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Modeling spectral effects due to core heterogeneity is one of the major challenges for current nodal anal-
ysis tools, whose accuracy is often deteriorated by cross-section homogenization errors. AREVA NP
recently developed a spectral rehomogenization method that estimates the variation of the assembly-
averaged neutron flux spectrum between environmental and infinite-lattice conditions using a modal
synthesis. The effectiveness of this approach is tied to the evaluation of the spectrum of the neutron leak-
age from or into the assembly in the environment.
In this paper, we propose a method for the leakage spectral distribution building upon Fick’s diffusion

law. The neutron-exchange spectrum at a nodal interface is computed as a function of the gradient of the
environmental flux spectrum, which is determined by the rehomogenization algorithm. This diffusive
approach is applied to PWR benchmark problems exhibiting strong interassembly heterogeneity. We
show that the method accurately reproduces the energy dependence of streaming effects, and that sig-
nificant improvements in the input nodal cross sections, fission power and multiplication factor esti-
mates are achieved at a low computational cost. The proposed model is compared with an alternative
approach, that uses the fundamental-mode leakage spectrum obtained from the solution of the B1 equa-
tions. This second strategy is generally less accurate, and can only provide an adequate approximation of
the environmental leakage in weakly heterogeneous systems.
� 2018 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Routine calculations for reactor core design, monitoring and
safety analyses are commonly performed with advanced nodal-
diffusion methods on coarse meshes (Lawrence, 1986; Stacey,
2007). Fuel-assembly homogenization for the generation of few-
group constants (nodal cross sections and discontinuity factors)
is performed via heterogeneous transport calculations under the
assumption of reflective boundary conditions at the assembly
outer edges (Smith, 1986). However, this approximation can lose
its validity when the assembly is simulated within the real envi-
ronment (i.e., the reactor core). Here, streaming effects induced
by internodal heterogeneity can cause significant deviations of
the actual neutron flux distribution from the infinite-medium
one used for spatial homogenization and energy collapsing of cross
sections. Common examples in which the homogenization error
can be highly penalizing are configurations with strong burnable
absorbers and control rods; mixed oxide (MOX) assemblies sur-
rounded by uranium oxide (UOX) assemblies; fresh-fuel assem-
blies facing depleted regions; and fuel bundles bordering
reflector nodes. With these diverse layouts, the equivalence
between the homogeneous nodal representation and the heteroge-
neous fine-mesh transport solution is only ensured if environmen-
tal (spatial and spectral) effects are modeled.

Several methods can be found in the reactor physics literature
to correct single-assembly cross sections for spectral effects.
Among them, we mention: empirical correlations taking into
account local spectral interactions (Palmtag, 1997; Ban and Joo,
2016; Smith, 2017); the parameterization of nodal cross sections
and discontinuity factors versus the current-to-flux ratio (and/or
other albedo parameters) at the node outer surfaces (Rahnema
and Nichita, 1997; Kim et al., 2017); high-order cross-section
homogenization (Rahnema and McKinley, 2002); a spatial super-
position technique of typical four-assembly configurations
(Clarno and Adams, 2005); a recondensation method based on the
Discrete Generalized Multigroup (DGM) energy expansion theory
(Zhu and Forget, 2011); and a semi-heterogeneous transport-
embedded approach (Groenewald et al., 2017).
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The present work builds upon the spectral rehomogenization
method developed at AREVA NP (Dall’Osso et al., 2010;
Gamarino et al., 2017, 2018). In this approach, the variation of
the neutron flux spectrum in the homogenized assembly between
the environmental and infinite-medium conditions is estimated
during the core nodal calculation via modal synthesis. The
energy-condensation defects are computed on-the-fly and added
to the few-group nodal cross sections interpolated from the stan-
dard parameterized tables. The performance of the method
depends on two paramount points: (i) the set of basis and
weighting functions employed for the modal expansion of the
spectrum perturbation, and (ii) the definition of an accurate spec-
tral distribution of the neutron leakage in the real environment.
The former topic has been extensively treated in previous work
(Gamarino et al., 2017, 2018). In Gamarino et al. (2018), two
modal approaches have been investigated. The first strategy uses
analytical basis functions (Chebyshev polynomials of the first
kind) and a physical mode in the fast group (i.e., the neutron
fission-emission spectrum). The second approach is based on
the Proper Orthogonal Decomposition (POD). It computes the
optimal (in a least-squares sense) orthonormal basis functions
for the space spanned by a set of snapshots of the reference spec-
trum perturbation. The two methods have been compared in
terms of accuracy and computational efficiency. Several aspects
of the rehomogenization method have been discussed, such as
the implementation features, the impact of the approximations
in the derivation of the algorithm, and the complementarity with
other kinds of cross-section corrections (i.e., spatial rehomoge-
nization and the critical-buckling spectrum correction).

In this paper, the methodology for the leakage spectral distribu-
tion is described. The leakage rate in a fuel assembly is dominated
by two factors (Hebert, 2009): scattering anisotropy and
interassembly neutron exchange. The former has an important
effect in Pressurized Water Reactors (PWRs) due to the presence
of hydrogen in the moderator, and is usually taken into account
via transport corrections (such as the consistent B1 and P1 approx-
imations) performed at the lattice-calculation level. The latter is
inherently dependent on the core environment. The inaccurate
results achieved with a flat-leakage approximation (i.e., consider-
ing the leakage spectral distribution uniform and equal to the
coarse-group nodal estimate) highlighted the importance of find-
ing a realistic energy shape for streaming effects (Gamarino
et al., 2018). Hence, the aim of this work is to develop a model
for the leakage spectrum. Two approaches are proposed and inves-
tigated. The first one is based on the application of Fick’s diffusion
law to the node-averaged environmental spectra estimated by the
rehomogenization algorithm. We refer to it as diffusive-leakage
model. The second one uses the homogenized-assembly critical-
leakage spectrum from the fundamental-mode (B1) calculation.
The two strategies are tested on PWR assembly layouts character-
ized by significant heterogeneity. Both isothermal fresh-fuel condi-
tions and configurations with depletion feedbacks are considered.
Focus is given to the more promising diffusive-leakage approach.

This paper is structured as follows. In Section 2 the diffusive and
fundamental-mode leakage methods are described. Section 3
shows numerical results for several PWR benchmark problems.
In Section 4 we address various features of interest of the diffusive
model. Concluding remarks and suggestions for future work follow
in Section 5.
2. Description of the method

In this Section, the spectral rehomogenization method is briefly
reviewed for the sake of completeness. The description of the two
models for the leakage spectrum follows.
2.1. Review of spectral rehomogenization

The details about the derivation and the implementation fea-
tures of the method can be found in Gamarino et al. (2018a).

For a generic homogenized node, the neutron continuous-
energy balance equation in the environmental conditions can be
written, within the coarse group G, as

Rt;GðuÞUenv;GðuÞ þ Lenv;GðuÞ ¼
XNG

G0¼1

vGðuÞ
keff

Z 1

0
du0mRf ;G0 ðu0ÞUenv;G0 ðu0Þ

�

þ
Z 1

0
du0Rs;G0!Gðu0 ! uÞUenv;G0 ðu0Þ

�
: ð1Þ

The lethargy-like quantity u, bounded between 0 and 1, is defined
as

u ¼
ln E

E�G

� �

ln EþG
E�G

� � ; ð2Þ

where Eþ
G and E�

G denote the G-th group upper and lower energy
boundaries. In Eq. (1), Uenv;GðuÞ and Lenv;GðuÞ represent the neutron
spectrum and the leakage energy distribution, respectively. The
remaining symbols have the conventional meaning (Stacey, 2007).
The assumption is made that the cross-section distributions depend
only weakly on the environment (namely, Rx;GðuÞ � R1

x;GðuÞ for reac-
tion type x). From now on, when referring to spectral functions we
omit the argument u for the sake of lightness of the notation (i.e.,
f G ¼ f GðuÞ).

