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Abstract

In an urban context, tree data are used in city planning, in locating hazardous trees and in

environmental monitoring. This study focuses on developing an innovative methodology to

automatically estimate the most relevant individual structural parameters of urban trees

sampled by a Mobile LiDAR System at city level. These parameters include the Diameter at

Breast Height (DBH), which was estimated by circle fitting of the points belonging to different

height bins using RANSAC. In the case of non-circular trees, DBH is calculated by the maxi-

mum distance between extreme points. Tree sizes were extracted through a connectivity

analysis. Crown Base Height, defined as the length until the bottom of the live crown, was

calculated by voxelization techniques. For estimating Canopy Volume, procedures of mesh

generation and α-shape methods were implemented. Also, tree location coordinates were

obtained by means of Principal Component Analysis. The workflow has been validated

on 29 trees of different species sampling a stretch of road 750 m long in Delft (The Nether-

lands) and tested on a larger dataset containing 58 individual trees. The validation was

done against field measurements. DBH parameter had a correlation R2 value of 0.92 for the

height bin of 20 cm which provided the best results. Moreover, the influence of the number

of points used for DBH estimation, considering different height bins, was investigated. The

assessment of the other inventory parameters yield correlation coefficients higher than

0.91. The quality of the results confirms the feasibility of the proposed methodology, provid-

ing scalability to a comprehensive analysis of urban trees.

Introduction

Tree inventory information and monitoring tree changes over time are critical input for tree

management systems, ecosystem services and aboveground biomass estimation. This informa-

tion could also show the ecosystem influence on climate change, carbon and water cycling [1].

Furthermore, the canopy structure affects the radiation regime and other biochemical and eco-

logical processes. In an urban context, tree register data is used in city and environmental plan-

ning, in deriving and modelling urban pollution and temperatures, in locating hazardous trees
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and for biodiversity monitoring [2]. Recently, the municipality of Delft (The Netherlands)

has opened a data-base where all the trees from the urban area of Delft are listed with proper-

ties as location, DBH range, dimension range, species health conditions, year of plantation and

inspection date [3].

Dendometric variables have traditionally been estimated with field campaigns. The advent

of recent remote and near sensing technologies has opened up a new field of possibilities for

carrying out such work through non-destructive methods, providing advantages regarding the

economic costs involved, the time invested and the quality of results [4]. In that sense, the use

of active high-resolution sensors, such as Light Detection and Ranging (LiDAR) enables high

accuracy in estimation of tree parameters. This active remote sensing technology based on

the principle of laser ranging [5], provides precise and efficient information on the horizontal

and vertical distribution of vegetation and canopy structure. Many studies also use other data

sources, such as digital aerial photographs [6] or combine high resolution and hyperspectral

images with LiDAR data in urban vegetation mapping [7]. A comprehensive review of the

application of LiDAR remote sensing for the retrieval of forest structural parameters at differ-

ent scales is provided by [8].

More recently, Mobile LiDAR Systems (MLS) have emerged as an excellent tool to assess

urban structural tree parameters and the distribution of their constituents, enabling fast and

accurately capturing of 3D data of individual trees with high spatial detail along the road [9].

However, the size of the data files can be considerable, complicating the handling and storage

of 3D information and requiring long processing times. MLS operates at a scale between man-

ual and airborne LiDAR measurements and has better acquisition geometry for trees. Indeed,

airborne LiDAR has a limited ability to sample the vertical distribution of the canopy [10] by

the narrow near nadir scan angle and density of vegetation causing occlusions. Since a MLS

involves several sensors to acquire a georeferenced 3D point cloud, the final precision includes

individual error sources, like LiDAR, Inertial measurement unit (IMU) and global navigation

satellite systems (GNSS). Comparisons proved that an accuracy better than 3 cm (standard

deviation of the differences between measured and reference data) can be achieved by the sys-

tem in good GNSS conditions [11]. The main disadvantage of MLS of having no-access to

non-transitable areas is being dismissed by the new developments of MLS boarded in a back-

pack [12]. However these solutions are still being tested in terms of precision and performance

in different scenarios. Another related technology is Terrestrial Laser Scanner (TLS), which

has been employed for mapping vegetation properties and tree reconstruction [13]. But it is

time-consuming compared with MLS in an urban context. Henning et al. [14] applied a TLS

in a study area of 20x40 m2 in a species-limited and non-urban context. However, the com-

pleteness of the tree representation might be less for MLS compared to TLS campaigns, where

trees are typically scanned from multiple positions.

Diameter at Breast Height (DBH) is considered an essential parameter in tree allometry.

Many countries store the DBH of urban trees in cadaster databases for monitoring purposes

[3]. Several studies estimated DBH from TLS [15] and airborne LiDAR [16]. MLS data has

already been used to estimate stem diameter in a forest environment from the intensity

captured by the laser from different echoes, reaching a RMSE of 14% [17]. Other critical mea-

surements are Tree Height (TH) and Base Crown Volume (BCV) that afford qualitative infor-

mation about the stand and quantitative tree information. Correlation with in situ data with

TLS based DBH and TH were reported to be between 0.91 and 0.97 and 0.92, respectively

[15]. The tree stem curve could help to describe the BCV, specifying the stem tapering as a

function of the height. Another key parameter is the Crown Base Height (CBH) normally used

in fire modelling, which can be estimated from airborne LiDAR data through voxelization

techniques based on moving voxels [18]. However, estimating CBH is a challenging task
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because, normally, it is difficult to measure it in the field. A novel method to obtain these tree

parameters from MLS data is developed by [19] using voxelization techniques reaching a R2

value of over 0.8.

