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PREFACE

Solving a problem is always fun to me. It is like a game: specific rules are given, you make
your moves to reach the goal.
I was very fond of mathematics and physics when I was in primary and middle school. For
this reason, I chose theoretical mechanics for my bachelor study, which I thought was a nice
combination of both and did a second-major in fundamental mathematics. I finished these
studies but did not get the thrill I expected.
I came to the Netherlands in 2009 and went to Hogeschool Fontys in Eindhoven to study
something completely new, electrical engineering. Because of this, I found the excitement
and willingness to devote myself to something, again. The most helpful experience in this
year was the internship at GE security in Weert. I worked with Math Pantus, a great engineer
and a radar geek (people who would build a radar in their backyard and stay up in the night
to communicate with people on the other side of the Earth). The task given to me was to
build a functionality in a motion radar so that it can distinguish a human from a dog (usu-
ally a pet is not allowed if a motion radar is installed). This work made me understand that
the deployment of mathematics, physics and programming to solve a concrete and com-
plex real life problem in is the true passion for me.
I decided to stay in the Netherlands for a master study. And I chose the "coolest" major I
could found here: aerospace engineering in TU Delft. Since I had no background in this
major, in the beginning, I did not even know what angle of attack was (it is not the best at-
tack angle for a fighter plane as I thought). I had great help from Dr. Qiping Chu and Dr.
Erik-Jan van Kampen who gave courses on control theory and later became my MSc. thesis
supervisors. I chose a topic which was to use interval analysis to analyse the stability of an
uncertain system. It was a challenging task which gave me a taste of the joy in scientific
research and led to my decision to continue a PhD study.
At the beginning of the search for a PhD position, I sent my application to many fields. I
just needed an interesting problem to solve and I had the feeling that if the topic required
the fundamental skills I have, then I would be able to do it. However, not many potential
employers would see it in this way, they probably only saw a guy with no background knowl-
edge for the specific position. It is still a mystery to me why my PhD supervisor prof. Bert
Vermeersen chose me to carry out the PhD project for which he had funding, except that
Dr. Chu and Erik-Jan gave me very good references. But thanks to Bert, I could start my four
year PhD here in TU Delft, which is one of the happiest experiences in my life so far, I got to
do the thing I like most: solving a challenging problem while getting paid (yeah!). It was not
easy in the beginning, for someone who could not name the nine (now eight) planets in our
solar system in sequence to conduct a scientific research in planetary science. I got great
help from Bert through my entire PhD study. I was quite lucky for me that my promoter is
also an expert in this field. I still remember that once after a short presentation of my re-
sults in a group meeting, Bert immediately pointed out a factor I missed in the formulation
of the problem which turned out to be very significant. One thing I appreciate most is the

ix



x PREFACE

freedom Bert gave me to carry out the research in my own way. The content of this thesis
is different from the original proposal of this project. After the first two years in which I
finished the finite-element model (FEM), I discovered that it was not possible to get a com-
plete dynamic solution for the reorientation of tidally deformed bodies, and all methods for
calculating large angle polar wander only results in approximated solutions. As a result, I
decided to develop a method for solving this problem, during which Bert provided me with
both support and advice.
This thesis could also not have been completed without the help of Wouter van der Wal, my
daily supervisor. Wouter gave me the most direct help throughout my PhD study. A draft
paper which I had read for five times myself and which I did not want to lay even one eye
on anymore, Wouter was willing to read and help correct again and again. Without Wouter’s
help, none of my publications would have gained their current scientific level. The help
from Wouter was not only in scientific issues but also in daily life. I still have many naive
perspectives on many issues, both in daily life and in science. Wouter always gave me sug-
gestions on various issues. I argued with Wouter the most during my PhD study and I also
learned from him the most.
This period of my PhD would have been much less fun without all my colleagues in this
friendly and multi-cultural group of Astrodynamics and Space Missions. Hermes shared
the office with me for two and half years and helped me a lot at the beginning of my PhD.
Hermes’ expertise on icy moons and general geophysics gave me the first guidance into
this field. Work with Hermes was easygoing. We could say no words to each other except
"morning" and "see you", or we could drink beer and talk for 5 hours. Dominic was the first
person who welcomed me in this group. The intensive discussion about the rotation matrix
through e-mail is still memorable for me. I also thank him a lot for proofreading this thesis.
Bas and Teresa shared a different office later with me, it was quite an interesting and enjoy-
able experience for me to work with a "non-Dutch" Dutch and a "non-German" German.
I also appreciate the help of many people along the journey of my PhD, prof. Zdenĕk Mar-
tinec gave me my first lecture on rotational dynamics. During my short stay in UC Berkeley,
I had many nice discussions with Prof. Imke de Pater, the author of the textbook Funda-
mental Planetary Science, which was like a bible in the beginning of my PhD. I also give my
deepest thanks to our secretary Relly, who takes care of all the bureaucratic issues that I dis-
like. I thank Prof. Pieter Visser for being the committee member of my defence and leading
this dynamic group. And I also thank The Netherlands Organisation for Scientific Research
(NWO) for funding this project. Finally, I sincerely thank my PhD defence committee for
taking the time to read my thesis and be part of the defence, especially those coming from
outside the Netherlands.
During my stay here in the Netherlands, I had lots of fun with my friends and high school
classmates Shiyan and Lijin, and their lovely partners Zhongkai and Guannan. It was amaz-
ing to reunite with people you knew from teenage years in a country so far away. And
last and most important, thank you, Mom and Dad, for watching over me all these years,
through all the difficulties, providing endless patience and support, even if it meant that
your only son was staying on the other side of the planet.

Haiyang
Delft, April 2018



SUMMARY

True polar wander (TPW), the secular part of the displacement of the rotation axis with
respect to surface topography or internal signatures, has been proposed to explain many
geologic features on various planets and moons, e.g, the Tharsis plateau on Mars (Schultz
and Lutz, 1988), the tiger stripes on Enceladus (Nimmo and Pappalardo, 2006) and the Sput-
nik Planitia on Pluto (Keane et al., 2016). The theoretical study of polar wander can be dated
back to the 18th century when Euler predicted the free precession of the Earth. Gold (1955)
introduced the modern concept and general mechanism of TPW. Goldreich and Toomre
(1969) gave a early quantitative treatment of the problem. After the development of the
normal mode method for viscoelastic media, Love numbers can be obtained which describe
the deformation of a stratified viscoelastic planetary body for surface and tidal loads (Far-
rell, 1972). With such a description, the moment of inertia (MoI) equation, which gives the
change in the MoI of the body, can be explicitly expressed in terms of the rotational vector
components. Together with the Liouville equation, a time-dependent solution for TPW on a
visco-elastic multi-layer model can be obtained. Due to the mathematical difficulty to solve
these two equations, an exact analytical solution for TPW could not be achieved in previous
studies. Instead, three types of approximated methods were adopted:

• Linear method. Early studies focused on the present day TPW on the Earth and small
angular change. A linear approach, which applies the linearised form of the Liouville
equation (Munk and MacDonald, 1960), was adopted. This can be used to calculate
TPW for the case that the rotational axis is not too far away (less than 10 degrees) from
the initial position (Nakiboglu and Lambeck, 1980; Sabadini and Peltier, 1981; Wu and
Peltier, 1984).

• Non-linear method with the quasi-fluid approximation. In order to deal with the
long-term rotational variation of Earth which may include large (more than 10 de-
grees) angle TPW, non-linear methods have been developed. They adopt the quasi-
fluid approximation which assumes that the variation of the driving force for TPW is
much slower than the characteristic viscous relaxation. Mathematically, the quasi-
fluid approximation is an approximation taking the first order terms in the Taylor ex-
pansion of the tidal Love number (Spada et al., 1992a; Ricard et al., 1993; Cambiotti
et al., 2011).

• Fluid limit method. The reorientation on a rotating tidally deformed body can not be
dealt with by current theories, linear or non-linear because when the body is tidally
deformed, we have a triaxial body (no symmetry around the rotational axis). Reori-
entation of such bodies involves not only the displacement of the rotational axis but
also the tidal axis. Most studies concerning TPW of a tidally deformed body only fo-
cus on the fluid limit of the visco-elastic response which gives the final position of the
rotational and tidal axes (Willemann, 1984; Matsuyama and Nimmo, 2007).

xi



xii SUMMARY

For these approximated solutions, several issues concerning their applicability have not
been studied yet. Firstly, the linearised form of the Liouville equation is derived in the body-
fixed frame where the rotational axis coincides with the axis of the maximum MoI in the
beginning (Munk and MacDonald, 1960). Since the loading (the inertia tensor representing
the extra mass applied on the solid model) is also defined in the body-fixed fame, the lin-
ear theory actually also assumes that the relative location of the loading with respect to the
rotational axis does not change during TPW. The error caused by this assumption can the-
oretically invalidate this method as the location of the loading approaches the equator or
the poles. When a point mass is located near the poles or equator, the effect of a change in
colatitude of the point mass is larger than when the point mass is placed at 45(135) degree
colatitude, for example. As a result, the valid applicable range for the linear methods should
decrease as the loading approaches the pole or the equator. Currently, no study gives the
expected error in the linear theory as a function of the angle of TPW and the position of the
load.
Secondly, the non-linear approach is currently the only general way to calculate large-angle
(more than 10 degrees) TPW. As a result, the effect of the quasi-fluid approximation, which
is applied in many previous studies (Spada et al., 1992a, 1996; Ricard et al., 1993; Harada,
2012; Chan et al., 2014; Moore et al., 2017), has not been tested. So it is not clear what the
effect is of taking the quasi-fluid approximation and ignoring the effects of the slow relax-
ation modes on the TPW behaviour.
Thirdly, since the fluid limit solution does not provide dynamic solutions, we do not have
a clear insight in how the reorientation of a tidally deformed body is accomplished. Stud-
ies which concern the direction of polar wander of tidally deformed bodies driven by ei-
ther a positive mass anomaly such as ice caps on Triton (Rubincam, 2003) or a negative
mass anomaly such as a diapirism induced low density area on Enceladus (Matsuyama and
Nimmo, 2007; Nimmo and Pappalardo, 2006), assume that the polar motion is directly tar-
geting its end position, or in other words, moving towards the end position along a great
circle. However, these assumptions are not tested in these papers because a theory to pro-
vide a time-dependent solution is lacking.
In order to tackle these problems, this thesis presents a more general method to study the
rotational variation of planetary bodies and evaluate the approximations taken in previ-
ous studies. We first established a numerical iterative procedure which can be combined
with a finite element package where also lateral heterogeneity and complex rheology can
be adopted. Then a semi-analytical approach was also established with which the influence
of the lithosphere and hydrostatic state of the body can be taken into account. Compared
to previous approaches, the new method can calculate both small (less than 10 degrees)
and large (larger than 10 degree) angle TPW as well as the long-term secular trend and
short-term Chandler wobble for fast-rotating bodies such as Earth and Mars. As a result,
the long-term mega wobble for slow-rotating objects such as Venus can also be dealt with.
Most importantly, our new method provides a dynamic solution for reorientation of tidally
deformed bodies. The effect of the lithosphere can be directly included and models which
are not in hydrostatic equilibrium can also be simulated.
With the help of the new method, we can demonstrate that, firstly, the linear rotation theory
leads to a bias which can be infinitely large when the initial position of the mass anomaly
causing the true polar wander approaches the poles or the equator. This significantly limits
the applicable range of the linear method if loads are close to poles or equator. Secondly,
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the quasi-fluid approximation can introduce a large error in the transient response for a
time-dependent solution. For instance, the TPW speed on Mars calculated based on the
quasi-fluid approximation can be underestimated by a factor of 4, while the speed of the
rotational axis approaching the end position on Venus is overestimated. Thirdly, a tidally
deformed rotating body has a preference for reorientation around the tidal axis rather than
the rotational axis. Rotational axis motion driven by a positive mass anomaly near the poles
tends to first rotate around the tidal axis instead of towards it. For tidally locked bodies,
positive mass anomalies are more likely to be found around the equator and the great circle
perpendicular to the tidal axis, while negative mass anomalies tend to be around the great
circle that contains the tidal and rotational axes.
Finally, we introduce a dimensionless fluid limit process number F which can be obtained
from the Love numbers of the planet model and TPW speed. With this number, we provide
a simple criterion to test if the fluid-limit solution or the quasi-fluid approximation can be
adopted given a specific interior model and estimated maximum reorientation speed. It is
shown in this thesis that this number F needs to be less than 0.001 for the reorientation
path of a tidally deformed body obtained by the fluid limit solution to match the path of the
dynamic solution close enough for practical purposes. The same criterion also applies for
results obtained by the quasi-fluid approximation.
The new method is applied to various planetary bodies and new insights are obtained on
the rotational behaviour of these bodies.

Earth. For a mass load on a layered Earth derived from the Preliminary Reference Earth
Model (PREM) (Dziewonski and Anderson, 1981) together with a reasonable viscosity pro-
file such as the SG6 model (Wu and Wang, 2006), both the linear method and our approach
can yield an accurate present day TPW. However, due to the intrinsic error of the linear
method, predicting TPW behaviour for more than 0.8 degree with this approach can result
in more than 2% error.
Mars. Due to the adoption of the quasi-fluid approximation, previous estimates of the TPW
speed (about 1 degree/Ma), e.g. Chan et al. (2014); Bouley et al. (2016), can be underesti-
mated up to a factor of 4.6 given the possible range of the Martian viscosities (1019 to 1022

Pa s).
Venus. The rotational behaviour of Venus is dominated by a mega wobble, which is a slow
wobble with large amplitude (Spada et al., 1996). Spada et al. (1996) overestimated the
speed of a mass anomaly on Venus approaching the pole or equator due to the effect of
applying the quasi-fluid approximation. If we assume that Venus has similar viscosity as
the Earth or Mars, a positive mass anomaly of the same relative scale will take much longer
time (10-15 times) on Venus to reach the equator than on the Earth or Mars.
Icy moons. Most icy moons are tidally locked to a much more massive body. For exam-
ple, the mass of Jupiter is about 37500 times the mass of its moon Europa. We show that
the reorientation of these tidally deformed bodies triggered by a positive mass anomaly has
a preference of first reorienting around the tidal axis to place the mass anomaly close to
the equator. Then the speed of the reorientation slows down and the mass anomaly moves
slowly towards the sub-host or anti-host points. Consequently, TPW on an icy moon, such
as Triton, Enceladus and Europa, triggered by large ice caps on the poles would see the body
reorient around the tidal axis first, different from what is predicted in (Rubincam, 2003) and
(Matsuyama and Nimmo, 2007) with the fluid-limit method. The presence of a lithosphere
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mostly determines to what extent positive mass anomalies can be relocated towards the
sub- and anti-host points but the mass anomalies are still more likely to be found around
the equator.
Pluto. Although Pluto is tidally locked with the orbiting moon Charon, the mass of Charon
is only about 12% of that of Pluto which creates a smaller tidal bulge than that of the icy
moons. As a result, the reorientation path on Pluto does not have a strong preference to
first reorient around the tidal axis. Instead the path of the mass anomaly is almost along a
great circle. This means the reorientation path obtained in previous studies based on the
fluid-limit method, e.g. (Keane et al., 2016), can be very close to a complete solution. How-
ever, the speed of the reorientation is still biased by the fluid limit method depending on
the viscosity of the planet and the load history, e.g. how fast the volatile accumulates in the
Sputnik Planitia (Keane et al., 2016) and the ocean upwells (Nimmo et al., 2016).

To summarize, the new method established in this thesis provides a more advanced tool for
planetary scientists to properly interpret manifestations of rotational variations on various
bodies.
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Poolbeweging, ook wel bekend als true polar wander (TPW), is de langdurige verplaatsing
van de rotatie-as ten opzichte van de oppervlaktetopografie of interne signaturen. TPW
wordt gesteld als verklaring voor geologische kenmerken op verschillende planeten en ma-
nen zoals het Tharsis plateau op Mars (Schultz and Lutz, 1988), de tijgerstrepen op Ence-
ladus (Nimmo and Pappalardo, 2006) en de Sputnik Planitia op Pluto (Keane et al., 2016).
Het theoretisch onderzoek naar poolbeweging dateert uit de 18e eeuw toen Euler de pre-
cessie van de Aarde wist te voorspellen. Gold (1955) heeft het moderne concept en het al-
gemene mechanisme van TPW geïntroduceerd. Goldreich and Toomre (1969) zijn pioneers
geweest in de kwantitatieve aanpak van het probleem. Nadat men de NormaalModeana-
lyse voor verschillende visco-elastische media heeft uitgeschreven, kunnen Love getallen
gevonden worden die de vervorming op een gelaagd visco-elastisch planetair lichaam be-
schrijven voor oppervlakte- en getijdebelastingen (Farrell, 1972). Met deze beschrijving kan
de “traagheidsmomentvergelijking”, die de verandering van het traagheidsmoment van het
lichaam geeft, expliciet worden uitgedrukt in componenten van de rotatievector. In combi-
natie met de Liouville vergelijking kan vervolgens een tijdsafhankelijke oplossing voor TPW
op een visco-elastisch gelaagd lichaam gevonden worden. Door de wiskundige complexi-
teit die samenhangt met het oplossen van deze twee vergelijkingen is een exacte analytische
oplossing voor TPW nooit gevonden in voorgaande onderzoeken. In plaats daarvan zijn 3
methodes ontwikkeld om tot een benaderde oplossing te komen.

• Lineaire oplossing: De eerste onderzoeken richtten zich vooral op hedendaagse TPW
van de Aarde en kleine hoekveranderingen. Een lineaire aanpak, die de gelineari-
seerde vorm van de Liouville vergelijking (Munk and MacDonald, 1960) gebruikte,
werd aangenomen. Deze methode kan gebruikt worden om de TPW te berekenen
voor gevallen waarbij de rotatie-as zich niet ver beweegt (minder dan 10 graden) van
zijn beginpositie (Nakiboglu and Lambeck, 1980; Sabadini and Peltier, 1981; Wu and
Peltier, 1984).

• Niet-lineaire oplossing met een quasi-vloeibare benadering: Om ook met lange ter-
mijn veranderingen van de Aardrotatie om te kunnen gaan (meer dan 10 graden ver-
andering van de rotatie-as), zijn niet-lineaire methodes ontwikkeld. In deze metho-
des werd de quasi-vloeibare benadering gebruikt waarin wordt aangenomen dat de
variatie van de drijvende kracht achter TPW vele malen langzamer is dan de karak-
teristieke viskeuze relaxatie. Wiskundig gezien is de quasi-vloeibare benadering een
benadering waarbij de eerste orde termen van de Taylor-reeks van de getijde Love ge-
tallen worden gebruikt (Spada et al., 1992a; Ricard et al., 1993; Cambiotti et al., 2011).

• Vloeistoflimiet methode: De heroriëntatie van een roterend, door getijde vervormd
lichaam kan niet beschreven worden met huidige methodes, de lineaire methode en
de niet-lineaire methode. Dit omdat, wanneer het lichaam vervormd is door de getij-
den, het niet langer rotatie symmetrisch is. Bij de heroriëntatie van zulke lichamen is

xv
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niet alleen de verplaatsing van de rotatie-as maar ook van de getijde-as van belang.
De meeste onderzoeken over TPW van een door getijden vervormd lichaam richten
zich enkel op de vloeistoflimiet van de visco-elastische respons die slechts de eind-
positie geeft van de rotatie- en getijde-as (Willemann, 1984; Matsuyama and Nimmo,
2007).

Voor deze benaderingen zijn verscheidene aspecten wat betreft de toepasbaarheid van de
benaderingen nog niet onderzocht. Ten eerste, de gelineariseerde vorm van de Liouville
vergelijking is afgeleid binnen een assenstelsel dat aan het lichaam is bevestigd, waarbij de
rotatie-as in het begin samenvalt met de hoofdtraagheidsas (Munk and MacDonald, 1960).
Omdat de belasting (de traagheidstensor die de extra massa op het vaste lichaam repre-
senteert) ook gedefinieerd is binnen een aan het lichaam gefixeerd assenstelsel, zal auto-
matisch in de lineaire benadering ook aangenomen worden dat de relatieve locatie van de
belasting ten opzichte van de rotatie-as niet verandert tijdens de TPW. De fout die door deze
aanname wordt veroorzaakt kan theoretisch gezien oneindig groot worden wanneer de lo-
catie van de belasting de pool of de evenaar benadert. Wanneer een puntmassa zich in de
buurt van de polen of de evenaar bevindt zal het effect van een verandering in de breed-
tegraad van de puntmassalocatie groter zijn dan wanneer de puntmassa zich bijvoorbeeld
bevindt op een breedtegraad van 45 of -45 graden. Hierdoor wordt het toepassingsgebied
van de lineaire benadering kleiner wanneer de belasting de pool of de evenaar benadert.
Op dit moment geeft geen enkel onderzoek de verwachte fout als een functie van de TPW
hoek en de locatie van de belasting.
Ten tweede is de niet-lineaire methode nu de enige algemene manier om TPW over een
grote hoek (meer dan 10 graden) te berekenen. Als gevolg hiervan is het effect van de quasi-
vloeibare benadering, die in veel onderzoeken wordt toegepast (Spada et al., 1992a, 1996;
Ricard et al., 1993; Harada, 2012; Chan et al., 2014; Moore et al., 2017), niet getest. Daarom
is het onduidelijk wat het effect is van de quasi-vloeibare benadering en het negeren van de
effecten van langzame relaxatiemodes op het gedrag van TPW.
Ten derde, omdat de vloeistoflimiet oplossing geen dynamische oplossingen verschaft heb-
ben we geen duidelijk inzicht in hoe heroriëntatie van een door getijden vervormd lichaam
tot stand komt. Onderzoeken die zich bezig houden met de richting van de poolbewe-
ging van door getijden vervormde lichamen nemen aan dat de poolbeweging rechtstreeks
is, en met andere woorden via een een grootcirkelpad naar hun eindbestemming bewe-
gen. Dit is zowel het geval bij onderzoeken over TPW die worden gedreven door positieve
massa-anomalieën zoals de ijskappen op Triton (Rubincam, 2003) als bij negatieve massa-
anomalieën zoals de door diapirisme ontstane gebieden met een lage dichtheid op Encela-
dus (Matsuyama and Nimmo, 2007; Nimmo and Pappalardo, 2006). De aanname dat pool-
beweging zich altijd langs een grootcirkelpad beweegt wordt niet getest in deze onderzoe-
ken omdat een theorie die een tijdsafhankelijke oplossing verschaft ontbreekt.
Om deze problemen te kunnen oplossen wordt er in dit proefschrift een meer algemene
methode gepresenteerd om rotatieveranderingen van planetaire lichamen te kunnen be-
studeren en worden de benaderingen die gedaan zijn in voorgaand onderzoek geëvalu-
eerd. We stellen een numeriek iteratieve procedure op die gecombineerd kan worden met
een eindige-elementensoftwarepakket. Op deze manier kunnen laterale heterogeniteit en
complexe rheologie geïmplementeerd worden. Ook wordt in dit proefschrift een semi-
analytische methode gepresenteerd waarin de invloed van de lithosfeer en de hydrostati-
sche toestand van het lichaam meegenomen kunnen worden. In vergelijking met eerdere
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methodes kan deze nieuwe aanpak zowel kleine hoeken (kleiner dan 10 graden) als grote
hoeken (meer dan 10 graden) van TPW berekenen en is deze methode in staat de aparte
lange termijn en korte termijn Chandler wobble voor snel draaiende lichamen, zoals de
Aarde en Mars, door te rekenen. Hierdoor kan de lange termijn mega wobble voor traag ro-
terende lichamen zoals Venus ook behandeld worden. Bovenal biedt onze nieuwe methode
een dynamische oplossing voor de heroriëntatie van door getijden vervormde lichamen.
Het effect van de lithosfeer kan direct meegenomen worden en modellen die zich niet in
een hydrostatisch evenwicht bevinden kunnen ook gesimuleerd worden. Door middel van
deze nieuwe methode kunnen we aantonen dat, ten eerste, de lineaire rotatietheorie leidt
tot een fout die relatief groter wordt wanneer de beginpositie van de massa anomalie, die de
poolbeweging veroorzaakt, de pool of evenaar benadert. Dit limiteert het gebied waarin the
lineaire methode van toepassing is als de belasting zich dicht bij de evenaar of pool bevindt.
Ten tweede, de quasi-vloeibare benadering kan grote fouten introduceren in de eindige res-
pons voor een tijdsafhankelijke oplossing. De snelheid van de TPW op Mars, bijvoorbeeld,
die op basis van de quasi-vloeibare benadering is berekend, kan een onderschatting opleve-
ren van een factor 4, terwijl de snelheid van de rotatie-as die op Venus naar haar eindpunt
beweegt met de quasi-vloeibare methode overschat wordt. Ten derde, een door getijden
vervormd lichaam heeft een voorkeur voor heroriëntatie rondom de getijde-as in plaats van
rondom de rotatie-as. De beweging van de rotatie-as die wordt gedreven door een positieve
massa-anomalie in de buurt van de polen, heeft de neiging om eerst rondom de getijde-as te
draaien in plaats van direct ernaartoe te bewegen. Voor lichamen die zich in een synchrone
rotatie bevinden is het waarschijnlijker dat positieve massa anomalieën rond de evenaar en
op de grootcirkel in het vlak loodrecht op de getijde-as gevonden kunnen worden, terwijl
negatieve massa-anomalieën de neiging hebben om zich te bevinden rond de grootcirkel
die zowel de rotatie-as als de getijde-as snijdt Tot slot introduceren we een dimensieloos
vloeistoflimietgetal F , dat verkregen kan worden met behulp van het Love getallen van het
planeetmodel en de TPW-snelheid. Met dit getal kunnen we een simpel criterium opstel-
len om te testen of de vloeistoflimietoplossing en de quasi-vloeibare benadering gebruikt
kunnen worden voor een gegeven inwendig model en maximale heroriëntatiesnelheid. Dit
proefschrift toont aan dat dit getal F minder dan 0.001 moet zijn voor een heroriëntatie
pad dat gevonden is met behulp van de vloeistoflimietoplossing voor een door getijden ver-
vormd lichaam om voldoende overeen te komen met het pad van een dynamische oplos-
sing voor praktische toepassingen. Hetzelfde criterium is ook van toepassing op resultaten
die verkregen zijn door middel van de quasi-vloeibare benadering. De nieuwe methode
wordt toegepast op verschillende planetaire lichamen en nieuwe inzichten zijn verkregen
over het gedrag van de rotatie van deze lichamen.

Aarde. Voor een massa belasting op een gelaagde Aarde die gebaseerd is op het Preliminary
Reference Earth Model (PREM) (Dziewonski and Anderson, 1981) samen met een gangbaar
viskeus profiel zoals dat van het SG6 model (Wu and Wang, 2006) kan zowel de lineaire
methode en onze methode een precieze hedendaagse TPW opleveren. Echter, door de in-
trinsieke fout van de lineaire methode kan deze bij een voorspelde TPW van meer dan 0.8
graden een fout van meer dan 2% geven.
Mars. Vanwege het gebruik van de quasi-vloeibare benadering kunnen eerdere schattingen
van de TPW snelheid (ongeveer 1 graden/Ma) (e.g. Chan et al., 2014; Bouley et al., 2016) een
onderschatting opleveren van een factor 4.6 gegeven de variaties in de viscositeit van Mars
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van 1019 tot 1021 Pa s.
Venus. Het rotatiegedrag van Venus wordt gedomineerd door een mega wobble, wat een
langzame wobble is met een grote amplitude (Spada et al., 1996). Spada et al. (1996) over-
schat de snelheid waarmee de massa anomalie op Venus de pool of de evenaar benadert
doordat de quasi-vloeibare benadering wordt toegepast. Als we aannemen dat Venus een
vergelijkbare viscositeit heeft als de Aarde of Mars dan zal een positieve massa-anomalie
van dezelfde orde grootte er veel langer over doen (10-15 keer) om de evenaar op Venus te
bereiken dan op Mars of de Aarde.
IJsmanen. De meeste ijsmanen hebben een synchrone rotatie ten opzichte van een veel
zwaarder lichaam. De massa van Jupiter is bijvoorbeeld 37500 keer zo groot als die van
zijn maan Europa. We tonen aan dat de heroriëntatie van deze door getijden vervormde
lichamen, die in gang gezet zijn door een positieve massa anomalie, eerst zal plaatsvin-
den rondom de getijde-as om de massa anomalie dicht bij de evenaar te plaatsen. Daarna
vertraagt de heroriëntatie en de massa anomalie beweegt zich dan langzaam richting het
sub-host of anti-host punt. Als gevolg hier van zal TPW, die in gang gezet is door grote ijs-
kappen op de polen van een ijsmaan, zoals Triton, Enceladus of Europa, er voor zorgen dat
het lichaam zich als eerst heroriënteert rondom de getijde-as, in tegenstelling tot wat voor-
speld is in (Rubincam, 2003) en (Matsuyama and Nimmo, 2007) met behulp van de vloei-
stoflimiet methode. De aanwezigheid van een lithosfeer bepaalt in welke mate positieve
massa-anomalieën verplaatst kunnen worden naar de sub- en anti-host punten, echter het
zal nog steeds waarschijnlijker zijn dat de massa-anomalieën zich in de buurt van de eve-
naar bevinden.
Pluto: Hoewel Pluto zich in een synchrone rotatie bevindt met zijn maan Charon, is de
massa van Charon slechts 12% van die van Pluto. Dit creëert een kleinere getijdebult dan
op de ijsmanen. As gevolg hiervan heeft de heroriëntatie van Pluto geen sterke voorkeur om
eerst rondom de getijde-as te draaien. In plaats daarvan zal het pad van de massa anoma-
lie zich bijna perfect langs een grootcirkel bewegen. Dit betekent dat het heroriëntatie pad
dat is verkregen in voorgaande, op vloeistoflimiet gebaseerde onderzoeken, bijvoorbeeld
(Keane et al., 2016), de werkelijkheid dicht zal benaderen. Echter, de snelheid van de hero-
riëntatie is nog steeds vertekend door de vloeistoflimiet, afhankelijk van de viscositeit van
de planeet en het verloop van de belasting in de tijd, bijvoorbeeld hoe snel volatiele stoffen
zich in Sputnik Plantinia hebben verzameld (Keane et al., 2016) en hoe snel de oceaan op-
geweld is (Nimmo et al., 2016).

Samenvattend, de niuwe methode die wordt gepresenteerd in dit proefschrift is een gea-
vanceerdere methode voor planeetwetenschappers om op een juiste methode manifesta-
ties van veranderende rotatie van verscheidene lichamen te interpreteren.
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INTRODUCTION

This chapter presents an introduction on the theory for long-term rotational variations of
planetary bodies. It answers the following questions: why do we need to study rotational
variations? What kind of rotational variations is the focus of this study? Which factors can
affect the variations? The physics behind these issues is explained in a schematic way. Also
some observed geophysical features caused by the rotational variations of the body are intro-
duced.

1
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2 1. INTRODUCTION

1.1. ROTATION: PULSE OF A PLANET

Figure 1.1: A demonstration of planetary rotation.

B EFORE the modern medical system was developed, especially before advanced diagnos-
tic equipment such as X-ray and MRI was invented, Chinese medicine was one of the

leading medical systems in the world. A famous technique it relied on is the pulse diagno-
sis. The pulse is a periodic signal which reflects the performance of our body. By studying
the change in this signal, one can know if various organs function normally. The pulse diag-
nosis provides information of significant diagnostic value without directly looking into the
body.

In planetary science, we are in the same situation as medicine in ancient times. Techno-
logically, we still lack the equipment to directly look into the interior of planetary bodies.
We also can not probe them: the deepest scientific drilling for the Earth, Kola Superdeep
Borehole, is about 12 km which is less than the average thickness of the crust. All the in-
formation obtained about the interior of a planetary body is from indirect observations:
its orbit, (near) surface gravity, various radiational signals, magnetics and seismic studies.
Also the periodic behaviour of every celestial body, rotation, provides information about its
interior, just like diagnosing a person in Chinese medicine. By studying the rotational vari-
ations and combining this with the geographic features, we can obtain information about
the planetary interior or explain the formation of certain surface features. There is a daily-
life example of the concept that the rotational behaviour can reflect the internal properties:
a simple method to distinguish between a boiled egg and a raw egg is to rotate both and
let them spin on a surface. The boiled egg will keep rotating much longer than the raw
egg. The physics behind this simple experiment can be very complex and concerns differ-
ential rotation, stability of a static flow and viscosity. It is necessary to establish a physi-
cal/mathematical model which links the rotational states and the interior conditions. The
main purpose of this PhD thesis is to further develop the rotational theory for planetary



1.2. POLAR WANDER: THE WANDERING POLE AND ITS PATH

1

3

bodies, which can be used to link various observed geophysical features, such as the Tharsis
plateau on Mars and Sputnik Planitia on Pluto, to rotational behaviours of the body which
also reflect their interior properties. This thesis focuses on a particular rotational behaviour
which will be introduced in the next section.

1.2. POLAR WANDER: THE WANDERING POLE AND ITS PATH

R OTATIONAL behaviour of a planetary body can be very complex, as it contains both
torque-induced and torque-free rotational variations. Furthermore, planetary bodies

are deformable, or more precisely: viscoelastic, which means that they act like elastic bod-
ies on a short time scale but like a fluid over long time scales. As a result, the short-term
rotational behaviour of planetary bodies and the long-term one are quite different. In this
thesis, we focus on the torque-free case which contains the mechanism that explains the
locations of many observed surface features on various planetary bodies: true polar wan-
der.

