a similar process.

Unfortunately, some agent implementations contain slight dependencies between
different components. These dependencies needed to be resolved to separate the
design into singular components. For example, the acceptance condition and bidding
strategy of the ANAC 2011 agent The Negotiator2 rely on a shared target utility. In
such cases, the agent can be decoupled by introducing Shared Agent State (SAS)
classes. A SAS class avoids code duplication, and thus performance loss, by sharing
the code between the components. One of the components uses the SAS to calculate
the values of the required parameters and saves the results, while the other component
simply asks for the saved results instead of repeating the calculation.

Table 3.1 provides an overview of all agents that we re-implemented in our archi-
tecture, and more specifically, which components we were able to decouple. In fact,
we were able to decouple all ANAC 2010, and most ANAC 2011 and ANAC 2012
agents.

There were two agents (ValueModelAgent [9] and Meta-Agent [10, 11]) that were
not decoupled due to practical reasons, even though theoretically it is possible. The
ValueModelAgent was not decoupled because there were unusually strong depen-
dencies between its components. Decoupling the strategy would result in computa-
tionally heavy components when trying to combine them with other components,
making them impractical to use. The ANAC 2012 Meta-Agent chooses an offer
among 17 agents from the ANAC 2011 qualifying round. This agent was not decou-
pled because it requires the decoupling of all 17 agents, of which only 8 optimized
versions entered the finals.

The CUHK Agent, like ValueModelAgent, is heavily coupled with multiple vari-
ables that are shared between the bidding strategy and acceptance condition. This
makes it very hard to decouple and can make components unusable in combination
with other components (e.g. variables might not properly be set). However, since
CUHK Agent was placed first in the ANAC 2012 competition, we decided to decou-
ple its bidding strategy, allowing it to work with other acceptance conditions and
opponent models.

Four additional agents were only partially decoupled: AgentLG, BRAMAgent,
BRAMAgent2, and Gahbininho. As is evident from Table 3.1, the only obstacle in
decoupling these agents fully is their usage of the opponent model, as it can be
employed in many different ways. Some agents, such as Nice Tit for Tat, attempt to
estimate the Nash point on the Pareto frontier. Other common applications include:
ranking a set of bids according to the opponent utility, reciprocating in opponent util-
ity, and extrapolating opponent utility. The generic opponent model interface needs
to sufficiently accommodate such requirements from the bidding strategy to make
interchangeability possible. For this reason we require the opponent model interface

2Descriptions of all ANAC 2011 agents can be found in Appendix D.
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Table 3.1 Overview of the BOA components found in every agent

ANAC 2010 B O A

FSEGA [12] � � �
Agent K [13] � � �
Agent Smith [14] � � �
IAMcrazyHaggler [8] � � �
HardHeaded [15] � � �
CUHK Agent [16, 17] � – –

IAMhaggler [8] � � �
Nozomi [13] � � �
Yushu [18] � � �
ANAC 2011 B O A

Agent K2 [19] � � �
BRAMAgent [20] � – �
Gahboninho [21] � – �
IAMhaggler2011 [22] � � �
Nice Tit for Tat [23] � � �
The Negotiator [24] � � �
ANAC 2012 B O A

AgentLG � � �
AgentMR [25] � � �
BRAMAgent2 � – �
IAMhagger2012 � � �
OMAC Agent [26] � � �
The Negotiator Reloaded � � �

�: original has component, which can be decoupled. �: original has no such component, but it can
be added. –: no support for such a component

to be able to produce the estimated opponent utility of an arbitrary negotiation out-
come.

With regard to the opponent model, there are three groups of agents: first, there
are agents such as FSEGA [12], which use an opponent model that can be freely
interchanged; second, there are agents such as the ANAC 2010 winner Agent K [27],
which do not have an opponent model themselves, but can be extended to use one.
Such agents typically employ a bidding strategy that first decides upon a specific
target utility range, and then picks a random bid within that range. These agents
can easily be fitted with an opponent model instead, by passing the utility range
through the opponent model before sending out the bid. Lastly, there are agents,
for example Gahboninho and BRAMAgent, that use a similarity heuristic which is
not compatible with our architecture, as their opponent models do not yield enough
information to compute the opponent utility of bids. For these type of agents, we
consider the opponent model part of the bidding strategy. AgentLG also uses an
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opponent model which is not compatible with our BOA architecture; however, it has
been adopted to be able to use other opponent models.

When decoupling the agents, we can distinguish different classes within each
component, except for the bidding strategy component, which varies greatly between
different agents. For instance, as we will see in Chaps. 6 and 7, there are only three
main types of opponent models being used: Bayesian models, Frequency models,
and Value models. Bayesian models are an implementation of a (scalable) model
of the opponent preferences that is updated using Bayesian learning [5, 28]. The
main characteristic of frequency based models is that they track the frequency of
occurrence of issues and values in the opponent’s bids and use this information to
estimate the opponent’s preferences. Value models take this approach a step further
and solely focus on the frequency of the issue values. In practice, Bayesian models
are computationally intensive, whereas frequency and value models are relatively
light-weight.

Similar to the opponent models, most agents use variations and combinations of a
small set of acceptance conditions. Specifically, many agents use simple thresholds
for deciding when to accept (called ACconst in Chap. 4) and linear functions that
depend on the utility of the bid under consideration (called ACnext(α, β) in Chap. 4).

3.3.2 Testing Equivalence of BOA Agents

A BOA agent should behave identically to the agent from which its components are
derived. Equivalence can be verified in two ways; first, given the same negotiation
environment and the same state, both agents should behave in exactly identical ways;
second, the performance in a real time negotiation of both agents should be similar.

3.3.2.1 Identical Behavior Test

Two deterministic agents can be considered equivalent if they perform the same
action given the same negotiation trace. There are two main problems in determining
equivalence: first, most agents are non-deterministic, as they behave randomly in
certain circumstances; for example, when picking from a set of bids of similar utility;
second, the default protocol in Genius uses real time [1], which is highly influenced
by CPU performance. This means that in practice, two runs of the same negotiation
are never exactly equivalent.

To be able to run an equivalence test despite agents choosing actions at random,
we fixed the seeds of the random functions of the agents. The challenge of working
in real time was dealt with by changing the real time deadline to a maximum amount
of rounds. Since time does not pass within a round, cpu performance does not play
a role.

All agents were evaluated on the ANAC 2011 domains (see Appendix D for
a domain analysis). The ANAC 2011 domains vary widely in characteristics: the

http://dx.doi.org/10.1007/978-3-319-28243-5_6
http://dx.doi.org/10.1007/978-3-319-28243-5_7
http://dx.doi.org/10.1007/978-3-319-28243-5_4
http://dx.doi.org/10.1007/978-3-319-28243-5_4
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number of issues ranges from 1 to 8, the size from 3 to 390625 possible outcomes, and
the discount from none (1.0) to strong (0.424). Some ANAC 2010 agents, specifically
Agent Smith and Yushu, were not designed for large domains and were therefore run
on a subset of these domains.

The opponent strategies used in the identical behavior test should satisfy two
properties: the opponent strategy should be deterministic, and secondly, the opponent
strategy should not be the first to accept, to avoid masking errors in the agent’s
acceptance condition. Given these two criteria, we used the standard time-dependent
tactics [29, 30] described in Sect. 2.3.3 for the opponent bidding strategy. Specifically,
we use Hardliner (e = 0), Conceder Linear (e = 1), and Conceder (e = 2). In
addition, we use the Offer Decreasing agent, which offers the set of all possible bids
in decreasing order of utility.

All original and BOA agents were evaluated against these four opponents, using
both preference profiles defined on all eight ANAC 2011 domains. Both strategies
were run in parallel, making sure that the moves made by both agents were equivalent
at each moment. After the experiments were performed, the results indicated that all
BOA agents were exactly identical to their original counterparts except for AgentMR
and AgentLG. Both these agents do not have identical behavior with its BOA counter-
part because of the order in which the components are called; their implementation
requires that they first test if the opponent’s bid is acceptable, and then determine
the bid to offer. As discussed above, this is exactly the opposite of what the BOA
agent does.

3.3.2.2 Similar Performance Test

Two agents can perform the same action given the same input, but may still achieve
different results because of differences in their real time performance. When decou-
pling agents, there is a trade-off between the performance and interchangeability of
components. For example, most agents record only a partial negotiation history, while
some acceptance strategies require the full history of the agent and/or its opponent.
In such cases, the agent can be constrained to be incompatible with these acceptance
strategies, or generalized to work with the full set of available acceptance strate-
gies. We typically elected the most universal approach, even when this negatively
influenced performance. We will demonstrate that while there is some performance
loss when decoupling existing agents, it does not significantly impact the negotiation
outcome.

The performance of the BOA agents was tested by letting them participate in a
tournament with the same setup as ANAC 2011. The decoupled ANAC 2011 agents
replaced the original agents, resulting in a tournament with eight participants. For
the other BOA agents this was not possible, as their original counterparts did not
participate in the ANAC 2011 competition. Therefore, for each of these agents we
ran a modified tournament in which we added the original agent to the pool of ANAC
2011 agents, resulting in a tournament with nine participants. Next, we repeated this
process for the BOA agents and evaluated the similarity of the results.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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For our experimental setup we used computers that were slower compared to the
IRIDIS high-performance computing cluster that was used to run ANAC 2011. As
we were therefore unable to reproduce exactly the same data as in Appendix D,
we first recreated our own ANAC 2011 tournament data as depicted in Table 3.2,
which is used as our baseline to benchmark the decoupled agents. The difference
in performance caused small changes compared to the official ANAC 2011 ranking,
causing Agent K2 to move up from 5th to 3rd place.

Table 3.3 provides an overview of the results. We evaluated the performance in
terms of the the difference in overall utility as well as the difference in time of
agreement between the original and the BOA agents. The table does not list the
agents that were not decoupled, and we also omitted The Negotiator Reloaded from
the test set, as this agent was already submitted as a fully decoupled BOA agent.

From the results, we can conclude that the variation between the original and
the BOA version is minimal; the majority of the standard deviations for both the
difference in overall utility and time of agreement are close to zero. The largest
difference between the original and decoupled agents with regard to the average
time of agreement is 0.010 (Agent Smith); and for the average utility the largest
difference is 0.015 (BRAMAgent2). Hence, in all cases the BOA agents and their
original counterparts show comparable performance.

Table 3.3 Differences in overall utility and time of agreement between the original agents and
their decoupled version

Agent Diff. time agr. SD time agr. Diff. utility SD utility

Agent K [13] 0.001 0.003 0.006 0.006

Agent Smith [14] 0.010 0.010 0.004 0.006

FSEGA [12] 0.001 0.004 0 0.003

IAMcrazyHaggler [8] �0.004 0.012 0.003 0.013

IAMhaggler [8] 0.003 0.015 0.002 0.011

Nozomi 0.003 0.009 0.004 0.008

Yushu [18] 0.002 0.004 0.002 0.005

Agent K2 [19] 0.002 0.009 0.001 0.005

BRAMAgent [20] 0.004 0.011 0 0.006

Gahboninho [21] 0.001 0.008 0.006 0.005

HardHeaded [15] �0.003 0.003 �0.009 0.004

IAMhaggler2011 [22] �0.010 0.013 �0.002 0.003

Nice Tit for Tat [23] 0.006 0.010 �0.008 0.005

The Negotiator [24] 0 0.002 0 0.004

BRAMAgent2 0.002 0.011 �0.015 0.012

IAMhaggler2012 �0.005 0.006 �0.013 0.003

OMAC Agent [26] 0.003 0.003 0.012 0.015

Positive difference means the BOA agent performed better
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3.4 Conclusion

This chapter introduces an architecture that distinguishes the bidding strategy, the
opponent model, and the acceptance condition in negotiation agents, and recom-
bines these components to systematically explore the space of automated negotiation
strategies. The main idea behind the BOA architecture is that we can identify several
components in a negotiating agent, all of which can be optimized individually. Our
motivation in the end is to create a proficient negotiating agent by combining the
best components.

We have shown that many of the existing negotiation strategies can be re-fitted
into our architecture. We identified and classified the key components in them, and
we have demonstrated that the original agents and their decoupled versions have
identical behavior and similar performance.

With the BOA framework in place, the obvious direction to take is to analyze the
BOA components in isolation, which we will do in the subsequent chapters. After
identifying the best performing components, we answer in Chap. 10 whether com-
bining effective components leads to better overall results, and whether an optimally
performing agent can be created by taking the best of every component. We also
answer the question which of the BOA components turns out to be most important
with regard to the overall performance of an agent. Our architecture allows us to
make these questions precise and provides a tool for answering them.

This chapter is based on the following publications: [31, 32]

Tim Baarslag, Koen V. Hindriks, Mark J.C. Hendrikx, Alex S.Y. Dirkzwager, and Catholijn M.
Jonker. Decoupling negotiating agents to explore the space of negotiation strategies. In Ivan Marsa-
Maestre, Miguel A. Lopez-Carmona, Takayuki Ito, Minjie Zhang, Quan Bai, and Katsuhide Fujita,
editors, Novel Insights in Agent-based Complex Automated Negotiation, volume 535 of Studies in
Computational Intelligence, pages 61–83. Springer, Japan, 2014

Tim Baarslag, Koen V. Hindriks, Mark J.C. Hendrikx, Alex S.Y. Dirkzwager, and Catholijn M.
Jonker. Decoupling negotiating agents to explore the space of negotiation strategies. In Proceedings
of The Fifth International Workshop on Agent-based Complex Automated Negotiations (ACAN
2012), 2012
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Chapter 4
Effective Acceptance Conditions

Abstract An essential part of our framework outlined in Chap.3 is the acceptance
strategy of an agent. In every negotiation with a deadline, one of the negotiating par-
ties must accept an offer to avoid a break off. As a break off is usually an undesirable
outcome for both parties, it is important that a negotiator employs a proficient mech-
anism to decide under which conditions to accept. When designing such conditions,
one is faced with the acceptance dilemma: accepting the current offer may be subop-
timal, as better offers may still be presented before time runs out. On the other hand,
accepting too late may prevent an agreement from being reached, resulting in a break
off with no gain for either party. Motivated by the challenges of bilateral negotiations
between automated agents and by the results and insights of the automated negoti-
ating agents competition of 2010, we classify and compare state-of-the-art generic
acceptance conditions in this chapter. We perform extensive experiments to compare
the performance of various acceptance conditions in combination with a broad range
of bidding strategies and negotiation scenarios. Furthermore, we propose new accep-
tance conditions and we demonstrate that they outperform the other conditions. We
also provide insight into why some conditions work better than others and investigate
correlations between the properties of the negotiation scenario and the efficacy of
acceptance conditions.

4.1 Introduction

In 2010, seven new negotiation strategies were created to participate in the first auto-
mated negotiating agents competition (ANAC 2010, see Appendix C) in conjunction
with the Ninth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS-10). During post tournament analysis of the results, it became
apparent that different agent implementations use various conditions to decide when
to accept an offer. It is important for every negotiator to employ such a mechanism
to decide under which conditions to accept, because in every negotiation with a
deadline, one of the negotiating parties has to accept in order to avoid a break off.
However, designing a proper acceptance condition is a difficult task: accepting too
late may result in the break off of a negotiation, while accepting too early may result
in suboptimal agreements.
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Table 4.1 An overview of the rank of every agent in ANAC 2010 and the type of acceptance
conditions that they employ

Rank Agent Acceptance condition

1 Agent K Time and utility based

2 Yushu Time and utility based

3 Nozomi Time and utility based

4 IAMhaggler Utility based only

5 FSEGA Utility based only

6 IAMcrazyHaggler Utility based only

7 Agent Smith Time and utility based

Agents using time and utility based acceptance conditions were ranked at the top, except for Agent
Smith, which had a faulty acceptance mechanism

The importance of choosing an appropriate acceptance condition is confirmed by
the results of ANAC 2010 (see Table4.1). Agents with simple acceptance conditions
were ranked at the bottom, while the more sophisticated time- and utility-based
conditions obtained a higher score. For instance, the low ranking of Agent Smith
was due to a mistake in the implementation of the acceptance condition [1].

Despite its importance, the theory and practice of acceptance conditions has not yet
received much attention. The goal of this chapter is to classify current approaches and
to compare acceptance conditions in an experimental setting. Thus in this chapter we
will concentrate on the final part of the negotiation process: the acceptation of an offer.
We focus on decoupled acceptance conditions: i.e., generic acceptance conditions
that can be used in conjunction with an arbitrary bidding strategy and hence, fit into
the BOA architecture described in Chap. 3. The reason for this is straightforward:
we want to be able to re-incorporate the acceptance conditions that have been found
most effective into new agent designs; therefore, the acceptance conditions under
investigation should not be coupled with a specific agent implementation.

The contribution of this chapter is fourfold:

1. We give an overview and provide a categorization of current decoupled acceptance
conditions.

2. We introduce a formal negotiation model that supports the use of arbitrary accep-
tance conditions.

3. We compare a large selection of current generic acceptance conditions and
evaluate them in an experimental setting.

4. We propose new acceptance conditions and test them against established accep-
tance conditions, using varying types of bidding techniques.

The remainder of this chapter is organized as follows. Section4.2 defines a formal
model of accepting in negotiation and provides an overview of current acceptance
conditions. In Sect. 4.3, we also consider combinations of acceptance conditions.
Section4.4 discusses our experimental setup and results, which demonstrate that
some combinations outperform traditional acceptance conditions. Finally, Sect. 4.5
outlines the conclusions of this chapter.

http://dx.doi.org/10.1007/978-3-319-28243-5_3
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4.2 Acceptance Conditions in Negotiation

We focus on acceptance conditions that are decoupled: i.e. generic acceptance con-
ditions that are not tied to a specific agent implementation and hence can be used in
conjunction with an arbitrary bidding strategy. We first define a general negotiation
model that fits current decoupled acceptance conditions. We have surveyed existing
negotiation agents to examine the acceptance conditions that they employ. We then
categorize them according to the input that they use in their decision making process.

4.2.1 A Formal Model of Accepting

We briefly review our definitions of Sect. 2.2.2. The interaction between the agents
is regulated by the alternating-offers protocol supplemented with a real time line T ,
represented here by T = [0, 1], so that the deadline occurs at t = 1. This is the same
setup as [2], with the exception that issues are not necessarily real-valued and both
agents have the same deadline.

We represent by xt
A→B the negotiation outcome proposed by agent A to agent B

at time t . A negotiation thread (cf. [3, 4]) between two agents A and B at time t ∈ T
is defined as a finite sequence

H t
A↔B := (

xt1
p1→p2

, xt2
p2→p3

, xt3
p3→p4

, . . . , xtn
pn→pn+1

)
, (4.1)

which satisfies the following constraints:

1. The offers are ordered over time T : tk ≤ tl for k ≤ l.
2. The offers are alternating between the agents: pk = pk+2 ∈ {A, B} for all k.
3. All ti represent instances of time T , with tn ≤ t .
4. The agents exchange complete offers: xtk

pk →pk+1
∈ � for k ∈ {1, . . . , n}.

The last element of H t
A↔B may also be equal to Accept or End. We will say a

negotiation thread is active if this is not the case.
We now formally define how an agent reaches the decision to accept. When agent

A receives an offer xt
B→A from agent B sent at time t , it has to decide at a later

time t ′ > t whether to accept the offer, or to send a counter-offer xt ′
A→B . Given a

negotiation thread H t
A↔B between agents A and B, we can formally express the

action performed by A with an action function X A:

X A(t ′, xt
B→A) =

⎧
⎨

⎩

End if t ′ ≥ 1
Accept if ACA(t ′, xt ′

A→B, H t
A↔B)

Offer xt ′
A→B otherwise

(4.2)

Note that we extend the setting of [2, 4] by introducing the acceptance condition
ACA of an agent A. When used in this way, the model enables us to study arbitrary
decoupled acceptance conditions. The acceptance condition ACA takes as input

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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I = (t ′, xt ′
A→B, H t

A↔B), (4.3)

the tuple containing the current time t ′, the offer xt ′
A→B that the agent considers as

a bid (in line with the bidding strategy the agent uses), and the active negotiation
thread H t

B↔A.
The resulting action given by the function X A(t ′, xt

B→A) is used to extend the
current negotiation thread between the two agents. If the agent does not accept the
current offer, and the deadline has not been reached, it will prepare a counter-offer
xt ′

A→B by using a bidding strategy or tactic to generate new values for the negotiable
issues. As explained in Sect. 2.3.3, tactics can take many forms, e.g. time-dependent,
resource dependent, imitative, and so on [4]. In our setup we will consider the tactics
as given and try to optimize the accompanying acceptance conditions.

4.2.2 Acceptance Conditions

Let an active negotiation thread

H t
A↔B = (

xt1
p1→p2

, xt2
p2→p3

, . . . , xtn−1
A→B, xtn

B→A

)
,

be given at time t ′ > t = tn , so that it is agent A’s turn to perform an action.
The action function X A of an agent A uses an acceptance condition ACA(I) to

decide whether to accept, as defined by Eq. (4.2). In practice, most agents do not
use the full negotiation thread to decide whether it is time to accept. For instance
many agent implementations, such as [2, 4, 5], use the following implementation of
ACA(I):

ACA(t ′, xt ′
A→B, H t

A↔B) ⇐⇒ u A(xt
B→A) ≥ u A(xt ′

A→B).

That is, A will accept when the utility u A of the opponent’s last offer at time t is greater
than the value of the offer agent A is ready to send out at time t ′. The acceptance
condition above depends on the agent’s upcoming offer xt ′

A→B . For α, β ∈ R this
may be generalized as follows:

ACI
next(α, β)

def⇐⇒ α · u A(xt
B→A) + β ≥ u A(xt ′

A→B). (4.4)

We can view α as the scale factor by which we multiply the opponent’s bid, while
β specifies the minimal ‘utility gap’ [6] that is sufficient to accept.

Analogously, we have acceptance conditions [6–9] that rely on the agent’s previous
offer xtn−1

A→B :

ACI
prev(α, β)

def⇐⇒ α · u A(xt
B→A) + β ≥ u A(xtn−1

A→B). (4.5)

Note that this acceptance condition does not take into account the time that is left
in the negotiation, nor any offers made previous to time t . However, it is important

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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to bear in mind that the behavior of the acceptance condition may still be influenced
implicitly by these factors, because of the possibility that the bidding strategy takes
such factors into account.

Other acceptance conditions may rely on other measures, such as the remaining
negotiation time or a utility threshold. For example, there is a very simple accep-
tance criterion [1, 8, 9] that only compares the opponent’s previous offer with a
threshold α:

ACI
const(α)

def⇐⇒ u A(xt
B→A) ≥ α. (4.6)

Last but not least, instead of considering utility, agents (such as [1]) may employ
a time-based condition to accept after a certain amount of time T ∈ T has passed:

ACI
time(T )

def⇐⇒ t ′ ≥ T . (4.7)

We will omit the superscript I in Eqs. (4.4)–(4.7) when it is clear from the con-
text. We will use these general acceptance conditions to classify existing acceptance
mechanisms in the next section.

4.2.3 Existing Acceptance Conditions

We give a short overview of decoupled acceptance conditions used in literature and
current agent implementations. We are primarily interested in acceptance conditions
that are not specifically designed for a single agent. We do not claim the list below
is complete; however it serves as a good starting point to categorize current decou-
pled acceptance conditions. We surveyed the entire pool of agents of ANAC 2010,
including Agent K, Nozomi [10], Yushu [11], IAM(crazy)Haggler [9], FSEGA [8],
and Agent Smith [1]. We also examined well-known agents from literature, such as
the Trade-off agent [12], the Bayesian learning agent [7], ABMP [6], equilibrium
strategies of [5], and time-dependent negotiation strategies as defined in Sect. 2.3.3,
i.e., the Boulware and Conceder tactics.

Listed in Table4.2 is a selection of generic acceptance conditions found.
Some agents also use logical combinations of different acceptance conditions at

the same time. This explains why some agents are listed multiple times in the table.
For example, both IAMHaggler and IAMcrazyHaggler [9] accept precisely when

ACconst(0.88) ∨ ACnext(1.02, 0) ∨ ACprev(1.02, 0).

We will not focus on the many possible combinations of all acceptance conditions
that may thus be obtained; we will study the basic acceptance conditions in isolation
with varying parameters. However in addition to this, we study a small selection of
combinations in Sect. 4.3. We leave further combinations for future research.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Table 4.2 A selection of existing decoupled acceptance conditions found in literature and current
agent implementations

Acceptance
condition

α β T Agent

ACprev(α, β) 1.03 0 – FSEGA, Bayesian
Agent

1 0 – Agent Smith

1.02 0 – IAM(crazy)Haggler

1 0.02 – ABMP

ACnext(α, β) 1 0 – FSEGA, Boulware,
Conceder, Trade-off,
Equilibrium
strategies

1.02 0 – IAM(crazy)Haggler

1.03 0 – Bayesian Agent

ACconst(α) 1 – – FSEGA

0.9 – – Agent Smith

0.88 – – IAM(crazy)Haggler

ACtime(T ) – – 0.92 Agent Smith

As can be seen from Table4.2, the most commonly used acceptance condition
in our sample is ACnext = ACnext(1, 0), which is the familiar condition of accepting
when the opponent’s last offer is better than the planned offer of the agent. The
function β �→ ACprev(1, β) can be viewed as an acceptance condition that accepts
when the utility gap [6] between the parties is smaller than β. We denote this condition
by ACgap(β).

4.3 Combined Acceptance Conditions

We define three acceptance conditions that are designed to perform well in conjunc-
tion with an arbitrary bidding strategy. This will incorporate all ideas behind the
traditional acceptance conditions we have described so far. We will show in Sect. 4.4
that they work better than the majority of simple generic conditions listed in Table4.2.

From a negotiation point of view, it makes sense to alter the behavior of an
acceptance condition when time is running short. For example, many ANAC agents
such as Yushu, Nozomi and FSEGA [8, 10, 11] split the negotiation into different
intervals of time and apply different sub-strategies to each interval.

The basic idea behind combined acceptance conditions ACcombi is similar. In case
the bidding strategy plans to propose a deal that is worse than the opponent’s offer,
we have reached a consensus with our opponent and we accept the offer. However, if
there still exists a gap between our offer and time is short, the acceptance condition
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should wait for an offer that is not expected to improve in the remaining time. Thus
ACcombi is designed to be a proper extension of ACnext, with adaptive behavior based
on recent bidding behavior near the deadline.

To define ACcombi, suppose an active negotiation thread

H t
A↔B = (

xt1
p1→p2

, xt2
p2→p3

, . . . , xtn−1
A→B, xtn

B→A

)
,

is given at time t ′ > t = tn > 1
2 near the deadline, when it is agent A’s turn. Note

that there is r = 1 − t ′ time remaining in the negotiation, which we will call the
remaining time window. A good sample of what might be expected in the remaining
time window consists of the bids that were exchanged during the previous time
window W = [t ′ − r, t ′] ⊆ T of the same size.

Let

H W
B→A = {

xs
B→A ∈ H t

A↔B | s ∈ W
}

denote all bids offered by B to A in time window W . We can now formulate the
average and maximum utility that was offered during the previous time window in
the negotiation thread H = H W

B→A:

MAXW = max
x∈H

u A(x),

and

AVGW = 1

|H |
∑

x∈H

u A(x).

We let ACcombi(T, α) accept at time t ′ exactly when the following holds: ACnext

indicates that we have to accept, or we have almost reached the deadline (t ′ ≥ T )
and the current offer suffices (i.e. better than α) given the remaining time:

ACcombi(T, α)
def⇐⇒

ACnext ∨ ACtime(T ) ∧ (
u A(xt

B→A) ≥ α
)

.

(4.8)

Note that Eq. (4.8) defines ACcombi(T, α) in such a way that it splits the negotiation
time into two phases: [0, T ) and [T, 1], with different behavior in both cases.

We will consider three different combined acceptance conditions:

1. ACcombi(T, MAXW ): the current offer is good enough when it is better than all
offers seen in the previous time window W ,

2. ACcombi(T, AVGW ): the offer is better than the average utility of offers during the
previous time window W ,

3. ACcombi(T, MAXT ): the offer should be better than any bid seen before.
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4.4 Experiments

In order to experimentally test the efficacy of an acceptance condition, we considered
a negotiation setup with the following characteristics. We equipped a set of agents
(as defined later) with an acceptance condition, and measured the result against
other agents in the following way. Suppose agent A is equipped with acceptance
condition ACA and negotiates with agent B. The two parties may reach a certain
outcome ω ∈ �, for which A receives the associated utility u A(ω). The score for A
is averaged over all trials on various domains (see Sect. 4.4.1), alternating between
the two preference profiles defined on that domain. E.g., on the negotiation scenario
between England and Zimbabwe, A will play both as England and as Zimbabwe
against all others. This average utility score is then an indication of the efficacy
of ACA.

For our experimental setup we employed Genius as described in Appendix A. It
supports the alternating offer protocol with a real-time deadline as outlined in our
negotiation model. The default negotiation time in Genius and in the setup of ANAC
is 3 min per negotiation session; therefore we use the same value in our experiments.

4.4.1 Detailed Experimental Setup

4.4.1.1 Agents

We use the negotiation strategies that were submitted to The Automated Negotiating
Agents Competition (ANAC 2010, see Appendix C). The seven agents that partic-
ipated in ANAC 2010 were implemented by various international research groups
of negotiation experts. Firstly, we removed the built-in acceptance mechanism from
this representative group of agents; this left us with its pure bidding strategies. In
terms of our BOA architecture described in Chap. 3, we replaced the acceptance
strategy of the agents, but we left the bidding strategy and opponent modeling com-
ponent intact. As outlined in our negotiation model, this procedure allowed us to test
arbitrary acceptance conditions in tandem with any ANAC tactic.

We aimed to tune our acceptance conditions to the top performing ANAC 2010
agents. Therefore we selected the top 3 of ANAC agents that were submitted by
different research groups, namely Agent K, Yushu and IAMhaggler (we omitted
Nozomi as the designing group also implemented Agent K, cf. Table4.1). For the
set of opponents, we selected all agents from ANAC 2010, for the acceptance con-
ditions should be tested against a wide array of strategies. The opponents also had
their built-in acceptance conditions removed (and hence were not able to accept), so
that differences in results would depend entirely on the acceptance condition under
consideration. To test the efficacy of an acceptance condition, we equipped the top 3
bidding strategies with this condition and compared the average utility obtained by
the three agents when negotiating against their opponents.

http://dx.doi.org/10.1007/978-3-319-28243-5_3
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Table 4.3 The eight preference profiles from ANAC 2010 and ANAC 2011, as used in the exper-
iments

Laptop Itex–Cyp Eng–Zim Grocery

Size 27 180 576 1600

Opposition Weak Strong Medium Medium

Mean utility 0.67 0.48 0.58 0.44

Nash point (1.00, 0.82) (0.72, 0.67) (0.91, 0.73) (0.84, 0.90)

K-S point (0.87, 0.87) (0.72, 0.67) (0.82, 0.79) (0.84, 0.90)

The rows indicate respectively: the size of the outcome space, the level of opposition, the arithmetic
mean utility that can be obtained in the scenario, and the location of the Nash point and Kalai
Smorodinsky point

4.4.1.2 Domains

The specifics of a negotiation domain can be of great influence on the negotiation
outcome [13]. Acceptance conditions have to be assessed on negotiation domains of
different size and complexity. Negotiation results also depend on the opposition of
the parties’ preferences (see Sect. 2.2.4). Strong opposition is typical of competitive
domains, when a gain for one party can be achieved only at a loss for the other party.
Conversely, weak opposition means that both parties achieve either losses or gains
simultaneously.

With this in mind, we aimed for a good spread of negotiation characteristics by
selecting four different negotiation scenarios with two preference profiles each (see
Table4.3). We picked two domains from the three that were used in ANAC 2010
(cf. Appendix C). We also selected two negotiation scenarios from the ANAC 2011
competition (cf. Appendix D) to include both a smaller and a larger domain to our
experimental setup.

We omitted the largest domains that featured in ANAC 2010 and 2011, as some
ANAC 2010 agents did not scale well and had too many difficulties to make these sce-
narios reliable for testing. Additionally, in contrast to the 2010 competition, ANAC
2011 introduced discount factors for some of the scenarios. We removed these dis-
count factors to ensure compatibility with the ANAC 2010 agents.

We shortly describe our negotiation scenarios here; for more detailed information,
we refer to Appendix C and D.

Our smallest scenario is called Laptop. In this scenario, a seller and a buyer,
negotiate over the specifications of a laptop. There are three issues: the laptop brand,
the size of the hard disk, and the size of the external monitor. Each issue has only
three options, making 27 possible outcomes. If the two parties are able to find the
outcomes that are mutually beneficial to both, then they are happy to do business
together with high utility scores on both sides. This can be confirmed in Table4.3:
the scenario has the highest arithmetic mean utility, and the most favorable Nash and
Kalai-Smorodinsky point.

Our second scenario is taken from [14], which describes a buyer–seller business
negotiation. There are four issues that both sides have to discuss: the price of the

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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components, delivery times, payment arrangements and terms for the return of pos-
sibly defective parts. The opposition between the parties is strong in this domain,
as the manufacturer and consumer have naturally opposing requirements. Even the
Nash point utilities are quite low for both parties. Altogether, there are 180 potential
offers that contain all combinations of values for the four issues.

Third, the domain taken from [15, 16] involves a case where England and
Zimbabwe negotiate an agreement on tobacco control. The leaders of both countries
must reach an agreement on five issues. England and Zimbabwe have contradictory
preferences for the first two issues, but the other issues have options that are jointly
preferred by both sides. The domain has a total of 576 possible agreements.

Our final negotiation case concerns the Grocery scenario, which models a shop-
ping negotiation in a local supermarket. The negotiation is between two persons
having different tastes, who wish to buy groceries together. The discussion is about
five product categories with four to five possible options, resulting in a scenario with
1600 possible outcomes. The preferences are modeled in such a way that a good
outcome is achievable for both, so the Nash and Kalai-Smorodinsky point utilities
are high for both parties; however, the outcome space is scattered (resulting in a
relatively low mean utility), so agents must explore it considerably to find the jointly
profitable ones.

To compensate for any utility differences in the preference profiles, the agents
play both sides of every scenario.

4.4.1.3 Acceptance Conditions

For each acceptance condition we tested all 3 × 7 = 21 pairings of agents, playing
with each of the 8 different preference profiles. We ran every experiment a total of
N = 15 times, so that altogether each acceptance condition was tested 21 × 8 × 15 =
2520 times in total. This resulted in running as many negotiations, and as every
negotiation lasts 3 min, the experiments took 126 hours of cpu time. We selected
a wide range of 102 acceptance conditions for experimental testing, as shown in
Table4.4. The different values of parameters will be discussed in the section below.

Additionally, we ran five more experiments with agents having their original,
built-in acceptance mechanism in place. That is, we also tested the original agents’
coupled acceptance mechanism for comparison purposes. As we cannot for example,
equip Agent K with the coupled acceptance condition of Yushu, we tested the built-in
mechanism by having each agent employ its own mechanism.

4.4.2 Hypotheses and Experimental Results

The experiments considered here are designed to discuss the main properties and
drawbacks of the acceptance conditions listed above. We formulate several hypothe-
ses with respect to the acceptance conditions we have discussed.
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Table 4.4 The selected ranges and increments for the parameters of different acceptance conditions
in the experimental setup

Acceptance condition Ranges Increments

ACprev(α, β) α ∈ [1, 1.05), β ∈ [0, 0.1) for α: 0.01, for β: 0.02

ACnext(α, β) α ∈ [1, 1.05), β ∈ [0, 0.1) for α: 0.01, for β: 0.02

ACconst(α) α ∈ [0, 1) 0.05

ACtime(T ) T ∈ [0, 1) 0.05

ACcombi
(
T, MAXW

)
T ∈ [0.95, 1) 0.01

ACcombi
(
T, AVGW

)
T ∈ [0.95, 1) 0.01

ACcombi
(
T, MAXT )

T = 0.99 –

To evaluate the hypotheses below, we have carried out a large number of experi-
ments. A small selection of the results is summarized in Table4.5. The table shows
the average utility obtained by the agents, and the standard deviation (of the N = 15
experiments), when equipped with several acceptance conditions. The “average util-
ity of agreements” column represents the average utility obtained by the agent given
the fact that they have reached an agreement. When they do not reach an agreement
(due to reaching the deadline), they get zero utility. Thus, as a general observation,
the following holds:

(T he acceptance dilemma)

Total average utility = Agreement percentage × Average utility of agreements.

This formula captures the essence of the acceptance dilemma: accepting bad to
mediocre offers yields more agreements of relatively low utility; while accepting
only the best offers produces less agreements, but of higher utility.

Our first hypothesis is about the simplest condition, ACconst(α), and reads as
follows:

Hypothesis 4.1 There is no single choice for α that makes ACconst(α) an
effective acceptance condition; this is mainly because the optimal choice of α

is very domain-dependent.

First, consider ACconst(0.9) and ACconst(0.8) by consulting Table4.5. When they
reach an agreement, they receive a very high utility (at least 0.9 or 0.8 respectively),
but this happens so infrequently (resp. 60 and 36% of all negotiations), that they
are ranked at the bottom when we consider total average utility. On the other hand,
choosing a low value for α, such as using ACconst(0.2), will always result in an
immediate agreement, but with one of the lowest possible scores of 0.492.
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Table 4.5 A small selection of the various acceptance conditions that were tested, together with
average utility obtained and standard deviation

Acceptance condition α β T Utility SD Agt. (%) Agt.
utility

ACprev(α, β) 1 0 – 0.680 0.0084 80 0.851

1 0.04 – 0.711 0.0094 84 0.842

1 0.08 – 0.722 0.0076 87 0.827

1.02 0.04 – 0.723 0.0085 86 0.837

ACnext(α, β) 1 0 – 0.683 0.0112 81 0.843

1 0.04 – 0.727 0.0067 87 0.833

1 0.08 – 0.731 0.0057 89 0.819

1.02 0.04 – 0.737 0.0060 89 0.830

ACconst(α) 0.20 – – 0.492 0.0025 100 0.492

0.55 – – 0.619 0.0027 92 0.671

0.80 – – 0.501 0.0078 60 0.842

0.90 – – 0.343 0.0080 36 0.952

Built-in mechanism – – – 0.737 0.0057 89 0.774

ACtime(T ) – – 0.10 0.533 0.0035 100 0.533

– – 0.40 0.548 0.0064 100 0.548

– – 0.70 0.602 0.0062 100 0.602

– – 0.95 0.648 0.0063 100 0.648

ACcombi(T, MAXW ) – – 0.97 0.756 0.0019 100 0.756

– – 0.98 0.762 0.0031 100 0.764

– – 0.99 0.761 0.0046 98 0.776

ACcombi(T, AVGW ) – – 0.97 0.739 0.0050 100 0.739

– – 0.98 0.754 0.0037 100 0.757

– – 0.99 0.759 0.0056 98 0.774

ACcombi(T, MAXT ) – – 0.99 0.737 0.0083 93 0.796

The utility of the best scoring AC of each category is represented in bold. The two right-hand side
columns show agreement percentages and the utility obtained when an agreement is reached

The best possible choice for α should therefore be somewhere in the middle
between zero and one, and is found to be 0.55 (see Fig. 4.1), yielding a payoff of
0.619. Firstly, this is still a suboptimal outcome compared to other AC’s, such as the
ACnext and ACcombi variants.

Moreover, it is worth noting that this optimal value may be best on average, but in
this case, averaging over all scenarios also hides a lot of information. When we break
down our analysis and look at the four domains separately (see the four figures of
Fig. 4.2), we see that the optimal range of α differs greatly per domain. For example,
on Itex versus Cypress, the optimal choice for α is around 0.6, while on Grocery,
the best performing value is in the range of [0.7, 0.8]. On the Laptop domain, any
choice for α ∈ [0, 0.8] is the best ACconst(α) can do in this scenario, and will cause
the agent to instantly accept most offers.
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Fig. 4.1 The average utility obtained by agents using ACconst(α). The vertical error bars indicate
one standard deviation to the mean

We conclude that our hypothesis is confirmed: in isolation, ACconst(α) is not
very advantageous to use. The main reason is that the choice of the constant α is
highly domain-dependent. A very cooperative scenario may have multiple win–win
outcomes with utilities above α. ACconst(α) would then accept an offer which is
relatively bad, i.e. it could have done much better. On the other hand, in highly
competitive domains, it may simply ‘ask for too much’ and may rarely obtain an
agreement. Its value lies mostly in using it in combination with other acceptance
conditions such as ACnext. It can then benefit the agent by accepting an unexpectedly
good offer or a mistake by the opponent.

As we discussed earlier in Sect. 4.2.3, the acceptance conditions ACprev(α, β)

and ACnext(α, β) are standard in literature for α ∈ [1, 1.03] and β ∈ [0, 0.2]. Many
agents tend to use these acceptance conditions, as they are well-known and easy to
implement. We have formed Hypothesis 4.2 about them.

Hypothesis 4.2 ACnext(α, β) will outperform ACprev(α, β) for all α and β.
However, both conditions will perform worse than combined acceptance con-
ditions, which also take the remaining time into account.

To test this hypothesis, we considered many different values for α and β in our
experiments, with ranges chosen around the values we had found in existing agents
(cf. Table4.2).
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(a)

(c)

(b)

(d)

Fig. 4.2 The average utility of ACconst(α) per negotiation scenario, for α ∈ [0, 1). a Laptop. b Itex
versus cypress. c England–Zimbabwe. d Grocery

Consulting Table4.5, the first observation is that ACprev(α, β) as well as ACnext

(α, β) already perform much better than ACconst for all tested values of α and β.
Higher values for α and β generally yield a better result, although the differences
are quite small. However, given that we average the utility over 15 runs, we are able
to statistically distinguish the performance for different values of α and β. We have
found ACnext(α, β) does indeed outperform ACprev(α, β) for all tested values of α

and β, except for β = 0 (two-tailed t-test, p < 0.01), thereby partially confirming
the hypothesis.

As an example, we have plotted ACnext(1, β) = ACgap(β) and ACnext(1, β) for
β ∈ [0, 1) in Fig. 4.3. We can confirm that ACnext(1, β) obtains scores that are sig-
nificantly higher (using p < 0.01) scores than ACprev(1, β), for β �= 0.
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Fig. 4.3 The average utility obtained by agents using ACnext(1, β) (in black), and ACprev(1, β)

(in white). The vertical error bars indicate one standard deviation to the average utility of N = 15
different runs

It makes sense that comparing the opponent’s offer to our upcoming offer is more
beneficial than comparing it to our previous offer, as ACnext is always ‘one step
ahead’ of ACprev. In general, ACnext is never worse than ACprev, and therefore there
seems no reason to use the latter.

One of the top choices for both ACnext and ACprev, is setting α = 1.02, and
β = 0.04 (interestingly, IAM(crazy)haggler makes the same choice for α, cf.
Table4.2). However, even for this choice, the combined acceptance conditions
ACcombi(T, MAXW ) outperform both of them for all tested values of T (two-tailed
t-test, p < 0.01). This also settles the second part of the hypothesis.

The reason for the relatively bad performance of ACnext and ACprev is that many
bidding strategies focus on the ‘negotiation dance’ [17]. That is, modeling the oppo-
nent, trying to make equal concessions and so on. When a strategy does not explicitly
take time considerations into account when making an offer, this poses a problem
for these two standard acceptance conditions: they rely completely on the bidding
strategy to concede to the opponent before the deadline occurs. When the agent or
the opponent does not concede enough near the deadline, the standard conditions
lead to poor performance.

Our third hypothesis with respect to the time-dependent condition is as follows:



86 4 Effective Acceptance Conditions

Hypothesis 4.3 ACtime(T ) always reaches an agreement, but of relatively low
utility. This utility improves when T gets closer to the deadline.

To evaluate this hypothesis we tested ACtime(T ) for many possible values of
T ∈ [0, 1), a selection of which can be examined in Table4.5. We have found that
the obtained utility increases monotonously with larger T , i.e.: it is optimal to choose
the value of T sufficiently close to the deadline, while still allowing enough time to
reach a win-win agreement. The fact that one has to accept as late as possible when
using ACtime(T ) clearly stems from the fact that we are dealing with undiscounted
domains only; see our overall conclusions (Sect. 11.3.4) for a discussion on possible
extensions in this regard.

From observing the acceptance probability of ACtime(T ) in the experimental
results, we see that the agent will always reach an agreement, therefore we con-
sider this part of the hypothesis confirmed.

Regarding the utility of the agreement, ACtime(T ) with T < 1 is a sensible crite-
rion to avoid a break off at all costs. It is rational to prefer any outcome over a break
off of zero utility. However, the resulting deal can be anything. As we can see from
the table, this is the reverse situation of ACconst(0.9): ACconst(0.9) rarely gets a deal,
but when it does, it is of high utility. Conversely, ACtime(T ) yields a low agreement
score (0.648 for T = 0.95), but with certainty of agreement. The overall score is the
same (0.648), but it is interesting to note that this score is worse than all scores by
either ACnext or ACprev (two-tailed t-test, p < 0.01). This phenomenon can again be
explained by the acceptance dilemma: by accepting any offer near the deadline, it
reaches more agreements, but of relatively low utility.

