

Delft University of Technology

Automatic synthesis of supervisory control systems

Najafi, Esmaeil

DOI
10.4233/uuid:c26ff0a0-366d-49e7-bfc7-2892e9a2e2a9
Publication date
2016
Document Version
Final published version
Citation (APA)
Najafi, E. (2016). Automatic synthesis of supervisory control systems. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:c26ff0a0-366d-49e7-bfc7-2892e9a2e2a9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:c26ff0a0-366d-49e7-bfc7-2892e9a2e2a9
https://doi.org/10.4233/uuid:c26ff0a0-366d-49e7-bfc7-2892e9a2e2a9

Automatic Synthesis of
Supervisory Control Systems

Esmaeil Najafi

Cover illustration: The foreground presents the collection of learned controllers
using the probabilistic learning trees algorithm. The stable equilibria are indi-
cated by the numbers and each enclosing colored circle represents an estimate of
the domain of attraction for a learned controller.
Cover design: Dr. Massoud Tohidian

AUTOMATIC SYNTHESIS OF
SUPERVISORY CONTROL SYSTEMS

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op

maandag 30 mei 2016 om 10:00 uur

door

Esmaeil NAJAFI

Master of Science in Mechanical Engineering
K. N. Toosi University of Technology, Iran

geboren te Tehran, Iran

Dit proefschrift is goedgekeurd door de:

Promotor: Prof. dr. R. Babuška
Copromotor: Dr. G.A.D. Lopes

Samenstelling promotiecommisie:

Rector Magnificus, voorzitter
Prof. dr. R. Babuška, Technische Universiteit Delft, promotor
Dr. G.A.D. Lopes, Technische Universiteit Delft, copromotor

Onafhankelijke leden:

Prof. dr. ir. J. Hellendoorn, Technische Universiteit Delft
Prof. dr. ir. P.P. Jonker, Technische Universiteit Delft
Prof. dr. A. Nowé, Vrije Universiteit Brussel
Dr. M. Corno, Politecnico di Milano
Dr. R. Carloni, Universiteit Twente

This dissertation has been completed in fulfillment of the requirements of the
Dutch Institute of Systems and Control (DISC) for graduate study.

The requirement of the TU Delft Graduate School for the Doctoral Education Pro-
gram has been fulfilled.

ISBN: 978-94-6186-656-1

Copyright c© 2016 by Esmaeil Najafi.

All rights reserved. No part of the material protected by this copyright notice may be re-
produced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without writ-
ten permission from the copyright owner.

Printed in the Netherlands.

Dedicated to my wife for her patience,
support, and unconditional love

Acknowledgments

This thesis is the result of four and a half years of research and study at the Delft
Center for Systems and Control (DCSC) of Delft University of Technology. This
is most certainly not the result of individual work. Many people were directly or
indirectly involved and have contributed to the final result. It is my great pleasure
to dedicate these words of appreciation to them for their contributions throughout
this endeavor.

I would like to thank my promoter Prof. dr. Robert Babuška for giving me the
opportunity to do a PhD and for the trust and support he gave me during these
years. Robert, I thank you very much for your commitment to grow your stu-
dents scientifically. I would like to express my great gratitude to my supervisor
Dr. Gabriel A.D. Lopes. I kindly appreciate his friendship, scientific advice, and
many insightful discussions and suggestions. Gabriel, you are not only a supervi-
sor, but also a great friend who cares about other aspects of your students’ life.

I am grateful to all the colleagues in DCSC. I really enjoyed the time I spent with
you all during these years. I want to thank Fankai Zhang for his help at the DCSC
Robotics Lab, Mohsen Alirezaei and Sadegh Esmaeil Zadeh for their friendly and
scientifically discussions at the beginning of my PhD, Subramanya P. Nageshrao
for his collaboration during my PhD research, Anuj Shah for his great job during
his MSc project working with me, and Cees Verdier for the translation of my the-
sis’s summary. My special thanks is reserved for my best colleague and friend,
Mohammad Shahbazi. We have been together for a very long time, since 2003. I
kindly thank you for sharing your opinion and experience with me in these years.

My appreciation is extended to my Iranian friends in the Netherlands who have
been a great support for me and my family. With the risk of forgetting someone
who I definitely should have mentioned, I would like to thank families Shahbazi,
Mehrara, Derakhshani, Madadi, Chahardowli, Latifi, Alemi, Bornaee, Mirzaei,
Bakhshandeh, Ghaemi Nia, Tohidian, Zadpoor, Behdani, Hesan, Abbasi, Saeedi,
Mianabadi, Boroumandzadeh, Abouhamzeh, Alirezaei, Fasihi, Rahimi, Kavian,
Mohammadi, Ramazi, Hosseini Nasab, Ahmadi Mehr, Mir Mohammadi, Sedighi,
Amani, Rostampour, Monadi, and all members of Hey’at Mohebban Al-Mahdi.

vii

viii Acknowledgments

I would like to express my great appreciation to my parents. It is beyond my
ability to express in only a few words how much both of you have inspired me
throughout my life. I believe you are the best father and mother who have kindly
and generously dedicated your life towards the success of your children. My spe-
cial thanks to both of you for your support, kindness, love and blessing. I would
like to extend my appreciation to both my supportive brothers and kind sister.
I am grateful of you and your respected families. I kindly thank you for your
dedication, support, and kindness. Thank you my great family.

Last but not least, I would like to express my deepest thanks and appreciation to
my lovely wife, Maryam, for her patience, support, kindness, and unconditional
love. Whatever we have achieved during these years could not happened without
your help. To be honest, I cannot express my highest appreciation in only a few
words. Thank you very much for everything. I would like to thank your respected
family for their support and blessing always backing me up. Hossein, my lovely
son, you are the best gift from God to me and your mother. I thank you very much
for all the great time you have provided for us.

My dear God, I thank you so much for whatever you have given to me in my life.

Esmaeil Najafi
Delft, May 2016

Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Research Goals and Contributions 3

1.3 Outline of the Thesis . 4

1.4 Publications by the Author . 5

2 Preliminaries 7
2.1 Introduction . 7

2.2 Sequential Composition Control . 8

2.3 Reinforcement Learning . 16

2.4 Passivity-Based Learning Control . 18

2.4.1 Energy-Balancing Actor-Critic 19

2.4.2 Algebraic Interconnection and Damping Assignment Actor-
Critic . 20

2.5 Conclusions . 23

3 Estimating the Domain of Attraction 25
3.1 Introduction . 25

3.2 Lyapunov-Based Methods . 27

3.3 Sampling Method . 28

3.3.1 Memoryless Sampling . 28

3.3.2 Sampling with Memory . 30

3.3.3 Repeatability . 31

3.3.4 Directed Sampling . 33

3.3.5 Sampling vs. Optimization-Based Methods 35

3.4 Passivity-Based Learning Control with Domain of Attraction Esti-
mation . 39

3.5 Simulation Results: Magnetic Levitation System 39

3.6 Conclusions . 43

ix

x Contents

4 Learning Sequential Composition Control 45

4.1 Introduction . 45

4.2 Learning Sequential Composition . 47

4.2.1 Properties . 50

4.2.2 Safe Learning . 52

4.3 Rapid Learning . 54

4.4 Simulation and Experimental Results 55

4.4.1 System 1: Nonlinear Mass-Damper 55

4.4.2 System 2: Inverted Pendulum 60

4.5 Probabilistic Learning Trees . 67

4.6 Conclusions . 77

5 Cooperative Sequential Composition Control 79

5.1 Introduction . 79

5.2 Cooperative Sequential Composition 81

5.2.1 Composition . 81

5.2.2 Interaction . 83

5.2.3 Cooperation . 85

5.3 Cooperation of the Inverted Pendulum with Two DC Motors 86

5.4 Simulation Results . 89

5.5 Conclusions . 92

6 Robot Contact Language 93

6.1 Introduction . 93

6.2 Robot Contact Language . 96

6.2.1 Assumptions . 97

6.2.2 Language Rules . 97

6.3 Manipulation Planning and Control 100

6.3.1 Contact Graph Generation . 100

6.3.2 Geometrical and Physical Constraints 101

6.3.3 Parallelization . 102

6.3.4 Low-Level Planning and Control 103

6.4 Simulation Results . 105

6.4.1 Pushing and Lifting an Object 106

6.4.2 Stacking Objects . 110

6.4.3 Parallel Manipulation . 111

6.5 Conclusions . 112

Contents xi

7 Conclusions and Future Research 115

7.1 Conclusions . 115

7.2 Recommendations for Future Work 117

Bibliography 119

List of Symbols 131

List of Abbreviations 137

Summary 139

Summary in Dutch 141

Summary in Persian 143

List of Publications 145

About the Author 147

xii Contents

1 CHAPTER

Introduction

This thesis addresses automatic synthesis of supervisory control sys-
tems. This chapter describes the thesis focus, research goals, and

the main contributions. It provides the thesis outline as well as the corre-
sponding publications.

1.1 Motivation

One practical approach to controller synthesis for nonlinear dynamical systems
is that instead of designing a single nonlinear controller, one constructs a set of
simpler, possibly linear, controllers, each tuned for a specific region of the state
space. In the closed loop, as the state follows a specified trajectory, a supervisory
mechanism switches sequentially from one controller to another. This approach is
termed sequential composition [13].

Sequential composition is a supervisory control methodology that focuses on the
interaction between a collection of pre-designed controllers. Each controller has
a domain of attraction (DoA), a region of the state space in which the controller
is active [23], and a goal set. The supervisor can instantly switch from one con-
troller to the another controller if the goal set of the first controller is within the
DoA of the second, called the prepare relation [13]. If the local controllers were
properly coordinated with respect to the prepare relation, the union set of their
DoAs would be significantly larger than the DoA for any one of the pre-existing
feedback controllers [71].

Sequential composition uses the set of DoAs backchaining to generate a “path”
to a desired goal. Once the path, a sequence of controllers, is computed on the
symbolic level, the supervisor executes the task by triggering corresponding con-
trollers following the sequence. If the prepare relation is satisfied when the super-
visor switches between the controllers, switching will be safe and the system will

1

2 Introduction

be stable with no chattering phenomena [25]. In sequential composition, the rela-
tion between controllers is represented by a supervisory finite-state machine [89].

Applications of sequential composition include, for instance, balancing of an un-
deractuated system [79], navigation of an autonomous mobile robot [54, 131], nav-
igation of fully actuated dynamical systems through cluttered environments [26],
etc. The standard sequential composition framework has been extended in sev-
eral ways. In [64], robust controller specifications are composed sequentially. Ad-
ditionally, linear quadratic regulator trees (LQR-trees) [122] is a feedback motion
planning algorithm, designed based on the sequential composition approach, that
uses computed stability regions to construct a tree of LQR-stabilized trajectories
through the state space.

Sequential composition has some resemblances with other supervisory techniques
such as gain scheduling, which traditionally was one of the most common system-
atic approaches to control of nonlinear dynamical systems in practice [5, 111]. A
typical gain scheduling control system comprises of two main components: a set
of controllers, and a supervisor (scheduler) that assigns a controller to the system
at every time step. The supervisor design consists of two steps: first to define the
scheduling variables such that the nonlinearities are captured [78], and second to
select a supervisory algorithm for choosing the local controllers on the basis of
variables defined a priori [78]. However, the supervisor design in sequential com-
position differs from gain scheduling by offering the prepare relation as a switch-
ing rule. Using this relation not only guarantees the switching safety and system
stability, but also automates synthesize of the supervisor [85].

Although sequential composition provides an effective supervisory architecture,
it cannot address the task for which no controller was defined a priori. This arise
a question whether it is possible to automatically augment an existing control sys-
tem with new controllers on demand, without changing the supervisory structure.
Moreover, sequential composition controllers are typically designed for isolated
systems. However, when the collaboration of multiple systems is required to ful-
fill a control specification, an extra mechanism is needed.

This thesis studies automatic synthesis of supervisory control systems using the
paradigm of sequential composition. First, a learning sequential composition con-
trol technique is developed to learn new controllers by means of reinforcement
learning (RL) on demand. Once learning is complete the supervisory control
structure is augmented with the new learned controllers. As a consequence, the
overall area of the state space in which the supervisor can be active gets incremen-
tally larger upon request. Second, a cooperative sequential composition control
algorithm is proposed to enable the coordination between a set of sequential com-
position controllers without any change in their low-level structures. Finally, the
described supervisory architecture is applied to a robotic language, designed for
the manipulation of multiple objects by multiple robots.

1.2 Research Goals and Contributions 3

1.2 Research Goals and Contributions

The main research goal of this thesis, synthesize supervisory controllers automat-
ically, is translated to the following research questions.

• How to estimate the domain of attraction of a controller in real-time?

• How to augment a control system with a new online controller learned?

• How to cooperate between multiple supervisory control systems?

• How to synthesize a supervisory controller for robotic manipulation?

Estimating the domain of attraction. The DoA of a stable equilibrium is a region
of the system’s state space from which each trajectory starts, eventually converges
to the equilibrium. Several techniques have been introduced in the literature to
compute an inner approximation for the DoA [23]. However, most of the existing
methods are limited to polynomial systems [46, 124]. They are computationally
costly and time-consuming which make them unsuitable for real-time implemen-
tation [22]. This thesis proposes a fast sampling method for estimating the DoAs
of nonlinear systems [84]. This method is computationally effective, compared
with the existing optimization-based techniques, and is beneficial for real-time
applications. Estimating the DoA is a tool required for the synthesis of controllers
in the context of sequential composition.

Learning sequential composition control. Sequential composition constructs a
supervisory finite-state machine for a set of pre-designed controllers, each en-
dowed with a DoA and a goal set [25]. By design, if the goal set of one controller
lies in the DoA of another controller, the supervisor can instantly switch from the
first controller to the second without affecting the stability and convergence of the
system. As these controllers are designed offline, sequential composition cannot
address the tasks for which no controller is available for the supervisor. This the-
sis develops a learning sequential composition control approach that augments
the given pre-designed control system by learning new controllers online, using
the actor-critic RL method [85, 89]. The learning process is always safe since the
exploration for new controller can only takes place within the DoAs of the existing
controllers. This learning control technique is also extended for situations where
no controller exist initially and all controllers have to sequentially be synthesized
so as to achieve the control objective [71].

Cooperative sequential composition control. The standard sequential composi-
tion is typically designed to control isolated systems [26, 91]. However, for tasks
that require collaboration of multiple systems extra mechanisms are required.
This thesis describes a cooperative sequential composition control algorithm that
composes multiple sequential composition controllers to accomplish collaborative

4 Introduction

behavior [83]. In this approach, the sequential composition controllers communi-
cate with each other to share their system dynamics and low-level structures. Us-
ing this data together with the interaction dynamics enables computation of the
DoAs of the resulting composed controllers. Based on the prepare relation defined
between the DoAs, the original supervisors are augmented with new connections
through their low-level controllers. Applying these events, the cooperative con-
trol system can fulfill the tasks which are not possible to satisfy with the original
controllers individually.

Robot contact language. Dexterous manipulation tasks involve decision-making
at various stages of planning and execution [41, 16]. This thesis studies the syn-
thesis of supervisory control systems for robotic planning and manipulation [110].
The problem of dividing a manipulation task is addressed to obtain an appro-
priate sequence of sub-tasks with regards to the contact-based task division. A
robot contact language is defined for robotic manipulation based on making and
breaking contact between the involved components, namely robots, objects, and
surfaces. This planner is modular enough to deploy geometrical and physical
information of the components and translate supervisory planning to low-level
robot controllers.

1.3 Outline of the Thesis

This thesis starts with a brief review on the background and preliminaries re-
quired for the proposed control approaches and then presents the original con-
tributions. The thesis is organized as follows.

• Chapter 2 describes sequential composition approach with a quick review
of its application and other supervisory techniques. This chapter continues
with a brief description on RL methods and discusses the main concepts of
passivity-based learning control.

• Chapter 3 proposes a fast and computationally effective sampling method
to approximate the DoAs of nonlinear systems in real-time. This method is
validated to estimate the DoAs of stable equilibria in several nonlinear sys-
tems. In addition, it is deployed for the passivity-based learning controller
designed for a magnetic levitation system.

• Chapter 4 proposes a learning control algorithm that augments the standard
sequential composition with a learning module to cope with unmodeled sit-
uations that might occur during runtime. The proposed approach is im-
plemented on two nonlinear systems: nonlinear mass-damper system and
inverted pendulum. This control approach is extended for situations where
there is no controller in the supervisory structure initially. This algorithm is
simulated for the navigation of a simple mobile robot through a landscape.

1.4 Publications by the Author 5

• Chapter 5 extends the standard sequential composition by introducing a
novel control approach to compose multiple sequential composition con-
trollers towards cooperative control systems. This control methodology is
implemented on collaboration of an inverted pendulum with two second-
order DC motors for cooperative maneuvers.

• Chapter 6 describes a contact language for robot manipulation planning.
When contact between the involved components are made or broken, the
system’s dynamics change. Using this paradigm the robot manipulation
planner is developed. This robot language is validated for three different
case studies, each with a specific control objective.

• Chapter 7 concludes that the control approaches proposed throughout this
thesis together enable automatic synthesis of a class of supervisory control
systems that employ the paradigm of sequential composition. This chapter
closes the thesis with some recommendations for future research.

The diagram in Figure 1.1 illustrates the connection between the chapters. It gives
an overview on the structure of this thesis.

1.4 Publications by the Author

The material presented in Chapters 3, 4, 5, and 6 has been published as peer-
reviewed articles in international journals, a chapter in a robotic control book,
and papers in the proceedings of international conferences. There are also some
manuscripts that will be ready for submission in the near future. The relation
between every chapter and the corresponding publications is outlined as follows.

• Chapter 3 is based on [84]. The interested reader may refer to [90] for the
application.

• Chapter 4 is based on [85, 71] and the manuscript [87]. The interested reader
may refer to [89, 91] for more discussion.

• Chapter 5 is based on [83, 88] and the manuscript [86].

• Chapter 6 is based on [109, 110].

6 Introduction

Chapter 7
Conclusions and
Future Research

Chapter 1
Introduction

Chapter 3
Estimating the Domain

of Attraction

Chapter 4
Learning Sequential
Composition Control

Chapter 5
Cooperative Sequential
Composition Control

Chapter 2
Preliminaries

Chapter 6
Robot Contact

Language

Figure 1.1: Structure of this thesis.

2 CHAPTER

Preliminaries

This chapter discusses the preliminaries for the control techniques
proposed in the thesis. It describes sequential composition con-

trol and reviews the main concepts of RL methods. Then, it discusses
passivity-based learning control.

2.1 Introduction

Control synthesis for dynamical systems spans the fields of systems and con-
trol and computer science, ranging from model-based state-feedback control to
motion planning techniques. Systems and control theory provides tools for an-
alyzing stability and synthesizing controllers for systems with complex dynam-
ics, but typically simple control specifications [90]. On the other side, computer
science tools address complex control specifications for simple dynamical sys-
tems [62, 56]. For example, the design of a controller for an autonomous hu-
manoid robot consists of low-level controllers for dynamic balancing, designed
using tools from systems and control, and high-level controllers for task-oriented
control, such as grasping or navigation in a cluttered room, designed using mo-
tion planning techniques from computer science.

Sequential composition [13], emerging from the systems and control field, aims
to cope with rich control specifications on dynamical systems. It offers a natural
framework for control design since it decomposes a given task into smaller prob-
lems, each solved in a traditional control systems manner, taking advantage of all
the available tools such as feedback/feedforward design, optimal control, robust
control, and etc. Sequential composition typically results in a simple supervisory
finite-state machine, with each node consisting of specially crafted controllers that
can have large DoAs. Although sequential composition accomplish pre-defined
tasks well, it cannot fulfill situations for which no controller was designed a priori.

7

8 Preliminaries

The use of learning in the context of sequential composition is proposed to enable
automatic synthesis of supervisory controllers. As such, RL methods [116] are
briefly reviewed, namely actor-critic algorithm [44], which is convenient for prob-
lems with continuous state and action spaces. Passivity-based learning controllers
described in [112] are another element that are used for the proposed control ap-
proaches. The dynamic equations together with the total energy of the system are
deployed for estimating the DoAs of learning controllers.

This chapter is organized as follows. Section 2.2 describes sequential composition
control and enumerates its application in robotics. A discussion about alternatives
to sequential composition is presented at the end of this section. Section 2.3 re-
views the main concepts of RL methods and Section 2.4 discusses passivity-based
learning controllers. Finally, Section 2.5 provides a brief discussion on these ele-
ments and concludes the chapter.

2.2 Sequential Composition Control

Sequential composition is a supervisory control approach that address complex
dynamical systems. It focuses on the interaction between a collection of pre-
designed controllers, each endowed with a DoA and a goal set [23]. Sequential
composition uses a set of DoAs backchaining to generate a path to a desired goal.
Once the path, a sequence of controllers, is computed on the symbolic level, the
controller executes the task by triggering corresponding controllers following a
particular sequence. Consider the dynamical system

ẋ = f(x, u) (2.1)

where x ∈ X ⊆ Rn is the state vector, u ∈ U ⊆ Rm is the control input, and
f : X ×U → Rn is the system dynamics. For a particular state-feedback controller
Φi(x), indexed by i, the closed-loop system is

ẋ = f
(
x,Φi(x)

)
= fi

(
x
)
. (2.2)

Let x∗i be a stable equilibrium of the closed-loop system (2.2). The goal set of
controller Φi(x), denoted G(Φi) ⊆ X , is described by

G(Φi) = {x∗i }. (2.3)

Note that in general the goal sets of controlled systems can have oddly shapes.
For the purpose of this chapter we assume only stabilizing controllers to a point
in the state space. Each control law is valid in a subset of the state space, called
the DoA and denoted D(Φi) ⊆ X . If x(t, x0) denotes the solution of (2.2) at time t,

2.2 Sequential Composition Control 9

subject to the initial condition, the DoA of controller Φi is defined by the set

D(Φi) = {x0 ∈ X : lim
t→∞

x(t, x0) = G(Φi)}. (2.4)

It is assumed that every controller can be illustrated by a funnel [13], as shown
in Figure 2.1, where the funnel’s height determines the value of the candidate
Lyapunov function Li(x), the set D(Φi) represents the DoA of controller Φi(x),
and G(Φi) illustrates its goal set. When a controller is executed, the value of Li(x)

decreases and the system trajectory converges to the controller’s goal set.

D(Φi)

G(Φi)

Φi(x)

Figure 2.1: Representation of controller Φi(x) based on its candidate Lyapunov
function as a funnel. The sets D(Φi) and G(Φi) illustrate the DoA and
goal set of controller Φi(x) respectively, adopted from [25].

It is assumed that system (2.1) is controllable throughout the union of all exist-
ing DoAs and each controller can stabilize the system at its goal set. Moreover,
switching strategies and transitions between controllers are defined based on the
prepare relation. According to this relation, controller Φi prepares controller Φj if
G(Φi) is the subset of D(Φj), that is

Φi � Φj if G(Φi) ⊂ D(Φj). (2.5)

In other words, once the system enters D(Φj) while en route to G(Φi) the super-
visor can instantly switch from controller Φi to Φj . Backchaining away from the
controller that stabilizes the system at the desired state to the controller whose
DoA contains the initial state results in a converging switching control law that
ensures the stability of the closed-loop system through the overall DoA. This is
an important property of sequential composition as a switching control method-
ology [66]. Consider a sequential composition controller with three control laws
Φ1, Φ2, and Φ3, such that each drives the system trajectories that lies in its DoA to
its goal set, as shown in Figure 2.2. Based on the prepare relation, the final goal
is attained by composing the controllers in a proper sequence. Figure 2.2 on the
left side illustrates the controllers’ DoAs by their representative funnels and on
the right side, represents the induced supervisory finite-state machine.

Sequential composition is beneficial for planning multiple tasks in the space of

10 Preliminaries

Φ1

Φ2

Φ3

D(Φ3)

Φ3

Φ2

Φ1

D(Φ2)

D(Φ1)

Figure 2.2: Prepare relation between three local controllers: the DoAs of the con-
troller with their corresponding Lyapunov functions, and the induced
supervisory finite-state machine, adopted from [25].

control laws and execute them based on the prepare relation. Typically, planning
over the discrete space of the policies is easier than planning over the continuous
space and more flexible with respect to the high-level control specifications [27].
Consider the navigation of a mobile robot through a structured environment with
some obstacles. A sequential composition controller is designed, as shown at the
top of Figure 2.3 with its local control laws to navigate the robot to the final goal.
Figure 2.3 at the bottom presents the induced finite-state machine with transitions
between the controllers based on the prepare relation.

As illustrated in Figure 2.4, to obtain the desired state G from different initial
states S1, S2, S3, and S4 the sequential composition controller executes a specific
sequence of controllers to derive the system trajectory from the initial state to the
desired state G.

In sequential composition, the set of controllers and their interactions are repre-
sented by a supervisory finite-state machine that we call control automaton. Each
mode of the control automaton, indexed by i, describes a tuple si ∈ S as

si = {Φi,D(Φi),G(Φi)} (2.6)

where S is a finite set of modes. When a new controller is defined, first its relevant
interactions with other controllers are computed based on the prepare relation.
Then, its representative mode together with the associated arcs (events) are added
to the control automaton.

In standard sequential composition, it is assumed that the set of controllers are
composable, the resulting graph is fully reachable [132], and the union of DoAs

2.2 Sequential Composition Control 11

Figure 2.3: Sequential composition controller for navigation of a mobile robot
through a structured environment in presence of obstacles. The top
figure illustrates the DoAs of controllers in the state space and the bot-
tom graph depicts the induced finite-state machine, adopted from [25].

covers the entire state space, i.e.,

D(Φ) =
⋃
Φi

D(Φi) = X . (2.7)

If these assumptions are satisfied, the sequential composition controller can sta-
bilize the system at a given state in the union of DoAs. However, these assump-
tions are typically not satisfied in practice. The idea of sequential composition has
been successfully implemented on several robotic systems. Some examples are
described in the following.

Burridge et al. [13] implemented sequential composition on a robot juggling a ball
by repeatedly batting the ball with a paddle. They defined a notion of generic

12 Preliminaries

Figure 2.4: Induced paths (sequence of controllers) from different initial states to
the desired state G through the state space in the example of mobile
robot navigation, adopted from [25].

control policy which is indeed a control law with free parameters. A set of generic
control policies generates a “palette”. The experimental results illustrate that if
the policies are composed properly, the robot can juggle the ball through its work
space, while avoiding the obstacles. According to the obtained results, it is con-
cluded that sequential composition is inherently robust even in the presence of
perturbation since the designed controller repeatedly brought the ball into its de-
sired state.

Rizzi [104] used sequential composition to simplify motion planning for a holo-
nomic second-order dynamical system with velocity and acceleration constraints.
He specified a particular goal set for each control policy to lie within the overlap-
ping convex polytopes. If a collection of polytopes are composed together with
appropriate goal sets, the system will be derived to the overall desired state via
composing a sequence of controllers sequentially. If the initial state lies in the DoA
of a controller, it will finally converge to the desired state. Moreover, Yang and
LaValle [134] developed a similar approach to address kinematic systems with-
out considering the input constraints. They described a potential function over
a ball in the configuration space. They showed that while there are a number of
balls throughout the configuration space, the overlapping balls create a similar
function to the polytopes.

Quaid and Rizzi [102] extended the standard sequential composition to a more
sophisticated approach that takes into account the constraints described on accel-
eration and velocity. They applied their suggested approach on planar robots and
improved the safety of control systems, specifically in multi-robots environments.
Later, Kantor and Rizzi [55] implemented sequential composition to control un-
deractuated wheeled mobile robots. They defined a set of visual control policies
for a nonholonomic unicycle with constraint on the view field. They applied vari-

2.2 Sequential Composition Control 13

able constraint control to define each specific control policy. Patel et al. [99] used
sequential composition to describe a set of control policies for a nonholonomic
wheelchair for navigation through a doorway.

Weingarten et al. [131] implemented sequential composition for legged robots.
They developed a supervisory finite-state machine as a high level control frame-
work to properly switch between the controllers and obtain the control objective.
Figure 2.5 at the top illustrates the workspace of a mobile robot with subdivi-
sions: Servo home, Experiment, and Stabilizing. For each part of the workspace
a specific controller is activated by the supervisor such that the control objective
is finally achieved. Figure 2.5 at the bottom represents the finite-state machine of
the control system with all designed controllers. The control law “Servo home”
which is the initial controller can be executed throughout the state space, where
the supervisor get stuck due to unforeseen situations.

Figure 2.5: a) An example of control policy composition for a legged rescue robot,
where a high-level task is addressed by a set of simple controllers.
The finite-state machine represents transitions among the controllers,
adopted from [131].

kallem et al. [54] used sequential composition for navigation of a nonholonomic
robot in the presence of obstacles. They decomposed the free workspace of the

14 Preliminaries

system into triangular tori and composed local feedback controllers, each associ-
ated to a particular torus, such that the obtained sequence of controllers is able to
drive the robot from one cell to its neighbor cell and hence navigates the robot to
its desired state consequently. They implemented the composition approach on a
group of robots in cluttered environments [6]. Nagarajan et al. [79] implemented
sequential composition for navigation of shape-accelerated underactuated balanc-
ing systems with dynamic constraints. They extended the concept of sequential
composition to discrete state-based switching control approach and proposed a
globally asymptotically convergent feedback policy. The motion policies are de-
signed such that their composition produces an overall graceful motion [80]. In
fact, an automatic control algorithm deploys motion policies and a supervisory
framework switches between the policies.

Le and Pappas studied the composition of robust controllers and presented a gen-
eral notion of robust controller specifications with a mechanism to compose them
sequentially [64]. Conner et al. [28] defined the idea of flow-through policy, where
each individual controller is activated once its previous controller with higher pri-
ority has been executed. This creates a flow of control policies. They developed a
generic class of control policies that respects nonholonomic constraints [25]. The
results show that the proposed method works safely for a convex-bodied mobile
robot with respect to the obstacles since each local controller satisfies the system
constraints over its associated region through the state space. They implemented
the flow-through policies approach to synthesis a hybrid controller to be able to
address the coupled navigation and control problems of fully actuated dynamical
systems that operate in cluttered environments [26].

Lindemann and LaValle [68] extended the flow-through of policies approach and
defined flow-through vector fields over disjoint regions over the work space. They
focused on theoretical completeness and smoothness of simple dynamical systems
and defined a different vector field technique to extend their approach into cylin-
drical algebraic decompositions [67]. They studied nonholonomic systems with
bounded steering and unbounded control inputs [69] and presented an effective
approach for computing feedback control laws in the presence of obstacles [70].
Instead of computing a trajectory between a pair of initial and goal states, their
proposed algorithm computes a vector field over the entire state space such that
all trajectories attain their desired states. By partitioning the state space into sim-
ple cells, a vector field is constructed. An appropriate interpolation between these
local vector fields results in a global vector field that can solve navigation problem
and provide robustness for the system with regards to disturbances.

In addition to the standard sequential composition and its extensions, there exist
other mechanisms that can be classified as composition based approaches. Here,
we review a few of these control schemes as alternatives to sequential composition
that use the idea of composition to construct a supervisory control structure.

Minler [75] introduced the notion of bi-simulation equivalence, the relation be-

2.2 Sequential Composition Control 15

tween a system and a model that simulates it, to reduce the complexity of mod-
eling dynamical systems. Bi-simulation is a supervisory control approach that
arose with a computer science mindset. Due to the challenges in designing con-
trollers for nonlinear systems, it is advantageous to look for symbolic models that
can represent or approximate the dynamics of a continuous-time dynamical sys-
tem [117]. This leads to transforming the control synthesis problem into a search
on a graph [105]. Once the system is represented in the symbolic domain, rich
control specifications can be implemented [101] and properties verified [42]. Such
flexibility comes at a high cost. The accurate representation of even simple dy-
namical systems can at times require millions of nodes in a graph. Moreover, if
the environment is dynamical it can be difficult to update the graph online. These
challenges have limited the applicability of bi-simulation methods in robotics.

Konidaris and Barreto [59] introduced the skill discovery method where the state
space is partitioned into a number of sub-domains, called options, to construct
chains of skills, which is analogous to sequential composition. Tedrake [121] in-
troduced LQR-trees as a feedback motion planning technique which is established
based on the composition approach. This algorithm combines a set of local linear
quadratic regulators to make a tree that can stabilize the planned trajectories com-
puted by local optimizers and then cover the entire state space [103]. The LQR-
trees operates by growing a tree of stabilized and verified trajectories backwards
from a desired state. At each step, a random state is drawn from the state space.
If the chosen state is inside the DoA of an existing trajectory it will be discarded,
otherwise a local trajectory optimizer looks for a new trajectory that connects this
random state to the generated tree and so to the desired state. After that, the new
trajectory is stabilized and verified, and then the process repeats again to construct
a comprehensive tree [122].

In the field of quantized control systems, Bicchi et al. [10] studied finite abstrac-
tion of a certain class of control systems with quantized inputs. Moreover, their
research was continued in the field of digital control systems where the control
signals are piecewise-constant. They showed that if a system is incrementally
input-to-state stable, by using a proper quantization in the space of inputs, sym-
bolic models can be generated for a system [101].

