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Toward a GPU-aware Comparison of Explicit and Implicit CFD Simulations on
Structured Meshes

Mohamed Aissaa, Tom Verstraetea, Cornelis Vuikb

aVon Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, 1640, Belgium
bDelft University of Technology, 2628 CD Delft, the Netherlands

Abstract

A computational Fluid Dynamics (CFD) code for steady simulations solves a set of non-linear partial differential
equations using an iterative time stepping process, which could follow an explicit or an implicit scheme. On the CPU,
the difference between both time stepping methods with respect to stability and performance has been well covered
in the literature. However, it has not been extended to consider modern high performance computing systems such as
Graphics Processing Units (GPU). In this work, we first present an implementation of the two time-stepping methods
on the GPU, highlighting the different challenges on the programming approach. Then we introduce a classification
of basic CFD operations, found on the degree of parallelism they expose, and study the potential of GPU acceleration
for every class. The classification provides local speedups of basic operations, which are finally used to compare
the performance of both methods on the GPU. The target of this work is to enable an informed-decision on the most
efficient combination of hardware and method, when facing a new application. Our findings prove, that the choice
between explicit and implicit time integration relies mainly on the convergence of explicit solvers and the efficiency
of preconditioners on the GPU.

Keywords:
time integration, GPU, CUDA, computational linear algebra, implicit, explicit, preconditioning, GMRES, ILU

1. Introduction

CFD is commonplace in engineering activities, as many products are nowadays designed by relying heavily on
numerical preconditions with reduced wind tunnel testing in order to cut down the product development cost. Compu-
tations are, nevertheless, still expensive and a trade-off is continuously sought between fast turn around time and high
accuracy. New hardware with high computational power, such as the GPU, can be effectively employed to target fast
computations without compromising the accuracy. The GPU, originally developed from graphics pipelines, excels on
processing large amount of independent data with a very regular and simple memory access pattern.

The basic task of CFD solvers is to advance iteratively an initial solution by performing a space and a time inte-
gration of the governing equations. In order to update the solution, the solver requires memory access to neighboring
cells. For explicit time integration, the update depends only on few neighbor cells, while for implicit time integration,
the update depends on all cells and could be formulated as a solution of a linear system of equations.

The locality of explicit solvers reflects on the memory usage, which is very low compared to the implicit solver
memory footprint (apart from special cases of matrix-free implicit solvers [1]). The computations performed within
this scheme have a stencil-based character, for which neighbor cells are used to update a central cell following a regular
pattern. As the operations are repeated for all mesh cells, it generates a large number of independent operations. Due
to this simple regular work flow, explicit solvers are suited to the GPU massive parallel architecture and can benefit
largely from its computational power. Interesting speedups have been reported in the literature of 1 and 2 orders of
magnitudes [2, 3, 4, 5, 6]. In general, explicit solvers are stable only when a small time step is used, as the latter is
controlled by a relatively low Courant-Friedrichs-Lewy (CFL) conditions (e.g. CFL=0.92 [7]). This method requires,
thus, a large number of iterations to converge. When combining the GPU acceleration with convergence acceleration
techniques, such as residual smoothing or multigrid and local time stepping, the explicit method can be very efficient.
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Figure 1: Saturation of the iterations number with the increase of CFL number (case: turbine t106c [8])

Implicit solvers have less stringent stability limits, allowing to speed up the transient process with an increased
CFL number. The reduction reaches, however, asymptotically a limit, due to the inherent non linearity of the equa-
tions, as depicted in Figure 1. Implicit solvers benefit less from the GPU acceleration especially when factorization
based preconditioners that rely on Gaussian elimination are used such as the incomplete LU factorization (ILU). New
algorithms are, however, trying to expose more parallelism and improve the performance of linear solvers on the GPU
by accelerating the incomplete factorization [9] and its use in the linear solver [10, 11]. Reported speedups for implicit
solver are of 1 order of magnitude [12, 13, 14].

In this paper we examine the choice between explicit and implicit time stepping both on CPU and GPU, which
results in four different approaches. Few authors compared explicit to implicit performance. Niemeyer [15] imple-
mented a Finite Volume flow solver for chemical reactions on a GPU with explicit time stepping. He compared the
performance on a CPU and a GPU of the explicit time integration to a commercial implicit solver on a CPU. He
showed, however, no results on the GPU version of the implicit solver. Brock [3] developed an explicit solver for an
astrophysics application and compared the execution time of one iteration with estimations of the implicit performance
on CPU as the memory requirement for the solved case where prohibitive for the implicit integration. He showed a
peak speedup of 2.5x for the GPU explicit over the CPU explicit and expected a speedup of 15x for the GPU explicit
over the CPU implicit. He has not considered the possible faster convergence of the implicit method.

To bring the comparison forward we introduce a classification of basic CFD operations following their suitability
to the GPU architecture and study their speedups. The classification of different CFD operations is inspired by the
major differences of both hardware. The CPU is a general purpose processor able to handle different type of tasks.
The large cache for a reduced number of CPU cores (e.g. Xeon E5-2640 has 15 MB of cache memory for 8 cores) is
an efficient cure to non regular data flow of some algorithms. In fact, it minimizes the cache misses defined as calls
to variables relocated from the cache memory due to overuse [16]. The processor high clock rate of the CPU is an
indicator for the speed, at which computations are executed and the memory is accessed. The GPU, on the other hand,
is very specialized with a large computational power coming from the high number of GPU cores. The clock rate and
cache capacities are in general lower than what CPUs offer. Time-consuming cache misses can not be avoided for
a dispersed memory accesses. Under these circumstance, a regular data flow pattern is essential in order to achieve
good performance. As the computation power exceeds by far the GPU memory bandwidth, algorithms need to balance
the slow memory access with a large number of computations. The large number of cores with a reduced power for
each core are efficiently used, when a large number of independent data is available with a relatively simple and
regular calculation for every piece of data. These specificities of the GPU motivated us to classify the CFD operations
regrading 3 criteria: (1) the amount of data to process, (2) the data dependency level and (3) the regularity of the
access pattern. The amount of data is used to maximize the possibilities for the GPU to hide slow memory access with
computations. A low data dependency provides a large number of independent instructions ideal for the large number
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of GPU cores. For a regular access pattern the GPU can combine multiple expensive memory loads into one single
load. The only condition is that consecutive threads of half a warp access consecutive memory positions. The entire
explicit/implicit comparison is based on the proportion in execution time of each class in every scheme, which used
to estimate the GPU speedup. Similar classification has been introduced by Elsen [5] for vehicle aerodynamics. He
classified kernels based only on memory access pattern and neglected the amount of data to be processed.

