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Title:
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Abstract:

Evacuation planning and management involves estimating the travel demand in

the event that such action is required. This is usually done as a function of peo-

ple’s decision to evacuate, which we show is strongly linked to their risk aware-

ness. We use an empirical dataset, which shows tsunami evacuation behavior,

to demonstrate that risk recognition is not synonymous with objective risk, but

is instead determined by a combination of factors including risk education, in-

formation, and socio-demographics, and that it changes dynamically over time.

Based on these findings, we formulate an ordered logit model to describe risk

recognition combined with a latent class model to describe evacuation choices.

Our proposed evacuation choice model along with a risk-recognition class can

evaluate quantitatively the influence of disaster mitigation measures, risk ed-

ucation, and risk information. The results obtained from the risk-recognition

model show that risk information has a greater impact in the sense that people

recognize their high risk. The results of the evacuation choice model show that

people who are unaware of their risk take a longer time to evacuate.

Keyword:

risk recognition, evacuation behavior, evacuation planning, ordered logit model,

latent class model
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1. INTRODUCTION

There is an increasing body of literature on understanding the process of

evacuation, and it focuses both on people’s behavior and emergency manage-

ment. The important issues to be addressed include the design of evacuation

plans and strategies for evacuation operations. At an operational level, the key

goal is to manage the travel demand and transportation infrastructure. Road

network performance is significantly reduced by traffic overload, and this situ-

ation occurs when there is a high traffic demand for travel, leading to delayed

arrival at safe locations. We thereby facilitate the necessary inflow of emergency

services and the outflow of evacuation traffic. Preceding these operations, at the

planning and policy stages, we need to consider aspects of risk education, dis-

aster forecasts and information provision, emergency warning, and anticipatory

measures for disaster mitigation. Both stages can be supported by transporta-

tion models; planning is typically done using traffic assignment and flow models,

while policy development is typically carried out using travel demand forecasting

models.

Two approaches can be distinguished in evacuation transportation modeling

studies: optimization-based and simulation-based approaches. Optimization-

based approaches determine normative evacuation decisions and traffic flows

in terms of, for example, the staging of travel demands,(1) the usage of dedi-

cated evacuation routes and exit points,(2) and the deployment of traffic control

measures.(3) Several of these studies incorporate sources of uncertainty, which

may also be related to evacuation compliance behavior.(4) On the other hand,

simulation-based approaches specifically aim to capture evacuation behavior as

they intend to model the outcome of people’s decision-making, and generally

use discrete choice models(5) to describe travel choices under evacuation situ-

ations. Recent literature reviews(6), (7) on simulation-based evacuation models
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show that these models tend to conceptually follow the classical four-step frame-

work that consists of trip generation, trip distribution, modal split, and traffic

assignment. It is clear that variations and adaptations are made in some of the

underlying assumptions in order to represent evacuation behavior. An exam-

ple is to incorporate pick-up behavior(8) and re-evacuation behavior(9), (10) that

influence the travel demand patterns, especially during short-notice or totally

unexpected disasters. These simulation-based models are useful to analyze the

impacts of policy and management measures in light of evacuation response

behavior.(11), (12), (13)

Simulation-based evacuation planning models predict travel demand, usu-

ally as a function of people’s decisions to evacuate. The results of empir-

ical analysis by evacuation choice models(14), (15), (16) provide the parameters

for evacuation simulation. However, these modeling studies excluded the risk-

recognition phase, and tended to understate the factors related to disaster miti-

gation. Some theoretical(17), (18) and analytical(19), (20) studies have shown that,

apart from factors pertaining to the level of danger, emergency warnings, and

the evacuation order, the most important factor in people’s evacuation decisions

is their recognition that they are at risk. However, these studies cannot quan-

tify risk recognition for disaster mitigation measures owing to methodological

constraints. To evaluate these measures, we need a framework that can eval-

uate risk recognition quantitatively. An empirical study using this framework

can also clarify the effects of spatiotemporal factors. Spatiotemporal factors are

clearly related to risk recognition, but previous studies have provided only a

rough analysis(21) or no analysis at all.

In short, the least understood issues are: (1) what determines a person’s

risk recognition; (2) how can risk recognition be captured in evacuation-demand

models; and (3) how should it be considered in evacuation planning. These three
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issues are addressed in this paper. To this end, (1) we analyze empirical data

based on survey responses from the 2011 Great East Japan earthquake; (2) we

formulate and estimate an ordered logit model to predict people’s level of risk

recognition; and (3) we use the estimated model to evaluate the role of risk

recognition including aspects of risk education, disaster information provision,

and emergency warning. The paper is structured as follows. Section 2 reviews

earlier studies that addressed risk recognition and related factors. Section 3

discusses the 2011 Great East Japan earthquake and the dataset that was col-

lected. Section 4 analyzes this data to identify what determines risk recognition,

statistically. Section 5 formulates an ordered logit model to describe risk recog-

nition. Section 6 estimates several forms of this model, discusses the estimated

results, and evaluates the risk-related measures in a high-risk area using the

estimated model with respect to evacuation departure time. Section 7 discusses

the risk recognition approach to evaluate the risk-related measures. Section 8

presents the conclusions of this study.

2. EARLIER STUDIES ON RISK RECOGNITION

A number of earlier studies have looked into factors that influence risk recog-

nition and its influence on evacuation departure choice. Starting with the for-

mer, risk recognition has been studied by analyzing statistical correlations be-

tween self-reported subjective risk recognition and objective actual risk, where

the actual risk is defined by, for example, disaster scales and spatial charac-

teristics.(21), (22), (23), (24), (25) In these studies, factors that are often reported

include the individual’s socio-demographic characteristics, risk knowledge or

education, and prior experience with hazardous situations or disasters. Other

studies(17), (18), (19) have hypothesized the influence of disaster information on

risk recognition. A review paper(18) emphasized that people should perceive
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risk before evacuation, and a warning alone is not sufficient. Expectancy va-

lence approaches(26), (27), (28) have focused on a series of influences from threat

and recognition, to response and behavior, theoretically. In particular, the Pro-

tective Acton Decision Model (PADM) model(19), (28), (29), (30) adopted a wide

range of factors such as social context and social information. Originally, this

model was presented as a framework for behaviors in an acute emergency. Some

empirical studies(25), (31) analyzed people’s risk recognition and behavior on the

basis of the PADM model by performing a simple statistical test using stated

preference data. Further, the impact on risk recognition was evaluated by mul-

tiple regression analysis using stated preference data.(32) A part of their results

show the influence from actual risk to risk recognition, and from risk recogni-

tion to evacuation. However, the results from this approach cannot be used to

evaluate the quantitative impact of mitigation measures on evacuation behav-

ior because they employ simple statistical tests, such as the chi-squared test.