Besides these composition methods, symbolic planning techniques have been es-
tablished to satisfy high-level control specifications. Linear temporal logic (LTL)
combines the standard boolean operators such as “and”,“or”, and “not” with tem-
poral operators such as “next” and “always” to develop an appropriate transition
relation in symbolic models [58]. Fainekos et al. [35] developed an automaton that
uses specifications of the LTL to describe the behaviors of a system with a prepare
graph. This approach allows the system to use a set of discrete events to react to
the environmental changes effectively.

16 Preliminaries

2.3 Reinforcement Learning

Reinforcement learning is an optimization method in which an optimal controller
is learned by interacting with the system [116]. A RL problem can be defined by a
Markov decision process defined as the tuple M(X ,U , f̄ , ρ), where X is the state
space, U is the action space, f̄ : X × U → X is the state transition function that
returns state xk+1 after applying action uk in state xk, and ρ : X × U → R is the
reward function that gives the scalar reward rk+1 ∈ R to the controller after each
transition. Note that here a discrete-time deterministic system is considered with
xk = x(Tsk) for a given sampling time Ts. The learning objective is to find an opti-
mal policy π : X → U to maximize the discounted sum of expected instantaneous
rewards, which is stored as the value function

V π(xk) =
∑∞
j=0 γ

jrπk+j+1

=
∑∞
j=0 γ

jρ
(
xk+j+1, π(xk+j)

) (2.8)

with γ ∈ (0, 1) a discount factor.

The RL methods can be classified into three main categories [44] as follows:

• Actor-only: The methods that directly search for an optimal control law.

• Critic-only: The methods that first learn an optimal value function. The
control law is then computed based on the value function.

• Actor-critic: The method that search for an optimal control law (actor) ex-
plicitly. In addition, a critic learns the value function and evaluates the per-
formance of the controller.

In this thesis, the actor-critic RL method is used for learning controllers. The actor-
critic RL method is convenient for problems where both the critic (value function)
and the actor (control policy) are approximated via basis function parameteriza-
tions [45]. The critic used in this thesis is approximated as V̂ (x, θ) = θTΨc(x) with
a parameter vector θ ∈ Rnc and a user-defined basis function vector Ψc(x) ∈ Rnc .
Similarly, the actor is approximated as π̂(x, µ) = µTΨa(x), where µ ∈ Rna is a
parameter vector and Ψa(x) ∈ Rna is a user-defined basis function vector. The
temporal difference (TD) [116] is defined as

δk+1 = rk+1 + γV̂ (xk+1, θk)− V̂ (xk, θk). (2.9)

The critic parameters are updated using the gradient ascent rule

θk+1 = θk + αcδk+1∇θV̂ (xk, θk) (2.10)

where αc > 0 is the critic learning rate. In addition, the eligibility trace ek(x),
which includes information on the visited states, can be used to speed up learning.

2.3 Reinforcement Learning 17

Consequently, the critic parameters are updated as

ek+1 = γλek(x) +∇θk V̂ (xk, θk) (2.11)

θk+1 = θk + αcδk+1ek+1(x) (2.12)

where λ ∈ [0, 1) is a trace decay rate. To find an optimal policy, the learning
algorithm needs to explore new regions in the state-action space. Hence, a zero-
mean random exploration term ∆uk is added to the control input as

uk = sat (π̂(xk, µk) + ∆uk) (2.13)

where ∆uk is a zero-mean white Gaussian noise as an exploration term. Finally,
the actor parameters are updated by

µk+1 = µk + αaδk+1∆uk∇µk
π̂(xk, µk) (2.14)

with αa > 0 the actor learning rate. Algorithm 1 summarizes the learning process
in the actor-critic RL method designed for dynamical system (2.1), where nt and
ns denote the number of trials and samples, respectively.

Algorithm 1 Actor-critic reinforcement learning
Require: λ, γ, αa, αc, nt, ns

1: e0 = 0
2: Initialize θ0, µ0

3: for w = 1 to nt do
4: Initialize x0

5: for k = 0 to ns − 1 do
6: Execute: apply the control input (2.13) to system (2.1), observe the next

state xk+1 and compute the reward rk+1 = ρ(xk+1, uk)
7: Temporal Difference:
8: δk+1 = rk+1 + γθTΨc(xk+1)− θTΨc(xk)
9: Critic Update:

10: for i = 1 to nc do
11: ei,k+1 = γλei,k +∇θi,kθTΨc(xk)
12: θi,k+1 = θi,k + αcδk+1ei,k+1

13: end for
14: Actor update:
15: for i = 1 to na do
16: µi,k+1 = µi,k + αaδk+1∆uk∇µi,k

π̂(xk, µk)
17: end for
18: end for
19: end for

18 Preliminaries

2.4 Passivity-Based Learning Control

The use of learning in the context of passivity-based control (PBC) techniques de-
scribes passivity-based learning controllers as discussed in [112]. Using the equa-
tions of motion along with the system’s total energy, defined in these control tech-
niques, one can estimate the DoAs of learning controllers. This section reviews
the main concepts of passivity-based learning controllers.

Passivity-based controllers have been extensively used for regulation problems in
port-Hamiltonian (PH) systems, see for example [128]. The standard input-state-
output form of a time-invariant PH system is given by

ẋ =
(
J(x)−R(x)

)
∇xH(x) + g(x)u

y = gT (x)∇xH(x)
(2.15)

where x ∈ Rn is the state vector, J(x) = −JT (x) is a skew-symmetric interconnec-
tion matrix, R(x) = RT (x) is a symmetric dissipation matrix, and y is a collocated
output with the input matrix g(x). Moreover, H(x) is the system Hamiltonian,
which determines the sum of energy stored in all the individual elements of the
system. For instance, in a mechanical system, the Hamiltonian is obtained by
summing up the kinetic and potential energies.

In PBC, the control objective is obtained by making the closed-loop system passive
with respect to a storage function, which has a minimum at the desired equilib-
rium [94]. The PBC techniques are broadly classified into three main categories.
The first is stabilization by damping injection (DI), which is the simplest approach,
but it has a limited application. The second is energy balancing and damping in-
jection (EB-DI), which is the most frequently used method for set point regula-
tion [81]. The third is interconnection and damping assignment passivity-based
control (IDA-PBC), which can be utilized to solve various control problems for
a wide range of physical systems such as mechanical and electromechanical sys-
tems [94].

To design a passivity-based controller for a PH system, one has to solve partial dif-
ferential equations, which are computationally costly and sometimes inefficient.
If one parameterizes the control input and apply the actor-critic RL method for
learning the unknown parameter vectors, the complexity of control synthesis con-
siderably decreases, because the problem of solving partial differential equations
is eliminated. Two methods energy balancing actor-critic (EB-AC) [112] and al-
gebraic interconnection and damping assignment actor-critic (A-IDA-AC) [82] are
discussed, which have been implemented for various physical systems.

2.4 Passivity-Based Learning Control 19

2.4.1 Energy-Balancing Actor-Critic

In PH systems, regulation problems are usually attained by the EB-DI algorithm.
The EB-DI goal is to find a feedback control law such that the desired closed-loop
Hamiltonian Hd(x) has a local minimum at the equilibrium x∗, that is

x∗ = arg minHd(x). (2.16)

The control law combines an energy shaping (ES) term with a damping injection
(DI) term

u(x) = ues + udi (2.17)

=
(
gT (x)g(x)

)−1
gT (x)

(
J(x)−R(x)

)
∇xHa(x)

−K(x)gT (x)∇xHd(x)

whereK(x) = KT (x) is a symmetric positive semi-definite damping injection ma-
trix andHa(x) is an added energy term that satisfies the energy balancing equation

Ha(x) = Hd(x)−H(x). (2.18)

The supplied energy functionHa(x) is found by solving a set of partial differential
equations, called matching condition, given by[

g⊥(x)
(
J(x)−R(x)

)
gT (x)

]
∇xHa(x) = 0 (2.19)

with g⊥(x) ∈ R(n−m)×n the left annihilator matrix of the input matrix g(x) (i.e.,
g⊥(x)g(x) = 0). Consequently, a solution of (2.19) that can satisfy the equilibrium
condition (2.16) is selected as Ha(x). For more details refer to [112].

To design an EB-AC controller, first the energy functions need to be parameter-
ized. The approximated parameterized desired Hamiltonian of a physical system
in the EB-AC method is given by

Ĥd(x, ξ) = Hdi +Hes = Hdi + ξTΨes(x) (2.20)

with Hdi and Hes the damping injection and energy shaping terms of Ĥd(x, ξ),
where ξ ∈ Rnes is an unknown parameter vector and Ψes(x) ∈ Rnes is a user-
defined basis function vector. The “hat” symbol represents the approximated
terms (i.e., Ĥd is the approximated desired Hamiltonian). Substituting the energy
functions (2.18) and (2.20) in (2.17), the control policy is computed with respect to

20 Preliminaries

the parameter vector ξ and the basis function Ψes(x) as

π̂(x, ξ) = g†(x)
(
J(x)−R(x)

)(
∇xĤd(x, ξ)−∇xH(x)

)
−K(x)gT (x)∇xĤd(x)

= g†(x)F (x)
(
ξT∇xΨes(x)−∇xH(x)

)
−K(x)gT (x)∇xĤd(x)

(2.21)

where g†(x) =
(
gT (x)g(x)

)−1
gT (x) is the pseudo inverse of matrix g(x) andF (x) =

J(x) − R(x) is the system matrix. The damping injection matrix K(x) is also pa-
rameterized using an unknown parameter vector ψ ∈ Rndi and a user-defined
basis function vector Ψdi(x) ∈ Rndi as

[K̂(x, ψ)]ij =

ndi∑
l=1

[ψ]ijl[Ψdi(x)]l (2.22)

such that [ψ]ij ∈ Rndi satisfies the condition

[ψ]ij = [ψ]ji. (2.23)

If this equality holds, the symmetry condition of K(x) will be also satisfied. Sub-
stituting the approximated damping injection matrix K̂(x) into (2.21) yields the
control policy

π̂(x, ξ, ψ) = g†(x)F (x)
(
ξT∇xΨes(x)−∇xH(x)

)
−ψTΨdi(x)gT (x)∇xĤd(x)

(2.24)

where the unknown parameter vectors ξ and ψ are updated using the actor-critic
method. Consequently, the saturated control input of the EB-AC method is com-
puted at each time step by

uk = sat (π̂(xk, ξk, ψk) + ∆uk) (2.25)

where ∆uk is a zero-mean Gaussian noise, as an exploration term. Algorithm 2
summarizes the synthesis of an EB-AC controller.

2.4.2 Algebraic Interconnection and Damping Assignment Actor-
Critic

The IDA-PBC algorithm is a nonlinear state-feedback controller that can be used
for stabilizing and tracking control problems [93]. In this method, first the system
interconnection is changed to ensure the local stability of the desired state and

2.4 Passivity-Based Learning Control 21

Algorithm 2 Energy-balancing actor-critic algorithm
Require: System (2.15), γ, αa, αc, nt, ns

1: Initialize θ0, ξ0, ψ0

2: for w = 1 to nt do
3: Initialize x0

4: for k = 0 to ns − 1 do
5: Execute: apply the control input (2.25) to system (2.15), observe the next

state xk+1 and compute the reward rk+1 = ρ(xk+1, uk)
6: Temporal Difference:
7: δk+1 = rk+1 + γθTΨc(xk+1)− θTΨc(xk)
8: Critic Update:
9: θk+1 = θk + αcδk+1∇θkθTΨc(xk)

10: Actor update:
11: ξk+1 = ξk + αaδk+1∆uk∇ξk π̂(xk, ξk, ψk)
12: ψk+1 = ψk + αaδk+1∆uk∇ψk

π̂(xk, ξk, ψk)
13: end for
14: end for

then by assigning an extra damping the global stability is obtained. Consider the
input-affine form of system (2.1) described by

ẋ = f(x) + g(x)u. (2.26)

The control law u is chosen such that the closed-loop system is of the form

ẋ =
(
Jd(x)−Rd(x)

)
∇xHd(x) (2.27)

where Jd(x) = −JTd (x) ∈ Rn×n is the desired skew-symmetric interconnection
matrix and Rd(x) = RTd (x) ∈ Rn×n is the desired symmetric dissipation matrix,
hence the desired system matrix Fd(x) ∈ Rn×n is given by Fd(x) = Jd(x)−Rd(x).

To obtain the closed-loop system in the form of (2.27), using the pseudo inverse of
the input matrix g(x) results in the control law

u(x) = g†(x) (Fd(x)∇xHd(x)− f(x)) (2.28)

such that the unknown elements of Fd(x) and Hd(x) can be found by solving the
matching condition

g⊥(x)
(
Fd(x)∇xHd(x)− f(x)

)
= 0. (2.29)

To solve this condition one needs to first fix Fd(x) or Hd(x) or both [82]. Depend-
ing on which element is fixed first, the control algorithm varies.

Algebraic IDA-PBC is a method in which the desired Hamiltonian Hd(x) in the
matching condition is fixed [39]. This makes (2.29) an algebraic equation that is

22 Preliminaries

applied to compute the unknown elements of Fd(x). Consider a generic lossless
fully actuated mechanical system

[
q̇

ṗ

]
=

[
0 I

−I 0

][∂H
∂q (x)

∂H
∂p (x)

]
+

[
0

I

]
u (2.30)

where the state vector x = [qT pT]T consists of the generalized position q ∈ Rn̄

and generalized momentum p ∈ Rn̄ such that 2n̄ = n and n is the system dimen-
sion [82]. In the algebraic IDA-PBC method, one of the simplest choice for the de-
sired Hamiltonian is the quadratic function. The local minimum condition (2.16)
at the desired state xd = [qTd 0]T can be satisfied by choosing

Hd(x) =
1

2
pTM−1(q)p+

1

2
(q − qd)TΛ(q − qd) (2.31)

where M(q) ∈ Rn̄×n̄ is a positive-definite mass-inertia matrix and Λ ∈ Rn̄×n̄ is a
positive-definite scaling matrix. For a generic system matrix

Fd(x) =

[
F11(x) F12(x)

F21(x) F22(x)

]
(2.32)

the control law is described by

u = F21(x)Λ(q − qd) + F22(x)M−1(q)p+
∂H

∂q
(2.33)

where the unknown elements F21 and F22 need to be chosen appropriately. Since
the control law is described in terms of unknown elements, one can use a learn-
ing method to obtain these elements. Applying a linear-in-parameters function
approximator, the unknown elements F21 and F22 are parameterized such that
(2.33) results in the control policy

π̂(x, ϑ) = ϑT1 Ψal(x)Λ(q − qd) + ϑT2 Ψal(x)M−1(q)p+
∂H

∂q
(2.34)

where ϑ = [ϑT1 ϑ
T
2]T is an unknown parameter vector and Ψal(x) is a user-defined

matrix of Fourier basis functions. Since the unknown parameter vector ϑ is learned
using the actor-critic RL, this control method is called A-IDA-AC.

The control policy in the A-IDA-AC algorithm is described by

π̂(x, ϑ) = g†(x)
(
ϑTΨal(x)∇xHd(x)− f(x)

)
(2.35)

where the unknown parameter vector ϑ is updated using the actor-critic method.
Consequently, the saturated control input of the A-IDA-AC method is computed

2.5 Conclusions 23

at each time step by
uk = sat (π̂(xk, ϑk) + ∆uk) (2.36)

where ∆uk is a zero-mean Gaussian noise, as an exploration term. Algorithm 3
summarizes the synthesis of a A-IDA-AC controller.

Algorithm 3 Algebraic interconnection and damping assignment actor-critic
Require: System (2.15), γ, αa, αc, nt, ns

1: Initialize θ0, ϑ0

2: for w = 1 to nt do
3: Initialize x0

4: for k = 0 to ns − 1 do
5: Execute: apply the control input (2.36) to system (2.15), observe the next

state xk+1 and compute the reward rk+1 = ρ(xk+1, uk)
6: Temporal Difference:
7: δk+1 = rk+1 + γθTΨc(xk+1)− θTΨc(xk)
8: Critic Update:
9: θk+1 = θk + αcδk+1∇θkθTΨc(xk)

10: Actor update:
11: ϑk+1 = ϑk + αaδk+1∆uk∇ϑk

π̂(xk, ϑk)
12: end for
13: end for

2.5 Conclusions

This chapter discussed sequential composition as an effective supervisory control
approach. With regards to the other supervisory techniques, the induced control
automaton in sequential composition is usually simple with sophisticated con-
trollers. Although sequential composition generates a well-structured supervi-
sory structure, it is designed for structured environments for which every condi-
tion has been already taken into account.

Then, a brief review is provided on the actor-critic RL method as well as two
passivity-based learning control algorithms EB-AC and A-IDA-AC. The actor-
critic RL method is beneficial for the problems with continuous state and action
spaces, which is mostly the case for model-based controllers. The EB-AC algo-
rithm is useful for regulation problems defined in a subclass of physical systems,
such as fully actuated mechanical systems. The A-IDA-AC algorithm is more gen-
eral and can be used for various control problems defined in a wide range of phys-
ical systems, such as regulation and tracking of multi-domain systems. Applying
the control algorithms EB-AC and A-IDA-AC not only speeds up the learning
process, but also provides the dynamic equations and total energy (Hamiltonian)
of the system. These equations with system Hamiltonian are required tools for
estimating the DoA of the controller.

3 CHAPTER

Estimating the Domain of Attraction

T
o design a supervisory controller in the context of sequential compo-
sition, the DoAs of the low-level controllers and their goal sets have

to be known. In this thesis, a fast sampling method is proposed for esti-
mating the DoAs of nonlinear systems. This procedure is computationally
effective, compared with the existing optimization-based techniques, and
is useful for real-time applications. The sampling approach proposed has
been used to estimate the DoAs of stable equilibria in several nonlinear
systems. Moreover, it has been applied to a passivity-based learning con-
troller designed for a magnetic levitation system.

3.1 Introduction

The DoA of a stable equilibrium in a nonlinear system is a region of the state
space from which each trajectory starts, eventually converges to the equilibrium
itself. In the literature, the DoA is also known as the region of attraction or basin
of attraction [126, 4]. The DoA of an equilibrium and its computation is of main
importance in control applications. However, in most cases, the DoA has a irreg-
ular shape and its computation is quite costly. This chapter aims to approximate
the DoAs of nonlinear systems in real-time by introducing a sampling approach.

Several techniques have been proposed in the literature to compute an inner ap-
proximation for the DoA [23], which can broadly be classified into Lyapunov-
based and non-Lyapunov methods [40]. Lyapunov-based approaches include
sum of squares (SOS) programming [19], methods that apply both simulation and
SOS programming [125], procedures that use theory of moments [47], etc. In this
approach first a candidate Lyapunov function is chosen to show asymptotic sta-
bility of the system in a small neighborhood of the equilibrium. Next, the largest

25

26 Domain of Attraction

sublevel set of this Lyapunov function in which its time derivative is negative
definite is computed as an estimate for the DoA [91]. Non-Lyapunov methods
include trajectory reversing [40, 90], determining reachable sets of the system [7],
and occupation measures [49, 72]. Figure 3.1 illustrates a broad classification of
the existing techniques for estimating the DoA.

Optimization-based methods Sampling method

Reachable sets

Occupation measures

Trajectory reversing

SOS programming

Simulation and SOS programming

Theory of moments

Lyapunov-based methods Non-Lyapunov methods

Methods for estimating the DOA

Figure 3.1: A broad classification of the existing techniques for estimating the
DoA. This chapter proposes a sampling approach and makes a com-
parison with optimization-based methods.

Although Lyapunov-based techniques have been successfully implemented for
estimating the DoAs of various nonlinear systems [23], there are still two main is-
sues with using these approaches. The first is that most of the existing methods are
limited to polynomial systems [46, 124]. In the case of non-polynomial systems,
first the equations of motion are approximated by using the Taylor’s expansion
and then the DoA is computed based on the approximated polynomial equations.
The second is that the available methods are usually computationally costly and
time-consuming which makes them unsuitable for real-time applications [22].

This chapter proposes a fast sampling method for Lyapunov-based methods to
estimate the DoAs of various nonlinear systems. This method is computationally
effective and is beneficial for real-time applications. In this method, once a candi-
date Lyapunov function is chosen, a sampling algorithm searches for the largest
sublevel set of the Lyapunov function such that its time derivative is negative
definite throughout the obtained sublevel set. The proposed sampling method
is applied to approximate the DoAs of several nonlinear systems, which have
been already investigated in the literature, to validate its capability in compari-
son with the existing methods. This comparison goes beyond these examples and
the sampling method is implemented to compute the DoAs of the passivity-based
learning controllers [112] designed for a magnetic levitation system.

This chapter is organized as follows. Section 3.2 reviews the process of estimating
the DoAs of nonlinear systems using Lyapunov-based techniques. Section 3.3 de-

3.2 Lyapunov-Based Methods 27

scribes the sampling approach and provides a comparison between the estimated
DoAs computed by the sampling method and by the existing optimization-based
methods. Section 3.4 describes using DoA estimation for passivity-based learning
controllers. Section 3.5 presents simulation results of the sampling method eval-
uated on a magnetic levitation system. Finally, Section 3.6 concludes the chapter
after a short discussion on the capability of the proposed approach.

3.2 Lyapunov-Based Methods

Consider the closed-loop dynamical system (2.2). An analytical method to ap-
proximate the DoA is defined via Lyapunov stability theory as follows [57, 21].

Theorem 3.1 A closed setM⊂ Rn, including the origin as an equilibrium, can approx-
imate the DoA for the origin of system (2.2) if:

1. M is an invariant set for system (2.2);

2. A positive definite function L(x) can be found such that L̇(x) is negative definite
withinM.

For more details see [4]. If the equilibrium is non-zero, without loss of generality,
the variable x can be replaced by z̄ = x − x̄∗, where x̄∗ is the non-zero equilib-
rium. As such, one can study the stability of the associated zero equilibrium [4].
The conditions of Theorem 3.1 ensure that the approximated set M is certainly
contained in the DoA.

The choice of a candidate Lyapunov function is not a trivial task and the DoA
approximation relies on the shape of the Lyapunov function’s level sets. A proce-
dure to find an appropriate Lyapunov function has been proposed in [18], where
gradient search algorithms are implemented to compute a candidate Lyapunov
function. Moreover, using composite polynomial Lyapunov functions [118] and
rational Lyapunov functions instead of quadratic ones might lead to better ap-
proximations, since these have a richer representation power (see e.g., [129, 24]).
Quadratic Lyapunov functions restrict the estimates to ellipsoids which are quite
conservative [123]. A rational Lyapunov function is written in the form

L(x) =
N(x)

D(x)
=

∑∞
i=2Ri(x)

1 +
∑n−2
i=1 Qi(x)

(3.1)

where Ri(x) and Qi(x) are homogeneous polynomials of degree i, which are con-
structed by solving an optimization problem [129]. The sublevel set L(c) of the
Lyapunov function L(x) is defined by

L(c) = {x ∈ X : L(x) ≤ c}. (3.2)

28 Domain of Attraction

According to Theorem 3.1, any sublevel set of a candidate Lyapunov function that
satisfies the locally asymptotic stability of the equilibrium can be an estimate for
the DoA if the time derivative of the Lyapunov function is negative everywhere
within the sublevel set. Since the largest sublevel set provides a more accurate
estimate, the problem of approximating the DoA is converted to the problem of
finding the largest sublevel set of a given Lyapunov function [52]. To attain the
largest estimate for the DoA, one needs to find the maximum value c ∈ R for L(c)

such that the computed set satisfies the conditions of Theorem 3.1.

Theorem 3.2 [23] The invariant set L(c∗), which is a sublevel set of the Lyapunov func-
tion L(x), is the largest estimate of the DoA for the origin of system (2.2) if

c∗ = max c

s.t. L(c) ⊆ H(x)

H(x) = {0} ∪ {x ∈ Rn : L̇(x) < 0}.
(3.3)

This can be approached as an optimization problem that has been solved by us-
ing SOS programming, methods that apply both simulation and SOS program-
ming, and methods that use theory of moments. Although estimating the DoAs
of nonlinear systems using SOS programming has been widely studied in litera-
ture (see e.g., [19, 49]), it is restricted to systems and Lyapunov functions described
by polynomial equations. In the case of non-polynomial systems, the equations
are approximated by polynomial terms using Taylor’s expansion and so the DoA
is estimated based on the polynomial equations [22]. This chapter presents an
alternative approach using the sampling approach.

3.3 Sampling Method

The sampling approach presented in this chapter has the same goal as the Lya-
punov based optimization approaches have: find the largest sublevel set of a
candidate Lyapunov function to approximate the DoA. The conditions stated
in Theorem 3.1 are explicitly evaluated for a given Lyapunov function with re-
spect to a randomly chosen state xi. The level sets associated with the sample
xi with positive derivative of the Lyapunov function are discarded. Two various
sampling methods are proposed: memoryless and with a memory, designed to
achieve tighter estimates.

3.3.1 Memoryless Sampling

This method searches for the upper bound of the parameter c∗ in (3.3). First, a state
xi is randomly chosen within X or its subset and the conditions of Theorem 3.1

3.3 Sampling Method 29

are checked for L(xi) and L̇(xi). If these conditions are not satisfied, the upper
bound of c∗ is decreased to the value of ĉ∗ = L(xi) and the sublevel set L(ĉ∗) is
computed as an overestimation for the DoA. At the beginning of the algorithm, ĉ∗
is initialized at ĉ∗ = ∞. As the sampling proceeds for a large number of samples
(ns) throughout the state space, the value of ĉ∗ converges to c∗ from above and the
obtained largest sublevel set L(ĉ∗) will be very close to L(c∗). Since this procedure
just focuses on the upper bound of c∗, the achieved estimates are not tight enough
and the condition of L̇(x) < 0 may not be satisfied for some regions of the attained
sublevel set as the computed value ĉ∗ is actually larger than the real value c∗.
Nevertheless, this technique is very fast and its result is very close to the reported
estimates in the literature for various classes of systems. Moreover, it does not
require computer memory to save the computed results since once a new value
is computed for ĉ∗, its current value is replaced by the new value. Algorithm 4
summarizes this method for estimating the DoA of a given stable equilibrium.

Algorithm 4 Memoryless sampling method for estimating the DoA

Require: L(x), L̇(x), ns

1: Initialize ĉ∗ =∞
2: for i = 1 to ns do
3: Pick a random state xi within the state space
4: if L̇(xi) ≥ 0 and L(xi) < ĉ∗ then
5: ĉ∗ = L(xi)
6: end if
7: end for
8: return ĉ∗

As an example, consider a pendulum described by the following nonlinear dy-
namic equations {

ẋ1 = x2

ẋ2 = − sin(x1)− 0.5x2
(3.4)

where x1 is the angle of the pendulum measured from the vertical axis and x2 is
the angular velocity. The state vector is defined by x = [x1 x2]T . The sampling
method is used with a uniform distribution to approximate the DoA of the sta-
ble equilibrium x = (0, 0). To compute a candidate Lyapunov function, first the
dynamic equations (3.4) are linearized around the equilibrium and then the can-
didate Lyapunov function is computed in the form L(x) = xTPx, where P is the
solution of the Lyapunov equation ATP +PA+Q = 0 with the identity matrix Q.
In this example, the candidate Lyapunov function is obtained as

L(x) = 2.25x2
1 + x1x2 + 2x2

2. (3.5)

Figure 3.2 illustrates the evolution of ĉ∗ of the sampling approach with ns = 500

samples. The real value c∗ for the candidate Lyapunov function (3.5), calculated

30 Domain of Attraction

by solving the optimization problem (3.3), is c∗ = 9.287 and the value computed
by the proposed method is ĉ∗ = 9.702.

0 100 200 300 400 500
0

10

20

30

40

50

Sample number

c
*

c
*
ˆ

Figure 3.2: The evolution of ĉ∗ using the memoryless sampling method for the
pendulum example.

3.3.2 Sampling with Memory

This method updates both the lower and the upper bounds of c∗ denoted c∗ and
c̄∗, respectively. Together, these bounds yield a more accurate estimate for the
DoA. At the beginning of the algorithm, the lower bound of c∗ is set to c∗ = 0 and
its upper bound to c̄∗ = ∞. If for a randomly chosen state xi we have L̇(xi) < 0

and c∗ < L(xi) < c̄∗, then the value of c∗ is replaced by the value of its associated
Lyapunov function, that is c∗ = L(xi). Otherwise, if L̇(xi) ≥ 0 and L(xi) < c̄∗,
then the value of c̄∗ is replaced by L(xi). As the sampling proceeds, after a large
number of samples, the value of c∗ increases, but not necessarily monotonically.
Eventually it converges to c∗ and the largest sublevel set L(c∗) is obtained. More-
over, the value of c̄∗ monotonically decreases and converges to c∗ from above.

When the conditions of Theorem 3.1 are satisfied for state xi, the value of L(xi) is
stored in an array as a possible estimate for c∗. This is required to guarantee that
the approximated DoAs computed by the lower bound of c∗ always verify the
conditions of Theorem 3.1. This leads to tighter estimates. The array, denoted Ē ,
contains 0 initially. The length of this array, without counting its initial element,
is in the worst case ns − 1. When L̇(xi) < 0 and L(xi) < c̄∗, the value of L(xi)

is stored in an array Ē as L (L(xi)) is a potential estimate for the DoA. In the
case L̇(xi) ≥ 0 and L(xi) < c̄∗, if c∗ ≥ c̄∗ then the algorithm looks for a new
lower bound c∗ among the values stored in the array Ē . The maximum value of
c∗ is chosen from Ē such that c∗ < c̄∗. Selecting a previously stored lower bound

3.3 Sampling Method 31

satisfies the condition L̇ < 0 for the obtained sublevel set L(c∗). In the worst case
scenario c∗ = 0. Algorithm 5 describes the sampling method with memory for
estimating the DoA.

Algorithm 5 Sampling method with memory for estimating the DoA

Require: L(x), L̇(x), ns

1: Initialize c∗ = 0, c̄∗ =∞, Ē = {0}
2: for i = 1 to ns do
3: Pick a random state xi within the state space
4: if L̇(xi) < 0 and L(xi) < c̄∗ then
5: store L(xi) in Ē
6: if L(xi) > c∗ then
7: c∗ = L(xi)
8: end if
9: else if L̇(xi) ≥ 0 and L(xi) < c̄∗ then

10: c̄∗ = L(xi)
11: if c∗ ≥ c̄∗ then
12: c∗ = arg max{c ∈ Ē : c < c̄∗}
13: end if
14: end if
15: end for
16: return c∗

This approach is applied with a uniform distribution sampling to approximate
the DoA for the equilibrium of the pendulum example. Figure 3.3 illustrates the
values of the lower and upper bounds of c∗ throughout the sampling process with
500 samples where c∗ = 9.174. Figure 3.4 depicts the approximated DoA of the
equilibrium. The black ellipsoid represents the DoA estimate with c∗ = 9.271, the
dashed blue line, which determines the boundary of the light blue area, represents
the region in which L̇(x) < 0, and the arrows represent the system trajectories. If
the trajectories start inside the DoA estimate, they certainly converge to the origin.
The randomly chosen sampling states, which are 500 samples in this example, are
represented by red points throughout the state space.

3.3.3 Repeatability

To check the repeatability of the proposed sampling approach, the process of es-
timating the DoA for the equilibrium of the pendulum example is run various
instances. Figure 3.5 illustrates the mean value of c∗ and c̄∗ (i.e., (c∗ + c̄∗)/2) and
its standard deviation by a black line and green bars, minimum of c∗ and maxi-
mum of c̄∗ by blue dashed lines at each sample in a simulation where the sampling
method runs 1000 iterations each with 500 samples. The real value of c∗ = 9.287 is
represented by a dotted red line. While sampling proceeds, the mean, minimum

32 Domain of Attraction

0 100 200 300 400 500
0

5

10

15

20

25

Sample number

c
*

c
*

c
*

Figure 3.3: The evolution of c∗ and c̄∗ using the sampling method with memory
for the pendulum example.

-4 -2 0 2 4
-4

-2

0

2

4

x 2

x1

Figure 3.4: Approximated DoA for the pendulum example using a uniform distri-
bution for sampling. The black ellipsoid represents the DoA estimate,
the dashed blue line (boundary of the light blue area) represents the
region in which L̇(x) < 0, the arrows represent the system trajectories,
and the red points represent the randomly chosen sampling states.

3.3 Sampling Method 33

and maximum values converge to the real value of c∗ and the value of the stan-
dard deviation decreases. These results validates the repeatability of the proposed
sampling techniques for this particular model.

0 100 200 300 400 500
0

10

20

30

40

50

Sample number

c
*

Mean c
*
 and c

*

Max c
*
 and Min c

*

Figure 3.5: The evolution of mean value of c∗ and c̄∗ and its standard deviation,
minimum value of c∗, and maximum value of c̄∗ for the sampling
method in the pendulum example. The real value of c∗ is represented
by the dotted red line.