This insight led us to believe that more consideration has to be given to the
remaining time when deciding to accept an offer. That is why we conclude our
analysis with combined acceptance conditions, which expand upon the idea to get
better deals near the deadline.

When evaluating ACcombi(T, α), we expected the following characteristics. First,
ACcombi(T, α) is an extension of ACnext in the sense that it will accept under
broader circumstances. It alleviates some of the mentioned drawbacks of ACnext

by also accepting when the utility gap between the parties is positive. Also note
that in addition to the parameters that current acceptance conditions use, such as
my previous bid xtn−1

A→B , my next bid xt ′
A→B , the remaining time, and the opponent’s

bid xt
B→A, this condition employs the entire bidding history H t

A↔B to compute the
acceptability of an offer. Therefore we expect better results than with ACnext, with
more agreements, and when it agrees, we expect a better deal than by using ACtime(T ).

We capture this last statement in our final hypothesis:

http://dx.doi.org/10.1007/978-3-319-28243-5_11
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Hypothesis 4.4 The combination ACcombi(T, α) outperform other acceptance
conditions, such as ACtime(T ) and ACnext(α, β), primarily by getting deals of
higher utility.

As is evident from the experimental results, there are two acceptance conditions
that dominate the others, namely ACcombi(T, MAXW ), as well as ACcombi(T, AVGW )

with T close to the deadline. The results are not statistically different for the different
values of T , but any of the tested values performs quite well. One of the best AC’s
of the test is ACcombi(0.98, MAXW ) with a score of 0.762, which is even better
than the built-in mechanisms of the agents, and also surpasses the performance of
ACnext(α, β) for any α and β (significantly so, using a two-tailed t-test, p < 0.01).
In particular, it is at least 12 % better than ACnext (two-tailed t-test, p < 0.01).

Similar to ACtime, the combined conditions still get a deal almost every time, but
with a higher payoff. However, the average utility of an agreement is not the highest:
the built-in mechanisms and several ACconst(α) conditions get better agreements. But
again, we can observe that their agreement rate is also lower, resulting in a higher
overall score for the combined conditions. This settles our last hypothesis.

Finally, aiming for the highest utility that has been offered so far (i.e., using
ACcombi(T, MAXT )) is not as successful, mostly due to a big decrease in agreements.
The higher utility that is obtained with this condition does not compensate for the
loss of utility that is caused by a break off.

4.5 Conclusion

In this chapter, we aimed to classify current approaches to generic acceptance condi-
tions and to compare a selection of acceptance conditions in a real-time setting. We
presented the challenges and proposed new solutions for accepting offers in current
state-of-the-art automated negotiations. The focus of this chapter is on decoupled
acceptance conditions (i.e.: general conditions that do not depend on a particular
bidding strategy), for which we have defined a formal negotiation model.

Designing an effective acceptance condition is challenging because of the accep-
tance dilemma: better offers may arrive in the future, but waiting for too long can
result in a break off of the negotiation, which is undesirable for both parties.

We have presented and classified many of the standard acceptance conditions that
are currently used by negotiating agents, including ACnext, ACprev, and ACconst. From
our results, it is apparent that they do not always yield optimal agreements, and we
established that they perform worse than more sophisticated acceptance conditions.

In addition to classifying and comparing existing acceptance conditions, we have
devised three new acceptance conditions by combining existing ones. This included
two acceptance conditions that estimate whether a better offer might occur in the
future based on recent bidding behavior. These conditions obtained the highest util-
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ity in our experiments and hence performed better than the other conditions we
investigated. In particular, they outperform the acceptance mechanisms that are used
by the top ANAC 2010 agents, and even the winner, Agent K, performs better when
equipped with our combined acceptance conditions than with its built-in mechanism.

This chapter is based on the following publications: [18, 19]

Tim Baarslag, Koen V. Hindriks, and Catholijn M. Jonker. Effective acceptance conditions in real-
time automated negotiation. Decision Support Systems, 60:68–77, Apr 2014

Tim Baarslag, Koen V. Hindriks, and Catholijn M. Jonker. Acceptance conditions in automated
negotiation. In Takayuki Ito, Minjie Zhang, Valentin Robu, and Tokuro Matsuo, editors, Complex
Automated Negotiations: Theories, Models, and Software Competitions, volume 435 of Studies in
Computational Intelligence, pages 95–111. Springer Berlin Heidelberg, 2013
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Chapter 5
Accepting Optimally with Incomplete
Information

Abstract In the previous chapter we classified generic acceptance conditions, and
we formulated new ones that performed better in an experimental setting. This chapter
takes a different approach by devising theoretically optimal solutions. We approach
the decision of whether to accept as a sequential decision problem, by modeling the
bids received as a stochastic process. We argue that this is a natural choice in the
context of a negotiation with incomplete information, where the future behavior of the
opponent is uncertain. We determine the optimal acceptance policies for particular
opponent classes and we present an approach to estimate the expected range of offers
when the type of opponent is unknown. We apply our method against a wide range
of opponents, and compare its performance with acceptance mechanisms of state-
of-the-art negotiation strategies. The experiments show that the proposed approach
is able to find the optimal time to accept, and improves upon widely used existing
acceptance mechanisms.

5.1 Introduction

Suppose two parties A and B are conducting a negotiation, and B has just proposed
an offer to A. A is now faced with a decision: she must decide whether to continue,
or to accept the offer that is currently on the table. On the one hand, accepting the
offer and ending the negotiation means running the risk of missing out on a better
deal in the future. On the other hand, carrying on with the negotiation involves a risk
as well, as this gives up the possibility of accepting one of the previous offers. How
then, should A decide whether to end or to continue the negotiation?

Of course, A’s decision making process will depend on the current offer, as well as
the offers that A can expect to receive from B in the future. However, in most realistic
cases, agents have only incomplete information about each other [5, 9, 15]. In this
chapter, we explore in particular the setting where the opponent has only limited or
no knowledge of A’s preferences, and the proposals that A receives will therefore
be necessarily uncertain. This makes A’s task of predicting B’s future offers by no
means an easy one.

© Springer International Publishing Switzerland 2016
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Moreover, predicting B’s future offers is only part of the solution: even when
A can predict B’s moves reasonably well, A still has to decide how to put this
information to good use. In other words, even when a probability distribution over
the opponent’s actions is known, it is not straightforward to translate this into effective
negotiation behavior. As an extreme example, consider an opponent R (for Random)
who will make random offers with utility uniformly distributed in [0, 1]. Suppose
furthermore that we can expect to receive two more bids from R until the deadline
occurs. R currently makes an offer of utility x ∈ [0, 1]; for what x should we accept?
Of course, an even better bid than x might come up in one of the two remaining
rounds; on the other hand, it might be safer to settle for this bid if x is large enough.
For this particular case, we will prove that there is an optimal acceptance strategy,
and we show exactly for what x to accept (see Sect. 5.3).

The main contribution of this chapter is that we address both of A’s problems:
first, at every stage of the negotiation, we provide a technique to estimate the bidding
behavior of various opponent classes by modeling A’s dilemma as a stochastic deci-
sion problem. For particular opponent classes we are able to provide precise models,
and to formulate exact mathematical solutions to our problem. For the second step,
using the ranges found earlier, we borrow techniques from optimal stopping theory
to find generic, optimal rules for when to accept against a variety of opponents in
a bilateral negotiation setting with incomplete information. The solutions proposed
are optimal in the sense that there can be no better strategy in terms of utility.

We begin by introducing our approach in Sect. 5.2, and we apply our methods to
find optimal rules in the specific case of opponents that bid randomly in Sect. 5.3. We
then build upon these cases and subsequently work out more realistic scenarios in
the following sections. In Sect. 5.4, we explore opponents that change their behavior
over time, and we determine optimal stopping rules when good estimates of their
bidding behavior are known. We extend these results by combining our approach
with a state-of-the-art prediction mechanism, and we demonstrate that our approach
outperforms existing accepting mechanisms, even when the opponent’s behavior is
unknown.

5.2 Decision Making in Negotiation Under Uncertainty

As defined in Sect. 2.2.2, we focus on a bilateral negotiation, wherein two agents try
to reach an agreement while maximizing their own utility using the alternating-offers
protocol. However, instead of a real time line, the negotiating parties take turns in
exchanging offers for a fixed number of rounds N . In case this deadline is reached
before both parties come to an agreement, both receive zero utility. A preference
profile is described by a utility function u(x), which maps each possible outcome
x in the negotiation domain to a utility in the range [0, 1]. If an agent receives an
offer x , its acceptance mechanism has to decide whether u(x) is high enough to be
acceptable.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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5.2.1 Stochastic Behavior in Negotiation

Suppose player B is involved in a bilateral negotiation with private preference infor-
mation, and at some point in time, he has decided that he is satisfied with a utility
around u, called his target utility. However, there are many possible bids with approx-
imately this utility for player B. As usual, we call this set of bids X the iso-level
bids with utility u. As player B is indifferent between these bids, B may attempt to
optimize player A’s utility in order to maximize the chance of an agreement. But
this is difficult for B to achieve, as he does not know A’s preferences. When using
the alternating offers protocol, player B cannot simply send out all considered offers
as one bundle, but instead, he can only offer them sequentially. Player B typically
continues to select different bids from X until his target utility changes; then a new
set of iso-level bids is generated, and the process starts again. The order in which
player B picks bids from the set of equally preferred bids X will differ per player, but
due to incomplete information, he can only select a bid with a particular opponent
utility with limited certainty. Therefore, we can reasonably model the offers that are
presented to A as a stochastic process.

This kind of stochastic behavior can be observed in practice in the Automated
Negotiating Agents Competition (Appendix B). ANAC is a yearly international com-
petition in which negotiation agents compete in an incomplete information setting.
Half of the participants of ANAC 2011 [1, 3, 7, 13, 24] were not designed to explicitly
optimize opponent utility and therefore, with the limited information available, sim-
ply selected a random element from X ; others used opponent modeling techniques
that estimate the opponent’s preferences in order to select bids closer to the Pareto
optimal frontier. However, opponent modeling is seldom capable of making perfect
estimates [19]. Consequently, even when player B employs an opponent modeling
technique, A will still receive bids of varying utility. Moreover, the agents usually
already anticipated the limitations of their opponent model, and therefore randomly
chose among the estimated top bids for the opponent [12, 23], adding even further to
the random appearance of the utility of their bids. As a result, the negotiation traces
of ANAC 2011 showed to a very large extent the stochastic behavior discussed above
(see also Fig. 5.1). Only 25 % of the negotiation moves were an improvement for the
opponent over the previous bid; the other 75 % of the moves could be classified as
selfish, unfortunate, or silent [4].

In the next paragraph, we present our model of bid reception as a stochastic
process, and then present optimal stopping techniques to optimize A’s expected
utility.

5.2.2 Optimal Stopping in Negotiation

In 1613, the celebrated astronomer Johannes Kepler wrote a long letter to Strahlendorf
in which he describes a great problem that he faced [10, 11]. Kepler had lost his
wife and set about finding a new wife through a series of interviews among eleven
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Fig. 5.1 Despite the fact that Side B concedes predictably over time, the utility of the offers seem
to be randomly distributed around the [0.4, 0.8] interval for Side A, and as a result, the best bids
for A occur during the middle of the negotiation

candidates. In order not to hurt the feelings of his potential wives, he would have to
interview them sequentially and make a decision to marry them before moving on to
the next candidate. His problem was: how do I decide to stop looking and settle for
one of the candidates? Kepler’s problem is now known as an instance of an optimal
stopping problem: a stochastic decision problem of determining whether to accept
among offers appearing sequentially and randomly.

We can frame the problem of accepting a bid as an optimal stopping problem [6],
in which an agent is faced with the dilemma of choosing when to take a particular
action, in order to maximize an expected reward or minimize an expected cost. In
such problems, observations are taken sequentially, and at each stage, one either
chooses to stop to collect, or to continue and take the next observation (usually at
some specified sampling cost).

The model of bid reception is as follows: at each of a total of N rounds, we receive
a bid, which has an associated utility, or value, drawn from a random variable over
the unit interval. At this point, we must decide whether to accept the bid, or not. Once
we accept, the deal is settled and the negotiation ends. If we continue, then there is no
possibility of recalling passed-up offers; i.e., previous offers are unavailable unless
they are presented to us again. Hence, at each round, we must decide to either continue
or to stop participating in the negotiation, and we wish to act so as to maximize the
expected net gain. Once an offer is turned down, and we decide to wait for another
bid (at a cost C), the total number of remaining observations decreases by one. We
will develop the theory here for arbitrary sampling cost C , but in the remainder of
the thesis, we will assume the cost to be zero.
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At every stage, the current situation may be described by a state ( j, x), which
is characterized by two parameters: the number of remaining observations j ∈ N,
and the latest received offer x ∈ [0, 1]. Let the utility distribution with j rounds
remaining be given by a random variable X j , with associated distribution function
Fj . We can think of X j as the possible utilities we receive when the opponent makes
iso-level bids, and Fj (u) represents the probability of receiving a bid with utility less
than or equal to u. The expected payoff is then given by

V ( j, x) = max(x, E(V ( j − 1, X j−1)) − C), (5.1)

where we abbreviate the second term E(V ( j − 1, X j−1)) − C as v j . This represents
the expected value of rejecting the offer at ( j, x), and going on for (at least) one more
period. Note that v j does not depend on x . Thus, using the substitution, we get

v j = E(max(X j−1, E(V ( j − 2, X j−2)) − C) − C,

which leads to the following recurrence relation:

{
v0 = 0,

v j = E(max(X j−1, v j−1)) − C.
(5.2)

In [6, 16] it is proven that for any s ∈ R, and for any random variable X with
distribution function F for which E(X) is finite, the following holds:

E(max(X, s)) = s + TF (s),

with

TF (s) =
∫ ∞

s
(1 − F(t)) dt.

And therefore the recurrence relation describing v j can be written as

v j = v j−1 +
∫ ∞

v j−1

(
1 − Fj−1(t)

)
dt − C. (5.3)

Thus, if we know the distribution Fj for every j , we can compute the values v j using
the above recurrence relation. Then, deciding whether to accept an offer x is simple:
if x ≥ v j we accept, otherwise we reject the offer (see Algorithm 1).

There is however, a serious impediment to using our stochastic decision model in
practice: we do not know the distributions of the utility that the opponent will present
to us in the upcoming rounds; furthermore, the distributions are highly influenced
by the specifics of the negotiation scenario.

However, against specific classes of opponents, we are able to establish these
probabilities, and in an exact way. We will first focus our attention on theoretical
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cases that resemble the relevant cases encountered in practice. In order to develop
the theory, we will first take on the extreme case of random opponent behavior, and
gradually add complexity as we proceed.

Of course, in a general setting we do not know the opponent’s behavior, and in
that case we require a method to determine the distributions X j for every remaining
round j . This means that for every round, we need to estimate the probability of
receiving certain utility in our utility space. This is the most difficult case, which we
will cover at the end of the chapter.

All in all, we consider three different opponent classes:

1. Random behavior: fixed and known uniform X j in every round; this is solved
mathematically in Sect. 5.3.

2. Known time-dependent behavior: changing, but known uniform X j ; this is opti-
mally solved in Sect. 5.4.1.

3. Unknown time-dependent behavior: changing and unknown arbitrary X j ; covered
in Sect. 5.4.2.

We will start with the first case, where we consider random opponent behavior.

5.3 Accepting Random Offers

Suppose an agent A is negotiating with its opponent, and the deadline is approaching,
so both agents have only a few more offers to exchange. As argued above, the oppo-
nent will often offer bids with varying utility for A, due to its incomplete information
of what A exactly wants. This means that from A’s point of view, the utility of the
presented offers will have a particular stochastic distribution. The aim of A is then
to pick the best one given the limited time that is left.

We start by studying the extreme case of a maximally unpredictable opponent, or
Random Walker (see Sect. 2.3.3), who makes random bids at every stage of the nego-
tiation. We first solve this case analytically, before moving on to more complicated
settings.

There are two crucial properties of Random Walker that make it a simplified case:
first, it picks random bids uniformly from the bid space; second, it is stateless; i.e.,
it uses the same decision function in every round of the negotiation, regardless of
the behavior of the other party or the time that has passed. We will weaken both
constraints in later stages of this chapter.

5.3.1 Uniformly Random Behavior

Using Eq. (5.2), we can determine the optimal solution against Random Walker,
using the added knowledge that every X j does not depend on the number of rounds
left, and assuming every X j is uniformly distributed:

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Proposition 5.1 Against an opponent who makes random bids of utility uni-
formly distributed in [0, 1], and with j offers still to be observed, one should
accept an offer of utility x exactly when x ≥ v j , where v j satisfies the following
equation: {

v0 = 0,

v j = 1
2 + 1

2 v2
j−1,

(5.4)

This recurrence relation has the following properties: v j is monotonically
increasing, and

lim
j→∞ v j = 1.

Proof Let X be the uniform distribution over [0, 1] with distribution function
F . Playing against Random Walker, all X j ’s are uniform distributions over
[0, 1] and hence equal to X . This yields:

TF (s) =
∫ ∞

s
(1 − F(t)) dt (5.5)

=

⎧
⎪⎨

⎪⎩

1
2 − s, s < 0.

1
2 (1 − s)2, 0 ≤ s ≤ 1.

0, s > 1.

(5.6)

Since we are in the case 0 ≤ s ≤ 1, we get:

v j = v j−1 + 1

2
(1 − v j−1)2 = 1

2
+ 1

2
v2

j−1.

It is easy to show with recursion that

1 − 2

j
< v j−1 < v j < 1,

and therefore,
lim
j→∞ v j = 1.

When we substitute v j = 1 − 2x j in Eq. (5.4), we get the equivalent relation of the
logistic map x j = x j−1(1 − x j−1) at r = 1, which due to its chaotic behavior does
not in general have an analytical solution. However, we have visualized its behavior
for j ∈ [0, 200] in Fig. 5.3 (uniform case). From this, we see that the answer to the
question posed in the introduction is as follows: with two rounds to go, one should
accept an offer x exactly when x ≥ v2 = 0.625.
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Fig. 5.2 The outcome space for player A and B, and the resulting cumulative distribution function
for player A

Note that lim j→∞ v j = 1 means we can expect to receive utility arbitrarily close
to the maximum given enough time, and that this limit v = 1 is also the fixpoint of
recurrence relation (5.4).

5.3.2 Non-Uniform Random Behavior

In Proposition 5.1, we consider random behavior by the opponent in a uniform way;
i.e., a scenario where every received utility is equally likely. However, in practice
such situations rarely occur. Negotiation scenarios usually enable agents to make
trade-offs between multiple issues, resulting in clustering of potential outcomes.
Hence, in a typical scenario, even when the opponent chooses bids randomly, the
utilities of those bids are not distributed uniformly.

A typical example of such a multi-issue negotiation scenario is depicted in (see
Fig. 5.2a), and involves a case where England and Zimbabwe negotiate an agreement
on tobacco control (see Sect. C.2 of the Appendix). The leaders of both countries
have contradictory preferences for two issues, but three other issues have options
that are jointly preferred by both sides. We will use it as a running example, but the
outlined technique can be applied to any negotiation scenario.

For such an outcome space, we cannot simplify Eq. (5.5) any further, so instead, we
need to integrate the cumulative distribution function F(x) directly (see Fig. 5.2b).
Note that F(x) can be computed by the agent, simply by considering the distribution
of the utilities of all possible outcomes. Using Eq. (5.3), we can now compute the
values v j for a scenario such as England–Zimbabwe; see Fig. 5.3.
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0 0 0
1 0.5 0.5734
2 0.625 0.6449
3 0.6953 0.6855
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10 0.8611 0.7953
100 0.9812 0.9338
200 0.9903 0.9586
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Fig. 5.3 The optimal stopping values v j for different rounds j versus uniformly random (Uniform
case) and non-uniformly random (E–Z) behavior

Note that the value of v j for England–Zimbabwe increases faster than in the
uniform case, but at the same time it also tends to 1 more slowly. This can be
explained by the fact that this outcome space is more sparse in both extremes: since
there are less bids of very low utility, it should aim higher at the end of the negotiation,
and as there are also less bids of high utility, it should be satisfied more easily at the
start of the negotiation.

5.3.3 Experiments

In order to test the efficacy of the optimal stopping condition, we first integrated it
into a functional negotiating agent. This requires care, as normally, the behavior (and
thus the performance) of a negotiating agent is determined by many factors outside
of the acceptance mechanism, particularly its bidding strategy. Note however, that
against Random Walker, bidding strategies with the same acceptance policy perform
equally, as it does not matter which offers are sent out. This holds because of three
properties:

1. Random Walker’s offers do not depend on the opponent’s behavior; hence, it is
not sensitive to the other’s bidding strategy;

2. Random Walker does not accept any offers; in our experiments, opponents are
not allowed to accept, as this could prematurely end the negotiation, without
revealing anything about the performance of the acceptance strategies.

3. The optimal stopping condition works independently of bids that are sent out.
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Taking this into account in our experiments, we opted for an accompanying bid-
ding strategy that is as simple as possible, namely Hardliner (see Sect. 2.3.3). This
strategy simply makes a bid of maximum utility for itself and never concedes. Clearly,
in a real negotiation setting, this is not a viable bidding tactic as it generally negatively
influences the opponent’s behavior, but this is of no concern against a non-behavior-
based opponent.

Using the BOA framework described in Chap. 3, we combined the Hardliner
bidding strategy (using no opponent model) with the optimal stopping condition as
the acceptance strategy. We then compared its performance with the strategies of
other state-of-the-art agents currently available for our setting. We selected all agents
from the ANAC 2010 and 2011 editions (cf. Sect. C.1 and D.1). We also included
the time-dependent tactics (TDT’s) as described in Sect. 2.3.3, such as Hardliner
(with concession factor e = 0), Boulware (e = 1

2 ), Conceder Linear (e = 1), and
Conceder (e = 2) taken from [8]. To analyze the performance of different agents,
we employed our Genius environment [18] (cf. Appendix A).

Algorithm 1: Optimal Stopping main decision body
Input: The number of remaining rounds j, and the last received bid x by the

opponent.
Output: Acceptance or rejection of x.
begin

o�eredUtility �� getUtility(x);
target �� determine(vj);
if o�eredUtility � target then

return Accept
else

return Reject // And send a counter-offer

For our negotiation scenarios, we opted for the England–Zimbabwe domain
described in Sect. C.2 of the Appendix, and a discretized version of Split the Pie
[20, 21], where two players have to reach an agreement on the partition of a pie
of size 1. The pie will be partitioned only after the players reach an agreement, in
which case one gets x ∈ [0, 1], and the other gets 1 − x . In this scenario, Random
Walker makes bids of utility uniformly distributed in [0, 1], since it proposes random
partitions of the pie.

The results of our experiment in the uniform case and on England–Zimbabwe are
plotted in Figs. 5.4 and 5.5 respectively, both for N = 10 and N = 100 negotiation
rounds. The optimal stopping condition significantly outperforms all agents (one-
tailed t-test, p < 0.01) in all cases.

In the uniform case (cf. Fig. 5.4), it obtains the highest score possible both in 10
and in 100 rounds, getting respectively 86 and 98 % of the pie on average. Note that
this is exactly equal to the theoretical values v10 and v100 shown in the uniform case
of Fig. 5.3.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_3
http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Fig. 5.4 The optimal stopping condition outperforms all ANAC agents against uniform Random
Walker for 10 and 100 rounds. Average utility plotted over 5000 runs; the errors bars indicate one
standard deviation to the mean

On England–Zimbabwe (cf. Fig. 5.5), the optimal stopper obtains less utility for
N = 10 in an absolute sense compared to the uniform case, but the results are even
more pronounced relative to the other agents. A moment of reflection makes clear
why: given the clustering of bids of medium utility (see Fig. 5.2a), there is less chance
for Random Walker to propose a very fortunate bid for the opponent. This explains
why the acceptance strategies of the other agents perform relatively worse. Note that
the end result obtained by the optimal stopper is approximately 0.79 and 0.93 for
N = 10 and N = 100 respectively, which is again equal to the optimal values v10

and v100 shown in the E–Z case of Fig. 5.3.

5.3.4 When Optimal Stopping Is Most Effective

As is evident from the results, optimal stopping performs better than the other agents
against Random Walker. This is to be expected given the fact that no agent could
possibly do better; however, the difference with the current state-of-the-art is sur-
prisingly big in some cases, for example compared to the ANAC 2010 winner, Agent
K [13], and even more so when the number of rounds is limited. The reason is that
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Fig. 5.5 The optimal stopping condition outperforms all ANAC agents against Random Walker
on England–Zimbabwe for N = 10 and N = 100 rounds; utility averaged over 5000 runs

many of the currently used acceptance mechanisms are rather straightforward, and
only become successful against Random Walker when enough time is available.

This can be illustrated by considering the baseline acceptance condition where an
agent accepts if and only if the offered utility is above a fixed threshold α, as is done
by various agents [13, 22, 24, 25]. In the uniform case, its expected utility obtained
over N rounds equals the probability it will obtain an offer above α multiplied by
the expected utility above α:

(1 − αN ) · α + 1

2
. (5.7)

This is not a very efficient acceptance condition for small N ; for example, for N = 2,
the optimal value of α (i.e., the value of α that maximizes formula (5.7)) is 1

3 , with
expected utility of 0.593, while the optimal value that can be obtained is v2 = 0.625.
However, for large N , choosing α close to one is already surprisingly efficient. For
example, for N = 100, the optimal value of α is 0.948, with expected utility of 0.969.
This is already quite close to the optimal value of v100 = 0.981; this indicates that
in case bids are randomly distributed, the added value of our solution lies primarily
in negotiations with a limited amount of total rounds, or when only limited time is
left in a negotiation. Therefore, in the next sections, we extend our results in order to



5.3 Accepting Random Offers 103

tackle more generic circumstances. Some earlier solutions can be derived from the
more general ones treated later; however, we have elected to go from simple to the
more complicated.

5.4 Time Dependent Offers

One of the most restrictive assumptions so far was to assume the opponent plays
completely randomly. As we argued, this is a sensible assumption when modeling
an opponent that is extremely unpredictable due to imperfect information, but the
general case is more complicated. Almost all negotiation agents change their range of
offers over time; i.e., they are time dependent strategies.1 Hence, we require optimal
stopping policies for these cases as well.

The challenge of the more general case is that we have to account for the fact
that not only the presented utilities may fluctuate, but also the range of future offers
may be different at different times. Establishing this range is not easy, because the
strategy used by the opponent is of course unknown to us. The offers of any time
dependent opponent with incomplete information can again be modeled by a sto-
chastic distribution, but this time the distribution will change over time. In terms of
optimal stopping, this means that the bid distribution X j can be different for every j .

5.4.1 Uniformly Unpredictable Offers

If we assume that the opponent’s offers are uniformly distributed, we only need to
know the interval of utilities we can expect in every round. If this is the case, then
we are able to compute the optimal time to accept, as is stated in the following
proposition.

Proposition 5.2 Against a time-dependent opponent who, with j rounds still
to be observed, makes bids uniformly distributed in X j = [a j , b j ], the optimal
stopping cut-off is v j , where v j satisfies the following equation:

v j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if j = 0
v j−1, if v j−1 ≥ b j−1
b j−1+a j−1

2 , if v j−1 ≤ a j−1

v j−1 + 1
2 · (b j−1−v j−1)2

b j−1−a j−1
, if a j−1 < v j−1 < b j−1.

1Note that these should not be confused with the well-known time-dependent tactics as described
in Sect. 2.3.3, which are particular kinds of time dependent strategies.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Proof From Eq. (5.2), we have

v j = E(max(X j−1, v j−1)),

so immediately, if v j−1 ≥ b j−1, then v j−1 ≥ X j−1, and thus v j = v j−1. On
the other hand, if v j−1 ≤ a j−1, then v j = E(X) = b j−1+a j−1

2 . So therefore, the
only case left is a j−1 < v j−1 < b j−1, in which case we derive the following:

v j = P(X j−1 ≤ v j−1) · v j−1 + P(X j−1 > v j−1) · P(X j−1 | X j−1 > v j−1)

= v j−1 − a j−1

b j−1 − a j−1
· v j−1 + 1

2
· b j−1 − v j−1

b j−1 − a j−1
· (v j−1 + b j−1)

= v j−1 + 1

2
· (b j−1 − v j−1)2

b j−1 − a j−1
.

Note how this proposition is an extension of Proposition 5.1: if we set X j = [0, 1]
for every j , the equation simplifies to v j = 1

2 + 1
2 v2

j−1 again.
Also, we observe that in the special case of perfect information, the distributions

would be singletons of the form X j = {x j }, with probability 1 for the outcome x j .
The equation of Proposition 5.2 then simplifies to

v j =
{

0, if j = 0
max(x j−1, v j−1), otherwise.

= max
0≤k< j

xk .

This means that the optimal stopping procedure has the desirable property that
when it gets perfect estimates as input, it will also produce perfect output.

5.4.2 Arbitrarily Unpredictable Offers

Proposition 5.2 is useful to gain insight into the optimal acceptance policy, but in prac-
tice, the distributions X j are neither known, nor uniformly distributed, and therefore
an estimation method is required against arbitrary opponents. Of course, the success
of the optimal stopping rules will greatly depend on the fidelity of the estimating
technique used to predict the opponent’s behavior. Therefore, we first examine the
case of a perfect estimator, to see how our method performs in the ideal case. After
that, we will move our focus to an estimator that can be used in practice.
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5.4.2.1 Opponent Prediction Using Perfect Estimates

The perfect estimation method that we employ divides the number of rounds N into
a number of time slots S. Then, by momentarily using perfect information, it gets the
minimum and maximum utility that will be offered by the opponent during that time
slot. This allows us to control exactly the precision of the estimate, where using more
slots emulates having more information about the opponent’s behavior. If we set the
number of slots equal to the total number of rounds, we are in a full information
state and the performance should be theoretically optimal. If we use only one slot,
we have less information, knowing only the opponent’s utility range over the entire
N rounds.

5.4.2.2 Opponent Prediction Using Gaussian Process Regression

Finally, we consider an estimation method that uses as input only the information
that can be observed during the negotiation, namely the utility of the offers made by
the opponent. For this, we opted for a Gaussian process regression (GPR) technique
as described in [24]. We selected the GPR technique because it can be computed
in real time during the negotiation, and it is specifically designed to be robust with
respect to significantly varying observations. It works as follows: for each offer made
by the opponent, the round at which the offer was made is recorded, along with the
offered utility. From this, the future concessions of the opponent are estimated using
regression with a Gaussian process. To reduce the effect of noise, the offers received
are aggregated in a number of time windows, and only the maximum value that is
received in each time window is used as input for the Gaussian process.

The output of the Gaussian process regression is a normal distribution for every
upcoming round k, with mean μk and standard deviation σk . The mean μk gives
a prediction of the most likely offered utility value in round k, whilst the standard
deviation σk gives an indication of how accurate the prediction is. When using GPR,
the opponent bid distribution is estimated in real-time by a normal distribution,
truncated to fit in the range [0, 1].
Algorithm 2: Determining vj

Input: The number of remaining rounds j, and all negotiation outcomes �.
Output: vj.
begin

if j = 0 then
return 0

// Use either perfect estimation, or GPR
Yj�1 �� estimated utility distribution at j � 1;
// Use either uniform, or Gaussian distribution for Xj�1
Xj�1 �� utility distribution of Yj�1 over �;
// Recursively determine vj�1
return E(max(Xj�1, vj�1))
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Table 5.1 Characteristics of the negotiation scenarios used in the experiments

Scenario Size Opposition

Car 15625 Low

Amsterdam 3024 Medium

England–Zimbabwe [17] 527 Medium

Nice Or Die [3] 3 High

Itex versus Cypress [14] 180 High

Travel 188160 Medium

5.4.3 Experiments

To analyze the performance of optimal stopping (OS) against time dependent negoti-
ation strategies, we adopted the same experimental setup as before, this time testing
it with both perfect estimates and the GPR technique. We set the number of Gaussian
process regressions to 10, and we set the number of samples equal to the number of
rounds (for details, see [24]).

We used two versions of perfect estimation: the full information state by setting
S = N (called “perfect estimation with full slots”), and a version with S = 1 (called
“perfect estimation with one slot”). We also tested two variants of the GPR technique:
in one, we simply set X j equal to the truncated Gaussian distribution with mean μ j

and standard deviation σ j as predicted by the GPR technique (called “Gaussian GPR
prediction”). These predictions turned out to be overly optimistic in most cases,
since the GPR technique uses as input the maximum utility received in each time
slot. Therefore, we opted to include a simplified second version, which produces a
uniform distribution between zero and the estimated maximum offered utility, which
we set to μ + 2σ (called “uniform GPR prediction”). See also Algorithm 2.

As the specifics of the negotiation scenario influences the behavior of the oppo-
nent, we picked a total of six negotiation scenarios from ANAC 2010 and 2011 (see
Appendix C and D), aiming for a large spread of negotiation characteristics (see
Table 5.1).

For the opponents, we selected various TDT’s from [8], as defined in Sect. 2.3.3.
Our optimal stopping policy works against any type of time dependent negotiation
strategy, but we selected TDT’s because they are typical, well-known examples of
strategies that change their range of bids over time. Additionally, as in the case of
Random Walker, TDT’s are non-adaptive and hence it is not important what counter-
offers are sent out to them.

We selected the same TDT’s used earlier, namely: Hardliner, Boulware, Conceder
Linear, and Conceder. We generated many variants of each opponent by choosing the
values 0.7, 0.8, and 0.9 for the min parameter (which controls the utility threshold
up to where the agent will concede [8]). Note that this creates quite a competitive

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Fig. 5.6 The utilities obtained by ANAC agents and optimal stopping conditions with different
estimation methods against time dependent opponents for 10 and 100 rounds

opponent pool, as the opponents will never fully concede. This leads to only small
utility differences between the different acceptance strategies, but this should be
regarded an artifact of our competitive setup. The average score of all agents is
shown in Fig. 5.6.

Optimal stopping with perfect estimation with full slots should be considered the
theoretical upper bound here; and indeed, it outperforms all other methods. Among
the agents that act with incomplete information, the Boulware agent obtains a sur-
prisingly good score. Its strategy turns out to be particularly successful against TDT’s
since it waits for a long time to let the opponent concede as much as possible, until
it quickly concedes in the end to obtain an agreement. However, because it waits for
so long, it misses out on good offers that are offered earlier.

Gaussian GPR prediction is not as successful, mainly because it was found to
overestimate the opponent’s willingness to concede, and hence it aimed for too much
during the negotiation. It is optimal stopping with uniform GPR that performs sig-
nificantly best (one-tailed t-test, p < 0.01), which shows that the optimal stopping
policy is indeed a robust mechanism that can still perform well in an incomplete
information setting.
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5.5 Conclusion

This chapter deals with the question of when to accept in a bilateral negotiation
with incomplete information. Our approach has been to model the opponent’s bids
as a stochastic process, and to regard the decision of when to accept as a sequential
decision problem. We first determined the optimal acceptance policies for particular
opponent classes of which we were able to predict the behavior well. Of course,
in the general case of unknown opponents, the solutions are only as good as the
estimation of the opponent’s behavior. We have shown however, that our techniques
are robust, in the sense that they also perform well in practice. This demonstrates
that our optimal stopping mechanism is a valuable element of a negotiating agent’s
strategy, whether in a complete or incomplete information setting.

This chapter is based on the following publication: [2]

Tim Baarslag and Koen V. Hindriks. Accepting optimally in automated negotiation with incomplete
information. In Proceedings of the 2013 International Conference on Autonomous Agents and
Multi-agent Systems, AAMAS ’13, pages 715–722, Richland, SC, 2013. International Foundation
for Autonomous Agents and Multiagent Systems
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Chapter 6
Measuring the Performance of Online
Opponent Models

Abstract Decoupling agents as we have done in Chap. 3 helps us to focus on the
individual components of a negotiating agent’s design. One principal component
of a negotiating agent’s strategy is its ability to take the opponent’s preferences
into account. Every year, new negotiation agents are introduced with better learning
techniques to model the opponent’s preferences. Our main goal in this chapter is
to evaluate and compare the performance of a selection of state-of-the-art online
opponent modeling techniques in negotiation, and to determine under which cir-
cumstances they are beneficial in a real-time, online negotiation setting. Towards
this end, we provide an overview of the factors influencing the quality of a model
and we analyze how the performance of opponent models depends on the negotiation
setting. This results in better insight into the performance of opponent models, and
allows us to pinpoint a class of simple and surprisingly effective opponent modeling
techniques that did not receive much previous attention in literature.

6.1 Introduction

Negotiating agents often keep their preferences private during the negotiation in order
to avoid exploitation [1]; however, if an agent has no knowledge about the opponent’s
preferences, then this can result in a suboptimal outcome [2]. A common technique
to counter this is learning the opponent’s preference profile during the negotiation,
which aids in increasing the quality of the negotiation outcome by identifying bids
that are more likely to be accepted by the opponent [1–3].

If there have been previous negotiations with a similar opponent, the opponent
model can be prepared before the start of the negotiation; we will refer to these
models as offline models (for example [1]). Contrastingly, if the agent has to learn
the preferences during the negotiation it performs online modeling (for example
[2, 4, 5]).

We focus on online opponent models in a single-shot negotiation with private
preference profiles; i.e., a setting in which an agent has no knowledge about the
opponent’s preference profile and no history of previous negotiations is available.
There are opponent modeling techniques available for such settings, for example in
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the Automated Negotiating Agents Competition (ANAC) described in Appendix B.
Despite ongoing research in this area, it is not yet clear how different approaches
compare, and empirical evidence has raised the question whether using an oppo-
nent model is beneficial at all in such a setting. To illustrate: state-of-the-art agents,
such as the top three agents of both ANAC 2010 (Appendix C) and ANAC 2011
(Appendix D) do not model the opponent, yet outperformed agents that do. One rea-
son that opponent modeling does not guarantee a better outcome for an agent is that
the model can be a poor representation of the opponent’s preferences. If the model
consistently suggests unattractive bids for the opponent, it may even be preferable
to not employ one at all. Secondly, a time-based deadline introduces an additional
challenge for online opponent modeling, as learning the model can be computation-
ally expensive and can therefore influence the amount of bids that can be explored.
More precisely, the gain in using the model should be higher than the loss in util-
ity due to decreased exploration of the outcome space. We will refer to this as the
time/exploration trade-off.

Apart from the inherent trade-off in opponent modeling, we are interested whether
opponent models are accurate enough to provide gains at all, even when ignoring
computational costs. To this end, we evaluate opponent models in two settings: a time-
based and round-based negotiation protocol. This chapter compares a large set of
opponent modeling techniques, which were isolated from state-of-the-art negotiation
strategies. We measure their performance in various negotiation settings, and we
provide a detailed overview of how the different factors influence the final negotiation
outcome.

We introduce the negotiation setting and consider the difficulties in evaluating
opponent models in Sect. 6.2. In Sect. 6.3 we introduce a method to quantify opponent
model performance, after which we apply it to a set of models in Sect. 6.4. We
formulate hypotheses and analyze the results in Sect. 6.5, and our chapter conclusions
are outlined in Sect. 6.6.

6.2 Evaluating Opponent Models

We focus on a bilateral negotiations governed by the alternating-offers protocol,
consistent with our definitions in Chap. 2. Recall from Sect. 2.2.3 that a negotiation
scenario consists of the negotiation domain, which is common knowledge, together
with a privately-known preference profile for each party. A preference profile is
described by a utility function u(x), which maps each possible outcome x in the
negotiation domain to a utility in the range [0, 1]. We discuss opponent models that
attempt to estimate the opponent’s utility function u�(x) during the negotiation.

The main goal of this chapter is to answer the following research question: “Under
what circumstances is it beneficial to use an online opponent model in a real-time
negotiation setting?”. An answer to this question is not straightforward due to the
time/exploration trade-off and potentially poor accuracy of a model. In particular,
we want to answer the following:

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_2
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1. Assuming perfect knowledge about the opponent’s preferences, is there a signif-
icant performance gain in using this information compared with ignoring it?

2. Is there a significant performance gain from using an online opponent model in
comparison to not using a model, assuming no prior knowledge is available?

The main difficulty in finding a conclusive answer to these questions, is that the
performance of an opponent model depends on the negotiation setting. Therefore,
we study an third, overarching research question:

3. How does the performance of using an opponent model depend on the negotiation
setting?

6.2.1 Influence of the Agent’s Strategy

Different agents apply their opponent model in different ways. There are two main
factors in which the application of an opponent model by a bidding strategy can
differ:

� Type of information gained from the opponent model. A bidding strategy can
employ an opponent model for different reasons: for example, it can be employed
to select the best bid for the opponent out of a set of similarly preferred bids [6, 7];
to select a bid that optimizes a weighted combination of both utility functions [4];
or to help estimate the utility of a specific outcome, such as the Nash-point [6].

� Selecting a bid using an opponent model. When a model is used to select a bid from
a set of similarly preferred bids, the question still remains which one to choose.
One can select the best bid for the opponent, but this may be suboptimal, as models
may be inaccurate. An alternative is to select a bid from the set of n best bids [6].

Even when the factors above are taken into account, still care has to be taken to
properly compare different models. We can only be fairly compare opponent models
if the other components, such as bidding strategy and acceptance strategy are fixed.

6.2.2 Influence of the Opponent’s Strategy

All opponent modeling techniques make certain assumptions about the opponent,
so as to assign meaning to the observed behavior. If the opponent does not adhere
to these assumptions, the model may not reflect reality well. The set of strategies
against which a model is tested is a decisive factor when measuring its performance.
Therefore, a set of opponents should contain both agents that fulfill the model’s
assumptions to determine its efficacy in optimal conditions; and agents that test the
model’s robustness by violating its assumptions.
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The following assumptions were found by analyzing the models in Sect. 6.4.2:

1. The concession of the opponent follows a particular function. Some opponent
modeling techniques assume that the opponent uses a given time-based bidding
strategy. Modeling the opponent then reduces to estimating all issue weights such
that the predicted utility by the modeled preference profile is close to the assumed
utility. This assumption is violated when the utility of the opponent’s bids strongly
deviate from what is assumed.

2. The first bid made by the opponent is the most preferred bid. The best bid is the
selection of the most preferred value for each issue, and thereby immediately
reveals which values are the best for each issue. Many agents start with the best
bid. This assumption is violated when the opponent’s first bid is not the best; for
example when an agent offers random bids with a utility above a constant.

3. There is a direct relation between the preference of an issue and the times its value
is significantly changed. To learn the issue weights, some models assume that the
amount of times the value of an issue is changed is an indicator for the importance
of the issue. The validity of this assumption depends on the distribution of the issue
and value weights of the opponent’s preference profile and its bidding strategy.

4. There is a direct relation between the preference of a value and the frequency
it is offered. A common assumption to learn the value weights is to assume that
values that are more preferred are offered more often. Similar to the issue weights
assumption, this assumption strongly depends on the agent’s strategy and domain.

To summarize, to construct an opponent model a set of assumptions about the
opponent’s preference profile are required. The assumptions introduced above vary
in validity and robustness depending on the opponent and negotiation scenario.

6.2.3 Influence of the Negotiation Scenario

We distinguish three main factors of a scenario that can influence the quality of an
opponent model (see also Sect. 2.2.4):

1. Domain size. In general, the larger the domain, the less likely a bid is a Pareto-bid.
Furthermore, domains with more bids are likely more computationally expensive
to model. Therefore, the influence of the time/exploration trade-off is higher.

2. Bid distribution. The bid distribution quantifies how bids are distributed. We
define bid distribution as the average distance of all bids to the nearest Pareto-
bid. The bid distribution directly influences the performance gain attainable by a
model.

3. Opposition. We define opposition as the distance from the Kalai-point to complete
satisfaction (1, 1). The opposition of a domain influences the number of possible
agreements, and opponent models may be help in locating them more easily.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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6.3 Measuring the Performance of Opponent Models

As we noted in the previous section, the effectiveness of an agent’s opponent model
is heavily influenced by the negotiation setting. In this chapter, we propose a careful
measurement method of opponent modeling performance that can be interpreted as a
first step towards creating a generic performance benchmark for the type of opponent
models that we study here. The following sections discuss the four components of
the method.

6.3.1 Negotiation Strategies of the Agents

We tested the performance of the opponent models by coupling them with a variety
of negotiation strategies using our BOA architecture (Chap. 3). For the negotiation
strategies of the agents in which the opponent models are embedded, we elected
a variant of the standard time-dependent tactic [8] as defined in Sect. 2.3.3. This
strategy is chosen for its simple behavior, which elicits regular behavior from its
opponents; furthermore, adding a model may significantly increase its performance.
Given a target utility, the adapted agent generates a set of similarly preferred bids and
then selects one using the opponent model. We focus on selecting a bid from a set of
similarly preferred bids, as this usage is commonly applied, for example in [7] and
[5]. We embedded the models in four time-dependent agents (e = 0.1; 0.2; 1.0; 2.0).
We opted for multiple agents as we believed that the concession speed can influence
the performance gain.