Another problem is that these studies did not consider the dynamics of risk

recognition. Review studies(33), (34) report that empirical studies that focus on

the influence of risk recognition and risk-related measures on evacuation behav-

ior remain insufficient. One of the reasons is the difficulty in capturing these

influences, which involve dynamic conditions in real-life situation.(24), (35)

Risk recognition is typically conceptualized by the notion of thresholds be-

yond which a certain level of risk is recognized.(13), (21), (36) Hence, in the

study,(21) an ordered response model was estimated to analyze these risk-recognition

levels and how they influenced evacuation choices. In the study,(37) in addition

to socio-demographics, hurricane characteristics were also included. Further-

more, the risk recognition of individuals will have a strong heterogeneous char-

acteristic because people have to make decisions under time constraints and

with uncertainty. Hence, it is advisable to take a probabilistic approach when
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designing appropriate policy and management measures.(38)

These discrete-choice models describe individual evacuation choices as a

function of their risk recognition, which in turn is a function of various char-

acteristics of the individual in combination with available disaster information.

The discrete choice model can be applied to analyze evacuees’ behaviors, namely

evacuation choice,(14), (15), (16), (39), (40), (41), (42) destination choice,(42), (43), (44), (45)

transport mode choice,(46) and route choice.(47), (48) Incorporating factors such

as risk education and risk information into these models enables us to evaluate

the impact on parameters such as the evacuation response rate. However, a few

papers(16), (42), (44), (47) have shown the significance of risk information, which

is related to risk-mitigation measures. Moreover, these studies that employed

the discrete-choice model did not explicitly consider the relationship between

the actual risk, risk measures, risk recognition, and behavioral responses, as in

the case of the PADM model. This risk-recognition phase between the actual

risk and the behavioral response may have an important role in evaluating risk-

mitigation measures. The framework of the PADM model shows that a com-

bination of actual risk and individuals’ risk-related knowledge influence their

risk recognition, and the risk recognition, in turn, influences their behavioral re-

sponse. To evaluate the significance of risk measures precisely, an analysis using

the discrete-choice model is employed this stepwise framework. These factors,

including example risk information and actual risk, will change over time and

space. Therefore, it is expected that an evacuation choice model should be

evaluated based on a timeline and the evacuees’ location.(14), (49) While risk

recognition should be evaluated as spatiotemporal variables, few of the previous

studies focused on the influence of time and space. Therefore, in this study, we

estimated a sequential and dynamic choice model that specifically accounts for

these risk recognition-related factors.
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For disaster mitigation, planners have to understand the impact of risk edu-

cation and risk information on evacuees. For example, a theoretical framework

provides clarity on issues ranging from risk-related measures to behavioral re-

sponses, but these measures are not always significant in simple discrete-choice

models. This means that these measures cannot be evaluated quantitatively us-

ing a behavior choice model. Our approach applies the sequence from actual risk

to risk recognition and behavior to the departure time choice. In particular, risk

recognition is required to evaluate risk-related measures, and it is evaluated as a

discrete class for the departure time choice. For the risk-recognition model, the

actual risk should be described accurately as a time-space related factor. Thus,

we can begin to understand risk management in time and space by describing

the actual risk as a spatiotemporal-related factor.

3. DESCRIPTION OF THE 2011 GREAT EAST JAPAN EARTH-

QUAKE

3.1. General Impact and Evacuation Problems

This section shows the casualties and damages caused by the 2011 Great East

Japan earthquake. These casualties and damages were reported by the national

government(50), (51) and local governments.(52) The earthquake occurred under-

water off the Pacific coast of Tohoku, Japan, at 14:46 JST on Friday, March 11,

2011, and had a magnitude of 9.0. This was the strongest recorded earthquake

in Japanese history. The earthquake triggered powerful tsunamis that reached

maximum heights of 30 m in Miyako, Iwate Prefecture. These tsunamis were

substantially higher than initial expectations, and impacted coastal zones lead-

ing to embankment failures, which caused devastating damage.

The initial tsunami warning estimated a tsunami height of 3 m, and was

issued 3 min after the quake in Iwate Prefecture. A second warning estimated a
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tsunami height of 6 m, and was issued 28 min after the quake. A third warning

estimated a tsunami height in excess of 10 m, and was issued 45 min after the

quake. The first tsunami with height 8 m arrived at Iwate Prefecture 32 min

after the quake.

Overall, the earthquake and subsequent tsunamis caused 19,325 deaths and

2,600 people were reported missing. A total of 535 km2 of land was inundated,

of which 119 km2 was urban. Deaths caused by drowning accounted for 90%

of total deaths. With regard to damage to real estate, 129,896 houses were

completely destroyed, while 258,348 houses were severely damaged.

Previous studies(10), (53), (54) state the following observations regarding evac-

uation behavior and problems that were encountered. First, the extreme height

of the tsunami, which exceeded the wave heights that people had previously

experienced, created a situation in which some people did not realize the press-

ing need to evacuate or were evacuated to a location that was later damaged

by the tsunami. Secondly, some deaths were attributed to the inability of peo-

ple to evacuate themselves owing to their old age or physical disability, as well

as because of their delay in commencing evacuations. Others were hit by the

waves en route as they were stuck in traffic while either evacuating, picking up

family members, or assisting others. These two observations are related to the

behavior of both survivors and casualties of the disaster. Overall, the number

of casualties was less than 5% of the entire population of the affected area, as

the vast majority of inhabitants managed to evacuate on time.