In each of the NG coarse groups, the environmental spectrum is
formulated as the sum of the reference distribution in the infinite-
medium conditions ðu1;GÞ and of the spectrum variation in the real
environment ðdUGÞ:
Uenv;GðuÞ ¼ �UGu1;GðuÞ þ dUGðuÞ: ð3Þ
In Eq. (3), �UG denotes the few-group node-averaged flux. The single-
assembly spectrum u1;G is normalized to unity, and dUG has zero
average within G. The spectrum perturbation is expanded in terms
of NQG zero-averaged modal components QG;i:

dUGðuÞ ¼
XNQG

i¼1

aG;iQG;iðuÞ: ð4Þ

Eqs. (1), (3) and (4) define the spectral rehomogenization problem.
The coefficients aG;i are solved for with a weighted-residual tech-
nique: after substitution of Eqs. (3) and (4), Eq. (1) is projected over
a set of weighting functionsWG;j (with j ¼ 1; . . . ;NQG ) and integrated
over u. The following NGNQG � NGNQG linear system is obtained:

�UGhR;t;G;j þ
XNQG

i¼1

aG;ihV ;t;G;i;j þ cG;j ¼
XNG

G0¼1

�UG0 hR;s;G0!G;j þ
vG;j

keff
hR;f ;G0

� �

þ
XNG

G0¼1

XNQG0

i¼1

aG0 ;i hV ;s;G0!G;i;j þ
vG;j

keff
hV ;f ;G0 ;i

� �
: ð5Þ

In Eq. (5), the leakage projection coefficient cG;j is defined as

cG;j ¼
Z 1

0
duWG;jðuÞLenv;GðuÞ; ð6Þ

whereas the remaining variables read as

vG;j ¼
Z 1

0
duWG;jðuÞvGðuÞ; ð7aÞ

hR;t;G;j ¼
Z 1

0
duWG;jðuÞRt;GðuÞu1;GðuÞ; ð7bÞ



Fig. 1. One-dimensional layout of a generic nodal interface.
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hV ;t;G;i;j ¼
Z 1

0
duWG;jðuÞRt;GðuÞQG;iðuÞ; ð7cÞ

hR;f ;G ¼
Z 1

0
dumRf ;GðuÞu1;GðuÞ; ð7dÞ

hV ;f ;G;i ¼
Z 1

0
dumRf ;GðuÞQG;iðuÞ; ð7eÞ

hR;s;G0!G;j ¼
Z 1

0
duWG;jðuÞ

Z 1

0
du0Rs;G0!Gðu0 ! uÞu1;G0 ðu0Þ; ð7fÞ

hV ;s;G0!G;i;j ¼
Z 1

0
duWG;jðuÞ

Z 1

0
du0Rs;G0!Gðu0 ! uÞQG0 ;iðu0Þ: ð7gÞ

The reference (hR;x;G;j) and variational (hV ;x;G;i;j) rehomogenization
coefficients detailed in Eq. (7) depend on infinite-medium distribu-
tions and on the basis and weighting functions chosen for the modal
synthesis of dUG. They are computed for each fuel-assembly type
during the lattice calculation and stored in the cross-section
libraries as additional homogenization parameters. During the on-
line core calculation, the rehomogenization problem of Eq. (5) is
solved for each node following a non-linear flux iteration. The �UG

and keff estimates are taken as input from the previous, partially
converged power iteration, and the rehomogenization coefficients
are interpolated from the parameterized tables as a function of
the local conditions. In conclusion, the spectral cross-section correc-
tion for reaction type x in a generic node is computed as follows:

dRx;G ¼ 1
�UG

Z 1

0
duRx;GðuÞdUGðuÞ ¼ 1

�UG

XNQG

i¼1

aG;ihV ;x;G;i;0; ð8Þ

where the subscript 0 in hV ;x;G;i;0 refers to the fact that WG;0ðuÞ ¼ 1.

2.2. The leakage spectrum model

The leakage spectrum Lenv;G [Eqs. (1) and (6)] is expressed as
follows:

Lenv;GðuÞ ¼ �LGf L;GðuÞ; ð9Þ
where �LG is the few-group node-averaged leakage and f L;G is a form
function describing the leakage energy dependence. The distribu-
tion f L;G is normalized to unity so as to satisfy the condition
Z 1

0
duLenv;GðuÞ ¼ �LG: ð10Þ

Using Eq. (9), Eq. (6) becomes

cG;j ¼ �LGhL;G;j; hL;G;j ¼
Z 1

0
duWG;jðuÞf L;GðuÞ: ð11Þ

In the following, we formulate f L;G and hL;G;j for the two leakage
models.

2.2.1. The diffusive-leakage method
We consider two adjacent nodes k and l separated by a surface

DS along the generic direction x (Fig. 1). The two nodes have size
Dxk and Dxl along x.

We apply the discrete (in space) Fick’s diffusion law to compute
the spectral distribution of the neutron current JSG through the sur-
face DS:

JSGðuÞ ¼ �Dk
GðuÞ

US
env;GðuÞ �Ukc

env;GðuÞ
Dxk=2

; ð12Þ
where Dk
G denotes the distribution in energy of the spatially-

averaged diffusion coefficient in node k;US
env;G is the environmental

spectrum at the interface between the two facing nodes, and Ukc
env;G

is the environmental spectrum at the center of node k. A similar
equation can be written for node l:

JSGðuÞ ¼ �Dl
GðuÞ

Ulc
env;GðuÞ �US

env;GðuÞ
Dxl=2

: ð13Þ

We make the approximation that the spectrum at the center of a
given node is equal to the node-averaged spectrum:

Umc
env;GðuÞ � Um

env;GðuÞ; m ¼ k; l: ð14Þ
The discrete formulation of Fick’s law [Eqs. (12) and (13)] and Eq.
(14) are based on a linear flux spatial distribution. This hypothesis
is not consistent with the quartic polynomial expansion commonly
adopted in advanced nodal codes. Because of the lack of information
for a more rigorous spatial discretization of spectral distributions,
we make the assumption that this approximation is acceptable
within the range of accuracy of the proposed methodology.

As done for the cross-section distributions in Section 2.1, the
dependence of the fine-energy diffusion coefficient on the environ-
ment is neglected:

Dm
G ðuÞ � Dm

G;1ðuÞ; m ¼ k; l: ð15Þ

Continuity of the current distribution JSG is imposed by equating Eqs.
(12) and (13). The following expression is found for the spectrum at
the surface DS:

US
env;GðuÞ ¼

~Dk
GðuÞUk

env;GðuÞ þ ~Dl
GðuÞUl

env;GðuÞ
~Dk
GðuÞ þ ~Dl

GðuÞ
; ð16Þ

where the quantity ~Dm
G ðuÞ reads as

~Dm
G ðuÞ ¼

2Dm
G ðuÞ

Dxm
; m ¼ k; l: ð17Þ

Substituting Eq. (16) into Eq. (12) or Eq. (13) yields

JSGðuÞ ¼ �D̂k;l
G ðuÞðUl

env;GðuÞ �Uk
env;GðuÞÞ; ð18Þ

with the harmonic-averaged diffusion parameter D̂k;l
G defined as

D̂k;l
G ðuÞ ¼

~Dk
GðuÞ~Dl

GðuÞ
~Dk
GðuÞ þ ~Dl

GðuÞ
: ð19Þ

We refer to D̂k;l
G as nodal-coupling diffusion coefficient.

Moving to a more general multi-dimensional framework, the
node-averaged leakage spectrum for the homogenized region k is
determined applying Eq. (18) to all the interfaces with the sur-
rounding nodes:

Lkenv;GðuÞ ¼
XNnb

m¼1

D̂k;m
G ðuÞ
Ddk;m

Uk
env;GðuÞ �Um

env;GðuÞ
� �

: ð20Þ
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In Eq. (20), the superscript m cycles over the number of neighbor

nodes Nnb, and Ddk;m is the width of node k along the direction per-
pendicular to the interface with node m. Combining Eqs. (9) and

(20) yields the nodal form function f kL;G:

f kL;GðuÞ ¼
XNnb

m¼1

wk;m
G

D̂k;m
G ðuÞ
Ddk;m

Uk
env;GðuÞ �Um

env;GðuÞ
� �

: ð21Þ

The Nnb normalization constants wk;m
G in Eq. (21) are introduced to

fulfill Eq. (10). They are computed imposing the preservation of

the few-group leakage Lk;mG through the interface between regions
k and m:

wk;m
G

Ddk;m

Z 1

0
duD̂k;m

G ðuÞ Uk
env;GðuÞ �Um

env;GðuÞ
� �

¼ Lk;mG
�LkG

; ð22Þ

where Lk;mG is defined in terms of the surface-averaged net current

Jk;mG at the interface:

Lk;mG ¼ Jk;mG

Ddk;m
: ð23Þ

An estimate of Jk;mG is known from the previous iteration of the nodal
calculation. In Eq. (22), dividing by the node-averaged leakage �LkG is

required to scale f kL;G to unity. After introducing Eqs. (3) and (4), Eq.
(21) reads as

f kL;GðuÞ ¼
XNnb

m¼1

wk;m
G

D̂k;m
G ðuÞ
Ddk;m

�Uk
Gu

k
1;GðuÞ þ

XNQG

i¼1

ak
G;iQG;iðuÞ

2
4

� �Um
Gu

m
1;GðuÞ þ

XNQG

i¼1

am
G;iQG;iðuÞ

0
@

1
A
3
5: ð24Þ

The projection of Eq. (24) over the weighting functions WG;j (with
j ¼ 1; . . . ;NQG ) leads to the following definition of the j-th leakage
rehomogenization coefficient for node k:

hk
L;G;j ¼

XNnb

m¼1

wk;m
G

Ddk;m
�Uk
Gh

k� ;m
R;D̂;G;j

þ
XNQG

i¼1

ak
G;ih

k;m
V ;D̂;G;i;j

� �Um
G h

k;m�

R;D̂;G;j
þ

XNQG

i¼1

am
G;ih

k;m
V ;D̂;G;i;j

0
@

1
A

2
4

3
5:

ð25Þ
In Eq. (25), a new type of rehomogenization parameter has been
introduced for the nodal-coupling diffusion coefficient:

hk� ;m
R;D̂;G;j

¼
Z 1

0
duWG;jðuÞD̂k;m

G ðuÞuk
1;GðuÞ; ð26aÞ

hk;m�

R;D̂;G;j
¼

Z 1

0
duWG;jðuÞD̂k;m

G ðuÞum
1;GðuÞ; ð26bÞ

hk;m
V ;D̂;G;i;j

¼
Z 1

0
duWG;jðuÞD̂k;m

G ðuÞQG;iðuÞ: ð26cÞ

The normalization condition of Eq. (22) results in the following

expression for wk;m
G :

wk;m
G ¼ Jk;mG =�LkG

�Uk
Gh

k� ;m
R;D̂;G;0 þ

PNQG
i¼1 ak

G;ih
k;m
V ;D̂;G;i;0 � �Um

G h
k;m�

R;D̂;G;0 þ
PNQG

i¼1 am
G;ih

k;m
V ;D̂;G;i;0

� � ; ð27Þ

where, as in Eq. (8), we have used the fact thatWG;0 is equal to unity
to define the rehomogenization coefficients for j ¼ 0.

As observed in Eq. (26), the coefficients hR;D̂ and hV ;D̂ for a certain
node k are not uniquely defined. This is because they also depend
on the reference collapsing spectrum ðum

1;GÞ and on the diffusion-

coefficient distribution ðDm
G Þ in the adjacent node m. The informa-

tion on the former is carried by the coefficient hk;m�

R;D̂;G;j
, whereas
the information on the latter is present in the coefficients hk� ;m
R;D̂;G;j

,

hk;m�

R;D̂;G;j
and hk;m

V ;D̂;G;i;j
. For a given fuel assembly, these ‘‘mixed” reho-

mogenization parameters must be computed during the lattice cal-
culation for each spectral interface (namely, for each dissimilar
adjacent assembly). Nevertheless, the neighbor-bundle informa-
tion is not easily achievable in the single-assembly simulation,
because the lattice code has no knowledge of the bordering regions
that the fuel assembly will see during its operating life in the reac-
tor core. Although the cross-section generation procedure could be
modified to add such a feature, this would demand to redefine the
architecture of the lattice code. Moreover, the simulated unit
assembly and its neighbor elements can experience different oper-
ating conditions and burn-up. Thus, the coefficients of Eq. (26)
should be computed for several combinations of values of the state
parameters in the adjacent assemblies, with the fuel exposure
being the most relevant quantity to be sampled. In the light of
the complex assembly-shuffling strategies adopted in modern core
designs, the growth of the cross-section libraries caused by the
storage of the rehomogenization parameters for the nodal-
coupling diffusion coefficient would be significant. In conclusion,
the formulation of the diffusive-leakage model presented above
is not suitable for a practical integration in lattice-physics codes.

In order to overcome this issue, a variant of the method is pro-
posed. It is based on the assumption that the diffusion-coefficient
spectral distribution does not change significantly in the two adja-
cent assemblies:

Dk
GðuÞ � Dm

G ðuÞ: ð28Þ
Under this approximation, Eq. (16) for the neutron spectrum at the
surface DS reduces to

US
env;GðuÞ �

Uk
env;GðuÞ þUl

env;GðuÞ
2

: ð29Þ

Furthermore, Eq. (18) can be rewritten as

JSGðuÞ � 2
Dk

GðuÞ
Dxk þ Dxl

Uk
env;GðuÞ �Ul

env;GðuÞ
� �

: ð30Þ

Using Eq. (28) again, the following expression holds for JSG:

JSGðuÞ �
2

Dxk þ Dxl
Dk

GðuÞUk
env;GðuÞ � Dl

GðuÞUl
env;GðuÞ

� �
: ð31Þ

We emphasize that, although the approximate definition of Eq. (31)
is not physical, it is justified by the fact that DG is almost not vary-
ing. The values of JSG computed for nodes k and l with Eq. (31) are
equal and opposite. Hence, the continuity of the neutron-current
spectrum at the interface DS is satisfied. Based on Eq. (31), the fol-

lowing approximation for f kL;G ensues:

f kL;GðuÞ �
XNnb

m¼1

sk;m
wk;m

G

Ddk;m
Dk

GðuÞUk
env;GðuÞ � Dm

G ðuÞUm
env;GðuÞ

� �
: ð32Þ

In Eq. (32), the spatial coefficient sk;m is given by

sk;m ¼ 2

Ddk;m þ Ddm;k
: ð33Þ

After some algebraic manipulation, the leakage projection parame-
ter becomes

hk
L;G;j �

XNnb

m¼1

sk;m
wk;m

G

Ddk;m
�Uk
Gh

k
R;D;G;j þ

XNQG

i¼1

ak
G;ih

k
V ;D;G;i;j

2
4

� �Um
G h

m
R;D;G;j þ

XNQG

i¼1

am
G;ih

m
V ;D;G;i;j

0
@

1
A
3
5; ð34Þ
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where the coefficients hk
R;D;G;j and hk

V ;D;G;i;j for node k read as

hk
R;D;G;j ¼

Z 1

0
duWG;jðuÞDk

GðuÞuk
1;GðuÞ; ð35aÞ

hk
V ;D;G;i;j ¼

Z 1

0
duWG;jðuÞDk

GðuÞQG;iðuÞ: ð35bÞ

An analogous equation can be written for the same coefficients in
the generic neighbor node m. Finally, the normalization constant

wk;m
G is now

wk;m
G ¼ Jk;mG =ð�LkGsk;mÞ

�Uk
Gh

k
R;D;G;0þ

PNQG
i¼1 ak

G;ih
k
V ;D;G;i;0� �Um

G h
m
R;D;G;0þ

PNQG
i¼1 am

G;ih
m
V ;D;G;i;0

� � :
ð36Þ

The variables detailed in Eq. (35) are the standard rehomogeniza-
tion parameters for the diffusion coefficient. They only depend on
the infinite-medium neutron spectrum and diffusion-coefficient
distribution in the given assembly. No information on fine-group
quantities in the neighbor nodes is required. Therefore, they can
be easily computed during the lattice calculation, in a similar man-
ner as the rehomogenization coefficients for the cross sections and
the fission spectrum (Eq. (7)).

Despite the heuristic connotation of Fick’s law, the diffusive
approach has a physical justification. This can be illustrated with
an example. We consider a 3.1%-enriched UO2 assembly with
burnable-absorber (Pyrex) rods adjacent to a 1.8%-enriched UO2

assembly. Both fuel bundles are at zero burn-up. For the assembly
with poison, Fig. 2 shows the leakage form functions computed by
Eqs. (21) and (32) (that is, the original and approximate formula-
tions of the method) using the reference environmental flux spec-

tra (i.e., Uref
env;G). The comparison with the reference environmental

leakage reveals that the diffusive definition provides a very accu-
rate estimate, and that the differences between the two formula-
tions are negligible. In Sections 3 and 4 we discuss further the
validity of the approximation of Eq. (28) and its effect on the calcu-
lation of the leakage spectrum.