The remaining issue in using an opponent model is which bid to select for the
opponent given a set of similarly preferred bids. Given the approaches in Sect. 6.2.1,
we opted to have the models select the best bid for the opponent, as this approach
is most differentiating: it leads to better performance of the more accurate opponent
models.

6.3.2 Negotiation Strategies of the Opponents

This section discusses the opponents selected using the guidelines outlined in
Sect. 6.2.2. The set of opponent strategies consists of three cooperative agents, which
should be easy to model as their concession speed is high, and five competitive agents.
The set of conceding agents consists of two time-dependent agents with high con-
cession speeds e � {1, 2}, and the Offer Decreasing agent, which offers the set of all
possible bids in decreasing order of utility. The set of competitive agents contains two
time-dependent agents with low concession speeds e � {0.0, 0.2}, and the ANAC
agents Gahboninho, HardHeaded, and IAMcrazyHaggler.

http://dx.doi.org/10.1007/978-3-319-28243-5_3
http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Given the five opponent modeling assumptions introduced in Sect. 6.2.2, the first
assumption about the opponent’s decision function fails in general, as an opponent
in practice never completely adheres to the assumed decision function. The second
assumption holds for all agents except IAMcrazyHaggler, whose first bid is randomly
picked. The other three assumptions are typical for the frequency models. It is not
possible to adhere to or violate these assumptions completely, as they depend both
on the negotiation scenario structure and opponents

6.3.3 Negotiation Scenarios

As we stated in Sect. 6.2.3, the domain size, bid distribution, and opposition of a
negotiation scenario are all expected to influence an opponent model’s performance,
and therefore we aimed for a large spread of the characteristics of the scenarios. In
total seven negotiation scenarios were selected, as depicted in Table 6.1. Full details
on the scenarios can be found in the references provided in Table 6.1, and in Appendix
C and D.

6.3.4 Quality Measures for Opponent Models

The quality of an opponent model can be measured in two ways: a black box approach,
in which performance measures evaluate the quality of the outcome; and a white box
view, which uses accuracy measures capable of considering the internal design of a
strategy and revealing the accuracy of the estimation of the opponent’s preferences.

The work in this chapter focuses on the performance measures shown in Table 6.2
(for more information on performance measures we refer to Sect. 2.4.3). We will
compare models using a white box approach in Chap. 7.

We employ six different performance measures. First, we keep track of the utility
performance of an individual opponent model, which is measured as the average
score of the agents employing it against the selected opponents on all negotiation

Table 6.1 Characteristics of the negotiation scenarios

Scenario name Size Bid distrib. Opposition

Car [9] 15625 (med.) 0.136 (low) 0.095 (low)

Grocery [9] 1600 (med.) 0.492 (high) 0.191 (med.)

Company Acquisition [9] 384 (low) 0.121 (low) 0.125 (low)

Itex versus Cypress [10] 180 (low) 0.222 (med.) 0.431 (high)

Laptop [9] 27 (low) 0.295 (med.) 0.178 (med.)

Employment contract [11] 3125 (med.) 0.267 (med.) 0.325 (high)

Travel [12] 188160 (high) 0.416 (high) 0.230 (med.)

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_7
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Table 6.2 Overview of the performance measures

Performance measure Description

Average utility [2, 9, 13] Average score of the agents against selected
opponents on all negotiation scenarios

Average time of agreement [14] Average time required to reach an agreement

Average rounds [3, 13] Average rounds a negotiation lasts. In a
rounds-based setting, less means more accurate

Average Pareto distance of agreement [9, 15] Average minimal distance to the
Pareto-frontier. Lower is better

Average Kalai distance of agreement [15] Average distance to the Kalai-point. Lower
means more fair

Average Nash distance of agreement [15] Average distance to the Nash-point. Lower
means more fair

scenarios. We also measure the average time of agreement and the average amount
of rounds that the negotiation takes. Finally, we test the average distance from the
outcome to the Pareto-frontier, Kalai-point, and Nash-point of all negotiations that
result in an agreement.

6.4 Experiments

We applied the method described in the previous section to our experimental setup
below in order to answer the research questions introduced in Sect. 6.2.

6.4.1 Experimental Setup

To analyze the performance of different opponent models, we employed Genius to
evaluate the automated negotiators’ strategies and their components. The experiments
are subdivided into two categories: we use a standard time-based protocol, as well as
a round-based protocol. In total, we ran 17920 matches, which on a single computer
takes nearly 2 months.

Our main interest goes out to the real-time setting, as this protocol features the
time/exploration trade-off. We applied our benchmark to the set of models using the
time-based protocol. Each match features a real-time deadline set at three minutes.
The full tournament consists of 17920 matches, which takes more than an month to
run on a single computer.

In the round-based protocol the same approach is applied, but in this case, time
does not pass within a round, giving the agent infinite time to update its model. This
provides valuable insights into the best theoretical result an opponent model can
achieve.
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6.4.2 Opponent Models

We compare the performance of the opponent models used in ANAC (Appendix B),
which is a yearly international competition in which negotiating agents compete
on multiple domains. Each year, the competition leads to the introduction of new
negotiation strategies with novel opponent models, as the utility function of each
player is private information and hence has to be learned. The utility functions of
the agents are linearly additive; that is, the overall utility consists of a weighted sum
of the utility for each individual issue. The setting of ANAC is consistent with the
preliminaries in this chapter; i.e., the negotiation setting consists of an alternating
offers protocol with discrete negotiation scenarios and real-time deadlines.

We specifically opted to use agents that participated in ANAC for the following
reasons: the agents are designed for one consistent negotiation setting, which makes
it possible to compare them fairly; their implementation is publicly available; and
finally, we believe that the agents and opponent models represent the current state-
of-the-art. We used modeling techniques from ANAC 2010, ANAC 2011, and a
selection of opponent models designed for ANAC 2012.

We isolated the opponent models from the agents and reimplemented them as
separate generic components to be compatible with all other agents using our BOA
framework (Chap. 3). As discussed in Sect. 6.2.1, this setup allows us to equip a single
negotiation strategy with various opponent models, which makes it straightforward
to fairly compare the different modeling techniques.

Table 6.3 provides a summary of the online opponent models used in our experi-
ments, with references to the work in which they are described. We did not include
the Bayesian Model from [2] and the FSEGA Bayesian Model [16], even though
they fitted our setup, as both models were not designed to handle domains contain-
ing more than a 1000 bids. We are aware that many alternative opponent modeling
techniques exist [2, 3, 17, 18]; however, for our negotiation setting, this was the
largest set available of comparable opponent modeling techniques.

Based on our analysis, we found that in our selection two approaches to opponent
modeling are prominent: Bayesian opponent models and Frequency models.

Bayesian opponent models generate hypotheses about the opponent’s prefer-
ences [2]. The models presuppose that the opponent’s strategy adheres to a specific
decision function; for example a time-dependent strategy with a linear concession
speed. This is then used to update the hypotheses using Bayesian learning.

Frequency models learn the issue and value weights separately. The issue weights
are usually calculated based on the frequency that an issue changes between two
offers. The value weights are oten calculated based on the frequency of appearance
in offers.

Both modeling approaches are prone to failure as they rely on a subset of the
assumptions introduced in Sect. 6.2.2. More specifically, Bayesian models make
strong assumptions about the opponent’s strategy, whereas frequency models assume
knowledge about the value distribution of the issues of a preference profile and place

http://dx.doi.org/10.1007/978-3-319-28243-5_3
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Table 6.3 Overview of the online opponent models and their modeling assumptions (M)

Model Description M

No Model No knowledge about the preference profile –

Perfect Model Perfect knowledge about the preference profile –

Bayesian Scalable Model [2] This model learns the issue and value weights separately
using Bayesian learning. Each round, the hypotheses
about the preference profile are updated based assuming
that the opponent conceded a constant amount

1

IAMhaggler Bay. Model [7] Efficient implementation of the Bayesian Scalable
Model in which the opponent is assumed to use a
particular time-dependent decision function

1

HardHeaded Freq. Model [5] This model learns the issue weights based on how often
the value of an issue changes between turns. The value
weights are determined based on the frequency in which
they have been offered

3, 4

Smith Freq. Model [4] Similar to the HardHeaded Frequency Model, but less
efficient. The issue weights depends on the relative
frequency of the most offered values

3, 5

Agent X Freq. Model This model is a more complex variant of the
HardHeaded Frequency Model that also takes the
opponent’s tendency to repeat bids into account

3, 4

N.A.S.H. Freq. Model In contrast to HardHeaded Frequency Model, this model
learns the issue weights based on the frequency that the
assumed best value is offered

2, 4

weak restrictions on the opponent’s negotiation strategy. Generally, the Bayesian
models are far more computationally expensive; however, it is unknown if they are
more accurate.

6.5 Results

Below we analyze the outcomes of the experiment to provide an answer to the
research questions in the form of Hypotheses 6.1 through 6.6. We first discuss the
overall gain in performance when using perfect knowledge versus online opponent
modeling. Section 6.5.2 provides an answer to the final research question on how the
negotiation setting influences the performance of an opponent model.

6.5.1 Overall Performance of Opponent Models

Our experimental results for a selection of the quality measures described in
Sect. 6.3.4 are shown in Table 6.4 for both the time-based and round-based protocol.
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Table 6.4 Performance of all models on a set of quality measures for both protocols

Quality measures Perfect HH.
FM

Ag.X
FM

Nash
FM

IAH.
BM

Smith
FM

None Scal.
BM

Time-based

Avg. utility 0.7285 0.7260 0.7257 0.7257 0.7178 0.7156 0.7125 0.7077

Avg. time of agr. 0.4834 0.4865 0.4867 0.4865 0.4958 0.4937 0.5022 0.5055

Avg. rounds 7220 7218 7231 7198 7004 4745 7352 4836

Avg. Pareto dist. of agr. 0.0007 0.0017 0.0015 0.0018 0.0069 0.0068 0.0059 0.0071

Avg. Kalai dist. of agr. 0.2408 0.2434 0.2447 0.2428 0.2515 0.2474 0.2683 0.2561

Avg. Nash dist. of agr. 0.2442 0.2471 0.2481 0.2483 0.2541 0.2500 0.2721 0.2594

Rounds-based

Avg. utility 0.7235 0.7196 0.7191 0.7192 0.7111 0.7199 0.7050 0.7124

Avg. time of agr. 0.4928 0.4975 0.4978 0.4977 0.5058 0.4974 0.5136 0.5038

Avg. rounds 2508 2531 2533 2533 2572 2531 2567 2562

Avg. Pareto dist. of agr. 0.0010 0.0029 0.0023 0.0028 0.0073 0.0026 0.0066 0.0063

Avg. Kalai dist. of agr. 0.2332 0.2380 0.2395 0.2380 0.2456 0.2369 0.2614 0.2445

Avg. Nash dist. of agr. 0.2370 0.2403 0.2437 0.2404 0.2516 0.2403 0.2644 0.2472

A bold item indicates the lowest value for a quality measure, a underlined item the highest

Before we analyze the performance gain of online opponent models, we first answer
the question whether perfect knowledge aids in improving the negotiation outcome
at all:

Hypothesis 6.1 Usage of the perfect model by a negotiation strategy leads to
a significant performance gain in comparison to not using an opponent model.

We expected that perfect knowledge about the opponent’s preferences would sig-
nificantly improve performance of an agent. Our main aim here was not to reconfirm
the already widely acknowledged benefits of integrative bargaining, but to analyze
whether our experimental setup is a valid instrument for measuring the learning
effect in other types of settings. Our expectation is confirmed by the experiment, as
the Perfect Model yields a significant performance increase on all quality measures
(except average rounds) for both protocols. For the real-time protocol, the difference
between the best online opponent model (HardHeaded Frequency Model) and No
Model is 0.0135; for the round-based protocol it is 0.0144 (Smith Frequency Model).
Note that while the gains are small, there are three small domains where opponent
modeling does not result in significant gains. If we solely focus on the large Travel
negotiation scenario, then the gain relative to No Model becomes 0.0413 for the
Perfect Model. Especially note the improvement in distance between the outcome
and Pareto-frontier, and the earlier agreements, in Table 6.4. This leads us to conclude
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that using an opponent model leads to better performance as it aids in increasing the
quality of the outcome.

Hypothesis 6.2 Usage of an online opponent model leads to a significant
performance gain when time is not an issue. Online opponent modeling does
not yield the same benefit in a real-time setting because of the time/exploration
trade-off.

We noted previously that in some cases, ANAC agents that do not model the oppo-
nent can outperform agents that do, and such agents have even won the competition
(see Tables C.2 and D.2). This led us to believe that online modeling does not benefit
the agents, either because it misrepresents the preferences, or by taking too much
time in a time-sensitive setting.

This is why it came as a surprise that in both the time- and round-based protocol,
online opponent models performed significantly better on all quality measures. For
the time-based protocol the best online opponent models are the frequency models,
except for the Smith Frequency Model who scores badly in this case. However, for
the round-based protocol, the Smith Frequency Model is actually best. This is caused
by the time/exploration trade-off, because the model is computationally expensive
as indicated by the small amount of bids offered in the time-based protocol.

Surprisingly the worst performance on a quality measure is not always made by
using No Model. For example in the time-based experiment the Bayesian Scalable
Model has the worst performance. The Bayesian model of IAMhaggler however,
performs much better, but disappoints in the round-based protocol.We believe this
can be attributed to its updating mechanism: only unique bids are used to update the
model, which speeds-up updating but can result in poor performance against slowly
conceding agents that offer the same bid multiple times.

In conclusion, online opponent model can result in significant gains and surpris-
ingly, frequency models lead to the largest gains, outperforming the Bayesian models.
We believe that the winners of ANAC could have performed even better by learning
the opponent’s preferences with a frequency model. The success of the frequency
model can be attributed to its simplicity and hence faster performance, and to the
fact that it is more robust by making weaker assumptions about the strategy of the
opponent in comparison to the Bayesian modeling approaches.

6.5.2 Influence of the Negotiation Setting

We will now discuss the influence of each of the three components of the negotiation
setting on the quality of an opponent model, following the structure of Sect. 6.2.
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Table 6.5 Utility of each opponent model relative to using No Model for each agent

Opponent model Agents

e = 0.1 e = 0.2 e = 1 e = 2

Perfect Model 0.0180 0.0164 0.0152 0.0144

HardHeaded Freq. Model 0.0156 0.0137 0.0118 0.0128

Agent X Freq. Model 0.0161 0.0137 0.0116 0.0113

N.A.S.H. Freq. Model 0.0166 0.0129 0.0108 0.0121

IAMhaggler Bay. Model 0.0084 0.0055 0.0033 0.0039

Smith Freq. Model �0.0031 0.0020 0.0071 0.0063

Bayesian Scalable Model �0.0050 �0.0058 �0.0032 �0.0053

6.5.3 Influence of the Agent’s Strategy

The performance gain of using an opponent model necessarily depends on the strat-
egy in which it is embedded (cf. Chap. 3). Table 6.5 provides an overview of the
relative gain in comparison to No Model for all opponent models in the time-based
experiment. Based on the results, we have tested the following hypothesis:

Hypothesis 6.3 The more competitive an agent, the more it benefits from
using an opponent model.

At each turn of a negotiation session, a set of possible agreements can be defined.
This is the intersection of two sets: the set of bids that an agent considers for offering,
and the set of all bids acceptable to the opponent. The more competitive the agent, the
smaller the intersection between the two sets. When an agent concedes, the number
of possible agreements increases at the cost of utility. An opponent model can help
in finding possible agreements, preventing concession and therefore loss in utility.
We therefore expected the gain for competitive agents to be higher, as the set of
possible agreements each turn is smaller, and therefore an optimal bid is more easily
missed by an agent not employing an opponent model. This is especially decisive in
the last few seconds of the negotiation, when many agents concede rapidly to avoid
non-agreement.

The hypothesis is confirmed by our experiments. In Table 6.5 there is a negative
correlation between the concession speed and relative gain in performance. If we
ignore the results of the three worst performing models, a small—albeit statistically
significant—negative correlation of �0.508 is found.

http://dx.doi.org/10.1007/978-3-319-28243-5_3
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Table 6.6 Utility of each opponent model relative to using No Model for each opponent

Opponent
model

Opponent agents

TDT 0.0 TDT 0.2 TDT 1.0 TDT 2.0 OD Gah. HH. IcH.

Perfect 0.0085 0.0015 0.0008 0.0022 0.0060 0.0676 0.0015 0.0399

HH. Freq.
Model

0.0085 0.0013 �0.0002 0.0019 0.0060 0.0515 0.0000 0.0388

Agent X Freq.
Model

0.0085 0.0019 0.0002 �0.0036 0.0058 0.0561 0.0009 0.0285

N.A.S.H.
Freq. Model

0.0085 0.0005 �0.0005 0.0020 0.0065 0.0507 0.0037 0.0336

IAH. Bay.
Model

0.0000 0.0003 �0.0021 �0.0001 �0.0046 0.0511 0.0039 �0.0066

Smith
frequency

�0.0038 �0.0023 �0.0019 0.0007 �0.0113 0.0357 �0.0224 0.0297

Bay. Scalable
Model

0.0000 �0.0033 �0.0055 �0.0058 �0.0535 0.0458 �0.0128 �0.0036

A bold item indicates the lowest value for a domain, a underlined item the highest

6.5.4 Influence of the Opponent’s Strategy

The opponent’s behavior also has an important impact on the performance of an
opponent model. Based on the results shown in Table 6.6, we test the three hypotheses
below.

Hypothesis 6.4 An agent benefits more from an opponent model against com-
petitive agents.

Intuitively, the more competitive the opponent, the more useful the opponent
model as the set of possible agreements is smaller, analogous to Hypothesis 6.3.
Therefore, we expected the highest gain against the competitive agents Gahboninho,
HardHeaded, and IAMcrazyHaggler. However, in Table 6.6 only the gain for
Gahboninho and IAMcrazyHaggler is very high.

For HardHeaded, we believe this can be attributed to the agent using an opponent
model itself. If the opponent uses a well-performing opponent model, then the per-
formance gain of an opponent model can be expected to be lower, as the opponent
is already able to make Pareto-optimal bids. Our experiment appears to the confirm
this hypothesis in the case of playing against HardHeaded, whose well-performing
opponent model seems to diminish the effect of opponent modeling by the other side.

Concluding, given the results of our experiment, we believe that the hypothesis
holds, at least for consistently competitive opponents without an opponent model.
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Hypothesis 6.5 Frequency models are more robust against opponents
employing a random tactic than the Bayesian models.

In order to estimate the opponent’s utility of a certain bid, both types of mod-
els make certain assumptions about the opponent. The Bayesian opponent mod-
els assume that the opponent follows a particular decision function through time
(cf. modeling assumption 1 in Sect. 6.2.2), while the frequency models assume higher
valued bids are offered more often (cf. modeling assumptions 3 and 4). Many oppo-
nent strategies do not adhere to these assumptions, which causes the learning models
to make wrong predictions when playing against them. For example, opponents such
as IAMcrazyHaggler who employ a random negotiation strategy, explicitly violate
the assumptions of both models. For the Bayesian learning models, this means the
opponent preferences will be estimated incorrectly, and more so through time. The
frequency models however, are much more robust, not only in the sense that a nego-
tiation tactic has a greater chance to satisfy its assumptions, but more significantly:
it is less sensitive to a tactic violating its assumptions. For instance, in the case of
IAMcrazyHaggler, it will deduce that it equally prefers any bid it has offered so
far—which, in this case, is exactly right.

We therefore expected relatively poor performance from the Bayesian models.
This hypothesis is confirmed by our experiment: the frequency models have a high
performance gain against IAMcrazyHaggler, whereas using the Bayesian models is
even worse than not using an opponent model at all.

6.5.5 Influence of the Negotiation Scenario

The performance of an opponent model is influenced by the characteristics of the
negotiation scenario, such as amount of bids, distribution of the bids, and the opposi-
tion of the domain. Table 6.7 provides an overview of the relative gain of all opponent
models in comparison to No Model for in the time-based experiment. Based on these
results, we formulate Hypothesis 6.6.

Hypothesis 6.6 The higher the amount of bids, bid distribution, or opposition
of a scenario, the more an agent benefits from using an opponent model.

We anticipated the bid distribution to be the major factor determining the perfor-
mance gain of an opponent model. If the bid distribution is high, then the Pareto-
frontier is more sparse. This means a higher gain can be expected of utilizing an
opponent model to locate bids close to the Pareto-frontier. This is confirmed by our
experiments, as we found a strong Pearson correlation of 0.778 between the bid
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Table 6.7 Gain of each model relative to using No Model for each scenario parameter

Parameter Model Parameter value

Low Medium High

Size Perfect 0.001 0.022 0.041

Best 4 0.002 0.018 0.039

Bid distribution Perfect 0.001 0.013 0.035

Best 4 �0.001 0.010 0.034

Opposition Perfect 0.001 0.023 0.020

Best 4 �0.001 0.022 0.016

distribution and the performance gain of the best four models, and 0.701 if we solely
focus on the perfect opponent model. Therefore we confirm this sub-hypothesis.

Another factor is the size of the negotiation domain. If a domain contains more
bids, then there are relatively less bids that are Pareto-optimal, so an opponent model
can aid more in identifying them. On the other hand, opponent models are more
computationally expensive on the larger domains. Despite this effect, we found a
strong Pearson correlation between the amount of bids and the performance gain:
0.631 for the best four models, and 0.596 when using the perfect model.

The final factor is the opposition of the scenario. Intuitively, if the opposition is
higher, then there are less possible agreements. Opponent models can aid in iden-
tifying these rare acceptable bids, thereby preventing break-offs and unnecessary
concessions. Nevertheless, if the opposition is high, then the bids are also relatively
closer to the Pareto-optimal frontier, which renders it more difficult for an opponent
model to make a significant impact on the negotiation outcome. Despite this effect,
we expected that higher opposition would lead to higher performance gain. However,
in our experiments we noted only a small positive Pearson correlation of 0.256 for
the best four models and 0.262 for the perfect model. Based on these results we are
unable to draw a conclusion, which leads us to believe the two mentioned effects
cancel each other out, making the other two characteristics of the scenario decisive
in the effectiveness of a model.

6.6 Conclusion

This chapter evaluates and compares the performance of a selection of state-of-
the-art online opponent models. Our main goal was to evaluate if, and under what
circumstances, opponent modeling is beneficial.

Measuring the performance of an opponent model is not trivial, as the details of
the negotiation setting affects the effectiveness of the model. Furthermore, while we
know an opponent model improves the negotiation outcome in general, the role of
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time should be taken into account when considering online opponent modeling in
a real-time negotiation because of the time/exploration trade-off: a computationally
expensive model may produce predictions of better quality, but in a real-time setting it
may lead to less bids being explored, which may harm the outcome of the negotiation.

Based on an analysis of the contributing factors to the quality of an opponent
model, we formulated a measurement method to quantify the performance of online
opponent models and applied it to a large set of state-of-the-art opponent models.
We analyzed two main types of opponent models: frequency models and Bayesian
models. We noted that the time/exploration trade-off is indeed an important factor
to consider in opponent model design of both types. However, we found that the
best performing models did not suffer from the trade-off, and that most—but not
all—online opponent models result in a significant improvement in performance
compared with not using a model; not only because the deals are made faster, but
also because the outcomes are on average significantly closer to the Pareto-frontier.
A main conclusion of our work is that we noted that frequency models consistently
outperform Bayesian models. This is not only because they are faster, because the
effect remains in a round-based setting. This suggests that frequency models combine
the best of both worlds. Surprisingly, despite their performance, frequency models
have not received much attention in literature.

Our other main conclusion concerns the effects of the negotiation setting on an
opponent model’s effectiveness. We found that the more competitive an agent, or its
opponent, the more benefit an opponent model provides. In addition, we found that
the higher the size or the bid distribution of a scenario, the higher the gain of using
a model. In the next chapter, we investigate this more thoroughly, by studying the
interaction between the performance of an opponent model and its accuracy through
time.

This chapter is based on the following publications: [19]

Tim Baarslag, Mark J.C. Hendrikx, Koen V. Hindriks, and Catholijn M. Jonker. Measuring the
performance of online opponent models in automated bilateral negotiation. In Michael Thielscher
and Dongmo Zhang, editors, AI 2012: Advances in Artificial Intelligence, volume 7691 of Lecture
Notes in Computer Science, pages 1–14. Springer Berlin Heidelberg, 2012
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Chapter 7
Predicting the Performance of Opponent
Models

Abstract The quality of an opponent model can be measured in two different ways.
One, which we extensively covered in Chap. 6, is to use the agent’s performance as
a benchmark for the model’s quality. The other is to directly evaluate its accuracy
by using similarity measures. Both methods have been used extensively, and both
have their distinct advantages and drawbacks. Our work in this chapter bridges the
gap between the two approaches by investigating a large set of opponent modeling
techniques in different negotiation settings, measuring both their accuracy through
time and their performance. We review all ways to measure the accuracy of an oppo-
nent model and we then analyze how changes in accuracy translate into performance
differences. Moreover, we pinpoint the best predictors for good performance. This
leads us to new insights in how to construct an opponent model, and what we need
to measure when optimizing performance.

7.1 Introduction

A major challenge in automated negotiation is that agents usually keep their prefer-
ence information private to avoid exploitation [1, 2]. When the agents have limited
knowledge of the other’s preferences, the agents may fail to reach an optimal outcome
as they cannot take the opponent’s desires into account [3].

In order to improve the efficiency of the negotiation and the quality of the outcome,
agents may construct a model of the opponent’s preferences, which aids them in esti-
mating the information that is kept private [1–3]. Over time, a large number of such
opponent models have been introduced, based on different learning techniques and
underlying assumptions, and multiple methods have been used to compare their qual-
ity. The different evaluation methods for opponent models make it hard to compare
different approaches, as each method has its unique scope of application, together
with different advantages and drawbacks. From an engineering perspective, it still
remains unclear which opponent model to choose in a particular negotiation setting.

As we outlined in Sects. 2.4.3 and 2.4.4, there are two popular ways to measure
the quality of an opponent model:

© Springer International Publishing Switzerland 2016
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1. Performance measures evaluate the quality of the outcome, usually measured in
utility gain, or distance of the agreement to the Pareto frontier. With this method,
the success of an opponent model is expressed in terms of the negotiation result
(as opposed to the whole negotiation process).

2. Accuracy measures aim to determine the quality of a model in a more fundamental
way, by quantifying how well the opponent model represents the real preferences
of the opponent, using a certain similarity measure. An example is the correlation
between the estimated and the real outcome space, or the percentage of correctly
inferred Pareto optimal outcomes.

There are various authors that evaluate their opponent model with performance
measures (e.g. [1–3]). Using a performance measure has one very important quality:
it measures exactly what needs to optimized, namely the net effect an opponent model
has on the negotiation result. On the other hand, because performance measures are
only able to demonstrate improvement of the end result, they may not provide insight
into why or how an opponent model works; that is, they measure the result obtained
by the negotiation agent as a whole, of which the opponent model is only a single
component. This makes the performance measure very sensitive to the specifics of the
experimental setup. Moreover, there is usually no clear upper bound in performance
gain, so it remains unclear what the highest attainable result is.

Other authors prefer to use accuracy measures to evaluate their model (for exam-
ple [4–7]). The main advantage of this approach is that it directly assesses the quality
of a model, independent of other factors such as bidding strategy or acceptance strat-
egy. Secondly, it is easier to compare accuracy results between different experimental
setups, and to track the accuracy of a model over the course of the negotiation. This,
in turn, can reveal valuable information about the reasons for a model’s success.

There are also drawbacks of using accuracy measures in negotiation, two of which
we will address in this chapter. First, it is currently unclear what effect a more accurate
opponent model has on the negotiation outcome. It could very well be that from
some point, increased accuracy does not translate into better performance. An 80 %
accurate model for example, could perform just as well as a perfect model. Second,
there are many accuracy measures to choose from, and it is currently unknown
which accuracy measure should be selected to ensure a good overall end result; that
is, we would like to know what accuracy measure best predicts an improvement in
performance.

Our work in this chapter bridges the gap between both approaches by considering
opponent models from both a performance and an accuracy perspective. We first
test many current opponent modeling techniques in different negotiation settings,
measuring both their accuracy through time and their performance. We then analyze
how changes in accuracy translate into performance differences. Moreover, we review
all ways to measure the accuracy of an opponent model, and we pinpoint the best
predictors for good performance.

The remainder of this chapter is organized as follows. In Sect. 7.2 the setting
and terminology used in this chapter and introduces our research questions and
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experiments, followed by a discussion of the results in Sect. 7.3. Finally, Sect. 7.4
outlines the conclusions of this chapter.

7.2 Measuring the Quality of Opponent Models

The aim of this chapter is to answer three research questions:

1. How does the accuracy of opponent models depend on negotiation factors, such
as domain size, or time?

2. What is the relationship between the accuracy of an opponent model and its
expected performance gain?

3. What accuracy measures are the best predictors for performance gain?

To answer our three questions, we first outline our selection of opponent models
(Sect. 7.2.2) and the accuracy measures incorporated in our method (Sect. 7.2.3).
Next, we discuss the experimental setup (Sects. 7.2.4 and 7.2.5). We start with the
preliminaries of this chapter.

7.2.1 Preliminaries

We use the same negotiation setting as in Chap. 6; however, instead of a continuous
time line, we use a discrete time line here, since we want to sample not only the
performance, but also the quality of opponent models at regular time intervals. This
means a deadline occurs after a specified number of rounds N , and both agents
receive utility 0 if they do not succeed in reaching an agreement before this time.

Recall from Sect. 2.2.3 that the negotiation domain, which specifies all possible
bids, is common knowledge, while the preferences for each party is private infor-
mation. We discuss opponent models that attempt to estimate the opponent’s utility
function uop(ω) while relying solely on the information gathered during the negotia-
tion. We restrict ourselves to linear additive preference profiles in this work, as there
exists no large set of comparable models for non-linear preferences. The utility u(ω)

of an outcome ω ∈ � is therefore assumed to be computed as a weighted sum (as
specified by the issue weights wi ) of value weights ei (ωi ):

u(ω) =
n∑

i=1

wi · ei (ωi ). (7.1)

http://dx.doi.org/10.1007/978-3-319-28243-5_6
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7.2.2 Selection of Opponent Models

We compare a large set of state of the art opponent models, which were applied in
the Automated Negotiating Agents Competition (ANAC, Appendix B). ANAC is
a yearly international competition in which negotiation agents compete on a set of
scenarios that are unknown beforehand. As in Chap. 6, our reason for including this
set of models is threefold: first, they represent the state of the art; second, to our
knowledge, they are the largest set of techniques designed for one common setting
consistent with ours; and finally, their code is publicly available. Table 7.1 gives
an overview of all models we evaluated, including three theoretical baselines. We
distinguish four types of opponent models:

Table 7.1 Overview of opponent models

Bayesian Models

Bayesian Scalable Model [3] Estimates the issue and value weights separately, using
Bayesian learning. The opponent is assumed to concede a
constant amount per round

IAMhaggler Bayesian Model [8] A Bayesian model in which the opponent is assumed to use
a particular time-dependent strategy and only unique bids
are used to update the model

Frequency Models

HardHeaded Frequency Model [9] Learns the issue weights based on how often the value of an
issue changes. The value weights are estimated based on the
frequency they are offered

Smith Frequency Model [10] Learns the value weights based on frequency they are
offered. The issue weights are estimated based on the
distribution of the values

Agent X
Frequency Model

A variant of the HardHeaded Frequency Model that takes
the opponent’s tendency to repeat bids into account

N.A.S.H. Frequency Model Learns the issue weights based on how often the best value
for each issue is offered. The value weights are estimated
based on their frequency

Value Models

AgentLG Value Model Estimates the value weights based on the frequency they are
offered

CUHK Agent Value Model Counts how often each value is offered. The utility of a bid
is the sum of the score of its values divided by the best
possible score. The model only uses the first 100 unique
bids for its estimation

Theoretical Baselines

Opposite Model Defines the opponent’s utility as one minus the agent’s
utility

Perfect Model Perfect knowledge of the opponent’s preferences

Worst Model Defines the estimated utility as one minus the real utility

http://dx.doi.org/10.1007/978-3-319-28243-5_6
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1. Bayesian models estimate the opponent’s preferences by first generating a set
of candidate preference profiles. Next, Bayesian learning is used to continually
update the model, based on certain assumptions about the opponent’s concession
function. For these models, we also include Perfect variants, which use perfect
knowledge about the opponent’s concessions, but are still unaware of the oppo-
nent’s exact preferences.

2. Frequency models estimate both the issue and value weights separately. The issue
weights are estimated based on how often their value is changed between sequen-
tial bids. The value weights are derived from the frequency they are offered.

3. Value models are similar to the frequency models, except that the issue weights
are assumed to be equal.

4. Theoretical baselines are used to compare the quality of the models. The Perfect
Model and Worst Model act as an upper and lower bound on quality respectively,
while the Opposite Model functions as a baseline, since it serves as a good initial
guess of the opponent’s preferences.

Using the decoupling technique of our BOA architecture (Chap. 3), each model
was isolated from existing negotiation agents (as indicated in Table 7.1), and then
generalized to be compatible with any bidding strategy. The advantage of using
the BOA framework is that we can interchange the opponent modeling component
of each negotiation strategy, so that we can compare the performance of different
opponent models while keeping the bidding and acceptance strategy fixed.

7.2.3 Selection of Accuracy Measures

We compare the accuracy of opponent models by evaluating how well the models
estimate the opponent’s preferences when provided with various negotiation traces.
In effect, we treat the opponent model as an isolated BOA component that receives
offers as input, and yields an estimate of the opponent’s preference profile as output,
which (hopefully) gets increasingly accurate with every processed bid.

When we assess opponent model accuracy, we require an accuracy measure that
quantifies the similarity between the opponent’s actual preference profile uop and
the estimation u′

op. We employed all accuracy measures currently in use (see also
Sect. 2.4.4), as shown in Table 7.2. The first two sets of measures are derived from
literature, to which we have added a set of metrics based on the Pareto optimal
frontier.

We briefly review the definitions of Sect. 2.4.4 of the accuracy measures for out-
come spaces and issue weights. Many of the measures are formulated in terms of
the combined properties of the opponent’s utility space and the agent’s own utility
space—together called the bid space. The real bid space B is defined as

B = {(
uown(ω), uop(ω)

) | ω ∈ �
}

.

http://dx.doi.org/10.1007/978-3-319-28243-5_3
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Table 7.2 Overview of accuracy measures

Outcome Space

Pearson correlation of bids [6] Pearson correlation coefficient between real
and estimated preferences

Ranking distance of bids [4, 6] Ranking distance between real and estimated
preference

Average difference between bids Average difference between the real and
estimated utility of all bids

Issue Weights

Pearson correlation of issue weights [6] Pearson correlation coefficient between real
and estimated issue weights

Ranking distance of issue weights [6] Ranking distance between real and estimated
issue weights

Average difference between issue weights [7] Average difference between the real and
estimated issue weights

Pareto Frontier

Average difference of Pareto frontier The average difference between the real and
estimated utility of the Pareto bids

Percentage of found Pareto bids Percentage of real Pareto bids that are also
estimated to be a Pareto bid

Percentage of correct Pareto bids Percentage of estimated Pareto bids that are
also real Pareto bids

Difference in Pareto frontier surface Absolute difference in surface under the real
and estimated Pareto frontier

The estimated bid space B ′ is defined in terms of the estimated opponent utility
function u′

op:
B ′ = {(

uown(ω), u′
op(ω)

) | ω ∈ �
}

.

To quantify how well u′
op approximates the opponent’s preferences, we might

consider the differences between u′
op and uop directly. Alternatively, we can analyze

the resulting bid spaces B and B ′, or we might concentrate on subsets.
Outcome space accuracy measures quantify the difference between uop and u′

op
by considering all bids in the outcome space �. A straightforward measure is the
average distance between bids metric, which calculates the average absolute differ-
ence between uop and u′

op over �. However, as models are usually only concerned
with the ranking of outcomes, a more suitable metric is the Pearson correlation of
bids that measures the correlation between two outcome spaces, which is defined as
follows:

dp(uop, u′
op)=

∑

ω∈�

(uop(ω)−uop)(u′
op(ω)−u′

op)

√∑

ω∈�

(uop(ω)−uop)2
∑

w∈�

(u′
op(ω)−u′

op)2
, (7.2)
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where uop and u′
op denote the real and estimated average utility over all outcomes.

Alternatively, the ranking distance of bids compares all pairwise preference order-
ings:

dr (uop, u′
op) = 1

|�|2
∑

ω∈�,ω′∈�

c≺u,≺u′(ω, ω′), (7.3)

where c≺u,≺u′ is the conflict indicator function, which is equal to one when the ranking
of the outcomes ω and ω′ differs between the two profiles, and zero otherwise.

Issue weight accuracy measures quantify the difference between the issue weights
of uop and u′

op. The underlying idea is that these variables are most important to
estimate correctly. The metrics used are identical to the metrics above.

Pareto frontier accuracy measures focus only on the similarity between two Pareto
frontiers. This is more challenging since their sizes can be different, so two sets of
Pareto frontiers cannot be compared in the same way as outcome spaces or weight
vectors. The average difference of Pareto frontier metric calculates the difference
in utility over all Pareto bids of bid space B. The percentage of found Pareto bids
measure gives the percentage of Pareto optimal bids of space B that are also in B ′.
Conversely, the percentage of correct Pareto bids metric yields the percentage of
Pareto optimal bids in B ′ that are correct (i.e., in B).

Finally, we introduce the difference in Pareto frontier surface measure, which is
defined as follows: we take all outcomes in � that form the estimated Pareto frontier
in B ′; we then map these points onto B. Finally, we compute the absolute difference
in surface below these points and the actual Pareto frontier, as shown in Fig. 7.1.

7.2.4 Quantifying the Estimation Accuracy

The goal of our first experiment is to quantify the accuracy of opponent models, both
in different domains and through time. We outline in detail below the factors of the
experimental setup that we believe are important to consider.

7.2.4.1 Influence of the Opponent Model on the Opponent’s Actions

When an agent uses an opponent model, it indirectly influences the opponent in two
ways: first, a model may influence the time of agreement, as a more accurate model

Fig. 7.1 Visualization of the
difference in Pareto frontier
surface
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may lead to better offers, resulting in earlier agreement; second, a model may cause
changes in the opponent’s strategy.

Both factors influence the bids presented by the opponent, and thus the information
available for the model. To ensure every model learns from the same information,
and therefore can be compared with the others, we selected non-adaptive opponents
that never accept a bid.

7.2.4.2 Influence of the Opponent’s Strategy on the Opponent Model

Opponents differ in how well their behavior corresponds to a model’s assumptions.
For instance, a model that assumes that the opponent concedes will likely have prob-
lems modeling a very competitive agent. Therefore, we should select a balanced set
of opponents to avoid favoring any model. One of the defining factors here is how
much information an opponent reveals over time. For example, a conceding opponent
reveals more of its preferences than an agent who makes random bids. Furthermore,
we should include agents that strongly violate the modeling assumptions as to eval-
uate the robustness of the models. Taking both factors into account, we selected the
following agents:

1. Conceding agents are time-dependent agents (see Sect. 2.3.3 and Faratin et
al. [11]) that select a bid depending on the current time t ∈ [0, 1] according
to a target utility of the form ut = Pmax · (1 − t1/e) [11]. We selected four agents
with Pmax = 1 and different concession rates e ∈ {0.1, 0.2, 1.0, 2.0}. These
agents make up the predictable opponents.

2. Random agents offer a random bid above a target utility m, where we selected
m ∈ {0, 0.25, 0.50, 0.75}. This type of agent and the others below form the
unpredictable opponents.

3. Conceding agents with an offset are time-dependent agents that do not start with
their best bid. For this category we use a linear concession rate (e = 1) and
starting point Pmax ∈ {0.7, 0.8, 0.9}.

4. Non-conceding agents start with a minimum target utility that increases to the
maximum over time. The target utility is calculated as follows: ut = Pmin + (1 −
Pmin) · t . We use four agents with parameters Pmin ∈ {0, 0.25, 0.50, 0.75}.

7.2.4.3 Influence of the Scenario on the Opponent Model

We distinguish three features of the negotiation scenario that can significantly influ-
ence how well the opponent model is able to estimate the opponent’s preferences:

1. Domain size. The total possible bids directly relates to the amount of parameters
of the preference profile.

2. Bid distribution. The bid distribution is defined as the average distance to the
nearest Pareto optimal bid. A high bid distribution indicates a high percentage of
outcomes far from the Pareto frontier.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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3. Opposition. The opposition is defined as the distance from the Kalai-Smorodinsky
point to the point of perfect satisfaction (maximum utility for both parties). The
higher the opposition is, the more competitive the domain.

We refer to Sect. 2.2.4 for the formal definitions. We made sure to select a balanced
set of scenarios that display all characteristics. We chose five domains based on their
size (see Tables C.2 and D.2): Itex versus Cypress (small: 180 bids), Employment
contract [12] (small: 3125 bids), Car (medium: 15625 bids), Supermarket (large:
98784 bids), and Travel (large: 188160 bids). For each domain we created a set of
scenarios varying in bid distribution and opposition. As we defined three levels of
degree for both factors, 45 scenarios are used in total.

For the experiment, we ensured that each model processes exactly the same oppo-
nent traces, using a maximum amount of N = 5000 rounds. For the three groups
of deterministic agents we recorded their (unique) negotiation trace, amounting to a
total of 495 unique traces. For the random agents we recorded five different traces
per agent, thus 900 traces in total. Combined, this amounts to 1395 traces that were
used to train every opponent model.

7.2.5 Quantifying the Accuracy/Performance Relationship

The goal of the second experiment is to investigate the relation between accuracy
and performance measures, thereby answering our final two research questions. For
this experiment, we used a realistic set of opponents whose acceptance strategies are
enabled. With realistic opponents, every negotiation is unique, so for this investiga-
tion we had to scale down the experimental setup. We selected a set of bidding strate-
gies and scenarios where using a good opponent model would have added value; i.e.,
tough bidding strategies with limited learning capabilities (i.e., no opponent model),
and large, competitive negotiation scenarios. We selected four of the top bidding
strategies from ANAC: Agent K2, HardHeaded, IAMhaggler2011, and The Nego-
tiator ; and four time-dependent agents with concession rate e ∈ {0.1, 0.2, 1.0, 2.0}.
These eight bidding strategies were combined with all thirteen models (the mod-
els in Table 7.1 and the two Bayesian models with perfect strategy knowledge) and
no model. Each agent competed five times against all opponents (the eight bidding
strategies without model) on five scenarios: Grocery, Employment contract [12],
Travel, Energy Small, and Supermarket. The first scenarios were used in ANAC
2010 and 2011 (see Tables C.2 and D.2) and the last two scenarios were first used in
ANAC 2012; see Sect. E.1.

Each agent played both sides of the five scenarios using a round-based protocol of
1000 rounds. Since 112 agents competed 5 times against 8 opponents on 5 scenarios
for both preference profiles, 44800 matches were ran in total.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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7.3 Experimental Analysis

We will now answer our three research questions by analyzing the results of both
experiments. Each section corresponds to one of the research questions.

7.3.1 Evaluating the Estimation Accuracy
of Opponent Models

As outlined in Sect. 7.2.4, we measured the accuracy of a large set of opponent models
to answer our first research question, the results of which are shown in Figs. 7.2, 7.3,
7.4, 7.5 and 7.6.

Fig. 7.2 Accuracy over time (measured with Pearson correlation of bids) against predictable (i.e.,
conceding) opponents. The numbers next to a cluster of lines are ordered from high to low accuracy
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Fig. 7.3 Accuracy over time (measured with Pearson correlation of bids) against the unpredictable
opponents (i.e., non-conceding agents). The numbers next to a cluster of lines are ordered from high
to low accuracy

7.3.1.1 Accuracy over Time

The graphs in Figs. 7.2 and 7.3 show the average accuracy of the opponent models
over time. Figure 7.2 shows the accuracy over time when playing against predictable
opponents; Fig. 7.3 shows the results again the unpredictable opponents.

First of all, it is surprising to see that many of the state of the art models actually
become less accurate over time. The main cause of this phenomenon is that the bids
presented later on in the negotiation are incorrectly handled. The value models and
frequency models for example, treat every received bid the same way, independent
of the time it is received. In effect, this means that when the opponent is conceding,
the models increase the estimated utility of less preferred outcomes. This does not
hold for the CUHK Agent Value Model, which incidentally also performs best, as
this model only takes the first 100 unique bids into account. For Bayesian models,
the problem is that they assume very particular opponent behavior, which is likely
to become increasingly invalid as time progresses, and they perform very poorly as
a result. When we disregard this shortcoming by considering the perfect Bayesian



140 7 Predicting the Performance of Opponent Models

models, they perform better, and their accuracy then increases monotonically over
time. However, even in this case, they come second to the CUHK Agent Value Model
by a large margin.