The CPU and GPU solvers are used in this work to accumulate enough benchmark data of basic operations to
correlate it with the global performance of CFD simulations on the GPU. Performance estimation for the GPU is
an active domain. Some authors analyze the GPU code ([17, 18]) to build an estimate of the GPU performance.
Li [19] predicts the performance of sparse matrix vector operations (SpMV) using a trained probabilistic model.
Baghsorhi [18] interprets a GPU kernel as work flow graph and estimates its execution time. We cover steady CFD
simulation on turbomachinery with structured meshes. The knowledge over the underlying CFD operations enabled
us to match the performance bottlenecks on GPU with their sources from the basic CFD operations. We avoid in that
way the use of automated methods to analyze programs code or executable.

The classification is used also to empower readers for a better appreciation of reported speedups in the literature.
As it is discussed by Lee et al. [20], reported GPU speedups are not to be taken as raw numbers. The reference
CPU code optimization is important along with the used GPU. At the same time, some reported accelerations are
only local and specific to a certain operation with sometimes little influence on the global speedup. Our approach
is rather qualitative focusing on transmitting key know-how on CFD operations on the GPU. The aim is to help the
developer to estimate the expected speedup of steady CFD simulations on GPU using only the profiling results of the
CFD application on a single CPU.

The remainder of the paper is organized as follows. Section 2 introduces the GPU device and governing equations
as prerequisite for the classification and the qualitative performance model in section 3. Section 4 presents the 2
GPU-accelerated RANS solvers, which are used for the benchmark. Numerical results are presented in section 5 for
the the explicit/implicit comparison and a discussion is in section 6.

2. Background

2.1. GPU Computation

The GPU is a massively parallel device with a large number of cores organized in multi-streaming processors with
access to a relatively large but slow global memory. Every multiprocessor hosts a set of processors and provides a
small and fast shared memory along with a reduced set of fast registers. A GPU program is based on kernels, which
launch a large number of lightweight threads grouped in blocks. Inside a block, threads are grouped in warps, for
which CUDA uses the SIMT model (single instruction multiple threads). The same instruction is broadcasted to all
threads of a warp for execution. Unlike the SIMD model (Single Instruction Multiple Data), threads in a warp are able
to execute different instructions since every thread is provided with an individual register set and instruction counter.
Although thread divergence is tolerated it is very damaging to the performance and a fully diverged warp can run 32
times slower than a divergence-free warp.

The GPU memory hierarchy proposes different levels of speed and capacity. The data residing on the global
memory has higher latency for the access than the data residing on a cache or a register. Moreover, the access itself
to the global memory should follow certain patterns to insure the best memory bandwidth. The GPU loads, indeed,
an entire word1, when a thread accesses a memory position, and the loaded word is broadcasted to all threads of the
warp. Memory transactions of threads within a warp accessing the same word are then fused or coalesced into one
transaction.

The over use of registers by a kernel limits its theoretical occupancy, defined as the ratio between concurrent warps
versus maximum warps per multiprocessor2. The more demanding a kernel the lower is its theoretical occupancy. The
achieved occupancy, on the other hand, depends on the number of started threads. Therefore, a kernel should start a
large number of warps so the warp scheduler can dispatch an idling warp (e.g. waiting for a memory transaction) and

1A word is a piece of data with a fixed-size managed as a unit by processor
2https://docs.nvidia.com/cuda/cuda-c-programming-guide
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switch to an eligible warp ready for execution. This context switch is used to hide the latency of operations on the
GPU. Volkov [21] proposes an extensive analysis and a new performance model for latency hiding in the GPU.

While an efficient use of the available memories is the principle source to leverage the performance of a program,
the GPU offers also a coarse-grained parallelism. It allows indeed multiple kernels with grids of threads to run
concurrently, which increases the number of active warps and consequently the GPU utilization. Multi-streaming is,
however, limited by the hardware resources of the GPU.

An extensive and detailed treatment of the subject of GPU programming can be found in the CUDA user manual 3

and some valuable textbooks [22, 23, 24].

2.2. CFD RANS Solver with Finite Volume Discretization on GPU
The integral form of the Reynolds Averaged Navier-Stokes equations (RANS) in terms of conservative variables

is listed below [25]:

∂

∂t

∫
Ω

~WdΩ +

∮
∂Ω

( ~Fc − ~Fv)dS =

∫
Ω

~QdΩ , (1)

where Ω is the cell volume, S is the cell surface and ~W is the conservative variable vector : ~W = [ρ, ρu, ρv, ρw, ρE].
Convective and viscous fluxes along with the source term are defined as follows:

~Fc =


ρV

ρuV + nxp
ρvV + nyp
ρwV + nzp
ρHV

 (2)
~Fv =


0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxΘx + nyΘy + nzΘz

 (3) ~Q =


0
ρfe,x
ρfe,y
ρfe,z

ρ ~fe · ~v + q̇h

 (4)

The Roe scheme [26] is used to compute the convective fluxes, which are evaluated at the face of a cell as follows:

( ~Fc)I+1/2 =
1
2

[ ~Fc( ~WR) + ~Fc( ~WL) − |ĀRoe|I+1/2( ~WR − ~WL)] , (5)

with ĀRoe the Roe matrix defined as a combination of the conservative variables ~WR and ~WL [26]. The subscripts L
and R refer to the left and right state of the considered face. ~Fc( ~WR) and ~Fc( ~WL) are evaluated following equation 2.
The evaluation of the right and left conservative variables determines the degree of the space integration. Second-
order accuracy is achieved in this work through the Monotone Upstream-Centered Schemes for Conservation Law
(MUSCL [27]) with the Venkatakrishnan slope limiter function [28], which enlarges the stencil from 2 to 4 cells
in every space dimension. The central scheme is used for the viscous flux and turbulence is modeled with Spalart-
Allmaras model [29].