3.3.4 Directed Sampling

In the pendulum example, a uniform distribution is used for sampling the state
space or its subset. However, if the structure of the level sets of the Lyapunov
function are known, other distributions can be used to avoid sampling in areas of
the state space which are already known not belong to the DoA. It is desirable to
sample inside the largest level set found so far, specially in its boundary.

In general sampling with an arbitrary distribution is a challenging problem. Two
main approaches exist in the literature: rejection sampling and inverse transform
sampling [11], which focus on sampling the relevant locations of the state space
at the cost of computational complexity. While evaluating a particular sample is
costly (due to a complicated Lyapunov function or system dynamics), the extra
cost incurred by sampling from a complex distribution may be negligible.

To test the trade-off between the speed of convergence and the computational cost,
three different sampling approaches are applied to the pendulum example (3.4).
The uniform sampling on a fixed box (a subset of the state space) is compared
with uniform sampling mapped through polar coordinates to lie inside the largest

34 Domain of Attraction

found valid level set and with exponential sampling mapped through polar coor-
dinates to lie around the boundary of the largest found valid level set. Figure 3.6
illustrates the sampling points selected by the three types of distributions. The
obtained data corroborate the hypothesis that different sampling leads to differ-
ent convergence rates. Figure 3.7 illustrates the convergence statistics for 1000
iterations with 500 samples each. The exponential polar sampling converges the
fastest and has the lowest variation between c∗ and c̄∗ while converging. This can
be explained by observing in Figure 3.6(c) that most of the samples are focused
around the boundary of the level set. For this particular example, the cost of eval-
uating the Lyapunov function and its time derivative is low, but the computation
time increases with the complexity of the sampling algorithm. Table 3.1 shows
the average computation time of each sampling method with 500 samples, imple-
mented in the Mathematica software on an Intel core i7 2.7 GHz microprocessor.

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4
-4

-2

0

2

4

x 2

x1

x 2 x 2

x1 x1

(a) (b) (c)

Figure 3.6: Approximated DoAs for the pendulum example using a (a) uniform,
(b) polar uniform, and (c) polar exponential distribution for sam-
pling. In the plots, the black ellipsoid represents the DoA estimate,
the dashed blue line represents the region in which L̇(x) < 0, the ar-
rows represent the system trajectories, and the red points represent the
randomly chosen sampling states.

Table 3.1: Computation time statistics of the sampling methods with various dis-
tributions for estimating the DoA of the pendulum example

Sampling method Time [ms]
Uniform in a box 7.4
Uniform in polar coordinates 17.1
Exponential in polar coordinates 27.4

3.3 Sampling Method 35

0 100 200 300 400 500

Sample number

10

20

30

40

50

Uniform
Polar uniform
Polar exponential

Figure 3.7: The evolution of the mean value of c∗ and c̄∗, minimum value of c∗,
and maximum value of c̄∗ for the sampling technique implemented
for the pendulum example with a uniform, polar uniform, and polar
exponential distribution. The sampling method runs 1000 iterations
each with 500 samples. The real value of c∗ is represented by a dashed
black line.

3.3.5 Sampling vs. Optimization-Based Methods

Both the sampling and optimization-based methods require a candidate Lyapunov
function for estimating the DoA. Table 3.2 represents six dynamical systems with
quadratic Lyapunov functions selected from the literature. The dynamic equa-
tions of the first three examples are polynomial and the equations of the last three
are non-polynomial. Examples E3 and E6 are third-order systems and the oth-
ers are second-order systems. For each system, the maximum possible value of
c∗ computed by the sampling approach with 1000 samples is compared with the
result of optimization-based methods, reported in the literature. The estimates
attained by the sampling technique are very close to the estimates derived by
optimization-based methods. In some cases, such as example E2, the result of the
sampling procedure is even more accurate. The last column of Table 3.3 presents
the simulation time for approximating the DoA of each system using the sampling
approach, implemented in the Matlab R2014a software on an Intel core i7 2.7 GHz
microprocessor.

Similarly, Table 3.4 illustrates three dynamical systems with rational Lyapunov
functions selected from the literature. Example E7 is a second-order polynomial
system, E8 is a second-order non-polynomial system and E9 is a third-order poly-
nomial system. Table 3.5 presents their corresponding rational Lyapunov func-
tions based on (3.1). The maximum possible value of c∗ obtained by the sampling
approach with 1000 samples is compared with the result of optimization-based

36 Domain of Attraction

Table 3.2: Dynamical systems with quadratic Lyapunov functions
Example Systems dynamics Lyapunov function

E1 [123, 46] ẋ1 = −2x1 + x1x2

ẋ2 = −x2 + x1x2

x2
1 + x2

2

E2 [129, 46] ẋ1 = −x2

ẋ2 = x1 − x2 + x2
1x2

1.5x2
1 − x1x2 + x2

2

E3[124, 47] ẋ1 = −x1 + x2x
2
3

ẋ2 = −x2 + x1x2

ẋ3 = −x3

x2
1 + x2

2 + x2
3

E4 [20, 108] ẋ1 = − 1
4x1 + ln(1 + x2)

ẋ2 = − 3
8x1 − 1

5x1x2 + (1
8x1 − x2) cosx1

x2
1 + x2

2

E5 [22] ẋ1 = x2

ẋ2 = −0.2x2 + 0.81 sinx1 cosx1 − sinx1

x2
1 + x1x2 + 4x2

2

E6 [20] ẋ1 = 1 + x3 + 1
8x

2
3 − exp(x1)

ẋ2 = −x2 − x3

ẋ3 = −x2 − 2x3 − 1
2x

2
1

x2
1 + x2

2 + x2
3

methods, reported in the literature. The result of this comparison validates the
proposed sampling technique particularly for non-polynomial systems. The sim-
ulation time for approximating the DoA of each system using the sampling proce-
dure is given in the last column of Table 3.4, which are considerable smaller than
the rarely reported simulation time for the optimization-based methods in the
literature. Figure 3.8 depicts the approximated DoAs obtained by the sampling
method for the origins of examples E1–E9. According to the results obtained, the
proposed sampling approach is suitable for estimating the DoAs of both polyno-
mial and non-polynomial systems. It is computationally effective and computes
the DoA estimate considerably fast. Although the sampling method may offer less
accurate estimates for the DoA at times, it is very useful for real-time applications.

Table 3.3: Simulation results of the sampling method for the systems of Table 3.2
Example Optimization (c∗) Sampling (c∗) Time [ms]

E1 4.0804 4.112 6.6
E2 2.09 2.318 6.7
E3 4.9188 4.971 8.4
E4 0.2737 0.278 8.3
E5 0.6990 0.708 7.2
E6 2.655 2.887 8.6

3.3 Sampling Method 37

Table 3.4: Dynamical systems with rational Lyapunov functions
Example Systems dynamics Opt. (c∗) Sampling (c∗) Time [ms]

E7 [97, 74] ẋ1 = −x2

ẋ2 = x1 − x2 + x2
1x2

5.3133 5.131 14.0

E8 [22, 74] ẋ1 = −x1 + x2

+0.5(exp(x1)− 1)
ẋ2 = −x1 − x2 + x1x2

+x1 cosx1

1.2251 1.218 14.6

E9 [47, 74] ẋ1 = −x1 + x2x
2
3

ẋ2 = −x2 + x1x2

ẋ3 = −x3

1.320 1.318 16.6

Table 3.5: Rational Lyapunov functions for the systems of Table 3.4
Example Numerator and denominator terms of the Lyapunov function (3.1)

E7 R2(x) = 1.5x2
1 − x1x2 + x2

2

R3(x) = 0
R4(x) = −0.3186x4

1 + 0.7124x3
1x2 − 0.1459x2

1x
2
2 + 0.1409x1x

3
2

−0.03769x4
2

Q1(x) = 0
Q2(x) = −0.2362x2

1 + 0.31747x1x2 − 0.1091x2
2

E8 R2(x) = x2
1 + 1.3333x1x2 + 1.1667x2

2

R3(x) = −0.2272x3
1 − 0.1396x2

1x2 + 0.3785x1x
2
2 − 0.1798x3

2

R4(x) = 0.0136x4
1 − 0.2864x3

1x2 + 0.1918x2
1x

2
2 − 0.0530x1x

3
2

+0.0172x4
2

Q1(x) = −0.5605x1 − 0.7255x2

Q2(x) = 0.3254x2
1 + 0.0910x1x2 + 0.1015x2

2

E9 R2(x) = 0.5x2
1 + 0.5x2

2 + 0.5x2
3

R3(x) = −0.0739x3
1 + 0.2594x1x

2
2 − 0.0739x1x

2
3

R4(x) = −0.0301x4
1 + 0.0573x2

1x
2
2 − 0.0301x2

1x
2
3 + 0.2501x1x2x

2
3

−0.03x4
2 − 0.03x2

2x
2
3

Q1(x) = −0.1478x1

Q2(x) = −0.0602x2
1 − 0.06x2

2

38 Domain of Attraction

(a) System E1 (b) System E2

x 2

x1 x1

x 2

(c) System E3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
x2

x1

x3

(d) System E4 (e) System E5

x 2

x1 x1

x 2

(f) System E6

(g) System E7 (h) System E8

x 2

x1 x1

x 2

(i) System E9

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x1

x3

x2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x1

x3

x2

Figure 3.8: Approximated DoAs for the origins of examples E1–E9 described
in Table 3.2 and Table 3.4 using the sampling method.

3.4 Passivity-Based Learning Control with Domain of Attraction Estimation 39

3.4 Passivity-Based Learning Control with Domain of
Attraction Estimation

One of the main advantages of DoA approximation is to speed up the process of
control design, specifically for passivity-based learning controllers. Consider the
control input of the A-IDA-AC algorithm, described by (2.36), as a passivity-based
learning controller. The DoA of the learned controller is approximated after each
learning trial via the sampling method. Once the approximated DoA covers the
desired regions of the state space, learning can be terminated. As such, monitoring
the DoAs of the learned controllers provides a stopping criterion for the learning
process. Algorithm 6 summarizes the procedure of the control design with DoA
estimation. In this algorithm, the loop counter w counts the number of learning
trials after which the DoA of the controller is sufficiently large to cover the initial
state, k counts the number of samples in a learning trial, ns denotes the number of
samples defined for the learning trials, and nt represents the scheduled number of
trials for the learning process. Figure 3.9 illustrates a block diagram representation
of the A-IDA-AC algorithm together with DoA estimation.

Algorithm 6 Algebraic interconnection and damping assignment actor-critic algo-
rithm with DoA estimation
Require: system (2.26), x0, λ, γ, αa, αc, na, nc, ns, nt

1: w ← 0
2: e0 = 0
3: Initialize θ0, ϑ0

4: repeat
5: w ← w + 1
6: Initialize x0

7: for k = 1 to ns do
8: Algebraic interconnection and damping assignment actor-critic:
9: uk = sat (π̂(xk, ϑk) + ∆uk)

10: Apply actor-critic RL to update ϑk based on Algorithm 3
11: end for
12: A-IDA-AC controller Φ
13: Estimate the DoA D(Φ) based on Algorithm 5
14: until x0 ∈ D(Φ) or w = nt

3.5 Simulation Results: Magnetic Levitation System

The performance of the proposed sampling method is evaluated for estimating
the DoA of the A-IDA-AC controller designed for a magnetic levitation system to
stabilize an steel ball at a desired position. The magnetic-levitation system [48],

40 Domain of Attraction

Learning algorithm
 Actor-critic

Cost function

ϑ

x

ρ(x, u)

Hd(x)

Control law
∇xHd(x) Fd(x)

f(x) Plant

Estimating DOA
f(x)H(x)

u

reward
ref

D̂(u)

Figure 3.9: Block diagram representation of the A-IDA-AC algorithm with DoA
estimation.

represented in Figure 3.10, is modeled by the dynamic equations

Mq̈ = Mg − e2C1

2
(
C1 + I0(C2 + q)

)2 (3.6)

ė = −R e(C2 + q)

C1 + I0(C2 + q)
+ u

where q is the steel ball vertical position and e = I(q)i is the magnetic flux with i
the current through the coil and I(q) the varying-inductance given by

I(q) =
C1

C2 + q
+ I0. (3.7)

The saturated control input u is the voltage across the coil. The state vector is
defined by x = [q p e]T , where p = Mq̇ is the momentum. Table 3.6 illustrates the
values of the model parameters for the magnetic levitation system.

Table 3.6: Model parameters of the magnetic levitation system
Model parameter Symbol Value Unit
Mass of steel ball M 0.8 kg
Electrical resistance R 11.68 Ω
Coil parameter 1 C1 1.6× 10−3 Hm
Coil parameter 2 C2 7× 10−3 m
Nominal inductance I0 0.8052 H
Gravity g 9.81 m·s−2

3.5 Simulation Results: Magnetic Levitation System 41

qd

Figure 3.10: Schematic representation of the magnetic levitation system, adopted
from [128].

The closed-loop system with respect to the feed-back control input is described by

 q̇

ṗ

ė

 =

 0 1 0

1 −F22(x) F23(x)

0 −F23(x) −R



∇qHd(x)

∇pHd(x)

∇eHd(x)

 . (3.8)

The desired Hamiltonian Hd(x) that satisfies the equilibrium condition (2.16) at
the desired state xd = (qd, p, ed) = (0.065, 0, 1.2) is chosen in the quadratic form

Hd(x) =
1

2
γq(q − qd)2 +

p2

2M
+

1

2I0
(e− ed)2 (3.9)

where γq is a unit conversion factor with the value of one. The desired magnetic
flux ed is described by

ed =
√

2Mg/C1

(
C1 + I0(C2 + qd)

)
. (3.10)

Substituting (3.6)–(3.10) in (2.28) and applying Fourier basis functions to approxi-
mate F23 as F23(x, ϑ) = ϑTφ(x), the parameterized control policy is given by

π̂(x, ϑ) = −ϑTφ(x)
p

M
−R (e− ed)

I0
+R

e(C2 + q)(
C1 + I0(C2 + q)

) (3.11)

which is then substituted in (2.36) to compute the saturated control input at each
time step. The parameter vector ϑ is learned using the actor-critic RL method as
described in Algorithm 6. The learning parameters and state limitations (due to
the physical constraints) is given in Table 3.7. Moreover, Figure 3.11 shows the
sum of rewards that a learning A-IDA-AC controller receives per trial through the
learning simulation with 60 trials.

42 Domain of Attraction

Table 3.7: Learning parameters and state limitations of the magnetic levitation
system

Parameter Symbol Value Unit
Sample time Ts 0.004 s
Trial time Tt 2 s
Number of trials – 60 –
Decay rate γ 0.95 –
Eligibility trace λ 0.65 –
Exploration variance σ2 1 –
Learning rate of critic αc 0.01 –
Learning rate of F21(x) αaϑ 1× 10−7 –
Max control input umax 60 V
Max position qmax 13× 10−3 m
Max momentum pmax 3× 10−1 kg·m·s−1

Max magnetic flux emax 3 Wb

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
−10000

−9000

−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

Time [min]

S
um

 o
f r

ew
ar

ds
 p

er
 tr

ia
l

Figure 3.11: Sum of rewards that a learning controller receives per trial over a
learning simulation with 60 trialsfor the magnetic levitation system.

3.6 Conclusions 43

The sampling method is implemented to approximate the DoA of the learned con-
troller after each learning trial. The system Hamiltonian is deployed as a candi-
date Lyapunov function to estimate the DoA. Figure 3.12 presents the DoAs ap-
proximated for the learned controllers at four specific trials, where the trial num-
bers are also illustrated. While learning is in progress, the DoA typically enlarges
centered at the desired state xd = (0.065, 0, 1.2). In this example, after 24 trials the
controller’s DoA becomes sufficiently large to include the initial ball position. Fig-
ure 3.13 illustrates an evaluation of the learned controller in simulation. As shown
in this figure, the steel ball stays at the initial position for 0.06 seconds while the
control input is not zero. This time is necessary for magnetizing the coil.

qd

p
d

ed

9
14 24

5

Figure 3.12: Approximated DoAs of the learned controllers at four specific trials
for the magnetic levitation system, with trial numbers.

3.6 Conclusions

This chapter has proposed a fast sampling approach for estimating the DoAs of
nonlinear systems in real-time. The approximated DoAs computed by this tech-
nique have been compared with the estimates derived by optimization based
methods. It is concluded that the sampling approach is fast and computation-
ally effective in comparison with optimization-based methods and it can be used
for real-time applications. Although a formal guarantee for convergence does not
exist yet, the empirical evidence arising from extensive simulations suggests that
in practice this approach always converges to the exact level set for a sufficiently

44 Domain of Attraction

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.005

0.01

0.015

P
os

iti
on

 q
 [m

]

Time [s]

0 0.05 0.1 0.15 0.2 0.25 0.3
−0.15

−0.1

−0.05

0

M
om

en
tu

m
 p

 [K
g.

m
.s
−1

]

Time [s]

0 0.05 0.1 0.15 0.2 0.25 0.3
−3

−2

−1

0

M
ag

ne
tic

 fl
ux

 e
 [W

b]

Time [s]

e
ed

p
pd

q
qd

Figure 3.13: Simulation results of the learned controller for the magnetic levitation
system.

large number of samples. Moreover, the rate of convergence depends on the dis-
tribution function selected for sampling. Using a more sophisticated distributed
function can speed up convergence of the sampling procedure. As such, there is a
trade-off between the speed of convergence and the computational cost imposed
by the complexity of the sampling distribution function.

In addition, the sampling approach has been applied to approximate the DoAs of
passivity-based learning controllers at every learning trial. This online approxi-
mation can be used as a stopping criterion for the learning process. This allows
learning to be terminated as soon as the controller’s DoA is sufficiently large to
satisfy the control objective. Thus, the proposed sampling method enables learn-
ing in a short amount of time.

4 CHAPTER

Learning Sequential Composition
Control

This chapter proposes a new approach to enable the automatic syn-
thesis of supervisory controllers via a learning sequential compo-

sition control. It augments the given pre-designed control system by
learning new controllers online and on demand, using the actor-critic RL
method. The learning process is always safe since the exploration in the
course of learning the new controller only takes place within the DoAs of
the existing controllers. The proposed approach has been implemented
on two nonlinear systems: nonlinear mass-damper system and under-
actuated inverted pendulum. This learning control technique has also
been extended for situations where no controller exists initially and all
controllers have to sequentially be synthesized so as to achieve the con-
trol objective. This algorithm is demonstrated on a simulated example of
mobile robot navigation.

4.1 Introduction

As discussed in Chapter 2, the standard sequential composition cannot address
the tasks for which no controller was designed a priori in the supervisory struc-
ture. This chapter studies automatic synthesis of supervisory control systems us-
ing the paradigm of sequential composition. A learning sequential composition
control algorithm is developed to learn new controllers by means of RL on de-
mand. Once learning is complete the supervisory control structure is augmented
with the new learned controllers. As a consequence, the overall DoA of the super-
visor can incrementally cover larger areas of the state space on a need basis.

45

46 Learning Sequential Composition Control

Suppose a humanoid robot with a task of fetching the mail for which a dedicated
controller is designed for walking, one for climbing stairs, and one other for grasp-
ing and dropping objects. As such, the fetching mail task can be interpreted as a
sequential composition of controllers in the form: walk to the mail room, grasp
the mail, walk up the stairs, and finally drop the mail at the office. If during its
task of delivering the mail it encounters a floor covered with unknown debris,
due to building maintenance, and if a “walk on debris controller” is not a part
of the database of controllers of the robot, then either the robot must stop or it
must “try” to cross the debris. Sequential composition alone would result in a
stop. This section aims at enabling the try option by augmenting the supervisory
controller with a learning module.

This chapter proposes a learning sequential composition control approach to han-
dle unmodeled situations by means of online learning. The aim of this chapter is
to address three main questions as follows:

1. How to learn a new controller online that can be added to the existing su-
pervisory control architecture?

2. How to guarantee that the learning process is safe?

3. What is a suitable criterion for stopping the learning process?

The proposed learning sequential composition method works as follows. When
a desired state is given, the supervisor computes a sequence of controllers over
the control automaton. This sequence steers the system from an initial state to the
desired state by switching between the local controllers. However, if the supervi-
sor does not succeed in finding a sequence of controllers that drive the system to
the desired state with its current set of controllers, a learning mode is activated to
learn a new controller. Once the controller is learned, it is added to the control au-
tomaton by interconnecting it with the associated controllers such that it respects
the prepare relation.

For learning new controllers, the RL methods are implemented in which the con-
troller is computed by interaction with the system, without the need of a model
[116]. The learning experiments only explore the regions located within the union
of the existing DoAs. This form of learning guarantees that exploration is always
safe, because the supervisor can activate a stabilizing controller if the learning pro-
cess reaches the boundary of the overall DoA. After each learning trial, the DoA
of the learned controller is approximated by solving an optimization problem us-
ing SOS programming or by applying the sampling method. While learning is in
progress, the DoA of the controller typically enlarges around its goal set. Once the
DoA gets large enough to cover other DoAs and relevant goal sets to provide the
necessary connections between the controllers, the learning process is terminated
and the learned controller is added to the control automaton.

4.2 Learning Sequential Composition 47

This chapter is organized as follows. Section 4.2 proposes the use of learning in se-
quential composition. Section 4.3 discusses rapid learning by exploiting the DoAs
of the learning controllers and using passivity theory. In Section 4.4, simulation
and experimental results are presented for the application of the proposed method
on two nonlinear systems. Section 4.5 develops a feedback motion planning tech-
nique based on the learning sequential composition control. Finally, Section 4.6
provides a brief discussion and then concludes the chapter with some research
lines for future work.

4.2 Learning Sequential Composition

Consider a sequential composition controller designed for an input-saturated in-
verted pendulum, see Figure 4.1(a). The state vector is x = [q p]T with q the angle
of the pendulum measured from the upright position and p = Jq̇ the angular
momentum. The control system consists of two controllers Φup and Φdown. Con-
troller Φup stabilizes the pendulum at the “up” equilibrium (q = 0) and controller
Φdown at the “down” equilibrium (q = π). Figure 4.1(b) illustrates the state space
of the pendulum with the approximated DoAs and goal sets. Since the control
input is saturated, controller Φup cannot swing the pendulum up from any initial
state. Hence, D(Φup) is represented by a conservative ellipsoid centered at point
(0, 0). Controller Φdown is globally stabilizing and its DoA is the entire state space,
hence D(Φdown) is illustrated by a rectangle covering the whole state space. The
goal sets of the up and down controllers are the points G(Φup) = {(0, 0)} and
G(Φdown) = {(π, 0)}, respectively. Figure 4.1(c) depicts the control automaton, in
which every mode si is associated with controller Φi. There is a prepare relation
between controller Φup and Φdown since G(Φup) ⊂ D(Φdown), i.e. event down con-
nects mode sup to sdown. The supervisor is automatically synthesized based on the
prepare relation described between the two controllers.

If the system starts in mode sdown, the feasible string of events for the control
automaton are Sdown = {down∗}, where the operator “∗” denotes the Kleene clo-
sure [106], i.e. Sdown = {ε, down, down down, · · · } with ε an “empty” mode. If the
system starts at mode sup, the available strings are Sup = {up∗down∗}. Thus, if
the reference event signal is given as Sref = down up, the supervisory controller
will block, because there is no arc connecting mode sdown to sup. In such a case,
the supervisor needs a new controller to construct the required connections in the
control automaton.

The standard formulation of a hybrid automaton [2] is described by the tuple
H = (Q,X,F , Init, Inv, E,G,R), where

• Q = {q1, q2, ..., qn} is a finite set of discrete states.

• X ⊆ Rn is a set of continuous states.

48 Learning Sequential Composition Control

(a) (c)

Motor

m

l

q

(b)

−4 −3 −2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

6

x 10−3

Angle q [rad]

M
om

en
tu

m
 p

 [k
g.

m
2 .s −

1]

Figure 4.1: Sequential composition controller designed for an inverted pendulum.
(a) Schematic representation of the inverted pendulum. (b) Approxi-
mated DoAs and goal sets. (c) Induced control automaton.

• F : Q×X → X is a vector field.

• Init ⊆ Q×X is a set of initial states.

• Inv : Q× P(X) describes the invariants.

• E ⊆ Q×X is a set of edges.

• G : E → P(X) is a guard condition.

• R : E → P(X ×X) is a reset map.

In this definition, P(X) is the power set ofX (i.e., the collection of all subsets ofX)
and the guard condition G returns a subset of X for each transition. The hybrid
state is given by (q, x) ∈ Q × X and ẋ = f(q, x) describes the evolution of the
continuous state x in mode q.

The use of RL in sequential composition for online learning new controllers is
proposed in [89], which is called learning sequential composition control. In this
method, if the supervisor cannot find a sequence among the pre-designed con-
trollers to drive the system to the desired state, a learning mode is activated to
learn new controllers using RL methods. The learning objective is defined such
that the goal set of the learned controller lies inside one of the back-reachable
DoAs of the desired state and its DoA is sufficiently large to cover a reachable
goal set of the initial state. Once the controller is learned, it is added to the control
system together with its corresponding connections with other controllers.

To formalize the framework for learning sequential composition control, the stan-
dard formulation of a hybrid automaton [17] is adapted with the supervisory con-
trol structure to construct a learning control automaton. The new element of this

4.2 Learning Sequential Composition 49

supervisory finite-state machine is a learning mode that activates learning on a
need basis to generate new controllers online.

Definition 4.1 The tuple A` = (X ,S, E, (s0, x0),Φ, F,D,G, g,Γ) describes the learn-
ing control automaton, where the following holds.

• X ⊆ Rn is the state space of a continuous-time system.

• S = {ε, s`, s0, s1, ..., sq} is a finite set of discrete states or modes. Moreover, an
empty mode ε and a learning mode s` is included. The hybrid state of the system is
represented by the pair (si, x) ∈ S × X .

• E = {e`, e1, ..., ep} is a finite set of events, where the learning event e` triggers the
learning mode s`.

• (s0, x0) is the initial mode.

• Φ = {Φ`,Φ0,Φ1, ...,Φq} is a set of controllers, where Φ` is an overall learning
controller.

• F : S×X×Φ→ Rn is a vector field that constrains the evolution of the continuous-
time system to the differential equation ẋ = f

(
x,Φi(x)

)
, with mode si ∈ S/{ε}.

• D : S → 2X assigns to each mode si the DoA of its associated controller, hence
D(si) = D(Φi), D(ε) = ∅, and D(s`) = D(Φ).

• G : S → 2X assigns to each mode si the goal set of its associated controller, hence
G(si) = G(Φi), G(ε) = ∅, and the goal set of the learning mode s` is defined at each
learning instance.

• g : S × E → S is a discrete-event transition.

• Γ : S → 2E is an active event function.

Note that the DoA of the learning controller Φ`, associated with mode s`, is the
union of the DoAs of the existing controllers, i.e.,D(Φ`) = D(Φ). Hence, controller
Φ` can be activated from any point in the overall DoA. The goal set G(Φ`) is
defined at each instance when the learning controller is activated. The learning
objective is described such that the DoA of the learned controller covers the goal
set of a specific controller. This can generate the required connections through
the learning control automaton. To detect when the learning mode s` needs to be
activated, a binary function P : X ×X → {true, false} is executed. When P is false
the learning mode is triggered. The binary function P is described as follows:

P (x0, xd) =



true if ∃ a path in the control automaton
si → si+1 → · · · → si+k such that
x0 ∈ D(si) and G(si+k) = {xd}.

false otherwise.

50 Learning Sequential Composition Control

4.2.1 Properties

In sequential composition, a reference signal is given either as a string (sequence)
of events or as a desired continuous-time state. If a desired sequence of events
Sref = e1e2 . . . er is available, the supervisor executes the associated controllers
from the set {Φ1,Φ2, · · · ,Φr}, sequentially. Each controller Φi needs an inherent
time to evolve state xi0 ∈ D(Φi) to xid ∈ G(Φi) with respect to the differential
equation ẋ = f(x,Φi(x)), where xi0 and xid are the initial state and the goal set of
controller Φi, respectively. Note that the goal set of each controller (except for the
desired state) should be in the DoA of the next controller to enable the supervisor
to switch between the controllers.

If the reference signal is given as a desired continuous-time state xd ∈ X , an extra
process is required to first find a path through the control automaton. For a given
desired state xd, the supervisor searches for a feasible sequence of controllers that
drives the system from its current state to the desired state. The binary function
P summarizes the result of exploring through the learning control automaton.
The process of making a path towards the desired state relies on the conditions
outlined below [89]:

1. If P (x0, xd) is true, the standard sequential composition can drive the system
from the initial state x0 to the desired state xd.

2. If ¬P (x0, xd), ∃i : x0 ∈ D(si), and ∃j : xd ∈ G(sj), the modes that cover
the initial and desired states in the state space are in disconnected sections
of the control automaton. This problem can be addressed by learning new
controllers to connect the two sections. The DoA of the learned controller
has to overlap with one of the reachable goal sets of the initial condition,
and its goal set needs to overlap with one of the back-reachable DoAs of the
desired state. See Figure 4.2.

3. If ¬P (x0, xd), ∃i : x0 ∈ D(si), @j : xd ∈ G(sj), but ∃j : xd ∈ D(sj), a new
controller is needed such that its goal set be the desired state. See Figure 4.3.

4. If ¬P (x0, xd) and @j : xd ∈ D(sj), the desired state xd is not in the DoA of
any controller. This requires a new controller to cover unknown regions of
the state space. See Figure 4.4.

5. If ¬P (x0, xd) and the initial hybrid state is (ε, x0), the initial state x0 is not in
the DoA of any controller, i.e., @i : x0 ∈ D(si). This situation corresponds to
a lack of an initialization routine of the control system which is not consider
in this thesis. See Figure 4.5.

Table 4.1 summarizes the conditions that can happen for the learning sequential
composition controller.

4.2 Learning Sequential Composition 51

Figure 4.2: a) Pictorial sketch of the DoAs and the goal sets of a control system
in which the initial state x0 is in the DoA of a controller and the de-
sired state xd lies in the goal set of another controller, but there are
no event transitions connecting these two controllers; b) the induced
control automaton.

x d

Figure 4.3: a) Pictorial sketch of the DoAs and the goal sets of a control system in
which the desired state xd is not in the goal set of any controller, but
lies in the DoA of a controller; b) the induced control automaton.

Figure 4.4: a) Pictorial sketch of the DoAs and the goal sets of a control system
in which the desired state xd does not lie inside the goal set of any
controller; b) the induced control automaton.

52 Learning Sequential Composition Control

Figure 4.5: a) Pictorial sketch of the DoAs and the goal sets of a control system in
which the initial state x0 does not lie inside the DoA of any controller;
b) the induced control automaton.

Table 4.1: Various conditions that might happen for the designed sequential com-
position controller

P (x0, xd) ∃j : xd ∈ G(sj) ∃j : xd ∈ D(sj) ∃i : x0 ∈ D(si) Condition
true true true true –
false true true true 2
false true true false 5
false false true true 3
false false true false 3, 5
false false false true 4
false false false false 4, 5

The traditional sequential composition is not designed to cope with the situation
¬P (x0, xd) (i.e., conditions 2–5 or their combinations). As such, the learning mode
is introduced to create the required connections between the controllers. In this
chapter, the actor-critic RL method is implemented.

The stability of the learning sequential composition controller can be addressed
by three stability sub-problems. The first is the stability of the pre-designed con-
trollers. Based on the properties of sequential composition, it is assumed that
every pre-described controller can stabilize the system at its goal set. The second
is the stability of the new learned controllers. Using actor-critic RL generates new
controllers that stabilize the system in their computed DoAs. The third is the over-
all stability of the composed controlled system, handled by the prepare relation.

4.2.2 Safe Learning

One of the main concerns of learning is safety. To guarantee the safety of the
learning process, the learner is restricted to only explore regions of the state space
that lie in the union set of the existing controllers’ DoAs. This type of exploration
is safe since the supervisor can always execute a stabilizing controller once the

4.2 Learning Sequential Composition 53

learner reaches the boundary of the union of the existing DoAs. This restricted
learning process is called bounded learning. Consider the condition ¬P (x0, xd),
with ∃i : x0 ∈ D(si) and ∃j : xd ∈ D(sj). Two situations are possible for this
condition. In the first situation, the DoAs of the existing controllers cover the state
space such that the learner does not necessarily need to leave the union of the
DoAs to achieve the learning objective. Figure 4.6 illustrates a sequential composi-
tion controller with two controllers Φ1 and Φ2, where x0 ∈ D(Φ1) and xd ∈ D(Φ2),
but xd /∈ G(Φ2). To attain the desired state xd, the learner starts exploring from the
goal set G(Φ2) and searches for the possible trajectories to the desired state. Once
a learning experiment reaches the boundary of the union set D(Φ1) ∪ D(Φ2), the
learning process is reset to G(Φ2). This is an example of bounded learning.

x 0 x d

Figure 4.6: (a) Pictorial sketch of the DoAs and goal sets of a sequential composi-
tion controller, where x0 ∈ D(Φ1), xd ∈ D(Φ2), and controller Φ1 pre-
pares controller Φ2. (b) Induced control automaton, in which the learn-
ing mode can make the required connection s2 to s1 using bounded
learning.