3.2. Impact on Rikuzentakata City

The remainder of this paper focuses on the evacuation behavior observed in

Rikuzentakata city, as shown in Figure 1. The higher-than-expected tsunamis

caused problems to this city in particular. In 2011, Rikuzentakata had a popula-

tion of 24,246. The main tsunami reached the coastline of the city 37 min after
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the earthquake, and it reached the most inland part of the city 45 min after the

earthquake. Locally, the disaster resulted in 1,757 casualties and 7,912 destroyed

buildings. In Figure 1, the destroyed houses and non-residential buildings are

shown in red and orange, respectively. The inundated area, shown in aqua in the

figure, extended more than 1 km inland from the coast, and was approximately

13 km2. In Figure 1, the black shaded area shows the number of casualties who

lived in each district. Note that these were their home neighborhoods and not

necessarily where they were struck. Twenty percent of the victims were harmed

after they had evacuated to the public shelters. Finally, approximately 10% of

the casualties assumed a leading role in evacuations, such as local officers or

rescue crew members. The extensive destruction was related to the strongest

recorded earthquake in Japanese history for this affected area. Some survivors

believe that their homes were safe because of their respective locations, which

were far from the sea and had never been affected by tsunamis. Therefore, they

began evacuating too late, and some people who did not recognize their risk

began to evacuate only after watching the tsunami unfold.(10), (55) Some people

were harmed by the tsunami because of the delay in starting their evacuation.

3.3. Description of the Dataset

The following analysis is based on the responses obtained from a large-scale

survey conducted by the Japanese Ministry of Land, Infrastructure, and Trans-

port (MILT) among survivors of the Great East Japan earthquake in 2011.

The survey was undertaken via interviews; the total number of respondents was

10,603 people across 49 cities that were impacted by the tsunami. The respon-

dents, who lived in the tsunami-affected areas, were sampled randomly. The

survey focused on individuals and not households. The interviewers assigned by

MILT went to the respondents’ living spaces, which included their houses, tem-

porary houses, or shelters. The respondents were informed in advance that the
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Figure 1: Damaged buildings and number of victims in Rikuzentakata city
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interviewers would be visiting them. This door-to-door survey was conducted

from September 2011 to December 2011. The survey data contains information

on the respondents’ activities and location at various points in time (e.g., at the

time of the earthquake, the tsunami emergency alert, and the tsunami impact),

the warning they received, the information they had access to, their emergency

preparations and prior experience with evacuation training, and their socio-

demographics and that their households. Furthermore, two questions sought

to determine people’s perceptions about being at risk, both directly after the

earthquake and during the time between the earthquake and the tsunami im-

pact. The respondents were allowed to answer ”Not sure.” This dataset has been

made available as an open-source resource for researchers.(56) In this study, we

considered the 510 respondents who lived in the city of Rikuzentakata, and who

were evacuated from the tsunami.

4. ANALYSIS OF REPORTED RISK RECOGNITION AND EVAC-

UATION TIMING

4.1. Risk Recognition and Evacuation Timing

Table I presents the relationship between people’s self-reported risk recog-

nition and evacuation time. Here, risk recognition was measured by people’s

responses to two survey questions regarding their prior perceptions about being

in danger, directly after the earthquake, and during the time between the earth-

quake and the tsunami impact. The table shows the mean values of evacuation

timing for all respondents in each of the risk-recognition levels. The results

were obtained by performing one-way ANOVA analyses, where the Bartlett’s

test confirmed that each class of risk recognition had equal variance. The results

show that the timing of the start of the evacuation was sooner for people with

a higher risk-recognition level; this difference is statistically significant, both
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Table I: Influence of risk recognition on evacuation timing.

Factors
Evacuation Timing

Observationsmean p-values
Q3: Just after the earthquake, did you think that the tsunami would reach your place?

Level 3: Will absolutely come 19.8 170
Level 2: Will probably come 22.6 0.00 90
Level 1: Will not come or did not think about it 28.6 162

Q9: Before the tsunami impacted, did you think that you had to evacuate?
Level 2: Will have to evacuate 22.2

0.00
346

Level 1: Will not have to evacuate or did not think about it 32.2 73

just after the earthquake and later when the tsunami was approaching. With

respect to the number of observations for Questions 3 (Q3) and 9 (Q9), the

number of people with higher risk recognition increased over time. Q3 reads,

“Just after the earthquake, did you think that the tsunami would reach your

place?” The answer to Q3 was related to risk recognition immediately after the

earthquake, and may be influenced by risk education. Q9 reads, “Before the

tsunami impacted, did you think that you had to evacuate?” The answer to Q9

was related to risk recognition before the tsunami, which arrived 37 min after

the earthquake, and may have been influenced by risk information.

The results obtained show that the evacuation timing varied based on peo-

ple’s risk recognition. Table II presents the results obtained from the same

statistical tests on how risk recognition and evacuation times are influenced by

socio-demographic characteristics, risk education and information, and a per-

son’s location. This test used the answers to Q3 as respondents’ risk recognition,

with the exception of the statistical tests on information factors. The statistical

tests on information factors used the answers to Q9 as their risk recognition.

The results related to socio-demographics in Table II show that gender, age,

and the presence of a child or elderly person in the household were not related to

risk recognition and evacuation timing. All of the variables that describe risk ed-

ucation and the official tsunami alert were correlated with risk recognition, and

these relationships were statistically significant at 1% confidence level. These
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relationships reflect the expected trend that risk-recognition levels are higher

when there is familiarity with the hazard map, previous evacuation prepared-

ness, receipt of the official tsunami alert, and receipt of the evacuation order.