Another interesting result is that despite their simplicity, the frequency models
and value models perform best against both types of opponents. We believe that this
due to the small number of assumptions they make; i.e., only assuming that values
with high utility are offered relatively more often. As the right graph illustrates,
these models are rather robust, even though it is clear from the final accuracy that it
is harder to model unpredictable agents.

The lesson to take away from this is that to be robust, opponent models need to
minimize their assumptions about the opponent’s behavior. Of course, every model
needs to make certain educated guesses, but when it does, the model should at
least be highly adaptable, paying close attention to the opponent’s strategy. The
predictions should be revised if, over time, the opponent behavior does not seem to
fit the assumptions anymore.

7.3.1.2 Accuracy per Opponent

We now analyze in more detail the accuracy of the best performing models in every
category against different opponents; that is, the best value model (CUHK Value
Model), the best frequency model (Smith Frequency Model), and the best perform-
ing Bayesian models (Perfect Scalable Bayesian Model and IAMhaggler Bayesian
Model). The results are shown in Figs. 7.5 and 7.4. While the best value model
perform best on average, there is no opponent model that dominates all others.

An interesting result is that the technique of the best value model to only take a
limited amount of bids into account does not always pay off. The model performs
poorly against the non-conceding agents, who show their most preferred values later

Fig. 7.4 Accuracy of the best four opponent models against different types of opponents, measured
using the Pearson correlation of bids measure



7.3 Experimental Analysis 141

Fig. 7.5 Accuracy of the best four opponent models against different types of opponents, measured
using the average difference of Pareto surface measure

Fig. 7.6 The average accuracy of the best four opponent models on varying scenarios

in the negotiation. This means that the model can be fooled, which can be a concern
in practice.

7.3.1.3 Accuracy per Scenario

We are also interested in exactly how the specifics of the negotiation scenario influ-
ences accuracy. We focus on the same four opponent models as above, and evaluate
their accuracy against predictable opponents. Figure 7.6 summarizes the results. Note
that we consider the average accuracy over all four models here, but we have verified
that our conclusions also hold for each model individually.

One of the first observations is that there is a high variance in accuracy over
different scenarios, and each factor seems to be equally important to consider. This
underlines the importance of using a balanced set of negotiation scenarios. Clearly,
domain size is a significant factor, as the domain size relates directly to the amount
of unknown variables to be learnt. But also for the bid distribution and opposition
we find a strong correlation with learning accuracy. The reasons for both are very
similar: when the bid distribution or opposition is low, there are many outcomes of
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similar utility because the average distance to the Pareto frontier is small. This in
turn, entails that the values of an issue are relatively close to each other in utility,
which is harder for the models to learn than more extreme preferences.

7.3.2 Evaluating the Accuracy Versus Performance
Relationship

Our second goal was to investigate the relationship between accuracy and perfor-
mance of opponent models. Figure 7.7 visualizes the results for two accuracy mea-
sures: Pearson correlation of bids and difference in Pareto frontier surface. The
performance is expressed in terms of obtained utility by the agents that employ the
opponent models, normalized such that the Worst model’s performance is zero, and
the Perfect model’s performance is 1. Using no model falls somewhere in between,
since this is still better than using a wrong model.

The first thing to notice is the cluster of the best performers: the value and fre-
quency models. The performance of these models is already quite close to that of the
perfect model. To put it differently, we cannot anticipate a significant improvement
from any other preference modeling technique over what is already achieved by these
rather simple techniques.

The other types of opponent models also form clusters in the diagram. The (Per-
fect) Bayesian Model perform even worse than not using an opponent model; and
only slightly better than simply assuming opposite preferences.

The almost linear relationship between accuracy and performance is the second
thing that stands out. This shows that there is always added value to increasing the
accuracy of an opponent model, even when the accuracy is already high. Nevertheless,

Fig. 7.7 Accuracy versus performance for all opponent models. Accuracy is measured using the
difference in Pareto frontier surface (range [0, 1], where 0 is best) and Pearson correlation of bids
(range [−1, 1], where 1 is best)
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the added value will necessarily be small, as the performance is already at 90 % of
its upper limit when the accuracy is at 70 %.

An interesting comparison can be made with the results of the previous exper-
iment. Figure 7.2 clearly shows the decrease in accuracy over time of many of the
frequency and value models. How is it that they still manage to perform close to
optimally? The reason is that many negotiations end in agreement, and this occurs
somewhere before the deadline by definition. In these cases, the models are updated
with less bids of poor value for the opponent. Therefore, the deciding factor in the
success of the value and frequency models lies in their higher initial accuracy.

Finally, it is interesting that the results for the Pearson correlation of bids and
difference in Pareto frontier surface metrics are in fact very similar when we ignore
their orientation. Despite that the latter only measures the quality of the Pareto optimal
frontier instead of the full outcome space, it seems to be a suitable predictor for
performance as well. We explore this idea further in the next paragraph.

7.3.3 Evaluating the Usefulness of Accuracy Measures

Our final goal was to find a strong predictor for performance of opponent models,
since there are so many different accuracy measures to pick from. Towards this
end, we applied all of the accuracy measures shown in Table 7.2 and analyzed their
correlation with performance; see Fig. 7.8.

The dark line represents the predictive power of each accuracy measure, which is
defined by the absolute correlation coefficient |ρ| between the accuracy measure score
and the model’s performance. We take the absolute value because some accuracy
measures are negatively correlated with performance, while others are positively
correlated.

The light gray line indicates what portion of the bid space is learned by each accu-
racy measure. For this, we calculate the absolute correlation coefficient |ρ| between
each accuracy measure and the Pearson correlation of bids. At the lower end of the
scale we see the accuracy measures that only consider issue weights, which means
they are not correlated at all with learning the space as a whole. These measures
should not be used to make predictions about performance because they do not
convey enough information about the accuracy of a model.

We found three measures that correlate strongly with performance, as indicated
by the dark gray line, and therefore are good performance predictors; these are: dif-
ference in Pareto frontier surface, Pearson correlation of bids, and Ranking distance
of bids. These measures codify sufficient information about the relationship between
the real preferences and the learned preferences, and therefore, we can translate these
notions to statements about performance. The performance of the top three measures
are significantly better than the other measures (one-tailed t-test, p < 0.01).

Even though it only quantifies the similarity of the Pareto frontier, the difference
in Pareto frontier surface metric performs best of all (one-tailed t-test, p < 0.02).
This means that for an opponent model, it is sufficient to predict which bids are
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Fig. 7.8 Absolute correlation between accuracy measure scores and two other measures: perfor-
mance and Pearson correlation of bids

Pareto optimal. The reason being that the Pareto frontier is a crucial component of
the outcome space, and that many bidding strategies seek Pareto optimal agreements.
It is less computationally expensive to calculate than the ranking distance of bids, and
it has the lowest standard deviation between the runs. Furthermore, it is defined for all
inputs, in contrast to the Pearson correlation measures, whose results are undefined
when all bids are estimated to have the same utility. Therefore, we recommend the
difference in Pareto frontier surface as a suitable measure for accuracy.

7.4 Conclusion

In this chapter we evaluated a large set of accuracy measures to identify the best
method to predict the performance of opponent modeling techniques in negotiation.
We introduced a procedure to quantify the accuracy of state of the art opponent models
and we identified their strengths and weaknesses. One of our main conclusions is
that there is an almost linear correspondence between accuracy and performance of
models when we employ the proper accuracy measures. Moreover, the best models
are close to being perfectly accurate, which means there is only limited room for
improvement with regard to performance.

Surprisingly, the accuracy of most opponent models decays over time due to the
incorrect handling of the opponent’s less preferred bids, which are usually offered at
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a later stage of the negotiation. Especially then, good strategy prediction is needed
in order to be effective at preference modeling.

Finally, we analyzed how well accuracy measures can predict the performance
of an opponent model. Three measures in particular are useful predictors of perfor-
mance, and this can be best achieved by limiting the analysis to difference in Pareto
frontier surface between the real and the learned bid space.

This chapter is based on the following publications: [13]

Tim Baarslag, Mark J.C. Hendrikx, Koen V. Hindriks, and Catholijn M. Jonker. Predicting the
performance of opponent models in automated negotiation. In International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013 IEEE/WIC/ACM, volume 2,
pages 59–66, Nov 2013
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Chapter 8
A Quantitative Concession-Based
Classification Method of Bidding Strategies

Abstract In this chapter, we cover the last agent strategy component of the BOA
architecture of Chap. 3, namely the bidding strategy; i.e., the strategy component
that decides the concessions to be made during the negotiation. Every negotiator
needs to make concessions to successfully reach an agreement, and the willingness
to do so depends in large part on the opponent. A concession by the opponent may
be reciprocated, but the negotiation process may also be frustrated if the opponent
does not concede at all. This process of concession making is a central theme in
many automated negotiation strategies. In this chapter, we present a quantitative
classification method of negotiation strategies that measures the willingness of an
agent to concede against different types of opponents. We classify some well-known
negotiating strategies with respect to their concession behavior, including the ANAC
agents we described in Appendix B. We show that our technique makes it easy
to identify the main characteristics of negotiation agents, and that it can be used
to group negotiation strategies into four categories with common negotiation char-
acteristics, namely Inverter, Conceder, Competitor, and Matcher. We are able to
conclude, among other things, that different kinds of opponents call for adopting a
different negotiation orientation. Our analysis allows us to highlight several inter-
esting insights for the broader automated negotiation community. In particular, we
show that the most adaptive negotiation strategies are not necessarily the ones that
win the competition.

8.1 Introduction

When two agents are conducting a negotiation, the opening offer and first counteroffer
define the initial bargaining range [7] of the negotiation. Sometimes the other party
will immediately accept the offer, or will state that the set of demands is unacceptable,
breaking off the negotiation. But usually, after the first round of offers, the question is:
what concession is to be made next? One can choose to signal a position of firmness
and stick to the original offer. Or one can take a more cooperative stance, and choose
to make a concession. If one side is not prepared to make concessions, the other
side must capitulate, or more commonly, the negotiation will end up in a break off.

© Springer International Publishing Switzerland 2016
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Making concessions is key to a successful negotiation: without them, negotiations
would not exist [7].

Negotiation can even be defined in terms of making concessions: Pruitt [8] defines
it as a process by which a joint decision is made by two or more parties that first
verbalize contradictory demands and then move towards agreement by a process of
concession making or search for new alternatives.

Many of the classic negotiation strategies are characterized by the way they make
concessions throughout the negotiation. For example, the time-dependent tactics such
as Boulware and Conceder [4] are characterized by the fact that they steadily concede
throughout the negotiation process. Concessions made by such tactics depend on
various factors, such as the opening bid, the reservation value, and the remaining time.
Where possible, it can be beneficial to use prior information about the negotiation
setting in selecting a suitable concession strategy. However, when there is no such
prior information available to the agents, deciding what concessions to make depends
in large part on the opponent. One can either choose to signal a position of firmness
and stick to an offer. Alternatively, one can take a more cooperative stance, and
choose to make a concession. Such a concession may, in turn, be reciprocated by the
opponent, leading to a progression of concessions. On the other hand, the negotiation
process can easily be frustrated if the opponent adopts a take-it-or-leave-it approach.

Against this background, we study the ANAC negotiation strategies according to
the way they concede towards different types of opponents. The competition results
of ANAC (Tables C.2 and D.2 of the Appendix) only give a fairly narrow view of the
performance of the agents. In order to consider their behavior in more detail, and also
to explore the interactions between different strategies in a tournament setting, we
use a more sophisticated evaluation method in this chapter. As will become evident,
the performance of an agent depends heavily on the opponent.

The work in this chapter advances the state-of-the-art in automated negotiation in
the following ways. We present a new classification method for negotiation strate-
gies, based on their pattern of concession making when faced with different kinds of
opponents. We introduce a definition of Concession Rate (CR) which measures the
cooperativeness of an agent. We present a technique to quantitatively measure the
CR against two extreme types of strategies: a take-it-or-leave-it strategy, and a con-
ceding tactic. We then apply this technique to classify some well-known negotiating
strategies, including the agents of ANAC. We present an in-depth analysis of the
strategies from the finalists of ANAC and the techniques employed by the different
agents. This provides, for the first time, insight into the negotiation strategy space of
the ANAC agents and what type of behavior (e.g. being adaptive or hardheaded) is
more likely to do well in different situations. It also aids our understanding of what
concession making strategies are effective in settings such as ANAC.

Analyzing the competition results yields some interesting insights into the prop-
erties exhibited by agents which successfully negotiate in realistic negotiation envi-
ronments. We compare, for each strategy, the correlation between the total amount
of concession made during the negotiation, and the utility it achieves. Among other
things, we observe that different kinds of opponents call for a different approach
in making concessions. For instance, a successful negotiating agent should behave
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competitively, especially against very cooperative strategies. We find that there is
a direct correlation between the performance of a strategy and its concession rate
against a simple Conceder Linear strategy, but there is less correlation between per-
formance and concession against a non-concessive Hardliner strategy. This shows
that the best strategies try to exploit concessive opponents, but against a non-
concessive opponent, some aim to reach any agreement (even with a low utility)
while others prefer not to concede and may therefore may receive the disagreement
payoff (which is zero). Moreover, we conclude that our technique has the desirable
property of grouping negotiation strategies into categories with common negotiation
characteristics.

The remainder of this chapter is organized as follows. Section 8.2 provides an
overview of concession making in negotiation, including our adopted model of nego-
tiation. In Sect. 8.3 we give the definition of concession rate, and we outline a method
it. This is followed by Sect. 8.4 that presents our experimental results, and col-
lects the insights gathered by this analysis. Finally, Sect. 8.5 presents this chapter’s
conclusions.

8.2 Concession Making in Negotiation

In earlier work on conflict management through negotiation, the negotiation stance
is characterized by two orientations: cooperative and competitive [3]. The theory
relates to two basic types of goal interdependence that negotiators might have. It is
either positive, where the negotiators’ goals are linked in such a way that their goal
attainments are positively correlated (‘sink or swim together’), or the interdependence
is negative, namely when the goal attainments are negatively correlated (‘when one
swims, one sinks’).

However, a negotiator’s stance is usually not limited to one of the two orientations,
because negotiation is a dynamic process and the position of the negotiators can
change in response to the other party’s information or behavior [7]. In this chapter,
we take the stance that negotiators can exhibit a mixture of the two orientations,
mainly depending on the type of opponent (see Fig. 8.1). For example, a negotiator
may cooperate with a cooperative opponent, but the same negotiator may be very
competitive when facing competition. That is, in this case it matches the behavior of
the opponent.

Conversely, a negotiator can be cooperative towards a competitive opponent and
at the same time exploit cooperative opponents by playing competitive against them.
In that case, it inverts the opponent’s behavior.

This way, we distinguish four types of negotiation orientations depending on the
behavior against the opponent (see Table 8.1): Inverter, Conceder, Competitor, and
Matcher. Every negotiation orientation corresponds to a different stance towards
either of the two types of opponents. One of the main contributions of this chapter
is to define a formal, mathematical procedure for classifying agents into one of the
four categories.



150 8 A Quantitative Concession-Based Classification Method of Bidding Strategies

Fig. 8.1 The diagram of
conceding behavior against
cooperative and competitive
opponents
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Table 8.1 Four types of
negotiation orientations

Orientation versus Conceder versus Hardliner

Inverter Exploiting Yielding

Conceder Cooperating Yielding

Competitor Exploiting Competing

Matcher Cooperating Competing

8.3 Concession Rate

In this section we introduce the notion of concession rate, which quantifies the amount
an agent has conceded towards the opponent during a negotiation. We will define
the concession rate of an agent A as a normalized measure C Rt

A ∈ [0, 1] with the
following meaning: if C Rt

A = 0, then A did not concede at all up to time point t ,
while C Rt

A = 1 means that player A yielded completely to the opponent by offering
the opponent its best offer.

Note that it is generally not enough to simply consider the utility of the agreement
as a measure for the concession rate. For instance, a negotiator may not get an
agreement before the deadline. In that case, both parties receive zero utility, but
this gives no information about the concessions that were made. Also, the last offer
made by a negotiator is not necessarily the offer to which he was ultimately willing
to concede. To capture the notion of concession rate, we define it in terms of the
minimum utility m a negotiator has demanded during the negotiation, as this is a
measure of the total amount the negotiator was willing to concede.

We define the concession rate C Rt
A for arbitrary time t , but our work only deals

with the concession rate of a player A at the end of the negotiation thread. We shall
denote this simply by CRA. We also omit the subscript A when it is clear from the
context.
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Fig. 8.2 The three possible
outcomes of the Nice or Die
scenario, with the utility of
agent A plotted on the
horizontal axis

8.3.1 An Example

We illustrate the concept of CR by considering the Nice or Die scenario as described
in Section D.2 of the Appendix. Nice or Die has only three possible outcomes:
ω1 = 〈0.16; 1〉, ω2 = 〈0.3; 0.3〉, and ω3 = 〈1; 0.16〉 (see Fig. 8.2).

Let us first consider the case where agent A sticks to the same offer ω3 throughout
the negotiation, demanding the highest possible utility for itself. In this case, the
minimum utility m that player A has demanded is equal to 1, so A has not conceded
anything, therefore the corresponding concession rate of agent A should be equal to
zero:

C RA = 0, for m = 1. (8.1)

On the other hand, when A concedes all the way to the opponent’s best option (which
is ω1), C RA should be equal to 1. Note however, that conceding all the way does not
necessarily mean demanding zero utility, or the lowest possible utility. For instance
in this example, A would still receive 0.16 utility when bidding ω1 (see Fig. 8.2). In
general, there may also be bids with even lower utility for A that are, for example,
also bad for its opponent. However, player A should be able to always obtain at least
an agreement that is the best outcome for the opponent, as any rational player B
will accept it. We shall refer to this utility as the full yield utility (FYUA) of player
A. Intuitively, it is the worst score player A can expect to obtain in the negotiation.
Player A’s concession rate is therefore maximal if he makes a bid on or below the
full yield utility:

C RA = 1, for m ≤ FYUA. (8.2)



152 8 A Quantitative Concession-Based Classification Method of Bidding Strategies

Between the two extremes, we define C RA to decrease linearly from 1 to 0. There
is only one function that satisfies this constraint, along with the Eqs. (8.1) and (8.2)
above, namely:

C RA(m) =
{

1 if m ≤ FYUA,
1−m

1−FYUA
otherwise.

By using normalization, it is guaranteed that if CRA = 0, then A has not conceded
at all, while for CRA = 1, player A has conceded fully (i.e., up to its full yield
utility). Normalizing has the added benefit of reducing bias in the scenarios: in a
typical scenario with strong opposition such as Energy, players may obtain utilities
anywhere between 0.1 and 1, while in scenarios with weak opposition such as Com-
pany Acquisition, utility ranges are much more narrow. Normalization ensures that
the concession rate can be compared over such different scenarios.

Note that CR is a measure of the bidding strategy, so in particular it does not take
into account the conditions under which an agent accepts an offer.

Example
Suppose player A has made the following bids: 〈ω3, ω3, ω2, ω3〉 (see Fig. 8.2).
Then its minimum demanded utility m is equal to the utility of ω2, which is
0.3. The full yield utility FYUA is equal to the utility of ω1, which is 0.16.
Therefore,

C RA = 1 − 0.3

1 − 0.16
= 5

6
.

8.3.2 Formal Definition

Suppose a player A has a utility function u A, mapping any outcome in � into the
range [0, 1]. As we have assumed that the utility function is normalized in our setting,
there will exist an optimal outcome ωA ∈ �1 for which u A(ωA) = 1 (see Sect. 2.2.4).
In typical negotiation domains, the corresponding utility uB(ωA) of this outcome is
far from optimal for player B, because the best outcome for A is typically not the
best outcome for B. Player B should be able to always obtain at least this outcome in
a negotiation, as A will always be inclined to accept it. We shall refer to this utility
as the full yield utility (FYUB) of player B (see Fig. 8.3). Intuitively, it is equal to
his bottom line utility.

As defined in Sect. 2.2.2, we use the alternating-offers protocol supplemented with
a real time line T with a deadline. We represent by xt

A→B the negotiation outcome

1Note that an optimal outcome ωA is not necessarily unique, but typical domains (including those
considered in ANAC and hence, in this chapter) all have unique optimal outcomes for both players,
so that the full yield utility is well-defined.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Fig. 8.3 The yield of player
A is determined by MINt

A

proposed by agent A to agent B at time t . Recall from Sect. 2.2.2 that a negotiation
thread (cf. [4, 9]) between two agents A and B at time t ∈ T is defined as a finite
sequence

H t
A↔B := (

xt1
p1→p2

, xt2
p2→p3

, xt3
p3→p4

, . . . , xtn
pn→pn+1

)
,

where

1. The offers are ordered over time: tk ≤ tl for k ≤ l.
2. The offers are alternating between the agents: pk = pk+2 ∈ {A, B} for all k.
3. All ti represent instances of time T , with tn ≤ t ,
4. The agents exchange complete offers: xtk

pk →pk+1
∈ � for k ∈ {1, . . . , n}.

For any t ∈ T , let

H t
A→B = {

xs
A→B ∈ H t

A↔B | s ≤ t
}

denote all bids offered by A to B until time t in an active negotiation thread. We can
now formulate the minimum utility that agent A demanded during the negotiation
thread H t

A→B . That is to say, we consider the largest concession the player has made
so far:

MINt
A = min{ u A(x) | x ∈ H t

A→B}

Informally, MINt
A denotes the lowest that A is willing to bid up until time t . The

inverse of this is called the yield of player A. The lower player B is willing to go, the
larger the yield. A yield of zero means the player has made no concession whatsoever

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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(and therefore his demanded utility remains equal to one); A yield of 1−FYU means
the player has yielded fully (see Fig. 8.3). That is, it is defined as:

Yieldt
A = 1 − max

(
MINt

A, FYUA
)

.

The Concession Rate CRt
A ∈ [0, 1] of player A up until time t is then simply the

normalized yield:

CRt
A = Yieldt

A

1 − FYUA
.

8.3.3 Classifying the Agents According to Their Concession
Rates

In order to classify agents according to their concession rate, we must consider a
number of characteristics of the negotiation setup. To be able to compare the results,
we need to fix the set of opponents that are used to measure the CR. This raises
the question which agents can be used for this purpose. To test both sides of the
spectrum, we let the finalists negotiate against both a very cooperative and a very
competitive opponent. The opponent tactics that we use to measure concession rates
are simple, non-adaptive negotiation tactics. We do so because we want to ensure
that the concession rate results depend as much as possible on the agent’s own
negotiating tactic, and not on the opponent’s. To be more precise, we aim for three
opponent characteristics when measuring the concession rate:

1. Simplicity: The concession rate results of an agent are less sensitive to the oppo-
nent, and hence easier to interpret, if the opponent negotiation tactic is simple
and easy to understand.

2. Regularity: We want to give the agent sufficient time to show its bidding behavior;
therefore, the opponent should not end the negotiation prematurely by either
reaching an agreement too fast or breaking off the negotiation. Another issue here
is that the opponent should generate sufficient bids. This requires computationally
efficient agents that respond within a reasonable amount of time and excludes
extreme agents that only make a limited number of offers.

3. Deterministic behavior: In order to reduce variance in experimental results, we
prefer deterministic agents to those that demonstrate random bidding behavior.

For the competitive opponent, we chose Hardliner (also known as take-it-or-leave-
it, or Hardball [7]). This strategy simply makes a bid of maximum utility for itself and
never concedes. This is the most simple competitive strategy that can be implemented
and it fits the other two criteria as well: it is deterministic and it gives the agent the
full negotiation time to make concessions.

For the cooperative opponent, we selected Conceder Linear ; i.e., the time-
dependent tactic adapted from [4, 5] with parameter e = 1 (see also Sect. 2.3.3).

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Both strategies accept if and only if their planned offer has already been proposed
by the opponent in the previous round.

There exist even simpler conceding tactics such as Random Walker2 (which gen-
erates random bids), or an agent that accepts immediately. However, both opponent
strategies are not regular in the sense that they do not give the agent enough time to
show its bidding behavior. Random Walker has the additional disadvantage of not
being deterministic. Therefore, we believe Random Walker can serve as a useful
baseline strategy to test the efficacy of a negotiation strategy, but not as a useful
opponent strategy to measure an agent’s willingness to concede. Consequently, we
selected Conceder Linear as the cooperative opponent, as it fulfills the three require-
ments listed above.

8.4 Experiments

When looking at the results of the ANAC 2010 and 2011 competitions listed in
Tables C.2 and D.2, it is natural to ask which agent characteristics were decisive
factors in the final ranking of the agents. Which agents behaved very competitively
and which ones were more cooperative? Were they successful because of it, and if
so, against whom? In order to answer such questions, we characterize the ANAC
agents by analyzing their bidding behavior and utility gain against different types of
opponents. In particular, we focus on the amount they are willing to concede to the
opponent, as this is a key determinant of an agent’s bidding behavior.

8.4.1 Experimental Setup

For our experimental setup we employed Genius to simulate tournaments between
negotiating agents, using the same negotiation parameters as described in ANAC
(see Appendix B). In our experimental setup we included all the negotiation tactics
that were submitted to ANAC 2010 and 2011, which we analyze separately.

In addition to the ANAC agents, we included some well-known agents to explore
some extreme cases. First, we included the Hardliner strategy described in Sect. 2.3.3,
which consistently makes the maximum bid for itself. We also studied three members
of the time-dependent-tactics family [4] as defined in Sect. 2.3.3, namely: Boulware
(e = 0.2), Conceder Linear (e = 1), and Conceder (e = 2). Finally, we included the
Random Walker strategy, which randomly jumps through the negotiation space. We
shall refer to these five strategies as our benchmark strategies. For the ANAC 2010
experiment, we also included a variant of the Relative Tit for Tat agent from [4].

2The Random Walker strategy is also known as the Zero Intelligence strategy [6].

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_2
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This strategy, called Simple Nice Tit for Tat, tries to reproduce the behavior that its
opponent performed in the previous step.

We measured the concession rate of an agent A playing against Conceder Linear
and Hardliner. The two parties attain a certain outcome, or reach the deadline. In
both cases, at the end of the negotiation, A has reached a certain concession rate
as defined in Sect. 8.3.2. The concession rate is then averaged over all trials on all
scenarios, alternating between the two preference profiles defined as part of that
scenario. For example, in the Energy scenario, A will play both as the electricity
distribution company and as the consumer. We then repeated every negotiation 30
times to increase the statistical significance of our results. We have taken the averages
and standard deviations over these 30 data points, where each data point is the average
taken over all scenarios.

For the ANAC 2010 agents, we picked two out of the three domains that were
used in ANAC 2010 (see Table C.2). We omitted the third domain (Travel) as some
of the ANAC agents did not scale well and had too many difficulties with it to make
it a reliable testing domain. For the ANAC 2011 agents, we used all eight scenarios
of the finals (see Table D.2).

8.4.2 Experimental Results for ANAC 2010

We present the results of the experiments for ANAC 2010 in Table 8.2 and its graph-
ical representation is depicted in Fig. 8.4.

Table 8.2 An overview of
the concession rate of every
agent in the ANAC 2010
experiments

Agent CR versus
Conceder

CR versus
Hardliner

Agent K 0.12 0.18

Agent Smith 0.46 1.00

Boulware 0.14 1.00

Conceder linear 0.43 1.00

Conceder 0.63 1.00

FSEGA 0.33 0.76

Hardliner 0.00 0.00

IAMcrazyHaggler 0.05 0.05

IAMhaggler 0.02 0.27

Nozomi 0.20 0.22

Random walker 0.97 1.00

Simple nice tit for tat agent 0.42 0.01

Yushu 0.11 0.95
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Fig. 8.4 A graphical overview of the concession rates of the ANAC 2010 agents

8.4.2.1 General Observation

We start with the general observations (which also hold for the ANAC 2011 results)
regarding the clustering of different strategies in Fig. 8.4. In particular, the Hardliner
strategy and the Random Walker strategy are at the opposite sides of the concession
rate spectrum. Hardliner will not concede to any type of strategy, so by definition it
has CR = 0 against both Hardliner and Conceder Linear. Consequently, Hardliner
is the least conceding strategy possible.

On the other hand, Random Walker will make arbitrary concessions given enough
time. This makes Random Walker one of the most concessive strategies possible.
Against Hardliner, it is just a matter of time for Random Walker to randomly produce
a bid with which it fully concedes, so Random Walker has C R = 1 against Hardliner
when it manages to reach an agreement. In large domains, however, it may not be
able to produce such a bid in time, as we will see when we discuss the results of
ANAC 2011, which featured larger domains. Against Conceder, it may not have as
much time to fully concede, but it generally will produce offers of very low utility
in this case as well, resulting in a C R of 0.97.

We included three members of the time-dependent tactics family in our experi-
ments: Boulware (e = 0.2), Conceder Linear (e = 1), and Conceder (e = 2). They
are all located in the top of the chart because they all share the same concession rate
of 1 when playing against Hardliner. This is to be expected, as any agent from the
time-dependent family will offer the reservation value when the deadline is reached
[5], resulting in full concession to the opponent. In general, all time-dependent tactics
will lie on the line C R = 1 against Hardliner.
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In addition to the time-dependent tactics, at the top of the chart we see two more
strategies: Agent Smith and Random Walker. All the strategies that lie on the line
C R = 1 give in fully to Hardliner and are thus fully exploited by a strategy that does
not give in at all. All of these four strategies have a very simple bidding strategy and
are clearly not optimized to deal with minimally conceding strategies or strategies
that do not concede at all.

Against Conceder Linear, the results are also intuitively clear: concessions of the
agents get bigger when the parameter e ∈ (0, ∞) gets bigger, so Boulware concedes
the least, while Conceder concedes the most. More generally, when e → 0, then
C R → 0. Conversely, when e → ∞, then C R → 1. An agent that has C R = 1
against both Hardliner and Conceder Linear is an agent that would jump to the
opponent’s best bid immediately.

8.4.2.2 Observations for ANAC 2010 Agents

Agent Smith and Conceder Linear are very close in the chart and this is no coinci-
dence: Agent Smith uses essentially the same strategy as Conceder Linear, by first
making a proposal of maximum utility and subsequently conceding linearly towards
the opponent.

The same holds for Yushu and Boulware: the strategies are very similar, as is
indicated by their close vicinity in the chart. Like Boulware, Yushu adopts a very
competitive time dependent strategy, making larger concessions when the negotiation
deadline approaches. Both adopt a conservative concession making strategy and are
not willing to make large concession at the beginning, but prefer to wait for their
opponent to make concessions. These two examples show that this chart can be useful
to cluster strategy types, as similar strategies have similar concession characteristics.

Finally, there is a big cluster of strategies in the left part of the chart, which is pop-
ulated by the top four strategies in ANAC 2010: Agent K, IAMhaggler, Nozomi and
Yushu. The better performing strategies of ANAC 2010 have different approaches
towards the Hardliner, but they seem to have one trait in common: they all concede
very little to the Conceder. In other words: they exploit the Conceder by waiting for
even bigger concessions. The fact that these strategies did very well in ANAC 2010
seems to indicate that in order to be successful in an automated negotiation com-
petition, an agent should behave competitively, especially against very cooperative
strategies. We explore this theme more deeply in our ANAC 2011 experiment.

8.4.2.3 Four Negotiation Orientations

This section makes observations regarding the clustering of different strategies in
Fig. 8.4, and then classifies them into the four negotiation orientations of Fig. 8.1. This
procedure is necessarily arbitrary; nevertheless, we propose the following grouping.
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The top left agents in the diagram can be considered to be Inverters: Yushu,
Boulware, and FSEGA. The remaining agents in the top right are then Conceders,
namely: Conceder Linear, Agent Smith, Conceder, and Random Walker.

The Simple Nice Tit for Tat strategy is the only strategy that can be considered a
Matcher, i.e.: it does not concede to a Hardliner, but it does concede to the Conceder.
Clearly, this is to be expected from a Tit for Tat strategy, as it is based on cooperation
through reciprocity: it matches whatever the other player did on the preceding move.
The fact that this type of strategy does not occur naturally in ANAC 2010 can be
explained by our previous comments on clustering: following a Tit for Tat strategy is
not as successful in negotiation, because it does not exploit the conceding strategies.

All of the remaining strategies are Competitors, i.e. they do not concede much,
whether it is against a cooperative or a competitive agent. The majority of strategies
that performed well during ANAC are located in this region. Again, we observe that
the successful strategies are very competitive.

8.4.3 Experimental Results for ANAC 2011

We present the results of the concession rate experiments for ANAC 2011 in Table 8.3,
and its graphical representation is depicted in Fig. 8.5. In Figs. 8.6, 8.7, 8.8 and 8.9,
we present the connection between the concession rate of the agents and their average
negotiation results against Conceder Linear and Hardliner. In all figures, the error
bars represent one standard deviation from the mean.

Table 8.3 An overview of the concession rate and standard deviation of every ANAC 2011 agent
in the experiments against Conceder Linear and Hardliner

CR versus Conceder linear CR versus Hardliner

Agent Mean Standard deviation Mean Standard deviation

Agent K2 0.232 0.029 0.435 0.019

BRAMAgent 0.141 0.042 0.642 0.002

Gahboninho 0.219 0.041 0.907 0.032

HardHeaded 0.041 0.027 0.622 0.039

IAMhaggler2011 0.419 0.058 0.987 0.005

Nice tit for tat agent 0.169 0.033 0.876 0.031

The negotiator 0.071 0.011 1.000 0.000

ValueModelAgent 0.239 0.013 0.667 0.030

Random walker 0.848 0.040 0.904 0.030

Hardliner 0.000 0.002 0.000 0.002

Boulware 0.162 0.009 1.000 0.000

Conceder linear 0.414 0.034 1.000 0.000

Conceder 0.571 0.043 1.000 0.000
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Fig. 8.5 A scatter plot of the concession rate and standard deviation of every ANAC 2011 agent
in the experiments against Conceder Linear and Hardliner. The error bars represent one standard
deviation from the mean

Fig. 8.6 Comparing the results versus the concession rate against the Conceder Linear opponent
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Fig. 8.7 The correlation between the concession rate and utility obtained against the Conceder
Linear opponent of all ANAC 2011 and benchmark agents

Fig. 8.8 Comparing the results versus the concession rate against the Hardliner opponent
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Fig. 8.9 The correlation between the concession rate and utility obtained against Hardliner of all
ANAC 2011 and benchmark agents

8.4.3.1 Observations for ANAC 2011 Agents

If we consider the agents submitted, most of them were indeed adaptive to some
degree, in that they take into account the strategy of their opponent. Several of these
(such as IAMHaggler2011, Gahboninho, Nice Tit for Tat Agent or ValueModel-
Agent) make use of machine learning techniques to try and predict the concession or
preferences of the opponent. Another important impact of a bidding strategy is how
it affects subsequent offers by the negotiating counterpart. For example, Nice Tit for
Tat Agent tries to entice the opponent into cooperative behavior by reciprocating
the opponent’s concessions. Such behavior is a form of second-level adaptivity, in
the sense that it not only adapts to the opponent, but also attempts to influence the
opponent’s behavior.

All ANAC 2011 strategies reside in the left part of the chart, which means they
play quite competitively against a conceding strategy. The top left of the chart is
populated by the four ‘nicer’ strategies of ANAC 2011: The Negotiator, Nice Tit for
Tat, Gahboninho, and IAMhaggler2011. Note that in addition to the time-dependent
tactics, The Negotiator is located in the top of the chart, which indicates it is very
similar to a Boulware strategy. The other four finalists: HardHeaded, BRAMAgent,
ValueModelAgent, and Agent K2 are more competitive. It is interesting to note that
HardHeaded, the winner of ANAC 2011, concedes the least against a cooperating
strategy. The fact that these strategies did very well in the competition seems to
indicate that in order to be successful in such circumstances, an agent should behave
competitively, especially against very cooperative strategies.
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Now, it is interesting to see that, while the environment encourages flexibility,
being adaptive does not necessarily benefit the agents in terms of winning the com-
petition. In particular, it may come as a surprise that HardHeaded, a relatively simple
and inflexible strategy, relying heavily on hard-coded parameters, achieved first place
in ANAC 2011. There are several reasons for this. First of all, such a strategy relies
on the opponent strategies to eventually adapt to its demands. Thus, if there are
sufficient adaptive strategies, being competitive is a good strategy to use.

Indeed, it seems reasonable to conjecture that the nicer we play against a conceding
opponent (meaning the higher our CR is against a conceding opponent), the less utility
we make in the negotiation. To test this hypothesis, we selected Conceder Linear as
the opponent, and then compared the CR of every agent against the average utility
of the agreements being reached. The results are plotted in Fig. 8.6. It is readily
observable that against this type of opponent, it pays to concede as little as possible.
For example, HardHeaded has the lowest CR after Hardliner, which results in a
very high score against Conceder Linear. In general, the correlation is very high
(coefficient of determination of R2 = 0.86) between the CR and utility obtained
against Conceder Linear (see Fig. 8.9). This means that CR is a good predictor of
how an agent fares against a cooperative agent. As noted, the CR is a measure of
the bidding strategy. Therefore, against such a cooperative opponent, the decisive
factors in the success of an agent are the circumstances and timing under which the
bidding strategy makes its concessions.

In contrast, we cannot make similar statements about how to play against a very
competitive agent such as Hardliner. As can be seen in Figs. 8.6 and 8.7, there is a
positive correlation between the CR and the average utility obtained when playing
Hardliner. This means that the nicer an agent plays, the more utility is obtained
against Hardliner. This makes sense, as competitive play against Hardliner is sure
to result in a break off. However, the correlation is very weak, with a coefficient of
determination of R2 = 0.20. Therefore in this case the CR is not a good predictor of
the negotiation success. Because a break off of the negotiation is more likely against
a very competitive opponent, the acceptance conditions of an agent play a much more
important role than in the previous case.

Clearly, the only way to receive any utility in a negotiation against Hardliner is for
an agent to give in fully. But in a tournament setting, an agent should not only take into
account its own utility, but it should also make sure not to give away too much utility
to the other contestants. Indeed, it is not entirely clear how one should successfully
negotiate against the Hardliner (or similar strategies such as HardHeaded) without
getting exploited in terms of tournament score. As a consequence, there exists a
tension between the short-term negotiation incentives of a negotiating agent and its
goal to get a high overall tournament ranking. Such considerations are related to the
composition of the tournament pool [1], which we cover more deeply in Sect. 11.3.6
of our overall conclusions.

http://dx.doi.org/10.1007/978-3-319-28243-5_11
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8.5 Conclusion and Discussion

Making concessions during a negotiation is vital for getting an agreement. Successful
negotiations are only possible when both parties employ an effective conceding
strategy. Designing a good strategy of when and how much to concede is challenging,
and that is why there are many current negotiation implementations that concede in
very different ways.

In this chapter, we characterized negotiation strategies by how they concede
throughout the negotiation, and we did so by using a quantitative measure called
the concession rate of an agent. We first formally defined the notion of concession
rate as a normalized measure of the largest concession that was made during the
negotiation. This formalizes the concept of an agent’s willingness to concede against
different opponents.

We then presented an empirical method to effectively compute the concession
rate of agents, and then applied our approach to a selection of well-known agents
(including all participants of ANAC 2010 and 2011) in an experimental setting. For
the first time, this gives insight into the strategy space of negotiation tactics employed
in ANAC. We subsequently used our method to classify the agents into four categories
of concession behavior.

In addition to classifying agent strategies, various conclusions can be drawn based
on charting the experimental results. Indeed, there is a wide spread in concession rates
of current agents, and our classification chart is a useful method to cluster strategy
types. The concession rate diagram shows that similar strategies have similar con-
cession characteristics, and makes it easy to understand the agent’s main negotiation
characteristics at a glance.

Some extreme agents are located in the extreme regions of the chart, while the
stronger agents form a cluster in the competitive corner. The results indicate that in
order to be successful in an automated negotiation competition, an agent should not
concede much, especially not to very cooperative strategies.

In general, the correlation is very high between the concession rate and utility
obtained against such a conceding strategy. This means that a low concession rate is
a good predictor for high performance against a conceding agent. The same behavior
would be inappropriate against a very competitive agent that does not concede at
all during the negotiation. We have also demonstrated that, in general, the nicer an
agent plays against this type of opponent, the more utility it obtains. This is because,
against such a hard-headed opponent, there is a high chance the negotiation would
break down if no concessions are made.

This then leads to a dilemma for the agents to be either a teacher (who tries to
entice their opponent to adapt by employing a tough strategy) or a learner (who tries
to adapt to maximize its own utility, given the behavior of the opponent), which
lies at the heart of many bilateral negotiation problems. If the opponent is flexible
and adapting to one’s demands, there is little point in conceding. However, if the
opponent is being strictly hard-headed (even appearing irrationally so), reaching
some agreement is typically preferable to no agreement. The importance of learning
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strategies that try first to detect the adaptivity of the opponent (such as Gahboninho,
which proved very robust in ANAC 2011) is an important insight which could be
taken up in further research in bilateral negotiations beyond the competition.
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Chapter 9
Optimal Non-adaptive Concession Strategies

Abstract In the previous chapter we presented an empirical method to classify
agents into four broad categories of concession behavior, and we formulated guide-
lines on how agents should bid against each category. This chapter follows an alter-
native approach by devising optimal concession strategies against specific classes
of acceptance strategies. Many time-based concession strategies have already been
proposed, but they are typically heuristic in nature, and therefore, it is still unclear
what is the right way to concede toward the opponent. We provide a theoretical model
in which a bidder makes a series of offers to an acceptor with unknown preferences.
We apply sequential decision techniques as we did in Chap.5, but this time to find
analytical solutions that optimize the expected utility of the bidder, given certain
strategy sets of the opponent. We then compare our solution to state of the art con-
cession techniques in a negotiation simulation. Our solutions turn out to significantly
outperform current approaches in terms of obtained utility. Our results open the way
for a new and general concession strategy that can be combined with various existing
learning and accepting techniques to yield a fully-fledged negotiation strategy for
the alternating offers setting.

9.1 Introduction

A key insight of negotiation research is that making concessions is crucial to con-
ducting a successful negotiation. There are important reasons to make concessions
during the negotiation [1]: it is often used to elicit cooperation from the other, in
the hope that the other will reciprocate in kind. Second, it conveys information to
the opponent, both about the negotiator’s preferences and about the perceptions of
the opponent. But most importantly, it is the time pressure of the negotiation itself
(typically in the form a deadline or a perceived maximum number of bidding rounds)
that operates as a force on the parties to concede [2]. An approaching deadline puts
important pressure on the parties to reduce their aspirations, especially when the time
pressure heightens, which is referred to as the “eleventh hour effect”.

Given the paramount importance of time in bargaining, it is not surprising that
many negotiating agents adjust their level of aspiration based on the time that is left in
the negotiation. There is a clear rationale behind the design of such agents, given their
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aim to maximize the chance of reaching an agreement in a limited amount of time. For
example, well-known time dependent tactics (see Sect. 2.3.3), such as Boulware and
Conceder, are characterized by the fact that they consistently concede throughout the
negotiation process as a function of time. The same kind of time-based concession
curves can also be observed in practice in ANAC (see Appendix B). However, in the
TDT’s, as well as in some very effective agents, such Agent K (winner of ANAC
2010) and HardHeaded (winner of ANAC 2011), the specific concession curve is
selected rather arbitrarily, and is not informed by any other insights; therefore, they
make largely unfounded choices on how much to concede at each time interval.

Alternatively, behavior dependent tactics such as Tit for Tat (cf. Sect. 2.3.3) base
their decision to make concessions on the actions of the other negotiating party.
However, such adaptive approaches do not give us any information on how to concede
based on time alone.

Work that presents optimal choices of how much to concede includes game theo-
retic work (e.g. [3]) and single-shot bargaining, also known as the ultimatum game [4].
However, these approaches usually assume a complete information setting, or a game
where the deal is struck immediately, which we cannot apply to a typical concession-
based negotiation. Furthermore, this type of work typically revolves around equilib-
rium strategies, which assumes full rationality on the part of both agents. We are
more interested in optimal solutions for one negotiating party, playing against vari-
ous classes of acceptance strategies.

This chapter aims to find out how time pressure alone, in the form of a deadline,
should influence the concession behavior of a negotiator against specific opponent
classes. To do so, we employ methods from sequential decision theory to devise nego-
tiation strategies that make optimal concessions at each negotiation round. Finally,
we show that an agent making these optimal concessions performs better than any
other in our experimental setup.

We begin with an example in Sect. 9.2 that sets the stage for our time-based
concession model in Sect. 9.3. We apply our methods to find optimal concessions
against opponents that accept according to acceptance thresholds in Sects. 9.4 and9.5.
We subsequently compare the optimal bidding strategy with state of the art bidding
strategies in a series of tests (Sect. 9.6). We conclude our chapter with a discussion
of the contributions of this chapter, as well as its implications (Sect. 9.7).

9.2 An Example

The following example serves as an illustration of the basic insights that have moti-
vated our approach.

Suppose agent B is negotiating the purchase of a house with a buyer, agent A. As
in the rest of this chapter, we will only focus on one of the two parties; in this case B.