The second situation is when there is no connection between the controllers and
the union of the DoAs is not a simply connected set. Here, the learner may need to
leave the existing DoAs to achieve the learning goal, as depicted in Figure 4.7. This
type of learning can be dangerous, because there is no guarantee that the learning
experiments can be reset when the learner is exploring new regions of the state
space for which no controller was designed a priori. This is called unbounded
learning in the sense that the learner is not restricted to just explore within the
overall DoA. This chapter only considers bounded learning.

When the learning mode s` is activated in a bounded learning process, the learner
explores within the existing DoAs. Once the learning goal is attained, a new con-
troller Φ` with the DoA D(Φ`) and goal set G(Φ`) are stored in the control system.
Moreover, the learned mode s` with its corresponding arcs are added to the learn-
ing control automaton based on the prepare relation.

One element that is not addressed in this chapter is the automatic choice of the
parameters that are required for the learning experiment such as the basis func-
tions for the approximated value function and policy, the reward function, and the
learning rates. Currently, much experience goes into designing RL experiments
that can run efficiently.

54 Learning Sequential Composition Control

x 0
x d

Figure 4.7: (a) Pictorial sketch of the DoAs and goal sets of a sequential compo-
sition controller, where x0 ∈ D(Φ1) and xd ∈ G(Φ2), but controller
Φ1 does not prepare controller Φ2. (b) the induced control automaton,
in which the learning mode can only make the required connections
using unbounded learning.

4.3 Rapid Learning

Learning processes can be time-consuming and computationally costly. A major
challenge in RL is its non-reliance on models and prior knowledge. In practice,
this results in RL processes usually exploring the entire state space to find an ap-
proximately optimal control law. In this work, partial prior knowledge of the
system is used to speed up the learning process. By combining the learning meth-
ods with PBC, the learning speed can be increased considerably with respect to
the standard learning methods [81]. As a consequence, the complexity of control
synthesis in PBC is decreased. In addition to this approach, the DoA of the new
learned controller is monitored after each learning trial. As such, the supervisor
can terminate learning as soon as the new controller’s DoA is sufficiently large to
satisfy the learning objective [91].

While learning is in progress, the DoA of the new controller typically enlarges
around its goal set, but not necessarily monotonically. As such, if the DoA of
the learned controller is always monitored, the supervisor can terminate learning
as soon as the DoA is large enough to contain the goal set of other controllers,
allowing the creation of a new arc in the learning control automaton. This strategy
allows the supervisor to learn a new controller in a short amount of time compared
with the regard to the conventional learning methods, thanks to the PBC structure
and DoA estimation [91].

Algorithm 7 summarizes the procedure of the proposed learning sequential com-
position control. In this algorithm, the loop counter w counts the number of learn-
ing trials after which the DoA of the learned controller Φ` is sufficiently large to
cover the goal set G(Φi), which is reachable from the initial state. In addition, k
counts the number of samples in a learning trial, ns denotes the number of sam-
ples defined for the learning trials, and nt represents the scheduled number of
trials for the learning process.

4.4 Simulation and Experimental Results 55

Algorithm 7 Learning sequential composition control using the EB-AC algorithm
Require: system (2.15), A`, x0, xd, λ, γ, αa, αc, ns, nt

1: if P (x0, xd) is true then
2: Execute: sequential composition controller
3: else
4: Execute: learning mode s`
5: w ← 0
6: Initialize ξ0, ψ0

7: repeat
8: w ← w + 1
9: Initialize x0

10: for k = 1 to ns do
11: Energy-balancing actor-critic:
12: uk = sat (π̂(xk, ξk, ψk) + ∆uk)
13: Apply actor-critic RL to update ξk and ψk based on Algorithm 2
14: end for
15: EB-AC controller Φ`
16: Estimate the DoA D(Φ`) based on Algorithm 5
17: until G(Φi) ⊂ D(Φ`)
18: Add controller Φ` to the learning control automaton
19: end if

4.4 Simulation and Experimental Results

The proposed learning sequential composition is implemented on two nonlin-
ear dynamical systems. The first addresses a positioning problem in a simulated
second-order system consisting of a mass with a nonlinear damper, where the con-
trol input is saturated. The second studies the stabilization of a physical inverted
pendulum with saturated control input.

4.4.1 System 1: Nonlinear Mass-Damper

Consider a mass with a nonlinear damper, as illustrated in Figure 4.8. The dy-
namics are given by

mq̈ = −B(q)q̇ + u (4.1)

where q is the mass position measured from the origin, B(q) = (1− q2) is the non-
linear damping coefficient and u is the control input, which is saturated at ±3 N.
The state vector of the system is described by x = [q p]T , where p = mq̇ is the
momentum with m = 1 kg.

The sequential composition controller consists of two LQR controllers Φ1 and Φ2.
Controller Φ1 steers the mass to point (q, p) = (−0.7, 0) and controller Φ2 to point
(q, p) = (1, 0). To design these controllers, the equation of motion (4.1) is linearized

56 Learning Sequential Composition Control

q

m uB(q)

Figure 4.8: Schematic representation of a nonlinear mass-damper system with
damping coefficient B(q).

around the operating points. Then, the gain matrices for the linearized system are
computed as K1 = [0.447 0.654] and K2 = [2.000 0.663]. Figure 4.9(a) presents the
approximated DoAs and goal sets of controllers Φ1 and Φ2 and Figure 4.9(b) illus-
trates the induced control automaton. As G(Φ1) ⊂ D(Φ2), controller Φ1 prepares
controller Φ2 via event e1−2.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Position q [m]

M
om

en
tu

m
 p

 [k
g.
m
.s−

1]

2

1 2
1e e

1-2e

21s 2s

(a) (b)

1

Figure 4.9: Sequential composition controller designed for the nonlinear mass-
damper system. (a) Approximated DoAs and goal sets. (b) Induced
control automaton.

Suppose the controller has to drive mass m to the origin (q, p) = (0, 0) from an
initial state within the existing DoAs. Since the origin is not the goal set of either
G(Φ1) or G(Φ2), the supervisor cannot construct a sequence of controllers to attain
the desired state. Hence, the binary function P is false and the supervisor exe-
cutes the learning mode s`. This example applies the A-IDA-AC controller for the
learning mode, which is defined by (2.36). The reward function is described as

ρ(xk+1, uk) = −α1q
2
k+1 − α2q̇

2
k+1 − α3u

2
k (4.2)

which gives higher rewards to the transitions that fulfill the learning objective.
The learning experiment starts exploring from the goal set G(Φ2). Since the learn-
ing process is bounded, if the learner cannot reach the origin after a number of
samples, the experiment is safely reset to the goal set G(Φ2). The learning process
is scheduled to run for 60 trials, each lasting 1 s. Figure 4.10 presents the sum of

4.4 Simulation and Experimental Results 57

rewards that a learning controller receives per trial over a simulated experiment
with 60 trials.

0 10 20 30 40 50 60
−5500

−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

Trial number

S
um

 o
f r

ew
ar

ds
 p

er
 tr

ia
l

Figure 4.10: Sum of rewards that a learning controller receives per trial over a
simulation with 60 trials for the nonlinear mass-damper system.

The desired Hamiltonian of the system is chosen to be quadratic asHd(x) = xTΛx

with Λ = [1 0.5; 0.5 1] a symmetric positive definite matrix. The desired Hamilto-
nian is used as a candidate Lyapunov function for approximating the DoA of the
learned controller at every trial. Since the equations of motion and basis functions
are polynomial, SOS programming is used to approximate the DoAs by follow-
ing the same procedure described in [23]. Figure 4.11 shows the DoA of the new
learned controller Φ` after seven specific trials (within 60 simulated trials), where
the trial numbers are indicated as well. As long as learning is in progress, the ap-
proximated DoA typically enlarges, but not necessarily monotonically. Approxi-
mately after 11 trials, the DoA D(Φ`) is large enough to cover the goal set G(Φ2).
Hence, the learning process achieves the control objective after a short amount of
time while it was scheduled to run for 60 trials. Additionally, Figure 4.12 presents
the average learning curve received for 50 simulations, each including 60 trials.
Once the learner receives the required sum of rewards per trial, the DoA of the
learned controller is sufficiently large to cover state (0.05, 0).

Figure 4.13 illustrates the learning control automaton during and after learning.
In Figure 4.13(a), event e` connects mode s2 to s` and executes the learning mode
s`. Conversely, event e′` connects mode s` to s2 and enables the supervisor to ex-
ecute controller Φ2 if the learner reaches the boundary of the union set D(Φ1) ∪
D(Φ2). When the learning objective is obtained and the goal set G(Φ2) is covered
by the DoA of the learned controller, the learning process can be terminated. Fig-
ure 4.14 depicts the approximated DoA of the learned controller Φ` together with

58 Learning Sequential Composition Control

Position q [m]

M
om

en
tu

m
 p

 [k
g.

m
.s
−1

]

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2 3
2

1

7

11
34 52

Figure 4.11: Approximated DoAs of the learned controllers after seven specific
trials for the nonlinear mass-damper system. The trial numbers are
also indicated.

0 10 20 30 40 50 60
−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

Trial number

Su
m

 o
f r

ew
ar

ds
 p

er
 tr

ia
l

Mean
Max and min bounds

Figure 4.12: Average learning curve received for 50 learning simulations, each
lasting one minute (60 trials).

4.4 Simulation and Experimental Results 59

the DoAs of controllers Φ1 and Φ2. Once learning is completed, controller Φ` is
appended to the control system by introducing a new node s3 with corresponding
events “e2−3”, “e3−2”, “e1−3”, and “e3−1”. These are added to the learning control
automaton with respect to the prepare relation, as shown in Figure 4.13. Conse-
quently, the resulting learning sequential composition controller is able to switch
from controller Φ2 to Φ1 via the new learned controller.

1
ss 21e

e

2-3e
s

 3-2e

(a) (b)

1
ss 21e e

1-2e

e
2

‘

e

learning is complete

s
 e3-1

e2

3

3

1-2e

 e1-3

Figure 4.13: Learning control automaton for the nonlinear mass-damper system.
(a) During learning. (b) After learning.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Position q [m]

M
om

en
tu

m
 p

 [k
g.
m
.s
−1

]

2

1 3 2

1

3

Figure 4.14: Approximated DoAs and goal sets of the controllers for the nonlinear
mass-damper system after learning.

60 Learning Sequential Composition Control

4.4.2 System 2: Inverted Pendulum

The inverted pendulum, as shown in Figure 4.15, is modeled by the nonlinear
equation of motion

Jq̈ = mgl sin(q)−
(
b+

K2

R

)
q̇ +

K

R
u (4.3)

with q the angle of the pendulum measured from the upright position, J the in-
ertia, m the mass, l the length of the pendulum, and b the viscous mechanical
friction. Moreover, K is the motor constant, R is the electrical motor resistance,
and u is the control input in Volts, which is saturated at±3 V. Table 4.2 presents the
physical parameters of the pendulum. The values are found partly by measuring
and partly estimated using nonlinear system identification.

Motor

m

l

q

Figure 4.15: Inverted pendulum and its schematic.

Table 4.2: Physical parameters of the inverted pendulum
Physical parameter Symbol Value Unit

Pendulum inertia J 1.91× 10−4 kg·m2

Pendulum mass m 6.8× 10−2 kg
Gravity g 9.81 m·s−2

Pendulum length l 4.20× 10−2 m
Damping in joint b 3× 10−6 Nm·s
Torque constant K 5.36× 10−2 Nm·A−1

Rotor resistance R 9.5 Ω

The control system comprises two LQR controllers Φup and Φdown to stabilize the
pendulum at the up and down equilibria, respectively. To design these controllers,
first the equation of motion (4.3) is linearized around the operating points q = 0

and q = π with respect to the state vector x = [q p]T . Then, the gain matrices are
computed asKdown = [0.025 72.850] andKup = [8.486 3.439×103], which generate
the approximated DoAs represented in Figure 4.1(b).

The control task is defined as tracking a reference string of events Sref = (up down)∗

where event up triggers mode sup and event down triggers mode sdown in the con-

4.4 Simulation and Experimental Results 61

trol automaton. The initial hybrid state of the system is given by (up, 0, 0), mean-
ing that the system starts from the continuous state (0, 0) with controller Φup is
activated. According to the reference string, the initial event Sref(0) = up can be
executed since mode sup has a self triggered event up [3]. If x ∈ G(Φup), the super-
visor fires the next event Sref(1) = down. Since this event (transition from mode
sup to sdown) is feasible, the pendulum can switch to the down position by simply
activating controller Φdown. The next event in the reference string is Sref(2) = up,
but there is no connection from mode sdown to sup. The supervisor triggers the
learning mode s` to learn a new controller online and create the required con-
nections through the learning control automaton. The reward function for the
learning method is defined by

ρ(xk+1, uk) = −α1

(
1− cos(qk+1)

)
− α2q̇

2
k+1 − α3u

2
k (4.4)

which gives higher rewards to the transitions where the learning controller can
stabilize the pendulum at the up equilibrium. In this example, two different meth-
ods are implemented to learn the unknown parameters of the control input: the
EB-AC algorithm, and the A-IDA-AC algorithm.

Learning via Energy-Balancing Actor-Critic

Since the DoA of the down controller is the entire state space, the learning process
is bounded. As such, controller Φdown can safely reset each experiment to the
down equilibrium if the learner cannot reach D(Φup) after a number of samples.
Figure 4.16 represents the sum of rewards that a learning controller receives per
trial over a simulated experiment with 60 trials, each lasting 1 s.

0 10 20 30 40 50 60
−7000

−6000

−5000

−4000

−3000

−2000

−1000

Trial number

S
um

 o
f r

ew
ar

ds
 p

er
 tr

ia
l

Figure 4.16: Sum of rewards that a learning EB-AC controller receives per trial
over a simulation with 60 trials for the inverted pendulum.

62 Learning Sequential Composition Control

Using the EB-AC method provides the Hamiltonian of the system that can be
exploited as a candidate Lyapunov function for approximating the DoA of the
learned controller at every trial. Since the equations of motion and desired Hamil-
tonian are non-polynomial, the sampling method is used to approximate the DoAs
by following the same procedure described in [71]. Figure 4.17 illustrates the DoA
of the new learned controller Φswing after seven specific trials (among 60 trials),
where the trial numbers are indicated as well. Approximately after 13 trials, the
DoA D(Φswing) is large enough to cover the goal set G(Φdown) and the learning
process can be terminated.

Angle q [rad]

M
om

en
tu

m
 p

 [k
g.

m
2 .s

−1
]

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6
x 10−3

4 6 8
1213

23

32

Figure 4.17: Approximated DoAs of the learned EB-AC controllers after seven
specific trials for the inverted pendulum. The trial numbers are also
indicated.

Figure 4.18 shows the learning control automaton during and after learning. In
Figure 4.18(a), event e` connects mode sdown to s` and executes the learning mode
s`. Conversely, event e′` connects mode s` to sdown and enables the supervisor to
execute controller Φdown if the learner reaches the boundary of D(Φdown). When
the learning goal is attained andD(Φswing) covers the goal set G(Φdown), the learn-
ing process can be stopped. Figure 4.19 represents the approximated DoA of the
learned controller Φswing by a sublevel set of the system Hamiltonian, together
with the DoAs of controllers Φup and Φdown. Once learning is terminated, the new
controller Φswing is appended to the control system and the new mode sswing with
the associated events “swing” and “up” are added to the learning control automa-
ton with respect to the prepare relation, as shown in Figure 4.18(b).

Figure 4.20 illustrates the experimental results of the proposed learning sequen-
tial composition on the inverted pendulum (presented in a compressed form for
the sake of space). The first time the pendulum is in mode sdown and the ref-
erence event is up, the learning mode s` is activated. After a number of trials
(here after 13 trials), the DoA of controller Φswing is sufficiently large such that

4.4 Simulation and Experimental Results 63

(a) (b)
learning is complete

e‘

e s

Figure 4.18: Learning control automaton for the inverted pendulum. (a) During
learning. (b) After learning.

−4 −3 −2 −1 0 1 2 3 4

−6

−4

−2

0

2

4

6

x 10−3

Angle q [rad]

M
om

en
tu

m
 p

 [k
g.

m
2 .s−1

]

Figure 4.19: The approximated DoAs and goal sets of the controllers for the in-
verted pendulum after learning.

64 Learning Sequential Composition Control

G(Φdown) ⊂ D(Φswing). Although learning can be terminated at this stage, it runs
for 60 trials for illustration purposes. Once learning is completed, the new mode
sswing is added to the learning control automaton. The learning sequential com-
position controller can track the reference event up via events swing and up.

−4
0 5 10 185 190 195 200 205

−2

−8

−4

0

4

8

−4

−2

0

2

4

angle

control input

Time [s]

momentum

Learning process

reference:

state: Learning process

2055

5

10

10

185

185

190

190

195

195

200

200 205

0

0

4

2

0

 p
 [k

g.
m

 2 .s−
1]

 q
 [r

ad
]

 v
ol

ta
ge

 [V
]

x10
−3

Figure 4.20: Experimental results of the learning sequential composition con-
troller for the inverted pendulum. The reference events are dis-
played at the top and the controllers at the bottom. When the pen-
dulum is in the down mode and the reference event is up, the con-
trol system learns how to swing the pendulum up. The results
of the learning process have been shown in part due to the space
limitation. Once learning is completed, the new mode sswing is
added to the learning control automaton. Consequently, the result-
ing controller can track the reference event up by executing events
swing and up, respectively. For a video that shows the implemen-
tation of the learning sequential composition control approach see:
https://youtu.be/NF5ihL06SV4.

Learning via Algebraic Interconnection and Damping Assignment Actor-Critic

The objective of the algebraic IDA-PBC method is to find a feed-back control law
u(x) such that the closed-loop system is described as

[
q̇

ṗ

]
=

[
0 1

−F21(x) −b

] [∇qHd(x)

∇pHd(x)

]
. (4.5)

Moreover, the desired Hamiltonian is chosen in a quadratic form

Hd(x) =
1

2
γq(q − qd)2 +

p2

2J
(4.6)

4.4 Simulation and Experimental Results 65

where γq is a unit conversion factor. This desired Hamiltonian satisfies the equi-
librium condition (2.16) at the desired state xd = (qd, p) = (0, 0). Substituting (4.3),
(4.6), and (4.6) in (2.28), then using Fourier basis functions to approximate F21 by
F21(x, ϑ) = ϑTφ(x), the control law is obtained as

u = −ϑTφ(x)γq(q − qd)−mgl sin(q). (4.7)

The unknown parameter vector ϑ is learned using the actor-critic method [82], as
defined in Algorithm 3, with given learning parameters in Table 4.3. Suppose the
case that there is no up and down controllers a priori and the supervisor has to
learn an A-IDA-AC controller to be able to achieve both swing-up and stabiliza-
tion of the pendulum at the up equilibrium.

Suppose the case where none of the up and down controllers were designed a pri-
ori and the supervisor has to learn an A-IDA-AC controller to be able to achieve
both swing-up and stabilization of the pendulum at the up equilibrium. Two con-
trollers are learned: one for simulation and one for the physical inverted pendu-
lum. Figure 4.21 illustrates the sum of rewards that a learning control law receives
per trial over a 80 trials learning process in simulation and experiment.

Table 4.3: Learning parameters of the inverted pendulum
Parameter Symbol Value Unit
Sample time Ts 0.03 s
Trial time Tt 3 s
Number of trials – 60 –
Decay rate γ 0.97 –
Eligibility trace decay λ 0.65 –
Exploration variance σ2 1 –
Learning rate of critic αc 0.01 –
Learning rate of F21(x) αaϑ 1× 10−8 –
Max control input umax 3 V

In the A-IDA-AC method, the Hamiltonian of the system is computed at every
learning trial which is exploited as a candidate Lyapunov function to approximate
the DoAs of the learned controllers. Figure 4.22 illustrates the DoAs computed by
the sampling method at seven trials in simulation. The numbers of sample trials
are also given. While learning is in progress, typically the DoAs of the learned
controllers enlarge, but not necessarily monotonically. Here, the DoA of the con-
troller is large enough almost after 40 trials to cover the initial state. As such, the
learning process can be terminated instead of running for the entire scheduled tri-
als. Using the sampling method not only approximates the DoA very fast, but also
speeds up the process of control design because of its described learning stopping
criterion for learning.

Figure 4.23 depicts the angle and angular momentum of the pendulum with re-

66 Learning Sequential Composition Control

0 0.5 1 1.5 2 2.5 3 3.5 4
−5500

−5000

−4500

−4000

−3500

−3000

−2500

−2000

−1500

−1000

Time [min]

S
um

 o
f r

ew
ar

ds
 p

er
 tr

ia
l

Sim
Exp

Figure 4.21: Sum of rewards that a learning A-IDA-PBC controller receives per
trial over a learning process with 80 trials (each lasting 0.03 s) for the
inverted pendulum in simulation and experiment.

2 9 20 28
35

48

58

- 6 - 4 - 2 0 2 4 6

- 0.006

- 0.004

- 0.002

0.000

0.002

0.004

0.006

Angle q [rad]
−6 −4 −2 0 2 4 6

M
om

en
tu

m
 p

 [k
g.

m
2 .s

−1
]

−6

−4

−2

0

2

4

6
x 10−3

x0 x0

Figure 4.22: Approximated DoAs of the learned A-IDA-AC controllers after seven
specific trials for the inverted pendulum. The trial numbers are also
indicated.

4.5 Probabilistic Learning Trees 67

spect to the learned A-IDA-AC controller in simulation and experiment. Since
the control input is saturated to 3 volts, the pendulum first needs to achieve the
required momentum by swinging back and forth. Once it reserves the sufficient
energy, the controller can first swing the pendulum up and then stabilize it at the
up equilibrium.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−4

−2

0

2

4

Time [s]

A
ng

le
 q

 [r
ad

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3

−1.5

0

1.5

3
x 10−3

Time [s]

M
om

en
tu

m
 p

 [k
g.

m
2 .s

−1
]

Sim
Exp

Sim
Exp

Figure 4.23: Simulation and experimental results of the learned A-IDA-AC con-
troller for the inverted pendulum.

4.5 Probabilistic Learning Trees

In the previous sections, learning sequential composition control is introduced
and the case of incomplete supervisory controller is discussed where extra con-
trollers are learned, on a need basis, to enable the supervisor to cope with un-
foreseen situations. In this section, the situation is investigated in which there is
no controller designed a priori and all controllers have to be learned from scratch
and on a random manner. In fact, the control law A-IDA-AC computed by (2.36)
is combined with DoA estimation to automatically build a collection of stabiliz-
ing controllers. Since the equilibrium is chosen randomly at each step and the
supervisor constructs trees using the DoAs of the learned controllers, this control
approach is called probabilistic learning trees (PLTs).

Algorithm 8 describes the main steps of the proposed learning trees, where a set of
controllers are learned such that the union of their DoAs covers the desired range
of the state space to be controlled, denoted X̄ . The control automaton stores the si
tuples, each consisting of the controller Φi, its DoA D(Φi) and goal set G(Φi). In

68 Learning Sequential Composition Control

steps 1 and 2 of the algorithm, the control automaton is initialized together with
the overall desired equilibrium x∗0 for this method. In step 6, an A-IDA-AC learn-
ing experiment is executed, based on Algorithm 3, for the translated dynamics,
denoted f̄ , from the desired equilibrium x∗ to the origin for ns samples and nt tri-
als. The learning experiment can be stopped and instantly switched to an existing
stabilizing controller if the state is about to leave the current union of all DoAs.
This is a form of safe learning. Clearly this is not possible for the first learning
experiment since no stabilizing controller exists yet.

Algorithm 8 Probabilistic learning trees algorithm
Require: β, c∗, ns, nt

1: Initialize list of controllers C, k = 0, with #C = k
2: Initialize desired equilibrium x∗k
3: repeat
4: Initialize θ0, ϑ0

5: repeat
6: (θ, ϑ)← A-IDA-AC(f̄ , x∗k, θ, ϑ) runs a learning experiment for the desired

equilibrium x∗k with ns samples and nt trials based on Algorithm 3
7: x̄∗k ← ComputeEquilibrium(f̄ , π̂(x, ϑ), x∗k) computes the actual equilib-

rium x̄∗k for the learned controller
8: ck ← DoA(f̄ , π̂(x, ϑ), x̄∗k) approximates the DoA of the learned controller

based on Algorithm 5
9: until ||x∗k − x̄∗k|| < β ∧ ck > c∗ ∧ ∃i 6= k : x̄∗k ∈ D(Φi)

10: C ← C ∪ {(Φk,D(Φk),G(Φk)}) saves new controller, its DoA and goal set.
11: x∗k+1 ← FindNewDesiredEquilibrium (D(Φ))
12: k ← k + 1
13: until the union of the DoAs covers the desired range X̄

Once the learning process finishes for a pre-defined number of samples and trials
two steps take place. First, the function “ComputeEquilibrium”, defined in step 7,
calculates the actual equilibrium x̄∗ of the closed-loop system is computed. In gen-
eral there is no guarantee that for a finite number of learning trials the closed-loop
system will converge to the desired equilibrium. Consider the resulting learning
controller after one single sample, it will most likely not stabilize at x∗. As such
it is important to track how this “learned equilibrium” evolves, such that it can
be used to correctly compute the DoA. The minimum distance between the ac-
tual learning stabilizing equilibrium and the desired equilibrium is denoted by β.
Second, once the actual equilibrium x̄∗ is obtained the DoA of its associated sta-
bilizing controller is computed. This is achieved by finding the largest sublevel
set L(ck) at each trial such that ∀x : Hd(x, x̄∗) < ck then Ḣd(x, x̄∗) < 0. Here,
Hd(x, x̄∗) is the translated Hamiltonian from the desired equilibrium to the ori-
gin. Note that Hd is used as a candidate Lyapunov function. The learning process
for the desired equilibrium x∗k is repeated if any of the following criteria are not
fulfilled:

4.5 Probabilistic Learning Trees 69

• ||x∗k − x̄∗k|| < β. In practice this means that the actual learned stabilizing
equilibrium x̄∗k should be sufficiently close to the desired equilibrium x∗k. In
the early states of learning, it can happen that the system quickly converges
to a nearby attractor of the vector field f . In this situation, the closed-loop
actual equilibrium x̄∗k matches with the intrinsic equilibrium of the attractor
of the uncontrolled f . If an approximation of the DoA of this attractor is
performed, it might be very large, not due to the controller but due to the
intrinsic properties of f . Finding such a large DoA without looking at the
location of x̄∗k distracts from the task at hand. It is important then to make
sure that x̄∗k is close to x∗k such that the learning process can be terminated at
the right time.

• ck > c∗. The resulting DoA should be at least larger than a pre-defined
sublevel set L(c∗), where c∗ is the minimum DoA level.

• ∃i 6= k : G(Φk) = x̄∗k ∈ D(Φi). The goal set x̄∗k of the learned controller must
lie at least within the DoA of an existing controller Φi. This is required in
order to make the overall desired equilibrium x∗0 reachable from all states,
via the sequential composition. This condition does not apply for the first
controller.

Once all of these criteria are realized, a new controller is stored in the control au-
tomaton. Next, a new desired equilibrium must be found to explore new regions
of the state space. There are many approaches to find such a new equilibrium.
Here, the level sets of the DoA are used to check if a point lies in a δ-boundary of
D(Φ), with 0 < δ < 1. A test is constructed based on the logic expression

z ∈ X̄ ∩
(⋃

k

{x : Hd(x, x̄∗k) < ck}
)
∩
(⋂

k

{x : Hd(x, x̄∗k) > δck}
)
. (4.8)

If a state z can be found to fulfill (4.8), then such a point lies in the desired bound-
ary. In Algorithm 8, the function “FindNewDesiredEquilibrium” searches for the
new desired equilibrium within the area defined by (4.8).

Algorithm 8 runs until expression (4.8) evaluates to false for all states. The result is
a list of controllers with their DoAs and goal sets stored in C. The induced control
automaton is found by checking the prepare relation in C and following

1. Create a node si for each controller Φi.

2. ∀i, j create an arc from si → sj if G(Φi) ⊂ D(Φj).

As an example, consider a sequential composition controller designed for a land
robot that automatically explores through an unstructured terrain, as illustrated
in Figure 4.24. Due to the complexity of navigating the robot through a large en-
vironment, a controller is dedicated to locomotion in grass in a particular region

70 Learning Sequential Composition Control

of the workspace, a second in traversing sand, a third on swimming, a fourth on
rocks, etc. To achieve the described plan, the supervisor executes a set of con-
trollers sequentially. For instance, while traversing a river, the supervisory con-
troller would generate the sequence of states: grass, sand, water, sand, and rocks.
The proposed PLTs algorithm is applied to design the controllers for a simplified
version of this navigation problem.

rock
rock

sand
sand

water

water
robot

grass

grass

Figure 4.24: Sequential composition controller for a land legged robot to traverse
various terrains.

The design of each control law can be simplified as the velocity control of a mass
on a viscous landscape. This problem is described by a two-dimensional first-
order system of the form

ẋ1 = f1(x1, x2) + u1

ẋ2 = f2(x1, x2) + u2

(4.9)

where x = [x1 x2]T is the state vector with x1 and x2 the mass position along the
x and y axes, respectively. Moreover, function f = [f1 f2]T is obtained by taking
the gradient of a potential function h(x1, x2) as

fi(x1, x2) = ∇xi
h(x1, x2) =

∂h(x1, x2)

∂xi
. (4.10)

The potential function h defines the shape of the landscape described as the sum
of Gaussians in the form

h(x1, x2) =

n∑
i=0

ai exp
(
(x1 − µi1)2 + (x2 − µi2)2

)
(4.11)

with parameters given in Table 4.4. The values of these parameters are fixed for
the sake of reproducibility.

The choice of dynamics f is arbitrary and was chosen to keep the dimension and
complexity of the system low to avoid the curse of dimensionality inherent to RL.
The resulting vector field f and potential h are illustrated in Figure 4.25.

4.5 Probabilistic Learning Trees 71

Table 4.4: Parameters of the potential function h described in (4.11)

i ai µi1 µi2 σi
1 -0.1 -1.4 2.5 1.8
2 0.2 1.3 2.2 1.5
3 0.3 -3.4 -2.5 2

-5

0

5
-5

0

5

0.0

0.1

0.2

0.3

-4 -2 0 2 4

-4

-2

0

2

4

Figure 4.25: Dynamics used for the example of the land robot navigation. The
potential function h is represented on the left side and its gradient
that describes the vector field f is depicted on the right side for the
range x1 ∈ [−5, 5], x2 ∈ [−5, 5].

The A-IDA-AC control law (2.36) is calculated with the input matrix

g(x) =

[
1 0

0 1

]
(4.12)

and the quadratic desired Lyapunov function

Hd(x) =
1

2
xTx. (4.13)

The learning structure follows Algorithm 3 with the parameters of Table 4.5. The
polynomial basis functions are applied to represent the approximated value func-
tion V̂ (x, θ) and approximated policy π̂(x, ϑ) as

V̂ (x, θ) = θTΨc(x) =
∑n̄c

i=0

∑n̄c

j=0 θ(i+(nc+1)j)x
i
1x
j
2

π̂(x, ϑ) = ϑTΨa(x)∇xHd(x)

=
∑n̄a

i=0

∑n̄a

j=0 x
i
1x
j
2

[
x1 0

0 x2

]
ϑ(i+(na+1)j)

(4.14)

72 Learning Sequential Composition Control

Table 4.5: Learning parameters for the example of the land robot navigation

Parameter Symbol Value Unit
Sample time Ts 0.01 s
Number of samples ns 200 –
Number of trials nt 50 –
Decay rate γ 0.97 –
Learning rate of actor αa 0.0005 –
Learning rate of critic αc 0.02 –
Basis function parameters for each actor n̄a, na 1, 4 –
Basis function parameters for critic n̄c, nc 1, 4 –
Boundary for find new desired equilibrium parameter δ 0.5 –
Minimum distance between x∗ and x̄∗ β 0.2 –
Minimum DoA level c∗ 1 –

where each parameter ϑk is a two-dimensional vector. It is found the basis func-
tion parameters for the actor and critic n̄a = n̄c = 1 to be sufficient for this system
resulting in

V̂ (x, θ) = θ0 + θ1x1 + θ2x2 + θ3x1x2

π̂(x, ϑ) =

[
ϑ0,1x1 + ϑ1,1x

2
1 + ϑ2,1x2x1 + ϑ3,1x

2
1x2

ϑ0,2x2 + ϑ1,2x1x2 + ϑ2,2x
2
2 + ϑ3,2x1x

2
2

]
.

(4.15)

The reward function is defined in the form

ρ(x, u) = −10xTx− 10uTu (4.16)

with u = [u1 u2]T . For the learning experiment the control input u is saturated via
the function “sat” to verify ui ∈ [−0.5, 0.5] and the state is reshaped via “shape”
from the range [−5, 5]2 to [−1, 1]2. Consequently, the resulting closed-loop system
using the learned policy takes the form

ẋ = f
(
x, sat (π̂(shape(x), ϑ))

)
= f

(
x, π̄(x, ϑ)

)
. (4.17)

Figure 4.26 illustrates the evolution of the PLTs algorithm applied to system (4.9).
Each time a controller is learned and its DoA approximated, this information is
stored. A new desired equilibrium is found by randomly generating samples
within the desired range until expression (4.8) is verified.