The accurate measurement of canopy architecture and tree crown parameters such as

Crown Width (CW) or Canopy Volume (CV) is critical for plant physiology and vegetal health

monitoring, typically related to photosynthesis and energy transfer. To date, little research has

been done to retrieve Crown Width using TLS [20] and the estimations with airborne LiDAR

reach coefficients of determination as low as 0.63 [7]. Moreover, several studies have been

focused on modelling the canopy to estimate tree crown variables using TLS and airborne

LiDAR [21]. Fig 1 represents a schematic cartoon of the mentioned tree parameters.

Fig 1. Schema of tree parameters. Location coordinates (x, y), Tree Height (TH), Crown Width (CW), Diameter at Breast

Height (DBH), Crown Base Height (CBH), Base Crown Volume (BCV) and Canopy Volume (CV).

https://doi.org/10.1371/journal.pone.0196004.g001
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The aim of the present work is to develop an efficient and precise methodology to obtain

structural parameters of individual trees in urban inventories at city level based on point

clouds derived from MLS. For the extraction of individual trees, the pipeline shown and

tested in [22] at large scales is employed. However this initial approach only estimated tree

size and location. The methodology proposed here has to face difficulties due to the variable

driving speed (different point density) and the specific acquisition geometry of the MLS

technology, resulting in partial 3D data (only one side view), and presence of noise in the

data. Occluding vegetation may lead to underestimation of selected parameters compared to

manually collected field data [23]. In this work, the following parameters are estimated: loca-

tion coordinates, Tree Height (TH), Crown Width (CW), Diameter at Breast Height (DBH),

Crown Base Height (CBH), Base Crown Volume (BCV) and Canopy Volume (CV). More

concretely, a connectivity analysis is performed to calculate TH and CW; voxelization tech-

nique is employed to estimate CBH. From these parameters, the stem curve is computed

until CBH. A RANSAC-based fitting in conjunction with a dimensional analysis of the vari-

ance covariance matrix by Principal Component Analysis (PCA) is used to estimate tree

location, tree orientation and DBH. CV is obtained by canopy meshing followed by an α-

shape refinement step. To validate the methodology, field measurements were taken from 29

trees of different species. Furthermore, this workflow was tested on an additional dataset

which contains 58 trees in order to provide scalability. Additionally, the influence of the

number of points from different height bins on the accuracy of DBH estimations was

investigated.

The proposed methodology is part of a robust and efficient workflow which considers the

automated extraction of tree parameters, and which has been implemented in the infrastruc-

ture of the FP7 IQmulus project, as part of the so-called urban showcase [24].

Materials and methods

Acquisition system

The acquisition system used in this work is the Fugro Drivemap system, shown in Fig 2. This

MLS is composed of two high performance Riegl VQ250 laser scanners, an all-terrain vehicle

and a navigation system. The navigation system of the vehicle is the Applanix POS LV 520 that

integrates a GNSS receiver, an IMU and a distance measuring instrument. The IMU defines

Fig 2. Fugro Drive-map system used for the data acquisition (a) and its LiDAR System (b) (source: Fugro).

https://doi.org/10.1371/journal.pone.0196004.g002
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the centre of the vehicle coordinate system and, accordingly, the other sensors were aligned

with it. The GNSS positioning system is used for mapping vehicle local coordinates to absolute

coordinates with a planimetric precision of about 0.02 m. It should be noted that precision

properties are highly dependent on GNSS availability, which can be considered good for this

study. The GNSS-receiver has 10 Hz positioning rate and the laser technical specifications are

defined in Table 1.

Methodology for estimating structural tree parameters

The proposed methodology aims at extracting structural tree parameters derived from MLS

data. Before estimating these parameters, the extraction of individual trees from the point

cloud is necessary through an automated workflow by voxel analysis, as explained in [25].

Assuming a point cloud consists of a number of separated trees, the following steps are per-

formed for each individual tree, as Fig 3 illustrates.

The proposed methodology was implemented in C++ using Point Cloud Library (PCL)

[26] and compiled and run on the Ubuntu 14.04 64-bit operating system. The computational

cost of the algorithm regarding the run time can be defined as a real time process. For the α-

shape calculations, the open-source 3D mesh processing system is used [27].

Outlier removal. The point cloud sample may contain outliers and noisy points caused

by interference effects (persons, vehicles,. . .). Such points are not regarded as samples of

actual trees and the first step is to filter them from the point cloud. To remove isolated points

or small point clusters, a statistical analysis on each point’s neighbourhood is performed by

assuming a Gaussian distribution of neighbours’ distances (d). This distances are weighting

with the variable point densities due to the combined effect of the distance to the sensor,

occlusions and driving speed. So, for each MLS point, the average distance to its k-nearest

neighbours are computed and evaluated against the Upper Confidence Limit (UCL) of a

normal error distribution. A j-th point (j = 1. . .k) will be excluded as outlier if the ratio

between their distance and the UCL, for a given confidence level (p), is higher than 1, as is

shown in (1).

threshold ¼
dj

d þ p � sd

> 1 ð1Þ

where d and σd are the mean and standard deviation of the distances to the k-nearest neigh-

bours in the evaluated point vicinity (j = 1. . .k) respectively. The confidence level (p) is

expressed as the critical value associated in the standard normal density curve.