1.2.1. INTRODUCING POLAR WANDER AND TRUE POLAR WANDER

When no external torque is exerted on the body, the rotational axis is fixed in the inertial
frame because of the conservation of angular momentum. The moments of inertia of the
body can be changed by many geophysical processes, such as mantle convection, a mete-
orite forming a crater, volatile accumulation or ocean upwelling on the icy moons. These
processes give a perturbation which relocates the mass of the body. As a result, the body will
reorient itself and the rotational velocity may also change to keep the angular momentum
the same. For an observer on the surface of the planet, such reorientation appears as if the
rotational axis is moving around. For this reason, this phenomenon is referred to as polar
wander.
On the Earth, it is well known that the north/south pole is constantly moving and the study
of this phenomenon can be dated back to 19th century (Evans, 1866). As shown in figure
1.2, the movement of the poles has two kinds of temporal behaviour: a short-term periodic
behaviour and a long-term secular drift. The short-term movement contains a wobble with
a one year period and a wobble with 14 month period which is called Chandler wobble. The
averaged long-term movement is referred to as true polar wander (TPW).

Physically, the Chandler wobble is an eigenmotion of the body and its frequency is the nat-
ural frequency of the rotating system. Such frequency is different from the free nutation of a
rigid Earth and the difference is induced by the fact that the Earth is deformable. The yearly
wobble comes from the excitation which has a period of one year, e.g. flow in the ocean and
atmosphere (Wahr, 1983; Gross, 2000). In section 2.2, the mathematical description of these
two periodical behaviours will be shown. The long-term drift, TPW, is also the consequence
of the deformation of the rotating body. The detailed physical explanation for TPW will be
presented in section 1.3.2.
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Figure 1.2: Upper left: Short-term pole movement (2 years) on the Earth. (from The International Earth Rotation
Service (IERS), https://www.iers.org/)
Upper right: Long-term pole movement (400 years) on the Earth. The red dots are the geometric north poles in
different years. (from German Research Centre For Geoscience (GFZ), http://www.gfz-potsdam.de)
Bottom: A schematic illustration of the Chandler wobble and true polar wander in the body-fixed frame.

1.2.2. CASES OF TPW

Due to the availability of orbiting satellites and ground stations, TPW on the Earth can be
directly observed by measuring the position of the rotational axis in a body fixed frame
(figure 1.2). However, TPW on most of the planetary bodies can only be inferred from the
location of certain geological features because we lack the (ground based) instruments to
measure their orientation in the same way as for the Earth (Seidelmann, 1982). As will be
shown in section 1.3.2, TPW tends to relocate a positive mass anomaly (such as mountains)
to the equator and a negative mass anomaly (such as impact craters) to the poles. As a re-
sult, it is more likely to find huge mountains or plateaus which are not in isostasy close to
the equator. When we indeed observe these features near the equator of a certain planetary
body, it is often assumed that TPW relocated the feature to its current position. Of course
it is still possible that they originally formed at their current locations but the probability is
very low. In this section, we discuss several well-known geographic features on planetary
bodies of our solar system which are widely believed to indicate past TPW. The significance
of modelling TPW in order to link the observed features to their formation and the interior
properties of the planetary body is discussed in the end.
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The first example is the Tharsis plateau on Mars where the largest volcanoes in our Solar
System reside. As shown in figure 1.3, the surface area of Tharsis is about 10–30 million km2

which is 8 to 25 percent of the entire surface of Mars (Williams et al., 2008). The total mass
of Tharsis is estimated to be 1019 ∼ 1020 kg (Hynek and Phillips, 2001; Nimmo and Tanaka,
2005) which is large enough to trigger large angle TPW (Arkani-Hamed, 2009). As a result, it
is assumed that the Tharsis region could have formed somewhere else rather than at its cur-
rent position near the equator and was subsequently relocated by TPW (Murray and Malin,
1973; Kite et al., 2009; Bouley et al., 2016). However, the original position and the formation
epoch of Tharsis are still under debate: theories of both an early formation (Arkani-Hamed,
2009) and a late formation (Bouley et al., 2016) can be found in the literature.

Figure 1.3: Global topography of Mars. The Tharsis plateau is the large red area on the left. The unit for the scale
bar is km. Image taken from (Smith et al., 1999).

The second example is the south polar region on Enceladus as shown in figure 1.4. This area
shows four almost parallel ice cracks with an average length of 130 kilometres and a depth of
500 meters. Accompanying the tiger stripes are the highest observed geysers in this region
which eject water vapor, molecular hydrogen, and solid material into space (Spencer and
Nimmo, 2013). Such active behaviour, which is also confirmed by thermal images of this
area (Spencer and Nimmo, 2013), suggests a subsurface ocean. Some studies assumed that
the ocean is limited to the south pole (Iess et al., 2014; McKay et al., 2014) which proved to be
inconsistent with the observed short-term wobble which was found during the Cassini mis-
sion (Showman et al., 2013; Tajeddine et al., 2017). As a result, it is currently assumed that a
global ocean of average thickness of 30 to 40 kilometres is present within Enceladus (Show-
man et al., 2013; Tajeddine et al., 2017). The large libration amplitude provides a strong
constraint for the global ocean (Thomas et al., 2016). Nonetheless, the active south pole
compared to a quiet north pole suggests that the internal structure and activity at the south
pole are different from the rest of the body. It is assumed that this local activity created a
negative mass anomaly which reoriented Enceladus so that the area where the tiger stripes
formed was relocated to the south pole (Nimmo and Pappalardo, 2006).
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Figure 1.4: A close view of the tiger stripes at the south pole of the Enceladus. This image was obtained during the
Cassini mission in 2005 by the Cassini imaging team.

The third case is Pluto and its Sputnik Planitia which covers a large part of the heart-shaped
surface feature, see figure 1.5. Pluto is tidally locked with its largest moon Charon. As shown
in figure 1.5, the location of Sputnik Planitia is very close to the anti-Charon point. Simi-
lar to Tharsis on Mars, the reason that it is located near the equator is assumed to be the
fact that this area forms a positive mass anomaly. Studies show that two processes, volatile
accumulation and ocean upwelling, created a large enough positive mass anomaly which
reoriented Pluto so that Sputnik Planitia was relocated to its present day position (Nimmo
et al., 2016; Keane et al., 2016). Section 1.3.3 will show why the tidal force pushes a positive
mass anomaly to the sub-host or the anti-host point.

Besides the cases presented above, many other planetary bodies in our solar system are also
believed to have experienced TPW such as the Earth e.g. (Besse and Courtillot, 1991; Lam-
beck, 2005), Earth’s Moon (Siegler et al., 2016) and icy satellites like Europa and Ganymede
(Schenk et al., 2008).
Understanding TPW is crucial to provide a link between observations and the formation
of the observed features and the interior properties. For instance, the mass of the Thar-
sis area can be derived from gravity data (Goossens et al., 2017) together with the surface
topography (Hynek and Phillips, 2001; Nimmo and Tanaka, 2005). This provides the load
which triggers TPW on Mars. On the other hand, the displacement history of the poles can
be obtained from many resources, such as surface hydrogen distribution (Feldman et al.,
2004) or valley networks which suggest the surface stress pattern (Bouley et al., 2016). The
load and TPW history together constrain the interior properties of Mars, e.g. the thickness
of the crust and the viscosity of the mantle. Such constraint is provided by the reorienta-
tion (TPW) theory. Or the other way around, if the interior properties are constrained by
other information than based on the rotation theory, the speed of the TPW or the formation
history of the surface feather which triggered TPW, could be constrained.
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Figure 1.5: Orthographic spherical projections of Pluto and Charon. Base map: NASA/Johns Hopkins University
Applied Physics Laboratory/Southwest Research Institute. Image taken from (Keane et al., 2016).

1.3. PHYSICAL BACKGROUND

Before we go into the mathematical description of the problem, we illustrate the physics
of TPW with schematic drawings. In this section, also other factors which significantly af-
fect the rotational behaviour, such as the tidal force and the lithosphere of a planet, will be
presented.

1.3.1. DEFORMATION BEHAVIOUR OF PLANETS

As mentioned in the previous section, TPW can only happen on bodies that are deformable.
The deformation of terrestrial planets and icy satellites consists of an elastic and viscous
component. In the short term, planetary bodies behave like an elastic material where the
deformation due to a given stress, and the recovery after the removal of this stress, hap-
pens instantaneously. In the long term, viscous behaviour becomes dominant and plane-
tary bodies respond like fluid. The long-term viscous behaviour is the reason why the shape
of most planetary bodies is close to spherical under their self-gravitation. We will introduce
in this section the fundamental rheological model, the Maxwell model, which describes the
viscoelasticity of planetary bodies.

The choice for a particular rheology model depends on three criteria (Sabadini et al., 2016):
(1) the mathematical difficulty, (2) the quality of the geophysical data, (3) our knowledge
of the behaviour of the medium. Based on these three criteria, first, a Maxwell model is
the most simple model for which the Love numbers of the planetary body can be directly
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obtained by the normal mode theory (Peltier, 1974). Secondly, the time scale for TPW be-
haviour of a planetary body is usually in millions of years, e.g. the TPW speed on the Earth
is about 1 degree per million years (Ricard et al., 1993). It is very difficult to obtain a pre-
cise reorientation history of a planetary body for such slow TPW speed. Thirdly, as will be
shown in chapter 5, TPW is mainly controlled by the long-term viscous response of the body
and the load which triggers the TPW, such as volatile accumulation, ocean upwelling and
mantle convection, usually does not have short-term periodic behaviour such as the tidal
deformation due to an eccentric orbit. Consequently, for the study of TPW, we can expect a
small impact from replacing Maxwell rheology by a more advanced model such as Andrade
rheology which has been shown to result in a large difference in a study of tidal dissipation
(Renaud and Henning, 2017). As a result, the Maxwell rheology is chosen for the study of
the long-term rotational behaviour of planetary bodies.

Figure 1.6: Representation of the Maxwell rheology

The schematic representation of the Maxwell rheology is the spring-damper system shown
in figure 1.6. With this model, if the material is given a constant strain, the stress relaxes
and eventually becomes zero due to the damper. When put under a constant stress, the
two components act independently as follows: the spring has an instantaneous deforma-
tion which stays as long as the stress remains. Once the load is removed, the spring recovers
instantaneously. On the other hand, the damper extends linearly with time when the stress
remains and will not recover after the load is removed. The total deformation of viscoelastic
material is the sum of these two components.

;1 71 21

;2 72 22

;3 73 23

Figure 1.7: Illustration of a uniformly stratified planetary interior model.

The interior model of a planetary body is usually simplified into a stratified sphere. In each
layer, the physical properties, which include the density ρ, shear modulus µ and viscosity η,
are given, as shown in figure 1.7. Physically, each layer can be represented by a spring-damp
system and the entire model becomes a series connection of all these subsystems. For a
laterally homogeneous model, which means the thickness of each layer is constant, the de-
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formation of the model can be analytically calculated by the normal mode method (Peltier,
1974) which results in the Love numbers. For a heterogeneous model, the deformation can
usually only be obtained by a numerical method such as a finite element method.

The viscoelasticity of the planetary body determines that in the long-term the resistance of
the body against deformation will vanish and this is the reason why a positive mass anomaly
on the body can eventually reach the equator and a negative mass anomaly can reach the
pole. This will be explained in detail in section 1.3.2.
Furthermore, for a viscoelastic body, since the material can fully relax, the equilibrium
shape of a rotating body is determined only by the centrifugal potential and the self-gravitation
if no third body is considered. When these two forces are in balance, the planetary body is
in hydrostatic equilibrium when the compressibility of the planet model is ignored. The
hydrostatic state of the entire body, or simply speaking: the "background shape", is crucial
to the TPW behaviour as will be demonstrated in section 4.5. As will be discussed in section
1.3.4, if a certain part of the body, usually the lithosphere which has very high viscosity, can-
not relax during the TPW, this will prevent the mass anomalies from reaching the equator
or poles.

1.3.2. PROCESS OF TPW

In this section the process of TPW due to a positive mass anomaly will be explained schemat-
ically. The process of TPW on an Earth-like object was first studied by Gold (1955). Figure
1.8 gives a schematic depiction of the long-term rotational behaviour of a viscoelastic body
for the condition that its Chandler wobble period is much shorter than the dominant relax-
ation time of the body. This is the case for the Earth and Mars. For instance, the Chandler
wobble on Earth has a period of around 400 days while the dominant relaxation time of the
Earth is about 1000 to 10,000 years. It will be explained later in this section why this condi-
tion is necessary. The process of TPW can be decomposed in the following steps:

Step 1, figure 1.8a. In the body-fixed co-rotating frame, a rotating viscoelastic body in hy-
drostatic equilibrium is flattened or, in other words, it has an equatorial bulge which is cen-
tered at the equator. The black dots represent the original north and south poles.

Step 2, figure 1.8b. When a positive mass anomaly within or on the body is created, the
rotational stability is broken and, due to the centrifugal potential, an extra force ∆F is ex-
erted on the body which makes the body reorient in the direction of the force until a new
equilibrium position is reached. We should be aware that the direction of the movement
becomes different when the rotational behaviour is like a mega wobble such as on Venus
(Spada et al., 1996).

Step 3, figure 1.8c. After the reorientation, the centrifugal force is applied to the body at
a new position. Since the body is deformable, under the centrifugal force, the equatorial
bulge will readjust so it becomes perpendicular to the rotational axis again. This process is
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(a)

F

(b)

(c)

F'

(d)

Figure 1.8: A schematic process of the TPW of an Earth-like object viewed in the cross-section of the body in the
body-fixed frame. The black dots are the original north and south poles. The solid red dot represents the mass
anomaly. The vertical red dashed line is the rotational axis.

called equatorial bulge readjustment.

Step 4, figure 1.8d. When the bulge is readjusted, the balance is broken again by the extra
mass anomaly and a new unbalanced force ∆F ′ appears. As a result, the situation returns
to step 2. This iteration will continue until the positive mass anomaly reaches the equator.

During TPW, the second step (reorientation of the rotational axis) and the third step (equa-
torial bulge readjustment) happen at the same time. So in reality, during TPW the reorien-
tation of the rotational axis can never achieve the new equilibrium position and the equato-
rial readjustment can never cause the bulge to be perpendicular to the rotational axis again.
These two processes work in opposite directions and the net effect only vanishes when the
mass anomaly is at the equator or at the poles.
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If we view this process in terms of the moment of inertia, a rotating body is stable when its
rotational axis coincides with the axis of maximum moment of inertia (AOM), which is the
case before the mass anomaly is applied to the body. The existence of the mass anomaly
changes the position of the AOM and the rotation becomes unstable. As a result, the rota-
tional axis tries to "follow" the AOM which is the process of reorientation of the rotational
axis. However, the equatorial bulge readjustment moves the positive mass anomaly away
from the rotational axis which pushes the AOM further away. As a result, the process of TPW
can be seen as a process of the rotational axis "chasing" the AOM.

Before the illustration shown in figure 1.8, we stated the condition that the Chandler wobble
period needs to be much shorter than the dominant relaxation time of the body. It will be
explained in the following why this condition is necessary.
In the second step of previous illustration, it is stated that the rotational axis will move away
from from the load in the opposite direction. This is only true when secular behaviour is
not dominated by the Chandler wobble. As shown in figure 1.2, the rotational variation
contains both the periodic component, the Chandler wobble, and the secular TPW. When
the period of the former is short enough, the periodic behaviour can be ignored when con-
sidering long-term rotational changes. However, as the rotational speed of the planet slows
down, the equatorial bulge shrinks. Consequently, the period of the Chandler wobble be-
comes longer. When this period becomes comparable to the dominant relaxation time of
the body, the rotational change is dominated by this periodic phenomenon and the rota-
tional behaviour looks completely different. Since the rotation rate of Venus is only about
0.0041 times that of the Earth, TPW on Venus shows completely different patterns com-
pared to that on the Earth. We present a schematic illustration of the rotational behaviour
changing from an Earth-like fast rotating object to a Venus-like slow rotating object in figure
1.9. As the rotational speed slows, four trends appear:

1. The average secular behaviour (red line in figure 1.9) becomes curly instead of staying
within a great circle.

2. The length of the secular behaviour becomes shorter.

3. The magnitude of the Chandler wobble becomes larger.

4. The period of the Chandler wobble becomes longer.

These changes can be explained mathematically which will be shown in section 4.3.

Mega wobble is very similar to the free nutation of a rigid body. The theory for the rotational
variation of a rigid body will be briefly discussed in section 2.2. The determination of the
period of the Chandler wobble and the mega wobble case will be shown in section 2.2 and
chapter 4, respectively.
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(a) (b)

(c) (d)

(e)

Figure 1.9: A schematic illustration of the rotational behaviour for an object with an Earth-like interior and its
rotational speed decreasing from (a) Earth-like to (e) Venus-like. The vertical red line is the original rotational axis

and the black dot represents a negative mass anomaly.

1.3.3. EFFECT OF A TIDAL BULGE

Since a moon or planet orbits around a planet or sun, the body not only experiences the
centrifugal force but also the tidal force from the host body. For three of the four terrestrial
planets in our solar system, the Earth, Mars, and Mercury, the rotational period is much
shorter than the orbital period. As a result, the tidal force applied on them is much smaller
than the centrifugal force and the tidal force due to the Sun is usually ignored when describ-
ing rotational behaviour. However, most of the moons, e.g. the Moon of the Earth, Europa
and Enceladus, and the dwarf planet Pluto are tidally locked to either their host planet or



1.3. PHYSICAL BACKGROUND

1

13

its largest moon. In this case, the magnitude of the tidal force becomes comparable to the
centrifugal force. It will be shown in section 2.1 that when the mass of the orbiting host is
much larger than the body, which is true for most tidally locked moons, the tidal force is
three times the magnitude of the centrifugal force which will create a large tidal bulge be-
sides the centrifugal bulge. Consequently, we cannot ignore the tidal force when calculating
the reorientation of the body. In this thesis, we consider tidally locked bodies whose orbital
eccentricity and axial tilt (obliquity) can be ignored.
For this kind of tidally deformed bodies, we introduce the bulge-fixed coordinate system

Figure 1.10: The bulge-fixed coordinate system in a tidally deformed rotating body. The X-axis is the tidal axis
that points towards the central body. The Z-axis is the rotation axis, and the Y-axis completes a right-handed
coordinate system. The coloured arrows show three reorientations around the axes, which will be labelled as X-,
Y- and Z-reorientation.

where the X-axis and Z axis always coincide with the tidal and rotational axis, respectively,
as shown in figure 1.10. As we can see, the reorientation of a tidally deformed body is much
more complex than when only the centrifugal force is present, because we need to consider
the movement of not only the rotational axis but also the tidal axis. We are not aware of
a published dynamic solution for TPW on a tidally deformed body. Most previous studies
(Matsuyama and Nimmo, 2007; Matsuyama et al., 2014; Keane et al., 2016) only consider
the final reorientation of the body with a lithosphere. The method in these studies will be
introduced in section 2.4. Before that, it is necessary to know why the lithosphere of a body
can influence its final reorientation. Therefore, in the next section, the effect of the litho-
sphere with very high viscosity will be discussed.
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1.3.4. EFFECT OF AN ELASTIC LITHOSPHERE

The statement that a positive mass anomaly will eventually reach the equator and a nega-
tive mass anomaly will reach one of the poles as well as the schematic demonstration shown
in figure 1.8 requires one crucial condition: the entire body should be able to fully relax after
the considered period. This means that the viscosity of the entire body should be lower than
a certain value. If part of the planetary body, usually the lithosphere, has a very high viscos-
ity, then this part can not sufficiently relax during the TPW process and it will accumulate
stress which prevents the equatorial bulge to readjust fully. The effect of the lithosphere is
shown schematically in figure 1.11.

In figure 1.11, on the left and right columns are bodies without and with a lithosphere, re-
spectively. In the beginning, the entire body is in hydrostatic equilibrium in both cases, as
shown in figure 1.11a and 1.11b, so the whole body is fully relaxed (Stress level 0).

When a positive mass anomaly is attached to the surface, as shown in figure 1.11c and 1.11d,
the body without a lithosphere can sufficiently relax, in which case the body itself does not
show significant resistance to the reorientation. On the other hand, for the body with a
lithosphere, stress starts to accumulate in the lithosphere due to deformation which gener-
ates a restoring force ∆F " that counters TPW.

In the long term the body without a lithosphere does not give any resistance to the reori-
entation. The mass anomaly is pushed to the equator and the body reaches a new hydro-
static equilibrium in this new position, as shown in figure 1.11e. On the other hand, for the
body with a lithosphere, the restoring force within the lithosphere will eventually become
big enough to cancel the extra centrifugal force applied on the mass anomaly and the TPW
stops. As a result, the mass anomaly cannot reach the equator in this case, as shown in fig-
ure 1.11f. The magnitude of the TPW angle is determined by the MoI of the mass anomaly
and by the lithosphere.

Next we consider the behaviour of the body following removal of the mass anomaly dur-
ing the TPW or after it is finished. The direction of the rotational axis of the body without
the lithosphere, since a new equilibrium has been established on the final position, will not
change, as shown in figure 1.11g. In contrast with this, for the body with a lithosphere the
restoring force will try to reorient the body back to its original orientation since the stress
remains within the lithosphere, as shown in figure 1.11h. This process is almost exactly the
same as TPW triggered by an apparent mass anomaly, but in this case the unrelaxed litho-
sphere plays the role of the mass anomaly to trigger the TPW.

The new equilibrium position for both cases are shown in figure 1.11i and 1.11j. While the
body without an lithosphere keeps the new orientation, the body with an elastic lithosphere
will end up with the rotational axis back at its original position. If the lithosphere can par-
tially relax during the entire TPW, then the restoring force will vanish during the process
and the final reorientation will be somewhere between the start position and the maximum
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displacement. This will be demonstrated with modelling in chapter 4.

In this chapter, the process of TPW and relevant issues such as a tidal bulge and lithosphere
is explained without including mathematics. The next chapter will show the mathematical
representation for the process of TPW. Most importantly, we will introduce and describe the
limitations of various types of solutions to the TPW problems which are used in previous
studies.
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Figure 1.11: Left column (a-c-e-g-i): Reorientation of a body without lithosphere due to a positive mass anomaly
and its removal.
Right column (b-d-f-h-j): Body with a lithosphere.
Black dots are the original north and south poles and the magenda dot is the mass anomaly. The colorbar indicates
the relative stress level.



2
REVIEW OF ROTATIONAL THEORIES

AND PROBLEM STATEMENT

This chapter presents three types of analytical solutions for long-term TPW which are widely
used in previous studies: linear, non-linear and fluid-limit. First, the governing equations,
the Liouville equation and moment of inertia equation, are introduced. Then each solution is
introduced, focusing on: the accuracy and applicability. Based on the evaluation of previous
methods, the goal of this thesis and the research questions are presented.
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2.1. LIOUVILLE EQUATION AND MOMENT OF INERTIA EQUATION

In this section, the governing equations for the rotational variations of a spherical viscoelas-
tic body are presented. The mathematical representation of the effect of a tidal bulge and a
lithosphere, which was introduced in the previous chapter, is also discussed.

TPW, or the reorientation of a rotating body, can be represented by the change in its rota-
tional vector in a body-fixed frame, which we define as ω = (ω1,ω2,ω3) where ωi , i = 1,2,3
are the components in the body-fixed frame. The change in the rotational state of the
body must satisfy the conservation of angular momentum, which in the rotating body-fixed
frame is represented as the well-known Euler’s equation. For the torque-free case, it reads
(Lambeck, 1988):

d

d t
(I ·ω)+ω× I ·ω= 0 (2.1)

where I is the moment of inertia (MoI) tensor of the body. When the body is deformable, I
becomes I(t ) and equation 2.1 is usually referred to as the Liouville equation (Sabadini et al.,
2016). This is a non-linear equation which we need to solve to obtain the value of ω for a
prescribed change in the MoI tensor I. As a result, we need another equation to describe
the change in the MoI.

Generally, the MoI of a planetary body can be changed in three ways:

1. The direct contribution from a geophysical feature which can be represented as a re-
location of the mass of the body. Such feature is modelled as a mass anomaly whose
inertia tensor will be labelled as ∆I1.

2. The deformation of the body due to the mass anomaly. Due to the gravity, the pres-
ence of this extra mass anomaly upon a body will cause the body to deform until a
hydrostatic equilibrium state is reached. The change in the inertia tensor of this pro-
cess will be labelled as ∆I2.

3. Equatorial bulge readjustment. Due to the centrifugal force, an equatorial bulge is
created. The shape of this bulge alters following the rotational axis. The change in
MoI of the equitorial bulge will be labelled as ∆I3.

To calculate TPW, the MoI tensor of the mass anomaly,∆I1, should be known. This is the in-
put for our calculation. We label MoI of this part as C(t ), so ∆I1 = C(t ). In order to describe
how the body deforms due to the load of the mass anomaly and the centrifugal force, we
need the Love numbers of the planetary body.

Love numbers were first introduced by Augustus Edward Hough Love to describe the overall
elastic response of the Earth to the tidal potential (Dehlinger, 1978). Similar to the simple
Hooke’s law for a spring, for an elastic Earth the degree two potential Love number k2 gives
a simple linear relation between the degree two load potential Φc and the second degree
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perturbation in the self gravitational potentialΦg at radius a (Farrell, 1972):

Φg (a) = k2Φc (a) (2.2)

Here Φc (a) is the centrifugal potential which is a function of the rotational vector ω which
will be given in equation 2.9. From the gravitational potentialΦg (a) the change in the iner-
tia tensor can be obtained. For this part of the derivation, we refer to chapter 3 of (Sabadini
et al., 2016), which gives:

∆I3,i j = k2a5

3G
[ωiω j − 1

3
Ω2δi j ] (2.3)

where ∆I3,i j are the components of tensor ∆I3. G is the gravitational constant and a is the
radius of the planet. This time-invariant form of ∆I3,i j provides the instantaneous equato-
rial bulge readjustment due to an applied centrifugal potentialΦc .
The definition of Love numbers can be extended when the viscoelasticity of the body and
load are considered. The Correspondence Principle states that a linear viscoelastic problem
in the time domain is equivalent to an elastic problem in the Laplace domain (Peltier, 1974).
As a result, we have (Peltier, 1974):

Φg (s, a) = k2(s)Φc (s, a) (2.4)

similar to the relationship shown in equation 2.2, where Φc (s, a) and Φg (s, a) are the corre-
sponding Laplace transformations ofΦc (t , a) andΦg (t , a), respectively. Following the same
procedure, we can obtain the relationship between the change in the inertia tensor ∆I3,i j

and the rotational vector ω similar to equation 2.3 in the Laplace domain. In time domain,
where multiplication becomes convolution, we have

∆I3,i j (t ) = k2(t )a5

3G
∗ [ωi (t )ω j (t )− 1

3
Ω(t )2δi j ] (2.5)

which describes the viscoelastic response of the equatorial bulge as a function of the rota-
tional vector.

The concept of the Love numbers can also be extended to describe the body’s response to
a surface or internal load. In this case, the Love number is called the load Love number, in
contrast with the tidal Love number which is introduced above. To distinguish these two
types of Love numbers, we label the tidal Love number in equation 2.5 as kT and label the
load Love number as kL . The Load love number directly gives the relationship between the
MoI of the applied mass anomaly and the change in the MoI of the body (Sabadini et al.,
2016):

∆I2,i j (t ) = kL(t )∗Ci j (t ) (2.6)

As a result, the MoI of the entire body can be obtained as

Ii j (t ) = I0δi j +∆I1,i j +∆I2,i j +∆I3,i j

= I0δi j + kT (t )a5

3G
∗ [ωi (t )ω j (t )− 1

3
Ω(t )2δi j ]

+[δ(t )+kL(t )]∗Ci j (t )

(2.7)
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where I0 is the MoI of the unperturbed spherical planetary body and δi j is the Kronecker
delta function. Equation 2.7 gives the change in the MoI of the entire planetary body as a
function of rotational vector ω and the input load C(t ). We will name this equation in the
following as moment of inertia (MoI) equation, which is the second governing equation.

For a stratified spherical self-gravitating visco-elastic body with a Maxwell rheology, Love
numbers can be obtained by the normal mode method (Peltier, 1974; Sabadini et al., 2016).
In this thesis, it is not discussed in detail how Love numbers are computed by the normal
mode method. Tidal and load Love numbers of a Maxwell stratified viscoelastic body in the
Laplace domain have the form (Peltier, 1974):

k(s) = ke +
M∑

i=1

ki

s − si
(2.8)

where ke is the elastic Love number, ki are the residues of each mode and si are the inverse
relaxation times. This form of the Love number describes how a stratified viscoelastic body
deforms. The elastic response of the body is characterized by the elastic Love number ke

which in the time domain is a delta function. Due to the difference between the properties
of layers, several viscous relaxations follow the elastic response and are characterized by
the relaxation strengths ki /(s − si ), i = 1,2..M , which in the time domain is the exponential
function ki e si t .

When the tidal and load Love numbers of the body and the direct contribution to the MoI
from a geophysical feature, C(t ), are given, equations 2.1 and 2.7 can be solved to obtain the
rotational changes.

The MoI equation 2.7 can only be applied to bodies for which the influence of the tidal de-
formation can be ignored. If the tidal force can not be ignored, the effect of the tidal bulge
needs to be added to equation 2.7. First we compare the tidal potential with the centrifu-
gal potential. For an incompressible model with linear rheology, the effective centrifugal
potential is (Murray and Dermott, 2000)

Φc = 1

3
Ω2r 2P 0

2 (cosθ) (2.9)

with θ being the colatitude and P 0
2 the associated Legendre function of degree 2 and order 0.

When the distance between the source body of the tidal potential and the target planetary
body is much larger than the radius of the target planetary body (a >> r in figure 2.1), the
tidal potential due to the source body can be written as (Murray and Dermott, 2000)
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Figure 2.1: The relationship between the radius of the planetary body, r , the semi-major axis of the source body of

the tidal potential, a, and the angle between the radius vector
−−→
OP and the direction of the tidal bulge

−−→
OO′, ψ.

Φt =−GMT

a3 r 2P 0
2 (cosψ) (2.10)

Here ψ is the angle between the radius vector and the direction of the tidal bulge, as shown
in figure 2.1. If we define an equivalent angular speed of the tidal potential as:

Ω′ =
√

3GMT

a3 (2.11)

then the expression of the tidal potential becomes the same as the centrifugal potential
except for the negative sign. As a result, the effect of applying a tidal potential to a certain
object is the same as applying the centrifugal potential of the same magnitude but with
opposite direction. When a tidal potential is present, the MoI equation 2.7 becomes

Ii j (t ) = Iδi j + kT (t )a5

3G
∗

[
ωR

i (t )ωR
j (t )− 1

3
ωR

l ω
R
l δi j

]
−kT (t )a5

3G
∗

[
ωT

i (t )ωT
j (t )− 1

3
ωT

l ω
T
l δi j

]
+ [δ(t )+kL(t )]∗Ci j (t )

(2.12)

whereωT = (ωT
1 ,ωT

2 ,ωT
3 ) is the tidal vector which points to the source of the tidal potential

and whose magnitude satisfies

|ωT | =
√

3GMT

a3 (2.13)

When the body contains a lithosphere, equations 2.7 and 2.12 may need to be modified, de-
pending on whether the lithosphere is considered as elastic or as viscoelastic with very high
viscosity. If a model with a viscoelastic lithosphere is considered, there will be a very slow
buoyancy mode in the Love number which represents the relaxation of the lithosphere. The
MoI equation 2.7 or 2.12 keeps the same form. If the lithosphere is elastic or the slowest
buoyancy mode associated with the lithosphere is ignored when calculating the Love num-
ber, then the Love number does not contain the contribution from the lithosphere. Conse-
quently the MoI obtained from equation 2.7 or 2.12 lacks the influence of the lithosphere
which needs to be added. For this part we refer to section 4.4.



2

22 2. REVIEW OF ROTATIONAL THEORIES AND PROBLEM STATEMENT

The rotational variation of a planetary body is obtained by the solution of the two govern-
ing equations introduced above. However, analytically solving a non-linear equation 2.1
together with equation 2.7 which contains convolution is not feasible. As a result, various
approximations were adopted in previous studies to simplify either the Liouville equation
or the MoI equation. In the following three sections, we will show these approximations
and discuss their applicability and limitation of the methods based on these approxima-
tions.

2.2. LINEAR METHOD

In this section, we will first introduce the linearized Liouville equation along with a brief
discussion about the short-period periodic rotational behaviour, namely the Chandler and
the 1-year wobble. Then the linear solutions for TPW from Sabadini and Peltier (1981) and
Wu and Peltier (1984) are introduced.