For evacuation timing, only evacuation preparedness and the receipt of an evac-

uation order had a statistically significant influence on evacuation timing. The

evacuation order was given by the local government via a wireless broadcast

system and oral communication. The observations that the mean evacuation

times of people who received the tsunami alert and evacuation order were higher

than those of people who did not can be attributed to the fact that early evac-

uees started to evacuate before the alert was issued. In addition, knowledge of

the hazard map and shelters did not significantly influence evacuation timing

despite it being significant for risk recognition.

The distance from the sea and the altitude of each location were statistically

significant at 1% confidence level for both risk-recognition and evacuation tim-

ing. Both relationships reflect the expected trend of people closer to the sea or

at lower altitudes reporting higher risk and earlier evacuation times. The only

other statistically significant correlation noted is the influence of the number of

stories of a building at the location at the time of evacuation. The survey only

asked about these two factors just after the earthquake, and we did not include

these factors in the following model analysis.

4.2. Risk Recognition in Space and Time

The analyses already show how people’s evacuation timing varied widely

depending on their risk recognition, and that risk-recognition levels were corre-

lated with the factors of risk education, information measures, and location of

the individual. In this section, we show how risk recognition may change over

time and space.

First, Figure 2(a) presents the points of origin of people who decided to
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Table II: Influence on risk recognition and evacuation timing.

Factors
Risk recognition Evacuation Timing

Observationsmean p-values mean p-values
Socio-demographics
Gender

Male 1.98
0.50

24.9
0.16

162
Female 2.04 23.1 260

Age
Non-elderly 1.99

0.38
23.1

0.13
286

Elderly (60+ years) 2.07 25.1 136
Job

Office worker 2.01 25.9 138
Self-employed 2.18

0.24
23.7

0.08
49

Fishery and Agriculture 2.23 20.9 31
Other 1.96 22.5 193

Presence of child in family
Yes 1.95

0.31
23.3

0.63
125

No 2.05 24.0 297
Presence of elderly in family

Yes 1.98
0.36

23.8
0.94

230
No 2.06 23.7 192

Risk education
Hazard Map or Shelter

Have Known 2.14
0.00

23.4
0.36

281
Have not 1.77 24.6 141

Prepare for evacuation before the day
Have done 2.09

0.00
22.6

0.00
322

Have not 1.79 27.5 100
Information
Official Tsunami Alert just after the quake1

Receive 1.88
0.00

24.2
0.41

245
Not Receive 1.75 23.1 177

Evacuation order from local goverment1

Receive 1.85
0.09

25.4
0.01

205
Not Receive 1.80 22.2 217

Location when the quake occurred
Place

Home 1.95 23.3 231
Working place 2.06 0.17 24.5 0.68 83
Other 2.14 24.3 108

Number of stories of the building
1 1.99 25.0 90
2 2.01 0.84 21.4 0.01 213
3+ 1.92 27.8 38

Distance from sea [km]
- 0.4 2.26 19.8 144
0.4 - 1.0 2.25

0.00
23.2

0.00
95

1.0 - 1.5 1.88 24.7 110
1.5 - 1.44 31.0 73

Altitude [m]
- 5 2.19 21.3 189
5 - 10 1.99 22.7 117
10 - 15 1.80 0.00 28.3 0.00 56
15 - 20 1.71 28.1 49
20 - 1.82 35.7 11

Notes: 1 Answer to Q9 with respect to risk recognition.
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Figure 2: Mapping origins and destinations of evacuation trips and its departure and arrival
time.

evacuate within a certain time period. Similarly, Figure 2(b) presents the desti-

nation of these people. These figures illustrate how the origins and destinations

of evacuees change over time. Both the origin and destination locations tended

to be farther away from the sea, over time. Assuming that people evacuate

from a perceived unsafe location toward a perceived safe location, this general

trend of moving further inland over time is expected. It means that an evacuee

assumes her/his point of origin as unsafe and her/his destination as safe. The

dynamic changes in origins and destinations in these figures show that people’s

recognized risk change over time. Thus, information on evacuation trip can shed

light the dynamical and spatial changes in risk recognition.

5. RISK-RECOGNITION MODEL FORMULATION

5.1. Conceptual Framework

To clarify the concept of risk recognition, consider Figure 3. Risk recog-

nition is defined as the degree to which a person recognizes that he/she is at

risk. In our questionnaire, this degree is defined by the fact that the tsunami

would absolutely/probably/not reach an evacuee’s location. In other words, an
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Figure 3: Discrete risk recognition in space.

individual’s risk recognition is influenced by her/his exposure to danger and

her/his comprehension hereof. The left upper box represents the objective risk

exposure as a function of disaster characteristics. The left lower box indicates

that the risk needs to exceed a specific threshold in order to be recognized as

such, and this threshold is hypothesized to depend on personal characteristics.

In this way, people recognize their discrete levels of risk and make decisions

about whether or not to evacuate.

The analyses results discussed in the previous section show the influence of

various factors on risk recognition and evacuation timing. These findings were

used to develop the conceptual framework, as presented in Figure 4. This figure

simplifies the PADM model to illustrate our focus, which ranges from disaster

mitigation to evacuation choice. We apply repeated decision-making at each
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Legend

Figure 4: Framework of evacuation decision with risk recognition.

time period.

The framework states that the disaster risk is a function of a person’s loca-

tion, while risk recognition is a function of the disaster risk as well as personal

characteristics related to socio-demographics, risk education, and risk informa-

tion. Risk recognition, together with a person’s preparedness and mobility, then

determines the decision to evacuate. Subsequently, a person’s evacuation time

and intermediate activities, such as picking up family members and important

documents or personal items, may depend on aspects of their mobility and the

time window available to perform these tasks. The decision to evacuate is thus

a repeated choice process until the evacuation commences, where the variables

that change over time are the location, risk information, preparedness, and mo-

bility.

Our aim is to perform a quantitative evaluation of risk-related measures by

introducing risk recognition. Our proposed model will involve two models, the

risk-recognition model and evacuation timing model. Risk-related measures, risk

information, and risk education, along with the actual risk, will influence an in-

dividual’s risk recognition. The risk-recognition model evaluates this condition.