Tree Height (TH) and Crown Width (CW). Starting from the point clouds of each indi-

vidual tree, Tree Height and Crown Width are estimated by extracting the minimal and maxi-

mal points in the three Cartesian coordinate directions from the MLS dataset, taking into

account the point cloud density and their connectivity [28]. These extreme points should be

Table 1. Technical specifications of the Mobile LiDAR System.

Parameter Value

Laser Pulse Rate 0.133�106 pulses / s

Laser Point Density 115000 points / m2

Field of View 3600 � 0.00230

Ranging Accuracy < 2 cm

Sweep Angle 3600

Maximum Range 30 m (0.10 reflectivity)

https://doi.org/10.1371/journal.pone.0196004.t001
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computed from a minimum sample size (spatial resolution) and the distance between the clos-

est voxels should be less than a predefined threshold (spatial connectivity).

Crown Base Height (CBH). For this parameter, individual trees are uniformly down-

sampled through a 3D voxel data structure (Fig 3, step A).

Fig 3. Workflow of the methodology for structural tree parameter extraction; scheme (Fig 3a) and illustrated

workflow (Fig 3b).

https://doi.org/10.1371/journal.pone.0196004.g003
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The voxels are defined by the side of the cube, which is directly related to the a-priori spatial

resolution of the MLS data. As results, the originally gathered points are substituted by the

coordinates of the voxel center defined by the mean of the points in the voxel generating a new

3D model space. The advantages of using voxels is that their use reduces the computational

time of the subsequent steps and decreases the effects of tree branches.

The tree vertical distribution is characterized by the voxel distribution along the Z axis

(since trees are vertically oriented). For each vertical interval, the number of LiDAR hits is

accumulated (Fig 3, step A). As result, a histogram of the vertical distribution is generated

[29]. The CBH is defined as the lowest inflexion point of the histogram (the inflexion of a

curve is a point where the curvature changes its sign while a tangent exists) under the null

hypothesis that the lowest living branch belongs to the crown. As a result, the trunk can be sep-

arated from the canopy using the estimated CBH value.

Trunk orientation by PCA. In MLS data, trunks are not necessarily orthogonal to the XY

plane, as many trees have a more or less tilted trunk. In order to assess the trunk direction, the

trunk 3D points bounded by the ground and the CBH (Fig 3, step B) are evaluated by a PCA

algorithm [30]. Hereafter, the 3D voxel data structure will not be used anymore, but we return

to the original point cloud data. This statistical analysis uses the first and second moments of

these points and results in three orthogonal vectors centred on the centroid of the point cloud.

The PCA synthesizes the distribution of points along the three dimensions, and therefore

models the principal directions and magnitudes of variation of the point distribution around

the centre of gravity.

Considering a 3D point cloud with k points sampling the trunk surface, the coordinates xi,
yi and zi for each point i = 1,. . . k are collected in a matrix X (2).

X ¼

x1 y1 z1

..

. ..
. ..

.

xk yk zk

0

B
B
@

1

C
C
A ¼

~x1

..

.

~xk

0

B
B
@

1

C
C
A ð2Þ

The covariance matrix (S) of the trunk point cloud (X) is defined by:

X
¼

XTX
k
¼

s2
x sxy sxz

sxy s2
y syz

sxz syz s2
z

0

B
B
@

1

C
C
A ð3Þ

s2

x ¼ Eðx2Þ � EðxÞ2 ¼
Xk

i¼1

ðxi � �xÞ2 ð4Þ

sxy ¼ EðxyÞ � EðxÞEðyÞ ¼
Xk

i¼1

ðyi � yÞðxi � xÞ ð5Þ

where E(j) is the expected value of the j-th dimension, (σ2
x, σ2

y, σ2
z) are the variances of the

variables, and the elements outside the main diagonal of S are the covariances for each pair

of variables. The principal trunk direction is defined as the first eigenvector of the covariance

matrix.

DBH and tree location through RANSAC. Due to possible variation of spatial resolution

of the MLS points, different bins or intervals are considered to achieve a robust estimation of

the DBH parameter. More concretely, with respect to the ground level, Z = 0, trunk points
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have been extracted from the following vertical bin intervals: (a) 1.25–1.35 m; (b) 1.20–1.40 m;

(c) 1.10–1.50 m and (d) 1.00–1.60 m. The selected points are projected into a plane orthogonal

to the axis corresponding to the principal direction of the trunk (see previous step), under the

hypothesis that the diameter does not vary significantly along a short length of the stem for

mature trees.