Moreover, Figure 4.27 shows the search area for finding the new desired equilibria
with respect to the logic expression (4.8). A state can be chosen from the state
space if it lies in a δ-boundary of the union of all existing DoAs with δ = 0.9.

4.5 Probabilistic Learning Trees 73

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

Figure 4.26: Snapshots of the evolution of the algorithm after iterations 1, 10, 20,
and 32 (top left, top right, bottom left, bottom right, respectively). The
arrows represent the trajectories of the resulting closed-loop system.
The red dots are the learned actual stabilizing equilibria. The green
dots are the locations of the upcoming desired equilibria for which
new learning controllers are defined. The new equilibrium is com-
puted to be close to the boundary of the union of all current DoAs,
depicted by the dashed closed curve. The light blue shaded areas
represents the sets defined by L̇ ≤ 0 for each iteration and the dark
blue shaded disks represent the approximated DoAs for each learned
controller, i.e. the level set defined by L(c∗).

74 Learning Sequential Composition Control

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 4.27: Search area (blue color area) for the next desired equilibrium in the
boundary of the union of all existing DoAs (the dashed line) for iter-
ation 10, illustrated at the top right plot of Figure 4.26. The function
“FindNewDesiredEquilibrium” defined in Algorithm 8 uses this area
for searching the new desired equilibrium.

Figure 4.28 illustrates the resulting DoAs for a complete execution of the PLTs
algorithm. In our example, 32 controllers were learned. Figure 4.29 shows the
induced control automaton. It can be shown that the first node, the stabilizing
controller for the overall desired equilibrium, is reachable from all other nodes.
This implies that this equilibrium is stabilizable from any state within the union
of all DoAs.

Figure 4.30 presents the number of trials required to learn each controller. As ex-
pected these numbers depend on the local properties of the vector field f . In the
areas where the magnitude of f is larger, more samples are required to learn a
controller that fulfills the desired requirements. Figure 4.31 illustrates multiple
continuous-time simulations of system (4.9) controlled by the PLTs algorithm. On
the right side of the figure, the induced control automaton is overlapped to the
trajectories in the state space to highlight the switching structure of the final con-
troller. The supervisory controller precomputes the shortest path in the induced
control automaton. It applies the sequence of stabilizing controllers switching
instantly when entering the DoA of the next controller. Table 4.6 presents the sim-
ulation time for each step of the PLTs, implemented in the Mathematica software
on an Intel core i7 2.7 GHz microprocessor.

4.5 Probabilistic Learning Trees 75

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29

30

31

32

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 4.28: Resulting collection of the learned controllers using the PLTs algo-
rithm. The stable equilibria are indicated by the numbers and each
enclosing colored circle represents an estimate of the DoA of a learned
controller. The union of all DoAs covers completely the desired oper-
ation range represented by a rectangle.

2

1

4

6

13

16

3

21

26

8

14

17 20

5

7

11

32

10

12

18

9

22

15

19

25

24

2830
29

23

27

31

Figure 4.29: Induced control automaton generated using the PLTs algorithm. The
node labeled “1” represents the stabilizing controller at the origin
which is reachable from all other nodes.

76 Learning Sequential Composition Control

Controller
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0

100

200

300

400

500

600

Number of trials

Figure 4.30: The number of trials required to learn each of the controllers. The
controllers that require more learning trials, 13, 23, and 30, have equi-
libria in the neighborhood of the bumps on the potential function h
illustrated in Figure 4.25. In these regions, the magnitude of the vec-
tor field f is larger.

-4 -2 0 2 4

-4

-2

0

2

4

2

1

4

6

13

16

3

21

26

8

14

17 20

5

7

11

32

10

12

18

9

22

15

19

25

24

2830
29

23

27

31

-4 -2 0 2 4

-4

-2

0

2

4

Figure 4.31: Multiple simulations of the resulting sequential composition con-
troller with initial conditions in the range [−5, 5]×[−5, 5] with discrete
intervals of 1. The plot on the right overlaps the trajectories from the
left plot with the induced control automaton from Figure 4.29.

4.6 Conclusions 77

Table 4.6: Simulation time for each step of the PLTs algorithm

Function Time
A-IDA-AC algorithm for 200 samples and 50 trials ∼ 2 s
A-IDA-AC algorithm total time ∼ 4.8 min
Estimation of the DoA using 5000 samples ∼ 0.3 s
Estimation of the DoAs total time ∼ 43 s
Finding a new equilibrium ∼ 0.004 s
Finding new equilibria (total time) ∼ 0.57 s
Total time ∼ 5.5 min

4.6 Conclusions

A learning sequential composition control approach has been developed that can
handle unmodeled situations using learning online. In this approach, a learning
mode is added to the standard sequential composition framework to learn new
controllers on a need basis when the supervisor cannot attain the desired state
with its pre-designed controllers. The learning process is guaranteed to be safe
since it is bounded to the union of all existing DoAs. After each learning trial, the
DoA of the learned controller is approximated. Once it is sufficiently large, the
learning process is stopped and the new controller is added to the learning con-
trol automaton. A stopping criterion is provided for learning that can effectively
speed up the learning process. Simulation and experimental results of two non-
linear systems validate the capability of the proposed control approach to cope
with unmodeled situations that might occur at runtime. The design of a generic
learning experiment to learn proper control laws in a short amount of time, with
respect to the conventional learning methods, is a real challenge since for each sys-
tem the reward function, the learning rates and the parametrization of the value
function must be chosen carefully. This chapter did not address the automatic
choice of these parameters.

In addition, the proposed learning control approach has been extended to the situ-
ations where no controller is designed a priori, hence the supervisor needs to learn
all controllers from scratch. The PLTs algorithm is developed that can learn a col-
lection of controllers safely for a class of systems. The PLTs inherits the challenges
present in RL, such as the curse of dimensionality, albeit with a better learning
performance than the standard RL thanks to the use of prior knowledge in the
form of a PH model. The complexity introduced by sequential composition and
the approximation of the DoAs is relatively residual in comparison with the com-
plexity of the learning process. However, by learning in small regions of the state
space, as opposed to the entire state space at once, brings performance benefits.
The PLTs introduces a trade off between optimality and time complexity.

5 CHAPTER

Cooperative Sequential Composition
Control

Although sequential composition works properly for a single system,
it is not designed for cooperative systems. This chapter extends

the standard sequential composition by introducing a novel approach to
compose multiple sequential composition controllers towards coopera-
tive control. Given two or more systems, cooperation is achieved by com-
posing each of the systems’ control automaton, together with estimation
of the DoAs of the resulting composed controllers. This typically results
in new events for the original sequential composition controllers. Apply-
ing these events, the cooperative control system can fulfill the tasks which
are not possible to satisfy with the original controllers individually. Each
sequential composition controller works separately for its associated sys-
tem until the control system requires the collaboration of multiple con-
trollers. We present simulation results of an inverted pendulum system
collaborating with two second-order DC motors for cooperative swing-up
maneuvers.

5.1 Introduction

The standard sequential composition is typically designed for isolated systems,
where there is no interaction between multiple systems (see e.g., [26, 91]). This
chapter investigates how to exploit a collection of pre-designed sequential compo-
sition controllers so as to achieve a task cooperatively. The main goal is to accom-
plish collaborative behavior without having to redesign the low-level controllers.
Given a particular interaction between two controlled systems, the effect of the

79

80 Cooperative Sequential Composition Control

resulting interconnected system on the original controlled systems is computed
for each combination of the available controllers.

In supervisory control systems, there are tasks that cannot be accomplished in
isolation while they can be performed using multiple systems cooperatively [98].
For instance, assume the task of picking an object up from a table. This task may
not be possible to attain using only one robotic arm due to the shape of its gripper,
but it might be fulfilled if two robotic arms collaborate simultaneously. This is
the main objective of cooperative control, i.e. enabling the coordination between
multiple controlled systems [92].

Cooperative control has been investigated from various points of view, because
of its numerous applications like multi-agent systems, cooperative manipulation,
rescue mission, navigation and planning, formation control, etc. For example, var-
ious control techniques have been proposed for the cooperative control of multi-
agent systems, which can broadly be classified into behavior-based approaches [8,
63], virtual structure algorithms [65, 9], leader-follower methods [120, 33], artifi-
cial potentials techniques [92], and graph theoretical methods [76, 37]. Moreover,
some other work has been done to bridge the computer science symbolic approach
with the continuous-time control’s perspective, namely decentralized cooperative
control approaches [61]. For instance, a cooperative multi-vehicle testbed is de-
veloped in [31] to facilitate the experimentation of cooperative control systems
and mobile sensor networks. A decentralized cooperative control algorithm is
proposed for controlling of heterogeneous vehicle groups in [119].

This chapter proposes a new approach in the field of cooperative control using
the sequential composition paradigm that we call cooperative sequential compo-
sition control. It composes multiple sequential composition controllers to accom-
plish collaborative behavior on cooperative settings. The sequential composition
controllers communicate with each other to share their corresponding system dy-
namics and low-level structures. Using this data along with the interaction dy-
namics enables computation of the DoAs of the resulting composed controllers.
Based on the prepare relation, defined between the obtained DoAs and the goal
sets, the original supervisors are augmented with new events through their low-
level controllers. Applying these events, the cooperative control system can fulfill
tasks which are not possible to accomplish with the original controllers individu-
ally. Each sequential composition controller works separately for its correspond-
ing system until the control system needs the cooperation of multiple systems.

This chapter is organized as follows. Section 5.2 describes the cooperative se-
quential composition and its design. Section 5.3 investigates a case study of the
collaboration between an inverted pendulum with two DC motors while simula-
tion results are presented in Section 5.4. Finally, Section 5.5 concludes the chapter.

5.2 Cooperative Sequential Composition 81

5.2 Cooperative Sequential Composition

The synthesis of cooperative supervisory control systems is studied using the
paradigm of sequential composition. A cooperative sequential composition con-
trol algorithm is proposed to enable the coordination between a set of sequential
composition controllers without any change in their low-level structures. It auto-
matically constructs a cooperative sequential composition controller by operating
on each control automaton and analyzing the interaction dynamics. This typically
results in new events for the original sequential composition controllers. Using
these events, the cooperative control system creates a new set of behaviors that
are not achievable in isolation. The synthesis of the cooperative sequential com-
position controller follows three steps: composition, interaction, and cooperation.

5.2.1 Composition

The first phase towards enabling collaboration of the sequential composition con-
trollers, designed for each controlled system individually, relies on composing the
graph structure of their control automata. Assume there are multiple systems each
endowed with its own independent control automaton. The dynamic equation of
a system is given by

ẋi = fi(xi, ui) (5.1)

where xi ∈ Xi ⊆ Rni is the state vector and ui ∈ Ui ⊆ Rmi is the control input.
Suppose Φpi : Xi → Ui represents the pth controller of system i, where the set of
controllers is given by

Φi =
{

Φ1
i ,Φ

2
i , . . . ,Φ

n
i

}
. (5.2)

Each mode spi ∈ Si in the control automaton is associated with controller Φpi and
defined by the tuple

spi = {Φpi ,D (Φpi) ,G (Φpi)} (5.3)

where Si is the finite set of modes in the control automaton. The Lyapunov func-
tion of system i, denoted by Li(xi), is computed by applying the linearized equa-
tion of (5.1) in the Lyapunov equation.

The general form of the composed controller in the context of cooperative sequen-
tial composition control is defined as

Φ̄p,q,...,`i,j,...,r =
{

Φpi ,Φ
q
j , . . . ,Φ

`
r

}
. (5.4)

This composed controller simultaneously executes the pth controller of system i,
the qth controller of system j, and so forth.

In the composition phase, a parallel composition is taken from the original control
automata of the systems [17]. Consider the equations of motion for two controlled

82 Cooperative Sequential Composition Control

independent dynamical systems described as{
ẋi = fi(xi, ui)

ẋj = fj(xj , uj).
(5.5)

When these systems are in collaboration, the structure of their control automata
need to be shared by the systems to allow for computation of the composed con-
trollers, their DoAs and goal sets. A framework is proposed to formalize the ele-
ments required for the collaboration. The standard definition of a hybrid automa-
ton is adapted with the supervisory structure and cooperative settings to describe
a cooperative control automaton. The new elements of this supervisory finite-state
machine, in comparison with the standard hybrid automaton, are the composed
controllers as well as the composed events.

Definition 5.1 The cooperative control automaton defined in the context of cooperative
sequential composition control is given by

Ā = A ∪ {Ē} (5.6)

where A is the initial control automaton and Ē = {ē1, ē2, · · · , ēs} is a finite set of the
composed events.

In the cooperative control automaton, we define individual events and composed
events. The individual events are the original events defined in the pre-designed
sequential composition controllers. The composed events are the result of the
collaboration between the sequential composition controllers. When a composed
event is triggered, the associated controllers in each system are executed simul-
taneously to accomplish the cooperative task. The composed event ēk ∈ Ē is
defined as ēk : S̄i,j → S̄i,j , with S̄i,j the finite set of modes in the cooperative
control automaton given by

S̄i,j = Si × Sj . (5.7)

Si and Sj represent the finite set of modes in system i and system j, respectively.
Each composed mode (spi , s

q
j) ∈ S̄i,j in the cooperative control automaton is the

composition of the pth mode from system i and the qth mode from system j. The
composed mode (spi , s

q
j) is associated with the composed controller Φ̄p,qi,j and is

defined by the tuple

(spi , s
q
j) =

{
Φ̄p,qi,j ,D

(
Φ̄p,qi,j

)
,G
(
Φ̄p,qi,j

)}
. (5.8)

Figure 5.1 illustrates the composition phase of the collaboration between two con-
trol automata, each with a set of pre-designed controllers. In the control automata,
sni and smj denote the last modes of systems i and j, respectively.

5.2 Cooperative Sequential Composition 83

Composition

(a) (b)

System i System j

si

s2
i

s3
i

s2
j

s1
j

1

sni

sj

e1

i

e3

i

e2

i

e1

j

s1
js1

i
,

s1
js2

i
,

s1
js3

i
,

s2
js1

i
,

s2
js2

i
,

s2
js3

i
,

()

()

()

()()

()

m si ,sj
n m

()

Figure 5.1: Composition phase of the collaboration between two dynamical sys-
tems: (a) before composition and (b) after composition. In this step the
parallel composition of the control automata is computed.

5.2.2 Interaction

The second phase of the cooperative sequential composition is the interaction in
which the dynamics of the interconnected systems are investigated. In this phase,
the cooperative systems communicate with each other to share their dynamics as
they physically interact. Modeling the interaction dynamics and computing the
system dynamics is the most computationally intense step in the synthesis of the
cooperative sequential composition control, because the DoAs of the composed
controllers need to be computed. The information required to do these compu-
tations consists of the control automata of each system and the mathematical ex-
pressions of every system’s model.

Suppose that the two dynamical systems described in (5.5) are interconnected via
a physical interface such as a belt on two motors. The following set of equations
represent a model of the interconnected system, here assuming that the interaction
dynamics appear as the additional functions hi and hj to the model.{

ẋi = fi(xi, ui) + hi(x̄)

ẋj = fj(xj , uj) + hj(x̄)
(5.9)

where x̄ ∈ Xi × Xj · · · × Xr is the composed state vector, with Xi the state space
of system i, Xj the state space of system j, and so forth. Moreover, hi(x̄) and
hj(x̄) illustrate the constraint equations of systems i and j, respectively. This is
compatible with mechanical systems where physical interactions arise as the ad-
dition of constraint forces. Here, it is assumed that the constraint equations can be
computed based on the prior knowledge on the systems’ dynamics.

Once the interaction dynamic equations are obtained, one can approximate the

84 Cooperative Sequential Composition Control

DoAs of the composed controllers, which are defined as

Φ̄i,j = {Φ1
iΦ

1
j ,Φ

1
iΦ

2
j , . . . ,Φ

n
i Φmj }. (5.10)

The Lyapunov function of the cooperative system, denoted by L̄(x̄), is calcu-
lated by using the linearized equations of (5.9), substituted by the composed con-
trollers (5.10), in the Lyapunov equation. Given the Lyapunov function L̄(x̄), the
DoAs of the composed controllers are computed with respect to their goal sets.
The goal set of each composed controller is found by applying the controller on
the cooperative system to make it stable. The resulting stable equilibrium is given
as the goal set of the controller. Once all the DoAs are found, the cooperative
control automaton is augmented with events that represent the prepare relations
obtained by analyzing the composed dynamics.

Figure 5.2 represents the interaction phase of the coordination between two con-
trol automata. On one side, the new composed events are added to the cooper-
ative control automaton by computing the DoAs and goal sets of the composed
controllers. On the other side, some of the individual events defined in the origi-
nal control automata might be discarded, due to the interaction dynamics and the
composed controllers’ DoAs.

Interaction

(a) (b)

s1
js1

i
,

s1
js2

i
,

s1
js3

i
,

s2
js1

i
,

s2
js2

i
,

s2
js3

i
,

e1

i

s1
js1

i
,

s1
js2

i
,

s1
js3

i
,

s2
js1

i
,

s2
js2

i
,

s2
js3

i
,

e3

i

e1

j

e1

i

e1

j

e1̄

e2̄

e3̄

()

()

()

()()

() ()

()

()

()

()()

si ,sj
n m

()si ,sj
n m

()

Figure 5.2: Interaction phase of the collaboration between two dynamical sys-
tems: (a) before interaction and (b) after interaction. In this step, the
new composed events (blue arrows) are added to the cooperative con-
trol automaton by computing the DoAs and goal sets of the composed
controllers while some individual events are discarded due to the in-
teraction dynamics.

5.2 Cooperative Sequential Composition 85

5.2.3 Cooperation

The third phase of the cooperative sequential composition control is the cooper-
ation, in which each individual control automaton is augmented with the newly
computed events resulting from the interaction dynamics. The composed events
are projected on each control automata via the function “Proj”. Given the cooper-
ative control automaton Āi,j and the index of, for instance, system i, the projection
function is defined as

Proj(Āi,j , i) = S̄i ∪ Ēi (5.11)

where S̄i ⊆ Si is a subset of modes of system i. Each mode of S̄i is one of the
pairs of a composed mode in the cooperative control automaton Āi,j for which a
composed event is defined in Ē. Moreover, Ēi ⊆ Ē is a set of composed events
described between the composed modes corresponding to the modes of S̄i. Thus,
every composed event is projected on its corresponding individual control au-
tomaton. For instance, the composed events Ēi are appended to the set of events
in system i, i.e. E′i = Ei ∪ Ēi.

Figure 5.3 illustrates the cooperation phase of the collaboration between two con-
trol automata. The new composed events are appended to each individual control
automaton. In the cooperation phase, each system has an augmented control au-
tomaton that consists of two types of events: individual events represented by
black color and composed events represented by blue color in Figure 5.3(b). Al-
gorithm 9 summarizes the synthesis of the cooperative sequential composition
controller for two collaborating dynamical systems.

Cooperation

(a)

e1

i

s1
js1

i
,

s1
js2

i
,

s1
js3

i
,

s2
js1

i
,

s2
js2

i
,

s2
js3

i
,

e3

i

e1

j

e1

i

e1

j

e1̄

e2̄

e3̄

(b)

System i System j

si

s2
i

s3
i

s2
j

s1
j

1

si

e1

i

e3

i

e2

i e1

j

e1̄

e3̄

e3̄
e1̄

e2̄

e2̄

()

()

()

()

()()

si ,sj
n m

()

n

sj
m

Figure 5.3: Cooperation phase of the collaboration between two dynamical sys-
tems: (a) before cooperation and (b) after cooperation. In this phase,
the new composed events (blue arrows) are appended to each individ-
ual control automaton while the individual events (black arrows) exist
a priori.

86 Cooperative Sequential Composition Control

Algorithm 9 Synthesis of cooperative sequential composition control for two col-
laborating dynamical systems
Require: Ai, Aj , system (5.9)

1: Composition:
2: (spi , s

q
j) = spi × sqj for ∀ spi ∈ Si and ∀ sqj ∈ Sj

3: Interaction:
4: For ∀ (spi , s

q
j) ∈ S̄i,j compute the interconnected dynamic equations (5.9) by

replacing the composed controller Φ̄p,qi,j and then estimate the DoA D(Φ̄p,qi,j)
based on Algorithm 5.

5: for ∀ (spi , s
q
j) ∈ S̄i,j do

6: for ∀ σ̄ ∈ Φ̄i,j / Φ̄p,qi,j do
7: if G(Φ̄p,qi,j) ⊂ D(σ̄) then Φ̄p,qi,j � σ̄
8: if G(σ̄) ⊂ D(Φ̄p,qi,j) then σ̄ � Φ̄p,qi,j
9: end for

10: end for
11: Cooperation:
12: For ∀ ēk ∈ Ē project the composed event ēk on Ai and Aj using the projection

rule (5.11).

5.3 Cooperation of the Inverted Pendulum with Two
DC Motors

The proposed cooperative sequential composition approach is applied to the col-
laboration of an inverted pendulum with two DC motors. Consider the inverted
pendulum with a DC motor, studied in Section 4.4.2, which is described by the
nonlinear dynamic equation

Jq̈1 = mgl sin(q1)−
(
b+

K2

R

)
q̇1 +

K

R
u1 (5.12)

where the state vector is defined by x1 = [q1 q̇1]T , with q1 the angle of the pen-
dulum measured from the upright position and q̇1 the angular velocity. Here, the
pendulum mass is m = 0.03 kg. The control system consists of two controllers
ΦUP and ΦDOWN to stabilize the pendulum at the up and down equilibria, re-
spectively. These controllers are represented by modes “UP” and “DOWN” in the
control automaton, as shown in Figure 5.4(b). Moreover, event D connects mode
UP to DOWN and switches the control system from controller ΦUP to ΦDOWN.
The control objective is to stabilize the pendulum at the up equilibrium starting
from any initial state within the union of the existing DoAs.

Another DC motor, with the same configuration, is connected to the motor of
the inverted pendulum by a belt, as schematically shown in Figure 5.4(a). The

5.3 Cooperation of the Inverted Pendulum with Two DC Motors 87

Pendulum

m

l

DC motor

α

q
ud

DOWN

D

UP

down

up

(a) (b)

Figure 5.4: (a) Schematic representation of the inverted pendulum collaborating
with two DC motors. (b) Individual control automata.

dynamic equation of the DC motor is described by

Jq̈2 = −
(
b+

K2

R

)
q̇2 +

K

R
u2 (5.13)

where the state vector is given by x2 = [q2 q̇2]T , with q2 the motor angle measured
from the upright position and q̇2 the angular velocity. The DC motor is controlled
by a sequential composition controller similar to the control system of the inverted
pendulum. It consists of two individual controllers Φup and Φdown to drive the
initial bottom point of the motor to the up and down positions, respectively. These
controllers are denoted by “up” and “down” in the control automaton, as shown
in Figure 5.4(b). Event u connects mode down to up and drives the motor to the
up position. Inversely, event d connects mode up to down and steers the motor to
the down position.

The first step of this cooperation is the composition that provides composed con-
trollers, represented by the composed modes in the cooperative control automa-
ton. Since in this example two systems are collaborating, the composed controllers
are in pairs. If the first sequential composition controller has r1 controllers and
the second has r2 controllers, there will be r1 × r2 composed controllers in the
composition phase. While a composed controller is executed, the first individual
controller is activated in the first system and the second individual controller is
triggered in the second system, simultaneously. Figure 5.5 represents the compo-
sition phase for the inverted pendulum collaborating with two DC motors.

The second step is the interaction, where the systems physically interact with each
other to achieve the cooperative control objectives. The interconnected system is
described by the dynamic equations Jq̈1 = mgl sin(q1)−

(
b+ K2

R

)
q̇1 + K

R u1 + h1

Jq̈2 = −
(
b+ K2

R

)
q̇2 + K

R u2 + h2.
(5.14)

88 Cooperative Sequential Composition Control

DOWN,down

ud Composition

UP,down

DOWN,up

UP,up

DOWN

D

UP

down

up

(a) (b)

System 1 System 2

Figure 5.5: Composition phase of the collaboration of the inverted pendulum with
two DC motors: (a) before composition and (b) after composition.

The composed state vector of the cooperative system is described by

x̄ = [q1 q̇1 q2 q̇2]T (5.15)

and the composed controllers are given by

Φ̄ = {Φ̄UP,up, Φ̄UP,down, Φ̄DOWN,up, Φ̄DOWN,down}. (5.16)

To compute the constraint equations h1 and h2, which are the external torques that
each system applies on the another system, the connecting belt has to be modeled
as it exerts the torques to the DC motors. From a human expert approach, creating
the interaction model is simple, but it can be very difficult from the perspective of
an autonomous robot. To simplify the equations, it is assumed that the connecting
belt does not slip on the motors’ shafts, hence h1 = −h2. The belt is modeled by a
spring-damper system as schematically shown in Figure 5.6.

K

Kd

 J1 J2

s

Figure 5.6: Modeling the connected belt by a spring-damper system.

The dynamic equations of this spring-damper model are defined by{
h1(x̄) = −Ks(q1 − q2)−Kd(q̇1 − q̇2)

h2(x̄) = −Ks(q2 − q1)−Kd(q̇2 − q̇1).
(5.17)

When controllers ΦUP and Φup are active in the first and second systems respec-
tively (i.e., the composed controller Φ̄UP,up is triggered), the first-order dynamic

5.4 Simulation Results 89

equations of the interconnected system are described by

˙̄x1 = x̄2

˙̄x2 = mgl sin(x̄1)−
(
b+ K2

R

)
x̄2 + K

RΦUP −Ks(x̄1 − x̄3)−Kd(x̄2 − x̄4)

˙̄x3 = x̄4

˙̄x4 = −
(
b+ K2

R

)
x̄4 + K

RΦup −Ks(x̄3 − x̄1)−Kd(x̄4 − x̄2).

(5.18)

The DoA of each composed controller and its computation are of main importance
at this step. The sampling method is used to approximate the DoAs [84]. The Lya-
punov function of the cooperative system is computed by using the linearized
equations of (5.18) in the Lyapunov equation. Figure 5.7 shows the DoAs approxi-
mated for the composed controllers Φ̄UP,up, Φ̄UP,down, Φ̄DOWN,up, and Φ̄DOWN,down

projected on the plane x̄3 = x̄4 = 0. For this specific situation, the projected DoAs
D(Φ̄UP,down) = D(Φ̄DOWN,up) = ∅. Moreover, G(Φ̄UP,up) ∈ D(Φ̄DOWN,down) and
G(Φ̄DOWN,down) ∈ D(Φ̄UP,up), meaning that controller Φ̄UP,up prepares controller
Φ̄DOWN,down and vice versa. Figure 5.8 illustrates the induced cooperative control
automaton of the interaction phase, which consists of the composed modes and
composed events.

The third step is the cooperation, in which every sequential composition controller
designed for the individual systems are augmented by the new connections com-
puted from the interaction dynamics. Figure 5.9 illustrates the cooperation phase,
where the the composed events are projected on their associated control automata.

5.4 Simulation Results

The cooperative sequential composition control technique has been implemented
on an inverted pendulum collaborating with two DC motors, as shown in Fig-
ure 5.10. The axis of the pendulum’s DC motor is connected to the axis of the
another DC motor via a flexible belt. This connecting belt is modeled by a spring-
damper model as schematically illustrated in Figure 5.6.

The control objective is that the control system can switch from controller ΦUP to
ΦDOWN and vice versa. Following the three steps composition, interaction, and
cooperation consecutively, a cooperative sequential composition controller is syn-
thesized that can switch between the pre-designed controllers. Simulation results
of this cooperation are illustrated in Figure 5.11, representing the pendulum’s an-
gle and angular velocity.

90 Cooperative Sequential Composition Control

-4 -2 0 2 4

-6

-4

-2

0

2

4

6

0 2 4 6

-6

-4

-2

0

2

4

6

x 2

x1
x 2

x1
0 2 4 6

-6

-4

-2

0

2

4

6

x 2

x1

-4 -2 0 2 4

-6

-4

-2

0

2

4

6

x 2
x1

G(Φ̄UP,up)

G(Φ̄DOWN,down)

(a) (b)

(c) (d)

Figure 5.7: Projections of the DoAs approximated for the composed controllers (a)
Φ̄UP,up, (b) Φ̄UP,down, (c) Φ̄DOWN,up, and (d) Φ̄DOWN,down on the plane
x̄3 = x̄4 = 0. The blue line (boundary of the dark blue area) repre-
sents the estimated DoAs and the dashed red line (boundary of the
light blue area) illustrates the region in which ˙̄L(x̄) < 0. The pro-
jected DoAs D(Φ̄UP,down) = D(Φ̄DOWN,up) = ∅. The projected goal
sets G(Φ̄UP,up) and G(Φ̄DOWN,down) are the points x̄ = [0 0 0 0]T and
x̄ = [π 0 0 0]T , respectively. Since G(Φ̄UP,up) ∈ D(Φ̄DOWN,down) and
G(Φ̄DOWN,down) ∈ D(Φ̄UP,up), Φ̄UP,up � Φ̄DOWN,down and inversely
Φ̄DOWN,down � Φ̄UP,up.

5.4 Simulation Results 91

DOWN,down

Interaction D,d
U,u

UP,down

DOWN,up

UP,up

DOWN,down

UP,up

DOWN,up

UP,down

(a) (b)

Figure 5.8: Interaction phase of the collaboration of the inverted pendulum with
two DC motors: (a) before interaction and (b) after interaction, where
the new composed events (blue arrows) are added to the cooperative
control automaton.

udU,u D,dD

DOWN

U,u D,dCooperationD,d
U,u

DOWN,down

UP,up

DOWN,up

UP,down

down

upUP

(a) (b)

System 1 System 2

Figure 5.9: Cooperation phase of the collaboration of the inverted pendulum with
two DC motors: (a) before cooperation and (b) after cooperation,
where the new composed events (blue arrows) are appended to each
individual control automaton.

Figure 5.10: Inverted pendulum collaborating with two DC motors. The axis of
the pendulum’s DC motor is connected to the axis of the another DC
motor via a flexible belt.

92 Cooperative Sequential Composition Control

0 2 4 6 8 10 12 14 16
−4

−2

0

2

4

A
ng

le
 q

 [r
ad

]

Time [s]

0 2 4 6 8 10 12 14 16
−10

0

10

20

30

V
el

oc
ity

 q
 [r

ad
.s
−1

]

Time [s]

C
on

tro
l i

np
ut

 [V
]

.

Figure 5.11: Simulation results of the inverted pendulum collaborating with two
DC motors during two iterations of the cooperative swing-up ma-
neuver. The top plot illustrates the pendulum angle at each itera-
tion started from ±π rad (pendulum is at the down equilibrium) and
ended at 0 rad (pendulum is stabilized at the up equilibrium). The
jumps from π to −π is due to the fact that both angles represent the
down equilibrium. Rotation of the pendulum on a circle starts from
π and ends at −π. The bottom plot represents the pendulum angu-
lar velocity at each iteration. The velocity is 0 while the pendulum is
stable either at the up or at the down equilibria.

5.5 Conclusions

A cooperative sequential composition control approach is developed that system-
atically enables the composition of two independent supervisory controllers to
achieve new tasks that were not possible by each controller individually. This
approach currently relies on mathematical models for all the dynamics present
on the system together with an expression for the constraints introduced by the
interaction. If all of this information is available, then it is feasible to apply the
composition rules to obtain a new cooperative control automaton for cooperative
systems. Given two or more systems that require to interact, the computational
process needs to be executed in at least one of the systems. They share their control
automata along with the mathematical expressions of their models. The compu-
tation is implemented in one of the systems and the results, in the form of extra
composed events in the cooperative control automaton, are shared with other sys-
tems. Finally, each system receives only the relevant composed events for its own
control automaton. Simulation results presented in this chapter illustrate that for
a class of known models cooperation can be automated. Future research includes
using partial dynamical models where learning needs to happen in real-time to-
wards achieving a new interaction.

6 CHAPTER

Robot Contact Language

This chapter studies the synthesis of supervisory control systems for
robotic planning and manipulation. The problem of dividing a ma-

nipulation task is addressed to obtain an appropriate sequence of sub-
tasks with regard to the contact-based task division. A robot contact lan-
guage is defined for robotic manipulation based on making and break-
ing contact between the components involved, namely robots, objects,
and surfaces. This planner is modular enough to deploy geometrical and
physical information of the components and translate supervisory plan-
ning to low-level robot controllers. This robot language is validated in
three case studies, each with a specific control objective.

6.1 Introduction

The supervisory architecture defined in the earlier chapters is applied to a robotic
language, designed for the manipulation of multiple objects by multiple robots.
This chapter specifically addresses mechanical systems and describes a supervi-
sory control system in the form of a contact language. It proposes a new approach
for robotic manipulation planning in terms of the contact between the involved
components, particularly: robots, objects, and surfaces. The dynamics of a manip-
ulation change when contact between these components are made or broken. Us-
ing this paradigm, the robotic manipulation planner is developed. A supervisory
structure is generated using a set of derived rules and the available geometrical
information.