The “method of lines” is used and thus space and time integration are treated separately. After the space inte-
gration, which consists of summing the fluxes and source term in a residual R, a time integration advances the flow
toward a stationary state. Equation 1 can be reformulated to highlight the time integration as follows:

(ΩĪ)I

∆tI
∆ ~Wn

I = −β~R(n+1)
I − (1 − β)~Rn

I , (6)

with ∆ ~W = ~Wn+1 − ~Wn the solution update, which depends on a combination of residuals of time point n and n + 1.
While the residual Rn at time point n is available right after the space integration, the residual Rn+1 depends on the
solution at time point n + 1, which is not available before the time integration. For β = 0, the right-hand side (RHS)
of equation 6 is known and updates can be computed explicitly. If however β , 0, the residual is linearized to allow
to formulate Rn+1 as a function of Rn and the Jacobian δ~R

δ ~W
to first order accuracy:

~Rn+1
I ≈ ~Rn

I +

 δ~R
δ ~W


I
∆ ~Wn , (7)

3https://docs.nvidia.com/cuda/cuda-c-programming-guide, retrieved February 2017
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Figure 2: Structure of the system matrix showing 7 diagonals filled with block matrix of Nv ∗ Nv with Nv the number of flow variables. I,J and K
are the number of cells in the first, second and third direction respectively.

Substituting the linearization into the initial equation gives a linear system of equations of the form Ax = b: (ΩĪ)I

∆tI
+

 δ~R
δ ~W

∆ ~Wn = ~Rn
I . (8)

The implicit time integration requires the same residual, as for the explicit solver, and additionally the Jacobian,
which are combined to form the global system matrix (depicted in Figure 2). Therefore, the building of the linear
system costs extra memory and computation, due to the large number of entries to be first calculated then inserted
into the global matrix. Every cell face has 7 contributions for 3D problems: one Diagonal, one upper and one lower
for every direction. The number of elements per row is not constant and varies depending on the number of diagonals
crossing the row. Jacobians of cell faces in the interior of the computational domain have neighbors in all directions
(corresponding row has 7 diagonals for 3D problems). On the other hand, a Jacobian of a face on the block boundary
has less neighbors depending on how many boundaries are attached to this face. The number of elements per row
plays a role on the performance of sparse matrix vector operations on the GPU. A large spectrum of storage formats
exists for the system matrix. While they all store the values in the same way, the columns and rows indices are
handled differently. The compressed row format (CSR) for instance stores the offset of every row along with the
column indices.

In the system matrix of equation 8, the diagonal has the Jacobian δ~R
δ ~W

added to a term inversely proportional to the
time step. This implies that an increase of the time step, which depends on the CFL number, the mesh refinement and
the flow properties [25], increases the condition number (Cond = ||A|| ∗ ||A−1||) and makes the system matrix harder to
invert. Such a linear system requires, in general, more involved computations to be solved. The condition number has
to be lowered to accelerate the convergence. This is performed by the preconditioner, a matrix M ≈ A approximating
the original system matrix while being easily inverted.

M−1Ax = M−1b , (9)

The matrix M can be filled by an incomplete factorization, which is a process able to reformulate the system
matrix into:

A = CD − E , (10)

with C and D two matrices easy to invert and E a residual matrix. The ILU factorization, for instance, produces two
triangular matrices L and U and can be used as a preconditioner. Some computationally lighter preconditioners, such
as Jacobi, approximates the inverse of the system matrix. These preconditioners expose better parallelism for the
GPU, since they are based on SpMV [30], but are not suitable for matrices with a large condition number.

5



Compute Memory

U
ti

li
z
a

ti
o
n

10%

50%

100%

a) Good Efficiency

Compute Memory

10%

50%

100%

b) Latency Limited

Compute Memory

U
ti

li
z
a

ti
o
n

10%

50%

100%

c) Compute-Bound

Compute Memory

10%

50%

100%

d) Memory-Bound

Figure 3: Four cases of utilization of the memory and compute unit of a GPU delivered by the NVida Visual Profilier

3. Methodology: The Classification

In computer science, problems easily run in parallel, are called embarrassingly parallel. For those type of prob-
lems it is clear how to divide the algorithm into small independent piece of calculations, which are performed on
different data. The algorithm shows a low level of data dependency peculiar to this type of operations. An inherently
sequential problem, on the other hand, has highly interdependent operations, which have to be executed in a given
order to get accurate results. A practical approach to classify CFD operations as embarrassingly parallel or inherently
sequential is to follow the GPU utilization of the operation given by the GPU profiler. The NVidia Visual Profiler
(NVVP) can deliver information about the utilization of the memory and the computation units of the GPU for every
kernel. If both unit utilization are high the kernel is then very efficiently written and executed and the underlying
algorithm is suited to the GPU architecture. Figure 3 depicts this ideal case in addition to 3 realistic cases of per-
formance limitations for GPU kernels: a latency-limited, a compute-limited and a memory-limited kernel. Kernels
with low memory and low computation utilization are latency-limited. Such a low utilization can be caused by a non
efficient code ( memory non coalesced, important thread divergence) but for carefully designed code the major cause
is the use of a low number of threads. Indeed, when a kernel starts only few threads, these are unable to hide the
memory latency. When warps of threads are waiting for memory loads, not enough warps are available to use the
waiting time for computations. Kernels with a high compute utilization and a poor memory utilization are said to be
compute-bound. For such a kernel the performance optimization should first target the reduction of the number of
computations per memory load. Kernels with a high memory utilization and a low compute utilization are said to be
bandwidth-bound. For such a kernel few computations are performed per memory load. In that case, improving the
memory coalescence and using the shared-memory could improve the performance of the kernel.