DBH is estimated by means of RANSAC (RANdom SAmple Consensus) circle fitting. This

estimator has favourable properties such as robustness, generality and simplicity. RANSAC

extracts arbitrary primitive types by randomly drawing minimal sets from the point data and

is reliable even in the presence of a considerable proportion of outliers [31]. In an iterative pro-

cess, a minimal set of points is randomly selected to define the geometric primitive, which is

evaluated against the sample. The number of required iterations depends on the probability

to find an outlier free sample. The thereshold that defines if a point is considered an inlier is

based on the a-priori MLS error, as specified by the MLS manufacturer. Circle fitting is applied

to the reference XY plane defined by the PCA approach to estimate DBH (Fig 3, step C). This

procedure fits a partially sampled circle. First, points from the selected DBH bin are projected

to the reference xy plane, obtained for the PCA approach. The projected points outline a par-

tially sampled circle. Next, the tree location is defined as the projection of the derived circle

centre in the trunk’s principal direction by its intersecting with the terrain. The diameter of

this circle is estimated using RANSAC. The diameter is an estimator of the DBH.

Stem curve and Base Crown Volume (BCV). The stem curve is automatically derived

from the point cloud, between the minimum height and CBH starting from diameters at 0.65

meter above the ground, followed by diameters at the DBH height and consecutively at every

meter above the DBH height until the CBH is reached. To determine the diameter at different

heights, the RANSAC circle fitting approach is followed, estimating circle parameters of the

projected trunk points at 0.20 m interval size. As a constraint, the diameter is required to

remain constant or decrease with increasing height.

The BCV (dm3) is computed from the stem curve, summing the volume of each stem sec-

tion, as shown in (6):

BCV ¼
Xm

i¼0

vi ¼
p

40
D2

1
� 0:65þ

Xm

i¼1

p

160
ðDi þ Diþ1Þ

2
� li ð6Þ

where m is the number of stem sections, vi is the volume of the i-th stem section in dm3, Di is

the diameter of the end of the i-th section in cm, and li is the length of the i-th stem section in

m. Eq (6) assumes that the cross-section of the tree stem is circular. In fact, tree stem shapes

exhibit an abundant variety since different tree species have diverse forms and irregularities

such as knots and bulges. However the circular shape is most often employed to generalize the

stem sections when the tree trunk is modelled [32].

Canopy Volume (CV) by generating a canopy mesh. The foliage pattern elements are

important for understanding the radiation regime and canopy structure. LiDAR systems

acquire detailed measurements corresponding to the 3D distribution of canopy components

[33]. However, the acquisition is only partial due to the one-sided field of view of the MLS.

This subsection is devoted to synthesize and quantify the canopy shape (canopy volume—CV)

from the MLS partial point clouds of the individual trees.

The approach is supported by 3D modelling of the point cloud of the canopy by a 3D

Delaunay triangulation (DT) [34]. The result is a triangulated irregular network (TIN) which

requires a filter phase to obtain a tree canopy model close to reality. The approximation shown

in [35] is used in this step which incorporates several automatic and sequential tasks:

• Hole filling based on interpolators of radial basis function [36].

Automatic tree parameter extraction by a Mobile LiDAR System in an urban context
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• Fill meshing gaps, based on minimum threshold distance algorithms.

• Removal of topological noise, allowing the mesh to be re-triangulated locally.

• Removal of geometric noise by algorithms that apply filters such as anti-aliased Laplacians in

general or in specific zones [37].

Once the canopy mesh is reconstructed (Fig 3, step D), an approximate envelop of the

mesh is computed using α-shape techniques [38]. The intermediate step of calculating the can-

opy mesh, improves the efficiency of the α-shape processing of the dense point cloud of the

canopy.

An α-shape is a family of piecewise parametric simple curves in Euclidean space associated

with a set of points. The α-shape of a finite point set is a polytope that is uniquely determined

by the set and a real number α � [0,1], being in the extreme case (α =1) coincident with the

convex hull. As the real number approaches zero, the α-shape develops cavities that could be

converted in tunnels or holes. It expresses the intuitive notion of the shape of the point set

and α is a parameter that controls the level of detail reflected by the polytope, that is to say, the

maximum “curvature” of any cavity. As a result, the α-shape is homeomorphic to the original

object sampled by the point cloud and approximates it within a fixed error bound.

As MLS only provides a partial view, the recovery of the non-visible side is achieved

through symmetry, estimating the symmetry axis by a 180˚ field of view from the tree location.

The hidden side of the canopy is closed by a flat surface. Finally, the canopy shape is obtained

(Fig 3, step E) which allows the direct estimation of the CV.

Quality control. To validate and to assess the proposed methodology, different statistical

evaluations are carried out (Fig 3, step F). The key parameter assessed is the DBH, since it is

linked to various tree attributes. For DBH, the ground truth was acquired on location by tape

in May 2016. The estimated accuracy of these measurements is reported as ±0.1 cm [39]. The

protocol carried out in this field campaign was supported by [40]. The quality of the remaining

parameters is assessed by TLS, measuring the trees in high-resolution from multiple directions

to obtain complete and dense, high quality point clouds. This part of the field validation cam-

paign was carried out in December 2016 (same phenotypic epoch as dataset 1) using a Leica

Scan Station C10 TLS. The single point range accuracy of the Leica Scan Station C10 is

reported to be 0.4 cm [41]. Between November 2015 and December 2016, no maintenance was

done to these urban trees, guaranteeing similar tree parameters. A point cloud data expert esti-

mated high quality parameter values from the TLS point clouds in a suitable graphical user

interface.