The linear method only considers the case where the TPW happens on bodies which are in
hydrostatic equilibrium and the perturbation does not change the state too far away from
the equilibrium. As a result, we first need to obtain the state of a viscoelastic body in hy-
drostatic equilibrium. Basically, when a viscoelastic spherical body starts to rotate with a
constant speed, the body will gradually flatten due to the centrifugal force. This process
continues until the centrifugal force and the self-gravitational force are balanced. The in-
fluence of such a process on the MoI of the body is described by equation 2.5, which is the
change of MoI, ∆I3, as a function of rotational vector, ω(t ). If we set ω(t ) = Ω(0,0,1), the
difference in the inertia tensor of the body in hydrostatic state and a spherical body can be
obtained by the infinite time limit of equation 2.5:

∆Ih = lim
t→∞∆I3(t ) (2.14)

which can be solved by Laplace transform with the final value theorem: f (∞) = lims→0 F (s).
Let I3(s) be the Laplace transformation of I3(t ). Substituting equation 2.8 into I3(s) results
in

∆Ih =L −1 lim
s→0

∆I′(s)

=
 ∆A 0 0

0 ∆B 0
0 0 ∆C


=

kT
f Ω

2a5

3G

 − 1
3 0 0

0 − 1
3 0

0 0 2
3

 (2.15)

where L −1 stands for the inverse Laplace transform, ∆A, ∆B and ∆C are the change of MoI
at the three principle axes. kT

f is the infinite time limit of the tidal Love number which is

equivalent to substituting s = 0 in equation 2.8. This number is often called the fluid Love
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number and can be written as

kT
f = kT (0)

= kT
e −

m∑
i=1

kT
i

si

(2.16)

In this case, since only the centrifugal force is considered, the body is symmetric around the
rotational axis and the MoI around the three principle axes can be obtained as

A = I0 +∆A = I0 +∆B = B (2.17a)

C = I0 +∆C (2.17b)

The size of the equatorial bulge can be characterized by the difference C−A which is (Mitro-
vica et al., 2005)

C − A =
kT

f a5Ω2

3G
(2.18)

When perturbations happen to the inertia tensor of the planetary body in hydrostatic equi-
librium, the MoI of the body can be written as

I =
 A+∆I11 ∆I12 ∆I13

∆I21 B +∆I22 ∆I23

∆I31 ∆I32 C +∆I33

 (2.19)

where ∆Ii j is the sum of ∆I1,i j , ∆I2,i j and ∆I3,i j as introduced in the previous section. If
we assume that the rotational variation is small, we can define the perturbed rotational axis
as

ω=Ω(m1,m2,1+m3)T (2.20)

where m1,m2 and m3 are small real numbers and Ω is the norm of the vector ω. Substi-
tuting equation 2.19 and 2.20 into the Liouville equation 2.1, and ignoring the higher order
terms (see section 3.3 for the detailed process) results in the linearized Liouville equation
(Sabadini et al., 2016)

.
m1 = −C −B

A
Ωm2 + Ω

A
∆I23 − ∆

.
I 13

A
(2.21a)

.
m2 = C − A

B
Ωm1 − Ω

B
∆I13 − ∆

.
I 23

B
(2.21b)

.
m3 = −∆

.
I 33

C
(2.21c)

For planets like the Earth and Mars, the tidal force is much smaller than the centrifugal
force. And if we do not consider lateral heterogeneity, it can be assumed that A = B . By
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defining m = m1 + i m2 where i is the imaginary unit, the first two equations in 2.21 can be
written as

i

.
m

σr
+m =ΦL (2.22)

where the load functionΦL and the Eulerian free precession frequencyσr are defined as

ΦL = ∆I13

C − A
+ i

∆I23

C − A
(2.23)

σr = C − A

A
Ω (2.24)

We should be aware that the load function ΦL here contains contributions from all three
factors (∆I = ∆I1 +∆I2 +∆I3) introduced in the previous section. If the load function ΦL

is time-invariant, namely if the body is rigid (∆I2 = ∆I3 = 0) and the relative position and
the magnitude of the mass anomaly do not change (∆I1 is a constant), equation 2.22 can be
solved analytically which results in a periodic behaviour: the free nutation (Lambeck, 1988).
The frequency of the free nutation is different from that of the Chandler wobble introduced
in section 1.3.2 due to the fact that the deformation of the body is not taken into account
(Lambeck, 1988).

Combining equations 2.18 and 2.5 and ignoring the second order terms of mi , we have

∆I3,13 = C − A

kT
f Ω

2
kT (t )∗ [ω1(t )ω3(t )] ≈ C − A

kT
f

kT (t )∗m1(t ) (2.25a)

∆I3,23 = C − A

kT
f Ω

2
kT (t )∗ [ω2(t )ω3(t )] ≈ C − A

kT
f

kT (t )∗m2(t ) (2.25b)

which gives the change in the MoI due to equatorial readjustment as a function of mi . Sub-
stituting equations 2.25 and 2.6 in the linearized Liouville equation 2.22 gives

i

.
m

σr
+m − kT

k f
∗m =Φl (2.26)

whereΦl becomes

Φl (t ) = (
δ+kL)∗ ∆C13 + i∆C23

C − A
(2.27)

which only contains the parts ∆I1 and ∆I2 now. This is the linear form of the governing
equation which combines the Liouville equation and MoI equation. Providing an input C(t )
which describes certain geophysical processes, the rotational change, m, can be obtained.
The result contains both short-term periodic behaviour as well as long-term TPW for small
angle perturbations.
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Equation 2.26 can be used to determine the period of the Chandler wobble. If we only con-
sider the instantaneous behaviour of the body instead of its long-term viscous response,
then the Love number kT can be simplified to contain only the elastic part kT

e , which in the
Laplace domain is a constant whose convolution with m becomes a multiplication. As a
result, equation 2.26 becomes

i

.
m

σr
+ (1− kT

e

k f
)m =Φl (2.28)

Compared to equation 2.22 whose natural frequency isσr , the periodic behaviour obtained
from 2.28 has frequency

σ0 =
(

1− kT
e

kT
f

)
σr (2.29)

And this value represents the frequency of the Chandler wobble. Since it depends on both
the elastic and fluid Love number of the body, the period of the Chandler wobble is gen-
erally understood as the free nutation of the body modified by the fluidity of the core, the
elasticity and anelasticity of the mantle and the oceans (Lambeck, 1988). The magnitude of
the Chandler wobble is dependent on the excitation, which contains both non-periodic ge-
ological processes such as earthquakes (Mansinha and Smylie, 1967; Press and Briggs, 1975)
and periodic processes such as ocean flow and atmospheric pressure change (Wahr, 1983;
Gross, 2000). These seasonal excitations also generate the extra one year periodic wobble
besides the Chandler wobble.

In order to solve equation 2.26 in a more general way Laplace transformation is applied.
With m(s) and Φ(s) being the transformed quantities of m(t ) and Φl (t ) respectively, we
have (

i
s

σr
+1− kT (s)

k f

)
m(s) =Φ(s) (2.30)

Substituting the Love number kT (s) and fluid Love number kT
f defined in equation 2.8 and

2.16 leads to

m(s) =− iσrΦ(s)

s
(
1+ i

∑M
j=1

x j

s−s j

) (2.31)

where xi = (σr ki )/(k f si ). To solve equation 2.31, Sabadini and Peltier (1981) and Wu and
Peltier (1984) took different approaches. Sabadini and Peltier (1981) directly applied partial
fraction decomposition for the parameter s on the right side and obtained

1

s
(
1+ i

∑M
j=1

x j

s−s j

) = A0

s
+

M∑
j=1

A j

s −a j
(2.32)

Here Ai and ai are complex numbers. Combining this equation with equation 2.27 to re-
placeΦ(s) changes equation 2.31 into

m(s) =−iσr

(
A0

s
+

M∑
j=1

A j

s −a j

)(
1+kL) ∆C13(s)+ i∆C23(s)

C − A
(2.33)
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Since Ai and ai are complex numbers, for a stationary load, where C (t ) is constant and
kL = 0, m(t ) typically has the form

m1 =β0 +β1t +
M∑

j=2
β j sin(α j t )eα j t (2.34a)

m2 =β′
0 +β′

1t +
M∑

j=2
β′

j cos(α j t )eα j t (2.34b)

where βi , β′
i and αi are real numbers. This form suggests that each of the M relaxation

modes will give rise to a rotational mode with damped periodic behaviour. Usually only
one of the rotational modes, which is associated with the mantle and often referred to as
the M0 mode, has a very large imaginary part and this corresponds to the observed Chan-
dler wobble (Sabadini et al., 2016).

In contrast with the approach by Sabadini and Peltier (1981), Wu and Peltier (1984) assume
that all rotational modes have a much longer relaxation time than the Chandler wobble. By
taking |s| <<σ0, the unit in the denominator of equation 2.33 can be ignored. This approxi-
mation changes equation 2.33 into a real equation in which the Chandler wobble is filtered
out. The next procedure is exactly the same as in Sabadini and Peltier (1981) where partial
fraction decomposition is applied. Here we compare both approaches with an example. A
mass anomaly of 2×1019 kg is attached on the surface of the SG6 Earth model (see table 3.2
for the physical properties) and we do not consider the deformation of the Earth due to the
mass anomaly (kL = 0). The rotational variation is calculated by both methods. The results
are shown in figure 2.2. As can be seen, in the result obtained by Wu and Peltier (1984),
the Chandler wobble is replaced by an elastic jump in the beginning and the magnitude
of this jump represents the amplitude of the initial wobble. Other than this, these two ap-
proaches obtain the same secular behaviour in the long term. The equivalence of these two
approaches has been analytically studied by Vermeersen and Sabadini (1996).
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Figure 2.2: Polar wander in the x-z plane for the SG6 Earth model triggered by a point mass of 2×1019 kg attached
at the surface at 45◦ colatitude. Rotational variations calculated by both Sabadini and Peltier (1981) and Wu and
Peltier (1984) are included. On the left, the time range is 30 ka and on the right 500 years.

The following summarizes the applicability of the linear method:
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• The linear methods fully adopt the rheology behind the model (no approximation on
the MoI equation) which means that for small angle TPW, the linear method provides
accurate TPW behaviour of a Maxwell body. As a result, the linear methods should be
the first candidate for validating a new method. More specifically, if the result from
the new method contains the short-term periodic behaviour, the method by Sabadini
and Peltier (1981) should be used for validation. Otherwise, the method by Wu and
Peltier (1984) is chosen.

• The applicable range for the linear method is limited to a small angle due to the lin-
earisation of the Liouville equation. During the linearisation process, two assump-
tions are taken: (1) the axis of maximum MoI is close to the rotational axis (C>A
and C>B must be satisfied after the perturbation), (2) During the TPW, the MoI of
the equatorial bulge does not change (C-A is constant). These two assumptions limit
the linear method to only the case where the contribution of the mass anomaly to the
MoI is very small compared to that of the equatorial bulge. This can be true for ter-
restrial planets such as the Earth and Mars, but not necessarily for Venus, which has
an extremely small equatorial bulge.

• An intrinsic error is present due to the fact that the MoI of the mass anomaly C is cal-
culated in the body fixed frame. Thus C is not updated during the TPW (see equation
2.33). This means that for the mass anomalies placed near the pole or the equator,
the results from the linear method can contain a large error. For instance, in the be-
ginning, a positive mass anomaly is placed at 1 degree colatitude. Then after TPW
of 1 degree, the colatitude of the mass anomaly is changed to 2 degrees, for which
the contribution of the load is almost doubled. However, in the linear method, this
change is not considered since its position in the body-fixed frame is fixed. This issue
is further discussed in section 3.3.

2.3. NON-LINEAR METHOD

For large angle TPW, the linearized Liouville equation cannot be applied anymore. Instead,
the original non-linear equation needs to be solved. Sabadini and Peltier (1981) first formu-
lated the problem in a non-linear way which was further developed by Spada et al. (1992a)
and Ricard et al. (1993).
Due to the mathematical difficulty of solving the Liouville equation 2.1 together with the
MoI equation 2.7, an approximation is adopted in non-linear methods. As we can see from
the MoI equation 2.7, the most difficult part is the convolution for the tidal Love number
which describes the viscous behaviour of the equatorial bulge. If we assume that the ro-
tation is studied for time scales much larger than the characteristic relaxation times of the
model, we can assume that |s| << |si | which leads to an approximation of the Love number
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in the form of equation 2.8: (Ricard et al., 1993)

kT (s) = kT
e +

M∑
i=1

kT
i

s − si

≈ kT
e −

M∑
i=1

(
kT

i

si
+ kT

i s

s2
i

)
= kT

f (1−T1s)

(2.35)

The constant T1 is

T1 = 1

kT
f

M∑
i=1

kT
i

s2
i

(2.36)

Mathematically, this approximation is the first order term of a Taylor expansion of the Love
number in the Laplace domain. With this new form of the Love number, we want to see how
it responds to a linearly changing load to the body. In the time domain, this is to convolute
equation 2.35 with a linear function F (t ) = At . This load function can resemble a changing
load such as accumulation of volatiles. The response in the time domain reads:

R(t ) = kT (t )∗F (t )

= L −1[kT
f (1−T1s)F (s)]

= kT
f F (t )− AkT

f T1

(2.37)

which shows that if the change of the load, A, is very small, the body immediately reaches
its fluid limit kT

f F (t ) without the delayed viscous response. As a result, this formulation of

the Love number as shown in equation 2.35 is called the quasi-fluid approximation. With
the time domain transformation of sωi (s) being

.
ωi (t ), substituting equation 2.35 into 2.7

gives (Ricard et al., 1993)

∆Ii , j (t ) =
kT

f a5

3G
[ωi (t )ω j (t )− 1

3
Ω(t )2δi j ]

−
kT

f a5

3G
T1[ω̇i (t )ω j (t )+ωi (t )ω̇ j (t )− 2

3
ωl (t )ωl (t )δi j ]+Ei j

(2.38)

where Ei j = [δ(t )+kL(t )]∗Ci j (t ). Combining equation 2.38 and 2.1 and neglecting
..
ω and

.
ω

2 for consistency with the assumption of the approximation in 2.35 results in (Ricard et al.,
1993):

Ai j (ω)
.
ω j +Bi j (ω,E, Ė)ω j = 0 (2.39)
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where

A =
kT

f a5T1

3G


3G I

kT
f a5T1

ω2ω3 −ω2ω2

−ω2ω3
3G I

kT
f a5T1

ω2ω1

ω2ω2 −ω2ω1
3G I

kT
f a5T1

 (2.40)

B =
 Ė11

∑
3 −∑

2

−∑
3 Ė22

∑
1∑

2 −∑
1 Ė33

 (2.41)

and
∑

k = Ekiωi . Thus the governing equations become a system of first order differential
equations 2.39 which can be solved by numerical integration methods.
Since the Liouville equation is not linearized, the non-linear method has better applicability
compared to the linear methods for two cases: (1) large-angle TPW, (2) Bodies with very a
small equatorial bulge, such as Venus.
On the other hand, since the non-linear method takes the quasi-fluid approximation 2.35,
the result does not fully represent the response of a Maxwell body. As will be discussed
in section 4.2, the quasi-fluid approximation underestimates the equatorial readjustment
speed in normal TPW case, depending on the model. Consequently, the TPW obtained by
non-linear methods for the Earth or Mars has a much slower transient response than that of
a Maxwell body. If we compare the results of the linear method from Wu and Peltier (1984)
and the non-linear one from Ricard et al. (1993), as shown in figure 2.3, it is clear that for
short term small angle TPW, where the linear method is accurate, the non-linear method
can contain large errors, as it was not developed to be accurate for the short time scale.
However, for the long-term large angle TPW, it is not clear what the influence is of taking
the quasi-fluid approximation on the TPW behaviour. Thus the accuracy of the non-linear
method remains unclear since we are not aware of the existence of a non-linear method
that contains the full visco-elastic response of a Maxwell body.
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Figure 2.3: Polar wander in the x-z plane for two types of Earth models, two-layer and SG6 (Wu and Wang, 2006),
triggered by a point mass of 2×1019 kg placed at 45◦ colatitude in the x-z plane, for both the linear (Wu and Peltier,
1984) and non-linear (Ricard et al., 1993) methods.
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2.4. FLUID LIMIT METHOD

Both the linear and non-linear methods mentioned in the previous two sections can not be
applied to bodies which are tidally deformed. The difficulty of obtaining a dynamic solution
for reorientation of a tidally deformed body comes from two aspects. First there is an extra
term in the MoI equation 2.12 due to the presence of the tidal bulge. Second, the reorienta-
tion of the body concerns both the rotational axis and the tidal axis.
In physical terms, the movement of the body consists of a forced nutation around the ro-
tational axis where the tidal force applies a torque. Furthermore, as shown in section 2.1,
for an incompressible body, the effect of the tidal force is the same as the centrifugal force,
apart from the opposite direction of the force. So for the tidal axis, there is also a forced
nutation where the centrifugal force applies extra torque. As a result, the complete mathe-
matical description of the reorientation of a tidally deformed body consists of two Liouville
equations besides the MoI equation. As seen in previous sections, even when only the cen-
trifugal bulge is present, a (semi-)analytical solution requires approximation of either the
Liouville equation 2.1 as in the linear method or approximation of the MoI equation 2.7 as
in the non-linear method.

The orientation of a tidally locked rotating body is stable when the rotational axis coincides
with the axis of the largest moment of inertia and the tidal bulge is pointing towards the
source of the tidal potential. This state corresponds to the minimum total potential energy
of the body when its viscoelastic part is fully relaxed. The deformation afterwards follows
the minimum total potential energy principle. Perturbations such as mass redistribution,
which change the body’s MoI, will cause the body to reorient until a new minimal potential
state is achieved. In other words, the rotational and tidal axes are aligned with the new axes
of maximum and minimum MoI.

For the past decades (Willemann, 1984; Matsuyama et al., 2014), a different approach has
been applied when the reorientation of a tidally deformed body is studied in which a static,
instead of dynamic, solution is used. As shown in section 1.3.4, the presence of a lithosphere
will prevent the equatorial and tidal bulge from fully readjusting. The non-lithospheric
part of the body can sufficiently relax during the TPW. This part can achieve hydrostatic
equilibrium in any orientation, therefore it does not determine the final orientation. In-
stead, the final orientation is controlled only by the MoI of the lithosphere and the mass
anomaly. Consequently, if we are only interested in the end positions of the rotational and
tidal axes without considering the process, the end state of a reorientation can be derived
from the MoI equation which only contains the contribution from the lithosphere and the
mass anomaly. The influence of the lithosphere on the reorientation was first studied by
Willemann (1984). Mitrovica et al. (2005) introduced a method that uses the observed value
of C − A to correctly include the influence of the lithosphere in the linear scheme, where
Cambiotti et al. (2010) discussed the differences between the influence of an elastic and
a highly viscous lithosphere. Chan et al. (2014), Harada and Xiao (2015) and Moore et al.
(2017) further extended the method of Ricard et al. (1993) and included the influence of the
lithosphere in the non-linear scheme. For a tidally deformed body, the inertia tensor associ-
ated with the lithosphere and the mass anomaly can be written as (Matsuyama et al., 2014;
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Matsuyama and Nimmo, 2007)

Ii , j = ∆KΩ2a5

3G

(
eR

i eR
j − 1

3
δi j

)
− ∆KΩ2a5

3G

(
3MC

M +MC

)(
eT

i eT
j − 1

3
δi j

)
+(1+kL

f )Ci j

(2.42)

where the first term stands for the deformation due to the centrifugal force, the second
term is the contribution from the tidal deformation and the last term stems from the mass
anomaly. eR and eT are unit vectors giving the initial directions of the rotational and tidal
axes in the body-fixed frame. Ω is the initial rotational speed and M and MC are the mass
of the body and its orbiting host, respectively. ∆K stands for either the modal strength in
the Love number associated with the slower transient mode of the lithosphere (high viscous
case) or the difference between the fluid tidal Love numbers of the body without and with
the lithosphere (elastic case). For the highly viscous case, equation 2.42 is the infinite time
limit of equation 2.12 and only the part that is associated with the lithosphere (∆K instead
of kT ) is retained. The new stable orientation, or the directions of the principle MoI, is ob-
tained by diagonalizing the matrix I . The eigenvectors of this matrix corresponding to the
largest and smallest eigenvalues are the new orientation of the rotational and tidal axes.

Since the fluid limit method does not provide a time-dependent solution, for a time-invariant
load this method can only provide the end position, and not the path and speed. Thus, most
of previous studies concerning the reorientation of a tidally deformed body, simply did not
consider the intermediate states. Some of them, e.g. (Rubincam, 2003), assumed that the
rotational and tidal axes will move directly towards their end positions by the shortest path,
which is incorrect in many cases as shown in figure 2.4. When a positive mass anomaly

Figure 2.4: A typical misconception concerning the reorientation path of a tidally deformed body driven by a pos-
itive mass anomaly near the pole. The reorientation path is not directly targeting the end position by the shortest
distance but the planet has a preference of rotating around the tidal axis where the resistance against reorientation
is minimal.

is put in the neighbourhood of the north pole of a tidally deformed body, the orientation
of the body is not stable. If the body is without lithosphere, or the magnitude or the mass
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anomaly is large enough to almost completely nullify the resistance from the lithosphere, it
will cause a reorientation of the body so that the mass anomaly eventually ends up at the
sub-host or anti-host point. The question that remains is how will this reorientation be ac-
complished? As shown in figure 2.4, intuitively, one would probably assume that the mass
anomaly will move towards the end position over a great circle arc of the body. However, as
will be shown in chapters 3 and 5, this path is incorrect.
For a time-varying load, where Ci j in equation 2.42 becomes Ci j (t ), the fluid limit method
can also obtain a time-dependent reorientation path. Then the question arises whether
this path represents the real reorientation. Considering that the fluid method obtains re-
sults where the body is fully relaxed, it can be understood that if the reorientation is slow
enough, the fluid limit method is accurate enough. Then the question becomes: how slow
does the reorientation process need to be so that we can use the fluid-limit method? This
is important to know so that we can better interpret conclusions drawn in previous studies
concerning the direction, speed and path of a reorientation process based on the fluid-limit
method. All these questions are to be answered in this thesis.

To sum up, the fluid limit method

• can calculate the reorientation of a tidally deformed body;

• does not provide the reorientation path for a time-invariant load;

• has unclear accuracy for a time-varying load.

2.5. DECOUPLING THE GOVERNING EQUATIONS AND NUMERICAL

SOLUTIONS

As can be seen in previous sections, due to the difficulty of solving the Liouville equation 2.1
and MoI equation 2.7 analytically, previous studies took various assumptions to simplify
either the Liouville equation (linear method) or the MoI equations (non-linear method).
Consequently, the result is either an approximated solution or a solution with a limited ap-
plicable range. As a result, if we want to seek a more general and accurate method, a semi-
analytical or numerical approach is needed.

The basic idea for developing a new method is to decouple the two governing equations 2.1
and 2.7. During the TPW, if we consider a point in time not too far away from a known state,
the change in the rotational or tidal axis is small within this time span. Then such change
in the rotational or tidal potential will cause a small deformation. This small change in the
MoI leads to a small update in the rotational or tidal axis position. This process is illus-
trated in figure 2.5. Physically, TPW follows the minimal total potential energy principle, as
discussed in (Goldreich and Toomre, 1969). The iteration shown in figure 2.5 is mathemat-
ically an optimization process to search for the new minimal energy position in each time
step.

One advantage of decoupling the governing equations is that different types of approaches,
numerical or analytical, can be applied to the Liouville or MoI equation independently. We
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Figure 2.5: Flow chart of the iterative algorithm

can solve the MoI equation by either direct numerical integration of equation 2.7 or with
finite element methods (FEM) and combine the result into iteration with a solution of the
linearized or non-linear Liouville equation. If the numerical error of such an iterative pro-
cedure can be reduced, the obtained result is accurate. Moreover, the rheology and model
for the planetary body can be much more general than for pure analytical methods. For
example, non-linear rheology and laterally heterogeneous models can be dealt with much
easier by FEM than by e.g. the normal mode method. However, the problem of using FEM
to calculate deformation of planetary bodies is that two effects, the self-gravitation and the
buoyancy force for internal density change, are usually not included in the stiffness equa-
tion of a general FEM software (Wu, 2004), e.g. ABAQUS or ANSYS. While the buoyancy
force can be directly modelled in the FEM, the gravitational perturbation, since it depends
on the deformation of the body itself, can only be included by an iterative procedure. Zhong
et al. (2003); Wu (2004); Wu and Wang (2006) established such a method for using FEM to
study deformation, sea level change and stress of planetary bodies. Applying the FEM in the
study of TPW means that in each iteration, both the gravitational and rotational perturba-
tion need to be calculated and fed back into the model, which is shown in figure 2.6.
One must realize that the original non-linear Liouville equation 2.1 and the linearized one

Figure 2.6: Flow chart of the iterative algorithm when finite element method is applied.
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2.22 can not be used directly in such an iterative procedure because they are still differential
equations which can not be directly solved by root finding procedures. Thus, the question
that remains is how the rotational change should be calculated for large angle TPW. This
issue will be further discussed and solved in section 3.3.

2.6. THESIS GOALS AND RESEARCH QUESTIONS

Based on the review in previous sections about the current methods for studying TPW of
planetary bodies, the main goal of this PhD project can be stated as

To establish a general numerical and semi-analytical approach to obtain accurate rotational
variations of a planetary body which can have the following features:

• tidally deformed (co-rotating);

• undergoing large angle TPW;

• small equatorial bulge so that the Chandler wobble becomes dominant;

• containing complex rheology and lateral heterogeneity.

With the established method, the following four major research questions, each of which
contains several subquestions, concerning the applicability and accuracy of previous meth-
ods should be answered:

1. What is the applicable range of the linear method?

• For the linear method, what is the effect of calculating the MoI of the mass
anomaly in the body-fixed frame during the entire TPW?

• What is the maximum degree for TPW that can be accurately calculated by the
linear method if the MoI of the mass anomaly is calculated in this way?

2. What is the influence of the quasi-fluid approximation?

• How accurate is the non-linear method based on the quasi-fluid approximation?

• What is the influence of the approximation in the case of the Earth, Mars and
Venus TPW?

3. How will a tidally deformed co-rotating body reorient?

• How will a tidally deformed body reorient following a constant or changing load
due to a positive or negative mass anomaly?

• Does the TPW path obtained by the fluid limit method for a changing load rep-
resent the real path?

4. When or under which condition can we use the approximated solutions?

• If the answers to the questions 2 and 3 are negative or conditional, then when
can we use the quasi-fluid approximation or the fluid-limit method?

• How can we properly evaluate conclusions drawn in previous studies that are
based on these approximated solutions?
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The following three chapters address the above mentioned questions:

• Chapter 3 establishes a numerical iterative procedure which can deal with a tidally
deformed body without a lithosphere. The method is partially verified by both linear
and non-linear methods and research question 1 is answered. Questions 2 and 3 are
answered conditionally where the effect of the lithosphere was not considered. The
content of this chapter is from on (Hu et al., 2017b) which is published as

Hu, H., van der Wal, W., and Vermeersen, L. L. A. (2017b). A numerical method for
reorientation of rotating tidally deformed viscoelastic bodies. Journal of Geophysical
Research: Planets, 122(1):228–248.

• Chapter 4 establishes a semi-analytical approach which extends the numerical method
to take into account the effect of a lithosphere. Research question 2 is answered and
new insights for the TPW on Mars and Venus is provided. The content of this chapter
is from (Hu et al., 2017a) which is published as

Hu, H., van der Wal, W., and Vermeersen, L. L. A. (2017a). A full-maxwell approach
for large angle polar wander of viscoelastic bodies. Journal of Geophysical Research:
Planets, 122(12):2745- 2764.

• Chapter 5 establishes a semi-analytical method which meets the goal of this thesis. A
criterion is established to judge whether the quasi-fluid and fluid limit approximation
can be adopted for a given interior model and load. This chapter answers research
questions 3 and 4.

• Chapter 6 summarizes the established new methods and answers to the research
questions. It also shows the influence of applying the new method on calculating
TPW of various planetary bodies in our solar system. Finally, suggestions for further
development both in theory and applications are presented.
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Existing approaches for simulating the true polar wander (TPW) of a visco-elastic body can
be divided into three categories: (i) a linear dynamic approach which uses the linearized
Liouville equation (e.g. Wu and Peltier (1984); Mitrovica et al. (2005)); (ii) a non-linear dy-
namic approach which is based on the quasi-fluid approximation (e.g. Sabadini and Peltier
(1981); Ricard et al. (1993); Cambiotti et al. (2011)); (iii) a long-term limit approach which
only considers the fluid limit of a reorientation (e.g. Matsuyama and Nimmo (2007)). Sev-
eral limitations of these approaches have not been studied: the range for which the linear
approach is accurate, the validity of the quasi-fluid approximation, and the dynamic solu-
tion for TPW of a tidally deformed rotating body. We establish a numerical procedure which
is able to determine the large angle reorientation of a visco-elastic celestial body that can be
both centrifugally and tidally deformed. We show that the linear approach leads to signifi-
cant errors for loadings near the poles or the equator. Secondly, we show that slow relaxation
modes can have a significant effect on large angle TPW of Earth or other planets. Finally,
we show that reorientation of a tidally deformed body driven by a positive mass anomaly
near the poles has a preference for rotating around the tidal axis instead of towards it. At

1Delft University of Technology
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a tidally deformed body which does not have a remnant bulge, positive mass anomalies are
more likely to be found near the equator and the plane perpendicular to the tidal axis, while
negative mass anomalies tend to be near the great circle with longitudes 0 and 180 degree.
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3.1. INTRODUCTION

True polar wander (TPW), the non-periodical secular part of the displacement of the rota-
tion axis with respect to surface topography or internal signatures, has been proposed to
be the cause of many geologic features on various planets and moons (e.g, Mars (Schultz
and Lutz, 1988), Venus (Malcuit, 2014), Enceladus (Nimmo and Pappalardo, 2006), Europa
(Ojakangas and Stevenson, 1989)). The theoretical study of TPW can be dated back to Gold
(1955) who introduced the modern concept and general mechanism of TPW. After the de-
velopment of the normal mode method (Farrell, 1972), the Liouville equation could be
solved semi-analytically (Sabadini and Peltier, 1981) for a visco-elastic multi-layer model
to arrive at the dynamic solution of TPW. Early studies focused on the speed of present day
TPW and small angular change, so a linear approach, which applies the linearised form of
the Liouville equation (Munk and MacDonald, 1960), was adopted to calculate TPW when
the rotational axis is not too far away from the initial position (Nakiboglu and Lambeck,
1980; Sabadini and Peltier, 1981; Wu and Peltier, 1984). In order to deal with the long-term
rotational variation of Earth which may include large angular TPW, non-linear methods
have been developed, but they adopt the quasi-fluid approximation which assumes that
the variation of the driving force for TPW is much slower compared to the characteristic
viscous relaxation. Mathematically, the quasi-fluid approximation is a first order approxi-
mation in the Taylor expansion of the tidal Love number (Spada et al., 1992a; Ricard et al.,
1993; Cambiotti et al., 2011). Thus, these semi-analytical solutions have several limitations.
Specifically, the approximations which have been adopted in the development of the meth-
ods have not been quantitatively tested. They will be discussed in the following.
Firstly, although some later studies solve the Liouville equation in different ways such as
with a finite difference method (Nakada, 2002; Mitrovica et al., 2005), the linearised form of
the Liouville equation is still used and there is a limit for the allowed range of TPW in order
for the error to remain small. In order to show the limit of the linear method, Sabadini and
Peltier (1981), within the frame of the quasi-fluid approximation, carried out a comparison
between the non-linear scheme and the linear scheme, arriving at the conclusion that the
linear method is valid for TPW about 10 degrees from the initial position of the rotation
pole. The linearised form of the Liouville equation is derived in the body-fixed frame where
the rotational axis coincides with the vertical axis in the beginning (Munk and MacDon-
ald, 1960). Since the loading (the inertia tensor representing the geophysical process on the
solid model) is also defined in the body-fixed fame, the linear theory actually also assumes
that the relative location of the loading with respect to the rotational axis does not change
during TPW. This assumption can lead to a large error for certain locations of the loading.
For instance, when a point mass is located near the poles or equator, the effect of a change
in colatitude of the point mass is relatively large. As a result, the linear methods should have
a much smaller applicable range for loadings near the pole or equator. Currently, no study
gives the expected error as a function of the angle of TPW and the position of the load when
the linearised form of the Liouville equation is applied.
Secondly, the non-linear approach is currently the only general way to calculate large-angle
TPW. As a result, the effect of the quasi-fluid approximation, which has been the funda-
mental assumption of many previous studies (Spada et al., 1992a, 1996; Ricard et al., 1993;
Harada, 2012; Chan et al., 2014), has not been tested. So it is not clear what the effect is of
taking the quasi-fluid approximation and ignoring the effects of the slow modes (such as
the M1 and M2 modes for Earth) on the path of TPW.
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Thirdly, a rotating tidally deformed body can be very difficult to deal with by current linear
or non-linear rotation theory. As shown in figure 1.10, there are three different reorienta-
tions of a tidally deformed body while there is only one type of the reorientation when only
a centrifugal force is applied. As a result, the complete description of the reorientation of a
tidally deformed rotating body consists of the polar wander of both the rotational and tidal
axes. We are not aware of other methods which solve the Liouville equation to give a time-
dependent solution for the reorientation of a rotating tidally deformed visco-elastic body.
Most studies concerning TPW of a tidally deformed body only focus on the fluid limit of
the visco-elastic response which gives the final position of the rotational or tidal axis (Wille-
mann, 1984; Matsuyama and Nimmo, 2007). In practice, it is difficult to know if the TPW
or reorientation has already finished and the rotational or tidal axis are in their final po-
sition. This limits the application of methods which only calculate the final position and
not the full reorientation path. More importantly, since these methods do not provide dy-
namic solutions, we do not have a clear insight on how the reorientation is accomplished.
Studies which concern the direction of polar wander of tidally deformed bodies driven by
either a positive mass anomaly such as ice caps on Triton (Rubincam, 2003) or a negative
mass anomaly such as a diapirism induced low density area on Enceladus (Matsuyama and
Nimmo, 2007; Nimmo and Pappalardo, 2006) suggest that the polar motion is directly tar-
geting its end position. However, these suggestions are not tested in these papers because
a theory for combined centrifugally and tidally induced TPW is lacking.
Considering all above mentioned problems and the difficulty of solving the Liouville equa-
tion analytically, we create a numerical model to tackle these problems. Another advantage
of adopting a numerical approach is that the normal mode method, which is the foundation
of all above mentioned dynamic rotation methods, can only be applied for a radially sym-
metric model, while many planets and moons can have considerable lateral heterogeneity,
for example Mars (S̆rámek and Zhong, 2012) or Enceladus (Nimmo and Pappalardo, 2006).
The purpose of this paper is to establish a general numerical method which can determine
the secular part of the rotational variation of a centrifugally and tidally deformed visco-
elastic body. With the help of this method we aim to answer the following questions:

1. What is the effect of assuming that the load is stationary relative to the rotational axis
in the linear method?

2. What is the effect of the quasi-fluid approximation for the TPW path of a planetary
model?

3. How is the reorientation of a tidally deformed body driven by a certain mass anomaly
accomplished?

It is important to note that we only consider pure visco-elastic bodies without a remnant
bulge in this study. For some planets such as Earth, during the early stages of their forma-
tion, the outer layer cools down in an ellipsoidal shape and becomes fixed. The existence of
such a bulge can have a significant effect on the behaviour of TPW. For the case of Earth and
some other celestial bodies, this issue has been intensively studied during the past decades
(Willemann, 1984; Mitrovica et al., 2005; Matsuyama and Nimmo, 2007; Cambiotti et al.,
2010; Mitrovica and Wahr, 2011; Chan et al., 2014). The existence of a remnant bulge, would
have two effects. Firstly, during the TPW, since the stress in the outer layer can not relax as
the rest of the visco-elastic parts, the remaining stress in this layer would prevent the equa-
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torial bulge to fully adjust into the vertical position to the rotational axis. Because of this,
a positive anomaly, for instance, will not reach the equator as for the case of a pure visco-
elastic body, as is demonstrated in figure 14 in Mitrovica et al. (2005). Secondly, when the
TPW is finished or during the TPW, if the mass anomaly which causes the TPW is removed
from the body, the stress in the outer layer would try to restore the shape of the body back
into its initial form before the TPW starts, so the rotational axis would go back to its initial
position. This is different from the case of a purely visco-elastic body in which the rotational
axis is expected to retain its final position when the mass anomaly is removed. As a result,
the study of TPW on models with such an elastic layer is significant. However, the numeri-
cal procedures and the validation of such models are beyond the scope and purpose of this
paper. So in this paper, only models without a remnant bulge are considered.