3.1. Classification of basic operations

In this section, elementary functions used by explicit or implicit CFD solvers are first classified in three classes:
Compute-bound, Memory-bound and Latency-Bound kernels. The classification reflects the differentiation between
embarrassingly parallel and inherently sequential algorithms using the GPU utilization as a measure of the GPU
suitability of studied CFD operations. Every class is analyzed regarding solely its performance on the GPU.

Compute-Bound Embarrassingly Parallel operations are suited to the GPU architecture and make an intensive
use of arithmetic operations boosting the compute utilization of the GPU (see Figure 3 ). In this class, we list explicit
Runke-Kutta time stepping, convective and viscous flux calculation, turbulence calculation and Jacobian calculation.
These operations are stencil-based, they involve few neighbor cells for the computations related to a central cell. This
class of functions is able to provide a large amount of independent data, which increases with the mesh size. The data
dependency is relatively low, as only a first order scheme is used for the Jacobian (requiring access to the 6 neighbor
cells) and second order for the space integration (requiring access to 8 neighbors ). Most of these functions involve an
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intensive use of arithmetic for a reduced stencil leading to a set of compute bound functions. As the access pattern is
regular on all data it is very rare to have a thread divergence. Even though some algorithms can still impose divergence
through a conditional statement. The Roe scheme for instance performs an entropy correction to better capture flow
shocks as the original formulation does not recognize the sonic point [31]. This could leads to different execution
paths within a warp. These kernels can have a high performance in term of updated cells per second, which leads to
relatively high speedup of 2 orders of magnitude (See Figures 4 and 5).

The convective flux calculation is a compute-bound kernel, as the roe scheme (see equation 5) has to be evaluated
at the cell face involving a lengthily computation with a large amount of arithmetic operations. The flux calculation
is based on a summation of surface contributions and thus not thread-safe as two or more faces could add face
contributions at the same time to the same cell. One possibility to avoid this race condition is to compute the flux cell-
wise which is thread-safe but requires a redundant calculation of the flux. Recalling that the kernel is compute-bound,
redundant computation has to be avoided. The second approach is the multi-coloring, which consists on creating
groups (colors) of faces, which do not share cells in common. For every color the computation is thread-safe at the
expense of less coalesced access. The second approach is proven to be more efficient (see Figure 4).

Memory-Bound Embarrassingly Parallel operations provide well defined independent work units for the GPU
but make few computations per loaded byte of memory. This class includes sparse matrix vector operations (SpMV),
as a dot product has to be performed for every row of the matrix. In CFD time integration, the rows correspond to
mesh cells, even though they can be reordered to favor a better performance. SpMV operations are known for being
memory bound [32] and benefit averagely form the GPU. It is very important here to specify the data storage layout,
as it can improve the data dependency and the memory access. Linear solvers, such as GMRES, are based on SpMV
operations and belong thus to the same class.

Latency-Bound Inherently Sequential operations provide a very limited fine-grained parallelism, insufficient to
run the GPU in a profitable regime. This third class deals with functions operating on a small amount of data with a
high dependency and a non-regular memory access. Classical factorization algorithms, used for instance in implicit
solvers as preconditioner, belong to this class since they are based on Gaussian elimination [33, 34, 9] and handle
sparsely populated matrices. The peculiar aspect of factorization is that the algorithm, in general, is recursive and
the entries are computed serially. Some linear solvers, such as the GPU version of PETSc [35], perform the ILU
factorization on the CPU as a response to its difficult adaptation to massive parallel hardware. In this case the entire
system matrix needs to be transferred to the host and back. The communication through the PCI bus between host and
GPU is not encouraged for optimized performance. For large systems, this alternative has no benefits as the fast CPU

7



NbrCell

c
e
ll
s/
[s
]

0.0E+00 1.0E+05 2.0E+05 3.0E+05

10
6

10
7

10
8 Xeon E52640 @ 2.50GHz

Xeon E31240 v3 @ 3.40GHz

Geforce 780 @ 0.8GHz

Xeon E52690 v3 @ 2.60GHz

Figure 5: Performance in terms of updated cells per second for one Runge-Kutta stage on a Geforce 780 compared to 3 other single CPUs for a
RANS simulation of 2D flow on a supersonic compressor cascade

ILU factorization is not compensating the expensive communication.
The other approach is to optimize the ILU factorization on the GPU. In order to expose more parallelism during the

assembly of the ILU matrices, it is possible to identify independent rows that can be updated concurrently [33]. Few
options are available to improve the performance of the ILU factorization on the GPU among them multi-coloring [36,
37, 34] and level-scheduling [38].

While the methods cited above increase slightly the parallelism of the factorization other methods such as the
iterative ILU [39] propose a novel algorithm. The factorization is replaced by a minimization problem able to provide
an approximate L and U with more fine-grained parallelism. The method relies on a fixed point iteration xn+1 = G(xn)
which is guaranteed to converge [39, 40] after a set of sweeps4. The GPU implementation of this method, presented in
[9, p.5], evokes a trade-off between convergence and parallelism as the fixed point iteration tend to use less frequently
updated values when more threads are used.

3.2. Qualitative Analysis of time integration methods on CPU and GPU

In this section we present a qualitative model able to give some insights into the performance of the two integration
methods on the GPU and on the CPU. It is based on the performance of all methods for one flow iteration which can
be then extrapolated to cover realistic cases. For that purpose this section will introduce a set of ratios, which will be
used to link the performance of different methods.