The quality of the estimated parameters is expressed by the Squared Pearson Correlation

Coefficient, or coefficient of determination (R2) and the Root Mean Square Error (RMSE) of

the linear regression established between actual and estimated parameters. The Pearson corre-

lation coefficient (R) only measures the precision of a linear relationship [42]. Also employed

is Lin’s concordance correlation coefficient (CCC) [43] for assessing the agreement between

quantitative measurements taken from different sources [44]. As result, it allows to evaluate

reproducibility. At this point CCC (7) measures also the accuracy, yielding a value between -1

and 1, where 1 indicates a perfect agreement. It is computed as:

CCC¼
2sxy

s2
x þ s2

y þ ðmx � myÞ
2 ð7Þ

where σxy, σx
2, σ y

2, μx and μx are the covariance, variances and means of the evaluated variables.

The RMSE provided by the regression is only valid if the sample follows a Gaussian distribu-

tion. So, the error sample is assessed by a Robust Jarque-Bera [45] normality test, implemented
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in the statistical software STAR (Statistics Tests for Analyzing of Residuals) [46]. In case the

error sample does not follow the Gaussian hypothesis, the normalized median absolute devia-

tion (NMAD) (8) is employed as a robust estimator of error dispersion.

NMAD ¼ 1:4826 �MAD ð8Þ

The NMAD allows to compare error dispersions from Gaussian samples, since it is normal-

ized by the inverse of the cumulative distribution function of the Gaussian distribution (1.4826).

Results

Study area and field protocol

The study area is located at the Delft University of Technology campus (lat. 52˚000 N; long. 4˚

220 E; 1 m a.s.l., The Netherlands) and tree species studied are Aesculus hippocastanun and

Quercus palustris. Both species are deciduous and synoecious trees, widely cultivated in streets

and parks throughout the temperate world. The acquisition was carried out at a medium speed

of 40 km/h, with non-significant speed variation in the data adquisition. In order to get accu-

rate and comparable results, only trees that are less than 10 meters from the road are consid-

ered. Two different datasets were analysed with distinct purposes; data referred to as dataset 1

provides validation of the methodology and dataset 2 analyses the scalability of the proposed

methodology.

Dataset 1 (S1 Dataset) was collected on the 4th of November 2015 covering an area of

approximately 750 x 1200 m, on a day with a gentle breeze [47]. This dataset has 105,369,108

points and consists of x, y, z coordinates and laser intensity. A pre-processing phase of the

dataset was carried out in order to obtain the individual trees of the zone of interest. After that,

the point cloud has been reduced to 18,601,566 points, with an average amount of 640,000

points per tree. In the study zone are a total of 29 trees: 14 Aesculus and 15 Quercus, both in

leaf-off condition. The first species are characterized by larger trunk diameters than the sec-

ond. Fig 4 shows the location of the study area and dataset 1 outlined in red and the point

clouds of the individual trees (in random colours) in plan-view, being the Aesculus horizontally

placed and vertically the Quercus.
Dataset 2 was collected on the 5th of May 2016 at the Delft University of Technology cam-

pus, covering an area of approximately 2100 x 3600 m, again on a day with a gentle breeze

[47]. Following a similar approach, the final point cloud includes a total of 31,645,755 points

for 58 Aesculus hippocastanun trees in leaf-on condition, which is equivalent to 560,000 points

per tree on average.

Experimental results

Both datasets were processed according to the proposed methodology and analysed corre-

spondingly to the goal set: validation (dataset 1) and scalability (dataset 2). To demonstrate

some characteristics of the MLS data, the point cloud density from dataset 1 is obtained. The

point density of points sampling individual trunks is computed according to an ideal equilat-

eral triangle distribution for a circular neighbourhood [48]. Table 2 shows the different density

values, which depends on the tree species (see Fig 5 as example) and tree-MLS sensor distance:

the higher density for the Quercus species corresponds to a lower tree-MLS system while the

density variation is higher due to the tree morphology, as Table 2 shows.

The different automatic processing steps required to obtain the structural tree parameters

are summarized in Fig 5 for dataset 1.
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The first step involves the determination of the CBH (Crown Base Height) to separate the

canopy from the trunk by means of histogram analysis of the individual tree voxelization. In

this case, a 10 cm voxel size is fixed to obtain CBH. For the determination of the other tree

parameters, the original point cloud is employed, namely: TH (Tree Height), CW (Crown

Width), DBH (Diameter at Breast Height), BCV (Base Crown Volume), CV (Canopy Volume)

and location.

In order to avoid any distortion in the methodology analysis, an outlier filter based on the

so called Pope test [49] is applied to the discrepancies or residuals in DBH estimations. This

outlier rejection test is based on the definition of standardized residuals, which are evaluated

against a Tau distribution since they are not normally distributed. For a significance level of

5% the statistical threshold is set at 2.944, removing all points whose standardized residual

is lower. The trees rejected by the Pope test have a non-circular trunk. Moreover, the BCV

parameter derived directly from the stem curve (6) was computed according to the constraint

that diameters from the ground plane until CBH are not larger than DBH. Altough the tree

location is not a structural tree variable, it has special relevance in tree management in urban

environments, compare for example [3]. Regarding volumetric measures, the α coefficient

used to estimate the Canopy Volume (CV) parameter through the canopy envelop controls

the level of detail of the final canopy. This effect is illustrated in Fig 6, where various canopy

results are shown for different choices of the α coefficient. The volume variation in these cases

Fig 4. Study area (left) and dataset 1, view on floor (right): Aerial LiDAR (top) and point cloud from MLS of individual trees (bottom).

https://doi.org/10.1371/journal.pone.0196004.g004

Table 2. MLS point density for each tree.