B has set the opening price at $300,000, but is (secretly) willing to go down to
$250,000 if necessary. B has to strike a balance between the probability that A buys
the house, and getting as much utility out of the agreement as possible (i.e., not

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_2
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conceding too much). Our main question is: what offers or concessions should B
make towards A in order to perform optimally and maximize his own outcome? That
is, what is the right way to lower the price of the house depending on the remaining
time and the acceptance policy of A?

Let us consider the easiest case where B has only one offer to make to A, which
A can either accept or reject. If B makes an offer x � [$250, 000; $300, 000] to A,
then this will yield him the following utility:

U (x) =
� x�$250,000

$50,000 , if A decides to accept,
0, when A rejects the offer.

Now suppose A is prepared to pay up to $280,000 for the house. Of course, B
does not know this, but instead presumes that A’s acceptance threshold could be
anywhere between $200,000 and $300,000 with equal probability. It follows that B
believes the chance that A accepts decreases linearly in terms of the price offered.
Then, B’s strategy is simple: he should set the price to

arg max
x

U (x) • P(A accepts x), (9.1)

which is equal to

arg max
x

�
x � $250,000

$50,000

�
•
�

1 �
x � $200,000

$100,000

�
. (9.2)

We can readily compute that the maximum is reached for x = $275,000, and so
with only one offer to make, B should pick this price in order to optimize his utility.
Note how B’s offer falls exactly in between his reservation price and his opening
price. Fortunately for both, the price x is also actually lower than the maximum A
was willing to pay, and therefore, she will buy the house.

This simple case serves as a good intuition to proceed to the more general setting
we consider below.

9.3 Making Non-adaptive Concessions

Our negotiation model builds upon our definitions in Sect. 2.2.2: two agents A and B
exchange offers in turns on a negotiation domain �. A and B have utility functions
UA : � � [0, 1] and UB : � � [0, 1] and reservation values rvA, rvB � [0, 1]
respectively. The agents will only propose offers that they deem acceptable, namely
bids with higher utility than their reservation value. Likewise, the reservation values
acts as the lowest utility they are willing to accept.

The process is illustrated in Fig. 9.1. With n rounds remaining, B starts by making
an offer Bn � �, which A can either respond to with an accept or a counteroffer.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Fig. 9.1 Sequential diagram
of the negotiation process. B
starts the negotiation with
bid Bn , and after every
proposal, the other responds
with a counteroffer or an
Accept

If A accepts, the negotiation ends in agreement, and both sides obtain their respective
utility. If A rejects the offer, she replies with a counteroffer An , the number of
remaining rounds decreases by one, and B can make a second offer, Bn�1. This
process continues until B makes his last offer B1. If A also turns down this last offer,
A and B receive their respective reservation values rvA and rvB .

We are concerned with finding optimal concessions for one of the parties, given
certain strategies used by the opponent. As in Chap. 5, we focus on agent B for his
Bidding role, and on A for her Accepting role. In particular, we do not focus on what
offers A should generate, or what acceptance policy B should employ.

There is an important class of strategies that allows us to make some further
simplifications. In line with our aim to find concession curves that depend only on
the time remaining, we will assume B’s strategy is not adaptive (i.e., B does not
change his behavior according to the bids that have been exchanged). This means
B can completely ignore A’s bids, and we can code them by Accept or Reject
instead. Other examples of such agents include the family of time-dependent tactics,
the sit-and-wait agent, and IAMcrazyHaggler (cf. Appendix C). Note that this then
effectively defines an one-sided bidding protocol in which B submits n bids to A in a
sequential manner, which is equivalent to a repeated ultimatum game with reservation
values [5].

The fact that B does not adapt to his opponent puts him in a significantly more
difficult epistemic position than in a typical negotiation, since B could normally
gather valuable information from A’s counter offers. This holds in a very fundamental
sense: apart from the incoming offers, B can only distinguish n different possible
states, namely the number of rejects that he received. This means that we can already
compute the appropriate concession curve before the start of the negotiation; i.e., the
bids or utilities that need to be sent out at every round.

Also note that as time moves forward, the indexing of the offers by B runs back-
ward, just as in Chap. 5. This has the advantage that it simplifies the calculations
of certain recurrence relations we encounter in this chapter, as the expected utility
with j + 1 rounds remaining depends on the expected utility in the future (i.e., with
j rounds remaining). Secondly, it allows us to define our model without a preset
deadline, as we do not need to specify the maximum number of rounds beforehand.

http://dx.doi.org/10.1007/978-3-319-28243-5_5
http://dx.doi.org/10.1007/978-3-319-28243-5_5
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9.4 Conceding and Accepting

The aim of this chapter is to find the right concession behavior for B given that
he only has n offers to try out. B will only propose offers that he himself deems
acceptable, namely bids in the following set:

OB = {� � � | UB(�) � rvB}. (9.3)

B can make his bids in many ways. A well-known method using concession
curves are the time-dependent tactics such as Boulware and Conceder, as defined
in Sect. 2.3.3. When there are j rounds remaining (out of a total of n rounds), such
strategies make a bid with utility closest to

Pmin + (Pmax � Pmin) •

�

1 � k � (1 � k) •
�

1 �
j

n

� 1
e

�

,

for certain choices of k, e, Pmin and Pmax, which control the concession rate and
the minimum and maximum target utilities. These tactics form the basis of many
successful negotiation strategies [6–9], in which variants of the above formula are
used to decide the appropriate concessions, combined with advanced techniques such
as preference modeling and strategy prediction. In this chapter, we will propose a
different kind of concession curve that is also able to provide the groundwork for
designing an advanced negotiation agent.

B’s optimal strategy of course depends on how A chooses to accept or reject.
While B makes his offers, A has to solve some kind of stopping problem to decide
when the offer is sufficient.

Player A will have to either accept or reject a bid � � � in every round j . A may
update her beliefs in round j based on � and the bidding history of the opponent,
which is an element h j from the set of offers H j = �n� j made by B. Note that we
only need to consider the bids made by B, since the rejects of A are already implicitly
represented. For example, for n = 8 and j = 5, the information set of A is a history
of rejected offers h5 = (B6, B7, B8) � H5, adjoined with the bid B5 of the current
round.

Hence, we can represent A’s acceptance strategy in round j as a function

� : H j × � � {Accept, Reject}. (9.4)

We will focus on a specific set of strategies that accept according to acceptance
thresholds. That is, A’s acceptance strategy in round j is specified by a utility constant
� j (possibly dependent on rvA) such that

�(h j , �) =
�

Accept if UA(�) � � j ,
Reject otherwise.

(9.5)

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Fig. 9.2 A’s acceptable
offers for round j consist of
all bids � with UA(�) � rvA,
while B’s possible offers OB
consist of all bids � such that
UB(�) � rvB

We believe acceptance thresholds are a natural set of acceptance strategies to
consider, since it is reasonable to assume that if A finds a bid acceptable, then so is
any bid with higher utility.

One of the simplest acceptance strategies for A is satisficing: accepting any offer
with a utility above her reservation value by setting all � j equal to rvA. This is done,
for example, when a negotiator is more concerned with getting any deal at all than
reaching the best possible deal (e.g., [10]). Needless to say, this is a very simple
acceptance strategy, as A normally wants to get as much out of the negotiation as
possible. In other applications, illustrated in Fig. 9.2, A’s threshold would be higher at
the beginning of the negotiation, and would slowly decrease towards rvA. However,
as we shall see in the next section, the case of a satisficing acceptor already requires
highly effective conceding behavior by B.

A might also employ a more fundamental approach by trying to optimize her own
utility, taking into account the number of rounds remaining. Optimal stopping theory
provides optimal solutions for A for the case that A has incomplete information about
B’s offers. We repeat Proposition5.1 from Chap. 5 p. 91, which expresses the optimal
solution against a bidder B with completely unknown utility goals:

Proposition 9.1 When B makes random bids of utility uniformly distributed
in [0, 1], and with j offers still to be observed, A’s optimal acceptance strategy
is to accept an offer of utility x exactly when x � v j , where v j satisfies the
following equation: �

v0 = rvA,
v j = 1

2 + 1
2v2

j�1.
(9.6)

As it will turn out, this strategy is closely related to the strategy B should follow
against satisficing acceptors.

http://dx.doi.org/10.1007/978-3-319-28243-5_5
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9.5 Making Optimal Offers

We will now outline our general method to make optimal offers, which extends our
running example from Sect. 9.2 to a general domain with an arbitrary number of
remaining rounds.

Suppose A uses an acceptance strategy based on acceptance thresholds
(�0, �1, . . .), with � j � rvA; that is, A accepts an offer � � � with j remain-
ing rounds exactly when UA(�) � � j . Suppose we have j + 1 rounds to go, and B
has to decide the optimal bid B j+1 to make.

The general formula for the expected utility U j+1(�) for B of offering � � OB

is as follows:

U j+1(�) =

�
��	

��


UB(�), if A accepts,

the expected utility
with j remaining rounds, if A rejects.

When there are no more rounds remaining, B will get rvB , hence U0(�) = rvB .
The recursive nature of this equation allows us to employ techniques from sequential
decision theory to formulate the optimal way to make concessions.

We will write U j+1 for the highest expected utility B can obtain in round j + 1,
which is thus given by the following equations:

U0 = rvB, and

U j+1 = max
��OB

UB(�) • P(UA(�) � � j+1)

+ U j • P(UA(�) < � j+1)
= U j + max

��OB

�
UB(�) � U j

�
• P(UA(�) � � j+1).

The corresponding optimal bid that B should make is given by the � that maximizes
the above equation, and therefore,

B j+1 = arg max
��OB

�
UB(�) � U j

�
• P(UA(�) � � j+1).

Solving this equation would be straightforward, if it were not for the fact that B
in general does not have full knowledge of a number of aspects in this equation: UA

is of course unknown to B, and so are the acceptance thresholds � j . To make matters
worse, the acceptance thresholds generally depend on the reservation value of A,
which is also unknown to B.

B will therefore have to make some assumptions about UA and her concession
thresholds. Assume that B has an estimation of the reservation value of A, which
does not change according to A’s behavior. As in [11], the estimation is characterized
by a probability distribution Fj (x) for every remaining round j , where Fj (x) denotes
the probability that A’s reservation value is no greater than x .
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Fig. 9.3 Graph of B j and U j for remaining rounds j � {0, 100}

We will now analytically solve the specific case of an opponent with a satisficing
accepting strategy. To get concrete examples of concession curves (Fig. 9.3), we
will consider the same classical buyer-seller scenario as in Chap.5 to evaluate our
solutions. We study the negotiation scenario of Split the Pie [3, 12], where two
players have to reach an agreement x � [0, 1] on the partition of a pie of size 1. The
pie will be partitioned only after the players reach an agreement. In this setting, we
instantiate � = [0, 1] to represent a pie of size 1, with A and B having opposing
preferences on them: UB(x) = x and UA(x) = 1 � x .

We assume that A’s acceptance strategy is limited to the class where she accepts
any offer that is better than her reservation value; i.e., � j� j = rvA, where we assume
rvA is uniformly distributed. The probability that A accepts in round j is now:

P(UA(�) � � j ) = P(UA(�) � rvA) = Fj (UA(�)). (9.7)

The general formula now simplifies to

U j+1 = U j + max
x�rvB

�
x � U j

�
• (1 � x). (9.8)

Note that the following holds, even for the general setting:

Proposition 9.2 When B has more rounds remaining, B can expect to get
more utility out of the negotiation. That is, for every remaining round j , we
have U j+1 � U j .

http://dx.doi.org/10.1007/978-3-319-28243-5_5
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Proof B can always make the bid �max = arg max� UB(�) with j + 1 rounds
remaining, to get at least as much utility as in the next round.

With the help of Proposition 9.2, we can show the maximum in Eq. (9.8) is attained
for x = B j , where B j satisfies the following relationship:

�
B1 = rvB+1

2 ,
B j+1 = 1+U j

2 .
(9.9)

This yields the following recurrence relation for U j :

�
U0 = rvB,
U j+1 = 1

4

�
U j + 1

�2 .
(9.10)

With these equations, we can now compute the expected value of the optimal bids
B has to make in terms of his own reservation value (see Fig. 9.4). For example:

U1 =
1

4
(1 + rvB)2 ,

U2 =
1

64
(5 + rvB(2 + rvB))2,

...

Fig. 9.4 Expected utility U j for B with j � {1, 2, 3, 4} rounds to go, depending on B’s reservation
value rvB
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The corresponding optimal concessions by B are as follows:

B1 =
1 + rvB

2
,

B2 =
1

8
• (5 + rvB • (rvB + 2)),

...

Note that both Eqs. (9.9) and (9.10) are expressed in terms of the value U j . We obtain
a much more elegant formulation when we express them in terms of B j :

Proposition 9.3 For all j � 1,

B j+1 =
1

2
+

1

2
B2

j ,

and

U j = B2
j .

Proof Both statements follow from rewriting Eqs. (9.9) and (9.10).

This also means that Eq. (9.10) is related to the logistic map, as was the case in
Eq. (5.4) of Chap.5: if we substitute U j = 1�4x j in Eq. (9.10) we get the equivalent
relation of the logistic map x j = x j�1(1 � x j�1) at r = 1, so we cannot expect to
solve the recurrence relation.

Proposition 9.4 For rvB = 0, there exists the following connection between
B j , U j , and the optimal stopping cut-off values v j from Eq. (9.6):

B j = v j ,

and

U j = v2
j .

http://dx.doi.org/10.1007/978-3-319-28243-5_5
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Proof When rvB = 0, then B1 = 1
2 , and consequently, the B j sequence has

the same starting value and definition as the optimal stopping sequence v j .

Proposition 9.4 shows that optimal bidding against a satisficing acceptor with
unknown reservation value is the mirrored version of Proposition5.1 about optimal
accepting against a bidder that makes unknown offers. In both cases, the idea is
the same, but with switched roles: both the optimal bidder and the optimal stopper
aim to pick the optimal utility threshold that simultaneously maximizes the expected
utility of an agreement and the chance of acceptance, given stochastic behavior by
the opponent. We conclude this section with an example that relates our results to
the housing example of Sect. 9.2.

Example Our assumptions in this section are consistent with our housing
example when we scale the pie � to [$250,000; $300,000], and when rvB = 0
corresponds to the utility of selling the house for $250,000.

Our results indicate that the seller of the house should act as follows: we
see that indeed, B1 = 1

2 , so with one bid remaining, B should make a bid
halfway between $250,000 and $300,000, as we had calculated before, with
an expected utility of U1 = 1

4 .
Also, B2 = 5

8 , which means with two bids remaining, B should offer

$250,000 +
5

8
• $50,000 = $281,250.

See Table9.1 for other entries.
Note that since B does not learn anything about A, B actually overestimates

the expected utility, and more so when the number of rounds increases (as can
be seen in Table9.1). This is because B is not able to deduce, from A’s rejects,
that high utility values for B are simply not attainable.

Table 9.1 The optimal offers
to make and their expected
utility in the housing
example, given the remaining
amount of bidding rounds

Remaining rounds Optimal offer Expected utility

1 $275,000 0.25

2 $281,250 0.39

3 $284,766 0.48

4 $287,086 0.55

5 $288,754 0.60

10 $293,055 0.74

100 $299,060 0.96

http://dx.doi.org/10.1007/978-3-319-28243-5_5
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9.6 Experiments

In order to test the efficacy of the optimal bidding technique given by Proposition 9.3,
we integrated it into a fully functional negotiating agent. Given j remaining rounds
it makes an offer with utility target B j as defined by Eq. (9.9). It does not accept any
offers and it does not model the opponent in any way.

For the opponents (side A), we selected various well-known negotiation agents
available for our setting, including the top three agents of ANAC 2012, namely CUHK
Agent, AgentLG, and OMAC Agent (see Appendix E). We also included the time
dependent tactics Boulware (with concession factor e = 0.2), and Conceder (e = 2),
and as a baseline, we included the Random Walker strategy. We then compared the
optimal bidder’s performance with the same set of strategies on side B. To analyze
the performance of different agents, we employed Genius (Appendix A).

Note that some of the agents in our setup are originally designed to work with
the alternating offers protocol, while we essentially employ a one-sided bidding
protocol; however, since our model is a simplified alternating offers protocol, it is
easy to adjust the agents to work in our setting: for the opponents, we ignore any
bids that are sent out; i.e., when side A accepts, the negotiation ends in agreement,
while A’s counter-offers count as rejects and are ignored. In effect, this means only
A’s acceptance mechanisms are used.

For our negotiation scenario we use a discretized version of Split the Pie.
We set rvB = 0, and we selected varying reservation values for A: rvA �
{0, 0.1, 0.2, . . . , 0.9}. We ran our experiments using varying total number of rounds
n � {1, 20, 40, . . . , 100}, and we repeated every negotiation session 5 times for
statistical significance.

The results of our experiment are plotted in Fig. 9.5, with the total amount of
rounds n varying between 1 and 100. As is evident from the results, the optimal

Fig. 9.5 The utility obtained by the bidding strategies in our experiments for different values of
the total number of rounds n. The vertical bars indicate one standard deviation from the mean
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bidder significantly outperforms all agents in all cases (one-tailed t-test, p < 0.01
for every n). The good relative performance of the optimal bidder is even more
pronounced for n = 1, and it is easy to see why. Many of the other strategies will
persist in aiming for a high utility, even with only few bids to send out. This results in
many break-offs, while optimal bidder will settle for a much lower value in the last
rounds with more potential agreements. For example, for n = 1, optimal bidder sets
his utility target halfway between his reservation value and the maximum attainable;
i.e., B1 = rvB+1

2 . On the other hand, with more bids remaining, optimal bidder acts as
an extreme Boulware strategy, trying to get as much out of the negotiation as possible.
Indeed, optimal bidder and Boulware tend to act more similar as n increases. CUHK
Agent (the winner of ANAC 2012) and AgentLG obtain particularly low scores. The
main reason for this is that these strategies are very behavior-dependent and do not
take into account the remaining time as much as they need to.

Note that almost all agents obtain higher utilities with more negotiation rounds.
This is to be expected, as more time allows for a more fine-grained search of what
is acceptable for the opponent. The only exception is Random Walker, who only
increases the chances to make disadvantageous bids for itself with more available
time.

9.7 Conclusion

This chapter presents a theoretical model to calculate optimal concession curves
against strategies that decide when to accept using acceptance thresholds. We com-
pute these optimal concessions by employing sequential decision methods, and we
show that they significantly outperform state of the art concession strategies, even
against a much wider set of acceptance strategies. In specific instances, the optimal
concession curve is equal in shape to the curve describing optimal stopping cut-off
points. This confirms that optimal stopping theory is a powerful method that has
many possible application in negotiation research. It is interesting to note that the
concession curve that we found (as shown in Fig. 9.3) is not equal any time dependent
curve (seen in Fig. 2.3 on page 27), but it bears most resemblance to a Boulware-like
concession curve. As far as the authors are aware, this is the first time such informed
time-based concession strategies have been formulated and tested in practice.

Our results demonstrate that our optimal bidding mechanism is an effective way
for a negotiating agent to take into account the passing of time. We believe even more
effective concession curves can be computed by studying broader ranges of accep-
tance strategies than we did in this chapter. Further improvements could be made
by introducing a form of learning to the optimal bidder, using the BOA framework.
Eventually, we envision a design of an automated negotiator that incorporates our
optimal concession curve with regard to time-related concessions, while other types
of concessions (e.g., to reduce costs [13], to elicit cooperation [14], or to convey
information [15]) are handled separately by other concession modules.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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International Workshop on Agent-based Complex Automated Negotiations (ACAN 2014), 2014
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Chapter 10
Putting the Pieces Together

Abstract In the previous chapters, we performed extensive research into three differ-
ent aspects of an automated negotiator: bidding (Chaps. 8 and 9), learning (Chaps. 6
and 7), and accepting (Chaps. 4 and 5). We have found novel ways to handle each
component, sometimes even in optimal ways for particular circumstances. The nat-
ural question then arises: how do the pieces fit together? Or, more specifically: how
do the components of a negotiating agent influence its overall performance, and
which components are the most important for the end result of an agent? In this
chapter, we provide an answer to this question in a quantitative way. In doing so,
we show that the BOA framework not only provides a useful basis for developing
and evaluating agent components, but also provides a powerful agent design tool.
Furthermore, we demonstrate that combining effective key components from dif-
ferent agents improves an agent’s overall performance. This validates the analytical
approach of the BOA framework towards optimizing the individual components of
a negotiating agent. By combining agent components in varying ways, we are able
to demonstrate the contribution of each component to the overall negotiation result,
and thus determine the key contributing components. Moreover, we study the inter-
action between components and present detailed interaction effects. We find that the
bidding strategy in particular is of critical importance to the negotiator’s success
and far exceeds the importance of opponent preference modeling techniques. Our
results contribute to the shaping of a research agenda for negotiating agent design by
providing guidelines on how agent developers can spend their time most effectively.

10.1 Introduction

Throughout this thesis, we performed extensive research into three different aspects
of an automated negotiator. One key components is the bidding strategy; focusing
on what kind of offers the negotiation strategy should choose, and in particular, what
kind of concessions should be made (see Chaps. 8 and 9). We also put emphasis
on learning techniques to model various opponent attributes, such as the (partial)
preference profile or the opponent’s next move (Chaps. 6 and 7). Finally, there is the
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question of when to accept; i.e., under which circumstances an offer by the opponent
should be agreed to (Chaps. 4 and 5).

In the preceding chapters, we found effective components for each of these aspects
by focusing on one particular component. However, the interactions and relative
importance of the individual components have not been studied in detail before. Some
components may have a stronger impact on the performance than others, and there
could be strong interdependencies between the components (e.g., a very competitive
strategy hampering a learning technique by not exploring enough options). Thus,
the main question of this chapter is: How do the components of a negotiating agent
influence its overall performance, and which components are the most important?

Answering this question requires us to bring together so-far unconnected research
on various elements of negotiating agent design, and to research whether combining
effective key components from different agents improves an agent’s overall perfor-
mance. In this chapter, we show that the BOA framework not only provides a useful
basis for developing and evaluating agent components, but also provides a powerful
tool for designing full negotiating agents. We validate the analytical approach of the
BOA framework by demonstrating that combining effective key components from
different agents also improves an agent’s overall performance.

We investigate the importance and relations between three key components of the
BOA framework: the bidding strategy, the opponent model and the acceptance strat-
egy. The question then becomes: what is more important for a negotiation strategy
to do well: to bid, to learn about the opponent, or to accept? Or, more formally,
how do each of the three components contribute to the effectiveness of a negotiation
agent, and what are the interaction effects between them? We make these questions
precise by formulating them in quantifiable terms of predictability of variance, and
we determine the contribution of each component using the statistical measure of
effect size. Once the individual contribution of each key component is established,
we focus on the effects of combining components.

This process will give us a better understanding of how we can improve negoti-
ation agents, as well as provide guidelines for the design of negotiating agents. Our
findings indicate that the bidding strategy is by far the most important component,
while the significance of learning about the opponent’s preferences is rather small
in comparison. Given the current focus on opponent learning techniques in auto-
mated negotiation research, we argue that more effort needs to be made to formulate
effective bidding strategies.

We start by outlining our method to quantify importance of agent components in
Sect. 10.2, with the notion of effect size. Section 10.3 presents our experiments, in
which we combine a large set of agent components, followed by Sect. 10.4, which
studies the contribution and interaction effects of each component. Finally, Sect. 10.5
presents our conclusions and recommendations for a research agenda on agent design.

http://dx.doi.org/10.1007/978-3-319-28243-5_4
http://dx.doi.org/10.1007/978-3-319-28243-5_5
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10.2 Measuring the Contribution of Strategy Components

To determine the importance of a particular agent component in relation to another,
and to measure the interactions between them, we use the notion of effect size.
The effect size is a statistical measure to quantify the interactions between various
controlled variables and measures their effect on the dependent variable, which in our
case is the average outcome utility of the agent. In this way, the effect size expresses
how significant or important a variable is [1]. This goes beyond the question of
whether a specific variable is significant or important, which can be answered with
standard statistical significance testing. We use the relative proportion of variation,
known as the η2 measure.

The η2 measure examines the variance explained by every component to determine
its importance. When the contribution of a component is small (a low η2 value), there
is little variation and the difference between the different components is small. This
makes the choice of which component to use less important. On the other hand,
if the contribution of a component is large (a high η2 value), then the choice of a
component is sure to have a big impact.

The η2 measure rates the variance that a variable introduces using the Sum of
Squares. The Total Sum of Squares (SSTotal) expresses the total dispersion of all data
points; i.e., the total variance found within the data, which can be calculated from
the differences between the data points xi and the total mean x̄ as follows:

SSTotal =
n∑

i=1

(xi − x̄)2. (10.1)

The Sum of Squares Between Groups (SSb) determines the variance between the
different groups and is calculated as follows:

SSb =
|G|∑

j=1

n j (x̄ j − x̄)2, (10.2)

where the x̄ j represents the group mean, |G| represents the number of groups and n j

is the number of data points in group j .
To calculate the η2 value for each variable i , we use Eq. (10.3), where SSbi is the

sum of squares between groups for variable i :

η2
i = SSbi

SSTotal
(10.3)

A benefit of using this measure is that it allows for easy comparison between the
different η2 values on an interval scale, because the η2 values are scaled according
to the total variation (SSTotal). This is not the case with other effect size measures
(e.g. partial η2), which only allows for an ordinal scale comparison [2]. Another
advantage of using η2 is that it can be expressed in the form of percentages, making
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it more intuitive to understand. For example, if a certain controlled variable v has a
η2 value of 0.35, it means that 35% of the variation in the dependent variable can be
accounted for (or explained by) v.

10.3 Experiments

To analyze the relative importance and interactions of each strategy component, we
require a wide array of tactics and techniques for every component. To explore the
space of BOA components, we need a representative selection for every component
from the BOA framework repository, ranging from baseline techniques to state of
the art techniques. For every component, we aimed to select many variants, given
that they were designed for a negotiation setting consistent with ours, with publicly
available code, and consistent with the BOA framework (i.e., generic enough so that
we could freely interchange them with arbitrary other components). To ensure as
much variety as possible, we included components not only from this thesis, but also
components designed by various researchers.

We employ the same negotiation setting of a bilateral negotiations with the
alternating-offers protocol as in our definitions in Chap. 2. To make the extensive
experiments feasible, we used a discrete time line as in Chap. 7, with a specified
number of rounds N = 3000. Both agents receive utility 0 if they do not succeed in
reaching an agreement before the deadline.

Our range of components are shown in Table 10.2. We selected 11 different bidding
strategies in total. We selected state of the art bidding strategies from the top three
strategies of the ANAC 2011 and 2012 competitions (see Appendices D and E), and
as baseline bidding tactics, we included the time-dependent tactics Boulware (with
concession rate e = 0.2), Conceder Linear (e = 1), Conceder (e = 2), and behavior-
dependent strategies such as Nice Tit for Tat, Absolute Tit for Tat and Relative Tit
for Tat (all defined in Sect. 2.3.3).

All bidding strategies were combined with six different opponent models. We
selected five state of the art opponent models from ANAC that we could freely com-
bine with arbitrary bidding strategies. To ensure a fair representation of opponent
models, we selected from two main categories as defined in Chap. 6; Bayesian mod-
els, which use Bayesian learning techniques to create and update a model of the
opponent’s preference profile [3] and Frequency models, which keep track of how
often certain items are requested by the opponent. As a baseline, we chose No Model,
which selects bids for the opponent at random.

For the state of the art acceptance conditions, we selected a number of sophisti-
cated strategies from top ANAC agents. We also included the most advanced version
of the optimal stopping acceptance policy from Chap. 5 (Optimal Stopping GPR),
which predicts the opponent’s strategy using a Gaussian process regression tech-
nique to determine the probability that a better bid will be offered in the future.
Lastly, we added the best performing acceptance strategies from Chap. 4, namely
ACcombi(T, MAXW ) and ACcombi(T, AVGW ), with T = 0.95. We selected a number

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_7
http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_6
http://dx.doi.org/10.1007/978-3-319-28243-5_5
http://dx.doi.org/10.1007/978-3-319-28243-5_4
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Table 10.1 Characteristics of
the negotiation scenarios

Scenario
name

Size Bid distrib. Opposition

Car 15625 (med.) 0.136 (low) 0.095 (low)

Grocery 1600 (med.) 0.492 (high) 0.191 (med.)

Itex versus
Cypress

180 (low) 0.222 (med.) 0.431 (high)

Laptop 27 (low) 0.295 (med.) 0.178 (med.)

Travel 188160 (high) 0.416 (high) 0.230 (med.)

of simple baseline acceptance policies as defined in Chap. 4, such as: ACconst(c)

(c ∈ {0.6, 0.7, 0.8, 0.9}), which accepts exactly when the utility of the opponent’s
offer is higher than a constant threshold c; ACgap(g), which accepts when the utility
gap between the parties is smaller than a gap size g ∈ {0.1, 0.2}; and ACnext(α, β)

(α ∈ {1.0, 1.1, 1.2}, β ∈ {0, 0.1, 0.2}), which accepts when α · u′ + β ≥ u, where u
is the utility of the bid that is ready to be sent out and u′ is the utility of the opponent’s
offer.

For our opponent pool, we selected a representative set of 7 agents, ranging from
baseline strategies (Boulware and Conceder Linear) to some of the top performing
agents from the ANAC competitions (the top 2 agents from ANAC 2011: HardHeaded
and Gahboninho [4], and number 1 and 3 from ANAC 2012: CUHKAgent [5] and
The Negotiator Reloaded). Note that we did not run all agents against each other, but
elected a representative opponent set instead. A full tournament with all negotiation
agents would be unfeasible, since much smaller tournaments (such as ANAC) already
take weeks to complete.

The negotiation scenarios were chosen on the basis of the following character-
istics: domain size (number of possible bids), bid distribution (average distance
of all bids to the nearest Pareto-optimal bid), and the opposition of the domain
(the distance from the Kalai-Smorodinsky point to complete satisfaction). We picked
5 negotiation scenarios used in ANAC such that every characteristic varies between
high, medium and low. The scenario information is summarized in Table 10.1 (we
refer to Tables C.3 and D.3 for more details).

We created a large number of negotiation agents by combining all BOA com-
ponents into full negotiation agents; i.e., we created a pool of 11 bidding strategies
× 6 opponent models × 24 acceptance conditions, which amounts to 1584 negotia-
tion agents in total.1 We let all of them play against the 7 opponents in each scenario
listed in Table 10.1, keeping track of their obtained utility in every negotiation ses-
sion. To run our tournament we used the BOA framework as implemented in Genius
(Appendix A). Since not all the negotiation strategies are deterministic, the tourna-
ment setup was run 5 times in order to reduce the amount of variance in the data,
resulting in 277200 negotiation sessions in total (Table 10.2).

1Note that this set also includes already existing agents such as HardHeaded and The Negotiator
Reloaded, since their components occur in all three groups.

http://dx.doi.org/10.1007/978-3-319-28243-5_4
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Table 10.2 All negotiation strategy components used in experimental setup

Bidding, opponent modeling, and accepting components

Bidding strategy Acceptance conditions

AgentLG ACcombi(T, AVGW )

CUHK agent [5] ACcombi(T, MAXW )

HardHeaded [4] ACconst(c)

IAMhaggler2012 ACgap(g)

The negotiator reloaded [6] ACnext(α, β)

Absolute tit for tat [7] Agent K2 [4]

Nice tit for tat [8] AgentLG

Relative tit for tat [7] AgentMR [9]

Time-dependent tactics [7] BRAMAgent2 [4]

HardHeaded [10]

Opponent model IAMhaggler2012

Agent Smith (Frequency) [11] Nice Tit For Tat [8]

HardHeaded (Frequency [10] OMAC Agent [12]

IAMhaggler (Bayesian) [13] Optimal Stopping GPR

NASH Agent (Frequency) The Negotiator [14]

The negotiator reloaded (Bayesian) [6] The Negotiator Reloaded [6]

No model

10.4 Component Contribution

To determine the contribution of each BOA component, we calculated the η2 of the
three components, using as input the utilities of all component combinations averaged
over all the runs, domains and opponents. The calculated η2 values are presented in
Table 10.3 and visualized in Fig. 10.1.

Table 10.3 The η2 measure for every component and the standard deviation of η2 over the different
runs, domains and opponents

Component η2 Standard deviation

Runs Domains Opponents

Bidding strategy (BS) 0.582 0.003 0.118 0.163

Opponent model (OM) 0.035 0.002 0.020 0.037

Acceptance conditions (AC) 0.118 0.003 0.121 0.071

BS * AC 0.114 0.003 0.023 0.082

OM * AC 0.014 0.001 0.011 0.016

BS * OM 0.085 0.004 0.040 0.040

BS * OM * AC 0.051 0.002 0.037 0.051
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Fig. 10.1 Visual representation of the contribution of components

From the calculated contributions, we can observe that the bidding strategy is
by far the most important component, accounting for 58% of the variation in the
negotiation strategy’s performance, which is significantly higher (one-tailed t-test,
p < 0.01) than the other components. Recall that the bidding strategy controls
the concession speed of the agent, thereby managing the rate with which it moves
towards the opponent according to its own utility. This is expected to have a huge
impact on the final outcome, as it determines the subset of the outcome space an
agreement can possibly be made in. We can also observe that the variance of the
bidding strategy contribution is rather high, especially with respect to the opponent
pool; this is explored further in Sect. 10.4.1.

Note that our method allows us to express the effectiveness of a specific choice
for any given strategy component. For example, we can fix the bidding strategy to
CUHK Agent, and calculate its average obtained utility when combined with all
opponent models and acceptance conditions and then compare this with the average
utility of another choice of the bidding strategy, for example Conceder. In fact, the
difference in this case is particularly large, because using this method, CUHK Agent
(bidding strategy of the winner of ANAC 2012) obtains the highest score of 0.79,
while Conceder (a baseline bidding strategy) has the lowest score of 0.63. Such
a utility difference means the difference between place 1 and place 8 in ANAC
2012 (see Table E.2), which gives a good indication of how important the bidding
strategy is.

The second most important component is the acceptance condition, with a con-
tribution of 12%, which is significantly higher than the opponent model (one-tailed
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t-test, p < 0.01). Also in this case, the baseline acceptance conditions (e.g.,
ACconst(c) and ACnext(α, β)) obtain the lowest scores (0.65), while optimal stop-
ping from Chap. 5 scores highest by far (0.75). The contribution of the acceptance
condition still comes out low because these are only the extreme scores, and most
acceptance condition scores are clustered around the group average (0.71).

Finally, the opponent model makes a surprisingly small contribution to the perfor-
mance of a negotiation strategy, accounting for only 4% of the explained variance.
There is only a small difference between using No Model (0.69) and any of the state
of the art models (0.72). This is still a significant difference and could make the
difference between place 1 and place 5 in ANAC 2012. However, there is almost no
difference between the learning methods themselves, which indicates that once an
agent employs a reasonable opponent model, there is not much more to gain after
that.

10.4.1 The Influence of the Opponent

Table 10.3 also presents the standard deviation of η2 over the runs, domains and
opponents for each of the components. This gives an indication of how much an
additional run, domain or opponent would affect the average contribution of each
component. Adding more runs will have little effect on the components’ contribution,
but the same cannot be said for the domains and opponents, which both have high
standard deviations, especially for the bidding strategy and acceptance condition,
which indicates that these components highly interact with the domain and opponent.

As we can see from Table 10.3, the opponent is the most important source of
variance when considering component contribution. We take a closer look at this
phenomenon by focusing on the subset of opponents that employ time-dependent
tactics, comparing the η2 values when negotiating against each of them. The advan-
tage of focusing on the time-dependent opponents is that they are from the same
family of tactics, so that only one factor is altered between the different opponents,
namely the rate at which they concede. To get a more complete picture, we add
two more time-dependent tactics to our opponent pool, namely Extreme Boulware
(e = 0.02) and Extreme Conceder (e = 5).

The η2 values are listed in Table 10.4 and presented in Fig. 10.2. They show a clear
trend for the contribution of the strategy components. As the value of e increases
(raising the cooperativeness of the opponent) the contribution of the bidding strategy
decreases dramatically, from 77 to 42%. Through closer inspection of the negotiation
dynamics between the agents, we are able to explain this trend.

When the opponent concedes very little, it is up to the bidding strategy of the
agent to yield to the opponent to avoid the consequences of no agreement. This
places a lot of importance on the bidding strategy, because the speed at which the
agent concedes dictates the agreement that will be reached, hence its large η2 value.
In these situations, the importance of having an effective opponent model is at its

http://dx.doi.org/10.1007/978-3-319-28243-5_5
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Table 10.4 η2 playing against time dependent opponents

Component η2 against opponents

e = 0.02 e = 1 e = 2 e = 5

BS 0.770 0.675 0.600 0.419

OM 0.010 0.014 0.007 0.004

AC 0.053 0.163 0.234 0.446

BS * AC 0.077 0.076 0.083 0.073

OM * AC 0.005 0.002 0.003 0.002

BS * OM 0.063 0.059 0.056 0.035

BS * OM * AC 0.022 0.013 0.018 0.020

Fig. 10.2 The η2 values of all components against different time-dependent opponents

peak, since it is both more challenging to achieve an acceptable outcome and it
is harder to learn the opponent’s preferences. Also, when an opponent makes very
small concessions, the offers differ very little in utility. This makes the role of the
acceptance condition less important, because the moment the agreement is reached
is not as significant.

On the other hand, when the opponent is very cooperative, the choice between
accepting and waiting for more concessions can make a big difference in the achieved
outcome. Therefore, the acceptance condition of the agent and the bidding strategy
of the opponent will primarily dictate the meeting point between the two agents. This
is why, as the opponent concedes more, the contribution of the acceptance condition
increases from 5 to 47% at the cost of the bidding strategy.
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10.4.2 Interaction Effects

Agent components do not perform their function in isolation. First of all, they interact
with each other: for example, a learning method may be far less effective when the
bidding strategy does not select enough ‘exploratory offers’ to learn more about
the opponent’s preferences. There are also interaction effects with the environment,
such as the negotiation domain (e.g., learning about the opponent may be harder
in big contract spaces), and the opponent (e.g., a good acceptance strategy is more
important when the opponent is likely to make attractive offers).

The presence of these interactions requires a more thorough analysis, because the
impact of one component can depend on the level of another. We denote interaction
effects as C1 ∗ C2, where Ci represents a component. The term interaction effect is
used to quantify the effects of the interactions between the components. To determine
the η2 for an interaction we need to calculate the SSbC1∗C2 as follows:

SSbC1∗C2 =
|C1|∑

i=1

|C2|∑

j=1

(xi j − x̄i − x̄ j + x̄)2 (10.4)

This is then divided by SSTotal to determine the η2 value for the interaction. The
component interaction effects are listed at the bottom of Table 10.3. We will cover
two types of interaction effects: the interactions between the components, and the
interactions between the negotiation agent and its opponent.

There are two important interactions that deserve some attention. One is between
the bidding strategy and the acceptance conditions (BS ∗ AC), which is the high-
est interaction effect of 11%. The bidding strategy and acceptance condition can
be viewed as two simultaneous processes that can each result in a potential agree-
ment. One process consists of offering bids that are appealing to the opponent in the
hope that it will be accepted (bidding strategy), the other consists of receiving offers
from the opponent and deciding whether these should be accepted or not (acceptance
condition). These two components complement each other, as a good acceptance con-
dition can compensate for a bad performing bidding strategy by accepting bids from
the opponent, while a good bidding strategy can compensate for a bad acceptance
condition by offering enticing counter bids.

Another important interaction is between the bidding strategy and the opponent
model (BS ∗ O M), which, with 9%, is the second highest interaction effect. The
opponent model directly influences the bidding strategy by aiding it in offering bids
that are appealing to the opponent, thereby improving the chances of an agreement.
Conversely, the effectiveness of an opponent model depends on how it is employed.
Should the bidding strategy not use the opponent model to its full potential, then
its effectiveness will be diminished. For example, the bidding strategy from BRAM
Agent presents the opponent model with only a small selection of bids, combining
only the ten most recent offers of the opponent, which reduces the effectiveness of
the opponent model.
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Interaction also exists between the acceptance conditions and the opponent model
(AC ∗ O M); however, this contribution is rather small (1%). This is because the
purpose of the opponent model is to model the opponent’s attributes, while the
acceptance condition typically acts according to the agent’s own utility.

There are also three way interactions involving all three strategy components
(BS ∗ O M ∗ AC), which account for 5% of the variance (calculated analogously to
Eq. (10.4)). For example, there are agents that not only use the opponent model to
determine the best bid to offer to the opponent, but also use to determine their target
utility. More sophisticated acceptance conditions make use of this target utility and
are thus also affected by the opponent model, causing a three way interaction.

10.4.3 Combining the Best Components

Given the interaction effects between the different components, it is not immediately
clear whether combining the best components together result in the most effective
negotiation strategies. Note that we combined 11 × 6 × 24 components, resulting
in large number (1584) of agents. We could simply test whether the highest scoring
agent out of the 1584 is indeed composed of the the best B, O, and A component,
but we elected to take a more general approach. We first categorize the components
in groups, and then test whether the top components together can assemble the top
agents resulting from all group combinations.

We used the Jenks Natural Break Algorithm [15] for the classification of the
individual components. Jenks Natural Break Algorithm is a data classification method
designed to separate values into different groups. The algorithm attempts to find a
series of natural break or separation values, which helps cluster the data in a natural
way instead of an arbitrary classificatory scheme (e.g. dividing the space into equal
intervals). The algorithm searches for the best break values such that it minimizes
the variance within the groups and maximizes the variance between the groups.

We used the Jenks Natural Break Algorithm to divide each BOA component
listed in Table 10.2 into three different performance groups (High, Medium, and
Low), based on their average utility score. In order to determine whether combining
better performing components would result in effective negotiation strategies, we
combined these groups into 27 agent sets, of which we then tested the average utility
(see Table 10.5).

Our results show that the agent set that employed the best performing components
in isolation (i.e., the agents that were comprised of components that were all in the
High category) have the highest average utility, performing significantly (one-tailed
t-test, p < 0.01) better than all other agent groups. This means that indeed, the top
components together produce the top agents. This shows that independently opti-
mizing the individual components of the BOA framework is a feasible approach for
developing negotiating agents. The agent group that used the worst performing com-
ponents (Low, Low, Low) has the lowest average utility. The agent group (Medium,
Medium, Medium) is found somewhere in the middle of the rankings, as expected.
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Table 10.5 Rankings of 27 agent sets that were created by combining all BOA components that
were each categorized to have High, Medium or Low individual performance

Component combinations Avg. Util. Std Dev

BS OM AC

High High High 0.790 0.001

High Medium High 0.761 0.003

High Low High 0.761 0.003

High High Medium 0.751 0.001

High Medium Medium 0.739 0.001

Medium High High 0.739 0.001

High Low Medium 0.737 0.001

Medium Medium High 0.726 0.003

High High Low 0.726 0.001

Medium High Medium 0.713 0.001

High Medium Low 0.713 0.002

High Low Low 0.708 0.003

Medium Medium Medium 0.706 0.003

Medium High Low 0.684 0.001

Medium Low High 0.678 0.001

Low Medium High 0.678 0.002

Medium Low Medium 0.669 0.001

Low Medium Medium 0.669 0.001

Low High High 0.669 0.001

Medium Medium Low 0.666 0.002

Low High Medium 0.656 0.001

Low Low Medium 0.639 0.002

Low Medium Low 0.631 0.002

Low High Low 0.628 0.002

Low Low High 0.625 0.002

Medium Low Low 0.609 0.001

Low Low Low 0.608 0.001

10.5 Conclusion

This chapter investigates the performance effects of combining different instantia-
tions of key components of existing negotiating agents, namely the bidding strategy,
the opponent model, and the acceptance conditions. For this purpose, we analyzed
the key components of a large set of both baseline and state of the art agents. We
analyzed each component independently as well as in combination with the other
components, using the measure η2 to quantify their effect.
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We found that combining the best agent components indeed results in the strongest
agents. This shows that the three-component view of the BOA architecture not only
provides a useful tool for developing negotiating agents, but this also validates the
analytical approach of optimizing its individual components. By varying the key
components of automated negotiators, we are able to demonstrate the contribution
of each component to the negotiation result, and thus analyze the significance of each.
Moreover, we are able to study the interaction effects between them. With respect
to the impact of each BOA component, we found that the bidding strategy is by far
the most important to consider, followed by the acceptance conditions and finally
followed by the opponent model.

The low importance of the opponent model is surprising, as the importance of
opponent models has been shown on many occasions. We argue that in our setting,
existing learning techniques already do quite well, and consistent with what we
found earlier in Chap. 7, no significant effect is to be expected by further improving
on currently existing preference learning techniques. This is in contrast to the bidding
strategy and acceptance conditions, which have a substantial influence on the agent’s
performance. To put it another way: our results indicate that the majority of the
implementation effort of an agent designer should be focused on the bidding and
accepting strategy.

This brings us to the goal of shaping the research agenda on negotiating agent
design. Based on our results we recommend that research into bidding strategy and
acceptance conditions should stay on the agenda. The state-of-the-art in opponent
preference modeling is already so good, that we recommend to focus the attention
on the research into automated learning of the bidding strategy and acceptance con-
ditions of the opponent. We will have more to say on this in our overall conclusions
in the next chapter.