The explicit time integration is not different from the space integration in terms of underlying type of computations.
Both are embarrassingly parallel and only few memory loads and few arithmetic operations are done per cell for the
explicit time integration compared to the space integration. The execution time of this operation (tExp

T ) can be thus
neglected for the definition of the ratio of execution time of implicit to explicit solver for a flow iteration on CPU:

RITR
CPU ≈

tS + tImp
T

ts
= 1 +

tImp
T

tS
, (11)

with tS the space integration for both solvers. The approximation (see Equation 11) guarantees a faster explicit flow
iteration on the CPU ( RITR

CPU > 1) as it assumes the explicit time stepping is less time consuming than the implicit
time stepping. Theoretically, very high values of RITR

CPU are possible, but in practice researchers [41, 14] report a 30%

4a sweep is one full update of the L and U matrices
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to 80% of global execution time for the time integration. Consequently, RITR
CPU could reach values of 5 and possibly

one order of magnitude for a dominant implicit time integration of 90%. The study of the different execution times of
both methods on the CPU revealed the well known fact: Explicit solvers can not compete with implicit solvers unless
the convergence rates are similar which is rather unusual.

In the following the ratio of execution time of implicit to explicit solvers for a flow iteration on a GPU is consid-
ered. Equation 12 relates RITR

GPU to the same ratio on the CPU ( RITR
CPU) as follows:

RITR
GPU = RITR

CPU ∗
aGPU

Exp

aGPU
Imp

, (12)

with aGPU
Exp and aGPU

Imp the speedups of explicit and implicit solvers respectively on the GPU. Explicit solvers profit
more from the GPU as they have only compute-bound embarrassingly parallel operations. Implicit solvers on the
GPU profit averagely from the GPU as they contains memory-bound embarrassingly parallel operations for the linear
solver and latency-bound inherently sequential operations, when standard5 factorization-based preconditioners are
used. The more an implicit solver is dominated by the time integration the less it benefits from the GPU favoring the
explicit solver on the GPU. A single explicit flow iteration is already faster on the CPU than an implicit flow iteration
(RITR

CPU > 1) and the GPU increases the ratio by 1 to 2 orders of magnitude (aGPU
Exp /a

GPU
Imp >> 1). The decisive aspect in

the performance comparison is the portion of the linear solver from the total execution time of the implicit solver.
The speedup of 1 single flow iteration is, however, not determinant for the global performance as both methods

have different convergence rates. The final comparison depends more on the ratio of convergence of both methods
defined as :

RC =
NExp

ITR

N Imp
ITR

, (13)

with NExp
ITR and N Imp

ITR the number of flow iterations required to reach a converged solution for an explicit and an implicit
solver respectively. This ratio is in practice large as explicit solvers are severely restricted in terms of CFL condition
(see section 2). If results are available for the two solvers both on CPU and GPU for 1 flow iteration, different
conclusions can be drawn depending on the ratio of convergence.

5Iterative incomplete factorization are not included
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Figure 7: The Solver computes firsts inviscid and viscous Residuals and source term. Seconds the time integration takes places and finally
boundaries and mesh interfaces are updated

If we apply the above introduced model on a case of a turbine nozzle guide vane, depicted in Figure 6, we observe
that one flow iteration of the GPU explicit solver is the fastest followed by the CPU explicit solver, the GPU implicit
solver and finally the CPU implicit solver. When RC increases, the execution time of one flow iteration for the implicit
solver is the same but the execution time of the equivalent number of explicit iterations is linearly increasing. The
explicit solver on GPU is the fastest alternative until a certain value of RC is reached (RC ≈ 20). After this value the
implicit GPU is the fastest alternative. The maximum value of RC , for which the explicit solver is still the fastest choice
is equal to its acceleration for one flow iteration compared to the direct competitor, here the GPU implicit solver. In the
results section more parameters will be considered such as the CFl number and the linear solver stopping condition,
as both have an influence on the implicit solver.

Even though the current work does not provide results for the CPU parallelization nor for the effect of the conver-
gence acceleration (e.g. Residual smoothing and multigrid), the model shown in Figure 6 can handle these cases. The
parallelization for both explicit and implicit solvers on both GPU and many/multi-core CPU corresponds, indeed, to a
translation of the performance curve6 to regions of shorter execution times. Depending on the degree of acceleration
the fastest combination of method and hardware can change. On the other hand, a convergence acceleration of the ex-
plicit or the implicit solver will change the convergence ratio RC , defined in Equation 13. A faster converging explicit
solver for instance will have a lower RC and a different value is read from the same performance curve in Figure 6.

4. Implementation

4.1. Explicit GPU Solver

In this work, we examine the GPU parallelization of explicit solvers using a CUDA implementation, which is an
optimized version of an initial GPU solver ported earlier [43] from an in-house serial CFD solver. The CPU reference
solver is running on a single core CPU and profiting from standard compiler optimization. The explicit time stepping
algorithm, depicted in Figure 7, is based on a set of functions (space, time integration and boundary updates) which
are iteratively applied until the flow converges. The convergence is defined as a relative residual drop of six orders
of magnitude. First, the space integration is performed in all cells by gathering fluxes on the cell faces and summing

6Curve relating the execution time of a simulation to a its flow convergence

10



Table 1: Execution time of 100 iterations of the explicit solver with 4 Runge-Kutta stages on 2 different CPUs and 2 different GPUs (used Hardware
listed in Table 3)

NCells K40 (1 Stream) K40 (7 Streams) GTX780 E5-2640 E3-1240 Speedup Speedup
[min] [min] [min] [min] [min] TE3

TK40

TE5
TK40

116k 0.055 0.034 0.039 1.85 1.31 38.5 54.4
290k 0.105 0.089 0.102 6.22 4.41 49.5 69.9
552k 0.179 0.155 0.1988 12.99 9.15 59.0 83.8
1070k 0.32 0.304 0.393 27.04 19.45 64 88.9

them up, followed by adding the source term. The time integration follows the Runge-Kutta scheme:

~W (0)
I = ~Wn

I
~W (1)

I = ~W (0)
I − α1

∆tI
ΩI
~R( ~W (0))

~W (2)
I = ~W (0)