Specie Mean (cm) Std (cm)

Aesculus hippocastanun 4.2 0.5

Quercus palustris 9.3 4.3

https://doi.org/10.1371/journal.pone.0196004.t002
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is negligible (<3%). α = 0.05 is chosen, by a sensitive analysis, as the coefficient for estimating

the canopy envelope. This value also complies with the homeomorphic requirements for

shape-reconstruction and is the optimum one indicated by [50]. To tune this coefficient the

the point cloud density and shape of the object should be taken into account. The main factor

is the point density which is inverse correlated to the α coefficient, so for low spatial resolution

datasets it should be increased. The secondary factor is the shape of the object as local shape

variations affect local point density. If the separation distance between two branches is similar

to the spatial resolution, they might be fused in the final envelope.

Final tree parameters from dataset 1, obtained by the proposed methodology following the

specifications as shown in Table 3.

Table 4 shows the average tree parameters of dataset 1 to highlight the different morphology

of the trees involved in the experimental results.

One of the advantages of the availability of the tree parameters as given in Table 3, is the

possibility to generate a simplified or structural, view of the individual trees without the need

of employing the potentially many original MLS 3D points (Fig 6). This leads to a clear advan-

tage in terms of quick visualization and data storage. This structural conceptualization shows

the canopy as a rectangular prism such that its volume equals CV, its height the difference

Fig 5. Schematic example of the proposed methodology according to species for dataset 1.

https://doi.org/10.1371/journal.pone.0196004.g005
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between TH and CBH and its width equals CW. Meanwhile, the trunk is simplified as a cylin-

der centred in the x,y coordinates, with a diameter equal to DBH and a height coincident to

CBH. In case DBH was rejected by the Pope test, the canopy prism is marked in red in Fig 7

and the cylindrical trunk is omitted.

To evaluate the scalability at city level of the methodology, dataset 2 consisting of 58 indi-

vidual Aesculus hippocastanum was processed. Table 5 sums up the average (μ) and standard

deviation (σ) of the estimated parameters, providing an indication of the morphological

homogeneity of the studied trees.

To highlight the scalability of the proposed methodology, in Fig 8, superimposed on the

point cloud, are the CW values represented as a circumference centred in the computed x, y
coordinates (black dot). This shows that the workflow is able to extract tree parameters even in

high density tree areas, which is a common case in urban environments.

The computation time for dataset 2 is less than 10 seconds, indicating that the algorithm

could be run at city level.

Discussion

In this section, the sensitivity of the results with respect to the different parameters is dis-

cussed, as well as the validation of the results against in situ data.

Fig 6. Canopy envelop results using different α coefficients from the triangulation mesh (the best result is obtained by α = 0.05).

https://doi.org/10.1371/journal.pone.0196004.g006
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DBH analysis

First, the accuracy of the DBH estimation is evaluated for dataset 1. As commented in the pre-

vious section, different bin intervals along the trunk were considered to robustly fit DBH,

namely: 1.25–1.35 m; 1.20–1.40 m; 1.10–1.50 m and 1.00–1.60 m. The linear regressions of

DBH at different bin sizes are shown in Fig 9.

Linear regression parameters are listed in Table 6, being analysed the discrepancies between

real and estimated DBH at different height bins. Both correlations coefficients: Pearson’s coef-

ficient of determination (R2) as well as Lin’s Concordance Correlation Coefficient (CCC) are

Table 3. Tree parameter results from dataset 1. Location coordinates (x UTM, y UTM), Tree Height (TH), Crown Width (CW), Diameter at Breast Height (DBH),

Crown Base Height (CBH), Base Crown Volume (BCV) and Canopy Volume (CV).

ID x UTM (m) y UTM (m) TH (m) CW (m) DBH (m) CBH (m) BCV (dm3) CV (dm3)