This chapter is based on the following publications: [16]

Tim Baarslag, Alexander S.Y. Dirkzwager, Koen V. Hindriks, and Catholijn M. Jonker. The
signicance of bidding, accepting and opponent modeling in automated negotiation. In 21st
European Conference on Articial Intelligence, volume 263 of Frontiers in Articial Intelligence
and Applications, pages 27–32, 2014
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Chapter 11
Conclusion

Abstract This chapter gives an overview of the contributions of this thesis and
revisits and answers the research questions posed in Chap. 1. We outline what we
learned through our contributions, we reflect on the impact and limitations of our
work, and we describe where we believe research effort should be directed in the
following years.

11.1 Contributions

The aim of this thesis project was to research effective ways for an automated nego-
tiating strategy to bid, to learn, and to accept. We presented a method to design
and evaluate a component-based automated negotiator, and we introduced new and
improved ways for the agent to effectively bid, learn, and to accept.

The contributions to the research into negotiation strategies as presented in this
thesis are the following:

1. Introducing a component-based negotiation architecture to explore the
negotiation strategy space (Chap. 3).

We introduced a component-based negotiation architecture that distinguishes
the bidding strategy, opponent modeling techniques, and acceptance strategies
(BOA) in negotiation agents. The BOA framework can be applied in multiple
ways to systematically explore the space of automated negotiation strategies.
We showed that existing negotiation strategies can be re-fitted into our architec-
ture, and we demonstrated that we can significantly improve the performance of
negotiating agents by recombining their components;

2. Developing evaluation and benchmarking methods for negotiation agents
(Appendices A and B).

We organized four annual negotiation competitions (ANAC) that had more than
60 international participants in total. The competitions were successful events
that have enriched the research field on practical automated negotiation. ANAC
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provides a platform for objectively evaluating generic negotiation agents and
makes a wide variety of benchmark negotiation strategies and scenarios avail-
able to the research community. ANAC started out as an exploratory search
method for generic negotiating agents, but since then, it has matured into a plat-
form that has helped push forward the state-of-the-art in the development and
evaluation of automated negotiators.

As our underpinning platform for both ANAC and the BOA framework, we estab-
lished a negotiation simulation environment (Genius) that has proved itself as a
valuable and versatile research and analysis tool for the design of generic auto-
mated negotiators and for improving their performance. More than one hundred
negotiation scenarios are currently available in Genius, and the repository of
strategies contains more than 40 automated negotiation strategies, including all
ANAC 2010–2013 agents. The BOA architecture and all agent components are
also included in Genius, together with all performance and accuracy measures
used in this thesis. The design and evaluation methods of Genius have set an
accepted standard for the experimental design of automated negotiation, and
Genius is now used by over 20 research institutes all over the world;

3. Formulating optimal acceptance policies (Chaps. 4 and 5).

We determined optimal acceptance policies for particular opponent classes using
optimal stopping techniques. We classified and compared existing acceptance
strategies, and we showed our techniques perform better than the state-of-the-art,
demonstrating that the optimal stopping mechanism is a valuable element of a
negotiating agent’s strategy that works in theory as well as in practice;

4. Identifying the most effective and accurate learning methods (Chaps. 6 and
7).

We found out which opponent modeling techniques perform best, why they per-
form best, and how to best predict the performance of opponent models. To do
so, we introduced a procedure to evaluate the performance and accuracy of state-
of-the-art opponent modeling techniques in negotiation. We determined the best
performing opponent modeling techniques and analyzed how the negotiation
setting affects the opponent model’s effectiveness. We identified the correspon-
dence between accuracy and performance of opponent models, and we found
the best methods to predict good performance. We found three measures that are
significantly best: difference in Pareto frontier surface, Pearson correlation, and
ranking distance.

5. Formulating optimal bidding strategies and categorizing concession behav-
ior (Chaps. 8 and 9).

We computed optimal non-adaptive bidding strategies against particular accep-
tance strategies by employing sequential decision methods. The results show the

http://dx.doi.org/10.1007/978-3-319-28243-5_4
http://dx.doi.org/10.1007/978-3-319-28243-5_5
http://dx.doi.org/10.1007/978-3-319-28243-5_6
http://dx.doi.org/10.1007/978-3-319-28243-5_7
http://dx.doi.org/10.1007/978-3-319-28243-5_8
http://dx.doi.org/10.1007/978-3-319-28243-5_9
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remarkable fact that the optimal acceptance strategies we found earlier can also
be used to make optimal offers.

Moreover, in order to gain insight into the strategy space of bidding techniques,
we presented an empirical method to characterize negotiation strategies by their
bidding strategy. We used our method to classify agents into four categories of
concession behavior (i.e., Inverter, Conceder, Competitor, or Matcher), and we
formulated guidelines on how agents should bid in order to be successful. The
results indicate that in order to be effective, an agent should have a competitive
negotiation stance;

6. Quantifying the importance and interactions of the components of a nego-
tiating agent (Chap. 10).

We found that combining the best agent components indeed improves an agent’s
overall performance. This validates the analytical approach of the BOA frame-
work towards optimizing the individual components of a negotiating agent. We
established that the bidding strategy is by far the most important component
for the overall performance of an agent, followed by the acceptance strategy,
and finally the opponent modeling component. We also showed how the relative
importance of the components depends on the opponent, the characteristics of
the negotiation setting and the interaction effect between the components;

7. Validating the BOA architecture and demonstrating its success.

In this thesis, the BOA architecture has shown its value in its different applica-
tions and was validated in many different ways:

(a) We won first place in the ANAC 2013 competition with an agent (The
Fawkes) that used the BOA architecture to combine the most effective com-
ponents. ANAC 2013 had 19 participating negotiation strategies, which were
implemented by international experts (Appendix F).

(b) We showed that the BOA framework can be used to design generic, com-
ponent based negotiation agents by implementing it in Genius. The BOA
framework now functions as a general software framework and is available
as a development tool for agent designers, including participants of ANAC.
The BOA framework is also used in education in at least four different
international institutes (Chap. 3 and Appendix A).

(c) We demonstrated that existing agents can be re-fitted (i.e., decoupled) into
the BOA architecture while retaining exactly the same functionality and
with practically the same performance. The BOA framework contains over
90 components from existing agents, which can all be mixed and matched
with each other. This shows that the BOA framework is a feasible tool that
it is able to incorporate existing agent designs while providing the agent
designer with more evaluation and implementation flexibility (Chap. 3).

http://dx.doi.org/10.1007/978-3-319-28243-5_10
http://dx.doi.org/10.1007/978-3-319-28243-5_3
http://dx.doi.org/10.1007/978-3-319-28243-5_3
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(d) The BOA framework is an indispensable tool in almost every chapter of this
thesis, allowing us to individually optimize the bidding, opponent modeling,
and acceptance components of a negotiation agent (Chaps. 4–9).

(e) We showed that indeed, the BOA components can be successfully optimized
independently. That is, the BOA components that were best individually,
were found to combine into the best agents (Chap. 10).

(f) The BOA framework allowed us to explore the negotiation space and find
out which components of a negotiation agent are most important for the
overall performance of an agent (Chap. 10).

11.2 Answers to Our Research Questions

All taken together, our contributions outlined in Sect. 11.1 answer the research ques-
tions that we originally started with in Sect. 1.4

In our set of Research Questions I , we asked how to design a component-based
automated negotiation framework, that:

(I.1) supports new agent designs and provides insight into the effectiveness of nego-
tiation strategies;

(I.2) facilitates evaluating and combining various negotiation strategy components;
(I.3) enables us to decompose existing, state of the art agent designs into distinct

components.

Question I.1 is amply addressed by Contribution 1: by supporting the design of new
agents, Genius and the BOA framework have been shown to provide insight into the
effectiveness of negotiation strategies, not only throughout this thesis, but also in the
ANAC competition.

Through our work on the BOA framework (Contribution 2) and by implement-
ing it together with Genius, we developed an environment that addresses Question
I.2. The user interface and detailed logging functionality of the BOA framework
(including all performance and accuracy measures that we defined in Sects. 2.4.3
and 2.4.4 and all measures we applied in Contribution 4) make it easy to evaluate
every negotiation component individually. The BOA framework enables us to create
thousands of negotiation strategies by combining all negotiation components of the
BOA repository.

We decoupled well-known agents from literature, and additionally, by organizing
the ANAC competitions (Contribution 1), we were able to supplement our repository
with more than 60 state of the art negotiation strategies. We decomposed more than
27 of them, resulting in over 90 negotiation components in total (Contribution 7c).
This shows how we can decompose existing, state of the art agent designs into the
BOA framework, which addresses Question I.3.

In our set of Research Questions II on analyzing the negotiating strategy compo-
nents, we posed the following questions:

http://dx.doi.org/10.1007/978-3-319-28243-5_4
http://dx.doi.org/10.1007/978-3-319-28243-5_9
http://dx.doi.org/10.1007/978-3-319-28243-5_10
http://dx.doi.org/10.1007/978-3-319-28243-5_10
http://dx.doi.org/10.1007/978-3-319-28243-5_1
http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_2
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(II.1) What measures can we use to compare and predict the performance of the
individual components?

(II.2) Can we pinpoint classes of opponents against which we can find effective
components? Can we formulate optimal solutions for any of the components?

(II.3) How does the performance of the components influence the negotiator’s per-
formance as a whole, and which components are most important?

With Contributions 3–6, we measured the performance of the individual com-
ponents by employing our component-based BOA architecture (Contribution 2),
keeping one component fixed, while we varied the others in a negotiation tourna-
ments similar to ANAC (Contribution 1). We followed this approach in particular
when we quantified the importance of every component (Contribution 6). For the
bidding strategies and acceptance strategies, we mainly used the average utility as
our performance measure, but for the opponent modeling components, we identified
an array of performance measures (and additionally, accuracy measures) and for-
mulated ways to predict their performance (Contribution 4). This answers Question
II.1.

Question II.2 is addressed in a number of contributions throughout this thesis. For
the acceptance strategies, we determined a set of effective acceptance strategies for
a heterogeneous set of opponents (i.e., the top 3 of ANAC 2010), and we identified
optimal acceptance strategies against both unpredictable and time-dependent agents
(both described in Contribution 3). For the opponent modeling component, we man-
aged to identify the most effective learning methods in Contribution 4. Finally, our
work on classifying bidding strategies and computing optimal bidding curves (Con-
tribution 5) gives us specific guidelines on what kind of bidding behavior to display
given the negotiation behavior of the opponent.

Lastly, Contribution 6 addresses Question II.3: by combining the components
of a large set of negotiating agents, we established how each of the components
contributes to the performance of a negotiator, how they interact with each other, and
which component is most important to consider when designing an agent.

11.3 Outlook and Challenges

We conclude this thesis with a general outlook on the topics we have covered, and
we present the research challenges that we consider relevant for future work.

11.3.1 The BOA Architecture

The BOA framework has been instrumental in almost every chapter of this thesis,
allowing us to individually optimize the bidding, opponent modeling, and accep-
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tance components of a negotiation agent. We showed that these components can be
successfully optimized independently to explore the negotiation space.

The BOA architecture has already been widely applied since it was first released.
Since its implementation in 2011, the BOA architecture has been used in the ANAC
competitions that followed. In ANAC 2012, the BOA agent The Negotiator Reloaded
reached the finals and finished overall third and received the reward for best perform-
ing agent in non-discounted domains. In ANAC 2013, two agents that used the BOA
architecture reached the finals, of which The Fawkes agent won the 2013 competition.

The BOA architecture has also found its way into the classroom. At academic insti-
tutes such as Bar-Ilan University, Ben-Gurion University of the Negev, Maastricht
University, and Delft University of Technology, Genius and the BOA architecture
have been integrated into artificial intelligence courses, where part of the syllabus
covers automated negotiation and the creation of negotiation strategies.1

There are many ways in which the BOA architecture could be extended. One pos-
sible improvement is to add additional components to the architecture, by expanding
the opponent modeling techniques to a larger class of learning components, such as
strategy prediction, or opponent profiling. Comparing learning techniques for these
types of opponent attributes would require more learning techniques to be developed
and a new generic negotiation architecture to compare them. Also, BOA agents are
currently equipped with a single component during the entire negotiation session.
It would be interesting to run multiple BOA components in parallel, and use rec-
ommendation systems (or a meta-component) to select the best component at any
given time. We discuss the components of the BOA architecture in more detail in the
sections below.

11.3.2 Bidding

In this thesis, we classified agents according to their concession behavior, and we
formulated guidelines on how agents should bid in order to be successful. Our work
in Chaps. 8 and 9 makes a number of contributions, but formulating a general and
effective bidding strategy for all circumstances is still an important open question
in automated negotiation. The importance of finding such a strategy is confirmed by
our results in Chap. 10, which show that more than half of the utility obtained by a
negotiating agent is determined by its bidding strategy.

A major challenge in defining a generally effective bidding strategy is that there
is no universally agreed upon method to define its effectiveness in isolation. In other
words, even when we would know exactly when to accept and when we have perfect
knowledge about the opponent’s preferences, it is still difficult to decide what offers

1All educational material for the BOA architecture can be freely downloaded from http://ii.tudelft.
nl/genius.

http://dx.doi.org/10.1007/978-3-319-28243-5_8
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http://dx.doi.org/10.1007/978-3-319-28243-5_10
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11.3 Outlook and Challenges 201

to propose. We do not have an established way to measure what a good strategy is,
other than to empirically evaluate what works best against a set of opponents. This is
in sharp contrast to the opponent modeling component, for which we can employ the
accuracy measures from Chap. 7 to quantify their effectiveness. The urgency of the
problem is underlined by the fact that even after four incarnations of ANAC, some
of the participants (e.g., HardHeaded, winner of ANAC 2011) still use concession
strategies (e.g. [1]) that were devised in 1998 [2].

Other important concerns when designing the bidding strategy are multi-level
reasoning and exploitability. In order to select the right offer to make, the agent needs
to simultaneously answer a variety of questions that not only concern itself, but also
the mental state of the opponent; for example: what does the opponent want? What
will the opponent learn from the proposed offer? How will the opponent change its
mental state, and how will this affect the bids that will be received in the future? Such
issues become even more important in a tournament setting, where it is sometimes
advisable to sacrifice some utility to the detriment of the other competitors. This
makes the bidding strategy the most complex component of the three we distinguish
in this thesis.

To make progress in this area, we require a better understanding of all the fac-
tors involved in making bids. In particular, we need to understand the interactions
between the agent’s preferences, the opponent’s preferences, the time remaining in
the negotiation, the opponent’s strategy, and the overall performance measure to
optimize (such as tournament score).

As a first step towards understanding these relationships we propose to study final
offers. Making a final offer in a negotiation (i.e., announcing to ‘take it or leave it’)
is a well-known real-life negotiation tactic that is primarily used as a means to put
pressure on the opponent to accept. It also occurs naturally (and more implicitly) in
the negotiations in which there is some kind of deadline. Any offer that is made right
before the deadline can be considered a final offer, as there may not be enough time
to generate a counter-offer. In that case, the opponent is forced to choose between
accepting the offer or breaking off the negotiation. This is similar to the ultimatum
game, only with a prior bargaining history known to both players.

We believe final offers could act as a useful device to answer some questions
about the bidding strategy that would be too difficult to answer in the more general
setting, such as: what is the optimal final offer to make at any given point in time, and
what is the expected utility? How does it depend on the beliefs about the opponent?
In what circumstances would it appropriate to make a final offer?

If we set the total number of rounds to 1, then some of the results we obtained in
Chap. 9 translate over to the setting of final offers. We provide a sample result that
shows how we might select a final offer given the discount factor and beliefs about
the opponent.

http://dx.doi.org/10.1007/978-3-319-28243-5_7
http://dx.doi.org/10.1007/978-3-319-28243-5_9
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Sample result Let the negotiation setting be the Split the Pie game with dis-
counted utilities (with discount factor �), and with the possibility of making
final offers. Agent A and B have reservation values rvA, rvB � [0, 1] respec-
tively. Suppose B believes A’s reservation value is distributed uniformly. B
contemplates a final offer x (i.e., it would offer y = 1 � x to A, and take x for
himself). The expected utility for B of making a final offer x is:

U (x) = x • P(y � rvA) + rvB • P(y < rvA)
= x(y + rvB),

which is optimal when

xopt =
rvB + 1

2
and yopt =

1 � rvB

2
,

with value U (xopt) = x2
opt.

Note how this sample result is consistent with our results of Proposition 9.3 for
j = 1 on page 176.
As a corollary, when � < x2

opt, this gives an equilibrium strategy: B makes the offer
of xopt (and announces the offer as final), and A accepts when yopt > rvA.

11.3.3 Opponent Modeling

When it comes to preference learning techniques, it seems the biggest goals have
been accomplished within the scope of this thesis. Simple learning techniques are
already surprisingly effective, even on large domains. We have good measures to
predict the effectiveness of opponent models, and the best techniques are already
at 90 % of their upper limit. We also know how the negotiation setting influences
the performance and accuracy. In terms of performance, there is not much to gain
from better preference learning techniques, given their rather minimal performance
increases. This is confirmed by our results in Chap. 10, which show that opponent
modeling is the least important aspect in the design of an effective agent. Some of
the most successful ANAC agents go as far as to not even explicitly model the utility
space of the opponent. Although Agent K (winner of ANAC 2010) and HardHeaded
(winner of ANAC 2011) still use learning to determine the appropriate concession
level, they do not explicitly model the opponent’s utility space.

A possible explanation for the low importance of opponent modeling is the fact that
the number of offers that can be exchanged between the ANAC agents easily reaches

http://dx.doi.org/10.1007/978-3-319-28243-5_9
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tens of thousands, allowing for exhaustive exploration of all but the largest utility
spaces. Such a large number of offers clearly makes it easier for software agents
to explore the utility space, yet one could argue whether this is entirely realistic.
Even though software agents are able to compute many more offers than humans,
in practice there may be other constraints, such as network delays, that would limit
the number of offers bargaining agents could exchange. Thus, introducing stochastic
break-offs or a minimum time delay between offers may be an issue to consider in
our negotiation model.

Some other potential interesting research lines include the following:

1. We need a clearer understanding of how time influences the learning of the
opponent’s preferences. As we discussed in Chap. 7, many agents take a rather
adhoc approach towards the passing of time, causing them to actually become
less accurate over time. The main cause of this phenomenon is that the bids
presented later on in the negotiation are incorrectly handled. The most often
used learning techniques treat every received bid the same way, independent of
the time it is received [3–5]. To solve this, we need to understand the relationship
between the opponent’s bidding strategy and the opponent’s preferences and how
we can learn them in tandem.

2. Many of the learning techniques presented in this thesis require hundreds of bids
of input before converging to a reasonable estimate. New methods are required
that can learn from a smaller sample of bids if we wish to apply them in other
domains, such as human-computer negotiations, continuous domains, and non-
linear preferences.2 For this, we need a better understanding of how different
modeling assumptions (as we explored in Chap. 6) affect the faithfulness of the
model, and what it means for the assumptions to be robust with respect to a given
set of potential opponents.

3. When learning the opponent’s preference profile, a learning technique usually
makes assumptions about the structure of the negotiation scenario (e.g., [6–
8]). Negotiation strategies can exploit the internal structure of the issues of the
negotiation domain in order to improve their proficiency. For example, a learning
technique can benefit from the information that a certain issue is predictable.
Informally, an issue is predictable when the global properties of its evaluation
function is known. To illustrate, consider the discrete issue Amount of funding
from the Zimbabwe–England domain (cf. Sect. C.2). Its values are: no agreement,
$10 billion, $50 billion, or $100 billion. Even without any additional information,
we can be confident that the utility of each party is either increasing or decreasing
in the amount of funding. A price issue like this is typically predictable, but other
issues, such as color, are more difficult learn about. Learning to label issues as
either predictable or unpredictable could dramatically improve the efficiency of
learning algorithms.

2Finding new learning techniques for the non-linear case is especially relevant for ANAC 2014; see
Sect. 11.3.5.

http://dx.doi.org/10.1007/978-3-319-28243-5_7
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11.3.4 Accepting

We have come a long way in formulating effective acceptance strategies for negoti-
ating agents. If we have a good idea of how many offers we can still expect (possibly
using an estimation of the number of rounds remaining) and of the range of bids
we can expect at every time step (using a strategy prediction mechanism), we can
make the optimal choice of when to accept. The optimal choice is only as good as
the estimations, but we have rather good estimators at our disposal, and the optimal
stopping rules are robust to estimation errors in practice.

The most important limitation of our optimal stopping model presented in Chap. 5
is that the effect of rejecting the opponent’s offer is not included in the model. If the
opponent’s offer is not accepted, the opponent’s behavior is affected by the counter
offer, thus making the bidding strategy an important aspect to consider, as our results
in Chap. 10 on their interaction effects also makes clear.

Second, our model already incorporates the concept of negotiation costs, but we
assumed them to be zero throughout; it would be interesting to see the effects of costs
on optimal acceptance behavior. Similarly, we need new optimal stopping rules for
negotiation scenarios that have discounted payoffs. Both extensions will incentivize
agents to employ more permissive acceptance conditions.

On the other hand, adding reservation values to the agent’s preferences would
make an agent less inclined to accept. In many cases, it is irrational to withdraw from
a negotiation (i.e., by sending a message ending the negotiation), as it leaves the agent
with nothing. Combining reservation values with discounted scenarios, as is done in
ANAC 2012, cause both contract utility and outside options to devaluate with the
passing of time. In such a setting, novel acceptance conditions are required that give
more consideration to the negotiation timeline. For example, it can be advantageous
for an agent to end the negotiation prematurely and receive its reservation value,
rather than continuing an exchange of offers while the contract diminishes in value.
This adds an additional dimension to the acceptance dilemma, as prolonging the
negotiation does not necessarily increase the agent’s chances of a good outcome and
can induce agents to fall back on their reservation value by ending the negotiation
prematurely. This ‘outside option’ gives rise to a new variety of optimal acceptance
strategies that have to make the optimal choice between continuing, accepting, or
walking away.

11.3.5 The Automated Negotiating Agents Competition

Based on the popularity and the lessons we learned from the competition, we believe
that many of our aims regarding ANAC have been accomplished. Recall that we
set out for this competition in order to steer the research in the area of bilateral
multi-issue negotiation and to enable negotiating agents to be evaluated in realistic
environments with a wide variety of opponents and scenarios. The competition has

http://dx.doi.org/10.1007/978-3-319-28243-5_5
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achieved just that. Since ANAC is designed in such a way that the opponents, as
well as the scenarios in which negotiation occurs are unknown in advance, compe-
tition participants are compelled to design generic negotiation agents that perform
effectively in a variety of circumstances.

Many teams have participated in the four international competitions so far, and
we hope that many more will participate in the future [9]. The four incarnations
of ANAC have already yielded more than 60 new strategies and scenarios, which
provide a comprehensive and freely available repository against which negotiation
agents can be benchmarked. This, in turn, allows the negotiation research community
to push forward the state-of-the-art in the development and evaluation of automated
negotiators and comparison to other automated negotiators.

Since 2010, we have extended Genius with all ANAC resources and with the
new functionality described in Appendix B (e.g., negotiation strategies, protocols,
scenarios, discount factors, and reservation values), the BOA architecture and agent
components from Chap. 3, the acceptance strategies from Chaps. 4 and 5, and the
performance and accuracy measures described in Chaps. 6 and 7.

However, as with many competitions, ANAC is continually evolving to address
new challenges and issues. Given the lessons learned from running ANAC, we intend
to eventually introduce several tracks to the competition to model different aspects
of the automated negotiation problem, similar to the tracks of the Trading Agents
Competition (TAC) [10–14]. We see these parallel competition tracks as naturally
supporting the different strands of ongoing research in the automated negotiation
community.

For ANAC 2014, we intend to introduce non-linear utility functions into the com-
petition. Non-linear utility functions are generally more complex representations of
preferences, with many interdependent issues. In such contexts, finding the ideal
contract becomes a difficult, nonlinear optimization problem. Selecting bids corre-
sponding to a target utility is difficult already, let alone constructing a model of the
opponent utility [15]. With much recent interest in this area [16–20] we expect the
non-linear scenarios and negotiation strategies to be a worthwhile addition to our
repository.

Finally, we believe our work on ANAC has influence outside the framework of
the competition. For example, the relative success of a meta-learning strategy such
as Gahboninho (see Sect. D.1) shows how second-level adaptivity can pay off, where
first-level adaptivity (such as Nice Tit for Tat Agent, see Sect. D.1) does not. Where
Nice Tit for Tat Agent simply adapts to the opponent’s behavior, Gahboninho has
a meta-learning strategy which first tries to establish the learning behavior of the
negotiation opponent, and then uses this to exploit its opponent. For example, if
the opponent is adapting to the strategy of the agent, then Gahboninho will be less
flexible. If, on the other hand, the opponent does not seem to adapt, Gahboninho will
be more flexible. In other words, the strategy tries to establish whether its opponent is a
teacher or learner, and adapts accordingly (note that this teacher/learner dilemma has
been observed in other game-theoretic learning competitions, such as the Lemonade
Game [21, 22]). Such an approach has been shown to be successful in the ANAC
competition, but also provides useful insights for practical negotiations in general,

http://dx.doi.org/10.1007/978-3-319-28243-5_3
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http://dx.doi.org/10.1007/978-3-319-28243-5_6
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and is likely to be useful in future research on automated negotiation. In fact, the
study of learning and concession behavior of agents in bilateral negotiations provides
a natural framework to explore such issues.

11.3.6 Robustness of Negotiation Strategies

The most commonly adopted criterion for evaluating a negotiation strategy is the
average utility payoff it can obtain under different negotiation scenarios against
other negotiation strategies, as we discussed in Sect. 2.4.3. We used a similar method
in many of the experiments in this thesis, ranking the agents using their average
performance in a tournament setup. Note that the goal of achieving the highest score
in such a tournament is somewhat different to that of reaching the highest score in
an individual negotiation.

An alternative criterion to further encourage the development of flexible negotia-
tors would be the total number of games won, instead of the average utility obtained
in these games. However, such a criterion would encourage agents to simply beat
their opponent, rather than maximize their own utility. This means that agents would
be encouraged to get more utility than their opponent at all cost, even if this means
reducing their own utility (e.g. by delaying the agreement in the case of a discounted
scenario). Such spiteful behavior has also been found in auction bidding [23, 24]
and is realistic in some cases, but obviously encouraging such strategies should not
be our goal.

Apart from individual performance, a tournament setting also demands that agents
take into account their relative performance; i.e., that they are robust in the sense of
not yielding too much to the other contestants. However, an agent can only control the
outcomes of the negotiations it is involved in; it has no control over the negotiations
between other agents. Thus, maximizing the utility of each negotiation an agent
participates in can be seen as a good approximation that an agent can take in order
to maximize its tournament score.

Another parameter that can potentially affect the diversity in outcomes is the
specific composition of the opponent pool. We may be interested to know how the
winning strategy would change if the tournament size were chosen differently, and
especially, if the mix of opponent strategies were different. Moreover, it is natural to
ask whether the agents participating in a tournament have an incentive to switch to
a different strategy in order to improve their score.

To this end, one can explore the influence of the tournament pool by considering
different mixes of opponent strategies. We have performed additional work on this
in [25], in which we used the technique of empirical game theory as a method for
analyzing the results gathered from ANAC. The technique was first developed by [26]
to provide insights into the strategies used in the Trading Agent Competition (TAC)
and has been shown to be a useful tool in addressing questions about robustness
of trading strategies in [27, 28]. Similar techniques have also been used to analyze
continuous double auctions [29]. EGT analysis uses the assumption that the strategy

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Fig. 11.1 Illustration of deviation analysis for one-to-one negotiations in ANAC 2011. Arrows
indicate statistically significant reasons for one of the players to switch strategies. At each node, the
highest scoring agent is marked by a colored background. Each ANAC 2011 agent is represented
by a different letter (B = BRAMAgent, H = Hardheaded, and so on)

used by each player is selected from a fixed set of strategies and searches for pure
Nash equilibria in a tournament setup.

Specifically, using the payoffs achieved by each agent in a given profile, deviation
analysis considers the best single-agent deviation available to an agent in that profile
(see Fig. 11.1). A deviation is defined as the incentive of one agent to change its
strategy, assuming that all other agents maintain their current strategies. An agent has
such an incentive to switch to another strategy if this switch will bring an improvement
in its own utility. This approach can be used in order to search for tournaments in
which agents have no incentive to deviate (i.e. switch) to a different strategy. Such
tournaments are considered to be empirical equilibria. In some games, there may be
a subset of profiles, such as the cycle of three shown in Fig. 11.1, each of which are
not an equilibrium by themselves, but for which there exists a path of best deviations
which connect them, and there is no best deviation which leads to a profile outside
of the subset. Such a subset is referred to as a best reply cycle [30]. Since an agent
never knows which opponent it faces in practice, strategies which are part of an
equilibrium, and have a large basin of attraction (i.e., where sequences of deviations
often lead to that strategy), are more robust than strategies that are not in equilibrium.
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11.3.7 Negotiation Setting

Throughout this thesis, we have emphasized the need for a universally adopted exper-
imental design of negotiation, given how sensitive agent performance is to the partic-
ular setup of experiments. The overall scores achieved in one specific tournament, by
themselves, do not reveal much about the applicability of the negotiation strategies in
different settings. For example, the ANAC 2011 results show that, in both the Energy
and Nice or Die scenarios, agents obtain lower utility on average, compared to the
other scenarios. Moreover, the performance of the agents in these scenarios are more
diverse, with some agents having much higher utilities than others. In other scenarios,
these utilities are much closer. The reason is that, even though the scenarios are quite
distinct (with the Energy being the largest and Nice or Die being the smallest) both
of these scenarios have strong opposition (i.e., are relatively competitive), whereas
in the other scenarios it is possible to achieve close to the maximum score for both
agents. Due to the diversity, the performance in these scenarios has a greater impact
on the overall utility, and therefore the strategies which do well in these scenarios
have a definite advantage over the other strategies. This underlines the importance of
maintaining a variety of scenarios with different characteristics to properly evaluate
the performance of an agent.

A possible limitation of negotiating agents is that they often rely on fixed, pre-
determined parameters in their strategies, such as the time elapsed before the agent
becomes more concessive, or the utility an agent should concede to at a given time.
Such fixed parameters are used both by less successful agents, such as ValueMod-
elAgent, BRAMAgent and The Negotiator, but also by the ANAC 2011 winner
HardHeaded. Strategies that try to be more generic, and avoid relying too much on
hand-tuned parameters include IAMhaggler2011, Gahboninho and Nice Tit for Tat
Agent, but we are still a long way from designing agents that are flexible towards
considerable changes in the negotiation setting.

We intend to generalize results of this thesis to settings that deal not only with
bilateral, but also with concurrent, one-to-many, and many-to-many negotiations. In
this type of negotiation, the concession strategy in each thread may be consider-
ably influenced by the offers made and received in the parallel threads. Such issues
have already been explored by the negotiation community, e.g. [31–35], but there is
no universally accepted benchmark to compare such agents. Yet another direction
of further work could be around mediated negotiation scenarios, in which two (or
more) negotiating agents incrementally reveal their preferences to a mediator agent
that has the task of suggesting a mutually agreeable outcome. Such approaches could
be combined with a future track of the ANAC competition that is somewhat similar
to the TAC Market Design competition and Power TAC (see Sect. 2.4.2). Negotia-
tion strategies from previous ANAC competitions could be provided as part of the
platform, while participants would be asked to design an agent for this market, or a
policy for the mediating agents. A further track could consider a repeated series of
negotiations in which the agents can learn based on previous interactions with the
opponents.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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Another important direction is the design of agents that perform well not only
against other automated strategies, but also against human opponents [33, 36–38].
Social interaction, emotions and culture [36] are some of the issues that need to
be considered when designing such an agent; issues that were not tackled when
designing agents in this thesis. Specifically, different approaches are required, since
negotiations with humans need to be much shorter, in terms of the number of offers
that can be exchanged in a short timespan.

The results in this thesis are based on discrete domains, where each issue takes a
value from a finite set,3 yet the BOA framework and the Genius platform are able to
handle continuous issues as well. For future work, we would like to include domains
with a combination of continuous and discrete issues. Having continuous issues
would generalize the agents even further and benefit application domains where
continuous issues occur naturally (such as the allocation of continuous resources,
like money or time).

Another important extension is to consider agent utility functions with interde-
pendencies between the issues being negotiated, such as those considered in [39–43].
So far, all the agent utility functions considered in this thesis are additive. However,
this may be a limitation since in many real-life scenarios, the utility functions of dif-
ferent agents exhibit complex interdependencies between issues. We have extended
the capabilities of Genius to incorporate non-linear utility functions for ANAC 2014
(see Sect. 11.3.5).

Another recent development worth noting is the Negowiki project [44, 45], which
aims to unify current approaches in negotiation research by creating a collection of
standardized negotiation scenarios. Their framework is integrated in the Negowiki
website, where researchers can share and download their scenarios and results. As
in Genius, analysis of the results is provided, so that researchers can compute a set
of metrics over the results of the negotiation. This can work seamlessly in combi-
nation with Genius: a developer can upload the outcomes of an experiment and the
Negowiki provides the tools to upload the results to a central repository for others to
share. All scenarios offered by Negowiki are also available for download in Genius
format, and non-linear scenarios from Negowiki are used for ANAC 2014.

11.3.8 Application to Human Negotiations

An important application of our research would be to introduce it into domains in
which one or more of the negotiating parties is human. It would be interesting to
evaluate the performance of the various negotiating agents presented in this thesis
when they play against, or when they support, human negotiators [46–48]. There are
recent extensions of Genius that already enable efficient negotiations with human
negotiators, using a chat-based interface [49]. The analytical toolbox of Genius can

3With the exception of Chaps. 5 and 9, which formulate optimal bidding and accepting rules for
both discrete and continuous cases.
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Fig. 11.2 The bidding phase of the Pocket Negotiator in which a job applicant is assisted in a job
negotiation. Depicted is a suggested bid by the Pocket Negotiator (shown in red), which is a good
offer for the job applicant, but not for the prospective employer. The black outcomes constitute the
Pareto frontier, and the green area in the outcome space indicates the locations of win-win outcomes

be used to discover patterns of negotiation behavior to compare the automated negoti-
ation strategies with human negotiators. Another option is to use Genius as a training
environment to teach people negotiation concepts, such as exploration of outcome
spaces, analysis of opponent’s offers, trade-offs between issues, etc.

A first step in applying our research to a real-life setting is the Pocket Nego-
tiator [50], of which we have recently released a prototype (Fig. 11.2). The Pocket
Negotiator is a negotiation support system (NSS) that assists the user in the negoti-
ation process. It can be used to support the user in negotiation with other people and
to train human negotiators by means of negotiations against automated agents.

An NSS can help overcome many of the difficulties involved in human nego-
tiations. Humans are usually better at understanding the negotiation context and
emotional fluctuations, and have the necessary background knowledge to interpret
the negotiation domain. Computers, on the other hand, are capable of storing exten-
sive domain specific knowledge, they can exhaustively search through the entire bid
space, and they are not troubled by emotions. Therefore, automated negotiators can
work side-by-side humans, where each can benefit from their unique strengths.
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It is not easy to create an effective NSS, as the system should be able to be
deployed in any negotiation situation, against a beforehand unknown other party.
Research into the Pocket Negotiator involves many different subprojects and its
research challenges include: creating a shared preference model of negotiation [51],
considering human values in the design process [52], providing preference elicitation
and explanation [53, 54], providing runtime bidding advice [55], and developing
affective computing technologies and increasing user awareness of emotions and
conflict handling styles [56].

The Pocket Negotiator distinguishes four phases of negotiation (seen at the top
of Fig. 11.2): preparation, joint exploration, bidding, and closure. The results of this
thesis are predominantly used for negotiation support during the bidding phase. To
assist the user, the Pocket Negotiator can be provided with any of the versatile,
automated strategies that were presented in this thesis. When the user requests the
Pocket Negotiator to suggest a bid, Genius is activated, and a negotiation strategy
of the designer’s choice is consulted for advice.

Our work on the BOA framework is a natural next step in improving the bidding
support of the Pocket Negotiator. We envision an interface where users can choose
the appropriate bidding, learning, and accepting technique to assist them, based on
their knowledge of the negotiation domain and the other party.
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9. Baarslag T, Aydoğan R, Hindriks KV, Fuijita K, Ito T, Jonker CM (2015) The automated
negotiating agents competition (ANAC). AI Mag 36:2010–2015



212 11 Conclusion

10. Greenwald A, Stone P (2001) Autonomous bidding agents in the trading agent competition.
IEEE Internet Comput 5(2):52–60

11. Ketter W, Collins J, Reddy P, Flath C, de Weerdt M (2011) The power trading agent compe-
tition. ERIM report series reference no. ERS-2011-027-LIS

12. Niu J, Cai K, Parsons S, McBurney P, Gerding EH (2010) What the 2007 tac market design
game tells us about effective auction mechanisms. Auton Agent Multi-Agent Syst 21:172–203

13. Stone P, Greenwald A (2005) The first international trading agent competition: Autonomous
bidding agents. Electron Commer Res 5(2):229–265

14. Wellman MP, Wurman PR, O’Malley K, Bangera R, de Lin S, Reeves D, Walsh WE (2001)
Designing the market game for a trading agent competition. IEEE Internet Comput 5(2):43–51

15. Klein M, Faratin P, Sayama H, Bar-Yam Y (2003) Negotiating complex contracts. Group
Decis Negot 12:111–125

16. Ito T, Klein M, Hattori H (2008) A multi-issue negotiation protocol among agents with
nonlinear utility functions. Multiagent Grid Syst 4(1):67–83

17. Lopez-Carmona MA, Marsa-Maestre I, Klein M, Ito T (2012) Addressing stability issues in
mediated complex contract negotiations for constraint-based, non-monotonic utility spaces.
Auton Agent Multi-Agent Syst 24(3):485–535

18. Sánchez-Anguix V, Valero S, Julián V, Botti V, García-Fornes A (2013) Evolutionary-aided
negotiation model for bilateral bargaining in ambient intelligence domains with complex
utility functions. Inf Sci 222:25–46

19. Sierra C (2012) Negotiation and search. In: AT, p 1
20. Zheng R, Chakraborty N, Dai T, Sycara KP (2013) Multiagent negotiation on multiple

issues with incomplete information. In: Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems. International foundation for autonomous
agents and multiagent systems, pp 1279–1280

21. Mazliah Y, Gal Y (2005) Coordination in multi-player human-computer groups. In: Proceed-
ings of the first human-agent interaction design and models workshop (HAIDM)

22. Sykulski AM, Chapman AC, de Cote EM, Jennings NR (2010) Ea squared: The winning
strategy for the inaugural lemonade stand game tournament. In: Proceedings of the nineteenth
european conference on artificial intelligence. Lisbon, Portugal, pp 209–214

23. Brandt F, Sandholm T, Shoham Y (2007) Spiteful bidding in sealed-bid auctions. In: Proceed-
ings of twentieth international joint conference on artificial intelligence, pp 1207–1214

24. Vetsikas IA, Jennings NR (2007) Outperforming the competition in multi-unit sealed bid
auctions. In: Proceedings of the 6th international joint conference on autonomous agents and
multiagent systems, AAMAS ’07. ACM, New York, NY, USA, pp 103:1–103:8

25. Baarslag T, Fujita K, Gerding EH, Hindriks KV, Ito T, Jennings NR, Jonker CM, Kraus S, Lin
R, Robu V, Williams CR (2013) Evaluating practical negotiating agents: Results and analysis
of the 2011 international competition. Artif Intell 198:73–103

26. Wellman MP, Joshua E, Satinder S, Yevgeniy V, Christopher K, Vishal S (2005) Strategic
interactions in a supply chain game. Comput Intell 21(1):1–26

27. Williams CR (Dec 2012) Practical strategies for agent-based negotiation in complex environ-
ments. Ph.D. thesis, University of Southampton

28. Chen S, Ammar HB, Tuyls K, Weiss G (2013) Optimizing complex automated negotiation
using sparse pseudo-input gaussian processes. Proceedings of the 2013 international confer-
ence on autonomous agents and multi-agent systems, AAMAS ’13. International foundation
for autonomous agents and multiagent systems, Richland, SC, pp 707–714

29. Vytelingum P, Cliff D, Jennings NR (2008) Strategic bidding in continuous double auctions.
Artif Intell 172(14):1700–1729

30. Young HP (1993) The evolution of conventions. Econometrica: J Econometric Soc 61(1):57–
84

31. Kolomvatsos K, Hadjieftymiades S (2014) On the use of particle swarm optimization and
kernel density estimator in concurrent negotiations. Inf Sci 262:99–116

32. Nguyen TD, Jennings NR (2004) Coordinating multiple concurrent negotiations. Proceedings
of the third international joint conference on autonomous agents and multiagent systems,
AAMAS ’04, vol 3. IEEE Computer Society, Washington, DC, USA, pp 1064–1071



References 213

33. Traum D, Marsella SC, Gratch J, Lee J, Hartholt A (2008) Multi-party, multi-issue, multi-
strategy negotiation for multi-modal virtual agents. In: Prendinger H, Lester J, Ishizuka M
(eds) Intelligent virtual agents. Lecture notes in computer science, vol 5208. Springer, Berlin,
pp 117–130

34. Williams CR, Robu V, Gerding EH, Jennings NR (2012) Towards a platform for concurrent
negotiations in complex domain. In: Proceedings of the fifth international workshop on agent-
based complex automated negotiations (ACAN 2012)

35. Williams CR, Robu V, Gerding EH, Jennings NR (2012) Negotiating concurrently with
unknown opponents in complex, real-time domains. In: 20th european conference on arti-
ficial intelligence

36. Gal Y, Kraus S, Gelfand M, Khashan H, Salmon E (2011) An adaptive agent for negotiating
with people in different cultures. ACM Trans Intell Syst Technol 3(1):8:1–8:24

37. Lin R, Kraus S (2010) Can automated agents proficiently negotiate with humans? Commun
ACM 53(1):78–88

38. Lin R, Kraus S (2012) From research to practice: automated negotiations with people. In:
Krüger A, Kuflik T (eds) Ubiquitous display environments. Cognitive Technologies, Springer,
Berlin, pp 195–212
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Appendix A
GENIUS: An Environment to Support
the Design of Generic Automated Negotiators

Abstract We present an environment called Genius, which is a General
Environment for Negotiation with Intelligent multi-purpose Usage Simulation.
Genius helps facilitate both the design and evaluation of automated negotiators’
strategies. It implements an open architecture that allows easy development and
integration of existing negotiating agents and can be used to simulate individual
negotiation sessions, as well as tournaments between negotiating agents in various
negotiation scenarios. Genius also allows the specification of different negotiation
domains and preference profiles by means of a graphical user interface. Genius is
employed throughout this thesis as a common environment and testbed to evaluate
various ways for automated negotiating strategies to bid, to learn, and to accept.
We show the advantages and underlying benefits of using Genius and how it can
facilitate experimental design in automated negotiation. In particular, it is used as a
tournament platform for the negotiation competition discussed in Appendix B.

A.1 Introduction

There are several difficulties that emerge when designing automated negotiating
agents, i.e., automated programs with negotiating capabilities. First, while people
can negotiate in different settings and domains, when designing an automated agent
a decision should be made whether the agent should be a general purpose negotiator,
that is, domain-independent (e.g., [2]) and able to successfully negotiate in many
settings or suitable for only one specific domain (e.g., the Colored Trail domain [3–5],
or the Diplomacy game [6–8]). There are obvious advantages of an agent’s specificity
in a given domain. It allows the agent designers to construct strategies that enable
better negotiation compared to strategies for a more general purpose negotiator.
However, this is also one of the major weaknesses of these types of agents. With
the constant introduction of new domains, e-commerce and other applications that
require negotiations, the generality of an automated negotiator becomes important, as
automated agents tailored to specific domains cannot be re-used in the new domains
and applications.

Another difficulty in designing automated negotiators concerns open environ-
ments, such as online markets, patient care-delivery systems, virtual reality and
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simulation systems used for training (e.g., the Trading Agent Competition [9]). These
environments lack a central mechanism for controlling the agents’ behavior, where
agents may encounter opponents whose behavior is diverse.

We do not focus on the design of an efficient automated negotiator here; we do,
however, present an environment to facilitate the design and evaluation of automated
negotiators’ strategies. The environment, Genius, is a General Environment for
Negotiation with Intelligent multi-purpose Usage Simulation. To our knowledge,
this is the first environment of its kind that both assists in the design of strategies for
automated negotiators and also supports the evaluation process of the agent. Thus, we
believe this environment is very useful for agent designers and can take a central part
in the process of designing automated agents. While designing agents can be done in
any agent oriented software engineering methodology, Genius wraps this in an easy-
to-use environment and allows the designers to focus on the development of strategies
for negotiation in an open environment with multi-attribute utility functions.