I − α2
∆tI
ΩI
~R( ~W (1))

...
~Wn+1

I = ~W (m)
I = ~W (0)

I − αm
∆tI
ΩI
~R( ~W (m−1))

(14)

While typical Runge-Kutta scheme stores intermediate values W (k)
I , this formulation stores only the initial solution

W (0) and the current solution W (k) along with the residual. The memory footprint is consequently independent of the
number of stages (m) leading to a constant memory consumption of 3 arrays of Ncells ∗ Nvar instead of 2 + m arrays.
The speedup for explicit solvers depends on the level of CUDA code optimization and on the specifications of the
used GPU (mainly the memory bandwidth). The register consumption of every kernel in the implementation has
been kept to a minimum to boost the occupancy, which in turn produces enough blocks of threads that hid the memory
latency. Some memory-bound kernels such as the Runge-Kutta function reach 60% to 70% of the memory bandwidth7.
Compute-bound kernels such as the convective flux evaluation have been improved by using multi-coloring. Speedups
ranging from 1 to 2 orders of magnitude have been reached over the serial execution (See Table 1). Multi-streaming
enables every mesh block to be assigned to a different stream increasing the level of parallelism. The effect of multi-
streams fades, however, with the size of the treated meshes because of the scarce GPU resources.

4.2. Implicit GPU Solver
In this work we use a GPU accelerated implicit solver [14] ported earlier from a serial C/C++ in-house code,

which uses ILU preconditioner with flexible GMRES from PETSc package [44] for the time integration. The Runge-
Kutta [45] multistage method is used for the time integration. It solves multiple successive linear systems for every
flow iteration, in which only the right-hand side is updated and then multiplied by a different stage coefficients α:

~W (0) = ~Wn

A(0)[ ~W (1) − ~W (0)] = −α1~R( ~W (0))
A(0)[ ~W (2) − ~W (0)] = −α2~R( ~W (1))

...

A(0)[ ~W (m) − ~W (0)] = −αm~R( ~W (m−1))
~Wn+1 = ~W (0) + [ ~W (m) − ~W (0)].

(15)

The assembly of the system matrix is carried out with CUDA and the sorting is performed by the efficient GPU-based
library THRUST [46]. Inserting the values in the system matrix requires more attention, because a large number of cell

7Both on Geforce GTX780 and Kepler K40 with 288 GB/s the vendor provided peak memory bandwidth
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Jacobians are computed at the same time. There are two strategies for the assembly procedure: the first approach is
to gather all the entries and store them scattered in different arrays for row, column and values, then sort them out to
the required storage format. The second approach computes the entries and insert them directly in their final positions
in the global matrix. While the first method has a clear pattern for the memory access during the data gathering,
it requires a costly sorting function. The second approach avoids the sorting function but it can not guarantee a
coalesced access while inserting the entry in the global matrix. The extra cost of the uncoalesced access depends on
the algorithm used to get the global index and the targeted storage format. In practice the first approach is sometimes
faster on a GPU and has been used in this work. The cell Jacobians have been stored in a large array with an index
based on the cell index in the mesh in order to keep coalesced memory access for the reading/writing on the global
memory. The array receives first all entries, which are next sorted with the row index then the column index.

Before choosing the linear solver we performed a benchmark for different algorithms, which is shown in Table 2.
The tested GPU libraries are Paralution [47] and MAGMA [48]. The benchmark shows also the performance of
PETSc [44] on the CPU (Xeon E3-1240) for the same meshes. Both GPU libraries have functions that rely on the
cuSparse8 implementation of the ILU factorization with level scheduling. For the application of the preconditioner
within the linear solver iteration, Paralution relies only on the cuSparse triangular solver while MAGMA [11] proposes
also an Incomplete Sparse Approximate Inverse method (ISAI). All methods use the flexible GMRES algorithm. For
small meshes on the GPU, an ILU with ISAI triangular solver is faster while for large meshes the Paralution library
provides the best GPU performance. The superiority of the ILU CPU performance is expected (Cf. Section 3.1). We
should precise, however, that the CPU is fast on building the ILU preconditioner and spends most of the execution
running the linear solver. The GPU, on the other hand, dedicates more time to the preconditioner building rather than
the linear iterations. In a context of multi-stages Runge-Kutta (See Equation 15) the same preconditioner is reused in
all stages, which improves the GPU performance. Based on the results of the benchmark the chosen linear solver is
the preconditioned GMRES of the Paralution library [47] with a restart Krylov subspace of 10 to 30 vectors.

In addition to the standard algorithm for the iterative solver, we use an on-demand factorization [14] to improve
the speedup. The on-demand feature, depicted in Figure 8, reduces the building time of the linear system by freezing
the ILU factorization for some flow iterations. When skipping the ILU factorization, the linear solver uses an outdated
preconditioner based on the system matrix of previous flow iteration. This causes the linear solver to perform some
extra linear iterations. A control mechanism of the on-demand factorization, with the number of performed linear
solver iterations as an input, keeps the balance between saved factorization time and extra iterations. A threshold
value is defined as a limit for tolerated increase of number of iterations, after which an update of the preconditioner is
performed. The limit depends on the time step, major contributor to the system matrix diagonal. Consequently it is a
function of the CFL number with a dependency also on the mesh cell size:

Itrmax = a + b ∗CFL , (16)

with a and b two tuning parameters. Parameter a plays an important role for applications with a low CFL number
and b increases with the mesh refinement. The key metric to assess the on-demand effect is the total extra iterations
compared to the nominal case of a full ILU update. The optimal case is to skip the maximum number of updates while
keeping the extra iterations as low as possible.

Speedups of 1 order of magnitude have been reached on 3D flow simulation [14]. The on-demand strategy reduced
the number of calls for the preconditioner by 86% accelerating the linear solver by a factor of 2x to 3x. As it
will be detailed in the benchmarks the on-demand feature is essential to have a competitive GPU performance for
preconditioned linear solvers.