1 85029.79 446503.46 15.21 13.35 0.75 1.4 85.2 898.9

2 85056.50 446514.77 13.80 13.51 0.67 1.3 46.5 726.8

3 85069.61 446520.18 16.21 12.82 0.67 1.3 58.1 880.3

4 85082.68 446526.32 15.00 12.84 0.99 1.4 100.2 809.5

5 85096.52 446532.46 13.72 12.63 0.76 1.3 59.4 662.7

6 85107.73 446537.74 16.01 12.42 1.08 1.8 119.4 1035.3

7 85119.77 446543.13 15.63 13.82 0.83 1.4 117.5 997.3

8 85134.52 446550.18 15.99 14.25 - 1.3 - 1168.9

9 85147.13 446555.82 15.31 11.7 0.77 1.3 68.4 777.1

10 85161.06 446562.13 13.91 13.76 0.50 2.2 44.2 621.4

11 85173.11 446567.45 16.99 14.45 0.77 1.2 95.7 1261.0

12 85187.02 446573.90 12.86 9.01 0.60 2.3 40.4 359.3

13 85201.51 446580.57 15.02 11.45 0.78 1.9 76.1 860.0

14 85218.22 446587.79 15.58 14.97 - 2.3 - 1042.1

15� 85257.16 446586.70 13.64 8.56 0.35 2.8 23.6 333.5

16� 85260.07 446579.31 14.17 7.59 0.32 3.2 18.6 333.4

17� 85263.18 446571.97 14.96 9.09 0.38 3.3 22.4 351.8

18� 85266.35 446564.60 14.60 8.59 0.55 2.7 46.7 355.6

19� 85269.26 446557.10 14.57 8.53 0.31 2.8 14.3 339.4

20� 85272.33 446549.97 15.31 7.34 0.40 3.3 22.6 300.7

21� 85275.20 446542.53 14.69 7.56 - 2.8 - 394.2

22� 85278.79 446534.73 14.27 7.38 0.34 3.7 24.1 347.3

23� 85281.45 446527.61 8.35 6.53 0.35 1.8 28.9 203.5

24� 85246.63 446518.54 12.84 7.22 0.40 2.9 24.2 252.7

25� 85253.94 446522.11 12.94 6.88 0.41 3.8 31.6 228.3

26� 85251.02 446529.52 14.00 6.41 0.36 4.3 33.3 210.6

27� 85247.81 446536.71 12.42 7.53 0.50 3.7 26.1 313.7

28� 85244.86 446544.16 16.10 7.53 0.37 2.8 17.6 407.7

29� 85241.91 446551.73 14.07 9.25 0.48 4.2 57.7 452.9

The Quercus trees are labelled with an asterisk (�).

https://doi.org/10.1371/journal.pone.0196004.t003

Table 4. Tree summary from dataset 1.

Specie TH (m) CW (m) DBH (m) CBH (m) BCV (dm3) CV (dm3)

Aesculus hippocastanun 15.09 12.93 0.76 1.60 75.99 864.39

Quercus palustris 13.78 7.62 0.39 3.14 25.73 312.37

https://doi.org/10.1371/journal.pone.0196004.t004
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listed. The last one was computed as shown in (7). As comment, indicate that CCC cannot

exceed the absolute value of Pearson’s correlation coefficient (R). For the error dispersion mea-

surement, the sample is assessed by a robust Jarque-Bera normality test [45]. In all cases, the p-

value of the normality test is higher than the significance level of 0.05, validating the RMSE as

measure of error dispersion. Due to the nature of the applied regression, the error central ten-

dency is compatible with zero.

According to the results in Table 5, we can conclude that the 20 cm height bin, using points

from 1.20 m to 1.40 m height of each individual tree to estimate the DBH provides the best

results.

Next, the influence of point cloud density on DBH estimation is analysed by considering

the point density for different height bins and the corresponding error in DBH estimation.

The results are listed in Table 7, where no significant correlation is shown. A bit higher corre-

lation appears for the 20 cm interval results, but a check revealed that this is caused by the pres-

ence of an observation with a higher discrepancy, near to the outlier filter threshold, which

was not automatically eliminated.

Moreover, the number of points involved in the robust fitting process was compared

against the regression parameters (Table 6). Table 8 lists the minimum, maximum and average

Fig 7. Tree parameter results from dataset 1. Schematic representation of tree location, TH, CW, DBH, BCH and CV.

https://doi.org/10.1371/journal.pone.0196004.g007

Table 5. Average (μ) and standard deviation (σ) of tree parameter results from dataset 2.

TH (m) CW (m) DBH (cm) CBH (m) BCV (dm3) CV (dm3)

μ 19.86 18.46 65.96 2.69 174.72 317.60

σ 1.09 2.70 13.85 1.13 64.49 58.40

https://doi.org/10.1371/journal.pone.0196004.t005
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number of points involved in the DBH fitting using different bin sizes. Additionally, the coeffi-

cients of determination among the different variables are shown, to illustrate their indepen-

dency, namely: mean number of points for circle fitting versus RMSE, and versus CCC.

Analysis of other parameters

The rest of the tree parameters, Tree Height, Crown Width, BCV, BCV and Canopy volume

are assessed in a similar way as the results presented in Table 5. In all cases both correlation

coefficients are higher than 91% as shown in Table 9.

Due to the non-normality of TH and CW, instead of RMSE, the NMAD (8) is employed as

robust measure of error dispersion. Both values are listed in Table 9 for comparative purposes.

In italics are shown that are rejected, according to the normality assessment. In the case of the

TH and CW parameters, the RMSE tends to overestimate the error dispersion by a factor 2.8–

4.5, as the error samples do not follow a normal distribution. So, the employment of RMSE as

evaluator would lead to false the conclusions. For the other three parameters listed in Table 9,

the normality is verified to be inside the 95% confidence level.

Specifications of the study

In some cases it was not possible to estimate DBH confidently due to the morphological

shape of the tree trunk which caused the generation of a non-circular shape in the analysed

bin. Fig 10 shows an example (Fig 10a) against a regular trunk shape (Fig 10b) of proposed

methodology.