Genius incorporates several mechanisms that aim to support the design of a
general automated negotiator; from the initial design, through the evaluation of the
agent, to re-design and improvements, based on its performance. The first mechanism
is an analytical toolbox, which provides a variety of tools to analyze the performance
of agents, the outcome of the negotiation and its dynamics. The second mechanism
is a repository of domains and utility functions. Lastly, it also comprises repositories
of automated negotiators. A comprehensive description of the tool is provided in
Sect. A.2.

In addition, Genius enables the evaluation of different strategies used by auto-
mated agents that were designed using the tool. The user interacts with Genius via a
graphical user interface (GUI) and can keep track of the negotiation results with an
extensive logging system. This is an important contribution as it allows researchers
to empirically and objectively compare their agents with others in different domains
and settings and validate their results. This in turn allows to generate better auto-
mated negotiators, explore different learning and adaptation strategies and opponent
models, and collect state-of-the-art negotiating agents, negotiation domains, and
preference profiles, and making them available and accessible for the negotiation
research community.

We begin by giving an overview of Genius relating to its design.

A.2 The GENIUS System

Genius is a General Environment for Negotiation with Intelligent multi-purpose
Usage Simulation. The aim of the environment is to facilitate the design of negotiation
strategies. Using Genius programmers can focus mainly on the strategy design. This
is achieved by Genius providing both a flexible and easy-to-use environment for
implementing agents and mechanisms that support the strategy design and analysis
of the agents. Moreover, the core of Genius can be incorporated in a larger negotiation
support system that is able to fully support the entire negotiation from beginning to
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end. Examples include the Pocket Negotiator [10] and an animated mediator [11];
we give more details in Sect. 11.3.8 of our conclusions.

The design of Genius is consistent with our definitions in Sect. 2.2. Genius sup-
ports arbitrary protocols, with a focus on bilateral negotiation. Genius can represent
arbitrary negotiation domains, by allowing the user to define both the negotiation
issues and the associated range of values. A common agent API enables the user to
design generic automated negotiators, whose preferences can be prescribed by any
given preference profile.

In the following sections, we describe the detailed and technical architecture of
Genius and how it can be used by researchers.

A.2.1 GENIUS’ Architecture

Genius provides a flexible simulation environment. Its architecture, presented in
Fig. A.1, is built from several modules: (a) analysis, (b) repository, (c) logging,
and (d) simulation control. The analysis module provides researchers the option to
analyze the outcomes using different evaluation metrics. The repository contains
three different modules of the negotiation that interact with three analysis modules
built into Genius:

Fig. A.1 The high-level architecture of Genius

http://dx.doi.org/10.1007/978-3-319-28243-5_11
http://dx.doi.org/10.1007/978-3-319-28243-5_2
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1. Negotiation scenarios, consisting of a negotiation domain with at least two pref-
erence profiles defined on that domain. When a negotiation scenario has been
specified, Genius is able to perform outcome space analysis on the scenario;

2. Negotiating agents that implement the Agent API. Agent introspection allows the
agents to sense the negotiation environment;

3. Negotiation protocols, both one-to-one, and multilateral. Depending on the par-
ticular protocol, Genius can provide negotiation dance analysis to evaluate nego-
tiation characteristics such as fairness, social welfare, and so on.

Finally, the simulation control and logging modules allow researchers to control the
simulations, debug it and obtain detailed information.

A.2.2 GENIUS as a Tool for Researchers

Genius enables negotiation between automated agents, as well as people. In this
section we describe the use of Genius prior to the negotiation and afterwards.

Preparation Phase

For automated agents, Genius provides skeleton classes to help designers implement
their negotiating agents. It provides functionality to access information about the
negotiation domain and the preference profile of the agent. An interaction component
of Genius manages the rules of encounter or protocol that regulates the agent’s
interaction in the negotiation. This allows the agent designer to focus on the design
of the agent, and eliminates the need to implement the communication protocol or the
negotiation protocol. Existing agents can be easily integrated in Genius by means
of adapters.

When designing an automated agent, the designer needs to take into account the
settings in which the agent will operate. The setting determines several parameters
that dictate the number of negotiators taking part in the negotiation, the time frame of
the negotiation, and the issues on which the negotiation is being conducted. The nego-
tiation setting also consists of a set of objectives and issues to be resolved. Various
types of issues can be involved, including discrete enumerated value sets, integer-
value sets, and real-value sets. The negotiation setting can consist of non-cooperative
and cooperative negotiators. Generally speaking, cooperative agents try to maximize
their combined joint utilities (see also Chap. 8), while non-cooperative agents try
to maximize their own utilities regardless of the other sides’ utilities. Finally, the
negotiation protocol defines the formal interaction between the negotiators: whether
the negotiation is done only once (one-shot) or repeatedly, and how the exchange
of offers between the agents is conducted. In addition, the protocol states whether
agreements are enforceable or not, and whether the negotiation has a finite or infinite
horizon. The negotiation is said to have a finite horizon if the length of every possible
history of the negotiation is finite. In this respect, time costs may also be assigned and

http://dx.doi.org/10.1007/978-3-319-28243-5_8
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Fig. A.2 An example of Genius’ main user interface, showing the results of a specific negotiation
session

they may increase or decrease the utility of the negotiator. Genius provides a testbed
which allows the designer to easily vary and change these negotiation parameters.

Using Genius a researcher can setup a single negotiation session or a tournament
via the GUI simulation (see Fig. A.2) using the negotiation domains and preference
profiles from a repository and choose strategies for the negotiating parties. For this
purpose, a graphical user interface layer provides options to create a negotiation
domain and define agent preferences. This also includes defining different prefer-
ences for each role.

A preference profile specifies the preferences regarding possible outcomes of
an agent. This can be considered a mapping function that maps the outcomes of
a negotiation domain on the level of satisfaction of an agent associated with that
outcome. The structure of a preference profile, for obvious reasons, resembles that
of a domain specification. The tree-like structure enables specification of relative
priorities of parts of the tree. Figure A.3 demonstrates how a preference profile can
be modified using Genius.

More than one hundred negotiation domains are currently available in the reposi-
tory of Genius. Each domain has at least two preference profiles required for bilateral

Fig. A.3 Setting the preference profile for the England–Zimbabwe scenario
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negotiations. The number of issues in the domains ranges from 1 to 10, where the
largest negotiation domain in the repository is the AMPO versus City taken from [12],
and has over 7,000,000 possible agreements. Issues in the repository have different
predictabilities of the evaluation of alternatives. Issues are considered predictable
when even though the actual evaluation function for the issue is unknown, it is pos-
sible to guess some of its global properties (for more details, see [13, 14]). The
repositories of domains and of agents allow agent designers to test their agents on
the different domains and against different kinds of agents and strategies.

Post-negotiation Phase

Genius provides an analytical toolbox for evaluating negotiation strategies. This
allows to review the performance and benchmark results of negotiators that negotiated
using the system. The toolbox calculates optimal solutions, such as the Pareto efficient
frontier, Nash product and Kalai-Smorodinsky (see Sect. 2.2.4). These solutions are
visually shown to the negotiator or the designer of the automated agent, as depicted in
the top right corner of Fig. A.2. We can see all the possible agreements in the domain
(all dotted areas), where the highest and most right lines denote the Pareto efficient
frontier. During the negotiation each side can see the distance of its own offers from
this Pareto frontier as well as the distance from previous offers (as shown by the two
lines inside the curve). Also, the designer can inspect both agents’ proposals using
the toolbox. We note that the visualization of the outcome space together with the
Pareto frontier is only possible from the external point of view of Genius, which has
complete information of both negotiating parties. In particular, the agent themselves
are not aware of the opponent utility of bids in the outcome space and do not know
the location of the Pareto frontier. The researcher however, is presented the external
overview provided by Genius that combines the information of both negotiation
parties.

Using the analytical toolbox one can analyze the dynamic properties of a nego-
tiation session, with built-in measures such as a classification of negotiation moves
(a step-wise analysis of moves) and the sensitivity to a counterpart’s preferences
measure, as suggested in [13]. For example, one can see whether his/her strategy is
concession oriented, i.e., steps are intended to be concessions, but in fact some of
these steps might be unfortunate, namely, although from the receiver’s perception
the proposer of the offer is conceding, the offer is actually worse than the previous
offer. The result of the analysis can help agent designers improve their agents.

Genius keeps track of over 20 different performance measures for the negotiators,
such as the utility performance of the agents, the average time of agreement, and the
percentage of Pareto-efficient bids. Social welfare measures, such as average distance
from the outcome to the Pareto-frontier, Kalai-point, and Nash-point are included
for all negotiations that result in an agreement. All accuracy measures from Chap. 7
are also implemented in Genius, such as Pearson correlation, ranking distance, and
average difference between the real and estimated preferences of an agent.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_7
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A.3 Conclusion

This appendix presents a simulation environment that supports the design of generic
automated negotiators. The importance and contribution of Genius is that it provides,
in addition to the design of domain-independent agents, a general infrastructure for
defining negotiation scenarios, and for evaluating agents. Genius is publicly avail-
able1 and provides researchers a simple and effective tool for designing negotiations’
strategies.

Negotiating agents designed using heuristic approaches need extensive evaluation,
typically through simulations and empirical analysis, as it is usually hard to predict
precisely how the system and the constituent agents will behave in a wide variety of
circumstances. To do so, Genius provides an environment for the development of a
best practice repository for negotiation techniques. Using Genius, many new state-
of-the-art negotiation strategies have been developed. Genius can be used to develop
and test agents, and its easy-to-use agent skeleton makes it a suitable platform for
negotiating agent development. Moreover, as we show in Appendix B, Genius has
proved itself as a valuable and extendable research and analysis tool for tournament
analysis. Genius has the ability to run a wide range of different tournaments, an
extensive repository of different agents and domains, and it contains standardized
protocols and benchmarks.

This appendix is based on the following publication: [40]
Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen V. Hindriks, and
Catholijn M. Jonker. Genius: An integrated environment for supporting the design
of generic automated negotiators. Computational Intelligence, 30(1):48–70, 2014

1http://ii.tudelft.nl/genius.

http://ii.tudelft.nl/genius


Appendix B
The Automated Negotiating Agents
Competition (ANAC)

Abstract In Appendix A, we described Genius, an environment to design and
analyze automated negotiators. To compare different negotiation settings, Genius
requires a variety of different negotiating agents, protocols, and scenarios. With this
in mind, we organized ANAC: an international competition based on Genius that
challenges researchers to develop successful automated negotiation agents for sce-
narios where there is no information about the strategies and preferences of the oppo-
nents. We present an in-depth exposition of the design of ANAC and the key insights
gained from four annual International Automated Negotiating Agents Competitions
(ANAC 2010–2013). The key objectives of ANAC are to advance the state-of-the-art
in the area of practical bilateral multi-issue negotiations and to encourage the design
of agents that are able to operate effectively across a variety of scenarios. We present
an overview of the competition, as well as an exposition of general and contrasting
approaches towards negotiation strategies that were adopted by the participants of
the competition. Based on analysis in post-tournament experiments, we also provide
some insights with regard to effective approaches towards the design of negotiation
strategies.

B.1 Introduction

From May 2010 to May 2013 we held four instances of the International Automated
Negotiating Agents Competition (ANAC)2 [15, 17–19] in conjunction with the Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS).
This competition follows in the footsteps of a series of successful competitions that
aim to advance the state-of-the-art in artificial intelligence (other examples include

2http://ii.tudelft.nl/anac.
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the Annual Computer Poker Competition3 and the various Trading Agent Compe-
titions (TAC) [20]). ANAC focuses specifically on the design of practical negoti-
ation strategies. In particular, the overall aim of the competition is to advance the
state-of-the-art in the area of bilateral, multi-issue negotiation, with an emphasis on
the development of successful automated negotiators in realistic environments with
incomplete information (where negotiators do not know their opponent’s strategy,
nor their preferences) and continuous time (where the negotiation speed and number
of negotiation exchanges depends on the computational requirements of the strategy).
More specifically still, the principal goals of the competition include: (i) encourag-
ing the design of agents that can proficiently negotiate in a variety of circumstances,
(ii) objectively evaluating different negotiation strategies, (iii) exploring different
learning and adaptation strategies and opponent models, and (iv) collecting state-of-
the-art negotiating agents and negotiation scenarios, and making them available and
accessible as benchmarks for the negotiation research community.

A number of successful negotiation strategies already exist in literature (e.g. [21–
25]; see Chap. 2). However, the results of the different implementations are difficult
to compare, as various setups are used for experiments in ad hoc negotiation environ-
ments [14, 26]. An additional goal of ANAC is to build a community in which work
on negotiating agents can be compared by standardized negotiation benchmarks to
evaluate the performance of both new and existing agents.

The competition was established to enable negotiating agents to be evaluated in
realistic environments and with a wide variety of opponents and scenarios. More-
over, since the opponents, as well as the scenarios in which negotiation occurs are
unknown in advance, competition participants are compelled to design generic nego-
tiation agents that perform effectively in a variety of circumstances. These agents,
together with a wide range of negotiation scenarios, provide a comprehensive repos-
itory against which negotiation agents can be benchmarked. This, in turn, allows
the community to push forward the state-of-the-art in the development of automated
negotiators and their evaluation and comparison to other automated negotiators.

To achieve this, Genius was developed, which is the underpinning platform of
ANAC that allows easy development and integration of existing negotiating agents.
As explained in Appendix A, it can be used to simulate individual negotiation ses-
sions, as well as tournaments between negotiating agents in various negotiation
scenarios.

With Genius in place, we organized ANAC with the aim of coordinating the
research into automated agent design and proficient negotiation strategies for bilateral
multi-issue closed negotiation, similar to what the TAC [20] achieved for the trading
agent problem. We believe ANAC is an important and useful addition to existing
negotiation competitions, which are either aimed at human negotiations or have a
different focus, as we explained in Sect. 2.4.2.

In this appendix, we will outline the general rules, goals and results of the ANAC
installments. For specific information on agents, scenarios, and scores, we refer to
the Appendices C through F.

3http://www.computerpokercompetition.org.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://www.computerpokercompetition.org
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ANAC is held in conjunction with AAMAS, which is a well-suited platform to host
the competition, as it is the premier scientific conference for research on autonomous
agents and multiagent systems, which includes researchers on automated negotiation.
It brings together an international community of researchers that are well-suited to
tackle the automated agents negotiation challenges posed by ANAC.

This appendix is organized as follows. Section B.2 provides an overview over the
design choices for ANAC, including the model of negotiation, tournament platform
and evaluation criteria. The participating agents, the scenarios, and the results of four
years of ANAC are described in Sect. B.3. Section B.4 closes off with a discussion
of the implications of ANAC.

B.2 General Design of ANAC

Our aim in designing ANAC is to provide a strategic challenge on multiple accounts.
We begin by describing the challenges set forth by ANAC, and the negotiation model
that is used during each negotiation encounter. After that, we describe how the com-
petition tournament is formed as a series of such encounters.

One of the goals of ANAC is to encourage the design of agents that can negotiate
in a variety of circumstances. This means the agents should be able to negotiate
against any type of opponent within arbitrary domains. Such an open environment
lacks a central mechanism for controlling the agents’ behavior, and the agents may
encounter different types of opponents with different characteristics. Therefore, the
participating automated negotiation agents should be capable of negotiating profi-
ciently with opponents that are diverse in their behavior and negotiate in a different
manner.

The negotiation model behind ANAC is in line with our definitions in Sect. 2.2:
we consider bilateral negotiations using the alternating-offers protocol, in which the
utilities of the players are additive. The design of the competition was focused on the
development of negotiating strategies, rather than other aspects of the negotiation
process (though not less important aspects) such as preference elicitation, argumen-
tation or mediation. The setup of ANAC was designed to make a balance between
several concerns, including:

• Strategic challenge: the game should present difficult negotiation domains in a
real-world setting with real-time deadlines.

• Multiplicity of issues on different domains, with a priori unknown opponent
preferences.

• Realism: realistic domains with varying opponent preferences.
• Clarity of rules, negotiation protocols, and agent implementation details.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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B.2.1 Tournament Platform

As a tournament platform to run and analyze the negotiations, we use the Genius
environment.4 Genius is a research tool for automated multi-issue negotiation, that
facilitates the design and evaluation of automated negotiators’ strategies. It also
provides an easily accessible framework to develop negotiating agents via a public
API. This setup makes it straightforward to implement an agent and to focus on the
development of strategies that work in a general environment.

Each participating team has to design and build a negotiation agent using the
Genius framework. Genius incorporates several mechanisms that support the design
of a general automated negotiator for ANAC. The first mechanism is an analytical
toolbox, which provides a variety of tools to analyze the performance of agents, the
outcome of the negotiation and its dynamics. The second mechanism is a repository of
scenarios. Lastly, it also comprises repositories of automated negotiators. In addition,
Genius enables the evaluation of different strategies used by automated agents that
were designed using the tool. This is an important contribution as it allows researchers
to empirically and objectively compare their agents with others in different domains
and settings.

As we mentioned in Sect. A.2, the Genius framework provides skeleton classes to
facilitate the design of negotiating agents. Other aspects of negotiation—specifying
information about the domain and preferences, sending messages between the nego-
tiators while obeying a specified negotiation protocol, declaring an agreement—is
handled by the negotiation environment. This allows the agent’s designer to focus
on the implementation of the agent. The agent’s designer only needs to implement
an agent interface provided by the Genius framework. In essence, the agent’s devel-
oper implements two methods: one for receiving a proposal, and one for making a
proposal. The rest of the interaction between the agents is controlled by Genius.

Genius is freely available to the ANAC participants and researchers to develop
and test their agent. Table B.1 gives an overview of the most important information
that was available to the agent through the API provided by Genius.

The flexibility provided by the built-in general repository makes Genius an effec-
tive tournament platform. The contestants of ANAC are able to upload their agent
source code (or even compiled code) to the ANAC organizers. The agents are then
added to the Genius repository. The ANAC agents and domains are bundled in
the Genius repository and released to the public after the tournament. Genius also
provides a uniform, standardized negotiation protocol and scoring system, as every
developing team implements the agent inside the same Genius environment.

Genius supports a number of different protocols, such as the alternating offers
protocol, one-to-many auctions, and many-to-many auctions. See Fig. B.1 for an
overview of the types of tournaments that can be run.

The analytical toolbox of Genius (see Fig. B.2) provides a method to evaluate
the negotiation strategies employed by the ANAC participants. The toolbox gives
valuable graphical information during the negotiation sessions, including: Pareto

4See Appendix A and http://ii.tudelft.nl/genius.

http://ii.tudelft.nl/genius
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Table B.1 Highlighted functionality of the API available to the agent in order to access information
about the negotiation environment and its preferences

Agent IssueDiscrete (implements Issue)

Action chooseAction() String getDescription()

Enables the agent to offer a bid to the opponent Returns a short description of the issue

String getName() String getName()

Returns the name of the agent Returns the name of the issue

Timeline getTimeline() List<ValueDiscrete> getValues()

Gets information about possible time
constraints

Returns all values associated with this issue

Double getUtility(Bid bid) Timeline
Computes the discounted utility of a bid, given
the current Timeline

UtilitySpace getUtilitySpace() Double getElapsedSeconds()

Gets the preference profile of the agent Returns the seconds that have elapsed since the
start of the negotiation

receiveMessage(Action opponentAction) Double getTime()

Informs the agent about the opponent’s action Gets the normalized elapsed time in [0, 1]
Bid UtilitySpace

Value getValue(Issue issue) Double getDiscountFactor()

Returns the selected value of a given issue in
the current bid

Gets the discount factor

setValue(Issue issue, Value value) Double getReservationValue()

Sets the value of an issue Gets the agent’s reservation value

Domain Double getUtility(Bid bid)

Computes the utility of a given bid

List<Issue> getIssues() ValueDiscrete (implements Value)

Gets all issues of the negotiation domain

String getValue()

Returns the text representation of this value

optimal solutions, Nash product, Kalai-Smorodinsky. The negotiation logging system
gives insight into the agent’s reasoning process and can help improve the agent
code. When a particular negotiation has finished, an entry is added to the tournament
overview, containing information about the number of rounds used, and both utilities
associated with the agreement that was reached by the agents. This information can
be used to assess the optimality of the agreements reached, either for both agents, or
for each agent individually. The result of the analysis can help new agent designers
to improve their agents as they play against previous ANAC strategies.
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Fig. B.1 Setting up a tournament session for ANAC 2010 involves choosing a protocol, the par-
ticipating agents, and appropriate preference profiles

Fig. B.2 A tournament session with the ANAC 2010 agents playing on the ANAC 2010 scenarios
using the Genius interface
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B.2.2 Competition Scenarios

The competition is targeted towards modeling multi-issue negotiations in uncertain,
open environments, in which agents do not know the preferences of their opponent.
The various characteristics of a negotiation scenario such as size, number of issues,
opposition and discount factor can have a significant influence on the negotiation
outcome (see also Sects. 2.2.3 and 2.2.4). Due to the sensitivity to the negotiation
specifics, negotiation strategies have to be assessed on negotiation domains of various
sizes and of various complexity [14].

Therefore, in order to ensure a good spread of negotiation characteristics, and
to reduce any possible bias on the part of the organizers, we gathered the domains
and profiles from the participants in the competition.5 Specifically, in addition to
submitting their agents, each participant submitted a scenario, consisting of both a
domain and a pair of utility functions. We then use the scenarios submitted by the
participants to run the tournament.

In all years, the scenarios are unknown to the agents prior to the tournament
and the agents receive no information about their opponent’s preferences during
the tournament. Because ANAC is aimed towards multi-issue negotiations under
uncertainty in open environments, we encourage participants to submit domains and
profiles with a good spread of the relevant parameters, such as the number of issues,
the number of possible proposals and the opposition of the domain. Another degree
of uncertainty is the strategies used by the opponents. Thus, although it is possible
to learn from the agents and domains of previous years, successful agents submitted
to ANAC have to be flexible and domain-independent.

The domains and utility functions used during the competition were not known
in advance and were designed by the participants themselves. Therefore, in a given
negotiation, an agent does not know the utility function of its opponent, apart from
that the fact that it is additive. In more detail, the participants have no prior knowledge
of the distribution over the function’s parameters and, furthermore, they do not even
know the opponent’s preference ordering over the values for an individual issue. The
pairs of utility functions which form a scenario are designed by the participants (who
also develop the agents), but the rules prohibit designing an agent to detect a particular
scenario (and therefore the opponent’s utility function) based on knowledge of such a
pair of functions. Furthermore, the scenarios were changed during the updating period
so that the finalists would not benefit from tuning their strategies to the scenarios of
the qualifying round.

We approach the overall design of ANAC to comply with the goals that were
described in Sect. B.1.

5For ANAC 2010, there was only one final round, and the domains and preference profiles used
during the competition were designed by the organizing team.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
http://dx.doi.org/10.1007/978-3-319-28243-5_2
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B.2.3 Running ANAC

Due to the constant evolving nature of ANAC, the specific ANAC setup and rules are
slightly different every year; however, in general, the timeline of ANAC consists of
three phases: the qualifying round, the updating period and the final round. An agent’s
success is measured according to the average utility achieved in all negotiations of
the tournament for which it is scheduled.

First, a qualifying round is played in order to select the best 8 agents from the agents
that are submitted by the participating teams. Since ANAC 2010, each participant
also submits a domain and pair of utility functions for that domain. All these scenarios
are used in the qualifying rounds. For each of these scenarios, negotiations are carried
out between all pairings of the agents. The 8 agents that achieve the best average
scores during qualifying are selected as participants for the final round.

Our evaluation metric is defined as follows. Every agent A plays against all other
agents, but A will not play itself. The score for A is averaged over all trials, alternating
between the two preference profiles defined on every domain (see Sect. B.2.2). For
example, on the Itex versus Cypress domain (Table C.3), A will play both as Itex and
as Cypress against all others. Note that these averages are taken over all negotiations,
excluding those in which both agents use the same strategy (i.e. excluding self-play).
Therefore, the average score U�(A) of agent A in scenario � is given formally by:

U�(A) =
∑

B∈P,A �=B U�(A, B)

(|P| − 1)
(B.1)

where P is the set of players and U�(A, B) is the utility achieved by player A against
player B in scenario �.

Note that with the exception of ANAC 2013,6 we only consider situations where
the player can perform this learning within a negotiation session and that any learning
cannot be used between different negotiation encounters. This is done so that agents
need to be designed to deal with unknown opponents. In order to prevent the agents
learning across instances, the competition is set up so that a new agent instance is
created for each negotiation. The rules prohibit the agents storing data on disk, and
they are prevented from communicating via the Internet.

Agents can be disqualified for violating the spirit of fair play. The competition
rules allowed multiple entries from a single institution but required each agent to
be developed independently. Furthermore it was prohibited to design an agent that
benefits some other specific agent (c.f. the work on collusion in the Iterated Prisoner’s
Dilemma competitions in 2004 and 2005 [27]).

6For ANAC 2013, we allowed partial learning across domains, as described in Sect. B.3.4.
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B.3 The ANAC Installments

Every year, new features are incorporated into the competition environment to
increase realism and to encourage the development of flexible and practical negoti-
ation agents. After every ANAC, the participating teams have a closing discussion,
yielding valuable suggestions for improving the design of following ANAC compe-
titions, introducing small innovations every year. We shortly describe four years of
ANAC, with a focus on ANAC 2010 and 2011, since their results and resources are
used most often in this thesis. For more details, we refer to Appendices C–F.

B.3.1 ANAC 2010

ANAC started in 2010 as a joint project of the universities of Delft and Bar-Ilan and
had seven participating teams from five different universities, as listed in Table C.1
of Appendix C. It was held at the Ninth International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2010) in Toronto, Canada, with presen-
tations of the participating teams and a closing discussion.

ANAC 2010 was the only instance of ANAC without a qualifying round and in
which the organizers selected the negotiation scenarios instead of the participants.
Three different scenarios were selected, which can be viewed in Table C.3 and are
visually depicted in Fig. C.1.

The scores of every agent in ANAC 2010 are listed in Table C.2. Agent K won
ANAC 2010 by a relatively large margin, yet it only managed to dominate on the
Travel domain. On both Itex versus Cypress and England–Zimbabwe scenarios, it
earned second place after Nozomi and Yushu, respectively. However, Agent K won
the competition due to its consistent high scores in all domains. Only IAMhaggler
managed to mirror this consistent scoring on all three domains.

Note that for ANAC 2010 only, the final scores are normalized per domain. The
utility is normalized for every profile, using the maximum and minimum utility
achieved by all other agents. This gives a score per profile, which is averaged over
the two profiles in the domain to give an overall normalized domain score. The
domain score is then averaged over all trials and yields the final score of the agents.
Due to the normalization of the scores, the lowest possible score is 0 and the highest
is 1 for every domain. The fact that the maximum and minimum score are not always
achieved by ANAC 2010 agents is due to the non-deterministic behavior of the
agents: the top ranking agent on one domain does not always obtain the maximum
score on every trial.

Table B.2 gives a more detailed overview of the strategy of all agents. Note that
most of the agents are non-deterministic, which is relevant for the experiments in
this thesis since it introduces noise in the tournament results. To illustrate: during a
negotiation, Agent K may decide on a certain proposal target. But if it previously
received better offers B, then it will counteroffer a random offer taken from B.
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Table B.2 Strategy details of the agents that participated in ANAC 2010

Agent Time dependent Learning method Acceptance
criteria

Deterministic

Agent K Yes All proposals Time/utility No

Yushu Yes Best proposals Time/utility No

Nozomi No Match
compromises

Time/utility No

IAMhaggler Yes Bayesian
learning

Utility No

FSEGA Yes Bayesian
learning

Utility Yes

IAMcrazyHaggler No None Utility No

Agent Smith Yes Learn weights Time/utility Yes

Listed details are: (1) whether the strategies change their proposals according to the remaining time;
(2) what kind of learning method is used; (3) whether the agents take the offer’s utility or remaining
time into account when accepting; (4) whether the agents are deterministic

Otherwise, it will also select a random proposal; in this case it will choose any offer
that satisfies its proposal target. Most agents have a similar mechanism, which we
elaborate on in Chap. 3: when they are indifferent between certain offers, they will
choose randomly.

All agents of ANAC 2010, except for IAMcrazyHaggler, make concessions when
the deadline approaches. Because a break-off yields zero utility for both agents, an
agent that waits until the end of the negotiation takes a substantial risk. The other agent
may not know that the deadline is approaching and may not concede fast enough. In
addition, either the acceptance of a proposal or the (acceptable) counter-offer may
be received when the game is already over. In the same manner, a real-time deadline
also makes it necessary to employ a mechanism for deciding when to accept an offer.

We study the inclination of the agents of ANAC to exhibit either risk averse or
risk seeking behavior in more detail in Chap. 8. In order to get a good picture of
the risk management of the agents, we consider here the number of break-offs that
occur for every agent. Table B.3 lists for each agent the percentage of negotiations

Table B.3 Percentage of all failed negotiations of every agent per domain

Break-off percentage

Agent Itex-Cyp (%) Eng–Zimb (%) Travel (%) Avg. (%)

Agent K 22 6 63 30

Yushu 36 0 90 42

Nozomi 25 17 75 39

IAMhaggler 11 0 63 25

FSEGA 22 0 100 41

IAMcrazyHaggler 72 23 83 59

Agent Smith 0 0 98 33

http://dx.doi.org/10.1007/978-3-319-28243-5_3
http://dx.doi.org/10.1007/978-3-319-28243-5_8
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that result in a break-off. All break-offs occur due to the deadline being reached or
an occasional agent crash on a big domain.

The number of break-offs in the Travel domain stands out compared to the other
domains. Recall that this is the biggest domain of ANAC 2010, with 188,160 possible
proposals. Most of the agents had problems dealing with this domain. With such a
large domain, it becomes unfeasible to enumerate all proposals or to work with
an elaborate opponent model. For example the FSEGA agent was unable to finish
a single negotiation. Only Agent K, Nozomi and IAM(crazy)Haggler were able to
effectively negotiate with each other on this domain, which resulted in less break-offs
for them, hence their higher scores.

With respect to the number of break-offs, IAMHaggler performs very well on
all domains, while IAMcrazyHaggler ranks as the worst of all agents. This is to be
expected, as its proposal generating mechanism does not take into account the time
or the opponent (see Sect. C.1 for an overview of its strategy). There is an interesting
trade-off here: when IAMcrazyHaggler manages to reach an agreement, it always
scores a utility of at least 0.9, but most of the time it scores 0 because the opponent
will not budge.

The exact opposite of IAMcrazyHaggler is the strategy of Agent Smith. Because
of an implementation error, Agent Smith accepts any proposal after two minutes,
instead of three minutes. This explains why it did not have any break-offs on Itex
versus Cypress and England–Zimbabwe. The reason for the break-offs on the Travel
domain is due to crashing of its opponent model. The importance of the timing aspects
is underlined by the performance of Agent Smith: a small timing error resulted in
very poor scoring on all three domains.

B.3.2 ANAC 2011

The local organization of ANAC 2011 was in the hands of the winner of 2010,
Nagoya Institute of Technology. Eighteen teams (as compared to seven in the first
competition) submitted negotiating agents to the tournament, which was held during
the Tenth International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2011) in Taipei, Taiwan. The teams came from seven different institutes
(University of Alcalá, Bar-Ilan University, Ben-Gurion University, Politehnica Uni-
versity of Bucharest, Delft University of Technology, Nagoya Institute of Technology,
and University of Southampton) and six different countries (Spain, Israel, Romania,
the Netherlands, Japan, and the United Kingdom).

In contrast to the first competition, ANAC 2011 introduced a discount factor for
some of the scenarios, to incentivize the agents to have more interesting negotiations
with faster deals (see Sect. 2.2.3). Agents still needed to operate in both discounted
and undiscounted settings: the discount factor was disabled (i.e., equal to 1) for half
of the scenarios; for the other half, the discount factor was decided randomly.

In ANAC 2010, the agents had three minutes each to deliberate. This meant the
agents had to keep track of both their own time and the time the opponent had left.

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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For ANAC 2011 and onwards, we elected a simpler protocol where both agents have
a shared time-line of three minutes. This means that, if one agent causes a delay, this
will affect both agents equally, both in terms of the discounting and getting closer to
the deadline.

This time, the participants submitted one agent and one negotiation scenario.
Eight of these teams continued to the finals after undergoing a qualifying round (see
Table D.1 of Appendix D). The qualifying round consisted of the 18 agents that were
submitted to the competition. For each pair of agents, under each utility function, we
ran a total of 3 negotiations. By averaging over all the scores achieved by each agent
(against all opponents and using all utility functions), eight finalists were selected
based on their average scores.

Between the rounds, we allow a number of weeks as an updating period, in which
the 8 selected finalists were given the chance to improve their agents for the final
round. The detailed results and all scenarios for the qualifying round were revealed
to all finalists, and they could use this additional information to tune their agents.

Since there were 18 agents, which each negotiate against 17 other agents, in
18 different domains, a single tournament in the qualifying round consists of 18 ×
17/2 × 2 × 18 = 5508 negotiation sessions.7 To reduce the effect of variation in the
results, the tournament was repeated 3 times, leading to a total of 16,524 negotiation
sessions, each with a time limit of three minutes. In order to complete such an
extensive set of tournaments within a limited time frame, we used five high-spec
computers, made available by Nagoya Institute of Technology. Specifically, each of
these machines contained an Intel Core i7 CPU and at least 4GB of DDR3 memory.
Allocating the entire tournament took one month to run.

It is notable that Gahboninho was the clear winner of the qualifying round (see
Table D.1). As we discuss in Chap. 8, we believe its strong performance is partly due
to the learning approach it adopts, in an attempt to determine whether the opponent
is cooperative.

The tournament among 8 finalists was played on the 8 scenarios submitted by all
finalists (cf. Table D.3). The entire set of pairwise matches were played among 8
agents, and the final ranking of ANAC 2011 was decided. We matched each pair of
finalists, under each utility function, a total of 30 times. In the final, a single tourna-
ment consists of 8 × 7/2 × 2 × 8 = 448 negotiation sessions. Table D.2 summarizes
the means, standard deviations, and 95 % confidence interval bounds for the results
of each agent, taken over the 30 iterations.8 In common with the approach used in
the qualifying round, all agents use both of the profiles that are linked to a scenario.
Note the small differences of the scores of the agents in positions 4 to 7. Specifically,

7The combinations of 18 agents are 18 × 17/2, however, agents play each domain against each
other twice (once for each profile).
8The standard deviations and confidence intervals are calculated based on the variance of the utilities
across the 30 iterations of the tournament (after being averaged over all of the scenarios). Therefore
they only measure the variance across complete tournaments, which may be due to intentional
randomness within the agents’ strategies or stochastic effects that are present in the tournament
setup.

http://dx.doi.org/10.1007/978-3-319-28243-5_8
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there is no statistically significant difference between the utilities achieved by Agent
K2, The Negotiator, BRAMAgent, and the Nice Tit for Tat Agent.

The shape of the outcome space of each scenario is presented graphically in
Figs. D.1 and D.2. In more detail, very large scenarios, such as the Energy scenario,
are displayed with a large number of points representing the many possible agree-
ments, whereas smaller scenarios, such as Nice Or Die, have only very few points.
Furthermore, scenarios which have a high mean distance to the Pareto frontier, such
as the Grocery and Camera scenarios, appear very scattered, whereas those with a
low mean distance, such as the Company Acquisition scenario, are much more tightly
clustered. The other 10 scenarios (which were eliminated along with their agents in
the qualifying round) contained broadly similar characteristics to those of the final
8 scenarios. Therefore, since the final 8 scenarios capture a good distribution of the
characteristics we would like to examine, we consider only these scenarios in the
rest of this thesis.

The average score achieved by each agent in each scenario is given in Table B.4,
and presented visually in Fig. B.3. In the finals, HardHeaded proved to be the win-
ner,9 with a score of 0.749. Figure B.3 clearly shows that in most scenarios the
margin between the worst and the best agents was minimal. Specifically, in 6 of the
8 scenarios, the worst agent achieved no less than 80 % of the best agent’s score.
The remaining two scenarios that had a much greater range of results were also
the scenarios with the greatest opposition between the two utility functions. We see
that winning the competition does not require the agent to win in all or even most
scenarios. The results presented in Table B.4 and Fig. B.3 show that the winning Hard-
Headed agent did not win in the majority of the scenarios (it only did so in 3 out of 8).
The runner-up, Gahboninho, had the highest utility in 2 of the scenarios in the finals.
As long as an agent wins by a large margin in those scenarios where it comes first, it
can win the entire competition. IAMhaggler2011 won the Company Acquisition and
Laptop scenarios where there is a low discount factor; therefore, IAMhaggler2011
is well suited to cases where agreements need to be reached quickly. Its high degree
of adaptivity enables the agent to reach efficient agreements, even in large domains,
or in scenarios that are subject to considerable time discounting. However, while
IAMhaggler2011 performed well in general, this did not secure it a winning position
overall, nor in many of the specific scenarios. The Nice Tit for Tat Agent performed
rather poorly overall. The failure of this agent is due to its relative cooperativeness,
i.e. willingness to adapt to the opponent’s demands. We come back to this kind of
reasoning in Chap. 8.

Interestingly, the results show no clear connection between the discount factor and
the diversity in performance. This could be due to the fact that the most discounted
scenarios (i.e. Laptop and Company Acquisition, which have the lowest discount

9There are a number of reasons why the winner in the final round was different to the qualifying
round. Firstly, the set of scenarios used in the final was smaller than in the qualifying round, and it
is possible that the final scenarios were more favorable to the HardHeaded agent. Secondly, the set
of participating agents was smaller, and furthermore, due to the elimination of the lower scoring
agents, those agents that remain were more competitive. Finally, it is possible that the agents were
modified between the two rounds.

http://dx.doi.org/10.1007/978-3-319-28243-5_8
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Fig. B.3 Scores of every agent in each scenario in the final round of ANAC 2011

factor) also have weak opposition and small domains, meaning that win-win agree-
ments can be easily found. It would be interesting to apply the discount factor to
other types of scenarios as well (i.e., with larger domains and stronger opposition),
to see the impact of the discount factor in more challenging settings.

B.3.3 ANAC 2012

For ANAC 2012, 17 teams entered from 8 different institutions from 5 countries
(China, Israel, Netherlands, Japan, United Kingdom); see Table E.1. The University
of Southampton was the local organizer of this tournament, which was co-located
with the Eleventh International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2012) in Valencia, Spain.

For the qualifying round, negotiations were carried out for every combination of
the 17 participants on 18 negotiation scenarios (17 submitted this year, plus the Travel
domain from 2010). Each negotiation was repeated 10 times to establish statistical
significance, which resulted in a total of 52020 negotiations.

In 2012, the competition introduced a private reservation value as part of the tour-
nament (see Sect. 2.2.3). When an agent failed to reach an agreement by the deadline,
or if one of the agents terminated the negotiation, both received their reservation value
instead of zero utility. The reservation value could be different for each agent and for
each negotiation scenario. Each agent only knew its own reservation value, and not
that of its opponent. The reservation value was discounted in the same way that an

http://dx.doi.org/10.1007/978-3-319-28243-5_2
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agreement would be in ANAC 2011. This made it rational, in certain circumstances,
for an agent to terminate an agreement early, in order to take the reservation value
with a smaller loss due to discounting.

For the final round, 8 agents were selected, together with 24 base scenarios (17
submitted this year, 5 from 2011, and 2 from 2010). There were 13 scenarios that
featured for the first time in ANAC 2012, which are shown in Table E.3. The number
of issues varied between 1 and 8. The 17 domains that were used to run the com-
petition had anywhere between 3 and 390,625 possible outcomes. From each base
scenario, three new scenarios were generated with different values for the discount
factor (either 0.5, 0.75, or 1) and for reservation value (either 0, 0.25, or 0.5), result-
ing in 72 scenarios in total. The entire setup was again repeated 10 times to establish
statistical significance, resulting in 46,080 negotiations.

In this thesis, we do not study negotiation settings with reservation values other
than zero (except for Chap. 9 on optimal bidding strategies with unknown reservation
values). We do, however, employ agents and scenarios from ANAC 2012 throughout
this thesis. When we do, we remove the reservation values from the preference
specifications to ensure compatibility with the ANAC 2010 and 2011 agents.

B.3.4 ANAC 2013

ANAC 2013 had 19 participating teams from 8 different institutions. The local orga-
nizing committee responsible for ANAC 2013 was Ben Gurion University of the
Negev, and the tournament was held during the Twelfth International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2013) in Saint Paul,
Minnesota, USA. The qualification round was played on 11 domains that were ran-
domly selected from the submissions (see Table F.1). Each negotiation was repeated
10 times to establish statistical significance and to allow learning. Thus, every pair
of agents played 20 times in each domain, totaling 75,240 negotiations.

The finals contained 7 agents, who were pitted on 18 different negotiation sce-
narios (12 submitted this year, plus 6 from 2012), which led to a total of 15120
negotiations. The ANAC 2013 domains contained between 1 and 7 issues, creating
an outcome space of 3–56,700 possible outcomes (see Table F.3 and Figs. F.1 and
F.2).

In 2013, we allowed agents to save information during and after negotiation ses-
sion, and load it at the beginning of new session on the same domain and profile.
Agents could use this information to learn about and adapt to the negotiation domains
over time. As with the reservation values that were introduced in ANAC 2012, we
do not explore this further in this thesis.

http://dx.doi.org/10.1007/978-3-319-28243-5_9
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B.4 Conclusion

We described the goals and results of four installments of the International Auto-
mated Negotiating Agents Competition (ANAC). The main purpose of ANAC is to
motivate research in the area of bilateral multi-issue negotiations, with an emphasis
on the practical design and development of successful automated negotiating agents.
Additional goals include: collecting and objectively evaluating different state-of-
the-art negotiation strategies and opponent models, defining a wide variety of bench-
mark negotiation scenarios, and making them available to the negotiation research
community.

Based on the submissions and the process of running the competition, as well as
the post-tournament analysis reported in this thesis, we believe that this competition
serves its purposes. The past competitions were successful events, enriching the
research field on practical automated negotiation in line with the aims as set out in
Sect. B.1. In particular, the widespread availability of efficient, general and domain-
independent automated negotiators, which this tournament has achieved, has the
advantages of minimizing the effort required for adaptation of a general automated
negotiator to a new domain. Furthermore, the availability of the different agents
allows researchers to have an objective measure to assist them in validating and
testing the effectiveness of future automated negotiators.

One of the successes of ANAC lies in the development of state-of-the-art nego-
tiation strategies that co-evolve every year. The four incarnations of ANAC already
yielded more than 60 new strategies and scenarios which can be used as bench-
marks to test the efficacy of subsequent work in this area, and we expect the trend of
increasing participation to continue in the next years.

Not only can we learn from the strategy concepts introduced in ANAC, we also
gain understanding in the correct setup of a negotiation competition, which in turn
gives great insights into the deciding factors in the success of a negotiation agent.

The development of Genius is crucial to the organization of ANAC and con-
versely, ANAC also advances the development of Genius. Moreover, Genius has
proved itself as a valuable and extendable research and analysis tool for (post) tour-
nament analysis. The success of ANAC underlines the importance of a flexible and
versatile negotiation simulation environment such as Genius. Genius has the ability
to run a wide range of different tournaments, an extensive repository of different
agents and domains, and it contains standardized protocols and a scoring system,
thus making it the perfect tournament platform for ANAC. Every year since 2010,
we release a new, public build of Genius10 containing all relevant aspects of ANAC.
In particular, this includes all domains, preference profiles and agents that were used
in the competition, in addition to the proposed improvements that were decided upon
during the yearly discussions. Consequently, this makes it possible for the negotiation
research community to do a complete re-run of ANAC and to perform subsequent
in-depth analysis of other facets of negotiation encounters.

10http://ii.tudelft.nl/genius.

http://ii.tudelft.nl/genius
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In the Appendices C through F, we outline the main results of the four Automated
Negotiating Agents Competitions (ANAC) that we organized between 2010 and
2013. We mainly focus on the participants, scenarios and results of the finals of each
competition, with an emphasis on ANAC 2010 and 2011, since these are the results
and resources most often used in this thesis.

The first installment of ANAC was in 2010 and was comprised of seven partici-
pating teams from five different universities, as listed in Table C.1.

The normalized domain scores of every agent in ANAC 2010 are listed in
Table C.2. The normalized domain score is obtained by averaging the score against
the other agents on multiple trials. All agents use both of the profiles that are linked
to a domain. The final score is listed in the last column, thus making Agent K the
winner of ANAC 2010.

Table C.1 Participating teams of ANAC 2010

Agent Affiliation

IAMhaggler University of Southampton

IAMcrazyHaggler University of Southampton

Agent K Nagoya Institute of Technology

Nozomi Nagoya Institute of Technology

FSEGA Babes Bolyai University

Agent Smith Delft University of Technology

Yushu University of Massachusetts Amherst

© Springer International Publishing Switzerland 2016
T. Baarslag, Exploring the Strategy Space of Negotiating Agents,
Springer Theses, DOI 10.1007/978-3-319-28243-5
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Table C.2 Final scores and domain scores of every ANAC 2010 agent

Score per domain

Rank Agent Itex-Cyp Eng–Zimb Travel Avg.