We can evaluate the impact of risk-related measures on departure time using
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the evacuation timing model with risk-recognition classes. The effectiveness of

choosing to evacuate depends on the risk-recognition levels. It is hypothesized

that people recognize their risk discretely and that the level of risk recognition

significantly affects evacuation timing. This framework may be applied to a

mental and theoretical model, and evaluating the measures quantitatively using

departure time should be straightforward.

5.2. Risk-Recognition Model

This conceptual framework can be obtained by developing an ordered logit

model that describes the risk recognition, combined with a latent class model

that describes evacuation choices. The former is explained in this subsection,

while the latter is explained in the next subsection.

Let R(st) denote the exposure to danger, which is defined as a function of

the location s at time t, and which is referred to as disaster risk. Based on the

findings in the previous analyses, risk R(st) can be derived from factors such as

the distance from the sea and the altitude relative to sea level. Then, let the

recognized risk level be denoted by l, and let H l
i(t) denote for individual i the

threshold value at time t, beyond which the risk is recognized as risk level l.

Based on the findings in the previous analyses, threshold H l
i(t) may be derived

from factors such as a person’s socio-demographics, prior risk education, and

the risk information that he/she receives.

This yields the ordered logit model, where the probability of individual i

recognizing risk level l or more is given as

P l,t
i (R(si,t) > H l

i(t)) =
exp(

∑
j βjs

j
i,t)

exp(
∑

j βjs
j
i,t) + exp(H l

i(t))
(1)
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when expressing risk R(si,t) and threshold H l
i(t) as

R(si,t) =
∑
j

βjs
j
i,t + ϵi,t (2)

H l
i(t) =

∑
k

γkh
k
i,t + σi,t (3)

where si,t consists of the location factors of individual i at time t, and hi,t

consists of the socio-demographics, risk education, and risk-information fac-

tors of individual i at time t. Parameters β and γ can be estimated using the

maximum-likelihood method. The error terms ϵ and σ capture the heteroge-

neous influence of any unobserved factors that are not included in si,t and hi,t,

respectively. The ordered logit model holds under the assumption that error

terms ϵ are identically and independently Gumbel (i.e., Extreme Value Type

I) distributed. We can apply the probit model but the parameters will not be

estimated if the number of explanatory parameters is high.

Next, to account for heterogeneity, we extend this model with a mixing

distribution of σ, where the risk-recognition probability is defined as P l,t
m,i, with

P l,t
m,i =

∫
P l,t
i f(σ|ϕ)dσ (4)

where f(σ|ϕ) is the density function of σ, with ϕ referring to a vector of pa-

rameters of that density function (i.e., mean and variance). The distribution of

σ thus accounts for an observable interpersonal heterogeneity of risk recogni-

tion. At the same time, we hypothesize the intrapersonal heterogeneity, which

is denoted by σi,t, to follow Brownian motion.(57) Thus,

σi,t − σi,t′ ∼ N (0, t− t′) (t > t′) (5)

This implies that individual i has her/his perceptional error σi,t at time t, which
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is correlated with σi,t′ owing to its temporal proximity. Such a perceptional

error is commonly assumed to follow a normal distribution N ; however, here,

we apply a truncated normal distribution. We truncate the distribution below

0.1 to incorporate the observation that approximately 10% of the population in

Rikuzentakata city did not evacuate successfully.

This model structure is chosen as it addresses both issues of understanding

and modeling risk recognition. First, the model allows the identification of the

determining factors for risk recognition by estimating the model parameters.

At the same time, the influence of exogenous disaster risk is separated from the

influence of personal characteristics, which is advantageous for policy evalua-

tion purposes. In addition, the model lets us capture the effect of a person’s

risk recognition in an evacuation demand model. This is made possible by em-

ploying a latent class model, where the proposed ordered logit model predicts

class membership (i.e., the risk-level recognition), while the class membership

probability is an explanatory variable for predicting an individual’s evacuation

decisions. The fact that risk recognition is an explanatory variable for predict-

ing evacuation demand has been argued in earlier studies, including those cited

in Section 2, and this is supported by the findings explained in the analyses in

Section 4.

5.3. Evacuation Choice Model with Risk Recognition Class

The evacuation choice with risk-recognition level can be captured by the

latent class model, where the probability of evacuation at time t of individual i

is given as

P ev
i (t) =

∑
l

Pi(ev|l, t)pl,tm,i (6)

21



where the probability pl,tm,i of having a specific risk-recognition level is given

by Equation (1) under the assumption of homogeneity and Equation (4) under

the assumption of heterogeneity. This evacuation-choice probability function is

repeated over time, as depicted in Figure 4, yielding a sequential logit model,(14)

The probability Pi(ev|l, t) for risk recognition class l at time t is given by

V ev
i,l (t) =

∑
j

αj
l x

j
i,t + νi,l,t (7)

Pi(ev|l, t) =
exp(V ev

i,l (t))

1 + exp(V ev
i,l (t))

(8)

where the evacuation utility V ev consists of the identified personal factors xi,t

at time t. This latent class model holds under the assumption that error terms

ν are Gumbel distributed. Given that the choice of whether or not to evacuate

is binary, the model can be formulated as a standard binomial logit (as in

Equation 8). Finally, parameters αl for each class l can be estimated using the

maximum-likelihood method.

6. MODEL ESTIMATION AND ANALYSIS

6.1. Parameter Estimation for Risk-Recognition Model

Here, we estimate the ordered logit models that describe risk recognition, as

formulated in the previous section, based on the dataset presented in Section 3.

An individual’s risk recognition is obtained by Q3 just after the quake and based

on the origin and destination locations of their evacuation from the onset of the

earthquake 45 min later. Table III presents the estimation results. Five model

specifications are distinguished based on three characteristics: (1) whether an

individual’s risk recognition is modeled statistically or is dynamically updated

(using the sequential logit model); (2) whether interpersonal heterogeneity is
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included (using the logit mixture formulation); and (3) whether intrapersonal

heterogeneity is included (assuming Brownian motion).