The content is organized as follows: Section 3.2 shows how the change in the inertia ten-
sor can be obtained by a finite element modelling (FEM). Section 3.3 presents a numerical
method for solving the Liouville equation. After validating our numerical results with pre-
vious semi-analytical methods, we test the above mentioned assumptions. Finally, section
3.4 presents a method to calculate the reorientation of a tidally deformed rotating visco-
elastic body and shows the cases of a body driven by a positive and negative mass anomaly
respectively. This paper only focuses on the laterally homogeneous case, a follow-up paper
will study the effects of lateral heterogeneity on TPW.

3.2. FINITE ELEMENT APPROACH FOR CALCULATING THE CHANGE

IN THE MOMENT OF INERTIA

The Liouville equation gives the general dynamics of a rotational body that can deform.
When no external torque is applied, it reads (Sabadini et al., 2016)

d

d t
(I ·ω)+ω× I ·ω= 0 (3.1)

where I is the inertia tensor andω is the rotational vector. Both values are defined in a body-
fixed coordinate system. In order to solve this equation, information about the change in
the inertia tensor must be given. When the moments of inertia are perturbed by a geophys-
ical process for a centrifugally deformed body without tidal deformation, the rotational axis
shifts, and the resulting change in the centrifugal force also deforms the body. Analytically,
given a rotational vector asω=Ω(ω1,ω2,ω3)T , whereΩ is the angular speed of the rotation
and (ω1,ω2,ω3)T is a unit vector which represents the direction of the rotation, the total
moment of inertia attributable to such process is given by (similar to equation 2 in Ricard
et al. (1993))

Ii j (t ) = Iδi j + kT (t )a5

3G
∗ (Ω2[ωi (t )ω j (t )− 1

3
δi j ])

+[δ(t )+kL(t )]∗Ci j (t )

(3.2)
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where I is the principle moment of inertia of the unloaded laterally homogeneous spheri-
cal body, G and a are the gravitational constant and the radius of the planet, respectively.
kT (t ) and kL(t ) are the degree 2 tidal Love number and load Love number respectively. The
∗ denotes convolution in the time-domain. Ci j represents the change in the moments and
products of inertia without considering the dynamic deformation. These values trigger the
polar wander. The second and third term in Equation 3.2 represent the changes which de-
rive from the perturbed centrifugal force and from the mass redistribution induced by the
original load respectively. The use of Love numbers limits the simulation to the case of a
laterally homogeneous model and thus we also seek a numerical method as an alternative
for equation 3.2 to calculate the change in the inertia tensor. This will be the foundation for
dealing with heterogeneous cases in our second paper.
In order to obtain the change in the inertia tensor, we need to know the deformation of the
body for which we can use FEM. This part is mainly based on the method of Wu (2004).
One of the problems of applying FEM to calculate the visco-elastic response of a 3-D celes-
tial body is the effect of self-gravitation which is dependent on the deformation itself. In
Wu (2004), the deformation is first determined by assuming the perturbed potential is zero,
and the result from FEM is used to calculate the perturbed potential. The potential is ap-
plied to the model again and iteration continues until the result converges. We develop a
finite-element (FE) model with the commercial package Abaqus version 6.13 in which the
average grid size for the Earth model is chosen to be around 400 km and linear brick ele-
ments are used. With the information of the deformation the change in the inertia tensor is
also calculated numerically after the result from FEM converges. In the FE model, the Pois-
son ratio of the planet model can be set to that of a compressible material, but the effects
of a change in density on gravity and inertia are not taken into account. Hence our method
does not include the full effect of compressibility but only material compressibility (similar
to e.g. Wang et al. (2008)). Since we ignore the density changes, when the deformation is
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Figure 3.1: Deformation of a boundary layer whose radius changes from r to r +ur . The densities inside and
outside of the layer are ρi and ρi+1, respectively.

small, only the radial displacement for each layer is required for calculating the change in
the moment of inertia, which is shown in the following method. As we can see in figure 3.1,
the deformation changes the shapes of the boundaries which switches the density of cer-
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tain parts: for the shaded area in figure 3.1, the density of the green parts changes from ρi+1

to ρi and the density of blue parts from ρi to ρi+1. As a result, for a model which contains N
layers, at the pth internal boundary, the change in the inertia tensor is calculated as:

∆Ii j ,p =
∫
∆V

(ρp+1 −ρp )(rk rkδi j − ri r j )dV

'
∫

S
(ρp+1 −ρp )(rk rkδi j − ri r j )ur dS, p = 0,1,2...N −1

and at the surface:

∆Ii j ,N =
∫

S
(ρN )(rk rkδi j − ri r j )ur dS (3.3)

Here∆V is the perturbed volume which contains the above mentioned density switch and S
is the complete interface or the surface. The complete change of the inertial tensor is given
by the sum of the changes at all interfaces and at the surface:

∆Ii j =
N∑

p=0
∆Ii j ,p (3.4)

We validate our FE model by calculating the change in the inertia tensor of a two-layer Earth
model (table 3.1) which is forced by a varying centrifugal force.

Table 3.1: Properties of the two-layer Earth model

Layer Outer Radius (km) Density (kg m−3) Shear Modulus (Pa) Viscosity (Pa s)
Mantle 6371 4448 1.7364×1011 1×1021

Core 3480 10977 0 0

We apply the centrifugal force to an initially unloaded model, and let the rotational axis
move towards the equator with a constant speed of 45 degree in 5000 years. The change in
the moment of inertia for this case can be calculated by equation 3.2 with Ci j (t ) = 0. The
comparison between the semi-analytical and FEM results is given in Figure 3.2. For the non-
zero components I11, I22, I33, and I13, the numerical results show very good agreement with
the semi-analytical results. FEM results of I12 and I23 are also non-zero while they should be
theoretically zero. However, the numerical results of these two values are about four orders
of magnitude smaller than the other four components in the inertia tensor. Thus, these
values result in a numerical error which is around 0.1% for our configuration of a mesh with
an average grid size of 400 km for the Earth model.

As will be shown in the next section in the linearised Liouville equation and algorithm 2,
the accuracy of the TPW is controlled by four terms which are combinations of components
of the inertia tensor and the angular speed in a coordinate system whose z-axis coincides

with the rotational axis: ∆I13(t )
C−A , ∆I23(t )

C−B and C∆
.
I 13(t )

Ω(C−A)(C−B) , C∆
.
I 23(t )

Ω(C−A)(C−B) . In order to show that
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Figure 3.2: Change in the moment of inertia for a two-layer Earth model with the rotation axis linearly drifting from
0 to 45 degree colatitude in the x-z plane in 5000 years.

the change in the moment of inertia obtained from FEM is accurate enough for calculating
TPW, we compare both the analytical and numerical values of these four terms for a given

TPW history. As shown in figure 3.3, the theoretical non-zero terms ∆I13(t )
C−A and C∆

.
I 13(t )

Ω(C−A)(C−B)

show very good agreement. For a grid size of 300 km, ∆I13(t )
C−A and C∆

.
I 13(t )

Ω(C−A)(C−B) terms have
less than 0.5% error level. We see again that two theoretical zero components are at least
4 orders of magnitude smaller than the non-zero components. It was found that, in order
to get results close to the analytic result which is based on Maxwell rheology, in Abaqus, a
"Viscoelastic" option need to be used. "Viscoelastic" setting in Abaqus uses the Prony series
which is a general scheme that encompasses a simple Maxwell rheology. We show this issue
in Appendix I.

3.3. NUMERICAL SOLUTIONS OF LIOUVILLE EQUATION

With the information about the change in the inertia tensor obtained either by equation
3.2 or FEM, the Liouville equation can be solved numerically. Cases with small angular
change, to which linear theory can be directly applied, and large angular change will be
dealt with separately. We validate our numerical methods by comparing the results with
semi-analytical linear (Wu and Peltier, 1984) and non-linear (Ricard et al., 1993) methods
with the same assumptions. After that, we test the validity of the assumptions made in
these methods.
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Figure 3.3: Values of four terms for a SG6 Earth model with the rotation axis linearly drifting from 0 to 45 degree
colatitude in the x-z plane in 10 thousand years after the centrifugal force is applied to the spherical model for 20
thousand years.

3.3.1. SMALL-ANGLE POLAR WANDER

Considering that we want to deal with lateral heterogeneity in paper II and tidally deformed
bodies, we first need to derive a more general form of the linearised Liouville equation. The
procedure is similar to that given on page 104 of (Sabadini et al., 2016).
In equation 3.1, when assuming that changes in I are small, the perturbed inertia tensor can
be written as

I =
 A+∆I11 ∆I12 ∆I13

∆I21 B +∆I22 ∆I23

∆I31 ∆I32 C +∆I33

 (3.5)

Here A,B and C denote the moments of inertia of the rotational body for the equatorial
principal axes and polar principal axis. We do not assume A = B as in (Sabadini et al., 2016).
We define the perturbed vector of the rotation as

ω=Ω(m1,m2,1+m3)T (3.6)

whereΩ is the angular speed of the rotation and mi , i = 1,2,3 are small values with m1 and
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m2 representing the TPW and m3 the change in the length of the day (LOD). By omitting the
products of the small quantities mi and ∆Ii j , we have:

I ·ω≈
 AΩm1 +Ω∆I13

BΩm2 +Ω∆I23

CΩ+C m3Ω+∆I33Ω

 (3.7)

ω× (I ·ω) ≈
 −Bm2Ω

2 +C m2Ω
2 −∆I23Ω

2

Am1Ω
2 −C m1Ω

2 +∆I13Ω
2

0

 (3.8)

Substituting equation 3.7 and 3.8 into 3.1 we have:

.
m1 = −C −B

A
Ωm2 + Ω

A
∆I23 − ∆

.
I 13

A
(3.9a)

.
m2 = C − A

B
Ωm1 − Ω

B
∆I13 − ∆

.
I 23

B
(3.9b)

.
m3 = −∆

.
I 33

C
(3.9c)

Note that now we can not define the Eulerian free precession frequency as σr = C−A
A Ω to

further combine these equations. Equation 3.9 gives the rotational dynamics of a triaxial
body for a small perturbation which has been previously studied by Hinderer et al. (1982);
Matsuyama et al. (2010) for the case of Earth. Matsuyama et al. (2010) made the assump-
tions that the time scale of the loading is much longer than both the period of rotation and
the Euler wobble periods. Based on these assumptions, the derivatives on both side of the
equation 3.9 are ignored. The same procedure is also used in (Sabadini et al., 2016). These
assumptions might be true for Earth but not for some slow rotating bodies like Venus. In
order to establish a more general method, we can not directly ignore these derivative terms.
Instead, we take advantage of the fact that numerically the TPW is calculated stepwise and
deal with equation 3.9 as follows: In each step of the numerical integration, we assume that
the size of the step is small enough so that the change in the inertia tensor can be treated as
linear, which gives

∆I13(t ) = a1 +b1t (3.10a)

∆I23(t ) = a2 +b2t (3.10b)

After substituting (3.10) into (3.9), m1,m2 can be solved analytically. The results contain
both secular terms and periodic terms, which represent the TPW and the Chandler wobble
respectively. We ignore the periodical terms and obtain
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m1(t ) = ∆I13(t )

C − A
+ C∆

.
I 23 (t )

Ω(C − A)(C −B)
(3.11a)

m2(t ) = ∆I23(t )

C −B
− C∆

.
I 13 (t )

Ω(C − A)(C −B)
(3.11b)

m3(t ) = −∆I33

C
(3.11c)

Besides the A and B terms, the equations also contain the derivatives of the elements of the
inertia tensor. When only the centrifugal force is considered for a laterally homogeneous
model, (C − A)/C = (C −B)/C represents the flattening of the model and the magnitude of
(C −A)/C is proportional to the square of the rotational rateΩ2. As a result, the magnitudes
of the second terms on the right side become significantly larger for slowly rotating bodies
such as Venus. When the magnitude of the second terms on the right side becomes compa-
rable to that of the first terms, it results in the phenomenon of the so-called mega wobble
(Spada et al., 1996; Sabadini et al., 2016) as shown on the right figure 3.4(a). For most of the
bodies in the solar system including Earth, long-term TPW acts as in figure 3.4(b). In this
case the part which contains the derivatives of the changes in the inertia tensor is small and
the path of TPW driven by a point mass is almost along the great circle of the body. So if we
place a point mass load in the x-z plane, the TPW can be almost completely described by
the value m1.
Since we study the TPW of the bodies in the hydrostatic state, the centrifugal force needs to

(a) Mega wobble (b) Normal polar wander

Figure 3.4: Two types of polar wander path. The green arrow is the initial position of the rotational axis and the red
dot is the point mass load.

be applied for a certain length of time T0 until the model can be considered to have reached
its equilibrium. For laterally homogeneous models, the choice of T0 can be derived from
the time history of the tidal Love number. We choose T0 to be the time at which the tidal
Love number reaches more than 99.95% of the fluid tidal Love number:

kT (T0) > 99.95%kT
f (3.12)

Here kT
f is the fluid tidal love number. For the two-layer Earth model of table 1 it follows

that T0 = 15 ka. In the FE model, we apply a centrifugal force at its original rotational axis
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for T0 before we start to apply the algorithm to calculate the path of TPW. If equation 3.2 is
used, then we have

ω(t ) = (0,0,Ω) for 0 ≤ t ≤ T0 (3.13)

whereΩ is the angular velocity of the body. For a centrifugally deformed body triggered by
a mass anomaly with inertia tensor ∆IL , the algorithm for calculating the small-angle polar
wander and LOD m = (m1,m2,m3) is given as follows.

Algorithm 1

1. Assume that the step i starts at time ti with the rotational axis being located at ωi =
Ωi (mi

1,mi
2,1+mi

3) and ends at time ti+1 with the rotational axis at ωi+1. For the first
iteration we assume that the rotation axis does not change: ωi+1 =ωi .

2. For a laterally homogeneous model we use equation 3.2 for calculating the change in
the inertia tensor. In equation 3.2, set Ci j (t ) =∆IL_i j and let

ω(t ) =ωi + ti − t

ti − ti+1
ωi+1 for ti ≤ t ≤ ti+1 (3.14)

then the result of equation 3.2 can directly give the total change in the inertia tensor
∆I and its derivative ∆İ.

For a laterally heterogeneous model we use FEM to obtain the inertia tensor. Change
the centrifugal potential from its initial direction along ωi at ti linearly to its new di-
rection of ωi+1 at ti+1 in the FEM and calculate the change in the inertia tensor ∆ID

and its derivative ∆İD due to centrifugal deformation and surface load by equation
3.4. The total change in the inertia tensor is the sum of that due to the deformation
and the tensor of the initial load: ∆I =∆ID +∆IL , ∆İ =∆İD +∆İL .

3. Substitute ∆I and ∆İ into equation 3.11 and obtain the updated ωi+1. This value is
fed back into step 2 until the result converges.

The small angle numerical results are compared with results from the linear semi-analytical
method of Wu and Peltier (1984). In that paper, the Chandler wobble is filtered out by as-
suming that all rotational modes have a much longer relaxation time than the Chandler
wobble. By taking |s| << σ0, where s and σ0 are the Laplace frequency and Eulerian free
precession frequency respectively, the imaginary, harmonic part of the fundamental man-
tle mode (M0) which contains the most influence on the Chandler wobble, is omitted. It
has been proven that the elastic term of equation 79 in Wu and Peltier (1984) is a highly
accurate approximation of the effect on TPW of the real part of the M0 mode (Vermeersen
and Sabadini, 1996; Peltier and Jiang, 1996). So for small angular motion, since the method
stated in (Wu and Peltier, 1984) contains the effects of all modes, we expect that it gives an
accurate prediction of the TPW on a layered visco-elastic model against which our method
can be benchmarked. We test our method both with the two-layer Earth model (table 3.1)
and the six-layer Earth model SG6 as defined in table 3.2. We calculate the correspond-
ing Love number of this model by setting the viscosity of the lithosphere to an extremely
high value but exclude the slowest mode generated by this layer. This scenario corresponds
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to the situation where the elastic layer exists before the centrifugal potential is applied to
the spherical Earth, as demonstrated in figure 14 of (Mitrovica et al., 2005) as case B. Of
course this situation does not correspond to the real Earth (case C and D in the same figure)
which has a remnant bulge. However, as mentioned in the introduction, the purpose here
is method development and validation, and we leave the effect of a remnant bulge in our
method to future work. The models are driven by a constant point mass of 2×1019 kg which
is attached to the surface at 45 degree colatitude. We assume that the point mass is station-
ary at the surface, so in equation 3.2 kL = 0. For the SG6 model, the initial time T0 for which
the centrifugal force needs to be applied is chosen to be 4 million years according to equa-
tion 3.12. The numerical results for both models agree very well with the prediction of Wu
and Peltier (1984), see figure 3.5. From this figure, we can also see the effect of the delayed
viscous adjustment of the rotational bulge. This stabilization is larger for layers with higher
viscosity and this is why TPW of SG6 model driven by the same anomaly is slower.

Table 3.2: Properties of the viscoelastic Earth model SG6

Layer Outer Radius (km) Density (kg m−3) Shear Modulus (Pa) Viscosity (Pa s)
Lithosphere 6371 4120 0.73×1011 ∞

Upper mantle 6271 4120 0.95×1011 0.6×1021

Transition zone 5950 4220 1.10×1011 0.6×1021

Shallow lower mantle 5700 4508 2.00×1011 1.6×1021

Deeper lower mantle 5040 4508 2.00×1011 3×1021

Core 3480 10925 0 0

0 5 10 15 20 25 30
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

ka

D
eg
re
e

Figure 3.5: The polar wander path in the x-z plane of the two-layer (blue) and SG6 (red) Earth models triggered
by a mass anomaly of 2× 1019 kg attached at 45 degree colatitude in the x-z plane. Lines show the results with
semi-analytical method of Wu and Peltier (1984) and circles represent our numerical ones.

Usually 7-8 iterations in each step are necessary for the use of equation 3.2 and 9-10 for
FEM with equation 3.4 are required to achieve an accuracy of 0.1%. The required number
of iterations is reduced for smaller step sizes.
The agreement of our numerical method and the method from Wu and Peltier (1984) shows
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the validity of the assumption |s| << σ0. However, as mentioned in the introduction, there
is one problem with the method in (Wu and Peltier, 1984): the loading itself is assumed to be
stationary relative to the rotational axis and is not updated by the polar motion. For the case
of TPW due to a mass anomaly which is shown in figure 3.5, during the polar wander, the
mass anomaly is calculated in the body-fixed coordinates, which means it is treated as being
always located at 45 degree colatitude. However, when the rotation axis drifts away from
the mass anomaly by 1 degree, in that instantaneous moment, the mass anomaly is actually
placed at 46 degree colatitude. Of course, when only very small angle TPW is considered,
the difference can be small but the exact effect has not been studied. We will show the
magnitude of the error in the next subsection with a new method for calculating large angle
TPW.

3.3.2. LARGE-ANGLE POLAR WANDER

The limitation of the method in Wu and Peltier (1984) and the numerical method presented
in the previous section is that they are based on the Liouville equation which is linearised at
the position where the z-axis of the coordinate system is the rotational axis and the equato-
rial bulge is perpendicular to this axis. As a result, this method can not deal with large-angle
TPW when the rotation axis drifts away from this position. However, if we assume that dur-
ing the process of polar wander the equatorial readjustment is fast enough (or the polar
wander is slow enough) so that the equatorial bulge is always nearly (but not necessarily
exactly) perpendicular to the rotational axis, then we can define a new reference frame in
which the new z-axis coincides with the current rotational axis and we can linearise the Li-
ouville equation in the new coordinate system. Physically, the process of TPW is the process
of the rotational axis moving towards the axis of the maximum moment of inertia while the
axis of the maximum moment of inertia is being pushed further away by the visco-elastic
relaxation of the body and the displacement of the mass anomaly. What we assume is that
the angle between these two axes is small enough so that the linearisation of the Liouville
equation is valid. This assumptions is fundamentally different from assuming that during
the TPW the rotational axis and the principle axis of the moment of inertia coincide (Jurdy,
1978; Rouby et al., 2010; Steinberger and O’Connell, 1997). The validity of this assumption
is studied and discussed in detail in the study of Cambiotti et al. (2011) which develops,
within the frame of a non-linear approach for TPW induced by internal mass anomalies, a
linear scheme of the Liouville equation in the system of the principal moments of inertia
reference frame of the mass anomaly. Apparently, this assumption can be violated by a sit-
uation where the TPW is triggered by a very large mass anomaly which corresponds to an
inertia tensor that is comparable in magnitude to the inertia tensor of the rotational body
itself. In this case, the angle between the largest moment of inertia (the sum of the inertia
tensors of both rotating body and the mass anomaly) and the rotational axis would be too
large to apply the linearised Liouville equation. One advantage of our numerical method
is that during the calculation, we can constantly monitor the validity of this assumption as
will be shown by the end of this section. Generally, we can do a coordinate transformation
in each step and apply the method we used for small angular change in the new coordinate
system so that the local angular change in each step remains small enough.
We define the vector of the rotation as ω =Ω(ω1,ω2,ω3)T , where (ω1,ω2,ω3) is a unit vec-
tor. For an arbitrary ω, the TPW which starts from this vector needs to be calculated in the
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frame whose Z-axis coincides with ω. So we need to transform the original body-fixed co-
ordinates into this new frame . The coordinate transformation matrix of a rotation from
the vector (0,0,1) to the unit vectorω can be obtained from a general rotation matrix (Arvo,
1992) in which the third column of the matrix is (ω1,ω2,ω3)T .

Q =

 ω3 + ω2
2

1+ω3
−ω1ω2

1+ω3
ω1

−ω1ω2
1+ω3

1− ω2
2

1+ω3
ω2

−ω1 −ω2 ω3

 (3.15)

For a centrifugally deformed body triggered by a mass anomaly which corresponds to the
inertia tensor ∆IL , the algorithm for calculating the large-angle TPW is as follows:

Algorithm 2

1. Assume that the step i starts at time ti with the vector of the rotation being ωi =
Ωi (ωi

1,ωi
2,ωi

3). and ends at time ti+1 with the vector of the rotationωi+1. For the first
iteration, we assume that the vector of the rotation does not change: ωi+1 =ωi .

2. Obtain ∆I and its derivative ∆İ from FEM or using equation 3.2 in the same way as
step 2 in algorithm 1. With Q as defined in equation 3.15 being the coordinate trans-
formation matrix from the body-fixed coordinates to the local coordinates where the
Z-axis aligns with the direction of the rotation, the inertia tensors in the transformed
coordinates are obtained by ∆I1 = QT∆IQ and ∆İ1 = QT∆İQ.

3. Substitute ∆I1 and ∆İ1 into equation 3.11 and obtain ω′ = Ωi (m1,m2,1+m3)T . We
normalize this vector as ω′ =Ωi+1ω̄′ where ω̄′ is the direction of the perturbed rota-
tional axis in the local coordinate system and needs to be transformed back into the
body-fixed frame to obtainωi+1 =Ωi+1Qω̄′ whereΩi+1 is the same as in the previous
equation.

4. Substituteωi+1 into step 2 until the result converges.

There are two major differences between algorithm 1 and 2. First, in algorithm 2, the rota-
tional perturbation is calculated in a transformed coordinate system instead of the original
body-fixed frame in each step. Secondly, the initial load ∆IL is also updated in each step in
response to the change of the rotational axis. As we can see in step 2 in algorithm 2, since∆I
contains both the change in the moment of inertia due to deformation ∆ID and the initial
load ∆IL , we have QT∆IQ = QT∆ID Q+QT∆ILQ. So QT∆ILQ instead of ∆IL is used as the
input for the driving factor of the TPW. In this way we lift the assumption of a stationary
load as in Wu and Peltier (1984) and algorithm 1.
For validation purposes, we test if algorithm 2 can produce the same result as algorithm 1
for a small angle when we disable the updating of ∆IL . This means in step 2 of algorithm
2, we only do a coordinate transform for the inertia tensor due to deformation but keep
the one for the loading the same, so the total change for the inertia tensor is calculated as
∆I1 = QT∆ID Q+∆IL instead of ∆I1 = QT (∆ID +∆IL)Q. Then the condition is the same as
in Wu and Peltier (1984) and algorithm 1. To show the effect of the assumption of a sta-
tionary load, we also calculate the result with the original algorithm 2 (∆IL is updated). The
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comparison of the semi-analytical result from Wu, our numerical result without updating
the loading and the numerical result with updated loading is shown in figure 3.6. When
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Figure 3.6: Polar wander in the x-z plane for the SG6 Earth model triggered by a point mass of 2×1019 kg attached
at the surface at 60◦ colatitude. The line, red circles and blue crosses represent the semi-analytical result from Wu
and Peltier (1984), our numerical result without updating loading, and the numerical result with updated loading,
respectively.

the loading is not updated in each step, the numerical and the normal-mode results show
perfect agreement. This validates algorithm 2 as well as the assumption that the equatorial
readjustment in this case is fast enough to catch up the polar wander. On the other hand,
when the loading is updated in each step, as we can see in figure 3.6, the normal-mode
result overestimates the TPW by about 2.5% for 2 degrees of TPW. This is understandable,
as the mass anomaly has its largest loading effect when it is at 45 degree (or 135 degree)
colatitude. When the positive mass anomaly is attached at the surface at 60 degree colati-
tude, as the TPW proceeds, the mass anomaly moves towards the equator and the loading
effect decreases. As a result, the speed of TPW slows down. Thus, with the method of Wu
and Peltier (1984), depending on whether or not the TPW is displacing the mass anomaly
towards or away from 45 degree latitude, the result can be either underestimated or over-
estimated, respectively. The bias becomes much larger if the mass anomaly is close to 0,
90 and 180 degree colatitude: If we place the same mass anomaly at 10 degree colatitude,
after a polar wander of 2 degrees the error can be up to 12 % with the stationary loading as-
sumption. Consequently, the applicable range of the linear method becomes even smaller
when the loading is close to poles or the equator. The comparison between the result from
Wu and Peltier (1984) and the updated linear method (algorithm 2), is similar to that in the
figure 3 of Sabadini and Peltier (1981) which compares the TPW path on a homogeneous
visco-elastic sphere from both a linear and non-linear scheme. One apparent difference is
the lack of an elastic response in the results of Sabadini and Peltier (1981). Figure 3.7 shows
how large the TPW can be as a function of colatitude in order to keep the error below 1.5%.
As can be derived from figure 3.7, for the situation when the initial load is close to the pole

or equator, the applicable range of the linear theory is quite limited. As a consequence, re-
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Figure 3.7: The allowed range of polar wander in order to obtain less than 1.5% error as a function of the colatitude
of the loading.

sults obtained from linear rotation theory may need to be reconsidered for studies such as
TPW on Earth driven by ice loss from Greenland or Antarctica, since these areas are close to
the poles.

Next we test the behaviour of our numerical method for large-angle polar wander and com-
pare the result with the method of Ricard et al. (1993). Ricard et al. assume that the Earth
model has no internal non-adiabatic density gradients (no M1 or M2 modes) and with
|s| << |si |, the tidal Love number is approximated as

kT (s) = kT
e +

M∑
i=1

kT
i

s − si

≈ kT
e −

M∑
i=1

kT
i

si

= kT
f (1−T1s)

(3.16)

where kT
e is the elastic Love number, kT

i are the residues of each mode and si are the inverse
relaxation times. The time constant T1 is

T1 = 1

kT
f

M∑
i=1

kT
i

s2
i

(3.17)

This assumption, which is called the quasi-fluid approximation, is actually the first order
approximation of the tidal Love number. It assumes that the relaxation time of every mode
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is much shorter than the time span for long-term polar wander. With this approximation,
the non-linear equation 3.1 can be simplified into a first order differential equation for ω(t )
and solved numerically. We first validate the accuracy of our numerical method by calculat-
ing TPW for the two-layer Earth model (Table 3.1). This is because a two-layer Earth model,
which is a visco-elastic layer over a fluid core, does not contain the relatively slow modes
(M1 and M2 modes). So the quasi-fluid approximation is reliable in this case and the TPW
calculated by the method in Ricard et al. (1993) can be expected to be accurate. The com-
parison of our numerical and the semi-analytical results for a two-layer model is shown in
figure 3.8(a) . As we can see, the two methods have very good agreement. Except for the first
few points, where the difference is due to the elastic response that is missing in Ricard et al’s
results, the differences are below 0.5%.
Then we use both methods to calculate TPW for the 6-layer SG6 model. This model approx-

(a) Two layer model (b) Six layer model SG6

Figure 3.8: The polar wander in x-z plane of the two Earth models triggered by a point mass of 2×1019 kg placed
at 30◦ colatitude in the x-z plane. Lines show the semi-analytical results from Ricard et al. (1993) and symbols
represent our numerical results (only half of the data points for the two-layer model and 1/10 of the SG6 data
points are shown in the figures).

imates the real Earth better and also contains the slow M1 and M2 modes, which allows us
to test the quasi-fluid approximation. The results are shown in figure 3.8(b) . It is clear
that for the SG6 model, the two methods show large differences and the polar wander given
by Ricard et al. (1993) is much slower due to the lack of the relaxation from the M1 and
M2 modes. To further validate our results and rule out the cause of numerical error, we also
compare the semi-analytical results from both Wu and Peltier (1984) and Ricard et al. (1993)
for short-angle changes. As shown in figure 2.3, we see again that in the two-layer model,
despite the lack of the elastic response which gives the initial jump in Ricard et al’s results,
both results stay almost parallel. However, for the SG6 model, Ricard et al’s results, which
lacks the contribution from M1 and M2 modes, lags behind from the beginning.

After long enough time results from Ricard et al. (1993) will converge to the same end posi-
tion as the numerical one, but the large difference in transient behaviour suggests that the
quasi-fluid approximation is not a good choice for obtaining a time-dependent solution.
The numerical method we developed in this section is very general since the only assump-
tion we take is that the equatorial readjustment is fast enough that the equatorial bulge is



3.4. REORIENTATION OF A ROTATING TIDALLY DEFORMED VISCO-ELASTIC BODY

3

55

almost always perpendicular to the rotational axis. This means that the largest principle
axis for the moment of inertia must nearly coincide with the rotational axis, so the inertia
tensor in the coordinate system where the Z-axis is the direction of the rotation is close to
a diagonal matrix. We can check if this condition is satisfied during the numerical calcula-
tion by comparing the diagonal elements in the inertial tensor with the non-diagonal ones:
in the transformed coordinate system, the condition ∆I ′i j , i 6= j << ∆I ′i i must be satisfied.

Tests show that for TPW on two-layer Earth model with magnitudes of the mass anomalies
below 2×1022 kg (this amount is about 100 times that of the ice sheets melted during the
last deglaciation (Ricard et al., 1993)), this condition is satisfied. Only when the model is
driven by an even larger mass anomaly, this condition fails by a significant amount and the
linear and non-linear methods do not agree any more like in figure 3.8(a).

3.4. REORIENTATION OF A ROTATING TIDALLY DEFORMED VISCO-
ELASTIC BODY

As mentioned in the introduction, Willemann (1984) and Matsuyama and Nimmo (2007)
presented a solution which only calculates the final position of the reorientation. We are
not aware of a general dynamic solution for the reorientation of a tidally deformed body.
Two major difficulties prevent applying the existing rotation theory, linear or non-linear, to
a tidally deformed body. First, the principle inertia moments A and B are not equal in this
case. Secondly, it is difficult to combine the effects of the centrifugal and tidal potential
so that the deformed body and load can achieve the minimal potential state throughout
the reorientation process. In the previous section we have already solved the first problem
by deriving a more general linearised form of the Liouville equation (equation 3.11). The
main focus for the development of the method in this section is on how the tidal potential
is treated and how the centrifugal and tidal potential can be combined.
When the reorientation of a tidally deformed body is studied, it is necessary that not only
the rotational axis is considered but also the direction of the tidal axis which is the vector
pointing to the central body. In this paper, we only consider the situation in which the
rotational body is tidally locked in a circular orbit so the body is co-rotating with its central
body and the direction of the tidal axis is always perpendicular to the rotational axis (the
obliquity or axial tilt is zero).
For an incompressible model, the effective centrifugal potential is (Murray and Dermott,
2000)

Φc = 1

3
Ω2r 2P 0

2 (cosθ) (3.18)

with θ being the colatitude and P 0
2 the associated Legendre function of degree 2, order 0.