Fig 8. Tree parameter results (location and CW) overlapping to dataset 2 for scalability.

https://doi.org/10.1371/journal.pone.0196004.g008
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The geometric configuration of the sensor with respect to the trees did not result in under-

estimation for the height, width and canopy volume. By contrast, many studies in forest have

reported tree height (TH) underestimation when attempting to use TLS for biomass estima-

tion [21]. The cause is the complexity of the canopy obstructing the laser beam from reaching

Fig 9. DBH linear regressions at different bin sizes for dataset 1.

https://doi.org/10.1371/journal.pone.0196004.g009

Table 6. Summary of DBH determination for different heigh bins for dataset 1. Correlations coefficients (R2 and

CCC), error dispersion (RMSE) and normality assessment of error sample.

Height Bin (m) R2 CCC RMSE (cm) Normality (p-value)

1.25–1.35 0.69 0.80 10.7 0.63

1.20–1.40 0.92 0.95 4.9 0.87

1.10–1.50 0.76 0.85 9.2 0.42

1.00–1.60 0.89 0.94 6.0 0.84

https://doi.org/10.1371/journal.pone.0196004.t006

Table 7. Relationship between errors and MLS point density for each individual tree. Correlations coefficients (R2

and CCC).

Height Bin (m) R2 CCC

1.25–1.35 0.0001 -0.0031

1.20–1.40 0.1873 0.1857

1.10–1.50 0.0023 0.0230

1.00–1.60 0.0019 -0.0191

https://doi.org/10.1371/journal.pone.0196004.t007
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the top of the tree. In the present experiment, the laser was able to measure the full visible side

of the urban trees.

However, the algorithm has to be improved for trunk detection, since in some scenarios

it could derive erroneous DBH. These difficulties occur when there are objects in the trunk

vicinity at a similar height, e.g. branches lower than CBH, or urban furniture/appliances in the

trunk range (Fig 11). These examples are not present in the above datasets. In future studies,

we will be focusing on providing geometric solutions to overcome this challenge. Another test

will be dealing with the intensity value provided by the laser scanner to improve the segmenta-

tion between trunk and canopy.

A final comment is that the proposed methodology could be extrapolated to point clouds

obtained by structure-from-motion technique. But in that case, results are expected to be

affected by the inability to penetrate through the canopy, and the higher level of noise since it

is a passive technique.

Conclusions

The manuscript presents an efficient and non-invasive method for urban tree inventory based

on point clouds acquired by MLS. The methodology is focused on the estimation of tree struc-

tural parameters in a fast, robust and objective way. Field measurements were used to validate

these parameters. The methodology and derived results will help decision making related to

urban trees.

This study discussed the influence of the number of points used for DBH estimation. Con-

sidering MLS point density and used height bin, no-significant relationship was reported. The

optimal results in terms of correlation coefficient and error dispersion were for 20 cm bin

heights, with a R2 of 0.92 and a RMSE of 4.9 cm. Moreover, the rest of the mentioned tree

parameters were reported with a coefficient of determination higher than 0.91. The associated

error was reported according to the best suitable statistis according to the error sample nature;

RMSE or NMAD. In addition, the results show that working only on one side of the tree, the

visible side from the road, is still feasible for approximating different tree structural parameters

and canopy architecture with an accurate fit.

Table 8. Relationship between number of points and error in DBH estimation.

Height Bin (m) Number of points Coefficient of determination (R2)

Min Mean Max RMSE CCC

1.25–1.35 5 73.3 535 0.0494 0.0960

1.20–1.40 6 84.7 249

1.10–1.50 11 245.6 2015

1.00–1.60 17 346.9 2824

https://doi.org/10.1371/journal.pone.0196004.t008

Table 9. Summary of tree parameters for dataset 1. Correlations coefficients (R2 and CCC), error dispersion (RMSE and NMAD) and normality assessment of error

sample (p-value).

Parameter R2 CCC RMSE NMAD Normality (p-value)

TH 0.9801 0.9749 (16.2 cm) 5.9 cm <0.0001

CW 0.9693 0.9770 (47.0 cm) 10.4 cm <0.0001

CBH 0.9689 0.9771 15.7 cm (20.8 cm) 0.3242

BCV 0.9186 0.9666 8.8 dm3 (11.8 dm3) 0.4687

CV 0.9970 0.9984 17.8 dm3 (14.5 dm3) 0.4464

https://doi.org/10.1371/journal.pone.0196004.t009
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The methodology can be extrapolated to a comprehensive study of urban trees at city level

[22]. Current experimental results indicate the reliability of the proposed algorithm and its

possible employment when big data processing is required in an efficient way. The simple

yet reliable approach makes the algorithm feasible for real-time processing and provides the

advantage of running the workflow easily on different platforms.

Different applications from the proposed workflow would be broad-scale mapping, data

fusion or calibration of remote sensing platforms to retrieve tree structural parameters and

urban tree management. As a next work, we consider allometric relationships from the TIN to

tree structure taking into account the point cloud density.

Future studies will address automated registration of LiDAR with imaging sensors, to sat-

isfy the wide range of data requirements of urban tree characterization. The more promising

Fig 10. Trunk morphology effects on DBH estimation. Point cloud bin (left) and circle fit of the projected points in plan-view for a circular trunk

shape (a) and a non-circular trunk shape (b). Both cases correspond to a 40 cm bin.

https://doi.org/10.1371/journal.pone.0196004.g010
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sensors are multispectral and/or hyperspectral imaging sensors, which will allow a robust spe-

cies classification.

Supporting information

S1 Dataset. Consists of a .xyz file of individual trees from MLS of dataset 1.

(XYZ)
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