The tested variables are based on the analyses in Section 4. All of the

variables were found to be statistically significant at the 1% or 5% significance

levels. All parameters had the expected signs. The parameters of risk education

and risk information were negative. This means that people with risk educa-

tion and risk information recognized their risk as higher. The risk education

factor, as well as the knowledge of hazard maps and shelters, was not signif-

icant for the results obtained from the static models (model 1 and model 2).

This means that an analysis without a timeline cannot clarify the impact of risk

education. In this earthquake-tsunami disaster, some people did not recognize

their risk immediately after the earthquake, but for some risk-educated people,

it became easy to recognize their risk after some time. The negative parameter

of the elapsed time shows that people recognized their risk as increasing over

time. The parameters of altitude and distance from the sea were negative and

significant in all models. This means that a location that is higher and further

away from the sea has a low risk. The tsunami risk varied with location, and

this locational risk affected the risk recognition of people who eventually evac-

uated. In two of the three models that assumed heterogeneity, the standard

deviation of the error term σ was statistically significant, thus supporting the

hypotheses on interpersonal and intrapersonal heterogeneity. A constant term,

which is significant, worked as the mean of σ. However, these heterogeneities

were significant only among people located 5– 19 m above sea level. Below 5

m, the altitude risk was almost always recognized as high, while above 19 m,

the altitude risk was almost always recognized as low. There is no room for

heterogeneity among people who stayed in the lower and higher areas. This

means that a planner should broadcast risk information to people who live in
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these areas so that those who do not recognize their risk are made aware of the

danger they are facing.

Table III also shows the leave-one-out cross-validation value of the log like-

lihood. The test statistics of the log-likelihood ratio show the pairwise compar-

ison of models for their goodness-of fit.(58), (59) We excluded model 4 because a

heterogeneity parameter in the model, which is characterized by dynamic and

heterogeneity, was not significant. First, as expected, all dynamic and/or het-

erogeneity models (models 2, 3, and 5) had better predictive power than the

static model (model 1), where the improvement was statistically significant at

1% (model 3, 5) and 5% (model 2) significance level. Secondly, the dynamic

and heterogeneity model (model 5) had better predictive power than the static

heterogeneity model (model 2), where the improvement was statistically signifi-

cant at 1% significance level. Thirdly, the risk-recognition dynamic model with

heterogeneity by the Brown mechanism (model 5) had a better predictive power

than the homogeneous dynamic model (model 3), where the improvement was

statistically significant at the 1% level. These results indicate that we should

describe the dynamical heterogeneity as being cumulative.
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The estimated risk-recognition model can be used to isolate the impact of

risk education and that of risk information. To this end, we define four cases to

determine the effect of risk education, risk information, and time by comparing

the reference case. The reference case (A) assumes no risk education and no risk

information 5 min later after the quake occurred. Case (B) applies the same

assumptions, but computes the risk recognition 20 min later, to show the effect

of time. Case (C) assumes full risk information to show the associated effect 5

min later. Case (D) assumes full risk education to show the associated effect 5

min later.

In general, it can be observed that risk recognition is limited. However,

compared to reference case (A), we observe that risk information (case C) has

a higher impact, yielding a risk recognition that is 1.46 higher, followed by

time (case B), yielding a risk recognition that is 1.33 higher, and risk education

(case D), yielding a risk recognition that is 1.22 higher. Thus, risk information

appears to be most effective to ensure that persons recognize their level of risk.

6.2. Parameter Estimation for Evacuation Choice Model

Here, we estimate the latent class models that describe the evacuation choice,

as formulated in the previous section. We analyzed the evacuation decisions ev-

ery 5 min until the respondents started to evacuate. Table IV presents three

estimation results. These three model specifications are classified as the pro-

posed latent class model and two no-class models depending on whether disaster

characteristics are included or not. The parameters of the former model were es-

timated jointly using the risk-recognition model. The latter two no-class models

functioned as references.

All of the estimated parameters were statistically significant at the 1% or

5% significance level, and had the expected signs. The two-class model provided

better goodness-of-fit than the no-class models, where the improvement was sta-
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tistically significant at the 1% level from the likelihood test using the leave-one-

out cross-validation log likelihood. Note that the second no-class model tried

to include the explanatory variables that represent knowledge of hazard maps

and received information, but these variables were found to be not statistically

significant. This means that this evacuation choice model without the risk-

recognition class cannot be used to evaluate the disaster mitigation measures.

This observation supports the validity of the concept of risk recognition, and the

way in which it is based on objective disaster risk, personal socio-demographics,

risk education, and risk information (as depicted in Figure 4).

In the two-class model, the parameters of number of trips and companion

were positive. These parameters are related to previous behavior at that time.

For people who had already traveled many times, and who had remained home

after the earthquake, it was easy to choose to evacuate. For people who had

companions, it was also easy to choose to evacuate. It was also easy for elderly

women to choose to evacuate. People were more likely to choose the evacuation

option 35 min after the earthquake, and this was related to the expected arrival

of the tsunami. In this city, the tsunami arrived at the coastline 37 min after

the earthquake. People were able to observe the effects of the tsunami approx-

imately 35 min after the earthquake. The main difference in the values of the

constant terms for people who either did or did not recognize the risk shows

that people who did not recognize their risk evacuated late. The parameters

in the risk-recognition model are almost same as the parameters of model 5 in

Table III.

27



T
a
b
le

IV
:
E
st
im

a
ti
o
n
re
su

lt
fo
r
ev
a
cu

a
ti
o
n
ch

o
ic
e
m
o
d
el

N
o
-c
la
ss

N
o-
cl
a
ss

w
it
h

T
w
o
cl
a
ss

ri
sk
-r
el
a
te
d
fa
ct
or

(j
o
in
t
es
ti
m
a
ti
o
n
)

A
tt
ri
b
u
te
s

P
a
ra
m
.

t-
S
ta
t.

P
a
ra
m
.

t-
S
ta
t.

P
a
ra
m
.

t-
S
ta
t.