From a numerical point of view, the diffusive approach trans-
lates into the dependence of the leakage parameter hL;G;j [Eqs.
(25) and (34)] on the modal-expansion coefficients aG;i, which are
the unknowns of the rehomogenization algorithm. Therefore, a
Fig. 2. (a) Thermal-group and (b) fast-group reference diffusive leakage (i.e., computed w
Pyrex rods next to a 1.8%-enriched UO2 assembly. Units are in neutrons/cm3/s.
non-linearity is introduced. In addition, the spectral-correction
problem is no longer local, because the spectrum-variation solu-
tion in a given node depends on the spectrum perturbation (i.e.,
on the coefficients aG;i) in the neighbor nodes. More details about
numerical aspects of the method are given in Section 4.1.
2.2.2. The fundamental-leakage approach
The second approach consists of using the fundamental-leakage

spectrum determined at the single-assembly calculation level.
We make the approximation

f kL;GðuÞ � f1;k
L;G ðuÞ; ð37Þ

where f1;k
L;G is the leakage distribution making the infinite lattice

critical (i.e., k1 ¼ 1). This function is computed in most lattice-
physics codes, in which the unit assembly is simulated under criti-
cal conditions. In the absence of information on the exact operating
conditions and on the materials surrounding the assembly, this
assumption provides the most realistic representation of the critical
core environment. Commonly, the critical-leakage calculation is
based on the homogeneous fundamental-mode B1 approximation.
An exhaustive description of the corresponding theory can be found
in Hebert (2009). In our work, we adopt the following formulation
of f1L;G (the superscript k is omitted):

f1L;GðuÞ ¼
DGðuÞB2uB2

1;GðuÞR 1
0 duDGðuÞB2uB2

1;GðuÞ
; ð38Þ

where B2 is the critical buckling (i.e., the buckling coefficient enforc-
ing a multiplication factor equal to unity), and DG is the G-th group
leakage-coefficient spectrum (function of B2). Both quantities come
from the solution of the homogeneous B1 equations (Hebert, 2009).
Their product (DGB

2) is the critical-leakage cross-section distribu-

tion. In Eq. (38), uB2
1;G denotes the B2-corrected infinite-medium

spectrum, which has the same shape in energy as the fundamental
mode computed by the B1 model. The normalization of f1L;G to unity
satisfies Eq. (10). After substitution of Eqs. (37) and (38) into Eq.
(11), the leakage projection coefficient for a generic node reads as

hL;G;j ¼
R 1
0 duWG;jðuÞDGðuÞB2uB2

1;GðuÞR 1
0 duDGðuÞB2uB2

1;GðuÞ
: ð39Þ
ith the reference environmental flux spectra) in a 3.1%-enriched UO2 assembly with
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With this approach, hL;G;j can be computed on the basis only of lat-
tice information. Therefore, its calculation is performed directly
during the single-assembly simulation, as for the other rehomoge-
nization parameters (Eq. (7)). No complexity is added to the on-
line solution of the spectral rehomogenization problem.

Despite its simplicity, this method presents some significant
limitations. Even if the B1 model provides the best possible repre-
sentation of the critical lattice surrounding the assembly, the
infinite-medium shape formulated in Eq. (38) might not capture
the streaming effects occurring in the real environment in the pres-
ence of strong interassembly heterogeneity. Moreover, the consis-
tency of the B1 spectrum correction fades when non-critical
conditions are simulated, such as reactor core transients and sub-
critical states during reactor start-up or power outage. In these sit-
uations (Dall’Osso, 2015a,b; Demaziere, 2016), the B2-corrected
spectrum and the fundamental-leakage distribution can differ from
those in the non-critical core environment even in homogeneous
systems (i.e., in the absence of streaming effects). Another draw-
back of this approach is its lack of generality, because it can only
be applied if the cross-section libraries are built with the
fundamental-buckling paradigm.
3. Numerical results

In this Section, the methodology is applied to two-group nodal
simulations of several PWR examples. The analysis is made on col-
orset configurations, consisting of four-assembly sets with reflec-
tive boundary conditions at the assembly center-lines. In the first
part, the diffusive-leakage model is validated. In the second part,
the fundamental-leakage approach is tested and the two strategies
are compared.
3.1. Validation of the diffusive-leakage model

Reactor configurations at initial-core isothermal conditions (i.e.,
without thermal-hydraulic feedbacks and fuel depletion) are first
addressed. We consider the following benchmark problems: a
UO2 colorset with burnable-poison (Pyrex) rods (Example 1); a
UO2 colorset hosting silver-indium-cadmium (AIC) control rods
(Example 2); a UO2/MOX colorset (Example 3); a UO2 colorset with
gadolinium fuel pins (Example 4). In Gamarino et al. (2018), the
authors have used Examples 1, 2 and 3 to validate the modal syn-
thesis of the spectrum variation. For the above test cases, nodal
simulations are run with BRISINGR, a Delft University of Technol-
ogy in-house-developed code. The solution strategy in BRISINGR
is based on a conventional non-linear coupling between a Coarse
Mesh Finite Difference (CMFD) solver and a Nodal Expansion
Method (NEM) with fourth-order polynomial synthesis of the
two-group intra-nodal transverse-integrated flux. Two-group
homogenization parameters are computed with the continuous-
energy Monte Carlo neutron transport code SERPENT (Leppanen
et al., 2015). The details about their calculation can be found in
Gamarino et al. (2018). The diffusion coefficients are formulated
with the Cumulative Migration Method (CMM) (Liu et al., 2016).
For the sake of generality, in this part of the analysis the single-
assembly cross sections are generated without the critical-
buckling (B2) correction. This approach is of particular interest in
the light of our previous findings (Gamarino et al., 2018), showing
that rehomogenization can also reproduce spectral effects due to
different multiplicative properties in the core environment and in
the infinite-medium lattice.

As further validation of the methodology, we also analyze a
test case with fuel depletion (Example 5). This benchmark prob-
lem consists of a UO2 colorset with Pyrex rods and is modeled
with ARTEMIS (Hobson et al., 2013), the core simulator of AREVA
NP’s code platform ARCADIA (Curca-Tivig et al., 2007). The cross-
section libraries used by ARTEMIS are generated with the deter-
ministic lattice transport code APOLLO2-A (Martinolli et al.,
2010).

In all the example problems, a nodalization of 2� 2 nodes per
assembly is chosen. The values of the main state parameters corre-
spond to standard hot full power (T fuel ¼ 846 K, Tmod ¼ 582 K, p =
158 bar). For each benchmark problem, the results of the following
calculations are presented:

� with infinite-medium cross sections (a);
� with cross sections corrected by the reference spectral defect
(b);

� with spectral rehomogenization of cross sections using the ref-
erence environmental-leakage spectrum (c);

� with spectral rehomogenization of cross sections using the orig-
inal formulation of the diffusive-leakage model [Eq. (25)] (d);

� with spectral rehomogenization of cross sections using the
approximate variant of the diffusive-leakage model [Eq. (34)]
(e).

Rehomogenization is applied with Galerkin projection of Eq. (1)
and the two kinds of basis functions investigated in Gamarino
et al. (2018):

� Chebyshev polynomials of the first kind, in combination with a
physically justified mode (the neutron emission spectrum from
fission) in the fast group;

� proper orthonormal modes, computed via Singular Value
Decomposition (SVD) of a set of snapshots of the reference spec-
trum variation in Examples 1, 2 and 3.

The snapshots for the calculation of the POD modes have been
obtained parameterizing the fuel-assembly composition, namely,
sampling several values of the 235U enrichment, burnable-poison
concentration, plutonium content in the MOX bundle, number
and type (AIC, B4C) of control elements in the rodded configuration.
Unless stated otherwise, in the examples which follow we use the
polynomial synthesis in the fast group and the POD basis in the
thermal group (hybrid approach). This choice is made in view of
an application of the methodology to industrial reactor calcula-
tions. As found in Gamarino et al. (2017, 2018), the thermal spec-
trum variation exhibits a weak dependence on the type of spectral
interface and on the local conditions (such as the fuel exposure).
Therefore, the proper orthonormal modes computed by a limited
set of snapshots can successfully synthesize it in several core con-
figurations, even if samples of their solution have not been
included in the snapshot array. On the other hand, in the fast group
the spectrum deformation strongly depends on the assembly-
interface type and on the burn-up. Hence, the accuracy of the
POD-based rehomogenization is tied to an extensive sampling of
heterogeneous assembly configurations and fuel evolutions. Since
at the current stage of development of the methodology a universal
POD basis has not been achieved yet for the fast group, the analyt-
ical approach is deemed to have a more general validity in this
energy range.