The tidal potential due to the central body at the same point can be written as (Murray and
Dermott, 2000)

Φt =−GM

a3 r 2P 0
2 (cosψ) (3.19)
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Here G , M and a are the gravitational constant, the mass of the central body and the ra-
dius of the orbit, respectively. ψ is the angle between the radius vector and the direction
of the tidal bulge. Generally if we define the equivalent angular speed of the tidal potential
as:

Ω′ =
√

3GM

a3 (3.20)

then the form of the tidal potential becomes the same as the centrifugal potential except
for the negative sign. When the rotational body is tidally locked in a circular orbit, then the
rotational period is the same as the orbital period which is T = 2π

p
a3/GM , from which it

is easy to see that the magnitude of the tidal potential is always three times the magnitude
of the centrifugal potential.
Because of the negative sign, the effect of applying a tidal potential to a certain object is the
same as applying the centrifugal potential of the same magnitude but with opposite direc-
tion of the force. As a result, a positive mass anomaly driven by a centrifugal potential acts
exactly like a negative mass anomaly driven by a tidal potential and vice versa. A centrifugal
force always tries to relocate a positive mass anomaly to the equator and a negative mass
anomaly to the poles to minimize the total potential, while a tidal potential tries to relocate
the positive mass anomaly to the sub-host point (the closest point on the body to the central
body) or its antipodal and a negative mass anomaly to the great circle which is perpendic-
ular to the direction of the tidal bulge. In order to calculate the change of the inertia tensor
due to both the rotational and tidal potential, in FEM we need to add the tidal force to the
model and apply equation 3.4. If equation 3.2 is used instead of the FE model, then we need
to add an extra term for the contribution of the tidal potential. Since the effect of the tidal
potential is exactly the same as the centrifugal potential except the direction, similar to the
rotational vector, we can define a tidal vector which describes the strength and direction of
the tidal force as X =Ω′(ω′

1,ω′
2,ω′

3)T , whereΩ′ is equivalent angular speed and (ω1,ω2,ω3)T

is a unit vector. We have the perturbed inertia tensor due to tidal potential as

∆IT _i j (t ) =−kT (t )a5

3G
∗ (Ω′2[ω′

i (t )ω′
j (t )− 1

3
δi j ]) (3.21)

This term needs to be added to the right side of the equation 3.2. Notice the negative sign
because in the case of the tidal potential, the direction of the force to the body is opposite
to the centrifugal potential, so the perturbed inertia tensor is also negative.

In previous sections, the assumption was stated that the centrifugal potential is applied
along the Z-axis. Since the centrifugal force flattens the body, we have C > A,B . On the
other hand, if we treat the tidal potential in the same way and apply it along the Z-axis, the
tidal force would elongate the body and we have C < A,B . For equation 3.11 to be valid,
the conditions C 6= A and C 6= B are required. So we can use equation 3.11 to calculate the
perturbation of both rotational and tidal axes. We define a moving bulge-fixed coordinate
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system in which the Z-axis aligns with the direction of rotation and the X-axis with the tidal
bulge, as shown in figure 3.9. In order to use equation 3.11, the direction of the tidal poten-
tial needs to be along the third axis of the coordinates (just as the rotation axis is along the
Z-axis of (X, Y, Z) frame). So the "polar" wander of the tidal axis is calculated in the coordi-
nate system (X’, Y, Z’) where X’ and Z’ align with the negative Z- and X- axes, see figure 3.9.
The transformation matrix from (X, Y, Z) to (X’, Y, Z’) is written as

S =
 0 0 −1

0 1 0
1 0 0

 (3.22)

If the inertia tensor for both the triggering load and the deformation and its derivative are
obtained in the (X ,Y , Z ) frame as ∆I and ∆İ, these values are to be used to calculate the
rotational axis change. Then the corresponding values for the tidal axis change are

∆IT =−ST∆I S (3.23)

∆İT =−ST∆İ S (3.24)

∆IT and ∆İT are substituted into equation 3.11 to determine the local change of the tidal
axis. When both the centrifugal and tidal potential are applied to the body perturbed by a

Figure 3.9: Bulge-fixed coordinate system where the X and Z axes are aligned with the direction of the tidal axis
and the rotational axis respectively. m1,m2 and m3 correspond to the perturbation of the rotational axis. m′

1,m′
2

and m′
3 correspond to the perturbation of the tidal axis.

certain load, as can be seen from figure 3.9, the centrifugal force tries to relocate the rota-
tional axis from Z = (0,0,Ω)T to

Z′ =Ω(m1,m2,1+m3)T (3.25)

and the tidal force tries to push the tidal axis from X = (Ω′,0,0) to

X′ =Ω′(1+m′
3,m′

2,−m′
1)T (3.26)
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Here Ω′ is the equivalent angular speed defined by equation 3.20. The problem here is
that these two conditions can not be simultaneously satisfied since the new X- and Z-axes
should also be perpendicular to each other because the feature of the tidal axis being or-
thogonal to the rotation axis does not change due to the reorientation. Considering that the
X-Z plane is the one which constrains the directions of both rotational and tidal axes, this
plane has to satisfy both conditions. So we have to make a compromise of the conditions:
we let one of the axes, either X- or Z-, to be relocated at the exact desired location of equa-
tion 3.26 or 3.25 but the other one only lies within the new X-Z plane defined by vector X′
and Z′. Let X̄′ and Z̄′ be the normalised vectors of X′ and Z′, then we can calculate the new
Y-axis which is perpendicular to the X-Z plane as

Ȳ′ = Z̄′× X̄′ (3.27)

Here × is the cross product. If we put the X-axis at x, then the new Z-axis which lies in the
X −Z plane is determined as

Z̄′′ = X̄′× Ȳ′ (3.28)

and the coordinate transformation matrix from the frame (X,Y,Z) to the frame (x0, y0, z ′
0) is

given by

V = [X̄′, Ȳ′, Z̄′′] (3.29)

Physically, the relocation of X and Z axis minimizes the total potential of the body and the
initial mass anomaly related to the tidal and centrifugal force respectively. Our method
first achieves the minimization of the potential corresponding to one of the forces, then
the other. When the relocation of X-axis converges, then the change of the X-axis becomes
nearly 0, namely X̄′ ≈ (1,0,0). As a result, from equation 3.28 and 3.29, we have Z̄′′ ≈ Z̄′. So
eventually, the minimal potential state associated with both the centrifugal and tidal force
is found. This is similar to multiple-objective optimization (Miettinen, 1999). Of course we
can also first put the Z-axis at Z′ and then we calculate the new X-axis as X̄′′ = Ȳ′× Z̄′ and
obtain the coordinate transform matrix V = [X̄′′, Ȳ′, Z̄′]. Tests show that in either way, the
results converge to the same final position of both rotational and tidal axes in each step.

For a tidally deformed body triggered by a certain mass anomaly which corresponds to in-
ertia tensor ∆IL , the complete algorithm for calculating the reorientation is given as fol-
lows:

Algorithm 3

1. Assume that the step i , from time ti to ti+1, starts with the direction of the rota-
tional axis given by ωi

r = Ωi
r (ωi

1,ωi
2,ωi

3)T and the direction of the tidal axis by ωi
t =

Ωi
t (ωi

4,ωi
5,ωi

6)T in which (ωi
1,ωi

2,ωi
3)T and (ωi

4,ωi
5,ωi

6)T are unit column vectors which
satisfy ωi

1ω
i
4 +ωi

2ω
i
5 +ωi

3ω
i
6 = 0. Ωi

t is the equivalent angular speed of the tidal poten-
tial calculated from equation 3.20. For the first iteration, we assume that the rotation
and tidal axes in this step do not change: ωi+1

r =ωi
r andωi+1

t =ωi
t .
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2. Apply both the centrifugal and tidal potential to the model in the same way as stated
in step 2 in Algorithm 1 to either FE model (equation 3.4) or use equation 3.2 and
add the term from equation 3.21. Obtain the total change in the inertia tensor and its
derivative as∆I and∆İ. The coordinate transformation matrix from the body-fixed to
the bulge-fixed coordinate system is given by

U = [ωi+1
t ,ωi+1

r ×ωi+1
t ,ωi+1

r ] (3.30)

The local values of the inertia tensor for the centrifugal part are obtained by ∆I1 =
UT∆I U and ∆İ1 = UT∆İ U. The corresponding inertia tensors for calculating tidal
perturbation are ∆I2 =−ST∆I1 S and ∆İ2 =−ST∆İ1 S

3. Apply equation 3.11 to∆I1 and∆İ1 and obtain the perturbation for the rotational axis
as Ω1(m1,m2,m3). Apply equation 3.11 to ∆I2 and ∆İ2 and obtain the perturbation
for the tidal axis as Ω2(m′

1,m′
2,m′

3). Then we have the perturbed Z- and X-axis as
Z′ =Ω1(m1,m2,1+m3)T and X′ =Ω2(1+m′

3,m′
2,−m′

1)T . We normalize these vectors
as Z′ =Ωi+1

r Z̄′ and X′ =Ωi+1
t X̄′. The local coordinate transformation matrix from the

bulge-fixed frame at time ti to the new frame at time ti+1 is obtained as V = [X̄′, Z̄′×
X̄′, X̄′× (Z̄′× X̄′)]. The updated direction of the rotational and tidal axes in the original
body-fixed coordinates are obtained as

ωi+1
r =Ωi+1

r UV[0,0,1]T (3.31a)

ωi+1
t =Ωi+1

t UV[1,0,0]T (3.31b)

4. Substituteωi+1
r andωi+1

t in step 2 until the results converge.

In order to show how the reorientation of a tidally deformed rotating body is accomplished,
we choose a model of Triton, the largest moon of Neptune. Triton is an icy moon and tidally
locked. It has zero obliquity and small orbital eccentricity which is about 1.6× 10−5 and
can be ignored, so it fits the situation of our assumption. The interior structure is chosen
according to the empirical model presented in Spohn et al. (2014) which fits observations of
Triton’s mass and moment of inertia. Depending on the amount of internal heating, there
can be an ocean between the high pressure and low pressure ice (Spohn et al., 2014). For
simplicity, the effect of a possible ocean is ignored. The physical properties of the model are
shown in Table 5.1.

Table 3.3: Properties of Triton

Layer Outer Radius (km) Density (kg m−3) Shear Modulus (Pa) Viscosity (Pa s)
Ice I 1352 937 3.6×109 1×1021

Ice II 1100 1193 6.2×109 1×1021

Mantle 950 3500 65×109 1×1019

Core 600 5844.8 0 0

To trigger the reorientation, a surface mass anomaly with a magnitude of 3.6×1017 kg, either
positive of negative, is chosen. This amount is approximately the accumulation of nitrogen
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snow during 10,000 years which is sublimated from the equatorial area, then moves to the
polar areas where it is deposited (Rubincam, 2003). We simulate the polar wander of Triton
for two cases: 1. a positive mass anomaly at high latitude (20 degree colatitude). 2. a nega-
tive mass anomaly at low latitude (60 degree colatitude). In each case, the mass anomaly is
placed at three different longitudes: -15, -45 and -75 degree. Due to the symmetry, only situ-
ations in one quadrant are considered. The initial loading time T0 and the time span for the
TPW are both chosen to be 4 million years at which, from normal mode method, the time
history of the tidal Love number reaches about 99.75% of its fluid Love number, following
equation 3.12. With this range of time, the reorientation should be close to its equilibrium
position. In order to better describe the three types of the reorientation as shown in fig-
ure 1.10, in the bulge-fixed frame we define the reorientation of the tidal deformed rotating
body around the Z, X and Y axes as the Z-reorientation, X-reorientation and Y-reorientation
respectively. The results for the cases of positive mass anomalies are shown in figure 3.10
and 3.11.

(a) View in the bulge-fixed frame (b) View in the body-fixed frame

Figure 3.10: Reorientation caused by positive mass anomalies placed at 20 degree colatitude, -15, -45 and -75
longitudes. Figure (a) shows the traces (lines) of the positive mass anomalies (filled circles) in the bulge-fixed
frame where the sub-Neptune point is at 0 degree longitude. Figure (b) shows the traces of the north pole of Triton
(lines) and sub-Neptune point (dashed lines) in the body-fixed frame.

Figure 3.10(a) gives the paths of the mass anomalies in the bulge-fixed coordinates. We can
see that when the positive mass anomaly is placed at high colatitude, the reorientation first
pushes the mass anomalies towards the equator with an X-reorientation. When the mass
anomaly is close to the equator, a Z-reorientation follows and eventually the mass anomaly
tries to reach the sub-Neptune point. Due to the Z-reorientation, in the body-fixed coordi-
nates as shown in figure 3.10(b) , the pole does not drift away from the mass anomalies in
a straight line; instead it moves closely along the great circle which is perpendicular to the
tidal axis. This is different compared to the case of polar wander on a centrifugally deformed
body such as Earth. From figure 3.11(a) and 3.11(b) , by comparing the speed of the pole in
colatitude direction and that of the sub-host point in longitudinal direction, we can see that
the X-reorientation is much faster than the Z-reorientation. This indicates that it is much
easier to reorient the tidal bulge around the tidal axis than the rotational axis. So the direc-
tion of the polar wander due to unbalanced ice-caps on Triton is more likely to go around
the tidal axis instead of going towards it. As a result, the suggestion that the direction of the
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(a) North pole movement (b) Sub-Neptune point movement

Figure 3.11: Reorientation caused by positive mass anomalies placed at 20 degree colatitude, -15, -45 and -75
degree longitudes. Figure (a) shows the time history for the colatitudes (solid lines) and longitudes (dashed lines)
of the north pole. Figure (b) shows the time history for the colatitudes (solid lines) and longitudes (dashed lines)
of the sub-Neptune point.

polar wander for the visco-elastic case of Triton would be towards the sub-Neptune point
when the reorientation starts (Rubincam, 2003), does not seem to be correct.

(a) View in the bulge-fixed frame (b) View in the body-fixed frame

Figure 3.12: Reorientation cased by negative mass anomalies placed at 60 degree colatitude, -15, -45 and -75 lon-
gitudes. Figure (a) shows the traces (lines) of the negative mass anomalies (filled circles) in the bulge-fixed frame
where the sub-Neptune point is at 0 degree longitude. Figure (b) shows the traces of the north pole (lines) in the
body-fixed frame.

Cases of negative anomalies are shown in figure 3.12 and 3.13. These cases apply to situ-
ations like the south polar terrain of Enceladus, in which (Nimmo and Pappalardo, 2006)
suggests that the diapirism of the lower-density material creates a negative mass anomaly
which is relocated to the south pole due to the reorientation of Enceladus. In contrast with
the case of positive mass anomaly, we see in figure 3.12(a) that the reorientation has a slight
preference to first push the mass anomaly to the great circle where both tidal and rotational
axes are located or to the 0 and 180 longitude circle. This indicates that the Z-reorientation
is slightly faster than the Y-reorientation, so the direction of both rotational and tidal axes
are still not directly targeting their end positions. Figure 3.13(a) and 3.13(b) shows that, ex-
cept for the case where the negative mass anomaly is close to the ±90 longitude (case with
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(a) North pole movement (b) Sub-Neptune point movement

Figure 3.13: Reorientation cased by negative mass anomalies placed at 60 degree colatitude, -15, -45 and -75 degree
longitudes. Figure (a) shows the time history for the colatitudes (solid lines) and longitudes (dashed lines) of the
north pole and figure (b) shows the time history for the colatitudes (solid lines) and longitudes (dashed lines) of
the sub-Neptune point.

the green color), there is no drastic speed change. This is quite different compared to cases
with positive anomalies which always begin with a relatively fast X-reorientation.
From both cases of positive and negative anomalies, we see that for a tidally deformed rotat-
ing body, the X-reorientation is much faster than the Z-reorientation while the Z-reorientation
is slightly faster than the Y-reorientation. Such preference for the direction of the reorien-
tation can be explained in the following way. Since the tidal potential is larger than the
centrifugal potential, diagonal elements of the inertia tensor in the bulge-fixed frame sat-
isfies A < B < C and C −B < B − A. The rotation of the same small angle around X-,Y- and
Z-axes changes the diagonal inertia tensor I into QT

i I Qi , where Qi , i=1,2,3, are the trans-
formation matrices for rotations around X-, Y- and Z-axes. These transformations produce
non-diagonal elements with magnitude ∆I23,∆I13 and ∆I12 respectively and it is easy to
prove that they have the relation: ∆I23 < ∆I12 < ∆I13. These cross products represent the
resistance of the bulge, either rotational or tidal, against the polar (tidal) wander, so the re-
orientation around the X-axis is the fastest while that around the Y-axis is the slowest. From
the track of both positive and negative mass anomaly in various positions shown in figure
3.10 and 3.12, we can also conclude that except for the six dead zones where both centrifu-
gal and tidal force are either very small or in equilibrium (the areas around the poles, the
sub-host point and its antipode and the two points facing the orbit), positive mass anoma-
lies are more likely to be found around the equator and the great circle perpendicular to the
tidal axis while negative mass anomalies tend to be around the 0 and 180 degree longitude
great circle in the bulge-fixed frame.
It is also worth to mention that our method can be extended to situations where the obliq-
uity or orbit eccentricity is non-zero. In these cases, we need to change the transformation
matrix S given by equation 3.22, which would become time-dependent and needs to be
updated according to the position of the body in the orbit and the relative location of the
rotational and tidal axes in each step of the numerical calculation.
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3.5. CONCLUSIONS

Numerical methods for calculating both small and large angle reorientation of a centrifu-
gally and tidally deformed visco-elastic body are established. The methods are validated
by comparing with existing normal-mode methods which were developed for both small-
angle and large-angle TPW. With the help of the developed numerical methods, the follow-
ing conclusions can be drawn:

• Linear rotation theory leads to a bias which can be very large when the initial position
of the mass anomaly causing the true polar wander (TPW) is close to the poles or
equator. This significantly limits the applicable range of the linear method if loads
are close to poles or equator.

• The time-dependent result of TPW obtained by taking the first order approximation of
the tidal love number, namely the quasi-fluid approximation, gives large errors for the
transient behaviour and only when the model is close to its final orientation, results
taking quasi-fluid approximation give reliable prediction. This makes quasi-fluid ap-
proximation not a good choice for studying transient visco-elastic readjustment of
Earth or other planets which contain significant slow relaxation modes.

• A tidally deformed body has a preference of the reorientation around the tidal axis
over that around the rotational axis. Rotational axis driven by a positive mass anomaly
near the poles tends to first rotate around the tidal axis instead of towards it. For
tidally locked bodies which do not have a remnant bulge, positive mass anomalies
are more likely to be found around the equator and the great circle perpendicular to
the tidal axis, while negative mass anomalies tend to be around the great circle that
contains the tidal and rotational axes.

APPENDIX I

Since the results from the FEM are validated by comparing with the analytical results ob-
tained from a normal mode method which is based on Maxwell rheology, the material
properties need to be defined in FEM such that the visco-elastic response of the material
is equivalent to that of a Maxwell material. In the ABAQUS FEM package, the visco-elastic
property of the material is defined in the following way: (1) the initial elasticity is defined
separately by giving the Young’s modulus in the option "Elasticity". (2) the normalized
visco-elastic behaviour can be defined either with the "Creep" option which uses power law
strain-hardening or a "Viscoelastic" option which uses the Prony series which is a general
scheme that encompasses a simple Maxwell rheology. In Abaqus, Prony series expansion is
defined by the dimensionless relaxation modulus gR as:

gR (t ) = 1−
N∑

i=1
g P

i (1−e−t/τG
i ) (3.32)

where N , g P
i and τG

i are material constants. As the equivalence of Maxwell rheology, we

have N = 1 , g P
1 = 1−1−10 (Abaqus requires that g P

i < 1, so a value very close to 1 is chosen)
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and τG
1 =µ/E where µ and E are material viscosity and elasticity.

Both options give similar results with the same accuracy for the time history of the tidal Love
number or the individual components of the inertia tensor (figure 3.2). However, when the
terms which determine the TPW (like in figure 3.3) are calculated, which are the combina-
tions of the components of the inertia tensor, the results obtained with the "Creep" option,
as can be seen in figure 3.14, show a much larger error compared to those obtained with
the option "Viscoelastic" as shown in figure 3.3. This demonstrates that the "Viscoelastic"
option in Abaqus is a better choice to represent a Maxwell material. This suggests that also
comparisons between results from ABAQUS and spectral models (Wu and van der Wal, 2003;
van der Wal et al., 2015) might be improved.
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Figure 3.14: Result of the same test as that in figure 3.3 with the viscous deformation being defined with the option
"Creep" in Abaqus.
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For large-angle long-term true polar wander (TPW) there are currently two types of non-
linear methods which give approximated solutions: those assuming that the rotational axis
coincides with the axis of maximum moment of inertia (MoI), e.g. Nakada (2007), which sim-
plifies the Liouville equation and those based on the quasi-fluid approximation (e.g. Ricard
et al. (1993)) which approximates the Love number. Recent studies show that both can have
a significant bias for certain models (Cambiotti et al., 2011; Hu et al., 2017b). Therefore, we
still lack an (semi-)analytical method which can give exact solutions for large-angle TPW for
a model based on Maxwell rheology. This paper provides a method which analytically solves
the moment of inertia equation and adopts an extended iterative procedure introduced in Hu
et al. (2017b) to obtain a time-dependent solution. The new method can be used to simulate
the effect of a remnant bulge or models in different hydrostatic states. We show the effect of the
viscosity of the lithosphere on long-term, large-angle TPW. We also simulate models without
hydrostatic equilibrium and show that the choice of the initial stress-free shape for the elastic
(or highly-viscous) lithosphere of a given model is as important as its thickness for obtaining
a correct TPW behaviour. The initial shape of the lithosphere can be an alternative explana-
tion to mantle convection for the difference between the observed and model predicted flat-
tening. Finally, it is concluded that, based on the quasi-fluid approximation, TPW speed on
Earth and Mars is underestimated while the speed of the rotational axis approaching the end

1Delft University of Technology
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position on Venus is overestimated.
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4.1. INTRODUCTION

Concerning the study of large angle true polar wander (TPW) on a visco-elastic body such
as terrestrial planets like the Earth, Mars and Venus, there are currently two types of non-
linear approaches to obtain a time-dependent solution. One of them is from Nakada (2007)
which applies an iterative scheme but simplifies the Liouville equation by ignoring the time
derivative of the MoI term. This approximation is equivalent to assuming that the rota-
tion axis coincides with the axis of the maximum moment of inertia during the process
of TPW. The validity of this assumption was discussed in detail in Cambiotti et al. (2011)
who showed that even for the Earth this assumption is not always appropriate. Another
approach which is more commonly applied in recent studies was formulated originally by
Sabadini and Peltier (1981) and further developed by Sabadini et al. (1982), Spada et al.
(1992a) and Ricard et al. (1993) which is based on the quasi-fluid approximation. Mathe-
matically, this approximation is the first order Taylor expansion of the Love number in the
Laplace domain. The consequence of adopting the quasi-fluid approximation is that the
elastic response of a Maxwell model is missing, and it also simplifies the individual viscous
relaxation of different modes. Hu et al. (2017b) tested the validity of the quasi-fluid approx-
imation and showed that it can lead to a large error in the transient behavior of TPW for
a model whose strong modes have very different relaxation times. This could lead to erro-
neous conclusions when the model predicted TPW speed is compared with the speed that is
observed or inferred from surface features (e.g. on Mars (Bouley et al., 2016)). The method
developed by Hu et al. (2017b) is a numerical approach which requires that the change in
the inertia tensor is calculated either by convolution or by a finite-element package. Both
the numerical convolution and the finite-element package are not suitable for studies of
models containing layers with very different viscosities since the large contrast in viscosity
results in a large increase in computational time for numerical methods. The increase in
the computational time is caused by the fact that the total integration time has to be long to
account for the long relaxation time while the integration step-size must be small to accu-
rately simulate the layers with short relaxation time.
Another issue which is intensively studied in recent years is the effect of an elastic or highly
viscous layer on TPW (Willemann, 1984; Mitrovica et al., 2005; Cambiotti et al., 2010; Harada,
2012; Chan et al., 2014; Harada and Xiao, 2015; Moore et al., 2017). The existence of such a
layer can create a delayed readjustment of the equatorial bulge (often called remnant bulge)
which significantly changes the behavior of TPW as discussed by Willemann (1984) and
Mitrovica et al. (2005). Mitrovica et al. (2005) show the importance of a correct choice for the
initial hydrostatic state when the TPW is estimated. They used the fluid tidal Love number
which corresponds to the observed flattening instead of the model predicted flattening. Re-
cent studies often assume that this extra flattening comes from mantle convection (Mitro-
vica et al., 2005; Cambiotti et al., 2010). Alternatively, if we do not assume that the model is
in hydrostatic equilibrium, this difference can also come from the elastic lithosphere which
has its background shape corresponding to a faster rotational speed. As far as we know, this
issue has not been discussed yet. Recent studies concerning the time-dependent solution
of long-term large-angle TPW with an elastic or highly viscous lithosphere (Harada, 2012;
Chan et al., 2014; Moore et al., 2017) are all based on the method developed by Ricard et al.
(1993) and adopt the quasi-fluid approximation.
Compared with the linear approach (e.g. Wu and Peltier (1984)), which can only simulate
TPW for small-angle changes, the method from Ricard et al. (1993) enables the study of
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issues such as the coupling of the rotational perturbation in the X and Y directions. This
means that in the body-fixed frame, a mass distribution imbalance in the X-Z plane would
cause a rotational perturbation not only in the X-Z plane but also in the Y-Z plane. This cou-
pling effect increases as the rotational speed of the object decreases and can turn TPW into
a mega-wobble for some objects like Venus which rotates very slowly (Spada et al., 1996).
The phenomenon of the mega-wobble is caused by the increase of the contribution from
the mass anomaly itself compared to that of the equatorial bulge readjustment. When the
contribution from the equatorial bulge readjustment is dominant, the periodic behaviour,
often called Chandler wobble, damps out quickly and its secular effect on the long-term
TPW can be ignored. However, when the rotational speed decreases which causes the equa-
torial bulge to decrease, the change in the inertia tensor becomes dominated by the mass
anomaly itself. As a result, the rotational behaviour resembles the free nutation of a rigid
body (Lambeck, 2005). This coupling effect, or periodic behaviour, is almost always ne-
glected in the linear scheme for the study of the Earth (e.g. Wu and Peltier, 1984; Cambiotti
et al., 2010).

To conclude, a semi-analytical approach which can accurately calculate TPW of a Maxwell
model in different hydrostatic states is missing. It is the main purpose of this paper to de-
velop such a method and show how more accurate solutions are obtained. We also show if
the difference in results between the methods has a significant impact on planetary studies
(e.g. observation, modelling) in the following cases:

• TPW for slowly rotating objects: mega-wobble of Venus.

• Effect of a remnant bulge caused by an elastic or highly viscous lithosphere on large-
angle TPW.

• TPW on a body that is not in hydrostatic equilibrium.

In section 4.2, the influence of the quasi-fluid approximation is discussed in more detail
and our new method will be presented. Sections 4.3, 4.4 and 4.5 will cover the above listed
issues. Section 3 and 4 contain a case study of Venus and Mars, respectively, which com-
pares the results obtained in previous studies and that from our new method.

4.2. METHOD

The governing equation for the rotation of a rigid body in the body-fixed rotating refer-
ence frame is the well-known Euler’s equation. As the body becomes deformable, it is of-
ten referred to as the Liouville equation. For a torque-free case, it reads (Sabadini et al.,
2016)

d

d t
(I ·ω)+ω× I ·ω= 0 (4.1)

where I is the inertia tensor and ω is the rotational vector whose magnitude is the rotat-
ing speed. Both values are defined in a body-fixed coordinate system. When the moment
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of inertia of the body is perturbed by a geophysical process which causes mass redistribu-
tion, the rotational axis shifts, and consequently the equatorial bulge readjusts. Analytically,
given a rotational vector asω= (ω1,ω2,ω3)T =Ω(ω̄1,ω̄2,ω̄3)T , whereΩ is the angular speed
of the rotation and (ω̄1,ω̄2,ω̄3)T is a unit vector which represents the direction of the ro-
tation, the total moment of inertia attributable to such a process is given by (Ricard et al.,
1993)

Ii , j (t ) = Iδi j + kT (t )a5

3G
∗ [ωi (t )ω j (t )− 1

3
Ω(t )2δi j ]

+[δ(t )+kL(t )]∗Ci , j (t )

(4.2)

where I is the principle moment of inertia of the spherical body in hydrostatic equilibrium,
G is the gravitational constant and a is the radius of the planet. kT (t ) and kL(t ) are the
degree 2 potential tidal Love number and load Love number, respectively. Love numbers are
obtained by the normal mode method and based on the Maxwell rheology (Farrell, 1972).
The ∗ denotes convolution in the time-domain. Ci , j represents the change in the moments
and products of inertia without considering the deformation and this is the triggering load
for the TPW. The most difficult part of solving equations 3.1 and 4.2 is the convolution of the
tidal Love number and the centrifugal potential, in particular the part kT (t )∗ωi (t )ω j (t ). In
the following subsection, we first show how this problem is tackled by adopting the quasi-
fluid approximation and the influence of this approximation on calculation of the inertia
tensor. Following this subsection a new approach is presented to calculate the MoI equation
analytically. Section 4.3 demonstrates how to use the developed algorithm and provides
initial results from our method.

4.2.1. CONVENTIONAL APPROACH BASED ON THE QUASI-FLUID APPROXIMA-
TION

The tidal Love number in the Laplace domain for a given harmonic degree is expressed as
(Peltier, 1974):

kT (s) = kT
e +

m∑
i=1

kT
i

s − si
(4.3)

where kT
e is the elastic Love number, kT

i are the residues of each mode, and si are the in-
verse relaxation times. This form of the Love number contains all the information about
how a multi-layered Maxwell body deforms: an instantaneous elastic response character-
ized by kT

e followed by viscous relaxation of separate modes characterized by their different
inverse relaxation time si and mode strength −ki /si . We call this form of the Love number
the full-Maxwell rheology scheme, as opposed to the quasi-fluid approximation introduced
below.
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In order to solve equation 4.2, Ricard et al. (1993) took the quasi-fluid approximation which
approximates the tidal Love number with its first order Taylor expansion:

kT (s) ≈ kT
e −

m∑
i=1

(
kT

i

si
+ kT

i s

s2
i

)

= kT
f (1−T1s)

(4.4)

where kT
f is the fluid Love number which is the sum of the mode strength:

kT
f = ke −

m∑
i=1

kT
i

si
(4.5)

The time constant T1 is

T1 = 1

kT
f

m∑
i=1

kT
i

s2
i

(4.6)

Thus, by taking the quasi-fluid approximation, all information for a viscoelastic layered
model is combined into one constant T1. Because of the ki /s2

i term, this constant is dom-
inated by the slowest modes. Thus applying the quasi-fluid approximation on a physical
model which contains modes with both very long and short relaxation times will result in a
large bias. It can also be seen that with this approximation, the elastic response as well as
the viscous relaxation characterized by the function 1/(s − si ) in the Laplace domain (e si t

in the time domain) are missing (as will be shown in equation 4.7), therefore, the ongoing
deformation does not agree with the complete Maxwell rheology scheme. The convolution
of equation 4.4 with a linear load function F (t ) = a +bt , where a,b are constants, results in
a time domain response of the form:

R(t ) = kT
f F (t )−F ′(t )kT

f T1 (4.7)

where the derivative F ′(t ) = b and R(t ) is the response function. This response demon-
strates the effect of the quasi-fluid approximation: for a near constant load (F ′(t ) ≈ 0), the
response reaches its fluid-limit kT

f F (t ) immediately without the time-dependent viscous

behaviour. This means that when the speed of TPW is very slow compared to the char-
acteristic relaxation speed of the body, the results based on the quasi-fluid approximation
approach those which are obtained from the fluid-limit method which diagonalizes equa-
tion 4.2, such as in (Matsuyama and Nimmo, 2007). For other loads which change linearly
in time, the instantaneous fluid-limit response kT

f F (t ) is shifted by a value which is propor-

tional to the speed of the change of the load, as given by the second term of the equation 4.7.
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For the complete Maxwell rheology scheme, the original form of the Love number (equa-
tion 4.3) needs to be convoluted with the loading function, resulting in damping of this part
with a function of e−At where A is a positive constant. As a result, compared to the original
Maxwell rheology, the response of a Heaviside or fast changing load based on the quasi-
fluid approximation will likely result in a very different TPW path. For example, the change
in the inertia tensor due to an impact crater which appears instantly and is preserved after-
wards is a Heaviside load to the planet.
Next, we quantitatively show that adopting quasi-fluid approximation can either underes-
timate or overestimate the equatorial readjustment for certain components of the inertia
tensor in the normal polar wander case and in the mega-wobble case. Substituting equa-
tion 4.4 into 4.2 gives the change in the moment of inertia as (Ricard et al., 1993)

∆Ii , j (t ) =
kT

f a5

3G
[ωi (t )ω j (t )− 1

3
Ω(t )2δi j ]

−
kT

f a5

3G
T1[ω̇i (t )ω j (t )+ωi (t )ω̇ j (t )− 2

3
ωl (t )ωl (t )δi j ]+Ei j

(4.8)

where Ei , j (t ) and Ėi , j (t ) are obtained by convolving Ci , j (t ) and Ċi , j (t ) with δi , j +kL(t ). We
compare the change in the moment of inertia calculated by equation 4.8 and equation 4.2
to show the influence of adopting the quasi-fluid approximation. The latter is obtained by
numerical calculation of the convolution. As a representative of terrestrial planets, we use
a SG6 Earth model (which represents a multi-layered model with interior density, rigidity
and viscosity change) and let the rotational axis move in two ways:

• The rotational axis drifts with a constant speed along the X-Z plane in the body-fixed
coordinates for 90 degrees. This is to simulate the normal polar wander case for fast-
rotating planets such as the Earth and Mars.

• The rotational axis initially stays at 30 degree colatitude and 0 degree longitude in
the X-Z plane and moves longitudinally with a constant speed along the 30 degree
colatitude circle for 720 degrees. This is to simulate the mega wobble for very slowly
rotating objects such as Venus.