The problem of intelligently dividing a manipulation task into a correct sequence
of sub-tasks is addressed in this chapter with contact-based task division being
the primary paradigm behind the research. The novelty of this proposed planner

93

94 Robot Contact Language

is its ability to plan a manipulation on an abstract level as well as be modular
enough to involve geometrical and physical information of the scene components
and easily translate high-level planning to low-level robot control.

Various generalized planners exist for robotic motion planning, artificial intelli-
gent (AI) planning and task planning. The aSyMov planner [43] combines sym-
bolic planning with probabilistic road map and is based on a forward heuristic
search. This planner relates closely to the one proposed in this chapter but is not
based on the notion of contact. A symbolic and geometrical planner is proposed
in [53], which uses aggressive hierarchy. Moreover, a manipulation planner is de-
scribed in [32] that uses a learned mapping between geometric states and logical
predicates. It builds symbolic representations from the scenes a robot observes
and translates them into geometric states that could further be used to carry out
manipulations.

There have been dedicated languages developed for generic AI planning, the
most widely used being the planning domain definition language (PDDL) [41]
inspired by an older planner and scheduler, the stanford research institute prob-
lem solver (STRIPS) [38]. This language consists of objects and predicates along
with initial and goal states for a task. Actions or operations can be performed to
change the state of the world. Several manipulation planning algorithms have
been developed within the PDDL framework (see e.g., [34, 16]). Graphplan [12]
is another planner that uses specialized graphs and STRIPS inspired planning.
It uses the STRIPS based formulation for planning and formulates the problem
into special types of graphs, called planning graphs. These graphs consist of a
problem formulated via fact and action nodes along with special operator nodes.
Standard graph traversal techniques can be applied on these graph for generic AI
planning. The planner has been proven to be effective in reducing the planning
search compared to other planners.

For planning manipulations among movable objects an algorithm is developed
in [114] that uses reverse-time search to samples future robot actions and con-
straints the space of prior object placements. It checks for objects blocking the path
of the primary object to be manipulated and recursively, all blocking objects are
displaced to make way for the primary manipulation. The work has been further
improved by extending the algorithm’s ability to deal with artificial constraints
during planning [113].

High-level planning and control is either followed or complemented by low-level
planning and control. For the specific case of robotic manipulators, this involves
end-effector path planning and executing control algorithms to track the desired
paths or trajectories. Various path planning algorithms have been successfully
used in real-time for path planning in joint space or workspace. The most com-
monly used path planning algorithm is the rapidly exploring random trees (RRTs)
[62] and its variants [60, 130], which are efficient in exploring higher dimensional
and constrained spaces.

6.1 Introduction 95

Manipulating tasks require interaction of robot’s end-effector with the environ-
ment. To track the desired paths and manipulate objects, various implicit or ex-
plicit force based controllers are used to regulate this interaction and make the
robot compliant. Hybrid position-force control [30, 73] is a direct force control
technique where position and force feedback are applied in orthogonal workspace,
depending on the task. Another widely used indirect force control technique
is impedance control [50, 51], wherein the robot end-effector behaves as a vir-
tual mass-spring-damper system. Interaction with the environment can be varied
by altering the spring parameters. Further extensions to impedance controllers
can be found in [115, 95, 15]. Cooperative manipulation control is a modified
extension to the previous two compliance control techniques while adhering to
the closed-chain constraints [133]. The control techniques are based on hybrid-
position and force control [127, 100] or impedance control [14, 96].

None of the manipulation planning algorithms and techniques mentioned above
addresses manipulation planning using a purely contact-based approach. The
high-level AI planners and languages focus on higher abstraction of a given task.
They are generic and do not consider low-level control and assume the robot can
perform the planned task. On the other hand, sequential composition has more
focus on low-level control and dynamics of a system but is incapable of incorpo-
rating high-level intelligence for task or manipulation planning.

It is known that the dynamics of a manipulation task change when the contact be-
tween a robot and the object it is manipulating changes. When a contact is made
or broken by an object with other robots, objects or surfaces, it is practical and
intuitive to assign a new controller for the different state of contact or contact con-
figuration between these entities. Given the initial and goal contact configuration
of the objects to be manipulated, the proposed planner first generates a symbolic
contact graph via node expansion and exploration from the initial to the goal node
based on a set of pre-defined rules. With the available geometrical information,
the graph is enhanced and weights are assigned to the graph edges. A high-level
manipulation planning is defined as finding a path on this contact graph which
can be carried out using standard graph-traversal algorithms. The shortest path
lists the relevant nodes or contact configurations in the correct sequence and the
robot needs to successfully carry out the manipulation. The low-level planning
can then be done for each relevant contact configuration for task execution.

This chapter is organized as follows. Section 6.2 formulates the nomenclature,
mathematical notations and rules for the proposed symbolic planner. Section 6.3
describes the process of planning a manipulation task using the derived rules fol-
lowed by low-level planning and control. Then, Section 6.4 presents three simula-
tion test cases for validation of the proposed planner. Finally, Section 6.5 presents
a brief discussion and concludes the chapter with final comments.

96 Robot Contact Language

6.2 Robot Contact Language

In this chapter, we consider that the components in a general manipulation scene
can be divided into three broad categories, namely robots, objects and surfaces.
These can be represented as follows

R = {R1, R2, . . . , Rm}
O = {O1, O2, . . . , On}
S = {S1, S2, . . . , Sq}

(6.1)

where R, O, and S are the set of robots, objects and surfaces present in a manipu-
lation scene with m, n and q being their indices, respectively.

Robots are components that can carry out manipulations. Here, we assume robots
refer to robotic manipulators. Each dexterous robot is associated with a workspace.
If a robot is in contact with an object, the object can be manipulated throughout the
robot’s workspace. A robot can also be associated with a set of different controllers
or a specific controller with varying parameters (as in the case of this chapter),
which can be set as per the task requirements. Objects are referred to all movable
entities in a scene that can be manipulated by the available robots whereas sur-
faces are static entities on which objects can rest in a stable position. A complete
knowledge of all these components: robots, objects, and surfaces is assumed to be
known to the planner.

A contact between two or more components is represented by a contact pair as

Oi(Oj |Sk|Rl) (6.2)

where i 6= j. Objects can be in contact with another object Oj , a robot Rl, or a
surface Sk. The symbol “|” represents the “or” operation. For example, O1R1

represents contact of O1 with R1. It is wise to mention here that contact pairs of
the types RiRj , RiSj and SiSj are invalid. All possible types of contact pairs are
hence given as follows

• OiRj : object in contact with a robot

• OiSj : object in contact with a surface

• OiOj , i 6= j: object in contact with an object

Two or more contact pairs can be represented using the logical “and” operator,
illustrated by the symbol “∧” as follows

Nq = Oi(Oj |Sk|Rl) ∧Ow(Or|Ss|Rv) ∧ . . . (6.3)

6.2 Robot Contact Language 97

with i 6= j and w 6= r. This represents an object in contact with multiple entities
or two different objects in contact with one or more components. For instance,
O1R1∧O1S1∧O2R2 represents thatO1 is in contact withR1 and S1 along withO2

is in contact with R2. A contact configuration can thus be defined as a set of one
or more contact pairs, given by (6.2) and (6.3), that represent contact between the
components in a scene. Let the set of all valid contact configurations be given by

N = {N1, N2 . . . Np} (6.4)

where Ni represents the ith configuration with p being the total number of valid
configurations. Each contact configuration is illustrated by a node on the contact
graph.

6.2.1 Assumptions

For the purpose of simplification and abstraction, various assumptions have been
made for definition of the manipulation planner. These assumptions are listed as
follows.

• A robot can only manipulate or be in contact with one object at a time.

• There is a physical limit to the number of robots that can be in contact with
a particular object.

• The number of components (robots, objects, and surfaces) in the scene along
with their necessary geometrical information is known and accessible to the
planner.

• No manipulation can occur if no robot is in contact with an object. Such a
contact pair is called a static contact pair.

• An object is always statically stable when not being manipulated.

• An object cannot be in contact with two surfaces simultaneously.

• A robot making contact with surfaces or other robots are not of interest and
such pairs are omitted, i.e. RiSj /∈ N and RiRj /∈ N .

• Two surfaces in contact are not considered and such pairs are omitted, i.e.
SiSj /∈ N .

6.2.2 Language Rules

The initial and goal positions of the objects manipulated lie in a certain contact
configuration that can be represented by the pre-described nomenclature. Every

98 Robot Contact Language

contact pair represents the initial and goal nodes in the contact graph that is gen-
erated to plan the manipulation task.

In order to build the contact graph, certain rules need to be defined for generating
a set of nodes representing contact configurations. These rules are based on the
robots, objects, and surfaces making and breaking contact between one another.
Using these rules, a set of nodes is generated. Starting from the initial node and
exploring the graph further, a path from the initial to goal node can be found.
There are five basic rules postulated for this planner. The first four are based on
change in contact and the last one is meant for parallelizing tasks.

Robot Making Contact

This rule is for a robot making contact with an object. The object could be either
resting on a surface or an object, or could be held by another robot before the robot
makes contact, described by

Oi(Ok|Sl|Rm) ∧Q → RjOi ∧Oi(Ok|Sl|Rm) ∧Q (6.5)

where Q represents the set of other contact pairs present in the node, Rj /∈ Q (i.e.,
robot Rj is not already in contact with other objects), i 6= k, and j 6= m. Here,
(Ok|Sl|Rm) represents another object, robot, or a surface in contact with the object
that is being made contact with and Q represents the set of other contact pairs
present in the node.

Robot Breaking Contact

A robot can drop an object on a surface, another object, or release an object that is
being held by another robot, defined by

RjOi ∧Oi(Ok|Sl|Rm) ∧Q → Oi(Ok|Sl|Rm) ∧Q (6.6)

with Rj /∈ Q, i 6= k, j 6= m. If the object is placed on top of another object or
a collection of objects, a check is performed to make sure that these objects are
statically laying on a surface, thus avoiding “floating” groups of objects. This
check is formalized by the rule

RjOi ∧OiOk ∧Q → OiOk ∧Q (6.7)

if there exists a sequence

OiOk ∧ · · · ∧OlOr ∧OrSw ∈ Q (6.8)

that establishes contact with a static surface, with i 6= k 6= l 6= r.

6.2 Robot Contact Language 99

Robots Placing Object

One or more robots can place an object on only one surface or object in one tran-
sition. A prerequisite for placing an object is that at least one robot needs to be in
contact with that object to carry out that task (manipulating the object). This rule
is illustrated by

P ∧Q ↔ P ∧Oi(Ol|Sm) ∧Q (6.9)

such that
P = RjOi ∧ · · · ∧RkOi. (6.10)

In this rule, P is the set contact pairs that represent the contact of all the robots
with the object being placed with components other than the one it is lifted from
or placed at. Here, Rj , . . . , Rk /∈ Q and P * Q along with i 6= l and j 6= k.
Moreover, OiOl /∈ Q, i.e. Oi is not already in contact with Ol.

Robots Lifting Object

One or more robots that are in contact with an object or a surface can lift that object
to remove contact. Similar to placing objects, a prerequisite for lifting an object is
that at least one robot needs to be in contact with that object, represented as

P ∧Oi(Ol|Sm) ∧Q ↔ P ∧Q. (6.11)

The conditions of robots placing object also apply for lifting objects. Moreover,
the robots in contact can lift the object only if it is not resting on more than one
surface or object, that is, OiOn /∈ Qwith n 6= i, l. Similar to the rule of making and
breaking contact, the relationship from place object to lift object, that is, from (6.9)
to (6.11) is injective and non-surjective in nature.

Parallelization of tasks

When a manipulation task is being performed, it is possible that one or more sub-
tasks can be carried out simultaneously. On the contact graph, these branches
could be broken down into parallel manipulation branches. This is done by the
following parallelization rule

XiXj ∧XkXl ↔ (XiXj) ‖ (XkXl) (6.12)

such that

X ∈ {R,O} → i 6= j 6= k 6= l

X ∈ S
(6.13)

100 Robot Contact Language

and operator “‖” denotes parallelization. If X is either a robot or an object, all
components in the contact pairs need to be different for parallelization to occur.
However, it is possible for X to be a common surface. This is because multiple
objects can be simultaneously manipulated by different robots on the same surface
at different positions.

6.3 Manipulation Planning and Control

Planning a manipulation task starts with the given initial and goal nodes. Using
these two nodes, new nodes are created using the rules, described in Section 6.2,
from the initial node, leading to graph expansion towards finding a path that con-
nects the initial configuration to the goal. From the available geometrical and
other relevant information, the contact graph is pruned. Moreover, paralleliza-
tion can be done for tasks that are not dependent on each other. These steps are
explained as follows.

6.3.1 Contact Graph Generation

Using the rules described in Section 6.2.2 and assumptions in Section 6.2.1, nodes
are further expanded with the aim to find an edge in the direction of the goal
node. It is possible to generate all the conceivable nodes at once, but the total
number of nodes grow exponentially with the number of components present in
the scene. This may lead to memory problems and even the possibility of larger
search times. To counter this problem, nodes are generated online using a suitable
heuristic to reduce the required memory and quickly converge to the goal node.
A search can result in one or multiple paths on the contact graph. These paths are
further analyzed with the help of geometrical information.

Consider an example with a robot R1, an object O1, and two surface S1 and S2.
Let the task be to pickO1 from S1 and place it on S2 using the robot. This is shown
in Figure 6.1. The initial node is O1S1 and the goal node is O1S2. One can first

1 2

1

1

Figure 6.1: Schematic representation of a scene with a robot R1, an object O1, and
two surface S1 and S2. The task is to pick O1 from S1 and place it on
S2 using R1, i.e. the initial configuration is O1S1 and the goal configu-
ration is O1S2.

6.3 Manipulation Planning and Control 101

apply the rule of robot making contact with an object followed by robot lifting
object. This will be followed by the robot placing the object on the other surface
and finally, releasing contact. These nodes are illustrated in Figure 6.2.

1 1 1 2

1 1 1 1

1 1

1 2 1 1

1
2 3

4

^ ^

Figure 6.2: Contact graph describing node expansion from the initial to goal node
using the set of contact language rules. The green node is the initial
node and the red one is the goal node for the task of picking and plac-
ing O1 from S1 to S2 using the robot R1. The weights on the edges are
given by wi for i = 1 to 4.

This is the basic process of manipulation planning which is carried out by auto-
matically applying the contact language rules. It is important to note that in each
transition, only one component is making or breaking contact. This is an inherent
property of the derived rules. The transition between two nodes represents edges
on the contact graph. An edge between the ith and jth node is given by Ei,j . The
set of all possible edges is called E .

6.3.2 Geometrical and Physical Constraints

It is quite evident that not all possible paths found using the initial planning are
always possible to achieve. There are certain geometrical and physical constraints
that render certain edges and nodes of the contact graph irrelevant or unattain-
able. Using the available information, these constraints are identified and the
respective nodes and edges are removed from the graph. A robot can not ma-
nipulate an object if it is not within its reachable workspace. Moreover, two or
more robots cannot cooperatively manipulate an object if there exists no overlap-
ping workspace for the involved robots.

Geometrical information of all components can be represented as symbolic in-
equalities using generalized equations of surfaces and volumes. Let WX

i repre-
sent the associated workspace of Xi with X ∈ {R,O, S}. For robots, this could
be the dexterous workspace whereas for objects and surfaces it could be the stable
contact areas or other contact points. For instance, the workspace of a planar robot
R1 with revolute joints about axis x can be approximated with an equation of a
circle. Hence, its workspaceWR

1 is given by

WR
1 = {(x1, x2, x3) ∈ R2 : (x2 − y0)2 + (x3 − z0)2 = r2} (6.14)

102 Robot Contact Language

where x1, x2, and x3 represent the Cartesian positions of the object being manip-
ulated by that robot, y0 and z0 are the position of robot base with respect to an
inertial frame and r is the radius of the robotic arm when completely extended.
Similar set of geometrical equations can be used to define the geometry of objects
and surfaces. Consider an infinitely extending floor surface S1 in the xy plane. Its
workspace can be written as z = 0 with respect to the same frame. For a contact
configuration ofO1R1∧O1S1, the objectO1 can be manipulated in the intersecting
workspace of R1 and S1, i.e. WR

1 ∩WS
1 .

The workspace of a node Nj ∈ N is defined asWN
j , meaning that the manipula-

tion workspace for all the objects involved in that node. The workspace of an edge
between two nodes on the contact graph can be computed by the intersection of
the workspaces of two nodes, i.e.

WE
k,l ⇔WN

k

⋂
WN
l (6.15)

where WE
k,l is the workspace of the edge and WN

k and WN
l are the workspaces

of the kth and lth nodes, respectively. This is an abstract form of representing
the node and edge workspaces. For computational purposes, the manipulable
workspace of each object needs to be considered separately. The workspace of
a node represents the physical space in which the robots involved can manipu-
late the objects whereas the workspace of an edge represents the space in which
the transition between two contact configurations can take place. Geometrical in-
formation can be extracted using various robot vision techniques from 3D point
clouds followed by spatial reasoning to determine and extract various geometrical
features of different objects [107]. On having this geometrical information, certain
nodes and edges can be discarded from the planning graph if their corresponding
workspaces are null, i.e. WN

j = ∅ andWE
k,l = ∅.

Additionally, geometrical, temporal and other metrics are used to define weights
on the edges of the contact graph, as shown in Figure 6.2, using the weights wi. By
adding weights, the manipulation planning problem becomes a standard graph
search/traversal problem. In a more involved case, many paths exist to reach
from the initial to the goal node. A need arises to find the shortest path with the
weights acting as metrics for the search problem, which can be found via search
algorithms like Dijkstra’s, A∗, etc [29].

6.3.3 Parallelization

It is possible that for a given overall task, there could be intermediate sub-tasks
that are independent and can be carried out in parallel. In such a case, the par-
allelization rule given by (6.12) can be applied and those tasks could be carried
out in parallel. Parallelization would consequently reduce the amount of time to
perform the overall task. Take for example the case where an intermediate task

6.3 Manipulation Planning and Control 103

is that two individual robots R1 and R1 have to pick up two separate objects O1

and O2, respectively. If this task is done sequentially, the time taken will be the
total time to perform both tasks. In contrast, when it is done simultaneously or in
parallel, the overall time taken will be the maximum one of the two tasks. This
has been illustrated in Figure 6.3.

𝑂1𝑆1

𝑂1𝑆1 ∧ 𝑂1𝑅1

𝑂1𝑅1

𝑤1

𝑤2

𝑂2𝑆1

𝑂2𝑆1 ∧ 𝑂2𝑅2

𝑂2𝑅2

𝑤3

𝑤4

𝑂1𝑆1 ∧ 𝑂2𝑆1

𝑂1𝑆1 ∧ 𝑂1𝑅1 ∧ 𝑂2𝑆1

𝑤2

𝑂1𝑅1 ∧ 𝑂2𝑆1

𝑂1𝑅1 ∧ 𝑂2𝑅2 ∧ 𝑂2𝑆1

𝑂1𝑅1 ∧ 𝑂2𝑅2

𝑤1

𝑤3

𝑤4

𝑂1𝑆1 ∧ 𝑂2𝑆1

𝑂1𝑅1 ∧ 𝑂2𝑅2

00

00 ∥

=

parallelize

Figure 6.3: Two contact graphs comparing a task performed sequentially and in
parallel, using the parallelization rule. When the task is performed
sequentially, the total time will be

∑4
i=1 wi whereas if it is done in par-

allel, the total time will be max(w1 + w2, w3 + w4).

Considering the weights to be time, if the task is performed sequentially, it is
seen that the total task time will be the sum of all weights, i.e.

∑4
i=1 wi. On

the other hand, if the task is carried out in parallel, the total task time will be
max(w1 +w2, w3 +w4), which is less than the former one assuming finite time for
each transition. As such, parallelization can lead to interesting temporal dynam-
ics of the overall hybrid system, thereby, opening up the possibility to carry out
interesting optimizations and time scheduling for larger systems using the pro-
posed planner. However, when parallelization is used, the search algorithms such
as Dijkstra and A∗ cannot directly be used and a modification is needed to decide
the best path on the contact graph.

6.3.4 Low-Level Planning and Control

Once the path for a given manipulation is generated on the contact graph, the
next step towards accomplishing the task is workspace path planning followed
by controller assignment. Each node on this path represents a contact configura-
tion along with a sub-manipulation task that needs to be achieved in that config-

104 Robot Contact Language

uration. Workspace path planning is done for each node followed by controller
assignment that performs those sub-manipulations to achieve the overall object
manipulation.

Workspace path planning refers to manipulation planning in workspace. Before
the path of the robotic manipulators is planned, the path of the object being ma-
nipulated needs to be planned. From the shortest path on the contact graph, we
have the relevant nodes and the initial and final position of the object. The objec-
tive of the object path-planner is to plan a path separately for each of these nodes
for object manipulation and reaching the goal position. To achieve this objective, a
piecewise path planner should be implemented which satisfies the condition. The
goal position of the path in each node is served as the initial position of the object
path planning for the next node. This way, the resulting overall path will be con-
nected and smooth. Here, we suppose that the controllers’ DoAs completely cover
the workspace, hence we assume that there always exists a low-level controller.

In order to manipulate an object, the robots need specific manipulation controllers.
These could be a single robot manipulating an object or multiple robots cooper-
atively grasping and manipulating an object. As manipulation tasks involve in-
teraction of the robot with the object manipulated, some form of compliance is
required in the arm and its grippers to control the interaction with the object and
avoid chattering and damage to the robot and the object. The most commonly
applied control method is impedance control [50, 95]. This model based control
method makes the robotic arm to behave like a virtual mass-spring-damper sys-
tem. The dynamics of a robot in the Cartesian space is given by

Λ(x)ẍ+ µ(x, ẋ)ẋ+ Fg = Fτ + Fext (6.16)

where x is the robot’s end-effector six dimensional position and orientation vector.
Moreover, Λ(x), µ(x, ẋ), and Fg are respectively the robot’s inertia, Coriolis and
gravitational matrix in the Cartesian space. Fτ and Fext are the end-effector input
and external forces in the Cartesian space, respectively [95]. The desired end-
effector dynamics for its impedance control, without inertia shaping, seen as

Λ(x)¨̃x+Dd
˙̃x+Kdx̃ = Fτ . (6.17)

Here, Kd and Dd are the stiffness and damping parameter of the virtual spring,
respectively [36, 115]. Moreover, Fτ is the end-effector force imposed by the robot
and x̃ is end-effector position error vector (i.e., x−xd). The spring parameters can
be varied to change the behavior of this virtual spring, and hence the robotic arm,
thereby making it either compliant or stiff. The behavior can also be controlled
by changing the desired end-effector position. The end-effector force is indirectly
controlled by varying the spring parameters and the desired end-effector position.
During cooperative manipulation, the grasp geometry also leads to certain kine-
matic constraints which have to be adhered to a successful cooperative robotic

6.4 Simulation Results 105

manipulation (see e.g., [14, 133, 100, 127]). The joint input torque τ is transformed
from the end-effector input force via

τ = J(q)T (Fτ + Fg) (6.18)

where q is the joint position vector and J(q) is the robot’s Jacobian matrix describ-
ing the robot kinematics [77, 95]. In addition, Fg is used for compensating the
gravitational forces on the robot.

Controllers are required in manipulation in order to make and break contact with
the object manipulated. These are called transition controllers. To demarcate a
change in contact involving robots, these controllers are used. These controller
are in line with the making and breaking contact rules stated in Section 6.2.2. The
idea of transition and manipulation controllers is similar to the general concept of
transfer and transit controllers [114, 1]. A final step to achieve the manipulation
task is putting all these controllers together and executing them in a synchronized
and hybrid manner.

It is seen that the workspaces of the contact modes are already overlapping for a
given manipulation task. The path planning algorithm also works in a way that
the goal position of each sub-task or contact mode lies in the workspace of the next
one. Hence, the workspaces are already sequentially composed. The DoA on the
other hand, should include all the relevant dynamic information or states in this
composition. On having a control automaton, performing the given task is just a
matter of executing the controllers, starting from the initial condition, switching
among relevant controllers and accomplishing the overall task.

6.4 Simulation Results

The first example of this chapter is symbolic manipulation planning. For this pur-
pose, various planning scenarios with different initial and goal conditions were
tested using the software Mathematica. To demonstrate the translation of the task
planner to low-level control, the virtual robotics experimentation platform (VREP)
software was used in conjunction with the Matlab for simulating a manipulation
task using two robots and an object. Three different test cases are presented in
this chapter to illustrate task-planning on a symbolic level. One of the test cases
has been extended to low-lower control as well. Each test case consists of differ-
ent number of robots, objects and surfaces along with a different initial and goal
position. To cover a broad spectrum of tasks, each test case consists of a special
aspect to the task being performed.

106 Robot Contact Language

6.4.1 Pushing and Lifting an Object

This example consists of two robots, one object and one surface. The initial posi-
tion of the object is on the surface and the goal position is in the air, held by the
two robots. This example is also used further to illustrate low-level path planning,
control as well as cooperative manipulation.

The contact graph is generated by applying the rules and assumptions of the robot
contact language, as illustrated in Figure 6.4. This graph shows the set of all pos-
sible nodes along with the possible edges between the nodes.

o1s1

o1r1∧o1s1

o1r2∧o1s1

o1r1∧o1r2∧o1s1

o1r1

o1r1∧o1r2

o1r2

Figure 6.4: Contact graph for the example of pushing and cooperatively lifting an
object with two robots, one object, and one surface.

From the given scenario, the initial node isO1S1 and the goal node isO1R1∧O1R2.
The manipulation planner returns one or more paths from the initial to goal node
on this graph. Considering the same weight for all edges on the graph, there are
multiple paths with the same weight between the two initial and goal nodes. Two
of these paths are represented in Figure 6.5 using red lines. On interpreting the
nodes in these paths, the manipulation plan would be to lift the object first by
either one of the robotic arms followed by the other arm making contact with the
object when it is in the air and is held by the first arm. It is natural to assume
that all the generated plans cannot be carried out due to physical and geometrical
limitations. On using this information further, certain paths will have higher costs
or would be completely eliminated, leading to some infeasible plans or paths.

The simulation setup in VREP consists of two robots with partly overlapping
workspaces. The initial position of the object lies in the workspace of R1 and the
goal position obviously lies in the common workspace of R1 and R2, as shown
in Figure 6.6 which illustrates four selected snapshots for the task of pushing and
cooperatively lifting an object. This geometrical information is used to modify the
contact graph and leads to elimination of certain edges on the graph. A physical

6.4 Simulation Results 107

o1s1

o1r2∧o1s1

o1r1∧o1r2

o1r2

o1s1

o1r1∧o1s1

o1r1

o1r1∧o1r2

Figure 6.5: Contact graphs for the example of pushing and cooperatively lifting
an object without considering the geometries and physical limitations
of the components. The graphs represent two different paths from the
initial to goal node as shown in red.

limitation with these robots is that they do not have a gripper or a grasper. This
restricts them to individually manipulate the object in the air. Hence, the nodes
O1R1 and O1R2 are invalid and can be removed from the contact graph. Due to
these modifications, the path for the given task can not be as given in Figure 6.5.

The new path is given in Figure 6.7 that involves cooperative manipulation of the
object using the two arms, as seen from the node O1R1 ∧ O1R2. Moreover, this
path is consistent with scene geometry and physical limitations of robots. Hence,
one can continue with object path planning and low-level control assignment for
each of the sub-paths. Each node in the shortest path points at a potential sub-
manipulation task whereas the edges can refer to a robot either making or break-
ing contact with an object.

The workspace path planning for the object manipulation is based on a stan-
dard grid-based Dijkstra’s shortest path algorithm which is followed by robot
end-effector path planning. The manipulation and transition controller are based
on spatial-springs based impedance controllers [14, 115, 36] with varying con-
troller parameter as desired by task performed. For cooperative manipulation,
the trajectories of the robot’s end-effector are generated from the workspace path
planned for object manipulation [14]. The idea of sequential composition is used
and the DoAs and goal sets for each robot controllers is found from overlapping
workspaces of the nodes, the contact configuration of nodes, and the informa-
tion from workspace path planning of the object. Using this information, switch-
ing conditions for controllers are defined and the control system is represented in
the form of a control automaton. On execution, the overall manipulation task is
achieved.

Figure 6.8 illustrates the simulation results for the left robotic arm of Figure 6.6 in

108 Robot Contact Language

Figure 6.6: Snapshots of the simulated manipulation task in VREP (Left to right,
top to bottom) for the task of pushing and cooperatively lifting an
object. The shaded blue regions are the workspaces of the two pla-
nar robots which are partly overlapping. The red object is being first
pushed into the overlapping workspace by one of the robots followed
by both robots cooperatively lifting the object.

o1s1

o1r1∧o1s1

o1r1∧o1r2∧o1s1

o1r2∧o1s1

o1r1∧o1r2

Figure 6.7: Contact graph for the example of pushing and cooperatively lifting an
object after considering the geometries and physical limitations of the
components. The shortest path from the initial to goal node is shown
in red.

6.4 Simulation Results 109

the example of pushing and cooperatively lifting an object. Similarly, Figure 6.9
depicts the simulation results for the right robotic arm. In the both figures, the first
two plots illustrate the end-effector positions along the y and z axes. The desired
end-effector trajectories generated via path planning are shown in red and the
actual trajectories are given in blue. The last plots in the figures represent the end-
effector force along the z axis for the left and right manipulators. This simulation
has been done in VREP.

Five different controllers are used in the overall task: two for robot transition,
one for pushing the robot, and two for cooperative manipulation (functioning si-
multaneously). The vertical dotted line denotes the time instance of controller
switching: the first region indicates the make-contact controller of the left robot,
the second region represents a push-controller for the same robot to bring the
object into the overlapping workspace, the third region shows the make-contact
controller of the right robot, and the last region represents a cooperative manipu-
lation controller for each object that manipulates objects while adhering to closed
chain constraints. Thus, the control of the two individual robotic arms leads to
successful object manipulation while tracking their respective workspace paths.

0 5 10 15 20 25 30
0

0.5

1

Time [s]

y−
po

si
tio

n
[m

] Actual
Desired

0 5 10 15 20 25 30
0

0.5

1

Time [s]

z−
po

si
tio

n
[m

]

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

Time [s]

z−
fo

rc
e

[N
]

Figure 6.8: Simulation results for the left robotic arm of Figure 6.6 in the example
of pushing and cooperatively lifting an object. The first two plots il-
lustrate the end-effector positions along the y and z axes. The desired
end-effector trajectories are shown in red and the actual trajectories are
in blue. The last plot represents the end-effector force along the z axis.

110 Robot Contact Language

0 5 10 15 20 25 30
0

0.5

1

Time [s]

y−
po

si
tio

n
[m

] Actual
Desired

0 5 10 15 20 25 30
0

0.5

1

Time [s]

z−
po

si
tio

n
[m

]

0 5 10 15 20 25 30
−0.2

−0.1

0

0.1

0.2

Time [s]

z−
fo

rc
e

[N
]

Figure 6.9: Simulation results for the right robotic arm of Figure 6.6 in the exam-
ple of pushing and cooperatively lifting an object. The first two plots
illustrate the end-effector positions along the y and z axes. The desired
end-effector trajectories are shown in red and the actual trajectories are
in blue. The last plot represents the end-effector force along the z axis.

6.4.2 Stacking Objects

This example consists of one robot, two objects, and two surfaces. The initial
position of the two objects is on two separate surfaces while the final position is
in a stacking position on one of the surfaces. This is an important example in AI
planning. The sequence of manipulation matters as it involves stacking of objects.
Along with sequential planning, the decision of manipulating the correct object
first is also made using this planner.

The complete contact graph is shown in Figure 6.10, which is generated by apply-
ing the rules and assumptions of the robot contact language. The graph shows a
set of all possible nodes along with the feasible edges between two nodes. The
initial node for the task is O1S1 ∧ O2S2 and the goal node is O1O2 ∧ O2S1. The
manipulation planner returns two paths from the initial to the goal node for this
task. Considering the same weight for all edges on the graph, the shortest and the
alternate paths on the graph is given in Figure 6.11, shown in red.

The manipulation plan is hence for R1 to first pick and place O2 from S2 to S1

followed by picking and placing O1 from S1 to O2. As expected, the manipulation
planner achieves task planning and gives out the correct order of object manipu-
lation for their stacking process. The alternative path also produces a plan for the
same manipulation task but with a longer path on the contact graph.

6.4 Simulation Results 111

o1s1∧o2s1

o1r1∧o1s1∧o2s1

o1s1∧o2r1∧o2s1

o1r1∧o2s1

o1o2∧o1r1∧o2s1

o1r1∧o1s2∧o2s1

o1o2∧o2s1

o1o2∧o2r1∧o2s1

o1s2∧o2s1 o1s2∧o2r1∧o2s1

o1s2∧o2r1

o1o2∧o1s2∧o2r1

o1s2∧o2r1∧o2s2

o1o2∧o1s2

o1o2∧o1r1∧o1s2

o1s2∧o2s2

o1r1∧o1s2∧o2s2

o1r1∧o2s2

o1o2∧o1r1∧o2s2

o1r1∧o1s1∧o2s2

o1o2∧o2s2

o1o2∧o2r1∧o2s2

o1s1∧o2s2
o1s1∧o2r1∧o2s2

o1s1∧o2r1

o1o2∧o1s1∧o2r1

o1o2∧o1s1

o1o2∧o1r1∧o1s1

Figure 6.10: Contact graph for the example of stacking objects with one robot, two
objects, and two surfaces.