The rehomogenization coefficients [Eqs. (7), (25), (34) and (39)]
are computed with a 281-group energy structure. The numbers of
fine groups g used in the fast and thermal coarse groups are 247
and 34, respectively. The upper boundary of the fast group is
Eþ
1 ¼ 19:6 MeV [Eq. (2)]. The lower boundary of the thermal group

is E�
2 ¼ 1:1 � 10�10 MeV. The thermal cut-off energy is

E�
1 � Eþ

2 ¼ 0:625 eV.

The reference spectral defect dRref ;spectr
x;G (calculation b) is evalu-

ated as:
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dRref ;spectr
x;G ¼ 1

�Uref
G

Z 1

0
duRx;GðuÞdUref

G ðuÞ; ð40Þ

where dUref
G denotes the reference spectrum variation from the lat-

tice code. With this choice, the spatial effects of the environment
are not taken into account (Dall’Osso, 2014; Gamarino et al.,
2016). In calculation c, the environmental leakage is computed with
Eq. (38), using the assembly leakage cross-section distribution and
flux spectrum obtained from a 281-group transport simulation of
the whole colorset. Calculation c provides the reference solution
to assess the performance of the leakage model, whereas calcula-
tion b provides the reference solution for the rehomogenization
method as a whole.

3.1.1. Example 1 – UO2 colorset with Pyrex rods
The colorset is made of four 17� 17 PWR fuel assemblies of

fresh UO2 with two different compositions: 1.8% enrichment,
3.1% enrichment and 16 rods containing burnable poison. The
absorber elements are made of borosilicate glass (Pyrex). The col-
orset and assembly layouts are depicted in Fig. 3. The concentra-
tion of diluted boron in the moderator is 1465 ppm and

corresponds to the critical value (i.e., krefeff ¼ 1:0). The reference
(normalized) total fission power is 0.92 in the 1.8%-enriched
assembly and 1.08 in the 3.1%-enriched assembly with Pyrex.

Fig. 4 shows the leakage spectrum, computed by rehomoge-
nization with the diffusive model, in the assembly without burn-
able absorber. The curves are normalized to the few-group
assembly-averaged leakage from the nodal calculation. Units
are in neutrons/cm3/s. The reference environmental leakage from
the transport calculation is accurately reproduced in the fast
group. Minor deviations occur only in the high-energy peak
range (for u 2 ½0:7;0:95	, i.e., approximately between 0.12 and
8.2 MeV) and in the epithermal region (for u < 0:1, i.e.,
Fig. 3. (a) Assembly set of Example 1. Layout of the UO2 fuel assemblies: (b) with 1.8%
bundles host 25 and 9 empty guide tubes made of Zircaloy-4, respectively.

Fig. 4. Example 1: Leakage spectrum (per unit u) in the 1.8%-enriched UO
E < 3:5 eV). In the thermal group the result is also satisfactory,
even if a slight shift of the bell-shaped curve towards higher
values of u is observed. The variations between the original
and approximate definitions of the leakage function are negligi-
ble. Fig. 5 depicts the spectrum variation in the two assemblies.
The percent relative perturbation is calculated with respect to
the assembly-averaged two-group nodal flux. The curves com-
puted with the diffusive approach have accuracy comparable to
those ensuing from the reference-leakage input. The slight over-
estimation (in absolute value) of the reference perturbation in
the epithermal region is a consequence of the aforementioned
discrepancy in the leakage spectrum predicted by the method.
The shift found in the computed thermal leakage has no appre-
ciable effect on the spectrum deformation.

The errors in the nodal cross sections are reported in Tables 1
and 2 for the two assemblies. The corrections computed with the
diffusive-leakage model reproduce very accurately those obtained
with the reference leakage. A slight miscorrection is only found in
fast-to-thermal scattering with the original formulation (calc. d).
Table 3 shows the errors in the multiplication factor ðDkeff Þ, few-
group nodal flux ðD�UGÞ and nodal fission power ðDPfissÞ. The two
values reported for D�UG refer to the fast and thermal groups,
respectively. The value of DPfiss out of parentheses refers to the
total power, and the two values within parentheses correspond
to the fast- and thermal-group power, respectively. Also for these
parameters, the deviations of simulations d and e are very close
to those of the reference calculations (b and c). The error in fission
power drops to zero. The residual errors in keff and in the cross sec-
tions are due to the spatial effects of the environment, that are not
taken into account by the method.

Table 3 also indicates the number of non-linear power itera-
tions ðNiterÞ for the convergence of the eigenvalue calculation. We
used a tolerance �iter ¼ 10�5 for the relative variation of the keff
enrichment, (c) with 3.1% enrichment and 16 burnable-poison (b.p.) rods. The two

2 assembly computed by rehomogenization with the diffusive model.



Fig. 5. Example 1: Spectrum variation (per unit u) computed by rehomogenization with the diffusive-leakage model.

Table 1
Example 1: errors in the nodal cross sections of the assembly without Pyrex rods.

UO2 1.8% Ra;1 Ra;2 mRf ;1 mRf ;2 Rt;1 Rt;2 Rs;1!1 Rs;1!2 Rs;2!2

Reference [cm�1] 0.00877 0.0690 0.00485 0.0815 0.540 1.308 0.513 0.0178 1.238

Simulation Errors (%)

No rehom. (a) �0.39 0.66 0.39 0.77 �0.32 0.25 �0.32 �0.11 0.24
Ref. dRspectr (b) 0.03 0.13 0.16 0.22 0.01 �0.04 0.01 �0.01 �0.05
Rehom. – ref. env. leak. (c) 0.07 0.06 0.15 0.15 �0.01 �0.08 �0.01 �0.05 �0.09
Rehom. – diff. leak., original (d) 0.11 0.09 0.22 0.19 �0.01 �0.06 0.0 �0.19 �0.07
Rehom. – diff. leak., approx. (e) 0.17 0.09 0.25 0.18 0.0 �0.07 0.0 �0.12 �0.08

Table 2
Example 1: errors in the nodal cross sections of the assembly with Pyrex rods.

UO2 3.1% + 16 b.p. rods Ra;1 Ra;2 mRf ;1 mRf ;2 Rt;1 Rt;2 Rs;1!1 Rs;1!2 Rs;2!2

Reference [cm�1] 0.0101 0.104 0.00659 0.132 0.525 1.296 0.499 0.0158 1.190

Simulation Errors (%)

No rehom. (a) 0.41 �0.47 �0.17 �1.01 0.32 �0.45 0.33 0.10 �0.46
Ref. dRspectr (b) �0.03 0.27 �0.13 �0.20 0.0 0.0 0.0 0.01 �0.02
Rehom. – ref. env. leak. (c) �0.07 0.30 �0.11 �0.17 0.0 0.02 0.0 0.07 �0.01
Rehom. – diff. leak., original (d) �0.12 0.25 �0.15 �0.22 �0.02 �0.01 �0.02 0.16 �0.04
Rehom. – diff. leak., approx. (e) �0.19 0.26 �0.19 �0.21 �0.03 0.0 �0.03 0.08 �0.03

Table 3
Example 1: number of power iterations and errors in the multiplication factor, nodal flux and fission power.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Simulation Niter Dkeff [pcm] D�UG (%) DPfiss (%) D�UG (%) DPfiss (%)

No rehom. (a) 8 �338 0.2, �0.84 0.40 (0.69, 0.33) �0.12, 0.73 �0.34 (�0.48, �0.30)
Ref. dRspectr (b) 9 �310 0.14, �0.58 0.05 (0.42, �0.03) �0.04, 0.27 �0.05 (�0.29, 0.03)
Rehom. – ref. env. leak. (c) 13 �306 0.14, �0.57 0.0 (0.40, �0.10) �0.05, 0.29 0.0 (�0.28, 0.09)
Rehom. – diff. leak., original (d) 18 �303 0.16, �0.68 �0.04 (0.46, �0.16) �0.06, 0.36 0.04 (�0.33, 0.14)
Rehom. – diff. leak., approx. (e) 15 �303 0.15, �0.63 0.0 (0.50, �0.11) �0.05, 0.31 0.0 (�0.35, 0.10)
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Fig. 6. (a) Assembly set of Example 2. Layout of the UO2 fuel assemblies: (b) unrodded, and (c) rodded. The former hosts 25 empty guide tubes, whereas in the latter only the
central water channel is free of control elements.