In the first case, the drift speed of the rotational axis is chosen to be fast enough to view the
effect of the quasi-fluid approximation. We define a bulge-fixed frame whose Z’-axis coin-
cides with the instantaneous rotational axis and whose X’-axis lies within the Z-Z’ plane as
shown in figure 4.1. So a pure rotation (around Y’-axis) can transform the body-fixed frame
into the bulge-fixed frame.

Figure 4.2 gives the change in the six components of the MoI tensor in the bulge-fixed
frame. In this figure, the differences in I11, I22, I33 are small, but the most important compo-
nent I13 calculated with the quasi-fluid approximation is significantly larger than the accu-
rate value. The magnitude of I13 in the bulge-fixed frame determines how fast the equatorial
bulge readjusts. A larger value of I13 suggests a slower readjustment (if the readjustment is
complete, then the rotational axis coincides with the new principle axis and I13 would be
zero). So adopting the quasi-fluid approximation in the normal polar case causes an large
underestimation for the speed of the equatorial bulge readjustment.
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Figure 4.1: O-XYZ is the body-fixed frame where the Z-axis is the original rotational axis. O-X’Y’Z’ is the bulge fixed
frame where the Z’-axis is the instantaneous rotational axis and the X’-axis lies within the Z-Z’ plane.

For the second case where the rotational axis tends to wobble around a fixed point, in the
bulge-fixed frame, I23 implies the readjustment in the direction along the track of the ro-
tational axis (called along track direction in the following) and I13 gives the readjustment
in the direction which is perpendicular to the plane that contains the along track direction
and the rotational axis (called normal direction in the following). The results are shown in
figure 4.3. For components I11, I22, I33, the quasi-fluid approximation misses the small os-
cillations but the differences are still very small between the two methods, thus for these
three components the error introduced by the approximation can be ignored. However,
the magnitude of the along-track component I23, is largely underestimated just like the I13

component in figure 4.2 (I13 is the along-track component for the normal polar wander
case). On the other hand, the normal directional component I13 in figure 4.3 is underesti-
mated by the quasi-fluid approximation which suggests an overestimation of the equatorial
bulge readjustment in this direction.

The key information obtained in this subsection is that by adopting the quasi-fluid approx-
imation, the speed for equatorial readjustment can be, depending on the model and load,
largely underestimated in the along-track direction but overestimated for the mega wobble
case in the normal direction. These are the main reasons for the difference of the TPW path
calculated by different methods which will be discussed in section 4.3 and 4.4.

4.2.2. A NEW APPROACH

In order to eliminate the convolution in the part kT (t )∗ωi (t )ω j (t ) while staying consistent
with the fundamental rheology of the system, we adopt the strategy of approximating the
load term ωi (t )ω j (t ) instead. Within the considered time period Tn , at time t = Tp , p =
0,1, ...n, values of ωi (t ), i = 1,2,3 are known, then we have ωi (Tp ) = Wi ,p . Assuming that
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Figure 4.2: Normal polar wander case: Change in the six components of the MoI tensor when the rotational axis
initially stays at 30 degree colatitude and 0 degree longitude in the X-Z plane and precesses with a constant speed
along the 30 degree colatitude circle for 720 degrees in 500 ka. Red lines are the accurate results and blue lines are
from the quasi-fluid approximation.

ωi (t ), i = 1,2,3 changes linearly between each time step, ωi (t ) can be written as a piece-
wise linear function:

ωi (t ) =
n∑

p=1
ωi ,p (4.9)

(4.10)

where

ωi ,p =
(
Wi ,p−1 +

Wi ,p −Wi ,p−1

Tp −Tp−1
(t −Tp−1)

)
H(t −Tp−1)H(Tp − t ) (4.11)

and H(t ) is the Heaviside step function. With this form, k(t )∗ωi (t )ω j (t ) and its derivative
can be expressed analytically by applying the Laplace transformation

kT (t )∗ωi (t )ω j (t ) =L −1[L [kT (t )∗ωi (t )ω j (t )]] (4.12)
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Figure 4.3: Mega wobble case: Change in the six components of the MoI tensor. The rotational axis initially stays
at 30 degree colatitude and 0 degree longitude in the X-Z plane and precesses longitudinally with a constant speed
along the 30 degree colatitude circle for 720 degrees in 600 ka. Red lines are the accurate results and blue lines are
from the quasi-fluid approximation.

where L and L −1 stand for the Laplace and inverse Laplace transformation, respectively.
The explicit expression of equation 4.12 can be found in appendix I as equation 4.30. Sub-
stituting equation 4.30 into equation 4.2, the inertia tensor and its derivative at time t = Tn

can be expressed analytically as

Ii , j (Tn) = Iδi , j + a5

3G
[(Ai , j (Tn)+Bi , j )− 1

3

3∑
k=1

(Ak,k (Tn)+Bk,k )]+Ei , j (Tn) (4.13a)

İi , j (Tn) = a5

3G
[(Ci , j (Tn)+Di , j )− 1

3

3∑
k=1

(Ck,k (Tn)+Dk,k )]+ Ėi , j (Tn) (4.13b)

where expressions for Ai , j (t ), Bi , j (t ), Ci , j (t ) and Di , j (t ) can be found in appendix I. When
t = Tp with p = 0,1, ...n and ωi (Tp ) = Wi ,p with p = 0,1,2...n − 1 are given, equations 4.13
expresses the moments and products of inertia and its derivative as a function of Wi ,n . Then
Wi ,n can be solved by equation 3.1. To this end, it helps to see the problem as a global
optimization problem: we seek the value of Wi ,n in the neighbourhood of Wi ,n−1 so that the
value of | d

d t (I ·ω)+ω×I ·ω| is minimized. As a result, the method which is introduced in Hu
et al. (2017b) as algorithm 2 (page 10) can be applied. This method applies the linearised
form of the Liouville equation and an iteration procedure to obtain Wi ,n . It will be briefly
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explained in the following and outlined in appendix II. We define the perturbed rotational
vector as

ω′ =Ω(m1,m2,1+m3)T (4.14)

where m1,m2 and m3 are small real numbers. The Liouville equation can be linearised to
obtain the form (Hu et al., 2017b):

m1(t ) = ∆I13(t )

C − A
+ C∆

.
I 23 (t )

Ω(C − A)(C −B)
(4.15a)

m2(t ) = ∆I23(t )

C −B
− C∆

.
I 13 (t )

Ω(C − A)(C −B)
(4.15b)

m3(t ) = −∆I33

C
(4.15c)

In equation 4.15, the terms of the inertia tensor, A,B ,C and I13, I23,
.
I 13,

.
I 23 are not in the

body-fixed frame but in the bulge-fixed frame. The transformation matrix from the body-
fixed frame to the bulge-fixed frame by a pure rotation can be obtained as

Q =

 ω3 + ω2
2

1+ω3
−ω1ω2

1+ω3
ω1

−ω1ω2
1+ω3

1− ω2
2

1+ω3
ω2

−ω1 −ω2 ω3

 (4.16)

A coordinate transformation is required before we can substitute the value of the inertia
tensor calculated from equation 4.13. The detailed procedure of algorithm 2 in Hu et al.
(2017b) is given in Appendix II.
In general, the only assumptions we make in the entire calculation are two linear approxi-
mations: the changes in the rotational vector and the inertia tensor (see equation 10 in Hu
et al. (2017b)) are small in each step and can be treated as linear. This is valid when the
step-sizes (∆tp = Tp −Tp−1, p = 2,3, ..n) are small enough. Since we do not approximate
Love numbers, our method gives the TPW path for a viscoelastic body which is consistent
with the complete scheme of Maxwell rheology. We will label our method in the following
as full-Maxwell method.

4.2.3. INITIAL SETTING AND VALIDATION

One of the major factors that controls the TPW behaviour is the shape of the equatorial
bulge (and the tidal bulge which is discussed in Hu et al. (2017b)). When the interior model
and rotational speed is given, this shape is controlled by the hydrostatic state of the model.
Due to the limitation of the method, previous studies based on either linear (Sabadini et al.,
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1982; Wu and Peltier, 1984) or non-linear (Ricard et al., 1993; Chan et al., 2014; Moore et al.,
2017) approaches can only simulate TPW on a model which is assumed to be in hydrostatic
equilibrium. However, as will be shown in section 4.5, the choice of the hydrostatic state
can have a significant impact on the TPW behaviour. With our method, we can choose the
hydrostatic state of the model at which the TPW starts.
To simulate the TPW of a body at a certain hydrostatic state, we need to apply a centrifugal
force to the model for a certain length of time. If the rotational vector at the start of the
simulation is given byω0 =Ω(0,0,1)T , applying centrifugal force to the model for a duration
of Th is expressed in our scheme as

T0 = 0 (4.17a)

T1 = Th (4.17b)

(W1,0,W2,0,W3,0)T = (W1,1,W2,1,W3,1)T =ω0 (4.17c)

The triggering load Ei , j (t ) needs to be applied at t = Th to start the TPW. To simulate a model
in hydrostatic equilibrium, Th needs to be large enough so that all modes of the model are
sufficiently relaxed. In order to achieve this we can choose a Th so that the slowest mode is
relaxed more than 99.999%. Assuming s1 is the slowest mode,

1−e s1Th > 0.99999 (4.18)

translates into

Th > −11.513

s1
(4.19)

This choice is similar to that in Hu et al. (2017b), which sets Th so that kT (Th) > 99.95%kT
f ,

but much more strict. If the model contains a very slow and strong mode, we can obtain a
very large value of Th and this will cause an extremely long calculation time for a pure nu-
merical method (Hu et al., 2017b). By expressing the inertia tensor analytically, a very large
Th can be dealt with. Eventually, there is no limit for the choice of Th as well as the initial
loadingω0 as long as numerical errors (e.g. truncation error) are avoided. As a result, TPW
for a body in a different hydrostatic state can be obtained. This makes our method suitable
to study the effect of a remnant bulge or TPW on a model without hydrostatic equilibrium
as will be shown and discussed in detail in sections 4.4 and 4.5.

The algorithm, as shown in appendix II, was developed in (Hu et al., 2017b). The main idea
is to decouple the two governing equations. The MoI equation was solved by either direct
convolution or from a finite element method and the result is fed back into the linearized
Liouville equation and solved by an iterative procedure. Such algorithm has been validated
by both comparing to the linear (Wu and Peltier, 1984) and non-linear method (Ricard et al.,
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1993) in figure 6 and 9 of (Hu et al., 2017b). The difference between the method in this pa-
per and that of (Hu et al., 2017b) is that here the MoI equation is solved analytically with the
assumption that the rotational vector changes linearly during each time step of TPW. If the
step size is set to be much smaller than the relaxation time of the dominant modes, which
is the same requirement for calculating TPW, the analytical solution of the MoI equation
with the linear assumption will be sufficiently equivalent to the result from direct convolu-
tion. Therefore, the TPW solution generated in this paper can approach that from (Hu et al.,
2017b) for a small enough step size. We first demonstrate the result of TPW calculated with
Th = 2000 ka, which is the choice in Hu et al. (2017b) for a six-layer incompressible Earth
model SG6 (table 2 in the same paper), and a much higher value (Th = 106 ka) for which
the model can be considered in hydrostatic equilibrium (equation 4.19 holds). We place a
stationary (kL(t ) = 0) mass anomaly, which means that the mass anomaly does not "sink"
into the body, at the surface at 30 degree colatitude. Here we do not consider the effect of
the remnant bulge (which will be discussed in detail in section 4.4), so we ignore the slow-
est mode generated by the lithosphere (its viscosity is set to 1031 Pa s to calculate the Love
numbers). We also include the result obtained by the quasi-fluid approximation according
to Ricard et al. (1993).
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Figure 4.4: Polar wander in the X-Z plane for the SG6 Earth model triggered by a point mass of 2×1019 kg attached
at the surface at 30 degree colatitude.

The result obtained for Th = 2000 ka by the full-Maxwell method is within less than 0.05%
from the result of the numerical method, as given in figure 9 in (Hu et al., 2017b), for a step-
size of 5ka. As we can also see from figure 4.4, choosing Th = 2000 ka still shows a TPW path
that is different from that of a body which can be considered to be in hydrostatic equilib-
rium (Th = 106 ka). This suggests the sensitivity of the TPW to a small deviation from its
hydrostatic equilibrium. So choosing Th large enough is the first guarantee that the correct
TPW path for models with hydrostatic equilibrium is obtained.
The computational cost of our method depends on three factors: (1) the complexity of the
layered model, or more precisely, the number of the modes in the Love numbers. (2) the
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number of iteration necessary to obtain a convergent result in each step. (3) the number
of time steps. The computational time increases roughly linearly with these factors. For
the results shown in figure 4.4, which is for a SG6 Earth model that contains 12 modes, the
number of time steps is 2600 (each step is 5 ka) and every step requires 50 (first step) to 18
(last step) iterations. The program is written in Matlab and the total computational time on
our desktop computer is about 3 minutes. Compared with the numerical computation (Hu
et al., 2017b) which is about several hours, the speed from the semi-analytical approach is
much faster.

Based on the analysis in the last section 2.1, the largely underestimated TPW speed by
adopting the quasi-fluid approximation is caused by the underestimation of the speed of
the equatorial readjustment for the case of Earth and Mars. For the mega-wobble case
in Venus, the situation can be quite different as will be discussed in the following sec-
tion.

4.3. MEGA-WOBBLE: TPW ON VENUS

The linearized Liouville equation (equation 4.15) is obtained by two fundamental assump-
tions. First, during the TPW, the components of the inertia tensor satisfy I33(C ) > I11(A) and
I33(C ) > I22(B). Secondly, the periodic terms which represent the Chandler wobble can be
ignored. While these assumptions are true for cases like Mars and the Earth, it can be in-
valid for some slowly rotating objects such as Venus. Since the rotational speed of Venus is
so slow that its equatorial bulge is also extremely small, the difference of the two principle
moment of inertia: C − A, which can be calculated by

C − A =
kT

f a5Ω2

3G
(4.20)

for Venus is less than 1.5×10−5 of that for Earth. For magnitudes of a mass anomaly of 10−5

or 10−6 of the total mass of the planet considered in Spada et al. (1996), depending on the
depth and position, the moment around the rotational axis may not be the largest of the
diagonal components anymore (C > A,B are not satisfied). Furthermore, the period of the

wobble, which can be estimated as 2π
Ω

√
AB

(C−A)(C−B) (see equation 4.22) when C > A,B , is

about 4 months (depending on the interior model) on Earth or Mars, but can be, depending
on the interior model, over 10 million years on Venus. Because of such low frequency, the
periodic terms will have a secular effect for TPW on Venus and can not be ignored as for the
Earth and Mars. Therefore, in order to study TPW on Venus, it is necessary to first derive a
new set of linearized Liouville equations suitable for a body with a very long wobble period.
The linearized Liouville equation for a triaxial body reads (Sabadini et al., 2016)

.
m1 = −C −B

A
Ωm2 + Ω

A
∆I23 − ∆

.
I 13

A
(4.21a)

.
m2 = C − A

B
Ωm1 − Ω

B
∆I13 − ∆

.
I 23

B
(4.21b)

.
m3 = −∆

.
I 33

C
(4.21c)
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We first deal with the cases of C > A,C > B and C < A,C < B . By assuming that the change in
the moment of inertia is linear, equation 4.21 can be solved analytically. The result contains
the non-periodic terms in equation 4.15 and periodic terms

m̄1(t ) =
√

B

A(C − A)3(C −B)Ω2 sin

(√
(C − A)(C −B)

AB
Ω∆t

)(
(A−C )∆I23(t )+C∆

.
I 13 (t )

)

− cos

(√
(C − A)(C −B)

AB
Ω∆t

)(
∆I13(t )

C − A
+ C∆

.
I 23 (t )

Ω(C − A)(C −B)

)(4.22)

m̄2(t ) =
√

A

B(C − A)(C −B)3Ω2 sin

(√
(C − A)(C −B)

AB
Ω∆t

)(
(C −B)∆I13(t )+C∆

.
I 23 (t )

)

− cos

(√
(C − A)(C −B)

AB
Ω∆t

)(
∆I23(t )

C −B
+ C∆

.
I 13 (t )

Ω(C − A)(C −B)

)(4.23)

When the period of the wobble becomes very long and the step size ∆t is small enough,

the magnitude of
√

(C−A)(C−B)
AB Ω∆t in the trigonometric functions is very small, and we can

apply sin(θ) ≈ θ and cos(θ) ≈ 1−θ2/2. Applying these approximations, combining equation
4.15, 4.22 and 4.23 and ignoring the derivative terms of the inertia tensor gives

m1(t ) = (C −B)Ω2∆I13(t )∆t 2 +2BΩ∆I23(t )∆t

2AB
(4.24a)

m2(t ) = (C − A)Ω2∆I23(t )∆t 2 −2AΩ∆I13(t )∆t

2AB
(4.24b)

m3(t ) = −∆I33

C
(4.24c)

The derivation for other situations such as B < C < A or B > C > A are shown in Appendix
III. Note that in equation 4.24, as well as in equation 4.44 and 4.45, we do not have the C −A
or C −B terms in the denominator, thus these expressions have no singularity problem for
C = B or C = A. When TPW on a very slowly rotating object like Venus is calculated, equa-
tion 4.24 instead of equation 4.15 should be applied. Basically, equation 4.15 and equation
4.24 give two extreme situations for calculating the rotational perturbation. When the step
size of the calculation ∆t can be set to much larger than the Chandler period, equation
4.15 should be used to give the secular behaviour. When the step size ∆t is chosen to be
much smaller than the period of the Chandler wobble, equation 4.24 can give the periodic
"short"-term behaviour which leads to the mega-wobble on Venus or, when the step size is
set to days, the Chandler wobble on Earth or Mars.

Next, we apply our method to a model of Venus and test some results obtained in Spada
et al. (1996) who apply the quasi-fluid approximation. We create a five-layer Venus model
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which approximates the density and rigidity profile used in Armann and Tackley (2012) and
the viscosities are chosen similar to those of Earth. The interior properties are shown in
table 4.1. The effect of a remnant bulge is not included here and will be discussed in the
next section.

Table 4.1: Venus model

Outer Radius (km) Density (kg m−3) Shear Modulus (Pa) Viscosity (Pa s)
6052 2900 0.36×1011 ∞
6002 3350 0.68×1011 0.6×1021

5500 3725 0.93×1011 1.6×1021

5200 4900 2.07×1011 6.4×1021

3250 10560 0 0

For this model, the period 2π
Ω

√
AB

(C−A)(C−B) is about 11.45 million years. The step size needs

to be much smaller than this value, therefore, a value of less than 5 thousand years is suffi-
cient to obtain an accurate solution. One way to test if the chosen step size is indeed small
enough is to recalculate the TPW with half of the step size. If the chosen step size is in-
deed sufficiently small, the result will not change significantly. We first simulate the TPW on
Venus driven by a negative mass anomaly of magnitude 5×1018 kg (which is about the max-
imum value simulated by Spada et al. (1996)) which is attached at the surface at 45 degree
colatitude. We decompose the displacement of the rotational axis in the direction which
lies in the plane that contains the mass anomaly (normal direction) and the along-track di-
rection. The result is shown in figure 4.5. As we can see, for the along-track displacement
which describes the long-term wobble of the rotational axis around the mass anomaly, the
results from the two methods differ less than 1%. However, for the displacement in the
normal direction, representing the movement of the rotational axis towards the negative
mass anomaly, the result obtained based on the quasi-fluid approximation overestimates
the speed. The agreement in the along track direction displacement and a disagreement
in the normal direction displacement between the two methods can be explained by the
small contribution of the equatorial bulge readjustment to the rotational perturbation for
Venus. As pointed out by Spada et al. (1996), for Venus, the rotational behaviour is largely
dominated by the long-term wobble which resembles the free nutation of a rigid body. The
long-term wobble is mainly caused by the mass anomaly itself while the equatorial read-
justment contributes very little. Based on the discussion of figure 4.3, the component I23

also contributes to the along track speed of the wobble. This component is largely over-
estimated by the quasi-fluid approximation, but since its magnitude is much smaller than
the contribution from the mass anomaly itself (less than 1% in this case), the difference be-
tween the two methods can be ignored. However, the damping of the oscillatory motion,
or the displacement of the rotational axis in the normal direction, is solely controlled by
the viscous relaxation of the body, specifically the component I13 in figure 4.3. Since this
component is underestimated by the quasi-fluid approximation, the rotational behaviour
on Venus obtained by adopting the approximation results in too much damping.

In the study of terrestrial planets whose tidal bulge can be ignored, like Earth, Mars, Venus
and Mercury, we may see certain geographic features (e.g. the supercontinent Pangaea on
the Earth or the Tharsis plateau on Mars) which have the potential to cause (or have caused)



4.3. MEGA-WOBBLE: TPW ON VENUS

4

81

Figure 4.5: A point mass of −5×1018 kg is attached at the surface at 45 degrees colatitude. The top figures show
the displacement of the rotational axis in the along track and normal direction. The bottom figures show the
movement of the mass anomaly in the bulge-fixed frame where the rotational axis is always pointing upwards
at the centre. Blue lines are obtained by applying the quasi-fluid approximation and red lines are from the full-
Maxwell method. The black dots are the original locations of the mass anomalies in the bulge-fixed frame.

polar wander. Based on an interior model and TPW history, we can estimate the age of the
feature or the history of its relocation by its (estimated) former and current latitude since
we know that positive mass anomaly tends to relocate towards equator and negative one
towards the pole. The latitudinal information in many situations is much more important
than the longitudinal one if the body is not tidally locked. As a result, correctly estimating
the TPW speed in the latitudinal (normal) direction is crucial for a better understanding of
the planet reorientation. In the following the same Venus model is used and several dif-
ferent magnitudes of mass anomaly are tested. We compare the difference in speed as a
function of colatitude of the mass anomaly in the normal direction between the two meth-
ods. Magnitudes of mass anomaly 1× 1016, 1× 1017, 1× 1018 and 5× 1018 kg are chosen,
which covers 10−5 to 10−6 times of the total mass of Venus, similar to the values chosen in
(Spada et al., 1996). The results are shown in figure 4.6. Generally methods based on the
quasi-fluid approximation overestimate the normal-directional speed by a factor of 3 to 5.
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Spada et al. (1996) state that for the same mass anomaly, the instantaneous velocity of rota-
tional pole on Venus is about 30 times larger than that of Earth and Mars. But they compared
the complete rotational behaviour of Venus whose largest part is the wobble with the secu-
lar rotational behaviour of Earth and Mars in which the Chandler wobble has been filtered
out. A more proper comparison would be either between the speed of Chandler wobble on
Earth or Mars with the mega-wobble on Venus, or between the secular speed of rotational
variation on Earth or Mars and the normal-directional speed of the rotational axis on Venus.
In the latter case, for an Earth, Mars and Venus model with the same average viscosity (rang-
ing from 1020 to 1022 Pa s), it can be shown that TPW on Earth and Mars is 10 to 15 times
larger than the normal-directional speed of Venus’ axis for the mass anomalies considered
in this study. This means that for the same scale of mass anomaly, it will take much longer
on Venus than on Earth or Mars before it can reach the pole or equator. The knowledge of
Venusian viscosity is very limited, if the observed normal-directional change of Venus” axis
is out of this range (1/10 to 1/15 times of the Earth’s TPW), then the average viscosity of
Venus must be lower or higher than that of the Earth.
The results we obtained in this section (e.g. the speed in figure 4.5 and 4.6) are, of course,
dependent on the interior model of Venus. With different viscosities (1019 Pa s to 1022 Pa
s), the TPW speed can be very different but adopting the quasi-fluid approximation always
largely overestimates the normal-directional speed.

4.4. EFFECT OF A REMNANT BULGE ON TPW AND A STUDY OF

MARS

For a viscoelastic model which can be sufficiently relaxed, a positive mass anomaly with any
magnitude will end up at the equator while a negative mass anomaly will eventually reach
the poles. However, most of the observed geophysical features which are thought to have
triggered a reorientation, such as the Tharsis plateau on Mars (Bouley et al., 2016) or Sput-
nik Planitia on Pluto (Keane et al., 2016), are not located exactly at the equator. A common
explanation is that certain parts of the planet, usually the lithosphere which is considered to
be elastic or to have a very high viscosity, have not yet relaxed, preventing the mass anomaly
from being relocated further. The effect of such elastic or highly viscous lithosphere on TPW
has been studied for the linear scheme, e.g. (Mitrovica et al., 2005; Cambiotti et al., 2010),
and the non-linear scheme with the quasi-fluid approximation, e.g. (Harada, 2012; Chan
et al., 2014; Moore et al., 2017). Here we demonstrate the effect of a remnant bulge on the
large-angle TPW with the full-Maxwell method.

First, the origin of the remnant bulge is shown using the normal mode method. This has also
been discussed by Moore et al. (2017). The remnant bulge, either formed by an elastic layer
or a highly viscous layer, appears because of a certain mode(s) which has a much longer (or
infinite) relaxation time compared to other dominant relaxation modes of the model. We
demonstrate this with simple two/three-layer Earth models with and without a lithosphere
of varying viscosity. In table 4.2, the physical properties of the models are shown. Model M1
has a lithosphere viscosity of 1021 Pa s which is the same as the mantle, thus this is actually
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Figure 4.6: Normal directional speed of the rotational axis towards the mass anomaly as a function of the colati-
tude.

a two-layer model without lithosphere. The lithosphere of models M2-M5 have viscosities
of 1024,1026, 1029 and ∞ Pa s, respectively.

Table 4.2: Properties of the two/three-layer Earth models (M1-M5)

Layer Outer Radius (km) Density (kg m−3) Shear Modulus (Pa) Viscosity (Pa s)
Lithosphere 6371 4448 1.7×1011 1×1021,24,26,29,∞

Mantle 6361 4448 1.7×1011 1×1021

Core 3480 10977 0 0

The degree 2 potential tidal Love numbers of models M1-M5 are shown in table 4.3, where
the inverse relaxation time si has unit 1/ka. Following Sabadini et al. (2016), we can see
that the two layer model M1 only contains two relaxation modes, C0 corresponding to the
core-mantle boundary and M0 corresponding to the surface. When a viscoelastic layer with
the same density is added to the model (M2-M5), two additional transition modes, T̄1 and
T̄2, are triggered if the Maxwell time on either side of the boundary is different. In the case
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of model M2, these two additional modes have relaxation times not too different from the
dominant modes (C0 and M0 in this case). Consequently, the delayed relaxation of both T̄1

and T̄2 is not large enough to cause a remnant bulge. However, in the case of M3 and M4,
as the viscosity of the lithosphere increases, the relaxation time for one of the T̄ modes in-
creases with the same order as the viscosity. It is this T̄ mode that determines if the remnant
bulge is present. As the viscosity of the lithosphere increases further and eventually ap-
proaches infinity, as is the case in model M5, the T̄1 mode disappears and its mode strength
−k1/s1 becomes absent in the fluid Love number k f . It can be seen that the difference in
the fluid Love number between M5 and M4 is almost the same as the mode strength of T̄1

in M4: kM4
f −kM5

f ≈ (k1/s1)M4. The remnant bulge is dealt with in previous studies by ei-

ther those dealing with an elastic lithosphere Mitrovica et al. (2005); Cambiotti et al. (2010);
Harada (2012); Chan et al. (2014) or viscoelastic lithosphere (Cambiotti et al., 2010; Moore
et al., 2017) by isolating this part of the Love number and formulating the influence of it
separately.

Table 4.3: Potential tidal Love number of models M1-M4

M1 (1021 Pa s) M2 (1024 Pa s) M3 (1026 Pa s) M4 (1029 Pa s) M5 (∞ Pa s)
Modes si −ki /si si −ki /si si −ki /si si −ki /si si −ki /si

ke 0.3449 0.3449 0.3449 0.3449 0.3449
T1 -0.5341e-1 0.4731e-2 -0.5343e-3 0.4204e-2 -0.5343e-6 0.4200e-2
T2 -0.7886e-1 0.3045e-2 -0.2764e-1 0.2035e-2 -0.2713e-1 0.2027e-2 -0.2712e-1 0.2027e-2
C0 -0.4086 0.2376 -0.4208 0.2337 -0.4193 0.2351 -0.4193 0.2352 -0.4193 0.2352
M0 2.225 0.4591 -2.2344 0.4552 -2.2343 0.4553 -2.2343 0.4553 -2.2343 0.4553
k f 1.0416 1.0416 1.0416 1.0416 1.0374

One of the advantages of the full-Maxwell method is that we can choose any value for the
initial loading time Th . This enables us to simulate the influence of the remnant bulge with-
out any extra formulation. To include such a bulge caused by a very slow relaxation mode,
we only need to set the initial loading time Th to a value large enough so that this slow mode
is fully relaxed to the centrifugal force, according to the condition in equation 4.19. For in-
stance, for the model M4 in table 4.3, we can set Th = 1×109 ka which guarantees that the
T̄1 mode is relaxed. In practice, we do not need to simulate the case with a fully elastic layer.
Instead, we can always set the viscosity of the layer high enough to guarantee that its relax-
ation within the considered time can be ignored. In that case, the lithosphere is effectively
elastic.

Now we demonstrate the effect of a remnant bulge with the full-Maxwell method and com-
pare the results with those obtained by applying the quasi-fluid approximation. A more
realistic SG6 model is used, in contrast with those shown in figure 4.4 where the slowest
mode is ignored. Three cases with different thickness of the lithosphere are considered and
the viscosity of this layer is set to 1031 Pa s so that within the considered time span (10 mil-
lion years), the relaxation of the slowest mode can be ignored. We compare our results with
those obtained by using the method of Chan et al. (2014) which is based on the quasi-fluid
approximation. The results are shown in figure 4.7. While predicting the same end position
of TPW, the quasi-fluid approximation gives a much slower transient response.

Next we show the effect of a viscoelastic lithosphere whose viscosity has a relaxation time
which is comparable with the considered time span. This issue is important because whether
or not the lithosphere can relax during the considered period can affect the TPW behaviour
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Figure 4.7: Polar wander in the X-Z plane for the Earth models with different lithosphere thickness triggered by a
point mass of 2×1019 kg attached at the surface at 20 degrees colatitude. Solid lines show results obtained with
the full-Maxwell method from this paper, the line-dots are calculated with the method by Chan et al. (2014) which
is based on the quasi-fluid approximation.

both in the short term (e.g. the speed) and the long term. The comparison between the
effect of an effectively-elastic and a viscoelastic lithosphere on small-range TPW (less than
2 degrees) has been done by Cambiotti et al. (2010) using a linear scheme. Here we show
the effect when large angle TPW is considered. For this issue Moore et al. (2017) extend the
theory in Chan et al. (2014) and consider the slowest mode(s) separately while applying the
quasi-fluid approximation to the rest of the modes. Apart from the bias introduced by the
quasi-fluid approximation as shown in figure 4.7, another problem of this approach is that
for a complex multi-layered model like the SG6 Earth model with its lithosphere viscosity
smaller than a certain value (e.g. 1028 Pa s for SG6 model), the slowest mode might not be
the T̄1 mode from the lithosphere but one of the M modes (M2, M3...) which is generated
by a density difference of the inner layers. Moreover, there might not be a large difference in
the relaxation time between two modes (such as cases M3 and M4 in table 4.3), as a result, it
is not clear which modes need to be modelled separately. Our approach does not have this
limitation. Similar to the case of an effectively-elastic lithosphere, we only need to choose
a large enough value for Th . Here the SG6 model with lithospheric thicknesses of 0, 10 and
20 km and with viscosities of 1027 and 1031 Pa s is used. A mass anomaly of 2×1019 kg is
placed at 30 degree colatitude for 10 million years, then removed. Within the considered
time span of 20 million years, the lithosphere with viscosity of 1031 Pa s can be considered
as effectively elastic while that with a viscosity of 1027 Pa s is partially relaxed. The result
is shown in figure 4.8. We see that the behaviour of the TPW is very sensitive to the thick-
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ness of the lithosphere. A thicker lithosphere gives stronger resistance against TPW as well
as a faster rebounding of the rotational axis when the triggering load is removed. Due to
the partial relaxation of the T̄1 mode, which allows the equatorial bulge to adjust faster for
the high viscosity lithosphere, the TPW for models with a low viscosity lithosphere is larger
and the rotational axis can not go back to its original position after the mass anomaly is
removed.
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Figure 4.8: A point mass of 2×1019 kg attached at the surface at 30 degree colatitude and removed after 10 million
years. Lines are for models with viscosity of 1031 Pa s and line-crosses are for models with viscosity of 1027 Pa s.

We also apply our method to a model of Mars to compare the speed of TPW on Mars calcu-
lated by the two methods. We establish a 5 layer model whose density and rigidity approx-
imates the model in Zharkov and Gudkova (2005) which contains a 50 km lithosphere. The
viscosity of the model is divided into an effectively elastic lithosphere and a uniform mantle
of viscosities 1019 Pa s, 1020 Pa s, 1021 Pa s and 1022 Pa s which covers the value used in most
recent studies (Hauck and Phillips, 2002; Breuer and Spohn, 2006). We load the model with
a surface mass anomaly of magnitude 3.5×1019 kg (which is about the magnitude for Q=1
for the normalized load parameter Q defined in Willemann (1984) and used by Matsuyama
and Nimmo (2007); Chan et al. (2014)) placed at 45 degree latitude. The results are shown in
figure 4.9. Similar to the Earth model, the quasi-fluid approximation has a large underesti-
mation of the speed for most of the duration of the TPW. The instantaneous speed from the
full-Maxwell method is, for all four viscosities, about 4.6 times as large as those obtained
based on the quasi-fluid approximation. The reason for this is, as mentioned before, the
underestimation of the equatorial bulge readjustment when the approximation is adopted.
When the rotational axis approaches its end position, the speed of TPW obtained from the
full-Maxwell method drops faster than for the quasi-fluid approximation which results in
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the end position being reached later. Generally, the method based on the quasi-fluid ap-
proximation underestimates the time it takes for a mass anomaly to reach its end position
by about half, compared to the full-Maxwell method.