1 Agent K 0.901 0.712 0.685 0.766

2 Yushu 0.662 1.000 0.250 0.637

3 Nozomi 0.929 0.351 0.516 0.599

4 IAMhaggler 0.668 0.551 0.500 0.573

5 FSEGA 0.722 0.406 0 0.376

6 IAMcrazyHaggler 0.097 0.397 0.431 0.308

7 Agent Smith 0.069 0.053 0 0.041

C.1 Agents

We continue to report on the individual strategies of the ANAC 2010 agents, starting
with the winner. We compare the strategies by highlighting both common and con-
trasting approaches taken in the general strategic design. We are concerned with the
following aspects of proposal strategies:

1. Proposal behavior.
For every agent, we give a brief overview of the basic decisions that comprise the
agents’ inner proposal loop. We also describe the criteria for accepting an offer.
Either of the two can be decided in a deterministic or non-deterministic manner.

2. Learning.
In order to reach an advantageous negotiation agreement, it is beneficial to have
as much information about the preference profile of an opponent as possible. If
an agent can take into consideration the opponent’s interests and learn during
their interactions, then their utility might increase [28]. Because of the closed
negotiation setting of ANAC, the negotiating parties exchange only proposals,
but they do not share any information about their preferences. To overcome this
problem, a negotiating agent may try to obtain a model of the preference profile of
its opponent by means of learning. For the participating agents, we are concerned
how their strategies model the opponent.

3. Timing aspects.
There are substantial risks associated with delaying the submission of a proposal
at the end of the negotiation. These risks arise from unpredictable delays and can
cause proposals to be received when the game is already over. Agents can try to
estimate the length of their negotiation cycles to cope with these risks. The agents
can then concede in the final phase of the negotiation, or place their proposals in
some calculated amount of time before the end. We examine whether the agents
make any predictions on how many time is left and how they use this information.
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Agent K

The proposal mechanism of Agent K [29] works as follows: based on the previous
proposals of the opponent and the time that is left, it sets a so-called proposal target
(initially set to 1). If it already received an offer that matches at least the utility of
the proposal target, it will offer this proposal to improve the chances of acceptance.
Otherwise, it searches for random proposals that are at at least as good as the proposal
target. If no such proposals are found, the proposal target is slightly lowered.

The agent has a sophisticated mechanism to accept an offer. It uses the mean and
variance of the utility of all received offers, and then tries to determine the best offer
it might receive in the future and sets its proposal target accordingly. It then accepts
or rejects the offer, based on the probability that a better offer might be proposed.
For more information and technical details on Agent K, see [29].

Yushu

Yushu [30] is a fairly simple agent that makes use of a target utility to make its next
offer. As a learning mechanism, it uses the ten best proposals made by the opponent,
called suggested proposals. It also makes an estimate of how many rounds are still left
for the negotiation. Combining this information, Yushu obtains the target utility. It
also keeps track of the acceptability-rate: the minimum utility it is willing to accept.
To set the acceptability-rate, Yushu first finds the best possible utility that can be
obtained in the domain, and accepts no less than 96 % of it. When the number of
estimated future rounds becomes short, this percentage is lowered to 92 %.

The agent can only accept a proposal when the offered utility is above the target
utility or when the utility reaches the acceptability-rate. Provided that either of the
two is the case it accepts, when there are less than eight rounds left. When there is
more time, it will accept only if it cannot find a suggested proposal with a better
utility. If a better suggested proposal is available, it will offer that instead.

Nozomi

The proposal strategy of Nozomi [29] starts with an offer of maximum utility. It
defines the gap between two parties as the differences in utility of their last offers.
Depending on the gap and time that is left, it then chooses to make a certain proposal
type, such as making a compromise, or staying put. Nozomi keeps track of the
compromises made, but the agent does not model the utility function of the opponent.

The agent splits the negotiation into four intervals around 50, 80 and 90 % of the
negotiation time. Based on previous offers, the gap between the two parties, and the
time that is left in the negotiation, it will choose whether to accept an offer or reject it.

IAMHaggler and IAMcrazyHaggler

IAMhaggler and IAMcrazyHaggler (cf. [31]) are both implementations of a frame-
work called SouthamptonAgent, thus creating a lot of similarity between the two
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agents. The SouthamptonAgent provides standard methods for handling offers,
proposing offers and keeping track of time. The framework is the only one that
also keeps track of the time that the opponent uses.

IAMcrazyHaggler is a very simple take-it-or-leave-it strategy: it will make ran-
dom proposals with a utility that is above a constant threshold, set to 0.9 (without
discount factors it is set to 0.95). The proposal is done without regard to time or
opponent moves.

IAMHaggler, on the other hand, is a fully fledged negotiation strategy, which
incorporates a model of the opponent using Bayesian learning. It starts with a proposal
of maximum utility and successively sets a target utility based on multiple factors,
such as: the utility offered by the opponent, the time left for both agents, and the
perceived opponent’s profile, such as hardheadedness. Upon receiving an offer, it
analyzes the previous proposals of the opponent and adapts the hypotheses on the
opponent’s utility function. With this opponent model, it tries to find trade-offs that
satisfy the target utility.

Let u be the utility of the last opponent’s offer. Both agents accept an offer depend-
ing on u, namely when either of the following three conditions is met:

1. When u is at least 98 % of the utility of its own previous offer.
2. When u is at least 98 % of a maximum aspiration constant. The default value is

0.9, but if there are discount factors it is set to 0.85 for IAMcrazyHaggler to make
it reach an agreement sooner.

3. When u is at least 98 % of the utility of its own upcoming offer.

Note that the three conditions only depend on the utility of the offer and not on the
available time.

FSEGA

Similar to Nozomi, the FSEGA strategy [32] splits the negotiation into three intervals
of time and applies different sub-strategies to each interval:

1. The first interval consists of the starting 85 % of the negotiation time and is mainly
used to acquire the opponent’s profile from the counter-offers.

2. In the next 10 %, the proposal strategy still does not concede, but relaxes some
conditions for selecting the next proposal to improve the chances that the oppo-
nent accepts. The agent makes only small concessions and still tries to learn the
opponent’s profile.

3. In the final 5 %, FSEGA considers the time restrictions and employs a concession-
based strategy to select the next offer up to its reservation value.

In the first phase of the negotiation, the accept mechanism will admit any oppo-
nent offer that is 3 % better than the utility of FSEGA’s last proposal. It will also
always accept the best possible proposal. Otherwise, it selects a new proposal, but if
the previous opponent’s offer is better than the upcoming proposal it will accept it
instead. After interval 1, it will also accept when it cannot find a better proposal for
the opponent.
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Agent Smith

Agent Smith [33] constructs an opponent model that represents the importance and
preference for all values of each issue. The agent starts by making a first proposal of
maximum utility and subsequently concedes slowly towards the opponent.

The agent accepts an offer given the following circumstances. The agents’ thresh-
old for acceptance slowly decreases over time. In the last 10 s of the negotiation
session, Agent Smith will propose the best proposal that the opponent already pro-
posed (even when the offer is very bad for itself). Since it previously proposed it, it is
likely for a rational opponent to accept this proposal. However, an error was made in
the implementation, resulting in the fact that the agent already shows this behavior
after two minutes instead of three. This explains the poor performance of the agent
in the competition.

C.2 Scenarios

Three scenarios were selected for ANAC 2010 by the organizers, which can be
viewed in Table C.3.

England–Zimbabwe

The first scenario of ANAC 2010 is taken from [2, 26], which involves a case where
England and Zimbabwe are negotiating to reach an agreement in response to the
world’s first public health treaty: the World Health Organization’s Framework Con-
vention on Tobacco Control. The leaders of both countries must reach an agreement
on five issues:

Funding Amount The total amount to be deposited into a fund to aid countries that
are economically dependent on tobacco production. This issue has a negative impact
on the budget of England and a positive effect on the economy of Zimbabwe. The
possible values are no agreement, $10, $50 or $100 billion. Thus, this issue has a
total of four possible values.

Table C.3 Details of all ANAC 2010 scenarios

Domain Size Issues Opposition Bid distribution

England–Zimbabwe 576 5 0.278 0.298

Itex versus Cypress 180 4 0.431 0.222

Travel 188,160 7 0.230 0.416
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England�Zimbabwe

(a)

(c)

(b)

Itex vs. Cypress

Travel

Fig. C.1 Outcome spaces of all ANAC 2010 scenarios. The points represent all of the outcomes
that are possible in each scenario. The solid line is the Pareto frontier, which connects all of the
Pareto efficient outcomes

Other Aid Programs The impact on other aid programs. If other aid programs are
reduced, then this will create economic difficulties for Zimbabwe. Possible values
are:

1. No reduction;
2. Reduction equal to half of the fund;
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3. Reduction equal to the whole size of the fund;
4. No agreement.

Thus, a total of four possible values are allowed for this issue.

Trade Barriers Trade issues for both countries. Zimbabwe and England can use
trade barriers such as tariffs (taxes on imports) or they can abstain from restrictive
trade barriers to increase imports from the other party.

There is a trade-off in revenue of these policies: tariffs increases short-time rev-
enue, but can lead to higher consumers prices. Decreasing import is good for local
industries but it can decrease costumer welfare due to the increase in costumer costs.
There are actually two issues here: the trade barriers that either side decides to use.
Zimbabwe’s possible values are divided between

1. Reducing tariffs on imports;
2. Increasing tariffs on imports;
3. No agreement.

While England can choose between:

1. Reducing imports;
2. Increasing imports;
3. No agreement.

Thus, a total of three possible values are allowed for each of the two issues.

Creation of a Forum A forum can be created to explore other arrangements for
health-issues. Zimbabwe would like to establish such a fund, to be able to apply to
other global health agreements in the future, while this would be costly for England.
The four possible values are:

1. Creation of a fund;
2. Creation of a committee that will discuss the creation of a fund;
3. Creation of a committee that will develop an agenda for future discussions;
4. No agreement.

Consequently, the domain has a total of 43 × 32 = 576 possible agreements. Eng-
land and Zimbabwe have contradictory preferences for the first two issues, but the
other issues have options that are jointly preferred by both sides, making it a domain
of medium opposition.

Itex versus Cypress

The second scenario of ANAC 2010 is taken from [34], which describes a buyer–seller
business negotiation for one commodity. It involves representatives of two compa-
nies: Itex Manufacturing, a producer of bicycle components and Cypress Cycles, a
builder of bicycles. There are four issues that both sides have to discuss: the price of
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the components, delivery times, payment arrangements, and terms for the return of
possibly defective parts. An example outcome would be:

(
$3.98, 45 days, payment upon delivery, 5% spoilage allowed

)
.

The opposition is strong in this domain, as the manufacturer and consumer have nat-
urally opposing needs and requirements. Altogether, there are 180 potential offers
that contain all combinations of values for the four issues.

Travel

The final domain of ANAC 2010 has two persons negotiating to go on holiday to a
location. From a small travel recommendation system we obtained multiple real-life
profiles of travelers. They can each list their preferences on seven properties of a
holiday destination: Atmosphere, Amusement, Culinary, Shopping, Culture, Sport,
and Environment.

These properties determine the seven issues to discuss, all with a fairly large
amount of choices. This leads to a big offers space of 188,160 possibilities. A sample
negotiation outcome reads:

(Hospitable, Nightlife and entertainment, International cuisine, Small boutiques,
Art galleries, Outdoor activities, Parks and gardens).

The opposition is weak in this domain, because traveling friends may have very
compatible interests. Still the challenge is to find this optimal outcome in such a big
search space.
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Eighteen teams from seven different institutes and six different countries submitted
negotiating agents to the 2011 tournament. The qualifying round results are the
average over all 18 scenarios, which were submitted by the participants. Eight of these
teams continued to the finals after undergoing a qualifying round (see Table D.1).

Table D.2 shows the scores of the 8 finalists of the tournament on the 8 scenarios
submitted by all finalists.

D.1 Agents

In this section, we provide, in alphabetical order, brief descriptions of the individual
strategies of the finalists of ANAC 2011 based on descriptions of the strategies pro-
vided by the teams.

Agent K2

This agent is identical to Agent K [29], winner of the ANAC 2010 competition. When
creating a counter offer Agent K calculates a target utility Ut based on the previous
offers made by the opponent and the time that is still remaining in the negotiation.
Agent K then makes random bids above the target utility. If no such bid can be found,
the target utility is lowered to allow for more offers. The target utility Ut at time t is
calculated using the following formula:

Ut = 1 − (1 − Emax(t)) · tα, (D.1)

where Emax(t) is the estimated maximum value the opponent will present in the
future based on the average and variance of previous bids, and α is a parameter
which controls the concession speed.

Agent K uses quite a sophisticated acceptance mechanism, where it will use the
average and variations of the previous bid utilities presented by the opponent to deter-

© Springer International Publishing Switzerland 2016
T. Baarslag, Exploring the Strategy Space of Negotiating Agents,
Springer Theses, DOI 10.1007/978-3-319-28243-5
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Table D.1 Scores and affiliation of every strategy in the qualifying round of ANAC 2011

Rank Score Agent Affiliation

1 0.756 Gahboninho Bar-Ilan University

2 0.708 HardHeaded Delft University of Technology

3 0.706 ValueModelAgent Bar-Ilan University

4 0.702 Agent K2 Nagoya Institute of Technology

5 0.701 IAMhaggler2011 University of Southampton

6 0.690 BRAMAgent Ben-Gurion University

7 0.686 Nice Tit for Tat Agent Delft University of Technology

8 0.685 The Negotiator Delft University of Technology

9 0.678 GYRL Ben-Gurion University

10 0.671 WinnerAgent Ben-Gurion University

11 0.664 Chameleon University Politehnica of Bucharest

12 0.648 SimpleAgentNew Ben-Gurion University

13 0.640 LYYAgent Bar-Ilan University

14 0.631 MrFriendly Delft University of Technology

15 0.625 AgentSmith Bar-Ilan University

16 0.623 IAMcrazyHaggler University of Southampton

17 0.601 DNAgent Universidad de Alcala

18 0.571 ShAgent Bar-Ilan University

Table D.2 Tournament results in the final round of ANAC 2011

95 % Confidence interval

Rank Agent strategy Mean Standard
deviation

Lower bound Upper bound

1 HardHeaded 0.749 0.0096 0.745 0.752

2 Gahboninho 0.740 0.0052 0.738 0.742

3 IAMhaggler2011 0.686 0.0047 0.685 0.688

4* Agent K2 0.681 0.0047 0.679 0.683

5* The Negotiator 0.680 0.0043 0.679 0.682

6* BRAMAgent 0.680 0.0050 0.678 0.682

7* Nice Tit for Tat Agent 0.678 0.0076 0.675 0.681

8 ValueModelAgent 0.617 0.0069 0.614 0.619

mine the best possible bid it can expect in the future. It will either accept or reject
the offer based on the probability that the opponent will present a better offer in the
future. If it has already received an offer from the opponent with the same utility or
higher, it will offer that bid instead.
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BRAMAgent

This agent uses opponent modeling in an attempt to propose offers which are likely
to be accepted by the opponent. Specifically, its model of the opponent stores the
frequency with which each value of each issue is proposed. This information is main-
tained only over the 10 most recent offers received from the opponent. Therefore, the
first 10 offers BRAMAgent makes will be its preferred bid (the one which maximizes
its utility), while it gathers initial data for its opponent model.

It also uses a time-dependent concession approach, which sets a threshold at a
given time. In each turn, BRAMAgent tries to create a bid that contains as many of
the opponent’s preferred values as possible (according to its opponent model), with
a utility greater than or equal to the current threshold. If BRAMAgent fails to create
such a bid, a bid will be selected from a list of bids that was created at the beginning
of the session. This list contains all of the possible bids in the scenario (or all the
bids it managed to create in 2 s), sorted in descending order according to the utility
values. BRAMAgent chooses randomly a bid that is nearby the previous bid that
was made from that list.

BRAMAgent will accept any offer with utility greater than its threshold. The
threshold, which affects both acceptance and proposal levels, varies according to
time. Specifically, the threshold levels are set as pre-defined, fixed percentages of
the maximum utility that can be achieved (0–60 s: 93 % of the maximum utility,
60–150 s: 85 %, 150–175 s: 70 %, 175–180 s: 20 %).

Gahboninho

This agent uses a meta-learning strategy that first tries to determine whether the
opponent is trying to learn from its own concessions, and then exploits this behavior.
Thus, during the first few bids, Gahboninho steadily concedes to a utility of 0.9 in
an attempt to determine whether or not the opponent is trying to profile the agent.
At the same time, the agent tries to assert selfishness and evaluate whether or not
the opponent is cooperative. The degree of the opponent’s selfishness is estimated
based on the opponent’s proposals. Then, the more the opponent concedes, the more
competitive Gahboninho’s strategy becomes. The opponent’s willingness to concede
is estimated based on the size of variance of the opponent’s proposals. After this
phase, if the opponent is deemed concessive or adaptive, the agent takes a selfish
approach, giving up almost no utility. However, if the opponent asserts even more
hard-headedness, it adapts itself to minimize losses, otherwise it risks breakdown in
the negotiation (which has very low utility for both parties). In generating the bids,
the agent calculates its target, Ut at time t as follows:

Ut = Umax − (Umax − Umin) · t (D.2)

where Umax and Umin are the maximum and minimum utilities (respectively) in the
opponent’s bidding history. Umax depends on the opponent’s selfishness and the dis-
count factor. Unlike many of the other agents, rather than using a model of the
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opponent to determine the offer to propose at a given utility level, Gahboninho uses
a random search approach. Specifically, the agent proposes a random offer above the
target utility T (t). The benefit of this approach is that it is fast, therefore, given the
format of the competition, a very large number of offers can be exchanged, allowing
greater search of the outcome space. Moreover, the agent suggests using the oppo-
nent’s best bid if the time is almost up.

HardHeaded

In each negotiation round, HardHeaded considers a set of bids within a pre-defined
utility range which is adjusted over time by a pre-specified, monotonically decreasing
function. A model of the opponent’s utility function is constructed by analyzing the
frequency of the values of the issues in every bid received from the opponent. From
a set of bids with approximately equal utility for the agent itself, the opponent model
is used to suggest bids that are best to the opponent in order to increase chances of
reaching an agreement in a shorter period of time.

The concession function specifies an increasing rate of concession (i.e. decreasing
utility) for the utility of the agent’s bids. The function has non-monotonic curvature
with one inflection point, determined by the discount factor of the scenario. This
function is determined by tuning the strategy based on the sample scenarios and data
made available before the competition. For the scenarios with time discounting, the
timeline is split into two phases over which the agent practices different strategies:
it starts by using a Boulware strategy, and after a certain amount of time has passed
(depending on the discount factor), it switches to a Conceder strategy [35].

IAMhaggler2011

This agent uses a Gaussian process regression technique to predict the opponent’s
behavior [36]. It then uses this estimate, along with the uncertainty values provided
by the Gaussian process, in order to optimally choose its concession strategy. In so
doing, the concession strategy considers both the opponent’s behavior and the time
constraints.

The concession strategy is then used to determine the target utility at a given
time. In the concession strategy, the agent finds the time, t∗, at which the expected
discounted utility of the opponent’s offer is maximized. In addition, it finds the utility
level, u∗, at which the expected discounted utility of our offer is maximized. The
agent then concedes towards [t∗, u∗], whilst regularly repeating the Gaussian process
and maximizations.

Finally, having chosen a target, the agent proposes an offer which has a utility
close to that target. In choosing the bids, IAMhaggler2011 uses an approach similar
to that of Gahboninho. Specifically, a random package, with utility close to the target
is selected according to the concession strategy. This strategy is a fast process, which
allows many offers to be made and encourages the exploration of outcome space.
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Nice Tit for Tat Agent

This agent plays a tit-for-tat strategy with respect to its own utility. The agent will
initially cooperate, then respond in kind to the opponent’s previous action, while
aiming for the Nash point in the scenario. If the opponent’s bid improves its utility,
then the agent concedes accordingly. The agent is nice in the sense that it does not
retaliate. Therefore, when the opponent makes an offer which reduces the agent’s
utility, the Nice Tit for Tat Agent assumes the opponent made a mistake and does
nothing, waiting for a better bid. This approach is based on [37]. Nice Tit for Tat
Agent maintains a Bayesian model [38] of its opponent, updated after each move by
the opponent. This model is used to try to identify Pareto optimal bids in order to be
able to respond to a concession by the opponent with a nice move. The agent will
try to mirror the opponent’s concession in accordance with its own utility function.

The agent detects very cooperative scenarios to aim for slightly more than Nash
utility. Also, if the domain is large, if the discount factor is high, or if time is running
out, the agent will make larger concessions towards its bid target. The agent tries to
optimize the opponent’s utility by making a number of different bids with approxi-
mately this bid target utility.

The Negotiator

Unlike the other finalist agents, this agent does not model the opponent. Its behavior
depends on the mode it is using, which can be either: Discount or NoDiscount.
A negotiation starts with the agent using its NoDiscount mode, which results in
hardheaded behavior. After a predetermined time period, the agent switches to its
Discount mode, in which its behavior becomes more concessive.

The main difference between the different modes is in the speed of descent of
the minimum threshold for acceptance and offering. In the NoDiscount mode,
most time is spent on the higher range of utilities and only in the last seconds are
the remaining bids visited. The Discount mode treats all bids equally and tries to
visit them all. An opponent’s offer is accepted if it is above the current minimum
threshold. An offer should also satisfy the minimum threshold, however a dynamic
upper-bound is used to limit the available bids to offer in a turn. In 30 % of the cases
this upper-bound is ignored to revisit old bids, which can result in acceptance in later
phases of the negotiation.

Finally, The Negotiator attempts to estimate the number of remaining moves to
ensure that it always accepts before the negotiation deadline.

ValueModelAgent

This agent uses temporal difference reinforcement learning to predict the opponent’s
utility function. The particular learning technique is focused on finding the amount
of utility lost by the opponent for each value. However, as the bid (expected) utilities
represent the decrease in all issues, a method is needed to decide which values should
change the most. To achieve this, the agent uses estimations of standard deviation
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and reliability of a value to decide how to make the split. The reliability is also used
to decide the learning factor of the individual learning. The agent uses a symmet-
ric lower-bound to approximate the opponent’s concession (if the opponent makes
100 different bids, and the 100th bid is worth 0.94, it is assumed the opponent con-
ceded at least 6 %). These parameters were determined in advance, based on average
performance across a set of scenarios available for testing before the competition.

In more detail, ValueModelAgent starts by making bids which lie in the top 2 % of
the outcome space. It severely limits the concession in the first 80 % of the timeline.
If there is a large discount, the agent compromises only as much as its prediction
of the opponent’s compromise. If there is no discount, the agent does not concede
as long as the opponent is compromising. If the opponent stops moving, the agent
compromises up to two thirds of the opponent’s approximated compromise. As the
deadline approaches (80–90 % of the time has elapsed), the agent compromises up to
50 % of the difference, providing that the opponent is still not compromising. Once
90 % of the time has elapsed, the agent sleeps and makes the “final offer”, if the
opponent returns offers the agent sends the best offer that has been received from the
opponent (accepting his last offer only if its close enough). ValueModelAgent has
a fixed lower limit on its acceptance threshold, of 0.7. Therefore it never accepts an
offer with an undiscounted utility lower than this value.

D.2 Scenarios

The properties of the 8 scenarios submitted by the finalists of ANAC 2011 are listed
in Table D.3, and the shape of the outcome space of each scenario is presented graph-
ically in Figs. D.1 and D.2.

Table D.3 Details of the ANAC 2011 scenarios

Domain Size Issues Discount
factor

Opposition Bid
distribution

Amsterdam 3024 6 1.000 0.223 0.254

Camera 3600 6 0.891 0.252 0.448

Car 15,625 6 1.000 0.095 0.136

Energy 390,625 8 1.000 0.448 0.149

Grocery 1600 5 0.806 0.191 0.492

Company
acquisition

384 5 0.688 0.125 0.121

Laptop 27 3 0.424 0.178 0.295

Nice Or Die 3 1 1.000 0.991 0.000
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Amsterdam

(a) (b)

(d)(c)
Camera

Car Energy

Fig. D.1 Outcome spaces of ANAC 2011 scenarios a–d

Nice Or Die

This scenario is the smallest used in the ANAC 2011 competition, with agents having
to select between only 3 possible agreement points: a fair division point (nice), which
is less efficient (in the sense that the sum of the agent’s utilities is smaller) or one
of two selfish points (die). The scenario is symmetric, in that neither player has an
advantage over the other. The fair division point allows each player to achieve the
same, relatively low score, while the other two selfish points allow one agent to get
a high utility while its opponent achieves a very low one. As a result, the scenario
has strong opposition between the participants. This means that if both agents try to
get high utilities, it is hard for them to reach agreements. However, if agents would
like to make an agreement in this scenario, the social welfare is small (as the agents
cannot learn from previous interactions with an opponent).
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Grocery

(a) (b)

(c) (d)
Company Acquisition

Laptop Nice Or Die

Fig. D.2 Outcome spaces of ANAC 2011 scenarios e–h

Laptop

In this scenario, a seller and a buyer are negotiating the specifications of a laptop. An
agreement in the negotiation reconciles their differences and results in a purchase.
The scenario has three issues: the laptop brand, the size of the hard disk, and the size
of the external monitor. Each issue has only three options, making it a very small
scenario with only 27 possible outcomes. Unbeknownst to each other, the buyer and
seller actually both prefer to buy (and sell, respectively) a laptop with a small screen.
The buyer prefers this because it is cheaper, and the seller prefers to sell laptops with
small screens because s/he has more of those in stock. If the two parties are able
to find the outcomes that are mutually beneficial to both, then they are happy to do
business together with high utility scores on both sides.
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Company Acquisition

This scenario represents a negotiation between two companies, in which the man-
agement of Intelligent Solutions Inc. (IS) wants to acquire the BI-Tech company
(BT). The negotiation includes five issues: the price that IS pays for BI Tech, the
transfer of intellectual property, the stocks given to the BI-Tech founders, the terms
of the employees’ contracts and the legal liability of Intelligent Solutions Inc. Each
company wants to be the owner of the intellectual property. For IS, this issue is much
more important. IS and BI-Tech have common interest that the BI-Tech co-founders
would get jobs in IS. IS prefers to give BI-Tech only 2 % of the stocks, while the
BI-Tech co-founders want 5 %. IS prefer private contracts, while firing workers is
less desirable by them. BI-Tech prefers a 15 % salary raise. For both sides this is not
the most important issue in the negotiation. Each side prefers the least legal liability
possible. In this case, the utility range is narrow and has high utility values such that
all outcomes give both participants a utility of at least 0.5. The scenario is relatively
small, with 384 possible outcomes.

Grocery

This scenario models a discussion in a local supermarket. The negotiation is between
two people living together who have different tastes. The discussion is about five types
of product: bread, fruit, snacks, spreads, and vegetables. Each category consists of
four or five products, resulting in a medium sized scenario with 1,600 possible out-
comes. For their daily routine it is essential that a product of each type is present in
their final selection, however only one product can be selected for each type. Besides
their difference in taste, they also differ in what category of product they find more
important. The profiles for agents Mary and Sam are modeled in such a way that a
good outcome is achievable for both. Sam has a slight advantage, since he is easier
to satisfy than Mary, and therefore is likely to have better outcomes. This scenario
allows outcomes that are mutually beneficial, but the outcome space is scattered so
agents must explore it considerably to find the jointly profitable ones.

Amsterdam

This scenario concerns the planning of a tourist trip to Amsterdam and includes issues
representing the day and time of travel, the duration of the trip, the type of venues
to be visited, the means of transportation and the souvenirs to buy. This scenario
is moderately large as the utility space has 3,024 possible bid configurations. The
utility functions specify a generous win-win scenario, since it would be unrealistic
for two friends to make a trip to Amsterdam and to have it be a zero-sum game. The
size of the scenario enables the agent to communicate their preferences (by means of
generating bids), without having to concede far. The size also puts agents which use
a random method of generating bids at a disadvantage, since the odds of randomly
selecting a Pareto optimal bid in a large scenario are small. So this scenario will
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give an advantage to agents that make some attempt to learn the opponents’ utility
function, and those capable of rapidly choosing offers.

Camera

This scenario is another retail based one, which represents the negotiation between
a buyer and a seller of a camera. It has six issues: maker, body, lens, tripod, bags,
and accessories. The size of this scenario is 3,600 outcomes. The seller gives pri-
ority to the maker, and the buyer gives priority to the lens. The opposition in this
negotiation scenario is medium. The range of the contract space is wide, which
means the agents need to explore it to find the jointly profitable outcomes. While
jointly profitable outcomes are possible (since the Pareto frontier is concave) [12], no
party has an undue advantage in this (since the Nash point is at an impartial position).

Car

This scenario represents a situation in which a car dealer negotiates with a potential
buyer. There are 6 negotiation issues, which represent the features of the car (such as
CD player, extra speakers and air conditioning) and each issue takes one of 5 values
(good, fairly good, standard, meager, none), creating 15,625 possible agreements.
Although the best bids of the scenario are worth zero for the opponent, this scenario
is far from a zero-sum game. For example, agents can make agreements in which one
of them can get close to the maximum possible utility, if it persuades its opponent to
accept a utility only slightly below this. The scenario also allows agents to compro-
mise to a fair division point in which both agents achieve a utility very close to the
maximum possible. Consequently, the scenario has very weak opposition between
the two participants.

Energy

This scenario considers the problem faced by many electricity companies to reduce
electricity consumption during peak times, which requires costly resources to be
available and puts a high pressure on local electricity grids. The application scenario
is modeled as follows. One agent represents the electricity distribution company
whilst the other represents a large consumer. The issues they are negotiating over
represent how much the consumer is willing to reduce its consumption over a number
of time slots for a day-ahead market (the 24 h in a day are discretized into 3 hourly
time slots). For each issue, there is a demand reduction level possible from zero up to
a maximum possible (specifically, 100 kW). In this scenario, the distributor obtains
utility by encouraging consumers to reduce their consumptions. Participants set their
energy consumption (in kWh) for each of 8 time slots. In each slot, they can reduce
their consumption by 0, 25, 50, 75 or 100 kWh. This scenario is the largest in the 2011
competition (390,625 possible agreements) and has highly opposing utility functions,
therefore, reaching mutually beneficial agreements requires extensive exploration of
the outcome space by the negotiating agents.
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For ANAC 2012, 17 teams entered from 8 different institutions from 5 countries.
For the qualifying round, negotiations were carried out for every combination of the
17 participants on 18 negotiation scenarios (17 submitted this year, plus the Travel
domain from 2010); see Table E.1.

Table E.1 Scores and affiliation of every strategy in the qualifying round of ANAC 2012

Rank Score Agent Affiliation

1–2 0.597 CUHK Agent The Chinese University
of Hong Kong

1–2 0.590 OMAC Agent Maastricht University

3–5 0.572 The Negotiator Reloaded Delft University of Technology

3–7 0.568 BRAMAgent2 Ben-Gurion University

3–7 0.565 Meta-Agent Ben-Gurion University

4–7 0.564 IAMhaggler2012 University of Southampton

4–8 0.563 AgentMR Nagoya Institute of Technology

8–10 0.550 AgentLG Bar-Ilan University

7–9 0.556 IAMcrazyHaggler2012 University of Southampton

9–11 0.547 Agent Linear Nagoya Institute of Technology

10–11 0.542 Rumba Bar-Ilan University

12 0.521 Dread Pirate Roberts Delft University of Technology

13–14 0.469 AgentX Delft University of Technology

13–14 0.465 AgentI Nagoya Institute of Technology

15–16 0.455 AgentNS Nagoya Institute of Technology

15–16 0.447 AgentMZ Nagoya Institute of Technology

17 0.394 AgentYTY Shizuoka University

© Springer International Publishing Switzerland 2016
T. Baarslag, Exploring the Strategy Space of Negotiating Agents,
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Table E.2 Final ranking of every strategy in ANAC 2012

Rank Agent Score Variance

1 CUHK Agent 0.626 0.000003

2 AgentLG 0.622 0.000003

3–4 OMAC Agent 0.618 0.000002

3–4 The Negotiator
Reloaded

0.617 0.000002

5 BRAMAgent2 0.593 0.000002

6 Meta-Agent 0.586 0.000003

7 IAMhaggler2012 0.535 0.000001

8 AgentMR 0.328 0.000003

For the final round, 8 agents were selected, together with 24 base scenarios (17
submitted this year, 5 from 2011, and 2 from 2010). The results of the final round
are shown in Table E.2.

E.1 Scenarios

There were 13 scenarios that featured for the first time in ANAC 2012, which are
shown in Table E.3 (Figs. E.1, E.2 and E.3).

Table E.3 Details of the ANAC 2012 scenarios

Domain Size Issues Opposition Bid distribution

Airport Site
Selection

420 3 0.296 0.361

Barbecue 1440 5 0.248 0.277

Barter 80 3 0.492 0.036

Energy Small 15,625 6 0.432 0.217

Fifty-Fifty 11 1 0.707 0.000

Fitness 3520 5 0.275 0.283

Flight Booking 48 3 0.326 0.166

House Keeping 384 5 0.281 0.239

Music Collection 4320 6 0.158 0.343

Outfit 128 4 0.198 0.327

Phone 1600 5 0.194 0.490

Rental House 60 4 0.327 0.096

Supermarket 112,896 6 0.347 0.347
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Airport Site Selection Barbecue

Barter Energy Small

Fifty-Fifty Fitness

(a) (b)

(c) (d)

(e) (f)

Fig. E.1 Outcome spaces of ANAC 2012 scenarios a–f
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Flight Booking

(g) (h)

(i) (j)

(k) (l)

House Keeping

Music Collection Out�t

Phone Rental House

Fig. E.2 Outcome spaces of ANAC 2012 scenarios g–l
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Fig. E.3 The Supermarket
outcome space of ANAC
2012

Supermarket

(m)
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ANAC 2013

ANAC 2013 had 19 participating teams from 8 different institutions (see Table F.1).
The qualification round was played on 11 domains that were randomly selected from
the submissions.

Table F.1 Scores and affiliation of every strategy in the qualifying round of ANAC 2013

Rank Score Agent Affiliation

1 0.562 Agent KF Tokyo University of Agriculture
and Technology

2–3 0.522 The Fawkes Delft University of Technology

2–4 0.516 TMF Agent Ben-Gurion University

3–4 0.495 Meta-Agent Ben-Gurion University

5–8 0.457 G-Agent Nagoya institute of technology

5–8 0.455 Inox Agent Delft University of Technology

5–11 0.447 Slava Agent Bar-Ilan University

5–11 0.446 VAStockMarketAgent Ben-Gurion University

7–11 0.432 RoOAgent Shizuoka University

7–11 0.431 Agent Talex Ben-Gurion University

7–11 0.43 AgentMRK2 Nagoya Institute of Technology

12–14 0.387 Elizabeth Nagoya Institute of Technology

12–15 0.374 ReuthLiron Ben-Gurion University

12–15 0.373 BOA Constrictor Delft University of Technology

13–18 0.359 Pelican Nagoya Institute of Technology

15–18 0.35 Oriel Einat Agent Ben-Gurion University

15–18 0.345 Master Qiao Maastricht University

15–18 0.338 E Agent Nagoya Institute of Technology

19 0.315 Clear Agent Bar-Ilan University

© Springer International Publishing Switzerland 2016
T. Baarslag, Exploring the Strategy Space of Negotiating Agents,
Springer Theses, DOI 10.1007/978-3-319-28243-5
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Table F.2 Final ranking of every strategy in ANAC 2013

Rank Agent Score Variance

1 The Fawkes 0.606434 0.000011

2 Meta-Agent 0.600209 0.000083

3 TMF Agent 0.583094 0.000012

4–5 Inox Agent 0.568215 0.000069

4–5 G-Agent 0.564908 0.000055

6 Agent KF 0.534514 0.000147

7 Slava agent 0.484973 0.000023

The finals contained 7 agents, who were pitted on 18 different negotiation sce-
narios (12 submitted this year, plus 6 from 2012). The results of the final round are
shown in Table F.2.

Note that we won first place in the ANAC 2013 competition with The Fawkes, an
agent that used the BOA architecture to combine several components that were known
to be effective at the time.11 The bidding strategy and opponent modeling component
are based on the OMAC Agent [39] from ANAC 2012. To improve the bidding
strategy, the agent was designed to be more generous as the time passes instead of
using a fixed target utility range. For the acceptance mechanism, we selected a version
of ACcombi(T, AVGW ), which is shown to be among the most effective acceptance
mechanisms in Chap. 4.

F.1 Scenarios

The ANAC 2013 domains contained between 1 and 7 issues, creating an outcome
space of 3 to 56,700 possible outcomes (see Table F.3).

11This means some of our later insights were not used in its design, such as our results on optimal
stopping (Chap. 5) and optimal bidding (Chap. 9).

http://dx.doi.org/10.1007/978-3-319-28243-5_4
http://dx.doi.org/10.1007/978-3-319-28243-5_5
http://dx.doi.org/10.1007/978-3-319-28243-5_9
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Animal Co�ee

Defensive Charms Dog Choosing

Ice Cream Kitchen

(a) (b)

(c) (d)

(e) (f)

Fig. F.1 Outcome spaces of ANAC 2013 scenarios a–f
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Lunch
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(i) (j)

(k)

Planes

Smart Phone Ultimatum

Wholesaler

Fig. F.2 Outcome spaces of ANAC 2013 scenarios g–k
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Table F.3 Details of the ANAC 2013 scenarios

Domain Size Issues Opposition Bid distribution

Animal 1152 5 0.110 0.429

Coffee 112 3 0.486 0.145

Defensive charms 36 3 0.322 0.165

Dog Choosing 270 5 0.051 0.471

Ice Cream 720 4 0.148 0.328

Kitchen 15,625 6 0.063 0.071

Lunch 3840 6 0.420 0.196

Planes 27 3 0.165 0.311

Smart Phone 12,000 6 0.237 0.512

Ultimatum 9 2 0.545 0.123

Wholesaler 56,700 7 0.308 0.394



Summary

Negotiation is an important activity in human society, and is studied by various
disciplines, ranging from economics and game theory, to electronic commerce, social
psychology, and artificial intelligence. Traditionally, negotiation is a necessary, but
also time-consuming and expensive activity. Therefore, in the last decades there has
been a large interest in the automation of negotiation, for example in the setting of
e-commerce. This interest is fueled by the promise of automated agents eventually
being able to negotiate on behalf of human negotiators.

Every year, automated negotiation agents are improving in various ways, and there
is now a large body of negotiation strategies available, all with their unique strengths
and weaknesses. For example, some agents are able to predict the opponent’s prefer-
ences very well, while others focus more on having a sophisticated bidding strategy.
The problem however, is that there is little incremental improvement in agent design,
as the agents are tested in varying negotiation settings, using a diverse set of perfor-
mance measures. This makes it very difficult to meaningfully compare the agents,
let alone their underlying techniques. As a result, we lack a reliable way to pinpoint
the most effective components in a negotiating agent.

There are two major advantages of distinguishing between the different compo-
nents of a negotiating agent’s strategy: first, it allows the study of the behavior and
performance of the components in isolation. For example, it becomes possible to
compare the preference learning component of all agents, and to identify the best
among them. Second, we can proceed to mix and match different components to
create new negotiation strategies., e.g.: replacing the preference learning technique
of an agent and then examining whether this makes a difference. Such a procedure
enables us to combine the individual components to systematically explore the space
of possible negotiation strategies.

The BOA Architecture

To develop a compositional approach to evaluate and combine the components,
we identify structure in most agent designs by introducing the BOA architecture
(Chap. 3), in which we can develop and integrate the different components of a

© Springer International Publishing Switzerland 2016
T. Baarslag, Exploring the Strategy Space of Negotiating Agents,
Springer Theses, DOI 10.1007/978-3-319-28243-5
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negotiating agent. We identify three main components of a general negotiation strat-
egy; namely a bidding strategy (B), possibly an opponent model (O), and an accep-
tance strategy (A). The bidding strategy considers what concessions it deems appro-
priate given its own preferences, and takes the opponent into account by using an
opponent model. The acceptance strategy decides whether offers proposed by the
opponent should be accepted.

The BOA architecture is integrated into a generic negotiation environment called
Genius (Appendix A), which is a software environment for designing and evaluating
negotiation strategies. To explore the negotiation strategy space of the negotiation
research community, we amend the Genius repository with various existing agents
and scenarios from literature. Additionally, we organize a yearly international negoti-
ation competition (ANAC) (Appendix B) to harvest even more strategies and scenar-
ios. ANAC also acts as an evaluation tool for negotiation strategies, and encourages
the design of negotiation strategies and scenarios.

We re-implement agents from literature and ANAC and decouple them to fit into
the BOA architecture without introducing any changes in their behavior. For each
of the three components, we manage to find and analyze the best ones for specific
cases, as described below. We show that the BOA framework leads to significant
improvements in agent design by wining ANAC 2013, which had 19 participating
teams from 8 international institutions, with an agent that is designed using the BOA
framework and is informed by a preliminary analysis of the different components.

Acceptance Strategies

In every negotiation, one of the negotiating parties must accept an offer to reach an
agreement. Therefore, it is important that a negotiator employs a proficient mecha-
nism to decide under which conditions to accept. When contemplating whether to
accept an offer, the agent is faced with the acceptance dilemma: accepting the offer
may be suboptimal, as better offers may still be presented before time runs out. On
the other hand, accepting too late may prevent an agreement from being reached,
resulting in a break off with no gain for either party. In Chap. 4, we classify and
compare state-of-the-art generic acceptance conditions. We propose new acceptance
strategies and we demonstrate that they outperform the other conditions. We also
provide insight into why some conditions work better than others and investigate
correlations between the properties of the negotiation scenario and the efficacy of
acceptance conditions.

In Chap. 5, we adopt a more principled approach by applying optimal stopping
theory to calculate the optimal decision on the acceptance of an offer. We approach
the decision of whether to accept as a sequential decision problem, by modeling the
bids received as a stochastic process. We determine the optimal acceptance policies
for particular opponent classes and we present an approach to estimate the expected
range of offers when the type of opponent is unknown. We show that the proposed
approach is able to find the optimal time to accept, and improves upon all existing
acceptance strategies.

http://dx.doi.org/10.1007/978-3-319-28243-5_4
http://dx.doi.org/10.1007/978-3-319-28243-5_5


Summary 273

Opponent Models

Another principal component of a negotiating agent’s strategy is its ability to take
the opponent’s preferences into account. The quality of an opponent model can be
measured in two different ways. One is to use the agent’s performance as a benchmark
for the model’s quality. In Chap. 6, we evaluate and compare the performance of a
selection of state-of-the-art opponent modeling techniques in negotiation. We provide
an overview of the factors influencing the quality of a model and we analyze how the
performance of opponent models depends on the negotiation setting. We identify a
class of simple and surprisingly effective opponent modeling techniques that did not
receive much previous attention in literature.

The other way to measure the quality of an opponent model is to directly evaluate
its accuracy by using similarity measures. We consider opponent models from this
perspective in Chap. 7. We review all methods to measure the accuracy of an oppo-
nent model and we then analyze how changes in accuracy translate into performance
differences. Moreover, we pinpoint the best predictors for good performance. This
leads to new insights concerning how to construct an opponent model, and what we
need to measure when optimizing performance.

Bidding Strategies

Finally, we take two different approaches to gain more insight into effective bid-
ding strategies. In Chap. 8, we present a new classification method for negotiation
strategies, based on their pattern of concession making against different kinds of
opponents. We apply this technique to classify some well-known negotiating strate-
gies, and we formulate guidelines on how agents should bid in order to be successful,
which gives insight into the bidding strategy space of negotiating agents.

We focus on finding optimal bidding strategies in Chap. 9. We apply optimal
stopping theory again, this time to find the concessions that maximize utility for
the bidder against particular opponents. We show there is an interesting connection
between optimal bidding and optimal acceptance strategies, in the sense that they
are mirrored versions of each other.

Putting the Pieces Together

Lastly, after analyzing all components separately, we put the pieces back together
again in Chap. 10. We take all BOA components accumulated so far, including the
best ones, and combine them all together to explore the space of negotiation strategies.

We compute the contribution of each component to the overall negotiation result,
and we study the interaction between components. We find that combining the best
agent components indeed makes the strongest agents. This shows that the component-
based view of the BOA architecture not only provides a useful basis for developing
negotiating agents but also provides a useful analytical tool. By varying the BOA
components we are able to demonstrate the contribution of each component to the
negotiation result, and thus analyze the significance of each. The bidding strategy

http://dx.doi.org/10.1007/978-3-319-28243-5_6
http://dx.doi.org/10.1007/978-3-319-28243-5_7
http://dx.doi.org/10.1007/978-3-319-28243-5_8
http://dx.doi.org/10.1007/978-3-319-28243-5_9
http://dx.doi.org/10.1007/978-3-319-28243-5_10
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is by far the most important to consider, followed by the acceptance conditions and
finally followed by the opponent model.

Our results validate the analytical approach of the BOA framework to first opti-
mize the individual components, and then to recombine them into a negotiating agent.
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