Fig. 7. Example 2: Leakage spectrum in the rodded assembly computed by rehomogenization with the diffusive model.

Fig. 8. Example 2: Spectrum variation computed by rehomogenization with the diffusive-leakage model.
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estimate and of the nodal-flux-array 2-norm between two succes-
sive iterations. Compared to the simulation without rehomoge-
nization, the number of iterations increases by a factor of 2.3 in
calculation d and of 1.9 in calculation e.
3.1.2. Example 2 – UO2 colorset with AIC control rods
The colorset is composed of four 17� 17 UO2 assemblies with

1.8% enrichment (Fig. 6). A bank of 24 AIC (silver-indium-
cadmium) control rods is inserted in two of them. The moderator
has no soluble boron ðCB10 ¼ 0 ppmÞ. The reference multiplication
factor is 0.98860, and the reference fission power is 1.22 in the
unrodded assembly and 0.78 in the rodded one.
Fig. 9. Example 2: Fast-group spectrum variation in the unrodded assembly
computed with the POD modes and the approximate formulation of the diffusive-
leakage model.

Table 4
Example 2: errors in the nodal cross sections of the unrodded assembly.

UO2 1.8% Ra;1 Ra;2 mRf ;1

Reference [cm�1] 0.00827 0.0557 0.00485

Simulation

No rehom. (a) 1.61 0.56 0.51
Ref. dRspectr (b) 0.05 0.20 �0.12
Rehom. (Hybr.) – ref. env. leak. (c) �0.53 0.20 0.05
Rehom. (Hybr.) – diff. leak., approx. (e1) �0.25 0.20 �0.12
Rehom. (POD) – diff. leak., approx. (e2) 0.12 0.21 �0.25

Table 5
Example 2: errors in the nodal cross sections of the rodded assembly.

UO2 1.8% + 24 AIC rods Ra;1 Ra;2 mRf ;1

Reference [cm�1] 0.0116 0.0817 0.00474

Simulation

No rehom. (a) �1.71 0.71 �0.64
Ref. dRspectr (b) 0.60 1.28 0.19
Rehom. (Hybr.) – ref. env. leak. (c) 1.02 1.16 �0.09
Rehom. (Hybr.) – diff. leak., approx. (e1) 0.65 1.16 0.17
Rehom. (POD) – diff. leak., approx. (e2) 0.38 1.14 0.23

Table 6
Example 2: number of power iterations and errors in the multiplication factor, nodal flux

Simulation Niter Dkeff [pcm] D�UG

No rehom. (a) 10 58 �0.5
Ref. dRspectr (b) 10 �486 �0.0
Rehom. (Hybr.) – ref. env. leak. (c) 15 �512 �0.0
Rehom. (Hybr.) – diff. leak., approx. (e1) 16 �435 �0.0
Rehom. (POD) – diff. leak., approx. (e2) 25 �517 �0.0
Figs. 7 and 8 show the leakage distribution and the spectrum
variation determined by rehomogenization. In the thermal group,
for both quantities the computed curves almost overlap with the
reference-leakage ones. In the fast group, the leakage prediction
is very precise in the epithermal range, whereas some inaccuracy
arises in the high-energy region (for u 2 ½0:7;1:0	, that is, between
0.12 and 19.6 MeV). This causes a shift of the calculated spectrum-
perturbation peak towards higher values of u, as observed in Fig. 8.
The fast-group spectrum deformation computed with the POD
modes is plotted in Fig. 9 for the unrodded assembly (only the
result of the approximate version of the leakage model is shown).
Compared to the polynomial approach, the outcome is more accu-
rate in the epithermal region, with the resonance spikes being fit-
ted precisely.

The errors in the nodal cross sections, multiplication factor,
nodal flux and fission power are shown in Tables 4–6. Since the
results achieved with the two formulations of the diffusive-
leakage model are equivalent, they are only reported for the
approximate one. With the diffusive approach, the deviations in
the thermal cross sections are very close to those found with calcu-
lation b. In the fast group, for all the reaction types the computed
corrections go in the right direction and approach the reference
ones. The corrections on keff , the nodal flux and the fission power
are also in good agreement with the reference values. The errors
in the last two quantities are significantly lower than those found
with infinite-medium homogenization parameters.

The error in the rodded-assembly Ra;2 increases when the refer-
ence dRa;2 is added to the infinite-medium value (calc. b). This is
due to the exclusion of spatial effects (Gamarino et al., 2018).
Calculation c (i.e., with the reference leakage spectrum) somewhat
mRf ;2 Rt;1 Rt;2 Rs;1!1 Rs;1!2 Rs;2!2

0.0837 0.534 1.313 0.509 0.0174 1.256

Errors (%)

0.60 0.68 0.16 0.56 3.80 0.14
0.23 �0.02 �0.05 �0.02 �0.07 �0.06
0.23 �0.14 �0.05 �0.13 �0.24 �0.06
0.23 0.05 �0.05 0.05 0.25 �0.06
0.24 0.08 �0.04 0.09 �0.34 �0.05

mRf ;2 Rt;1 Rt;2 Rs;1!1 Rs;1!2 Rs;2!2

0.0853 0.534 1.286 0.507 0.0153 1.203

Errors (%)

�0.93 �0.80 �0.38 �0.66 �4.77 �0.46
�0.12 0.02 0.05 0.0 0.01 �0.04
�0.29 0.13 �0.04 0.12 �0.16 �0.13
�0.28 �0.11 �0.04 �0.11 �0.71 �0.12
�0.31 �0.13 �0.06 �0.15 0.18 �0.14

and fission power.

UO2 1.8% UO2 1.8% + 24 AIC rods

(%) DPfiss (%) D�UG (%) DPfiss (%)

6, 2.08 3.03 (0.98, 3.41) 0.69, �3.50 �4.70 (�1.17, �5.61)
6, 0.19 1.14 (0.47, 1.28) 0.29, �1.46 �1.77 (�0.56, �2.10)
2, 0.06 1.25 (0.74, 1.36) 0.30, �1.52 �1.94 (�0.87, �2.24)
9, 0.33 1.38 (0.49, 1.56) 0.35, �1.78 �2.15 (�0.58, �2.57)
1, 0.04 1.08 (0.38, 1.22) 0.27, �1.34 �1.67 (�0.45, �2.01)



Fig. 10. (a) Assembly set of Example 3. Layout of the (b) UO2 and (c) MOX fuel assemblies. The MOX bundle contains three different types of fuel pin: with low Pu content
(1.78% 239Pu, 0.22% 235U) at the assembly corners; with intermediate Pu content (2.53% 239Pu, 0.21% 235U) along the assembly outer edges; and with high Pu content (3.86%
239Pu, 0.20% 235U) in the remainder of the fuel bundle. The numbers of empty guide tubes are 24 and 28 in the UO2 and MOX assemblies, respectively.

Fig. 11. Example 3: Leakage spectrum in the UO2 assembly computed by rehomogenization with the diffusive model.

Fig. 12. Example 3: Spectrum variation computed by rehomogenization with the diffusive-leakage model.
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deviates from simulation b in the errors in fast-group absorption
cross section and power. This is because the computed dU1 does
not capture the resonance spikes in the interval [0.1,0.2]
(corresponding to E 2 ½3:5 eV;20 eV	). Hence, an overcorrection on
Ra;1 occurs. In the simulation with the diffusive leakage and Cheby-
shev modes, the resonance peaks are better fitted. This partially
compensates for the inaccuracies in the prediction of the global
behavior, whose magnitude is slightly underestimated in the
epithermal range. The small deviation in keff in the calculation
without rehomogenization is due to fortuitous error compensation.