N
u
m
b
er

of
tr
ip
s1

0
.8
0

1
0
.0
7
∗

0
.8
0

9
.7
1
∗

0
.7
8

2
.9
5
∗

N
u
m
b
er

of
tr
ip
s
(h
ig
h
ri
sk

cl
as
s)

2
-

-
-

-
1
.1
9

6
.8
8
∗

C
om

p
an

io
n
2
,3

0
.6
4

5
.0
0
∗

0
.7
6

5
.6
5
∗

0
.9
3

5.
6
1
∗

H
ad

st
ay
ed

h
om

e2
,3

0
.3
5

2
.3
2
†

0
.4
0

2
.2
6†

E
ld
er
ly

fe
m
al
e2

,3
0
.4
0

2
.5
7
†

0
.4
4

2
.7
9
∗

0
.6
2

3.
2
4∗

35
m
in

la
te
r2

,3
1
.4
5

6.
5
2
∗

1
.6
2

7
.0
5
∗

2
.3
3

5
.1
4∗

C
on

st
an

t1
-2
.3
3

-2
1
.6
7
∗

-2
.2
4

-1
0.
4
7
∗

-4
.4
4

-6
.3
0∗

C
on

st
an

t
(h
ig
h
ri
sk

cl
as
s)

2
-

-
-

-
-2
.2
7

-1
3
.1
5∗

K
n
ow

le
d
ge

of
h
az
ar
d
m
ap

/
sh
el
te
r3

,5
-

-
-

-
R
ec
ei
v
ed

in
fo
rm

at
io
n
3

-
-

-
-

A
lt
it
u
d
e
[m

]6
-

-
-0
.2
8

-2
.8
2
∗

-
-

D
is
ta
n
ce

fr
om

se
a
[k
m
]6

-
-

-0
.2
4

-4
.7
1
∗

-
-

R
is
k-
re
co
gn

it
io
n
m
od
el

7

K
n
ow

le
d
ge

of
h
az
ar
d
m
ap

/
sh
el
te
r

-
-

-
-

-0
.3
8

-2
.1
7
†

R
ec
ei
v
ed

in
fo
m
at
io
n

-
-

-
-

-0
.9
4

-5
.8
1
∗

E
la
p
se
d
ti
m
e
[h
]

-
-

-
-

-1
.5
8

-4
.2
7
∗

D
iff
er
en

ce
of

2
th
re
sh
ol
d
s

-
-

-
-

0
.3
6

9
.8
2∗

S
.d
.
of

σ
-

-
-

-
0
.1
9

2
.2
0†

C
on

st
an

t
-

-
-

-
-2
.2
4

-8
.7
5∗

A
lt
it
u
d
e
[m

]
-

-
-

-
-1
.4
7

-1
3
.7
5∗

D
is
ta
n
ce

fr
om

se
a
[k
m
]

-
-

-
-

-0
.3
1

-5
.9
8∗

O
b
se
rv
at
io
n
s

2
0
6
7

2
0
6
7

2
0
6
7

L
ik
el
ih
o
o
d
at

0
-1
4
3
2
.7
4

-1
4
3
2
.7
4

-1
4
3
2
.7
4

F
in
al

li
k
el
ih
o
o
d

-8
7
6
.5
1

-8
5
5
.2
6

-8
4
6
.3
3

C
ro
ss

V
al
id
at
io
n
L
L

-8
8
2
.4
3

-8
6
5
.0
6

-8
5
4
.5
7

A
d
ju
st
ed

ρ
2

0
.3
8
4

0
.3
9
7

0
.4
0
4

R
is
k
re
co
gn

it
io
n
m
od
el

8

F
in
al

li
k
el
ih
o
o
d

-
-

-9
7
4
.5
4

C
ro
ss

V
al
id
at
io
n
L
L

-
-

-9
8
0
.7
2

N
o
te
s:

∗
=
si
g
n
ifi
ca
n
t
a
t
0
.0
1
,
† =

si
g
n
ifi
ca
n
t
a
t
0
.0
5
.,
-:

n
o
av
a
il
a
b
le

1
:
P
a
ra
m
.
o
f
lo
w

ri
sk

re
co
g
n
iz
ed

in
tw

o
cl
a
ss

m
o
d
el

2
:
P
a
ra
m
.
o
f
h
ig
h
ri
sk

re
co
g
n
iz
ed

in
tw

o
cl
a
ss

m
o
d
el

3
:
In
cl
u
d
ed

a
s
d
u
m
m
y
va
ri
a
b
le

4
:
es
ti
m
a
te

o
n
e
p
a
ra
m
et
er

in
tw

o
cl
a
ss

5
:
C
o
u
n
t
w
it
h
in

5
m
in

ju
st

a
ft
er

E
a
rt
h
q
u
a
k
e
in

d
y
n
a
m
ic

m
o
d
el

6
:
L
o
g
a
ri
th
m

7
:
th
e
va

ri
a
b
le
s
b
el
ow

a
re

th
e
sa
m
e
a
s
in

th
e
ri
sk
-r
ec
o
g
n
it
io
n
m
o
d
el

8
:
o
b
se
rv
a
ti
o
n
s
a
n
d
li
k
el
ih
o
o
d
a
t
0
a
re

th
e
sa
m
e
a
s
in

th
e
ri
sk
-r
ec
o
g
n
it
io
n
m
o
d
el

28



6.3. Simulation-based Analysis of Evacuation Choice Model

The evacuation probability curve can be predicted using the estimated pa-

rameters. The estimated evacuation choice model can be used to isolate the

effect of risk information on evacuation timing. This is presented in Figure 5.

The affected area can be artificially divided into three zones depending on the

objective disaster risk and the number of observation in each area is approx-

imately equal. The evacuation choice probabilities can then be computed for

each of these zones. In this way, the red graph in Figure 5 shows the evacuation

probability curve for people in low disaster-risk areas where is far from the sea

and at high altitude, the blue graph shows the curve for people in high-risk

areas where is near the sea and at low altitude, and the green graph shows the

curve for people in an intermediate disaster risk area. For each of these graphs,

the dotted line shows the case corresponding to no risk information, while the

solid line shows the case for all people who received risk information. Risk

information led to a moderate increase in evacuation probabilities in the high

disaster-risk zone, a larger increase in the intermediate disaster-risk zone, and a

two-fold increase in the low disaster-risk area. This is because risk-recognition

levels were already high in the high-risk zone, regardless of risk information.