6.4.3 Parallel Manipulation

This example consists of two robots, two objects, and one surface. The task for
each of the two robots is to lift a separate object and manipulate them individu-
ally. This example is used to illustrate manipulations of two objects carried out in
parallel using the parallelization rule.

The initial node for the given task is O1S1 ∧ O2S1 and the goal node is O1R1 ∧
O2R2. The shortest path for this task is depicted in Figure 6.12, represented by red
arrows. On observing every node in this path, one can see that there is potential
for parallelizing the task. The two robots R1 and R2 can lift and manipulate their
respective objectsO1 andO2 simultaneously. On applying the paralleling rule, the

112 Robot Contact Language

o1o2∧o2s1

o1s1∧o2s2

o1o2∧o2s1

o1s1∧o2s2

Figure 6.11: Contact graphs for the example of stacking objects with one robot,
two objects, and two surfaces. The graph on the left shows the short-
est path on the graph, shown in red, whereas the graph on the right
shows an alternate path for the same task.

task can be divided into two parallel paths given by

O1S1 ‖ O2S1

O1S1 ∧O1R1 ‖ O2S1 ∧O2R2

O1R1 ‖ O2R2

(6.19)

where time optimizations can be carried out while performing the overall task.

6.5 Conclusions

This chapter proposed a robot contact language for robotic manipulation plan-
ning. This symbolic planner is based on the idea of change in contact between
robots, object, and surfaces while using standard graph theory techniques. The
derived symbolic rules of robot making and breaking contact with objects along
with lifting and placing them from or on surfaces are used to generate a supervi-
sory graph. This contact graph is enhanced using the available geometrical and
other relevant information. The sub-tasks are attained by assigning different con-
trollers and executing them in a hybrid manner. Simulation results show how
tasks like pushing, lifting, and stacking objects can easily be planned using this
robot contact language. Moreover, independent sub-tasks can also be planned to
be carried out in parallel using the derived parallelization rules.

This contact-based approach is highly intuitive and the task-division conforms

6.5 Conclusions 113

o1s1∧o2s1

o1r1∧o1s1∧o2s1

o1r1∧o2s1

o1r1∧o2r2∧o2s1

o1r1∧o2r2

Figure 6.12: Contact graph for the example of parallel manipulation with two
robots, two objects, and one surface. The shortest path is represented
by red arrows. This task can be planned sequentially as well as in
parallel using the parallelization rules.

with the need for a change in controller specification. However, it is not designed
to be a generalized AI planner and focuses on the planning and optimization of
object manipulations. Although the studied examples only focus on the robotic
arms, the proposed language is also applicable to mobile manipulators and other
robotic systems. This manipulation planner assumes full-world information, in-
cluding robot workspaces and contact surfaces. It is also static in nature and can
not deal with temporal or dynamic planning, like throwing and catching objects.
On having these mentioned drawbacks, the planner can serve as a helpful tool
in manipulation planning and scheduling. The problem is formulated as a graph
search with a straightforward application of temporal and spatial constraints as
edge weights.

7 CHAPTER

Conclusions and Future Research

This chapter provides a summary of the thesis as well as a conclusion
from the contributions discussed throughout. It closes with some

research directions for future work.

7.1 Conclusions

This thesis discussed automatic synthesis of supervisory controllers by means of
learning and taking advantage of coordination between multiple control systems
in the context of sequential composition. Estimating the DoA of controllers pro-
vides a notion of safe learning in a sense that the experiments are just allowed
to search within the existing DoAs. Moreover, online monitoring the DoAs en-
ables learning in a short amount of time by introducing a stopping criterion for
the learning procedure. Additionally, a robot contact language has been proposed
for the manipulation of multiple objects by multiple robots. This language is de-
scribed with regards to the contact that is made or broken between a collection of
involved components. In the following, a conclusion on the main contributions of
this thesis is provided.

Estimating the domain of attraction. A fast sampling approach is proposed for
estimating the DoAs of nonlinear systems in real-time. The sampling approach
is fast and computationally effective in comparison with existing optimization-
based methods. This technique is useful for real-time applications. According to
the empirical evidence, it is guaranteed that this approach converges to the exact
level set for a sufficiently large number of samples. It is shown that the conver-
gence rate directly depends on the distribution function selected for sampling.
By means of a more sophisticated distributed function the convergence rate of
the sampling procedure can be increased. There is always a trade-off between

115

116 Conclusions and Future Research

the speed of convergence and the computational cost imposed by the complex-
ity of distribution function. The sampling approach is beneficial for the design of
passivity-based learning controllers, where the system Hamiltonian can be used
as a candidate Lyapunov function for approximating the controller’s DoA.

Learning sequential composition control. One of the approaches that enables
automatic synthesis of supervisory controllers is learning sequential composition
control developed to cope with unmodeled situations using online learning. The
standard sequential composition framework is augmented with a learning mode
to add new controllers to the supervisory structure on a need basis. The learning
process is safe since it is bounded to the union of existing DoAs. Estimating the
DoA of the learned controller at every trial results in rapid learning by terminat-
ing the learning process once the DoA is sufficiently large to respect the control
objective. In addition, the proposed control approach has been extended to PLTs
algorithm as a feedback motion planning. It learns a collection of controllers safely
for a class of systems. Although PLTs inherits the challenges present in RL, it is
useful for motion planning as it learns in small regions of the state space instead
of entire state space at once.

Cooperative sequential composition control. Another technique that enables au-
tomatic synthesis of supervisory controllers is cooperative sequential composi-
tion control. It composes two or multiple independent supervisory controllers
to achieve new tasks that were not possible by each controller individually. If
mathematical models for all the dynamics and interaction constraints are present,
it is feasible to apply the composition rules to obtain a new cooperative control
automaton with extra composed events. Each system receives only the relevant
composed events for its own control automaton. The whole procedure is auto-
matic without need to change anything in the original control automata. The new
composed events are generated based on the prepare relation between the DoAs
of composed controllers. Using this approach, a rich task can be accomplished by
executing a composed event on the cooperative control simultaneously.

Robot contact language. A new approach to robotic manipulation planning is
proposed, called robot contact language. This symbolic planner is based on the
change in contact between robots, objects, and surfaces while using standard graph
theory techniques. The derived symbolic rules of robot making and breaking con-
tact with objects along with lifting and placing them from or on surfaces are used
to generate a symbolic graph. This supervisory graph is enhanced using the avail-
able geometrical and other relevant information presents in manipulation. Stan-
dard graph search algorithms can then be applied to plan the manipulation task
on an abstract level, which indirectly divides a complex manipulation task into
sub-tasks based on contact. These sub-tasks can be obtained by assigning differ-
ent controllers and executing in a hybrid manner. Simulation results show how
tasks like pushing, lifting and stacking objects can easily be planned using this
language. Moreover, independent sub-tasks can also be planned to be carried out

7.2 Recommendations for Future Work 117

in parallel using the derived parallelization rules. This contact-based approach is
not designed to be a generalized AI planner. It is highly intuitive and focuses on
the planning and optimization of object manipulations. The proposed language is
applicable to mobile manipulators and other robotic systems.

7.2 Recommendations for Future Work

This section recommends some research direction for future work. The sugges-
tions are as follows.

• Formal guarantee for the sampling method. Although the empirical evi-
dence suggests that the result of the proposed sampling method converges
to the exact level set for a large number of samples, a formal guarantee for
the convergence of sampling does not exist yet.

• Distributed function for the sampling method. The convergence rate of
the sampling method depends on the distribution function selected for sam-
pling. Using a more sophisticated function can considerably speed up the
convergence rate. However, there is always a trade-off between the speed of
convergence and the computational cost imposed by the complexity of the
distribution function. This needs to carefully be studied so that an appropri-
ate distribution function is chosen for the sampling procedure.

• Non-Lyapunov methods for estimating the DoA. In this thesis, we only im-
plemented the sampling technique for the Lyapunov-based methods. How-
ever, the proposed sampling approach can be extended to non-Lyapunov
methods as well. This enables estimating the DoAs of both model-based
and non-model based controllers.

• Generic learning experiments. The design of a generic learning experiment
in the context of learning sequential composition control to learn proper con-
trol laws in a short amount of time is a real challenge. This is due the fact that
for each system the reward function, the learning rates and the parametriza-
tion of the value function must carefully be chosen. This thesis did not ad-
dress the automatic choice of these parameters, but this could be a research
line for future work.

• Search in the control automaton. In the current learning sequential compo-
sition control approach, the next controller of the sequence is selected ran-
domly when there are multiple possibilities. However, a distance function
can be defined to compute the smallest distance between all the goal sets
reachable by the initial state via sequential composition and all the DoAs
that can lead to the desired state. Once a pair of goal set and DoA is found,

118 Conclusions and Future Research

the reward function of the learning module is set to give positive rewards
in the directions that minimize the distance between the associated goal set
and the desired DoA, using the distance function. This function can be com-
plex to compute if the DoAs and goal sets are non-convex.

• Interaction dynamics in cooperative manipulation. In the cooperation of
two or multiple systems, a good knowledge on the interaction dynamics is
very beneficial. In this thesis, we manually calculated a simplified model for
the interaction between two collaborating systems. However, the automatic
computation of this interaction can effectively simplify the control synthe-
sis. Future research includes using partial dynamical models where learning
needs to happen in real-time towards achieving the interaction dynamics.

• Extension of the robot contact language. The proposed contact-based lan-
guage focuses on the manipulation of objects with simple geometry while
designing low-level controllers for oddly-shaped objects in the context of
this planner is quite challenging. This even gets more severe if one also con-
siders the objects dynamics. As such, the robot contact language should be
studied further, mainly with respect to the low-level controllers. This could
be very useful for the assembly lines in various industries, where contact
between the robots and objects with irregular geometries is very trivial.

Bibliography

[1] Rachid Alami, Jean-Paul Laumond, and Thierry Siméon. Two manipulation
planning algorithms. In Proceedings of the workshop on Algorithmic foundations
of robotics, pages 109–125, 1995.

[2] Rajeev Alur, Thao Dang, and Franjo Ivančić. Progress on reachability anal-
ysis of hybrid systems using predicate abstraction. In Hybrid Systems: Com-
putation and Control, pages 4–19. Springer, 2003.

[3] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[4] Francesco Amato, Carlo Cosentino, and Alessio Merola. On the region of at-
traction of nonlinear quadratic systems. Automatica, 43(12):2119–2123, 2007.

[5] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation,
2013.

[6] Nora Ayanian and Vijay Kumar. Abstractions and controllers for groups of
robots in environments with obstacles. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 3537–3542, 2010.

[7] Robert Baier and Matthias Gerdts. A computational method for non-convex
reachable sets using optimal control. In Proceedings of the European Control
Conference, pages 23–26, 2009.

[8] Tucker Balch and Ronald C Arkin. Behavior-based formation control for
multirobot teams. IEEE Transactions on Robotics and Automation, 14(6):926–
939, 1998.

[9] Randal W Beard, Jonathan Lawton, and Fred Y Hadaegh. A coordination
architecture for spacecraft formation control. IEEE Transactions on Control
Systems Technology, 9(6):777–790, 2001.

[10] Antonio Bicchi, Alessia Marigo, and Benedetto Piccoli. Feedback encoding
for efficient symbolic control of dynamical systems. IEEE Transactions on
Automatic Control, 51(6):987–1002, 2006.

119

120 Bibliography

[11] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[12] Avrim L Blum and Merrick L Furst. Fast planning through planning graph
analysis. Artificial intelligence, 90(1):281–300, 1997.

[13] Robert R Burridge, Alfred A Rizzi, and Daniel E Koditschek. Sequential
composition of dynamically dexterous robot behaviors. The International
Journal of Robotics Research, 18(6):534–555, 1999.

[14] Fabrizio Caccavale, Pasquale Chiacchio, Alessandro Marino, and Luigi Vil-
lani. Six-DOF impedance control of dual-arm cooperative manipulators.
IEEE/ASME Transactions on Mechatronics, 13(5):576–586, 2008.

[15] Fabrizio Caccavale, Ciro Natale, Bruno Siciliano, and Luigi Villani. Six-DOF
impedance control based on angle/axis representations. IEEE Transactions
on Robotics and Automation, 15(2):289–300, 1999.

[16] Stephane Cambon, Rachid Alami, and Fabien Gravot. A hybrid approach to
intricate motion, manipulation and task planning. The International Journal
of Robotics Research, 28(1):104–126, 2009.

[17] Christos G Cassandras and Stephane Lafortune. Introduction to Discrete
Event Systems. Springer Science & Business Media, 2008.

[18] G Chesi, A Garulli, A Tesi, and A Vicino. LMI-based computation of optimal
quadratic Lyapunov functions for odd polynomial systems. International
Journal of Robust and Nonlinear Control, 15(1):35–49, 2005.

[19] Graziano Chesi. Estimating the domain of attraction for uncertain polyno-
mial systems. Automatica, 40(11):1981–1986, 2004.

[20] Graziano Chesi. Domain of attraction: estimates for non-polynomial sys-
tems via LMIs. In Proceedings of the 16th IFAC World Congress, 2005.

[21] Graziano Chesi. Estimating the domain of attraction via union of continu-
ous families of Lyapunov estimates. Systems & control letters, 56(4):326–333,
2007.

[22] Graziano Chesi. Estimating the domain of attraction for non-polynomial
systems via LMI optimizations. Automatica, 45(6):1536–1541, 2009.

[23] Graziano Chesi. Domain of Attraction: Analysis and Control via SOS Program-
ming. Springer, 2011.

[24] Graziano Chesi. Rational Lyapunov functions for estimating and controlling
the robust domain of attraction. Automatica, 49(4):1051–1057, 2013.

Bibliography 121

[25] David C Conner. Integrating Planning and Control for Constrained Dynamical
Systems. ProQuest, 2007.

[26] David C Conner, Howie Choset, and Alfred A Rizzi. Flow-through poli-
cies for hybrid controller synthesis applied to fully actuated systems. IEEE
Transactions on Robotics, 25(1):136–146, 2009.

[27] David C Conner, Hadas Kress-Gazit, Howie Choset, Alfred Rizzi, and
George J Pappas. Valet parking without a valet. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 572–
577, 2007.

[28] David C Conner, Alfred Rizzi, and Howie Choset. Composition of local
potential functions for global robot control and navigation. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3546–3551, 2003.

[29] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[30] John J Craig and M Raibert. A systematic method of hybrid position/force
control of a manipulator. In Proceedings of the IEEE Computer Society’s 3rd
International Computer Software and Applications Conference, pages 446–451,
1979.

[31] Daniel Cruz, James McClintock, Brent Perteet, Omar AA Orqueda, Yuan
Cao, and Rafael Fierro. Decentralized cooperative control-a multivehicle
platform for research in networked embedded systems. IEEE Control Sys-
tems Magazine, 27(3):58–78, 2007.

[32] Richard Dearden and Chris Burbridge. Manipulation planning using
learned symbolic state abstractions. Robotics and Autonomous Systems,
62(3):355–365, 2014.

[33] Jaydev P Desai, James P Ostrowski, and Vijay Kumar. Modeling and control
of formations of nonholonomic mobile robots. IEEE Transactions on Robotics
and Automation, 17(6):905–908, 2001.

[34] Christian Dornhege, Marc Gissler, Matthias Teschner, and Bernhard Nebel.
Integrating symbolic and geometric planning for mobile manipulation. In
Proceedings of the IEEE International Workshop on Safety, Security & Rescue
Robotics, pages 1–6, 2009.

[35] Georgios E Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J
Pappas. Temporal logic motion planning for dynamic robots. Automatica,
45(2):343–352, 2009.

122 Bibliography

[36] Ernest D Fasse and Jan F Broenink. A spatial impedance controller
for robotic manipulation. IEEE Transactions on Robotics and Automation,
13(4):546–556, 1997.

[37] J Alexander Fax and Richard M Murray. Information flow and coopera-
tive control of vehicle formations. IEEE Transactions on Automatic Control,
49(9):1465–1476, 2004.

[38] Richard E Fikes and Nils J Nilsson. STRIPS: a new approach to the applica-
tion of theorem proving to problem solving. Artificial intelligence, 2(3):189–
208, 1972.

[39] Kenji Fujimoto and Toshiharu Sugie. Canonical transformation and sta-
bilization of generalized Hamiltonian systems. Systems & Control Letters,
42(3):217–227, 2001.

[40] Roberto Genesio, Michele Tartaglia, and Antonio Vicino. On the estimation
of asymptotic stability regions: State of the art and new proposals. IEEE
Transactions on Automatic Control, 30(8):747–755, 1985.

[41] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave
Christianson, Marc Friedman, Chung Kwok, Keith Golden, Scott Penberthy,
and David E Smith. PDDL-the planning domain definition language. 1998.

[42] Antoine Girard. Controller synthesis for safety and reachability via approx-
imate bisimulation. Automatica, 48(5):947–953, 2012.

[43] Fabien Gravot, Stephane Cambon, and Rachid Alami. aSyMov: a planner
that deals with intricate symbolic and geometric problems. In Proceedings of
the 11th International Symposium Robotics Research, pages 100–110, 2005.

[44] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A
survey of actor-critic reinforcement learning: Standard and natural policy
gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, 42(6):1291–1307, 2012.

[45] Ivo Grondman, Maarten Vaandrager, Lucian Busoniu, Robert Babuska, and
Erik Schuitema. Efficient model learning methods for actor–critic con-
trol. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
42(3):591–602, 2012.

[46] O Hachicho. A novel LMI-based optimization algorithm for the guaranteed
estimation of the domain of attraction using rational Lyapunov functions.
Journal of the Franklin Institute, 344(5):535–552, 2007.

[47] O Hachicho and B Tibken. Estimating domains of attraction of a class of
nonlinear dynamical systems with LMI methods based on the theory of mo-
ments. In Proceedings of the 41st IEEE International Conference on Decision and
Control, pages 3150–3155, 2002.

Bibliography 123

[48] Roland Hafner and Martin Riedmiller. Reinforcement learning in feedback
control. Machine learning, 84(1-2):137–169, 2011.

[49] Didier Henrion and Milan Korda. Convex computation of the region of
attraction of polynomial control systems. IEEE Transactions on Automatic
Control, 59(2):297–312, 2014.

[50] Neville Hogan. Impedance control: An approach to manipulation. In Pro-
ceedings of the American Control Conference, pages 304–313, 1984.

[51] Neville Hogan. Impedance control: An approach to manipulation: Part
ii–implementation. Journal of dynamic systems, measurement, and control,
107(1):8–16, 1985.

[52] Mikael Johansson and Anders Rantzer. Computation of piecewise quadratic
Lyapunov functions for hybrid systems. IEEE Transactions on Automatic Con-
trol, 43(4):555–559, 1998.

[53] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and mo-
tion planning in the now. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1470–1477, 2011.

[54] Vinutha Kallem, Adam T Komoroski, and Vipin Kumar. Sequential compo-
sition for navigating a nonholonomic cart in the presence of obstacles. IEEE
Transactions on Robotics, 27(6):1152–1159, 2011.

[55] George Kantor and Alfred A Rizzi. Feedback control of underactuated sys-
tems via sequential composition: Visually guided control of a unicycle. In
Proceedings of the 11th International Symposium Robotics Research, pages 281–
290, 2005.

[56] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for opti-
mal motion planning. The International Journal of Robotics Research, 30(7):846–
894, 2011.

[57] Hassan K Khalil and JW Grizzle. Nonlinear Systems. Prentice hall Upper
Saddle River, 2002.

[58] Marius Kloetzer and Calin Belta. A fully automated framework for control
of linear systems from temporal logic specifications. IEEE Transactions on
Automatic Control, 53(1):287–297, 2008.

[59] George Konidaris and Andre S Barreto. Skill discovery in continuous re-
inforcement learning domains using skill chaining. In Advances in Neural
Information Processing Systems, pages 1015–1023, 2009.

[60] James J Kuffner and Steven M LaValle. RRT-connect: An efficient approach
to single-query path planning. In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 995–1001, 2000.

124 Bibliography

[61] Gerardo Lafferriere, Alan Williams, J Caughman, and JJP Veerman. Decen-
tralized control of vehicle formations. Systems & control letters, 54(9):899–
910, 2005.

[62] Steven M LaValle. Planning Algorithms. Cambridge university press, 2006.

[63] Jonathan RT Lawton, Randal W Beard, and Brett J Young. A decentralized
approach to formation maneuvers. IEEE Transactions on Robotics and Au-
tomation, 19(6):933–941, 2003.

[64] JL Le Ny and George J Pappas. Sequential composition of robust controller
specifications. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 5190–5195, 2012.

[65] M Anthony Lewis and Kar-Han Tan. High precision formation control of
mobile robots using virtual structures. Autonomous Robots, 4(4):387–403,
1997.

[66] Daniel Liberzon. Switching in Systems and Control. Springer Science & Busi-
ness Media, 2012.

[67] Stephen R Lindemann, Islam Hussein, and Steven M LaValle. Real time
feedback control for nonholonomic mobile robots with obstacles. In Pro-
ceedings of the 45th IEEE Conference on Decision and Control, pages 2406–2411,
2006.

[68] Stephen R Lindemann and Steven M LaValle. Smoothly blending vector
fields for global robot navigation. In Proceedings of the 44th IEEE Conference
on Decision and Control, pages 3553–3559, 2005.

[69] Stephen R Lindemann and Steven M LaValle. Smooth feedback for car-like
vehicles in polygonal environments. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 3104–3109, 2007.

[70] Stephen R Lindemann and Steven M LaValle. Simple and efficient algo-
rithms for computing smooth, collision-free feedback laws over given cell
decompositions. The International Journal of Robotics Research, 28(5):600–621,
2009.

[71] Gabriel AD Lopes, Esmaeil Najafi, Subramanya P Nageshrao, and Robert
Babuska. Learning complex behaviors via sequential composition and
passivity-based control. In Handling Uncertainty and Networked Structure in
Robot Control, L. Busoniu and L. Tamas Eds., pages 53–74. Springer, 2015.

[72] Anirudha Majumdar, Ram Vasudevan, Mark M Tobenkin, and Russ
Tedrake. Convex optimization of nonlinear feedback controllers via occu-
pation measures. The International Journal of Robotics Research, 33:1209–1230,
2014.

Bibliography 125

[73] Matthew T Mason. Compliance and force control for computer controlled
manipulators. IEEE Transactions on Systems, Man and Cybernetics, 11(6):418–
432, 1981.

[74] Luis G Matallana, Aníbal M Blanco, and J Alberto Bandoni. Estimation of
domains of attraction: A global optimization approach. Mathematical and
Computer Modelling, 52(3):574–585, 2010.

[75] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.

[76] Robert Murphey and Panos M Pardalos. Cooperative control and optimization,
volume 66. Springer Science & Business Media, 2002.

[77] Richard M Murray, Zexiang Li, S Shankar Sastry, and S Shankara Sastry. A
mathematical introduction to robotic manipulation. CRC press, 1994.

[78] Roderick Murray-Smith and T Johansen. Multiple model approaches to nonlin-
ear modelling and control. CRC press, 1997.

[79] Umashankar Nagarajan, George Kantor, and Ralph Hollis. Hybrid control
for navigation of shape-accelerated underactuated balancing systems. In
Proceedings of the 49th IEEE International Conference on Decision and Control,
pages 3566–3571, 2010.

[80] Umashankar Nagarajan, George Kantor, and Ralph Hollis. Integrated plan-
ning and control for graceful navigation of shape-accelerated underactuated
balancing mobile robots. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 136–141, 2012.

[81] Subramanya P Nageshrao, Gabriel AD Lopes, Dimitri Jeltsema, and
R Babuska. Passivity-based reinforcement learning control of a 2-DOF ma-
nipulator arm. Mechatronics, 24(8):1001–1007, 2014.

[82] Subramanya Prasad Nageshrao, Gabriel AD Lopes, Dimitri Jeltsema, and
R Babuska. Interconnection and damping assignment control via reinforce-
ment learning. In Proceedings of the 19th IFAC World Congress, pages 1760–
1765, 2014.

[83] Esmaeil Najafi, Robert Babuska, and Gabriel AD Lopes. An application of
sequential composition control to cooperative systems. In Proceedings of the
10th International Workshop on Robot Motion and Control, pages 15–20, 2015.

[84] Esmaeil Najafi, Robert Babuska, and Gabriel AD Lopes. A fast sampling
method for estimating the domain of attraction. Submitted to Nonlinear Dy-
namics, 2015.

[85] Esmaeil Najafi, Robert Babuska, and Gabriel AD Lopes. Learning sequential
composition control. To appear in IEEE Transactions on Cybernetics, 2015.

126 Bibliography

[86] Esmaeil Najafi, Robert Babuska, and Gabriel AD Lopes. Cooperative se-
quential composition control. 2016.

[87] Esmaeil Najafi, Robert Babuska, and Gabriel AD Lopes. Probabilistic learn-
ing trees: a feedback motion planning. 2016.

[88] Esmaeil Najafi and Gabriel AD Lopes. Towards cooperative sequential com-
position control. Submitted to the 55th IEEE International Conference on Deci-
sion and Control. 2016.

[89] Esmaeil Najafi, Gabriel AD Lopes, and Robert Babuska. Reinforcement
learning for sequential composition control. In Proceedings of the 52nd IEEE
International Conference on Decision and Control, pages 7265–7270, 2013.

[90] Esmaeil Najafi, Gabriel AD Lopes, and Robert Babuska. Balancing a legged
robot using state-dependent Riccati equation control. In Proceedings of the
19th IFAC World Congress, pages 2177–2182, 2014.

[91] Esmaeil Najafi, Gabriel AD Lopes, Subramanya P Nageshrao, and Robert
Babuska. Rapid learning in sequential composition control. In Proceedings
of the 53rd IEEE International Conference on Decision and Control, pages 5171–
5176, 2014.

[92] Petter Ögren, Edward Fiorelli, and Naomi Ehrich Leonard. Cooperative
control of mobile sensor networks: Adaptive gradient climbing in a dis-
tributed environment. IEEE Transactions on Automatic Control, 49(8):1292–
1302, 2004.

[93] Romeo Ortega and Eloisa Garcia-Canseco. Interconnection and damping
assignment passivity-based control: A survey. European Journal of Control,
10(5):432–450, 2004.

[94] Romeo Ortega, Arjan J Van der Schaft, Iven Mareels, and Bernhard
Maschke. Putting energy back in control. IEEE Control Systems Magazine,
21(2):18–33, 2001.

[95] Christian Ott. Cartesian Impedance Control: The Rigid Body Case. Springer,
2008.

[96] Christian Ott, Oliver Eiberger, Werner Friedl, B Bauml, Ulrich Hillenbrand,
Christoph Borst, A Albu-Schaffer, Bernhard Brunner, H Hirschmuller, and
S Kielhofer. A humanoid two-arm system for dexterous manipulation. In
Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots,
pages 276–283. IEEE, 2006.

[97] Andrew Packard, Ufuk Topcu, Peter Seiler, and Gary Balas. Help on SOS.
IEEE Control Systems Magazine, 30(4):18–23, 2010.

Bibliography 127

[98] Lynne E Parker. Current state of the art in distributed autonomous mobile
robotics. In Distributed Autonomous Robotic Systems 4, pages 3–12. Springer,
2000.

[99] Sarangi Patel, Sang-Hack Jung, James P Ostrowski, Rahul Rao, and
Camillo J Taylor. Sensor based door navigation for a nonholonomic vehicle.
In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 3081–3086, 2002.

[100] Veronique Perdereau and Michel Drouin. Hybrid external control for two
robot coordinated motion. Robotica, 14(02):141–153, 1996.

[101] Giordano Pola, Antoine Girard, and Paulo Tabuada. Approximately bisimi-
lar symbolic models for nonlinear control systems. Automatica, 44(10):2508–
2516, 2008.

[102] Arthur E Quaid and Alfred Rizzi. Robust and efficient motion planning for
a planar robot using hybrid control. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 4021–4026, 2000.

[103] Philipp Reist and Russ Tedrake. Simulation-based LQR-trees with input
and state constraints. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 5504–5510, 2010.

[104] Alfred Rizzi. Hybrid control as a method for robot motion programming.
In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 832–837, 1998.

[105] Pritam Roy, Paulo Tabuada, and Rupak Majumdar. Pessoa 2.0: A controller
synthesis tool for cyber-physical systems. In Proceedings of the 14th interna-
tional conference on Hybrid systems: computation and control, pages 315–316.
ACM, 2011.

[106] Grzegorz Rozenberg and Arto Salomaa. Handbook of Formal Languages: Be-
yonds words. Springer Science & Business Media, 1997.

[107] Radu Bogdan Rusu, Nico Blodow, Zoltan Marton, Alina Soos, and Michael
Beetz. Towards 3D object maps for autonomous household robots. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 3191–3198, 2007.

[108] Ahmed Saleme, Bernd Tibken, S Warthenpfuhl, and Christian Selbach. Es-
timation of the domain of attraction for non-polynomial systems: A novel
method. In Proceedings of the 18th IFAC World Congress, pages 10976–10981,
2011.

128 Bibliography

[109] Anuj Shah, Esmaeil Najafi, and Gabriel AD Lopes. Contact-based language
for robotic planning and manipulation. Submitted to the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. 2016.

[110] Anuj Shah, Esmaeil Najafi, and Gabriel AD Lopes. A robot contact lan-
guage for manipulation planning. Submitted to IEEE/ASME Transactions on
Mechatronics, 2016.

[111] JS Shamma and M Athans. Gain scheduling: Potential hazards and possible
remedies. IEEE Control Systems Magazine, 12(3):101–107, 1992.

[112] O. Sprangers, R. Babuska, S.P. Nageshrao, and G.A.D. Lopes. Reinforce-
ment learning for port-Hamiltonian systems. IEEE Transactions on Cybernet-
ics, 45(5):1003–1013, 2015.

[113] Mike Stilman and James Kuffner. Planning among movable obstacles with
artificial constraints. The International Journal of Robotics Research, 27(11-
12):1295–1307, 2008.

[114] Mike Stilman, Jan-Ullrich Schamburek, James Kuffner, and Tamim Asfour.
Manipulation planning among movable obstacles. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 3327–3332, 2007.

[115] Stefano Stramigioli. From differentiable manifold to interactive robot control.
Delft University of Technology, 1998.

[116] Richard S Sutton and Andrew G Barto. Introduction to Reinforcement Learn-
ing. MIT Press, 1998.

[117] Paulo Tabuada. An approximate simulation approach to symbolic control.
IEEE Transactions on Automatic Control, 53(6):1406–1418, 2008.

[118] Weehong Tan and Andrew Packard. Stability region analysis using poly-
nomial and composite polynomial Lyapunov functions and sum-of-squares
programming. IEEE Transactions on Automatic Control, 53(2):565–570, 2008.

[119] Herbert G Tanner and Dimitrios K Christodoulakis. Decentralized coop-
erative control of heterogeneous vehicle groups. Robotics and autonomous
systems, 55(11):811–823, 2007.

[120] Herbert G Tanner, George J Pappas, and Vijay Kumar. Leader-to-formation
stability. IEEE Transactions on Robotics and Automation, 20(3):443–455, 2004.

[121] Russ Tedrake. LQR-Trees: Feedback motion planning on sparse randomized
trees. 2009.

[122] Russ Tedrake, Ian R Manchester, Mark Tobenkin, and John W Roberts. LQR-
trees: Feedback motion planning via sums-of-squares verification. The In-
ternational Journal of Robotics Research, 29(8):1038–1052, 2010.

Bibliography 129

[123] Alberto Tesi, Francesca Villoresi, and Roberto Genesio. On the stability do-
main estimation via a quadratic Lyapunov function: Convexity and opti-
mality properties for polynomial systems. IEEE Transactions on Automatic
Control, 41(11):1650–1657, 1996.

[124] B Tibken and O Hachicho. Estimation of the domain of attraction for poly-
nomial systems using multidimensional grids. In Proceedings of the 39th IEEE
International Conference on Decision and Control, pages 3870–3874, 2000.

[125] Ufuk Topcu, Andrew Packard, and Peter Seiler. Local stability analysis us-
ing simulations and sum-of-squares programming. Automatica, 44(10):2669–
2675, 2008.

[126] Ufuk Topcu, Andrew K Packard, Peter Seiler, and Gary J Balas. Ro-
bust region-of-attraction estimation. IEEE Transactions on Automatic Control,
55(1):137–142, 2010.

[127] Masaru Uchiyama and Pierre Dauchez. A symmetric hybrid position/force
control scheme for the coordination of two robots. In Proceedings of the IEEE
International Conference on Robotics and Automation, pages 350–356, 1988.

[128] Arjan Van der Schaft and Dimitri Jeltsema. Port-Hamiltonian Systems Theory:
An Introductory Overview. Now Publishers Incorporated, 2014.