3.1.3. Example 3 – UO2/MOX colorset
The third colorset, which is shown in Fig. 10, consists of two

18� 18 UO2 and MOX assemblies. The UO2 assemblies have 2.1%



Table 7
Example 3: errors in the nodal cross sections of the UO2 assembly.

UO2 2.1% Ra;1 Ra;2 mRf ;1 mRf ;2 Rt;1 Rt;2 Rs;1!1 Rs;1!2 Rs;2!2

Reference [cm�1] 0.00927 0.0894 0.00547 0.0979 0.534 1.302 0.508 0.0171 1.211

Simulation Errors (%)

No rehom. (a) �0.61 1.12 0.07 1.27 �0.33 0.53 �0.37 1.18 0.50
Ref. dRspectr (b) 0.11 0.18 0.35 0.30 0.01 0.01 0.01 �0.05 0.0
Rehom. (Hybr.) – ref. env. leak. (c) 0.28 0.11 0.76 0.23 0.0 �0.03 0.0 �0.11 �0.04
Rehom. (Hybr.) – diff. leak., approx. (e1) 0.22 0.15 0.82 0.27 �0.08 0.0 �0.10 0.20 �0.01
Rehom. (POD) – diff. leak., approx. (e2) 0.16 0.15 0.71 0.26 �0.14 �0.01 �0.15 0.15 �0.02

Table 8
Example 3: errors in the nodal cross sections of the MOX assembly.

MOX Ra;1 Ra;2 mRf ;1 mRf ;2 Rt;1 Rt;2 Rs;1!1 Rs;1!2 Rs;2!2

Reference [cm�1] 0.0142 0.260 0.00990 0.375 0.526 1.517 0.498 0.0131 1.254

Simulation Errors (%)

No rehom. (a) 0.02 0.42 0.02 0.58 0.39 �0.64 0.43 �0.87 �0.90
Ref. dRspectr (b) �0.08 0.88 �0.25 1.08 �0.01 0.34 �0.01 0.04 0.23
Rehom. (Hybr.) – ref. env. leak. (c) �0.21 0.90 �0.47 1.11 0.0 0.29 0.0 0.21 0.16
Rehom. (Hybr.) – diff. leak., approx. (e1) �0.33 0.89 �0.49 1.09 0.05 0.26 0.07 �0.16 0.12
Rehom. (POD) – diff. leak., approx. (e2) �0.10 0.89 �0.52 1.09 0.07 0.26 0.08 �0.29 0.13

Table 9
Example 3: number of power iterations and errors in the multiplication factor, nodal flux and fission power.

UO2 2.1% MOX

Simulation Niter Dkeff [pcm] D�UG (%) DPfiss (%) D�UG (%) DPfiss (%)

No rehom. (a) 10 30 0.03, �0.15 0.73 (0.26, 0.86) 0.04, �0.69 �0.55 (�0.15, �0.71)
Ref. dRspectr (b) 10 �7 0.09, �0.56 �0.21 (0.53, �0.45) 0.02, �0.39 0.15 (�0.30, 0.38)
Rehom. (Hybr.) – ref. env. leak. (c) 16 16 0.09, �0.56 �0.19 (0.93, �0.57) 0.02, �0.28 0.15 (�0.53, 0.47)
Rehom. (Hybr.) – diff. leak., approx. (e1) 12 34 0.06, �0.36 0.04 (0.99, �0.28) 0.03, �0.49 �0.03 (�0.57, 0.23)
Rehom. (POD) – diff. leak., approx. (e2) 20 �51 0.07, �0.40 0.07 (0.96, �0.22) 0.03, �0.60 �0.05 (�0.55, 0.19)
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enrichment. The MOX assemblies are made of three fuel-pin types
differing in plutonium content and 235U enrichment. The concen-
tration of diluted boron in the moderator is 2907 ppm. The refer-
ence multiplication factor is 1.00194, and the reference fission
power is 0.86 in the UO2 assembly and 1.14 in the MOX bundle.

Figs. 11 and 12 depict the leakage distribution and the spectrum
perturbation estimated by rehomogenization with the hybrid and
POD modal approaches. Also in this case, the results are only
shown for the approximate formulation of the leakage model.
The computed fast-group distributions suffer from inaccuracy in
the higher part of the energy domain (u > 0.85, i.e., E > 1.5 MeV).
Here, the bulge-shaped outline featured by the spectrum variation
is not reproduced by the polynomial approach, whereas it is ampli-
fied by the POD-based one. The result is instead satisfactory in the
epithermal region. Tables 7–9 show the errors in the nodal cross
sections and in the integral parameters. As in the previous exam-
ples, the performance of the method is excellent in the thermal
group. In the fast group, all the cross-section corrections go in
the right direction. The simulation with the POD modes (calc. e2)
reproduces the reference dRa;1 almost exactly, whereas both calcu-
lations c and e1 overestimate the correction, especially in the MOX
assembly. This difference depends on the reconstruction of the
epithermal resonances, that is achieved to a high level of accuracy
only with the POD basis. Due to the aforementioned flaws in the
prediction of dU1 at high energies, the three calculations overcor-
rect significantly the production cross section mRf ;1 and, as a result,
the fast-group nodal power. Nevertheless, due to the small contri-
bution of the latter and to the improvement in the thermal-power
estimate, a considerable reduction of the error in the total power is
found. The correction on keff is overestimated (calc. e2) or mispre-
dicted (calc. e1), but the errors remain low.
3.1.4. Example 4 – UO2 colorset with gadolinium rods
In this example (Fig. 13), the checkerboard layout consists of

two 17� 17 UO2 assemblies with 1.8% enrichment and two
17� 17 UO2 assemblies with 3.9% enrichment and 12 fuel rods
containing gadolinium (Gd). The pins with burnable poison are
located at the periphery of the assemblies and have 0.25% 235U
enrichment and 8% Gd enrichment. The concentration of boron in
the moderator is 1830 ppm, and the reference multiplication factor
is 1.00303. The reference fission power is 0.82 in the 1.8%-enriched
assembly and 1.18 in the 3.9%-enriched one.

Figs. 14 and 15 show the leakage distribution and the spectrum
variation. In the fast group, the spectrum change from the diffusive
approach exhibits a tilt with respect to the curve obtained with the
environmental-leakage input, and overestimates (in absolute
value) the reference deformation in the epithermal region. The
deviations in the computed dU2 are due to spatial effects, and
can be justified as follows. In the assembly with gadolinium the
flux spatial variation is positive (and up to 15%) at the periphery,
where the fuel pins with burnable poison are located and neutron
absorption is higher. Hence, the global spatial correction dRspat

a;2 in
the node is positive. As the hardening effect of the spatial term is
not accounted for by spectral rehomogenization, the method pre-
dicts a softer spectrum (that is, the amplitude of dU2 is overesti-
mated in the intermediate region of the thermal domain and in
its upper part).



Fig. 13. (a) Assembly set of Example 4. Layout of the UO2 fuel assemblies: (b) with 1.8% enrichment, (c) with 3.9% enrichment and 12 gadolinium fuel rods. Both assemblies
host 25 empty guide tubes.

Fig. 14. Example 4: leakage spectrum in the UO2 assembly hosting Gd fuel rods, computed by rehomogenization with the diffusive model.

Fig. 15. Example 4: spectrum variation computed by rehomogenization with the diffusive-leakage model.
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Tables 10–12 report the numerical errors. Simulations b and c
differ most clearly in their prediction of dmRf ;2 in the assembly with
Gd rods and of dRa;1 in both fuel bundles. In the thermal group, the
corrections computed with the diffusive model match those of cal-
culation c. The cross sections Ra;1 and Rs;1!2 are overcorrected due
to the overestimation of dU1 in the epithermal range. The correc-
tion on mRf ;1 is larger than the reference value in the assembly with
poison, whereas it goes in the wrong direction in the low-enriched
bundle. These inaccuracies are due to the misprediction of the
spectrum change in the range [0.95,1.0] (i.e., E 2 [8.2 MeV,19.6
MeV]), where a non-zero dU1 is computed. The errors in keff and fis-
sion power do not decrease significantly if only spectral effects are
accounted for.

3.1.5. Example 5 (depletion feedbacks)
The colorset is composed of three 1.8%-enriched UO2 assemblies

and a 3.1%-enriched UO2 assembly hosting 16 Pyrex rods. The com-
position and the internal layout of the fuel bundles are the same as



Table 10
Example 4: errors in the nodal cross sections of the assembly without gadolinium.