5. Numerical Experiments

For the benchmark two Intel Xeon CPUs are used with different clock rates and two different GPUs are used with
different local memory capacities (see Table 3). The Geforce GTX 780 with only 3GB of local memory is running the
GPU explicit solver and the Kepler k40 card with 12 GB of local memory is running the GPU implicit solver.

8http://docs.nvidia.com/cuda/cusparse/
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Figure 8: Flow Solver algorithm showing the full GPU assembly and linear solver with on-demand factorization

Table 2: Execution time of the ILU preconditioned FGMRES(30) for 33 iterations using different GPU libraries

NCells Ncols nnz Paralution [s] MAGMA Sparse[s] MAGMA Sparse[s] PETSc [s]
cuSparse ILU cuSparse ILU ISAI ILU ILU

116k 264640 7.8 M 1.8 2.19 1.224 0.30
290k 1058560 35.2 M 2.85 4.87 5.652 1.35
552k 2249440 76.3 M 4.7 9.1 12.96 2.92

1070k - - - - - 6.36

Table 3: Hardware used in the benchmark

Reference clock rate Cache Size Memory Bandwidth Global Memory [GB]
[GHz] [MB] [GB/sec]

E3-1240 3.4 8 21 -
E5-2640 2.5 15 42.6 -

Geforce GTX 780 0.863 0.064 288.4 3
Tesla K40 0.745 0.064 288 12
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Figure 9: Mach number contours around the t106c nozzle guide vane

5.1. Subsonic Turbine Cascade: T106c

T106c is a very high-lift, mid-loaded low-pressure turbine blade [8]. The blade turns an incoming flow and
reduces its pressure as depicted in Figure 9. Different mesh sizes are used for the benchmark. In a first step an
average execution time for one flow iteration has been calculated from 20 iterations. The explicit solver uses a four
stages Runge-Kutta scheme and the implicit solver uses a two stages of Jacobian-Trained Krylov Implicit-Runge-
Kutta scheme (JT-KIRK) with a CFL number of 50. The execution time of one flow iteration for different mesh sizes
is depicted in Figure 10.

We first observe a difference of one to two order of magnitude between the execution time of the explicit solver
on the GPU and the implicit solver on the CPU. This is due to the combination of two facts: first explicit solvers
are inherently faster per iteration and secondly they benefit largely from the GPU acceleration as they include mostly
operation very suited to the GPU architecture (cf. section 3). We observe also that the performance of the implicit
solver on the CPU can be improved with a higher clock frequency, as Xeon E3 slightly outperforms the Xeon E5.
The GPU is not able to run the one million mesh case. The GPU solver used in this work (cf. section 4) uses ghost
cells adding 4 layers of cells for every direction of mesh blocks which can increase the mesh size by 20% to 50%.
Numerical fluxes and Jacobians are also stored explicitly in large arrays before being sorted out for the linear solver.
An optimization of the memory footprint of the solver can let the GPU compute larger meshes.

In order to compare all alternatives from different hardware, the slowest combination is chosen as a common
reference, which is in this case the implicit solver on the CPU with the lower clock rate (Xeon E5). This approach
leads to high speedups which do not reflect a GPU acceleration only, as usual speedups do. It reflects also the fact
that an explicit flow iteration is lighter by nature while the implicit flow iteration solves a linear system of equations.
Independently of how efficiently the linear system is solved, an explicit Runge-Kutta stage is much lighter with its very
few operations. Table 4 summarizes the performance of the combinations highlighting the growing gap between the
explicit solver on the GPU and the other alternatives with the increase of the mesh size. The GPU, as a throughput-
oriented device, is used more efficiently when the work load increases of embarrassingly parallel operations. The
CPU, on the other hand, has rather a constant performance independent of the mesh size.

Explicit solvers are faster since they perform less operations and the GPU version of both methods is faster, even
though the explicit solver takes more advantage from the GPU. The execution times of 1 flow iteration are used to
extrapolate a performance comparison for different convergence ratios (see Figure 11). The convergence ratio is used
to cover a wider range of applications as in some areas implicit solvers converge much faster than the explicit and
in other area the difference is not very pronounced. The initial ranking is valid for the unrealistic convergence ratios
of 1 for which explicit solver and implicit solver converge after the same amount of flow iterations. Realistic ratios
are in general between 20 to 100 for turbomachinery simulations. A common pattern is repeated for all mesh sizes
predicting the explicit GPU solver to be the fastest alternative for low convergence ratios and the implicit GPU solver
for large convergence ratios.
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Figure 11: case t106c: Execution time of implicit solver for one flow iteration and explicit solver for equivalent flow iterations both on the
CPU(dashes line) and the GPU (full line) as a function of the convergence ratio for increasing mesh resolution (a: smallest mesh, d: largest mesh)

Table 4: Speedup of explicit and implicit solvers on the GPU and the CPU over the implicit solver on the Xeon E5-2640 CPU for 1 flow iteration

NCells[-] Implicit Implicit Explicit Implicit Explicit
E5-2640 E3-1240 E5-2640 Tesla k40 Geforce 780

116k 1 1.37 1.87 3.41 62.0
290k 1 1.32 2.23 4.67 108.5
552k 1 1.32 2.33 6.09 123.6

1070k 1 1.32 2.42 N.A 136.4
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In the next step the flow around t106c is solved for a relative residual drop of six order of magnitude. Depending
on the mesh size, the implicit solver required between 1328 and 1366 flow iterations for a CFL of 50. The explicit
solver required between 22900 and 23400 flow iterations, which leads to a convergence ratio9 RC = 17. For this RC

value the extrapolation based on the execution time of one flow iteration ( see Figure 11) predicts the explicit solver
on the GPU to be the fastest solver followed by the GPU implicit solver for all mesh sizes. This approximation does
not cover, however, the on-demand factorization (cf. section 4). This technique acts on reducing the global execution
time of implicit solvers on the GPU by skipping most of the ILU factorization used for the preconditioner. It does
not change the number of flow iterations and thus the convergence ratio is untouched. Figure 12a depicts the speedup
(with reference to the explicit solver on E5-2640) of an entire flow simulation around the t106c blade including
the performance of GPU solvers with the on-demand factorization (ODILU). The CPU delivers similar performance
independently from the mesh size while the GPU has a better performance for larger meshes.