[129] A Vannelli and M Vidyasagar. Maximal Lyapunov functions and domains
of attraction for autonomous nonlinear systems. Automatica, 21(1):69–80,
1985.

[130] Mike Vande Weghe, Dave Ferguson, and Siddhartha S Srinivasa. Random-
ized path planning for redundant manipulators without inverse kinemat-
ics. In Proceedings of the 7th IEEE-RAS International Conference on Humanoid
Robots, pages 477–482, 2007.

[131] Joel D Weingarten, Gabriel AD Lopes, Martin Buehler, Richard E Groff, and
Daniel E Koditschek. Automated gait adaptation for legged robots. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation, pages
2153–2158, 2004.

[132] Douglas Brent West. Introduction to Graph Theory. Prentice hall Upper Saddle
River, 2001.

[133] David Williams and Oussama Khatib. The virtual linkage: A model for
internal forces in multi-grasp manipulation. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, pages 1025–1030, 1993.

[134] Libo Yang and Steven M Lavalle. The sampling-based neighborhood graph:
An approach to computing and executing feedback motion strategies. IEEE
Transactions on Robotics and Automation, 20(3):419–432, 2004.

List of symbols

Chapter 2

x state vector
u control input
f system dynamics
X state space
U action space
Rn n-dimensional Euclidean space
Φi state-feedback controller i
fi dynamics of closed-loop system with controller Φi
x∗i equilibrium of closed-loop system fi
G(Φi) goal set of controller Φi
D(Φi) DoA of controller Φi
t time
x0 initial state
L(x) Lyapunov function
� prepare relation
si mode i of control automaton
S finite set of discrete modes in control automaton
D(Φ) union set of the DoAs of all existing controllers
M Markov decision process
f̄ state transition function
ρ reward function
rk scalar reward at state xk
Ts sampling time
π optimal policy
V π(xk) discounted sum of expected instantaneous rewards at state xk
γ discount factor
V̂ (x, θ) approximated parameterized critic
θ parameter vector for approximating critic
Ψc(x) basis function vector for approximating critic
π̂(x, µ) approximated parameterized actor

131

132 List of symbols

µ parameter vector for approximating actor
Ψa(x) basis function vector for approximating actor
δ temporal difference
αc critic learning rate
∇θ partial differential with respect to θ
ek eligibility trace at time instance k
λ trace decay rate
sat saturation function
∆uk zero-mean white Gaussian noise at time instance k
αa actor learning rate
nt number of trials
ns number of samples
J(x) skew-symmetric interconnection matrix
R(x) symmetric dissipation matrix
H(x) system Hamiltonian
g(x) input matrix
y collocated output
Hd(x) desired closed-loop Hamiltonian
x∗ equilibrium in which Hd(x) has a local minimum
ues energy shaping term of control law
udi damping injection term of control law
Ha(x) added energy term
K(x) symmetric positive semi-definite damping injection matrix
g⊥(x) left annihilator matrix of g(x)

Ĥd(x, ξ) approximated parameterized desired Hamiltonian
Hdi damping injection term of Hamiltonian
Hes energy shaping term of Hamiltonian
ξ parameter vector for approximating Hes

Ψes(x) basis function vector for approximating Hes

g†(x) pseudo inverse matrix of g(x)

F (x) system matrix
K̂(x, ψ) approximated parameterized damping injection matrix
ψ parameter vector for approximating K̂(x, ψ)

Ψdi(x) basis function vector for approximating K̂(x, ψ)

Jd(x) desired skew-symmetric interconnection matrix
Rd(x) desired symmetric dissipation matrix
Fd(x) desired system matrix
q generalized position
p generalized momentum
n̄ 2n̄ = n where n is system dimension
xd desired state
M(q) positive-definite mass-inertia matrix
Λ positive-definite scaling matrix

List of symbols 133

Fij(x) entity ij of system matrix
ϑ parameter vector for approximating elements of system matrix
Ψal(x) basis function vector for approximating elements of system matrix

Chapter 3

M closed invariant set including system origin
x̄∗ non-zero equilibrium
z̄ alternative variable for x
N(x) numerator of rational Lyapunov function
D(x) denominator of rational Lyapunov function
Ri(x) homogeneous polynomial function of degree i representing N(x)

Qi(x) homogeneous polynomial function of degree i representing D(x)

L(c) sublevel set of Lyapunov function L(x)

c∗ maximum DoA level
H(x) set of states where L̇(x) < 0 along with {0}
ĉ∗ upper bound of c∗ in memoryless sampling
c∗ lower bound of c∗ in sampling with memory
c̄∗ upper bound of c∗ in sampling with memory
Ē array of possible levels for DoAs approximated

Chapter 4

q discrete state in hybrid automaton
H hybrid automaton
Q finite set of discrete states
X set of continuous states
F vector field
Init set of initial states
Inv set of invariants
E set of edges
G guard condition
R reset map
P(X) power set of X
A` learning control automaton
ε empty mode
s` learning mode
sq mode q of control automaton
e` learning event
ep event p of control automaton

134 List of symbols

(s0, x0) initial mode
Φ set of controllers
Φ` learning controller
F vector field
D assigns to each mode its associated controller’s DoA
G assigns to each mode its associated controller’s goal set
g discrete event transition
Γ active event function
P (xi, xj) binary function that returns true or false
Sref reference event signal
xi0 initial state while controller Φi is active
xid desired state while controller Φi is active
X̄ desired range of state space to be controlled
x∗0 overall desired equilibrium
f̄ translated dynamics
x̄∗ actual equilibrium
β minimum distance between x∗ and x̄∗

c∗ minimum DoA level
C list of controllers
k number of controller
ck DoA level of learned controller
δ boundary of the DoA estimate
z state chosen in a δ-boundary of the DoA

Chapter 5

xi state vector of system i

ui control input of system i

fi dynamics of system i

Xi state space of system i

Ui action space of system i

Φpi controller p of system i

Φi set of controllers in system i

spi mode p of system i

Si finite set of modes in system i

Li(xi) Lyapunov function of system i

Φ̄p,q,...,`i,j,...,r general form of composed controller
Ā general cooperative control automaton
A initial control automaton
Ē finite set of composed events
ēk composed event k

List of symbols 135

S̄i,j set of modes in cooperative control automaton of systems i and j
(spi , s

q
j) composed mode in cooperative control automaton of systems i and j

Φ̄p,qi,j composed controller generated by Φpi and Φqj
sni last mode of system i

smj last mode of system j

x̄ composed state vector
hi(x̄) constraint equation of system i

Φ̄i,j set of composed controllers generated by systems i and j
L̄(x̄) composed Lyapunov function
Āi,j cooperative control automaton of systems i and j
S̄i subset of modes of system i

Ēi set of composed events associated with S̄i
Ei set of individual events of system i

E′i set of individual and composed events of system i

σ̄ elements of set Φ̄i,j

Chapter 6

Ri robot i
R set of robots
Oi object i
O set of objects
Si surface i
S set of surfaces
| operation or
∧ operation and
Ni contact configuration i
N set of valid contact configurations
Q set of other contact configurations present in a node
P set of contact configurations between all robots with an specific object
Xi one of the components robot, object, or surface
|| operation parallelization
Ei,j edge from node i to node j in contact graph
E set of all possible edges in contact graph
wi weight of edge i in contact graph
WX
i workspace of Xi

x1 x position of the object in Cartesian space
x2 y position of the object in Cartesian space
x3 z position of the object in Cartesian space
y0 initial y position of the robot base with respect to inertial frame
z0 initial z position of the robot base with respect to inertial frame

136 List of symbols

r radius of the robotic arm in extended configuration
WN
j workspace of node Nj of contact graph
WE
k,l workspace of edge Ek,l of contact graph

Λ(x) robot inertia
µ(x, ẋ) Coriolis term in robot dynamic equation
Fg gravitational matrix in robot dynamic equation
Fτ end-effector input forces in Cartesian space
Fext end-effector external forces in Cartesian space
x̃ end-effector position error vector
Dd damping parameter of the virtual spring
Kd stiffness of the virtual spring
q joint variable
τ joint input torque
J(q) Jacobian matrix of robot

List of Abbreviations

DoA domain of attraction

RL reinforcement learning

LTL linear temporal logic

TD temporal difference

PBC passivity-based control

PH port-Hamiltonian

DI damping injection

EB-DI energy balancing and damping injection

IDA-PBC interconnection and damping assignment passivity-based control

EB-AC energy balancing actor-critic

A-IDA-AC algebraic interconnection and damping assignment actor-critic

SOS sum of squares

PLTs probabilistic learning trees

AI artificial intelligent

PDDL planning domain definition language

STRIPS Stanford research institute problem solver

RRTs rapidly exploring random trees

VREP virtual robotics experimentation platform

137

Summary

Automatic Synthesis of Supervisory Control Systems

Esmaeil Najafi

Sequential composition is an effective supervisory control method for address-
ing control problems in nonlinear dynamical systems. It executes a set of con-

trollers sequentially to achieve a control specification that cannot be realized by
a single controller. Sequential composition focuses on the interaction between a
collection of pre-designed controllers, where each of them is associated with a do-
main of attraction (DoA) and a goal set. By design, if the goal set of one controller
lies in the DoA of another controller (this is called the prepare relation), the super-
visor can instantly switch from the first controller to the second without affecting
the stability of the system. As these controllers are designed offline, sequential
composition cannot address unmodeled situations that might occur during run-
time. Moreover, sequential composition has not been developed for cooperative
settings where the collaboration of multiple systems is required in order to fulfill
the control specifications.

This thesis studies automatic synthesis of supervisory control systems using the
framework of sequential composition. First, a learning sequential composition
control algorithm is developed so as to learn new controllers on demand, by
means of reinforcement learning (RL). Once learning is completed, the super-
visory control structure is augmented with the learned controllers. As a conse-
quence, the supervisor is able to cope with unforeseen situations for which new
controllers are required. Second, a cooperative sequential composition control
algorithm is proposed to enable the coordination between a set of sequential com-
position controllers, without any change in their low-level structures. Finally, a
robot contact language is designed for the manipulation of multiple objects by
multiple robots. The main technical contributions of this thesis are outlined as
follows.

Estimating the domain of attraction. To design a supervisory controller in the context
of sequential composition, the DoAs of the low-level controllers and their goal
sets have to be known. In this thesis, a fast sampling method is proposed for
estimating the DoAs of nonlinear systems. This procedure is computationally
effective, compared with the existing optimization-based techniques, and is useful
for real-time applications. The sampling approach proposed has been used to

139

140 Summary

estimate the DoAs of stable equilibria in several nonlinear systems. Moreover, it
has been applied to a passivity-based learning controller designed for a magnetic
levitation system.

Learning sequential composition control. A learning control approach is proposed to
enable the automatic synthesis of supervisory controllers. It augments the given
pre-designed control system by learning new controllers online and on demand,
using the actor-critic RL method. The learning process is always safe since the ex-
ploration in the course of learning the new controller only takes place within the
DoAs of the existing controllers. The proposed approach has been implemented
on two nonlinear systems: nonlinear mass-damper system and under-actuated in-
verted pendulum. This learning control technique has also been extended for sit-
uations where no controller exists initially and all controllers have to sequentially
be synthesized so as to achieve the control objective. This algorithm is demon-
strated on a simulated example of mobile robot navigation.

Cooperative sequential composition control. Multiple sequential composition con-
trollers are composed via a cooperative sequential composition control technique
to accomplish collaborative behavior. The sequential composition controllers com-
municate with each other to share their corresponding system dynamics and low-
level structures. Using this data along with the interaction dynamics enables the
computation of the DoAs of the resulting composed controllers. Based on the pre-
pare relation, defined between the obtained DoAs and the goal sets, the original
supervisors are augmented with new connections through their low-level con-
trollers. The proposed control algorithm has been applied to the collaboration of
an inverted pendulum with two second-order DC motors.

Robot contact language. This thesis concludes by studying the synthesis of supervi-
sory control systems for robotic planning and manipulation. The problem of di-
viding a manipulation task is addressed to obtain an appropriate sequence of sub-
tasks with regard to the contact-based task division. A robot contact language is
defined for robotic manipulation based on making and breaking contact between
the components involved, namely robots, objects, and surfaces. This planner is
modular enough to deploy geometrical and physical information of the compo-
nents and translate supervisory planning to low-level robot controllers. This robot
language is validated in three case studies, each with a specific control objective.

All the above-mentioned contributions enable the automatic synthesis of a class of
supervisory control systems that employ the paradigm of sequential composition.

Summary in Dutch

Automatische Synthese van Supervisie-Regelsystemen

Esmaeil Najafi

Sequentiële compositie is een effectieve supervisie-regelmethode voor het aan-
pakken van regelproblemen van niet lineaire dynamische systemen. Het ge-

bruikt sequentieel een set regelaars toe om een regelspecificatie te realiseren, die
niet te realiseren is met een enkele regelaar. Sequentiële compositie focust op de
interactie tussen een collectie van voor-ontworpen regelaars, waarbij iedere rege-
laar is geassocieerd met een domein van aantrekking (DoA) en een doel set. Deze
sets zijn zo ontworpen, zodat als de doel set van een regelaar in het DoA van
een andere regelaar ligt (dit is de voorbereidende relatie genaamd), de supervisor
instantaan schakelt van de eerste regelaar naar de tweede regelaar, zonder de sta-
biliteit van het systeem te beïnvloeden. Gezien deze regelaars offline ontworpen
zijn, kan sequentiële compositie geen rekening houden met niet-gemodelleerde
situaties die zich mogelijk voordoen tijdens de looptijd. Bovendien is sequentiële
compositie nog niet ontwikkeld voor coöperatieve opstellingen, waar de samen-
werking van meerdere systemen gewenst is voor het voldoen van de regeling
specificaties.

In dit proefschrift wordt de automatische synthese van supervisie-regelsystemen
bestudeerd met behulp van het framework van sequentiële compositie. Aller-
eerst zal een zelflerend sequentieel compositie regelalgoritme worden ontwikkeld
voor het leren van nieuwe regelaars op aanvraag, door middel van reinforcement
learning (RL). Zodra het leren afgerond is, zal de supervisie-regelaar structuur
worden aangevuld worden met de geleerde regelaars. Als gevolg kan de supervi-
sor omgaan met onvoorziene situaties, waarvoor nieuwe regelaars nodig zijn. Ten
tweede, een coöperatieve sequentiële compositie regelalgoritme is voorgesteld om
de coördinatie tussen een set sequentiële compositie regelaars mogelijk te maken,
zonder enige wijziging in hun low-level structuur. Tot slot wordt er een robot
contact taal ontworpen voor de manipulatie van meerdere objecten door meer-
dere robots. De belangrijkste technische bedrijven van dit proefschrift worden als
volgt uiteengezet.

Het schatten van het domein van attractie. Voor het ontwerpen van een supervisie re-
gelaar in de context van een sequentiële compositie, moeten de DoAs en doel sets

141

142 Summary in Dutch

van de low-level regelaars bekend zijn. In dit proefschrift wordt een snelle sam-
pling methode voorgesteld ter schatting van de DoAs van niet-lineaire systemen.
Deze procedure is computationeel effectief vergeleken met bestaande optimali-
satie gebaseerde technieken en is geschikt voor real-time applicaties. De voor-
gestelde sampling aanpak is gebruikt voor het schatten van DoAs van stabiele
evenwichten in verschillende niet-lineaire systemen. Bovendien is het toegepast
op een passiviteit-gebaseerde zelflerende regelaar voor een magnetisch levitatie
systeem.

Zelflerend sequentieel compositie regeling. Een zelflerend regel aanpak is voorgesteld
voor automatische synthese van supervisie regelaars. Het vult de voor-ontworpen
regelsystemen aan door nieuwe regelaars online en op aanvraag te leren, met be-
hulp van de actor-critic RL methode. Het leerproces is altijd veilig, gezien de
exploratie gedurende het leren van de nieuwe regelaar alleen plaats vindt in de
DoAs van de bestaande regelaars. De voorgestelde aanpak is geïmplementeerd
in twee niet-lineaire systemen: een niet-lineaire massa-demper systeem en een
onder-geactueerde geïnverteerde pendulum. Deze zelflerende techniek is ook uit-
gebreid voor situaties waarin initieel geen regelaar bestaat en alle regelaars se-
quentieel gesynthetiseerd moeten worden om de regeldoelstelling te halen. Dit
algoritme is gedemonstreerd op een gesimuleerd voorbeeld van mobiele robot
navigatie.

Coöperatieve sequentiële compositie regeling. Meerdere sequentiële compositie rege-
laars worden samengesteld door middel van een coöperatieve sequentiële compo-
sitie regeltechniek om samenwerkend gedrag te bewerkstelligen. De sequentiële
compositie regelaars communiceren onderling om hun bijbehorende systeem dy-
namica en low-level structuren te delen. Deze data wordt samen met de interactie
dynamica gebruikt voor de berekening van de DoAs van de resulterende samen-
gestelde regelaars. Gebaseerd op de voorbereidende relatie tussen de verkregen
DoAs en de doel sets worden de originele supervisors aangevuld met nieuwe
connecties door hun low-level regelaars. Het voorgestelde regel algoritme is toe-
gepast op de samenwerking van geïnverteerde pendulums met twee tweede-orde
dc-motoren.

Robot contact taal. Dit proefschrift wordt geconcludeerd met de studie naar de
synthese van supervisionaire regelsystemen voor robotische planning en mani-
pulatie. Het probleem van het onderverdelen van manipulatie taken wordt aan-
gepakt om een geschikte volgorde van deeltaken te verkrijgen met betrekking tot
de contact-gebaseerde deeltaken. Een robot contact taal is gedefinieerd voor robo-
tische manipulatie, gebaseerd op het maken van verbreken van contact tussen de
betrokken componenten, namelijk robots, objecten en oppervlakken. Deze plan-
ner is modulair genoeg om geometrische en fysische informatie van de compo-
nenten te gebruiken en om supervisonary planning om te zetten naar low-level
robot regelaars. Deze robot taal is gevalideerd in drie casestudies, ieder met een
specifieke regelaar doelstelling.

Alle bovengenoemde contributies maken automatische synthese van een klasse
van supervisory regelsystemen mogelijk die gebruik maken van het paradigma
van sequentiële compositie.

Summary in Persian

هاي سوپروايزري كنترل طراحي اتوماتيك سيستم

نجفي اسماعيل

كنترلي مسائل سيريزري كنترل براي بررواسوپهاي در سيستمهاي مناسب از متد كنترلرها يكي لياتركيب متوروش

كنترلي براي كسب هدفراوهبصورت سلسلاي از كنترلرها در اين روش مجموعه. باشد مي اي ديناميك غيرخطيهسيستم

. روش دباش ميپذير نامكان پيچيدهر تنها يك كنترل با بكارگيري معمولا در حاليكه ارضاي هدف كنترلي، شوندفعال مي

كه هر يك از پردازد بطوري ي از پيش طراحي شده ميااي از كنترلره امل ميان مجموعهعت سيركنترلرها به بر لياتركيب متو

از كنترلرها در محدوده جذب يكي تعادلباشد. اگر نقطه مي تعادلنقطه يك كنترلرها داراي يك محدوده جذب و اين

بدون ،از كنترلر اول به كنترلر دوم سوئيچ خواهد كرد ًاعيرس يسوپروايزر سيستم ،كنترلر ديگري قرار گيرد (رابطه ترتيب)

كنترلرها لياروش تركيب متو ،نداشدهطراحي از پيشكه اين كنترلرها آنجام تحت تاثير قرار گيرد. از اينكه پايداري سيست

كه ممكن است در حين كاركرد سيستم اتفاق بيفتد را ندارد. بعلاوه روش تركيب ي تصادفيهاتيعقوتوانايي مديريت م

هدف كنترلي كسبچندين سيستم براي يهمكارهاي همكار كه نياز به براي سيستم ل حاضرادر ح كنترلرها ليامتو

.تشده اسنارائه ،باشد مي

كنترلرها مورد لياا بكارگيري چهارچوب روش تركيب متوب كنترل هاي سوپروايزري وماتيك سيستماين رساله طراحي اتدر

كه توانايي يادگيري بطوريشود يادگيرنده ارائه مي ليادر ابتدا يك الگوريتم كنترلي تركيب متو.ه استگرفتقرار مطالعه

يند يادگيري به اتمام آباشد. هنگاميكه فر ماشين دارا ميهاي يادگيري روش ا استفاده ازي جديد را براساس نياز و باكنترلره

قادر خواهد يكنترل مسيستشوند. در نتيجه اضافه ميسوپروايزري كنترل مسيستي جديد به ساختار اكنترلره ،رسد مي

را مديريت كند. در ادامه يك الگوريتم كنترلي تركيب استي جديد ارا كه نياز به كنترلره بينيبود تا شرايط غير قابل پيش

بدون ،باشد را دارا مي لياي تركيب متوااي از كنترلره مجموعهي ميان همكارشود كه قابليت ايجاد همكار ارائه مي ليامتو

ور نظبه م ،تيكي با رويكرد تماساد. در نهايت يك زبان ربشوكنترلرها ايجاد هيچ يك از ساختار داخلياينكه تغييري در

د.نشبا دهاي اين رساله به شرح ذيل مي. مهمترين دستاورشودارائه مي ،اي از اشيا ها با مجموعهاي از ربات امل مجموعهعت

كنترلرها نياز است ليادر چهارچوب روش تركيب متو كنترل يزرياسوپروسيستم براي طراحي يك تخمين محدوده جذب:

برداري سريع براي تخمين هر يك از كنترلرها تعيين گردد. در اين رساله يك روش نمونه تعادلكه محدوده جذب و نقطه

سازي ههاي موجود بهينشود. اين روش از نظر محاسباتي در مقايسه با روشغيرخطي ارائه مي هاي محدوده جذب سيستم

143

144 Summary in Persian

تخمين در ارائه شده عملكرد روشچگونگي كاربردهاي زمان واقعي بسيار مناسب است. براي تر بوده و بسيار سريع

قرار گرفته است. همچنين اين روش براي بررسيختلفي مورد مهاي غيرخطي سيستم در ،تعادل طانق محدوده جذب

ت.بكار گرفته شده اس ،طراحي شده تعليق مغناطيسيتم براي سيس يانرژرد كيوبا ر ي كهمحدوده جذب كنترلر محاسبه

يك روش يادگيري ماشين ارائه شده است كه امكان طراحي اتوماتيك يادگيرنده: لياتركيب متو يكنترلرسيستم

يي كه بصورت اي از پيش طراحي شده با كنترلرهااين روش كنترلرهدر كند. يزري كنترل را فراهم مياهاي سوپرو سيستم

يند آند. فرشو ركيب ميت ،ندادهشمنتقد ياد گرفته -ملازمان و براساس نياز با استفاده از روش يادگيري ماشين عهم

 هدودمحدگيري كنترلر جديد تنها در اجهت ي جستجو چرا كه ،باشد ي ايمن مياههمواره پروس هاي جديديادگيري كنترلر

 پاندول معكوس زنيرد. روش ارائه شده بر روي دو سيستم جرم و دمپر غيرخطي و يگي موجود صورت مياجذب كنترلره

يي كه هيچ كنترلري از ابتدا وجود نداشته نيز اهيتعقو. اين تكنيك كنترلي يادگيرنده براي مسازي شده است پياده

كه در نهايت شوند ميطراحي روااز ابتدا به شكلي بصورت سلسله كنترلرها تمامي ارائه شده. در روش است هگسترش يافت

متحرك اتعملكرد اين الگوريتم كنترلي جهت هدايت و كنترل يك رب امكان كسب هدف كنترلي فراهم شود. چگونگي

 ت.مورد مطالعه قرار گرفته اس

به همكار لياارچوب يك تكنيك تركيب متوهدر چ لياچندين كنترلر تركيب متو همكار: لياتركيب متو يكنترلرسيستم

. فراهم گردد ،دنباش زمان چندين سيستم ميكسب اهداف كنترلي كه نياز به همكاري همتا توانايي هامل پرداختعت

و ساختار كنترلي خود را به اشتراك مربوطه با يكديگر ارتباط برقرار كرده تا ديناميك سيستم لياي تركيب متواكنترلره

امكان محاسبه محدوده جذب ،كننده املعتي هاامل ميان سيستمعديناميك ترند. بكارگيري اين اطلاعات به همراه ابگذ

 دهبدست آم لداعت اطو نق ي جذبهاهدودح. بر اساس رابطه ترتيب كه بين مدكنميايجاد شده را فراهم ي تركيبياكنترلره

 كنترليزري ابه سيستم سوپروشوند كه ايجاد ميها ي هر يك از سيستماميان كنترلره يهاي جديد ، رابطهدشوتعريف مي

دو بكار هدرج DC روتوند. الگوريتم كنترلي ارائه شده جهت همكاري يك پاندول معكوس و دو مگرديابتدايي اضافه م

 ت.گرفته شده اس

در املعريزي و ت ر برنامهوهاي سوپروايزري كنترل به منظ اين رساله با مطالعه طراحي سيستم با رويكرد تماس: تزبان ربا

 رويكرد تماس ااملي بعزير وظيفه ت يك سلسله هاملي بعتقسيم يك وظيفه ت هلاسرسد. م تيكي به اتمام ميارب هايسيستم

 يكي،رباتهاي ميان سيستمامل عتهدف تيكي با اقرار گرفته است. يك زبان رب سيرمورد بر ،هكننداملعميان اجزاي ت

تعريف شده است. اين زبان ،باشندو سطوح مي اشياها، كه شامل ربات هكننداملعاساس ايجاد و قطع تماس ميان اجزاي ترب

يزري را در قالب رواريزي سوپ را بكار گرفته و برنامه هكننداملعو هندسي اجزاي ت ريز قادر است كه اطلاعات فيزيكي برنامه

هر يك ،تيكي در قالب سه مساله مختلفابان ربد. عملكرد مناسب اين زماينها تعريف ي سطح پايين براي رباتكنترلاهداف

ت.قرار گرفته اس سيرمورد بر ،با هدف كنترلي خاص

هاي سوپروايزري كنترل كه از سيستم تيك كلاس خاصياموامكان طراحي ات ،به كمك دستاوردهاي ارائه شده در اين رساله

 .استمده آفراهم ،گيرندمي هبهر لياي تركيب متوااز روش كنترلره

List of Publications

Journal Papers

1. E. Najafi, R. Babuska, and G. A. Lopes, “Learning sequential composition
control", to appear in IEEE Transactions on Cybernetics, 2015.

2. E. Najafi, R. Babuska, and G. A. Lopes, “A fast sampling method for esti-
mating the domain of attraction", submitted to Nonlinear Dynamics, 2015.

3. A. Shah, E. Najafi, and G. A. Lopes, “A robot contact language for manipula-
tion planning”, submitted to IEEE/ASME Transactions on Mechatronics, 2016.

Book Chapter

1. G. A. Lopes, E. Najafi, S. P. Nageshrao, and R. Babuska, “Learning complex
behaviors via sequential composition and passivity-based control”, Han-
dling Uncertainty and Networked Structure in Robot Control, L. Busoniu and
L. Tamas Eds., pp. 53–74, Springer, 2015.

Conference Proceedings

1. E. Najafi, G. A. Lopes, and R. Babuska, “Reinforcement learning for sequen-
tial composition control", in Proceedings of the 52nd IEEE International Confer-
ence on Decision and Control, pp. 7265–7270, Florence, Italy, Dec. 2013.

2. E. Najafi, G. A. Lopes, and R. Babuska, “Balancing a legged robot using
state-dependent Riccati equation control", in Proceedings of the 19th IFAC
World Congress, pp. 2177–2182, Cape Town, South Africa, Aug. 2014.

3. E. Najafi, G. A. Lopes, S. P. Nageshrao, and R. Babuska, “Rapid learning in
sequential composition control", in Proceedings of the 53rd IEEE International
Conference on Decision and Control, pp. 5171–5176, Los Angeles, California,
USA, Dec. 2014.

145

146 List of Publications

4. E. Najafi, R. Babuska, and G. A. Lopes, “An application of sequential compo-
sition control to cooperative systems", in Proceedings of the 10th International
Workshop on Robot Motion and Control, pp.15-20, Poznan, Poland, July 2015.
Candidate for the Young Author Best Paper Award (selected top 5).

5. A. Shah, E. Najafi, and G. A. Lopes, “Contact-Based Language for Robotic
Planning and Manipulation", submitted to the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Daejeon, Korea, Feb. 2016.

6. E. Najafi, and G. A. Lopes, “Towards Cooperative Sequential Composition
Control", submitted to the the 55th IEEE International Conference on Decision
and Control, Las Vegas, NV, USA, Mar. 2016.

Peer-Reviewed Abstracts

1. E. Najafi, G. A. Lopes, and R. Babuska, “Automatic Synthesis of Sequential
Composition of Controllers", in Book of Abstracts of the 32nd Benelux Meeting
on Systems and Control, Houffalize, Belgium, p. 138, Mar. 2013.

2. E. Najafi, G. A. Lopes, and R. Babuska, “Domains of attraction of learning
controllers in adaptive sequential composition", in Book of Abstracts of the
33rd Benelux Meeting on Systems and Control, Heijen, the Netherlands, p. 72,
Mar. 2014.

About the Author

Esmaeil Najafi was born on 11 August 1985 in Tehran, Iran. He received his
BSc in Mechanical Engineering from K. N. Toosi University of Technology,

Tehran, Iran in 2007. He did his BSc thesis titled Design a Fuzzy Controller for Ve-
hicle Power Transmission System under the supervision of Prof. Ali Ghaffari and
Dr. Reza Kazemi. He continued his education at the same university and obtained
his MSc in Mechanical Engineering, Dynamics and Control in 2010. He did his
MSc thesis titled Impedance Control of Stewart Platform for Adaptive Tracking in
Rehabilitation under the supervision of Dr. Ali Nahvi and Dr. Farid Najafi. Hav-
ing excellent teaching skills, he was active in lecturing mechanical engineering
and control theory courses to undergraduate students during the years 2009-2011.

Since November 2011, Esmaeil has been working on his PhD project titled Auto-
matic Synthesis of Supervisory Control Systems at the Delft Center for Systems
and Control, Delft University of Technology, the Netherlands. He did his PhD un-
der the supervision of Prof. dr. Robert Babuška and Dr. Gabriel A.D. Lopes. His
PhD research has mainly dealt with supervisory control systems, machine learn-
ing, robotics, and mechatronics. Esmaeil Najafi obtained the DISC certificate for
fulfilling the graduate course program of the Dutch Institute of Systems and Con-
trol. He also received the certificate of the TU Delft Graduate School for fulfilling
the Doctoral Education Program.

During his PhD, Esmaeil supervised an MSc thesis at Delft University of Tech-
nology and was teaching assistant for the graduate course Control Methods for
Robotics for two consecutive years. In addition, he has been teaching the under-
graduate courses Robot Control, Practical Intelligent Methods, and Linear Alge-
bra at The Hague University of Applied Sciences as a mechatronics lecturer and
supervising four BSc theses in the fields of control, robotics, and mechatronics.

Esmaeil Najafi’s research interests include supervisory control systems, switching
control systems, hybrid systems, machine learning, robotics, mechatronics, and
control of energy systems.

E-mail: najafi.e@gmail.com

147

	Title Page
	Contents
	Introduction
	Motivation
	Research Goals and Contributions
	Outline of the Thesis
	Publications by the Author

	Preliminaries
	Introduction
	Sequential Composition Control
	Reinforcement Learning
	Passivity-Based Learning Control
	Energy-Balancing Actor-Critic
	Algebraic Interconnection and Damping Assignment Actor-Critic

	Conclusions

	Estimating the Domain of Attraction
	Introduction
	Lyapunov-Based Methods
	Sampling Method
	Memoryless Sampling
	Sampling with Memory
	Repeatability
	Directed Sampling
	Sampling vs. Optimization-Based Methods

	Passivity-Based Learning Control with Domain of Attraction Estimation
	Simulation Results: Magnetic Levitation System
	Conclusions

	Learning Sequential Composition Control
	Introduction
	Learning Sequential Composition
	Properties
	Safe Learning

	Rapid Learning
	Simulation and Experimental Results
	System 1: Nonlinear Mass-Damper
	System 2: Inverted Pendulum

	Probabilistic Learning Trees
	Conclusions

	Cooperative Sequential Composition Control
	Introduction
	Cooperative Sequential Composition
	Composition
	Interaction
	Cooperation

	Cooperation of the Inverted Pendulum with Two DC Motors
	Simulation Results
	Conclusions

	Robot Contact Language
	Introduction
	Robot Contact Language
	Assumptions
	Language Rules

	Manipulation Planning and Control
	Contact Graph Generation
	Geometrical and Physical Constraints
	Parallelization
	Low-Level Planning and Control

	Simulation Results
	Pushing and Lifting an Object
	Stacking Objects
	Parallel Manipulation

	Conclusions

	Conclusions and Future Research
	Conclusions
	Recommendations for Future Work

	Bibliography
	List of Symbols
	List of Abbreviations
	Summary
	Summary in Dutch
	Summary in Persian
	List of Publications
	About the Author