Figure 4.9: TPW on Mars triggered by a mass anomaly of 3.5×1019 kg which is attached at the surface at 45 degree
latitude for four different values of mantle viscosity. This magnitude is about the same as for Q=1 of the normalized
load parameter Q defined in Willemann (1984).

4.5. TPW ON A MODEL WITHOUT HYDROSTATIC EQUILIBRIUM

In practice, a physical model (consisting of layers with given density, rigidity and viscosity)
can be derived from a geochemical model and the density profile matches the total mass
and/or gravitational data. However, it can happen that the predicted tidal fluid Love num-
ber based on the physical model does not match the observed value for the present-day
rotational speed Ω. By assuming that the model is in hydrostatic equilibrium, the fluid
Love number can be estimated from the observed difference in the polar and equatorial
moments of inertia C − A (Mound et al., 2003):

kobs
f = 3G

a5Ω2 (C − A)obs (4.25)
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For the Earth, this issue appears to have been studied first by Mitrovica et al. (2005) who
introduced the β correction term to the tidal fluid Love number when the present-day TPW
speed is estimated. Usually it is considered that this extra non-hydrostatic contribution
stems from mantle convection. Here we simulate another possible cause for this contri-
bution and its effect on TPW. Before the TPW starts, the lithosphere is not in hydrostatic
equilibrium, or more specifically, the permanent shape of the elastic lithosphere does not
match the present-day rotational speed. The stress-free flattening of the elastic layer can be
either larger or smaller because the rotational speed during the formation of the planet (or
moon) was either faster or slower than the present-day value, e.g. for the Moon (Garrick-
Bethell et al., 2006; Matsuyama, 2013). We demonstrate here the influence on the TPW of a
lithosphere with the same thickness but in different hydrostatic state.

Since the influence of each relaxation mode si is formulated separately in terms ai , j ,p,q (t )
and ci , j ,p,q (t ) in equation 4.30 in Appendix I of this chapter, we can set both the initial load-
ing potential characterized by ωi (t ) and the loading period differently for each relaxation
mode to simulate the model being in a different hydrostatic state. For each relaxation mode
si , we set the initial loading period as Tih and the rotational speed as ωi0 . In contrast to
equation 4.17, we now have

T0,i = 0 (4.26a)

T1,i = Tih (4.26b)

(W1,0,W2,0,W3,0)i = (W1,1,W2,1,W3,1)i =ωi0 (4.26c)

In the following, we show that the choice of the hydrostatic state is as important as the
choice of the model. We demonstrate this concept using SG6 models with a thin (10 km) and
thick (20 km) lithosphere. As shown in figure 4.8, when the models are in hydrostatic equi-
librium, different lithospheric thicknesses result in significantly different TPW behaviour.
This SG6 model is put into two categories which results in four scenarios in total.

Category I:
I. a A thin-lithosphere model in hydrostatic equilibrium with the present-day rotational
speed.
I. b A thick-lithosphere model whose slowest mode has relaxed so that its mode strength is
equal to that of the thin lithosphere model:

(
k1

s1
)thick × (1−e s1Th1 ) = (

k1

s1
)thin (4.27)

Since other modes are much faster than the slowest mode, this Th1 is set for all the modes.
In this way, all other modes except the slowest one are fully relaxed. The partial relaxation of
the slowest mode of the thick-lithosphere model has the same strength as the slowest mode
of the thin-lithosphere model. Scenario I. b is created to simulate that the rotational speed
during the formation of the lithosphere was slower than present-day.
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Category II:
II. a A thick-lithosphere model in hydrostatic equilibrium with the present-day rotational
speed.
II. b A thin-lithosphere model whose slowest mode has fully relaxed for a faster rotational
speed of:

ωThin
10

=
√

(k1/s1)Thick

(k1/s1)Thin
ω0 (4.28)

where ω0 is the present-day rotational speed. (k1/s1)Thick and (k1/s1)Thin are the mode
strengths of the slowest modes of the thick and thin lithosphere model, respectively. Sce-
nario II. b corresponds to the situation that the rotational speed during the formation of the
lithosphere is faster than the present-day value. With equations 4.27 and 4.28, we configure
the scenarios of models without hydrostatic equilibrium, I. b and II. b, such that the influ-
ence of the slowest mode has the same contribution to the inertia tensor of the entire model
at the start of the simulation in each category. We test the model with an effectively elastic
lithosphere (viscosity 1031 Pa s) with the same loading as those in figure 4.8. The results are
shown in figure 4.10.
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Figure 4.10: TPW for a point mass of 2×1019 kg attached at the surface at 30 degree colatitude and removed after
10 million years. Red and blue lines are models with an effectively-elastic (viscosity 1031 Pa s) lithosphere with
thickness of 10 km and 20 km,respectively, which are in hydrostatic equilibrium. Green and black lines represent
models with a lithosphere thickness of 10 km and 20 km, respectively and their lithospheres initially contribute the
same to the moment of inertia as the models in hydrostatic equilibrium.

As we can see in figure 4.10, although the models in each category have different thicknesses
of the lithosphere and hydrostatic states, the performance of TPW is almost identical. This
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can be understood as follows: when the lithosphere is thin enough (e.g. less than 100 km for
the Earth’s case), the influence of changing the properties of this layer (thickness, rigidity,
viscosity) is very small on modes other than T̄1 and T̄2 generated from the non-lithosphere
part of the model. Its largest effect is, as shown in figure 4.4, a remnant bulge which resists
the readjustment of the equatorial bulge. Once we choose a proper hydrostatic state so that
the same contribution to the inertia tensor is guaranteed from the lithosphere of a different
model, the path of TPW will also be almost the same. As for the issue concerning the dif-
ference between the observed and model predicted flattening, it can be seen from equation
4.28 that if the elastic layer generates a mode with strength −k1/s1 and the rotational speed
during its formation isΩ0, andΩc at present-day, then this elastic layer would cause an ex-
tra flattening represented in the observed fluid Love number as:

∆kobs
f =−k1

s1

[
(
Ω0

Ωc
)2 −1

]
(4.29)

For the Earth model, for instance, considering that 6 million years ago the rotational speed
of Earth was about 15% faster (Zahnle and Walker, 1987), the rotational speed during the
formation of the lithosphere would be even higher considering that tidal dissipation started
when the Earth-moon system formed about 4.5 billion years ago. An elastic lithosphere
of 80 km with a rotational speed during formation that is 30% faster than the present-day
speed would cause the observed fluid Love number to increase by about 0.01.

We conclude that for the study of TPW for a model with a lithosphere, it is necessary to know
both the initial stress-free shape of the lithosphere as well as its thickness before a correct
TPW behaviour can be predicted. This can be significant for the study of TPW on Mars since
it has less tectonic activity compared to Earth to release the stress in its lithosphere, which
results in a higher chance that Mars is not in hydrostatic equilibrium.

4.6. CONCLUSION

We have established a new semi-analytical method for calculating large-angle true polar
wander (TPW) which is consistent with the complete scheme of Maxwell rheology, meaning
that both fast and slow modes are correctly taken into account, in contrast with previous
studies which adopt the quasi-fluid approximation that approximate the Love number. We
extend the scheme of the linearized Liouville equation in Hu et al. (2017b) which can also
be used to simulate the mega-wobble on Venus. The influence of the delayed relaxation
of elastic or highly viscous layers as well as models in different hydrostatic states (e.g. not
in hydrostatic equilibrium) has been studied. With the help of our model, the following
conclusions can be drawn:

• The quasi-fluid approximation can introduce a large error in the transient response
for a time-dependent solution. The TPW speed on Earth and Mars based on the quasi-
fluid approximation can be underestimated while the speed of the rotational axis ap-
proaching the end position on Venus is overestimated.
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• Depending on the considered period, the TPW for a model with a viscoelastic litho-
sphere can have a larger displacement and a weaker restoring response compared to
a model with an (effectively) elastic lithosphere. Due to the sensitivity of TPW to the
shape of the lithosphere, the viscosity of the lithosphere needs to be taken into ac-
count when the studied period is not much shorter than the relaxation time of the
lithosphere.

• The permanent shape of the elastic lithosphere can have a large effect on the TPW
and this can be an additional explanation for the difference between the observed
and model-predicted flattening of a rotating body.

Thus, studies involving TPW can benefit from our method to achieve better accuracy in
the pole path, especially while taking into account a viscous lithosphere or non-hydrostatic
background. Our method can also be extended to tidally deformed models. In this paper
we applied algorithm 2 of Hu et al. (2017b) to calculate the rotational perturbation. In the
same paper, a new iterative procedure was also presented to combine both the rotational
and tidal perturbation (algorithm 3). Combining this algorithm with the analytical solution
for the change in the moment of inertia presented in the present paper can give a semi-
analytical solution for large angle reorientations of rotating tidally deformed bodies.

APPENDIX I: EXPRESSIONS FOR Ai , j (t ) , Bi , j (t ), Ci , j (t ) AND Di , j (t )

kT (t )∗ωi (t )ω j (t )|t=Tn = Ai , j (Tn)+Bi , j (4.30a)

d [kT (t )∗ωi (t )ω j (t )]

d t
|t=Tn =Ci , j (Tn)+Di , j (4.30b)

where

Ai , j (t ) =
n∑

p=1

m∑
q=1

ai , j ,p,q (t ) (4.31)

(4.32)

Ci , j (t ) =
n∑

p=1

m∑
q=1

ci , j ,p,q (t ) (4.33)

(4.34)

and

Bi , j = kT
e Wi ,nW j ,n (4.35a)

Di , j = kT
e

(
Wi ,n−1W j ,n +Wi ,n

(
W j ,n−1 −2W j ,n

))
Tn−1 −Tn

(4.35b)
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where for t > Tp

ai , j ,p,q (t ) = kq

(Tp−1 −Tp )2s3
q

(e sq (t−Tp−1)(Wi ,n(W j ,n−1((Tp −Tp−1)sq −2)+2W j ,n)

+Wi ,n−1
(
W j ,n−1

((
Tp−1 −Tp

)
sq

((
Tp−1 −Tp

)
sq +2

)+2
)+W j ,n

((
Tp −Tp−1

)
sq −2

))
)

−e sq (t−Tp )(Wi ,n−1(W j ,n((Tp−1 −Tp )sq −2)+2W j ,n−1)

+Wi ,n
(((

Tp−1 −Tp
)

sq −2
)((

Tp−1 −Tp
)

sqW j ,n +W j ,n−1
)+2W j ,n

)
))

(4.36)

ci , j ,p,q (t ) = kq e−sq Tp−1(
Tp−1 −Tp

)
2s2

q
(e t sq (Wi ,n

(
W j ,n−1

((
Tp −Tp−1

)
sq −2

)+2W j ,n
)

+Wi ,n−1
(
W j ,n−1

((
Tp−1 −Tp

)
sq

((
Tp−1 −Tp

)
sq +2

)+2
)+W j ,n

((
Tp −Tp−1

)
sq −2

))
)

−e sq (Tp−1−Tp+t)(Wi ,n−1
(
W j ,n

((
Tp−1 −Tp

)
sq −2

)+2W j ,n−1
)
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Tp−1 −Tp
)

sq −2
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Tp−1 −Tp
)
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)+2W j ,n
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(4.37)

and for t ≤ Tp

ai , j ,p,q (t ) = kq(
Tp−1 −Tp

)
2s3

q
(Wi ,n(W j ,n−1(sq (sq

(
t −Tp−1

)(
t −Tp

)+ (
Tp −Tp−1

)
e sq (t−Tp−1)

−Tp−1 −Tp +2t )−2e sq (t−Tp−1) +2)
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(
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(4.38)

ci , j ,p,q (t ) = kq e−sq Tp−1(
Tp−1 −Tp

)
2s2

q
(e t sq (Wi ,n
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(4.39)

APPENDIX III: GOVERNING EQUATION FOR THE CASE B < C < A
AND B >C > A

For the case B >C > A, we assume that the changes in the inertia tensor are linear:
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∆I13(t ) = a1 +b1t (4.40a)

∆I23(t ) = a2 +b2t (4.40b)

Then equation 3.9 can be solved analytically which results in

m′
1(t ) =

√
B

A(C − A)3(B −C )Ω2 sinh

(√
(C − A)(B −C )

AB
Ω∆t

)(
(C − A)∆I23(t )−C∆

.
I 13 (t )

)

−cosh

(√
(C − A)(B −C )

AB
Ω∆t

)(
∆I13(t )

C − A
+ C∆

.
I 23 (t )

Ω(C − A)(B −C )

)

+
(
∆I13(t )

C − A
+ C∆

.
I 23 (t )

Ω(C − A)(B −C )

)
(4.41)

m′
2(t ) =

√
A

B(C − A)(B −C )3Ω2 sinh

(√
(C − A)(B −C )

AB
Ω∆t

)(
(C −B)∆I13(t )+C∆

.
I 23 (t )

)

+cosh

(√
(C − A)(B −C )

AB
Ω∆t

)(
∆I23(t )

B −C
− C∆

.
I 13 (t )

Ω(C − A)(B −C )

)

−
(
∆I23(t )

B −C
− C∆

.
I 13 (t )

Ω(C − A)(B −C )

)
(4.42)

Where sinh(u) and cosh(u) are hyperbolic functions

sinh(u) = eu −e−u

2
(4.43a)

cosh(u) = eu +e−u

2
(4.43b)

When ∆t is small enough, we can apply approximation sinh(θ) ≈ θ and cosh(θ) ≈ 1−θ2/2.
Ignoring the derivative terms of the inertia tensor simplifies equation 4.41 and 4.42 into

m′
1(t ) = (B −C )Ω2∆I13(t )∆t 2 +2BΩ∆I23(t )∆t

2AB
(4.44a)

m′
2(t ) = −(C − A)Ω2∆I23(t )∆t 2 −2AΩ∆I13(t )∆t

2AB
(4.44b)

The same procedure can be applied to the case A >C > B , which results in
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m′′
1 (t ) = (C −B)Ω2∆I13(t )∆t 2 +2BΩ∆I23(t )∆t

2AB
(4.45a)

m′′
2 (t ) = −(A−C )Ω2∆I23(t )∆t 2 −2AΩ∆I13(t )∆t

2AB
(4.45b)
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For a long time, the reorientation or true polar wander (TPW) of visco-elastic bodies has been
studied with approximated solutions. Two types of methods are commonly addopted: those
based on the quasi-fluid approximation (e.g. (Ricard et al., 1993)) and those that only con-
sider the final reorientation (fluid limit) (e.g. (Matsuyama and Nimmo, 2007)). Recently,
Hu et al. (2017b) generated a dynamic solution for calculating the reorientation of tidally
deformed bodies but did not provide the links between the dynamic and the fluid limit so-
lutions. This paper provides a semi-analytical method for calculating the reorientation of
tidally deformed bodies and shows the relation between the dynamic and fluid limit solu-
tions. Most importantly, we provide a criterion, the fluid limit process number F , to test
for a given model and estimated TPW speed if the quasi-fluid approximation or fluid limit
solution is valid. This number is a quantitative description of how close the body stays in
hydrostatic equilibrium during a reorientation process. We use this number to obtain the
largest allowed TPW speed of Mars for various viscosities to use the approximated solution.
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5.1. INTRODUCTION

For a rotating tidally locked planetary body, its orientation is stable when the rotational axis
coincides with the principal axis with the largest moment of inertia and the tidal bulge is
pointing towards the source of the tidal potential. This state corresponds to the minimum
potential of the body when its viscoelastic part is fully relaxed. Perturbations such as mass
redistribution, which changes the body’s moment of inertia, will cause the body to reorient
until a new minimal potential state is achieved. Such reorientation is often referred to as
true polar wander (TPW) which is the displacement of the rotational/tidal axis with respect
to surface topography or internal signatures. TPW is a common explanation for many sur-
face features especially when they are present at or near the polar or equator such as the
Tharsis plateau on Mars (Bouley et al., 2016), the tiger stripes on Enceladus (Nimmo and
Pappalardo, 2006), the heart-shaped Sputnik Planitia on Pluto (Keane et al., 2016), etc.

The mathematical description of TPW includes the Liouville equation which represents the
conservation of the angular momentum in the body-fixed frame and the moment of iner-
tia equation which describes the change in the inertia tensor due to the deformation of the
body and the mass redistribution. Due to the viscoelasticity of the body, computing the de-
formation involves convolution of the tidal Love number with the centrifugal and tidal po-
tential, which increases the difficulty to solve these two equations analytically. Large angle
TPW has been studied with approximated solutions such as those based on the quasi-fluid
approximation which approximates the Love number with its first order Taylor expansion
(e.g. (Spada et al., 1992a; Ricard et al., 1993; Cambiotti et al., 2010; Harada, 2012; Chan et al.,
2014; Moore et al., 2017)). When a tidal bulge is present, the situation becomes even more
difficult since the reorientation of the body does not only concern the relocation of the ro-
tational axis, but also the tidal axis in which case the traditional rotational theory, linear
or nonlinear, can not be applied anymore. Instead, most previous studies do not seek a dy-
namic solution for the reorientation of a tidally deformed body but only calculate the body’s
final reorientation given a perturbation. This approach considers the stabilizing effect of the
lithosphere on the planetary body which was first brought up by Willemann (1984) and later
studied by Mitrovica et al. (2005); Cambiotti et al. (2010); Harada (2012); Chan et al. (2014);
Harada and Xiao (2015); Moore et al. (2017). Simply speaking, the viscoelastic body does
not show any resistance to the change in the direction of the centrifugal or tidal force in the
long-term since all the accumulated stress in the viscoelastic part eventually relaxes. As a
result, the final reorientation of the body is only determined by the non-viscous part, usu-
ally the elastic lithosphere. Adopting this concept, Matsuyama and Nimmo (2007) provided
a method to calculate the final state of a tidally deformed body with an elastic lithosphere.
For a Heaviside load, the method from Matsuyama and Nimmo (2007) only provides the
final position for the rotational and tidal axes but not the reorientation path. When the size
of the load changes, e.g. if the mass anomaly is caused by accumulation of volatile material
in which the size of the mass anomaly is a ramp function, the method from Matsuyama and
Nimmo (2007) does provide a reorientation path, but the axes can only follow these paths
when the body is fully relaxed at any moment of the reorientation. As a result, the method
of Matsuyama and Nimmo (2007) is referred to as the fluid limit solution. If the speed of
TPW is very slow, the body has more time to relax and will be closer to the fluid limit state.
Then the fluid limit solution will be close to the dynamic solution. In this case, the body acts
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like an inviscid body. On the other hand, as pointed out in (Hu et al., 2017a), as the change
in the load decreases, deformation based on the quasi-fluid approximation approaches the
fluid limit solution which itself is close to the dynamic solution. Based on this, the fluid
limit solution and quasi-fluid approximation can both be valid when the TPW speed is slow
enough. However, it is not known how slow the TPW needs to be so that these approximated
solutions are accurate enough.

Recently, Hu et al. (2017b) developed an iterative procedure to provide a dynamic solution
for calculating the reorientation of a rotating tidally deformed body without a lithosphere.
However, Hu et al. (2017b) could not provide a comparison with the fluid limit solution be-
cause of lack of the lithosphere. This is because in (Hu et al., 2017b), the change in the mo-
ment of inertia is calculated numerically either by a finite-element package or by direct con-
volution. This is computationally expensive and is not suitable to deal with a lithosphere
which is usually simulated with an extremely high viscosity (effectively elastic). Hu et al.
(2017a) provided an analytical solution for calculating the inertia tensor without approxi-
mating the Love number and studied the effect of the lithosphere, referred to as a remnant
bulge, on planetary bodies without a tidal bulge. Adding the tidal potential to the model and
combining this analytical expression for the inertia tensor with the algorithm developed in
Hu et al. (2017b) generates a semi-analytical method which can deal with tidally deformed
bodies with a lithosphere. Including the influence of a lithosphere is crucial to give a correct
prediction of TPW since it affects both the TPW speed and the final reorientation Mitrovica
et al. (2005); Harada (2012); Chan et al. (2014); Moore et al. (2017); Hu et al. (2017a).

The first purpose of this paper is to establish a semi-analytical solution for reorientation of
a rotating tidally deformed body with a lithosphere. The results will be compared with the
fluid limit solution. Secondly, we want to provide a criterion to establish under which cir-
cumstances the approximated solutions, namely the fluid limit solution and those based on
the quasi-fluid approximation, can be valid for a given interior model and estimated TPW
speed. This can help us to either properly interpret previous studies based on approximated
solutions or choose a valid method in future studies. In the next section, we first introduce
the fluid limit solution from Matsuyama and Nimmo (2007) and establish our dynamic so-
lution. In section 5.3, we compare both methods for a Heaviside load and show the effect
of the size of the tidal bulge on the reorientation. The size of the tidal bulge can potentially
change the path and speed of the TPW which has not been studied yet. In section 5.4, the
reorientation for a ramp type load is compared between the two methods and we provide a
criterion for testing the validity of the fluid limit solution. A Mars model is tested in section
5.5 and we show that the criterion can provide the condition for which both the fluid limit
solution and solutions based on the quasi-fluid approximation are valid.

5.2. METHOD

In this section, we first introduce the fluid limit method by Matsuyama and Nimmo (2007)
which calculates the final state of a reorientation of a planetary body with an elastic litho-
sphere. Then we establish our dynamic solution by combining the iterative algorithm in-
troduced in Hu et al. (2017b) and the analytical solution of the change in the inertia tensor
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given by (Hu et al., 2017a).

5.2.1. FLUID LIMIT SOLUTION OF WILLEMANN (1984); MATSUYAMA AND NIMMO

(2007)

Willemann (1984); Matsuyama and Nimmo (2007) are concerned with the final state of a
reorientation of a tidally deformed body with an elastic lithosphere. This kind of stratified
body usually contains a layer of lithosphere, one or several layers of mantle and a core. Since
the viscoelastic mantle and inviscid core (if it is liquid) do not show any resistance against a
reorientation in the long-term, the final state of the body only depends on the initial stress-
free shape of the lithosphere and the mass anomaly which causes the reorientation. The
inertia tensor associated with the lithosphere of a tidally deformed body together with the
mass anomaly can be written as (Matsuyama et al., 2014)

Ii , j = ∆kTΩ2a5

3G

(
eR

i eR
j − 1

3
δi j

)
− ∆kTΩ2a5

3G

(
3MC

M +MC

)(
eT

i eT
j − 1

3
δi j

)
+(1+kL)Ci , j

(5.1)

where the first term on the right-hand side stands for the deformation due to the centrifugal
force, the second term is the contribution from the tidal deformation and the last term is
from the mass anomaly. G is the gravitational constant and a is the radius of the planet. eR

and eT are unit vectors giving the initial directions of the rotational and tidal axes. Ω is the
initial rotational speed and M , MC are the mass of the body and its orbiting host, respec-
tively. ∆kT stands for either the mode strength associated with the slower transient mode
(Sabadini et al., 2016) of the lithosphere (high viscous case) or the difference between the
fluid tidal Love numbers of the body without and with the lithosphere (elastic case). kL is
the fluid load Love number. From the term 3MC

M+MC
, which will be called tidal potential fac-

tor, we can see that when MC >> M , such as for satellites like Europa or Enceladus, the tidal
deformation is about three times the magnitude of the centrifugal part. For Pluto, however,
the tidal part contributes only about 11% of the magnitude of its centrifugal deformation
considering the mass of the Charon is 12.2% of the Pluto. We will show in section 5.3 that
this term has a significant influence on the reorientation path. When the inertia tensor of
the lithosphere and mass anomaly is given by equation 5.1, the final reorientation can be
obtained by diagonalizing the matrix Ii j . the largest and smallest eigenvectors represent
the final direction of the rotational and tidal axes.
When a Heaviside load is applied, the fluid limit solution only gives the final state and we
do not know the process or the path of the reorientation. When the load is varying and
time-dependent, so that Ci j and Ii j in equation 5.1 become Ci j (t ) and Ii j (t ), the fluid limit
solution can provide a time-dependent reorientation path. We will explore in section 5.4 in
which case this path is valid to represent the real reorientation path.

5.2.2. A DYNAMIC SOLUTION

The difficulty to obtain a dynamic solution of the reorientation for a tidally deformed body
is that the perturbation on both the rotational axis as well as the tidal axis need to be cal-
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culated and the two perturbations need to be combined to fit the constraint that the angle
between the rotational and tidal axes at a given moment is fixed (i.e. perpendicular when
the axial tilt can be ignored). Hu et al. (2017b) established a method which treats the per-
turbation on the tidal axis in the same way as the rotational axis by applying the linearized
Liouville equation. In (Hu et al., 2017b), the change in the inertia tensor is obtained by nu-
merical convolution or with a finite element package, which makes the method not suitable
for dealing with a lithosphere with extremely high viscosity. Hu et al. (2017a) provided an
analytical way to obtain the change in the inertia tensor for a full-Maxwell rheology scheme,
in contrast with approaches that based on the quasi-fluid approximation (e.g. Ricard et al.
(1993)). The purpose of this subsection is to combine the analytical way of calculating
change in the inertia tensor presented in (Hu et al., 2017a) and the iterative algorithm in
Hu et al. (2017b) to obtain a semi-analytical solution for reorientation of a tidally deformed
body with a high-viscous lithosphere.

For a centrifugally and tidally deformed body, the time-dependent change in the inertia
tensor can be written as

Ii , j (t ) = Iδi j + kT (t )a5

3G
∗

[
ωR

i (t )ωR
j (t )− 1

3
ωR

l ω
R
l δi j

]
−kT (t )a5

3G
∗

[
ωT

i (t )ωT
j (t )− 1

3
ωT

l ω
T
l δi j

]
+ [δ(t )+kL(t )]∗Ci , j (t )

(5.2)

where I is the principle moment of inertia of the unloaded laterally homogeneous spherical
body. ωR = (ωR

1 ,ωR
2 ,ωR

3 ) is the rotation vector whose magnitude is the rotational speed.
ωT = (ωT

1 ,ωT
2 ,ωT

3 ) is the tidal vector whose magnitude satisfies

|ωT | =
√

3GMT

a3 (5.3)

Following the procedure shown in (Hu et al., 2017a), in order to solve equation 5.2, we ap-
proximate bothωR andωT as piecewise linear functions

ωR
i (t ) =

n∑
p=1

ωR
i ,p (5.4a)

ωT
i (t ) =

n∑
p=1

ωT
i ,p (5.4b)
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where

ωR
i ,p =

(
W R

i ,p−1 +
W R

i ,p −W R
i ,p−1

Tp −Tp−1
(t −Tp−1)
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Here H(t ) is Heaviside function. At time t = Tp , p = 1,2, ...n, we haveωR
i (Tp ) = (W R

1,p ,W R
2,p ,W R

3,p )

and ωT
i (Tp ) = (W T

1,p ,W T
2,p ,W T

3,p ). With equation 5.4, equation 5.2 and its derivative at time
t = Tn can be expressed analytically as

Ii , j (Tn) = Iδi , j + a5

3G
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(5.6)

İi , j (Tn) = a5
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3
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(C̄k,k (Tn)+ D̄k,k )]+ Ėi , j (Tn)

(5.7)

The expressions for Ai j ,Bi j ,Ci j ,Di j and Āi j , B̄i j ,C̄i j ,D̄i j can be found in (Hu et al., 2017a).

As shown in (Hu et al., 2017a), for a given hydrostatic state the model needs to be loaded
with a corresponding centrifugal and tidal force (not necessarily the same as the present-
day values) for a time span Th after which all the modes are sufficiently relaxed. So for the
first two time steps, we have

T0 = 0 (5.8a)

T1 = Th (5.8b)

(W R
1,0,W R

2,0,W R
3,0) = (W R

1,1,W R
2,1,W R

3,1) =ωR
0 (5.8c)

(W T
1,0,W T

2,0,W T
3,0) = (W T

1,1,W T
2,1,W T

3,1) =ωT
0 (5.8d)

whereωR
0 andωT

0 are the initial rotational and tidal vectors before the reorientation is trig-
gered by the mass anomaly. When the Tp , W R

i ,p and W T
i ,p are known for p = 1,2, ..n−1, given

a new time step step Tn , the new reorientation W R
i ,n and W T

i ,n can be obtained by the itera-
tive algorithm given by Hu et al. (2017b). The procedure is shown in appendix I of chapter 3.



5.3. REORIENTATION DUE TO A HEAVISIDE LOAD

5

101

Comparing with the original procedure in Hu et al. (2017b), the main feature of the method
presented in this section is that we can deal with layers with extremely high viscosity. As a
result, we can validate the iterative algorithm by comparing the results with those obtained
by the fluid limit method from Matsuyama and Nimmo (2007) which will be discussed in
the following sections.

5.3. REORIENTATION DUE TO A HEAVISIDE LOAD

As a first comparison and validation for the dynamic method, we simulate the reorientation
of a tidally deformed body with an effectively elastic (very high viscosity) lithosphere due to
a Heaviside load. In this case, the fluid limit solution only provides the final reorientation,
but we can test if the dynamic solutions approach the predicted end positions. We use the
same Triton model which was used in (Hu et al., 2017b) and add a 10 km lithosphere which
has the same density and rigidity as the Ice I layer but with a viscosity of 1032 Pa s which
guarantees that this layer behaves elastic during the simulated period. The interior model
is shown in table 5.1.

Table 5.1: Properties of Triton

Layer Outer Radius (km) Density (kg m−3) Shear Modulus (Pa) Viscosity (Pa s)
Ice Shell 1352 937 3.6×109 1×1032

Ice I 1342 937 3.6×109 1×1021

Ice II 1100 1193 6.2×109 1×1021

Mantle 950 3500 65×109 1×1019

Core 600 5844.8 0 0

We first calculate the fluid limit solution for a positive mass anomaly of magnitudes ranging
from 0 to 6×1017 kg, which is large enough to be relocated close to the sub-Neptune point
for the Triton model used. In order to show the complete reorientation, both the displace-
ments of the rotational and tidal axes need to be shown in the body-fixed frame. As a result,
we show the reorientation by the relocation of the mass anomaly in the bulge-fixed frame
whose Z-axis and X-axis are aligned with the rotational and tidal axes. The results are shown
in figure 5.1, in which the fluid limit and dynamic solutions of three magnitudes of the mass
anomaly: 1.5×1017 kg, 3×1017 kg and 6×1017 kg are shown separately. We can see that the
dynamic solutions approach the end solution given by the fluid-limit method. Irrespective
of the magnitude of the mass anomaly, the reorientation of a body with lithosphere shows
similar behaviour to that without a lithosphere as shown in Hu et al. (2017b). The process
is first dominated by a relative fast reorientation around the tidal axis to relocate the mass
anomaly close to the equator, then followed by a relatively slow reorientation around the
rotational axis to push the mass anomaly close to the sub-host point. When positive mass
anomalies are larger than certain values, it can be pushed towards the equator and further
increasing the mass anomaly only changes its position to be more close to the sub-host or
anti-host point. As a result, the conclusion in (Hu et al., 2017b) that positive mass anoma-
lies are more likely to be found around the equator, still holds for models with a lithosphere.
The reason behind the fast reorientation around the tidal axis and the slow reorientation
around the rotational axis has been discussed in detail by Hu et al. (2017b) as the stronger
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resistance of the body against the reorientation around the rotational axis compared to that
around the tidal axis. It can also be seen in figure 5.1 that for the Heaviside load, the path
of the fluid limit solution can only be close to the dynamic solution when the magnitude of
the mass anomaly is relatively small.
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T=15 Ma
T=12 Ma
T=8 Ma

Fluid limit: 0 to 6  1017 kg

End position: 1.5  1017 kg

End position:    3  1017 kg

End position:    6  1017 kg

Dynamic: 1.5 1017 kg

Dynamic:   3  1017 kg

Dynamic:   6  1017 kg

Figure 5.1: The movement of the mass anomaly in the bulge-fixed frame in which the Z-axis and X-axis always
align with the rotational (at the origin) and tidal axes (0 degree longitude line), respectively. The mass anomaly
is originally located at 15 degree colatitude and 15 degree longitude. The black dashed line represents the fluid
limit solution of the mass anomaly changing from 0 kg to 6×1017 kg where the green, red and blue dots give the
end location predicted by the fluid limit method for a Heaviside load with a magnitude of 1.5×1017 kg, 3×1017 kg
and 6×1017 kg, respectively. The coloured lines represent the dynamic solutions of the corresponding magnitude
simulated with period T .