For a higher CFL number every single implicit flow iteration is slower on both the GPU and CPU but the con-
vergence ratio (See Equation 13) is larger favoring the implicit solver. For a CFL = 100 the implicit solver requires
between 756 and 781 flow iterations which corresponds to a drop of 42% in the number of flow iterations compared
with the number of flow iterations of the implicit solver with CFL = 50. Figure 12b summarizes the execution time
until convergence of the used solvers scaled by the execution time of the explicit solver on the CPU for a CFL = 100.
Depending on the mesh size the fastest combination is changing. The mesh with 1 M cells was not run by the implicit
solver on the GPU because of memory limitations. The convergence ratio contributed largely to the improved GPU
Implicit performance compared to the explicit CPU solver as reflected by the increase of the speedup for the GPU
implicit solver in Figures 12b compared to Figure 12a. Higher CFL values indeed reduce the total number of flow
iterations required for the flow convergence, which entails fewer ILU builds. At the same time the linear solver re-
quires more linear iterations to converge, since the linear system is more ill-conditioned, but this does not outweigh
the reduction in time achieved by avoiding more ILU builds.

As a result, the increase of the CFL number improved also the acceleration of the CPU implicit solver compared
to the reference CPU explicit solver. In the next test case we focus consequently more on the effect of the CFL change
for the GPU acceleration of the implicit solver compared to the CPU implicit solver.

(a) CFLImp. = 50 (b) CFLImp. = 100

Figure 12: Speedup of all solvers with reference to the explicit solver on E5-2640 for two different CFL numbers for the implicit solver and the
same CFL number for the explicit solvers ( CFLExp. = 2.5).

5.2. LS89

The LS89 test case is described in the experimental work of Arts [42]. In this section a benchmark is presented
of the implicit solver on the CPU and on the GPU for different parameters: First the CFL number is varying within a
stable envelop, then the linear solver stopping criteria. Based on the observations in section 3 about the linear solver
benefiting less from GPU than the assembly, the global GPU speedup of the implicit solver is expected to decrease as
a result of the growing linear solver portion. In Figure 13 the profiling results on the CPU of the implicit solver are

9defined in Equation 13
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Figure 13: Plot of the effect of the CFL increase on the portion of the linear solver on CPU and the global speedup both with full ILU update and
on-demand update (OD-ILU)

depicted for a set of 6 stable CFL numbers (25 to 150) along with the GPU speedup. The figure confirms the negative
effect of the CFL increase on the GPU performance even with the on-demand factorization.

The linear solver stopping criteria are also important in the benchmark as they influences directly the solving
phase of the linear systems. The GPU speedup decreases for a more severe stopping criteria. Such a severe stopping
condition does not improve the flow convergence and makes every single flow iteration slower. Therefore, an adequate
relative stopping criteria of 10−3 has been chosen for all the benchmark shown in this work.

6. Discussion

Explicit solvers on a single core CPU are the slowest alternative in all studied test cases since stencil-based
operations have a great potential of parallelization that the serial implementation is not using. The GPU parallelization
enables the explicit solver to still compete with implicit solver, even though the explicit convergence rate are not good.
An interesting point is that explicit solver are so efficient in memory usage that very heavy meshes of millions of cells
still fit in the GPU global memory.

When the mesh fits the GPU memory, the GPU implicit solver is the fastest in the two cases since it combines
the accelerated stencil operation for the residual and the Jacobian calculation while not suffering very much from the
preconditioning due to the on-demand factorization. Optimizing the preconditioner update within a large sequence
of linear systems such as in a steady CFD simulation is not a new topic. Hartmann et al. [49] assessed the impact of
using a periodically updated preconditioner on the number of linear solver iterations on the CPU. In [50] Tebbens et
al. introduced a similar performance assessment for a proposed method of approximate preconditioner update on the
CPU. Anzt et al. [51] uses and iterative ILU on the GPU for which the preconditioner of one system is the first guess
for the next system. He shows that updating a previous preconditioner could be fast and effective.

The memory usage of implicit solver limits, however, the mesh size to about 1 million cells for Tesla K40 and
0.25 million for GeForce 780 with the actual solver memory footprint. This number can fluctuate based on memory
usage optimization but unless no matrix storage is done it should remain in the same order of magnitude. Therefore
for heavy meshes the GPU is not available and then the explicit GPU and implicit have comparable performance.
For some applications (e.g. the adjoint method) the flow should be resolved to machine accuracy (Residual drop of
10−16). In that case the ratio of convergence between the explicit and the implicit schemes is much larger. At the same
time for other applications (e.g. chemical kinetics in reactive-flow simulations) meshes are very large for actual CPUs
capacities to use an implicit solver, consequently the explicit solver is the only alternative available.

The order of the space integration has an impact on the amount of computation for every flow iteration. This
might change the ratio between space and the time integration for the implicit solver. Nevertheless as the same space
integration is to be found in both implicit and explicit solver, the order of the discretization scheme has no impact on
the choice of the best combination between time integration method and hardware. The finding of this work apply
mostly to Finite Volume discretized flows in turbomachinery. The convergence ratio, which is very important in the
comparison depends also on acceleration techniques of both methods.
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7. Conclusion

Different combination of time integration methods and computational hardware have been presented. A clas-
sification has been introduced based on the suitability of CFD operations to the GPU hardware. The comparison
highlighted the high possible acceleration of explicit solvers as based on embarrassingly parallel functions. Difficul-
ties in accelerating implicit solvers have been discussed including inherently sequential incomplete factorization used
as preconditioner for ill-conditioned linear systems in the implicit time integration. We observed that the GPU is able
to extend the range of usability of explicit solver to averagely good converging solvers.
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