Note that risk education has a similar, but smaller, effect. These results imply

that, while the local government may tend to broadcast risk information mainly

to people in high-risk areas, it is likely that the average evacuation time for

the entire area would have been less had the risk information been broadcast in

low-risk areas.
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Figure 5: Evaluation of the effect of information about evacuation probability for each location.
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7. DISCUSSION

7.1. Availability of Evacuation Trip Data for Understanding Risk Recognition

The need to travel for evacuation purposes enables us to analyze risk recog-

nition in space-time. The locations and timing of evacuation trips provide rich

and varied inputs of an individual’s risk recognition. An ordinary interview

survey after a disaster cannot reveal the risk recognition itself with time and

space. This is because people find it difficult to remember and describe their

risk recognition within the timeline. The same can be said about locations. In

addition, they may give a self-affirming biased recognition. This difficulty may

result in less empirical studies of risk recognition. The survey analyzed in this

paper also sought to determine evacuees’ risk awareness after a warning was is-

sued and before the tsunami’s impact, but the survey did not ask about actual

times and locations. Therefore, we were unable to utilize these questions for

our analysis.

This study used the origin and destination of evacuation trips to analyze an

evacuee’s risk recognition in addition to the answers to the questionnaire. We

hypothesized that there was a recognition of high risk at the origin of the evacu-

ation trip at the time of departure, and low risk at the destination of evacuation

trip at the time of arrival. This determination of risk recognition based on the

evacuation trip is useful for analysis purposes, although an interview survey

performed after a disaster generally has limitations with regard to the accuracy

of the time and locations of the trips. Evacuees can more easily recall their

trip behavior than their risk recognition itself. Questions about behavior are

suitable for survey after a disaster. We should consider that the departure time

of evacuation may have a time margin from when she/he recognizes the risk,

while the arrival at the location may have a safety margin from where she/he

recognizes a low-risk location. However, our analysis can obtain reasonable re-
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sults that are consistent in time and space. It shows that in our survey, our

approach for the evacuation trip is suitable.

7.2. Evaluation of Risk-related Measures Using Risk Recognition

Our proposed model can be used to evaluate risk-related measures by focus-

ing on the sequence of actual risk, risk recognition, and evacuation choice. The

model is consistent with the conceptual framework of risk response, for exam-

ple, the PADMmodel,(19), (28), (29), (30) and we can evaluate risk-related measures

quantitatively using the discrete choice model. Previous studies(21), (22), (23), (24), (25)

that focused on this recognition phase could not evaluate the disaster-mitigation

measures quantitatively because of limitations in their statistical approach.

Moreover, only a few studies(23), (24) have statistical tests using real evacua-

tion data. On the other hand, the evacuation choice model,(14), (15), (39) which

is based on the discrete choice model, can show the quantitative results using

real evacuation data. However, it did not consider the risk-recognition phase

because of the lack of interest in the evaluation of disaster mitigation measures.

Additionally, the measures cannot be evaluated owing to the omission of the

risk-recognition phase in their models.

This study shows the framework used to analyze and evaluate the risk recog-

nition and evacuation choice. The results of our model were obtained using a

real dataset. It shows that risk recognition is affected by a combination of the

actual risk and risk knowledge. The model parameters of risk education and risk

information are not significant in the estimation result (shown in Table IV) if we

do not introduce the risk-recognition class. The inclusion of a risk-recognition

phase into the proposed model can be used to evaluate risk-related measures

quantitatively for the evacuation choice. Our results, which were obtained for

one disaster and with a limited number of respondents, definitely require further

validation using another dataset.
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Our analysis of spatiotemporal risk recognition is related to the measures

considered. For example, initially, the results showed that a person who was in

a location far from the sea began to evacuate later, whereas people who were

in a location near the sea started to evacuate earlier and left the coastal areas.

There is a possibility that road congestion will occur because of both early

and evacuations. We aim to promote evacuation based on risk information

for people who are located far from the sea in order to avoid this congestion.

In addition, spatiotemporal risk recognition is useful to clarify the destination

choice behavior for both evacuation and pick-up purposes.(9) People will choose

their destination based on their risk recognition. A model analysis will be

more suitable by employing a random-parameter model(39), (41) that can show a

variety of heterogeneities.

8. CONCLUDING REMARKS

A part of the evacuation planning and management process is to deter-

mine the travel demand in the event of a disaster. Simulation-based evacuation

models have been used to predict evacuation demand, usually as a function of

people’s decision to evacuate, which in turn is strongly related to their recog-

nition of being at risk. In this paper, we used an empirical dataset to show

(1) the underlying factors that determine people’s risk recognition; (2) how risk

recognition and evacuation choice can be modeled; and (3) the main drivers

of these two processes and how they can be efficiently addressed in evacuation

planning.

We have shown how evacuation timing differs according to people’s risk

recognition, and that risk recognition cannot be solely described by people’s

location, and is therefore not based only on their exposure. We identified the

factors that explain risk recognition, namely risk education and information as

33



well as socio-demographics. In addition, we determined how risk recognition

changes dynamically over time.

These results were used to formulate an ordered logit model that describes

risk recognition combined with a latent class model that describes evacuation

choices. Both models were estimated and evaluated according to their goodness-

of-fit and predictive power. For both risk recognition and evacuation timing,

we used simulation-based analysis to show the impact of risk education and

risk information, and compared these with the impact of socio-demographic

characteristics.

The presented analyses and models are expected to be helpful in understand-

ing evacuation behavior. The derived insights will be helpful at the planning and

policy levels when considering the aspects of risk education, disaster forecasting

and information provision, emergency warning, and anticipated measures for

disaster mitigation.
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