Next, we demonstrate the effect of the tidal potential factorα= 3MC
M+MC

, which represents the
proportion of the magnitude of the tidal potential to that of the centrifugal potential for a
tidally locked body, on the path and speed of a reorientation. We use the same Triton model
as in figure 5.1 but without the elastic lithosphere and trigger TPW by a constant surface
mass anomaly of 6×1017 kg. The tidal potential factor is scaled from 0 (no tidal bulge) to 3
(the largest and realistic case). When α= 0, the TPW path is calculated by the method from
(Hu et al., 2017a). The period of the Chandler wobble can be calculated as

T = 2π

Ω

√
AB

(C − A)(C −B)
(5.9)

where A,B and C can be obtained by the time limit of equation 5.2 for components I11, I22

and I33 and setting tidal potential factor α to 0 in this case. With the rotational speed of Tri-
ton, it can be calculated that its Chandler wobble has a period of about 50 years which is far
shorter than the dominant relaxation time of the body. Thus even without the tidal bulge,
the TPW path on Triton would be like that of the Earth or Mars, instead of a mega-wobble
like on Venus. We simulate the reorientation with a period at which the mass anomaly
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reaches 5 degrees away from its predicted end position. The results are shown in figure 5.2.
It can be noticed that with a larger tidal potential factor α, the path of the mass anomaly
is more likely to be dominated by the reorientation around the tidal-axis first which gives
the detour on the path. As a result, for satellites like Europa, Enceladus and Triton, the re-
orientation path should be like the blue line while for Pluto (α ≈ 0.1), the path is almost a
straight line towards the sub-Charon point or its antipodal. Because the tidal bulge provides
an extra stabilizing effect in addition to the centrifugal bulge, as the tidal bulge shrinks, the
speed of the reorientation increases. The decrease of α also causes an increase of the elas-
tic jump in the beginning of the reorientation (the gap between the initial position of the
mass anomaly and the start of the coloured lines) which is very large (4 to 16 degrees) in
this case. Such elastic jump represents the amplitude of the Chandler wobble triggered by
the mass anomaly in the beginning, so a mass anomaly with the magnitude of 6×1017 kg
will trigger a very large Chandler wobble and a larger tidal bulge decreases the magnitude of
the wobble. From figure 5.2, it can be understood that the reorientation on icy satellites like
Enceladus or Europa will look completely different than the reorientation on Pluto despite
their similar internal structure (ice shell lithosphere, water ocean and a silicon mantle/core)
and rotational state (tidally locked and rotational period in days).
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Figure 5.2: The movement of the mass anomaly in the bulge-fixed frame of a Triton model with its tidal deforma-
tion factor α scaled from 0 (no tidal bulge) to 3 (the real case). The simulation for each α runs for a period of T
with which the mass anomaly reaches 5 degrees away from its end position. The black cross represents the initial
position of the mass anomaly (15 degrees colatitude and 15 degrees longitude) while the coloured dots are the end
positions for each α.
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5.4. REORIENTATION DUE TO A RAMP LOAD AND CRITERION FOR

A FLUID LIMIT PROCESS

As we have seen from last section, the reorientation path generated by the fluid-limit method
with a changing load does not represent the actual path for a Heaviside load. A natural ques-
tion following this would be: will the dynamic solution for a changing load match the result
from the fluid-limit solution? For the same load, the key factor here is how fast the reorien-
tation is. If the rotational and tidal axes change slowly and the equatorial and tidal bulges
have more time to readjust to the new position (the fluid limit position), then the process of
the reorientation would be more like as on a fluid(inviscid) body (without considering the
convective motions). As a result, we can expect that the dynamic solution of a very slowly
changing load will be similar to the fluid-limit solution. The purpose of this section is to
test this hypothesis and more importantly, to provide a criterion to determine how slow the
changes in the rotational and tidal axes need to be so that the reorientation process can be
considered as a fluid limit process.

We first test the hypothesis. The same type of model as in figure 5.1 is used and the dynamic
solutions are calculated for a ramp load where the positive mass anomaly increases linearly
from 0 to 6×1017 kg for different durations: 5,20,60,120,360 million and 1 billion years. The
results are shown in figure 5.3. For the model we used, it can be shown that it takes about 50
million years for its degree 2 potential Love number to reach about 99.95% of its fluid Love
number. Thus for 1 billion years, the process is already very slow compared to the dominant
relaxation time of the model. Another important information obtained in figure 5.3 is that
for a tidally deformed body, different load changing speed results in different reorientation
path. As a result, a specific reorientation path is a very strong constraint for the loading his-
tory as well as the viscosity of the model.

In figure 5.3, we see that as the change in the load slows down, the dynamic solution ap-
proaches the fluid limit solution. However, even for the period of 360 million years, the dif-
ference is still visible, which suggests that the validity of the fluid limit solution for a chang-
ing load is also limited. Consequently, we want to provide a simple quantitative criterion to
test that, given an interior model, how slow the reorientation must be so that the process
can be considered as a fluid limit process. Or the other way around, given a reorientation
process, e.g. estimated from geographic analysis, how low the viscosity of the interior must
be so that the model stays in hydrostatic equilibrium during the process of a reorientation.
This allows future studies to rely on the simple fluid limit method.

When a layered model is given, the tidal Love number in the Laplace domain for a given
harmonic degree can be expressed as (Peltier, 1974):

kT (s) = kT
e +

m∑
i=1

kT
i

s − si
(5.10)

where kT
e is the elastic Love number, kT

i are the residues of each mode and si are the inverse
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Figure 5.3: The movement of the mass anomaly in the bulge-fixed frame of the Triton model (α= 3) in which the Z-
axis and X-axis always align with the rotational (at the origin) and tidal axes (0 degree longitude line), respectively.
The mass anomaly is originally located at 15 degrees latitude and 15 degrees longitude. The black dashed line
represents the fluid limit solution of the mass anomaly changing from 0 kg to 6× 1017 kg. The coloured lines
represent the dynamic solutions for the load changes linearly during the period of T .

relaxation times. In the following, we omit the superscript T which stands for "tidal". The
fluid Love number is the sum of the strength of the elastic part ke and the viscous relaxation
characterised for each mode as −ki /si :

k f = ke −
m∑

i=1

ki

si
(5.11)

If the Love number only contains the elastic part kT
e , then any deformation will happen

instantaneously. This means that during a reorientation or TPW, the equatorial bulge read-
justs immediately following the change of the rotational axis. Then any process will be a
fluid limit process in this case. Because of the viscous relaxation characterized by kT

i /(s−si ),
which represents a delayed readjustment in the time domain, the axis of the principle mo-
ment of inertia of the body lags behind the rotational axis. Mathematically, when the prin-
ciple axis of moment does not coincide with the rotational axis, the inertia tensor in the
frame of the rotational and tidal axes will have non-zero cross products. From this aspect,
a reorientation or TPW process can only be considered as a fluid limit process when the
magnitudes of the cross products are small enough. Therefore, we want to formulate and
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approximate the cross products in the inertia tensor using the tidal Love number. We need
to be aware that since we only consider the readjustment of the body itself, the inertia ten-
sor should not include the mass anomaly which triggers the reorientation.
We consider a case where the rotational axis is with a unit rotating speed. We let the rota-
tional axis move with a constant speed V in the X-Z plane of the body fixed frame:

ωR = (sin(V t ), 0, cos(V t )) (5.12)

The inertia tensor associated with the equatorial readjustment can be written as

IN = kT (t )a5

3G
∗

[
ωR

i (t )ωR
j (t )− 1

3
ωR

l ω
R
l δi j

]
(5.13)

We fully normalized the change in the inertia tensor for the equatorial bulge readjustment,
which means that the gravitational constant and radius are set to one and the tidal Love
number is scaled with its fluid Love number. With G = a = 1 and

kT (t ) = k(t )

k f
(5.14)

we have

IN = k(t )

k f
∗

 sin2(V t )−1/3 0 sin(V t )cos(V t )
0 −1/3 0

sin(V t )cos(V t ) 0 cos2(V t )−1/3

 (5.15)

This equation can be solved analytically using the Laplace transform. We transform this ma-
trix in the frame whose Z’-axis is the rotational axis. With the transformation matrix

Q =
 cos(V t ) 0 sin(V t )

0 1 0
−sin(V t ) 0 cos(V t )

 (5.16)

we have

I ′N = Q ′L −1 {L {IN }}Q (5.17)

where L −1 and L are the inverse Laplace transform and Laplace transform, respectively.
As the time t proceeds, I ′N approaches a stable state which gives the characteristic values
when all the modes are sufficiently relaxed. We take the limit of infinite time of I ′N and
obtain
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I∗ = lim
t→∞ I ′N =

1

k f


− 1

3 (ke −∑m
i=1

ki (s2
i −2V 2)

s3
i +4s2

i V 2 ) 0
∑m

i=1
ki V

s2
i +4V 2

0 − 1
3 (ke −∑m

i=1
ki
si

) 0∑m
i=1

ki V
s2

i +4V 2 0 2
3 (ke −∑m

i=1
ki (s2

i +V 2)

s3
i +4s2

i V 2 )



It can be easily seen that when V = 0, I∗ degenerates into the matrix

I∗|V =0 =
 − 1

3 0 0
0 − 1

3 0
0 0 2

3



which is the fully normalized change in the principle moment of inertia for the equatorial

bulge. The non-diagonal component of I∗,
∑m

i=1
ki V

s2
i +4V 2 , can now represent the scale of the

delayed readjustment due to the viscous response.
We define a dimensionless fluid limit process number

F = 1

(1+α)k f

m∑
i=1

ki Vmax

s2
i +4V 2

max
(5.18)

whereα is the tidal potential factor, Vmax is the maximum velocity of the polar wander esti-
mated either from geographic analysis or from fluid limit solution. When only the centrifu-
gal bulge is present (α= 0), F is the normalized product of inertia and this number needs to
be small enough so that the process in which the rotational axis changes with speed V can
be considered as a fluid limit process. When calculating F for models whose lithosphere
has a high viscosity instead of being elastic, the transient mode associated with the litho-
sphere needs to be removed. Thus in equation 5.18, m −1 instead of m modes need to be
considered. For the situations presented in figure 5.3, it can be shown that the ramp loads
with periods 20, 60, 360 million and 1 billion years correspond to the fluid process number
being about 2.7×10−2,1.5×10−2,2.9×10−3 and 1×10−3.
Fluid limit process number provides a quantitative description of how close the body stays
in hydrostatic equilibrium during a reorientation process. However, it is difficult to directly
link the fluid process number to the error level of an approximated solution. From the ex-
ample shown in figure 5.3 and other experiments we have conducted on models of terres-
trial planets the Earth, Mars and Venus as well as icy moons, we can conclude that F needs
to be smaller than about 10−3 so that the fluid limit solutions are within an acceptable global
error level. When F is larger than 1×10−3, the TPW speed of a body without tidal bulge or
both the path and speed of the reorientation for a tidally deformed body will have large er-
rors. This will be further discussed in the next section.
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5.5. VALIDITY OF FLUID AND QUASI-FLUID APPROXIMATION

Physically, the fluid limit solution assumes that the equatorial and tidal bulge readjust to
the new directions of the rotational and tidal axes instantaneously. This means that for a
viscous body the fluid limit solution always overestimates the speed of the readjustment.
In contrast with this, the TPW solution based on the quasi-fluid approximation (e.g. Ri-
card et al. (1993); Spada et al. (1992a); Harada (2012); Harada and Xiao (2015); Chan et al.
(2014)), underestimates the readjustment speed of the bulge (Hu et al., 2017a). As pointed
out by (Hu et al., 2017a), when the change in the load is slow enough, the solution based
on the quasi-fluid approximation will approach the fluid limit solution. In this section, we
want to confirm this statement and show that the fluid process number F can provide a cri-
terion for which both the fluid-limit solution and the quasi-fluid approximation are valid.

We choose a model which does not have a significant tidal bulge, Mars, so that we can ap-
ply the non-linear methods based on the quasi-fluid approximation. When the tidal bulge
is small or can be neglected and the period of the Chandler wobble is much shorter than
the dominant relaxation time of the interior and the characteristic time of the loading or
forcing, based on figure 5.2 we know that the reorientation path for the rotational axis is
almost a straight line within the great circle of the surface. In this case, the reorientation
paths obtained from different methods are almost the same but the speed can show large
differences. We demonstrate this with the Mars model. The interior model of Mars (thick-
ness of each layer, density, rigidity) is chosen according to (Zharkov and Gudkova, 2005)
and divided into 5 layers which contain a 50 km lithosphere. The viscosity of the model is
divided into an effectively elastic lithosphere, a uniform mantle of viscosities 1020 Pa s and
an inviscid core. The interior properties are shown in table 5.2.

Table 5.2: Properties of Mars

Layer Outer Radius (km) Density (kg m−3) Shear Modulus (Pa) Viscosity (Pa s)
Lithosphere 3389.5 2004 0.180×1011 1×1032

Upper mantle 3339.5 3605 0.900×1011 1×1020

Shallow lower mantle 2800 3620 0.942×1011 1×1020

Deeper lower mantle 2200 3808 1.030×1011 1×1020

Core 1700 6500 0 0

Again, we test a ramp type load which increases from 0 to 3.5× 1019 kg linearly in a cer-
tain time span. This amount of the mass anomaly is the estimated total mass of the Tharsis
plateau which is about 1019 ∼ 1020 kg (Hynek and Phillips, 2001; Nimmo and Tanaka, 2005).
We compare the dynamic solution obtained by the method presented in (Hu et al., 2017a)
with the fluid limit solution and the one which is based on the quasi-fluid approximation
from (Chan et al., 2014). The results are shown in figure 5.4. As expected, the speed of TPW
from the fluid limit solution is faster while that obtained based on the quasi-fluid approx-
imation is slower. It is also clear that only when the change in the load is slow enough,
specifically when F < 0.001, the speed of TPW from the two approximated solutions starts
to match the complete dynamic solution.
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Figure 5.4: TPW on Mars triggered by a mass anomaly changing from 0 to 3.5× 1019 kg linearly in 27, 100, 400
and 900 thousand years respectively. The mass anomaly is attached at the surface at 45 degrees colatitude. The
results are obtained by the dynamic method from this paper (red), fluid-limit solution (blue) and method based
on the quasi-fluid approximation (green). The corresponding fluid process number F for each case is shown in
the figure. The viscosity of the Martian mantle is set to 1020 Pa s.

From the definition and effect of the fluid limit process number, it can be seen that the
following statements are equivalent:

• The fluid limit process number is small enough.

• The axis of the principle moment of inertia of the body and the rotational axis can be
considered to coincide.

• The model can be considered to be in hydrostatic equilibrium during the reorienta-
tion.

The validity of the approximated method is dependent on the model we use and the fluid
limit process number provides a direct indication for the specific case in which the reori-
entation can be considered as a fluid limit process. This can help us to properly interpret
the validity of previous studies of TPW on various planetary bodies or choose an accurate
method for future studies.

For Mars, estimates for the viscosities of the mantle range from 1019 Pa s to 1022 Pa s (Hauck
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and Phillips, 2002; Breuer and Spohn, 2006) and the formation history of Tharsis is uncer-
tain. Since the fluid process number is dependent on the largest TPW speed, the largest
possible formation speed of Tharsis instead of the average speed should determine the fluid
process number. For instance, a quick early formation by volcanic activities followed by a
slow upwelling due to tectonic activities results in a larger fluid process number than a con-
stant process with the same average formation speed. Similar to the results in figure 5.4, it
can be shown that when the Martian mantle has viscosities of 1019, 1020 ,1021 or 1022 Pa s,
the allowed maximum TPW speed for the approximated method to be valid is 0.8 degree/ka,
0.075 degree/ka, 8 degree/ma and 0.8 degree/ma, respectively. Due to all these uncertain-
ties, we need to take caution to use an approximated method for future studies of TPW on
Mars.
Planetary bodies which are currently intensively studied such as the Moon of the Earth and
icy satellites such as Enceladus and Europa also have large uncertainty on its viscosity. As
a result, when TPW is studied on these objects, an estimation of the fluid process number
should be conducted first before the choice of the method.

5.6. CONCLUSIONS

We present a semi-analytical method for calculating the dynamic solution for the reorien-
tation of a rotating tidally deformed body. By comparing with the fluid-limit solution, we
validate the algorithm developed in (Hu et al., 2017b) for obtaining a time-dependent solu-
tion. It is confirmed that the fluid-limit solution and the quasi-fluid approximation are only
valid when the reorientation/TPW speed is slow enough.
We provide a simple criterion, the fluid process number F , to test if the fluid-limit solution
or the quasi-fluid approximation can be adopted given a specific model and estimated max-
imum reorientation/TPW speed. The fluid process number can also be used the other way
around: if a reorientation/TPW path history is confirmed, the criterion that fluid process
number is small enough actually gives a constraint on the viscosity of the model. Concern-
ing previous studies of TPW based on approximated solutions, calculating the fluid process
number helps evaluate the validity of the results. For future studies concerning the TPW
or reorientation of terrestrial planets or moons, estimating the fluid process number helps
to decide whether an approximated solution can be adopted. For instance, when studying
a specific planetary body, the mass distribution information can be derived from the grav-
ity data, with which the magnitude of the TPW can be easily estimated by the fluid limit
method, given the information about the lithosphere. After this, if the reorientation path or
speed is required, e.g. to compare the stress pattern during the TPW with surface geolog-
ical features, calculating the fluid process number helps to decide whether the reorienta-
tion path obtained from the fluid limit method can be directly adopted or a more complex
method like in this paper needs to be applied.
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CONCLUSIONS AND

RECOMMENDATIONS

Summarizing the conclusions drawn in chapters 3-5, the first part of this chapter addresses
the research questions raised in section 2.6. The second part of this chapter provides an out-
look to possible further research and applications.
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6.1. CONCLUSIONS

The main purpose of this dissertation is to establish a more general and accurate method to
study the rotational variation of planetary bodies and evaluate the approximations taken
in previous studies. We established both a numerical iterative procedure which can be
combined with a finite element package where lateral heterogeneity and complex rheol-
ogy can be adopted, as well as a semi-analytical approach by which the influence of the
lithosphere and hydrostatic state of the body can be taken into account. With the help of
the new method, we explored the influence of the assumptions taken in existing methods,
which are introduced in chapter 2, for calculating true polar wander (TPW). More impor-
tantly, we can specify under which conditions these assumptions can be adopted and when
they give biased results. In the following context, we first summarize the new method in
terms of its background, validation and applicability in contrast with the previous meth-
ods. We show that the new method satisfies the research goals stated in section 2.6. Next,
the specific research questions listed in section 2.6 are answered. At the end of this section,
we also summarize the applications shown in chapters 3-5, which provide new insights in
rotational variations of various planetary bodies based on the new method.

The new method

As shown in chapter 2, the complete rotational dynamics of a viscoelastic planetary body is
governed by two equations: the Liouville equation and the moment of inertia (MoI) equa-
tion. In previous studies, three major types of methods for studying TPW were used:

1. Linear method, which linearises the Liouville equation 2.1.

2. Non-linear method, which approximates the Love numbers in order to simplify the
moment of inertia equation 2.7.

3. Fluid-limit method, which only calculates the new equilibrium position of the rota-
tional axis when a perturbation in mass distribution is introduced.

Compared with these methods, the main idea of the new method presented in this thesis is
to decouple the governing equations 2.1 and 2.7, and combine them in an iterative proce-
dure, as shown in section 2.5.
Solving the MoI equation can either be done analytically (chapter 4) or numerically with a
finite element method (chapter 3). In order to solve the Liouville equation in an iterative
manner, two situations are considered:

1. The period of the Chandler wobble is much smaller than the dominant relaxation
time of the body.

2. The period of the Chandler wobble is comparable to or larger than the dominant re-
laxation time of the body.

In the first case, the linearized Liouville equation can be used to study the long-term secu-
lar change of the reorientation on planets such as the Earth and Mars as well as most of the
icy moons. The Chandler wobble periods of these bodies are in the order of years while the
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dominant relaxation time of the bodies is above thousands of years. The second case con-
cerns the long-term rotational behaviour of slow-rotating objects such as Venus or studies
on short-term rotational behaviour, the Chandler wobble, for fast-rotating objects such as
the Earth or Mars.
The new method is validated in three stages:

1. In chapter 3, for small angle TPW on objects without a tidal bulge, the obtained result
can match the analytical solution from the linear methods (Wu and Peltier, 1984) to
less than 0.1% difference in degree if the step size is chosen to be much smaller (e.g.
1%) than the dominating relaxation time and if we do not update the MoI for the
mass anomaly during the TPW. Updating the MoI of the mass anomaly in the bulge-
fixed frame actually corrects the intrinsic error in the linear method. This issue will
be discussed in more detail in the answer to the first research question.

2. For large angle TPW on objects without a tidal bulge, it has been shown in chapter
5 that if the model does not contain relatively slow modes and the speed of TPW is
slow enough, the non-linear method based on the quasi-fluid approximation can be
accurate (we answer research question 4 later to show how "slow" the TPW needs to
be). And in chapter 3, we show that the TPW obtained by our new method matches
that from the non-linear method (Ricard et al., 1993) for models that satisfy these
conditions. An example case is the two layer Earth model from table 3.1 (Wu and
Wang, 2006) triggered by a mass anomaly with magnitude of 2×1019 kg. This mass
anomaly is equivalent to the estimated total ice loss during the last ice age (Ricard
et al., 1993). We provide a quantitative criterion, the fluid limit process number F

as equation 5.18, to predict for which cases the result from the non-linear method
will approach that obtained by our method (chapter 5). This verifies the accuracy of
previous studies (Chan et al., 2014; Moore et al., 2017) which are based on the simpler
quasi-fluid method.

3. For a tidally deformed body, the obtained reorientation path is validated by the fluid-
limit method (Matsuyama and Nimmo, 2007) in the case where the reorientation
speed is relatively slow ( F < 0.001) compared to the dominant relaxation time of the
body (chapter 5). The reason that the validation only applies to a slowly reorienting
case is due to the limitation of the fluid limit approximation and this will be discussed
in the answer to research question 4. Again, the criterion that the fluid limit process
number F should be less than 0.001 can tell in which case this approximation is valid.

Compared to previous approaches, the established method has the following advantages:

• It can calculate both small and large angle TPW.

• Both long-term secular trend as well as the short-term Chandler wobble for fast-
rotating bodies can be obtained.

• The long-term mega wobble for slowly rotating objects can also be dealt with.

• A dynamic solution for reorientation of tidally deformed bodies can be obtained.

• The effect of the lithosphere can be directly included and models which are not in
hydrostatic equilibrium can also be taken into account.
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• Complex rheology and lateral heterogeneity of the model can be dealt with.

As discussed in chapter 1, understanding TPW is crucial to provide a link between the for-
mation of some observed planetary features and the interior properties of the body. Sim-
ply speaking, for non-tidally deformed bodies, the new method provides a more accurate
simulation of TPW compared with previous methods. For tidally deformed (locked) bod-
ies, the time-dependent solution for the reorientation of the body can be obtained by the
new method. This extra accuracy and applicability can provide us with new insight on the
rotational variations of various planetary bodies, which can further contribute to the un-
derstanding of the interior and dynamics of the bodies themselves.

Answer to question 1: Intrinsic error in the linear method

In the linear method, the MoI is always calculated in the body-fixed frame which is not up-
dated in the bulge-fixed frame. This creates an intrinsic error which may not be small even
when only small angle TPW is considered. This is because the value of the MoI of a mass
anomaly is very sensitive to the latitude of the anomaly (section 3.3) when it is close to the
poles or equator. Thus, the applicable range of the linear method is not only constrained by
the linearisation of the Liouville equation but also by the error introduced by the manner
in which the MoI of the mass anomaly is calculated. For example, TPW on the Earth partly
originates from ice loss which mainly originates from Antarctica and Greenland that is close
to the pole, e.g. (Chen et al., 2013). For mass anomalies located at this high latitude, if the
estimated TPW angle is beyond 0.8 degree, then the linear method will result in an error
beyond 1.5 %, see figure 3.7. This error can result in an incorrect estimation of the ice loss
in these areas if TPW is used as a constraint.

Answer to question 2 and 4: Validity of the quasi-fluid approximation

As has been discussed in Chapters 3 and 4, in order to solve the MoI equation which con-
tains the convolution of the Love number with the centrifugal/tidal potential, the non-
linear method (Ricard et al., 1993) adopts the quasi-fluid approximation to simplify the
Love number. Mathematically, this approximation is the first order Taylor expansion in the
Laplace domain. The cost of this approximation is that viscoelasticity is not perfectly ac-
counted for. For the polar wander case on the Earth or Mars, taking the quasi-fluid approx-
imation can underestimate the speed of the equatorial bulge readjustment, which leads to
an underestimation of the TPW speed by a factor of about 4, see figures 3.8 and 4.9. On the
other hand, for slowly rotating objects such as Venus, the quasi-fluid approximation over-
estimates the equatorial bulge readjustment speed in the latitudinal direction, causing too
much damping of the mega wobble. This results in an overestimation of a factor of 3 to 5.
It was also shown in chapter 5 that the quasi-fluid approximation can only be adopted when
the speed of TPW is slow enough so that the body is sufficiently relaxed to be close to a fluid-
limit state during the TPW. In the same chapter, we state that the product of inertia of the
body in the bulge-fixed frame describes whether the body has relaxed sufficiently (a fully
relaxed body has product of the inertia in the bulge-fixed frame that is equal to zero). As
a result, a quantitative criterion, that the fluid limit process number F must be less than
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0.001, is also provided in chapter 5 to test if for a given situation, model and TPW speed, the
method based on the quasi-fluid approximation can provide an accurate result. The fluid
limit process number can be calculated when the tidal Love number and the estimated TPW
speed is given. We conclude that the fluid limit process number must be smaller than 0.001
for the quasi-fluid approximation to be adopted.

Answer to question 3 and 4: Validity of the fluid limit approximation

Similar to the quasi-fluid approximation, the fluid limit method is only valid when the speed
of TPW is relatively slow, as discussed in chapter 5. The fluid limit approximation assumes
that during the TPW the non-lithospheric part of the body is fully relaxed. This requires
that either the body is less viscous so the readjustment of the body is fast enough or the
TPW speed itself is slow enough. The fluid limit process number F can also be the criterion
for the validity of the fluid limit approximation and the standard, F < 0.001, still applies in
this case. As shown in chapter 5, if F is larger than this value, the obtained reorientation
path for a tidally deformed body given by the fluid limit method (Matsuyama and Nimmo,
2007) for a time-dependent load can have a large bias. For bodies without a tidal bulge,
failing this criterion means a large overestimation of the TPW speed, in contrast with an
underestimation of TPW speed for the quasi-fluid approximation.

TPW on various planetary bodies

In this part, we want to focus on the polar wander behaviour on various planetary bodies in
our solar system which has been introduced in chapter 1 based on the new method.

Earth. For TPW on the Earth, currently the speed and direction of present day TPW is of
high interest. Many studies concerning this topic focus on the effect on TPW from post-
glacial rebound (Spada et al., 1992b) or ongoing ice loss in Greenland or Antarctica (Besse
and Courtillot, 2002). On a million year time scale, these factors only cause a small angle
TPW (Ricard et al., 1993). Providing a realistic model, such as the Preliminary reference
Earth model (PREM) (Dziewonski and Anderson, 1981), both the linear method and our ap-
proach can yield an accurate present day TPW speed. However, due to the intrinsic error
of the linear method, predicting future TPW behaviour for more than 0.8 degree with the
linear approach can result in erroneous conclusions.

Mars. Due to the presence of the Tharsis plateau, Mars is believed to have experienced a
large angle TPW (Schultz and Lutz, 1988; Bouley et al., 2016). The TPW history of Mars can-
not be modeled accurately because of the uncertainties in both the viscosity of the body and
the formation history of the Tharsis plateau, as discussed in section 1.2.2. What can be said
is that previous predictions of the TPW speed (about 1 degree/Ma) based on the quasi-fluid
approximations, e.g. Chan et al. (2014), can be underestimated by a factor of 4, given the
possible range of the Martian viscosities (see chapter 4 and figure 4.9). An incorrectly esti-
mated TPW speed on Mars can results in an erroneous estimation for the age of the Tharsis
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plateau or the interior viscosity.

Venus. TPW on Venus is dominated by the long-term wobble, as shown in section 4.3. Dif-
ferent from the phenomena on Earth and Mars, the rotational axis of the Venus will circle
around the mass anomaly that triggers the TPW instead of going towards it. The influence of
taking the quasi-fluid approximation in studying the mega wobble on Venus is significant.
A previous study (Spada et al., 1996) overestimated the speed of a mass anomaly on Venus
approaching the pole or equator. If we assume that Venus has similar viscosity as the Earth
or Mars, a mass anomaly of the same scale will take a factor of 10 to 15 longer on Venus to
reach the pole or equator than on the Earth or Mars. And this time scale is underestimated
by previous studies by a factor of 3-5.

Icy moons. Most known icy moons are tidally locked to a much more massive host body,
which creates a tidal bulge that is about 3 times the magnitude of the centrifugal bulge. We
have shown in chapter 3 and 5 that the reorientation of such bodies triggered by a positive
mass anomaly has a preference of first reorienting around the tidal axis to place the mass
anomaly close to the equator, see figures 3.10 and 5.1. Then the speed of the reorienta-
tion slows down and the mass anomaly is pushed slowly towards the sub-host or anti-host
points. Consequently, TPW on an icy moon triggered by ice caps on the poles would see the
body reorient around the tidal axis first, different from what is predicted by the fluid-limit
methods (Rubincam, 2003; Matsuyama and Nimmo, 2007). The presence of a lithosphere
mostly determines how far the positive mass anomalies can be pushed towards the sub-
and anti-host points (see figure 4.7) but the mass anomalies are still more likely to be found
around the equator.

Pluto. Although Pluto is tidally locked with its moon Charon, the mass of Charon is only
about 12% of that of Pluto which creates a relatively small tidal bulge compared to most of
the icy moons. As a result, the reorientation on Pluto only has part of the features of TPW
on other tidally deformed bodies. Positive mass anomalies tend to be relocated towards
the sub- and anti-host points and negative mass anomalies tend to be pushed towards the
poles. However, the reorientation path on Pluto does not have a strong preference of firstly
reorienting around the tidal axis. Instead the path of the mass anomaly is almost a straight
line (see figure 5.2). This means the reorientation path obtained in previous studies based
on the fluid-limit method, e.g. (Keane et al., 2016), is likely to be accurate. However, the
speed of the reorientation can still be biased by the fluid limit method depending on the
viscosity of the planet as well as by the load history: how fast the volatiles accumulate in the
Sputnik Planitia (Keane et al., 2016) and the ocean wells up (Nimmo et al., 2016).

To sum up this part, TPW on various planetary bodies, either the path or the speed, esti-
mated by previous methods can contain large biases. Such errors can lead to erroneous
estimations, such as on viscosity of the planet, the age of certain observed features or the
stress distribution/history of the surface. The new method established in this thesis pro-
vides a more advanced tool for planetary scientists to properly interpret rotational varia-
tions on various bodies.
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6.2. RECOMMENDATIONS

The research presented in this thesis can be followed by further studies in two aspects: ap-
plications of the developed method or a further development of the method. Both will be
discussed in the following.

Possible applications

• Constraining the age of the Sputnik Planitia and the viscosity of Pluto. Similar to stud-
ies such as Nimmo et al. (2016); Keane et al. (2016), we can use the developed method
in this thesis instead of the fluid limit approach to further constrain the history of
mass accumulation in the Sputnik Planitia, e.g. how fast the volatiles accumulate or
the ocean wells up, to obtain further insight on Pluto. Another constraint on the load
such as the energy flux from the Sun during the formation history of this area (Hamil-
ton et al., 2016) can also provide useful information to constrain the formation history
of this area.

• Constraining Martian viscosity from its TPW history. To constrain the viscosity of a
planet by TPW theory, a time-dependent TPW history is required. This information
on Mars can be estimated from various studies such as its topography, e.g. (Bouley
et al., 2016), or surface hydrogen distribution, e.g. (Feldman et al., 2004). Once a TPW
history is known, given an assumed loading history, the viscosity of the body can be
constrained.

• Constraining the interior model of Enceladus and Europa. Topographic data on these
icy satellites can provide a detailed reorientation path (Tajeddine et al., 2017). Since
icy moons are tidally deformed, for each specific load the reorientation path is unique
(see figure 5.3). A detailed reorientation path on a tidally deformed body gives a very
strong constraint on both the load and the interior model compared to bodies without
a tidal bulge (see section 5.4). However, these studies on icy moons likely require
modelling differential rotation. This issue will be discussed in the next part about
further model development.

• Studying the effect of varying shell thickness on icy moons on its reorientation such as
Enceladus on the TPW. This can help us to gain further knowledge on the formation
of Enceladus’ south pole region. The numerical model based on the finite element
method (chapter 3) can deal with the lateral heterogeneity introduced by an outer
shell of varying thickness. However, current models can only deal with the case in
which the shell and interior co-rotate, see also the next section for recommendations
for further development of models for differential rotation.

Model development
The new method developed in this thesis still has limitations. For instance, only torque-
free rotational variations are considered and differential rotation is ignored. In order to take
these issues into account, further model development is required. This is discussed in the
following.
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The first possible extension of the developed method would be introducing torque into
our model for dealing with torque driven rotational variations, such as libration and non-
synchronous rotation (NSR). NSR has not been discussed in this thesis but, just like TPW, is
believed to be the cause of many observed surface features, such as the longitudinal migra-
tion of tectonic patterns on Europa (Hurford et al., 2007; Rhoden et al., 2010; Jara-Orué and
Vermeersen, 2011).

A finite element model can deal with a lateral heterogeneous planet. However, a further de-
velopment of the numerical model is required for dealing with an elastic or highly viscous
lithosphere in the finite element package. As mentioned in chapter 4, currently, it is very
difficult to introduce the correct ’background shape’ for the elastic or highly viscous part of
the body in a finite element framework. One possible way to solve this problem is to first
obtain the correct shape for the lithosphere with a model which has much lower viscosity,
then continue the simulation by setting the viscosity to the desired value. In this way, the
extremely long calculation time caused by the viscosity contrast between the lithosphere
and the rest of the body can be avoided.

Another interesting phenomenon that is not discussed in this thesis is differential rotation
of the shell and the interior. This issue is crucial for the study of rotational variations of icy
moons which are believed to have a global sub-surface ocean. For the topic of differential
rotation, previous studies mostly adopted an analytical approach and only focused on the
small short-term perturbations where a linear scheme can be used (Mathews et al., 1991;
Dehant et al., 1993; Dumberry, 2009; Jara-Orué and Vermeersen, 2011). The semi-analytical
approach in this thesis can be extended, e.g. adding the ocean dynamics and torques be-
tween the shell and inner core (Hoolst et al., 2008) into the iterative procedure, to cope with
differential rotation. Since the governing equations are decoupled in our method, the in-
fluence of the fluid layer and associated fluid dynamics can be directly included into the
iteration. For instance, we can apply the method developed in this thesis to both the in-
ner solid part of the body and the outer shell with an initial condition for the interface of
the fluid layer. The result of these two parts provides the boundary condition to the fluid
layer where a fluid dynamic model needs to be applied and new interface conditions are
obtained. This forms an iterative procedure which includes two solid models and one fluid
model.
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