UO2 1.8% Ra;1 Ra;2 mRf ;1 mRf ;2 Rt;1 Rt;2 Rs;1!1 Rs;1!2 Rs;2!2

Reference [cm�1] 0.00889 0.0721 0.00486 0.0806 0.540 1.310 0.513 0.0180 1.237

Simulation Errors (%)

No rehom. (a) �0.99 1.06 0.31 1.30 �0.59 0.36 �0.57 �0.96 0.32
Ref. dRspectr (b) 0.02 0.23 0.22 0.44 0.02 �0.11 0.02 �0.01 �0.13
Rehom. – ref. env. leak. (c) 0.29 0.07 0.15 0.28 0.08 �0.20 0.07 0.03 �0.22
Rehom. – diff. leak., original (d) 0.44 0.08 0.51 0.29 0.0 �0.19 �0.03 0.59 �0.21
Rehom. – diff. leak., approx. (e) 0.39 0.07 0.48 0.28 �0.01 �0.20 �0.03 0.45 �0.22

Table 11
Example 4: errors in the nodal cross sections of the assembly with gadolinium.

UO2 3.9% + 12 Gd rods Ra;1 Ra;2 mRf ;1 mRf ;2 Rt;1 Rt;2 Rs;1!1 Rs;1!2 Rs;2!2

Reference [cm�1] 0.0103 0.119 0.00740 0.152 0.531 1.349 0.504 0.0164 1.228

Simulation Errors (%)

No rehom. (a) 0.93 �2.46 0.11 �0.90 0.55 �0.59 0.53 0.91 �0.42
Ref. dRspectr (b) �0.03 �1.71 �0.21 �0.10 �0.01 �0.13 �0.01 0.02 0.02
Rehom. – ref. env. leak. (c) �0.28 �1.36 �0.21 0.28 �0.08 0.09 �0.07 �0.02 0.23
Rehom. – diff. leak., original (d) �0.45 �1.36 �0.45 0.27 �0.03 0.09 0.0 �0.61 0.23
Rehom. – diff. leak., approx. (e) �0.40 �1.36 �0.42 0.28 �0.02 0.09 0.0 �0.48 0.23

Table 12
Example 4: number of power iterations and errors in the multiplication factor, nodal flux and fission power.

UO2 1.8% UO2 3.9% + 12 Gd rods

Simulation Niter Dkeff [pcm] D�UG (%) DPfiss (%) D�UG (%) DPfiss (%)

No rehom. (a) 9 712 0.48, �2.15 �1.74 (0.18, �2.25) �0.49, 3.30 1.20 (�0.11, 1.63)
Ref. dRspectr (b) 9 698 0.27, �1.24 �1.65 (0.15, �2.13) �0.36, 2.42 1.14 (�0.09, 1.55)
Rehom. – ref. env. leak. (c) 13 717 0.26, �1.17 �1.79 (0.06, �2.28) �0.32, 2.16 1.24 (�0.04, 1.66)
Rehom. – diff. leak., original (d) 12 698 0.19, �0.85 �1.36 (0.44, �1.84) �0.27, 1.85 0.94 (�0.26, 1.34)
Rehom. – diff. leak., approx. (e) 12 704 0.21, �0.93 �1.45 (0.41, �1.94) �0.28, 1.91 1.0 (�0.24, 1.41)

Fig. 16. Example 5: reference multiplication factor versus burn-up.
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those displayed in Fig. 3(b) and (c). The fuel elements are burnt at a
power volumetric density of 107.03 kW/l until an average colorset
exposure of 12.0 GWd/t (corresponding to about 303 days). The
depletion is performed with 50 burn-up steps of gradually increas-
ing size. The values of the state parameters are kept constant dur-
ing the evolution. The diluted-boron concentration (1000 ppm) is
chosen so as to make the configuration critical during the first part
of the depletion (Fig. 16).

In this case, the two-group cross-section libraries are generated
with the critical-buckling correction, which is the default option in
the lattice code APOLLO2-A. Rehomogenization is applied with the
Chebyshev basis functions also in the thermal group, and with the
approximate variant of the diffusive-leakage method. In APOLLO2-
A the rehomogenization coefficients are parameterized only versus
burn-up. They are computed at predetermined nominal values of
the fuel temperature, moderator temperature and density,
diluted-boron and xenon concentrations. During the nodal calcula-
tion, they are updated to account for the differences between the
actual values of the above state parameters in the node and the
nominal ones. This choice is made to minimize the memory
requirement for the storage of the additional homogenization
entries. The algorithm developed for the update estimates the vari-
ation of the infinite-lattice condensation spectrum between a nom-
inal and a perturbed state, using an approach similar to that
described in Section 2.1. It requires to compute and store the iso-
topic rehomogenization coefficients of water, soluble boron and
xenon in the nominal conditions. The full details of the update
methodology will be given in future publications. In the framework
of the present work, we verified that the error introduced using
updated rehomogenization coefficients (instead of computing
them at the exact local conditions) is negligible or small.

Fig. 17 shows the spectrum variation in the 1.8%-enriched
assembly next to the heterogeneous bundle (i.e., with Pyrex rods)
at the beginning and at the end of the depletion. In the fast group,
the reference curve exhibits a change of sign and a significant
deformation with burn-up, especially at high energies. As observed
for Example 3, rehomogenization succeeds in predicting the aver-
age behavior of the distribution in the epithermal and intermediate
regions of the spectrum, but it fails to reproduce rigorously its
strongly varying outline in the upper part of the energy domain.
The comparison with the reference-leakage-input curve reveals
that the leakage spectrum is accurately estimated by the diffusive



Fig. 17. Example 5: spectrum variation in the 1.8%-enriched UO2 assembly adjacent to the 3.1%-enriched poisoned bundle at 0 GWd/t (top) and 12.0 GWd/t (bottom).

Fig. 18. Example 5: error in the absorption cross section as a function of burn-up in the two adjacent dissimilar assemblies.
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model, and that the above inaccuracy is due to the inherent limita-
tions of a polynomial synthesis in the fast group. In the thermal
range, neither the shape nor the magnitude of the spectrum per-
turbation changes appreciably with the fuel exposure, and the
reconstruction remains accurate throughout the evolution.

Figs. 18 and 19 depict the errors in the absorption and produc-
tion cross sections as a function of burn-up for the fuel assembly
with Pyrex rods and the poison-free bundle next to it. In the plots
the zero-error bar is highlighted. The corrections computed with
the diffusive model are in good agreement with those obtained
with the reference-leakage input. A significant overcorrection is
only found for fast absorption in the assembly with burnable
absorber. For both reaction types a considerable improvement is
achieved in the thermal group of the heterogeneous assembly
(above all in mRf ;2) and in the fast group of the assembly without
Pyrex. In the poison-free bundle, errors in Ra;2 are significantly
reduced in the first part of the depletion. However, they increase
with burn-up and ultimately overcome in magnitude the homoge-
nization defect, which slowly decreases with the fuel exposure. No
gain in accuracy is found for fast absorption in the heterogeneous
assembly.

The errors in the nodal flux are shown in Fig. 20 for the above
two assemblies and in Fig. 21 for the 1.8%-enriched assembly next
to an assembly of the same type. The improvement produced by



Fig. 19. Example 5: error in the production cross section as a function of burn-up in the two adjacent dissimilar assemblies.

Fig. 20. Example 5: error in the nodal flux as a function of burn-up in the two adjacent dissimilar assemblies.
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rehomogenization is evident in the thermal group, where in the
absence of spectral corrections the deviations increase significantly
with burn-up (up to 2% in the assembly with Pyrex rods and about
1% in the remaining two bundles). With the diffusive-leakage-
based rehomogenization, the errors are bounded below 0.5% in
the dissimilar bordering assemblies and 0.2% in the third bundle.
Furthermore, they do not change significantly with the fuel expo-
sure, whereas in the calculation with infinite-medium cross sec-
tions they exhibit a monotonically increasing behavior during the
second part of the depletion.

Fig. 22 shows the evolution of the error in the nodal fission
power for the unlike adjacent assemblies. The benefits of rehomog-
enization are apparent, especially in the first part of the depletion.
The behavior of the curves can be interpreted as follows. When
infinite-medium cross sections are used, the power is undervalued
in the more reactive assembly (i.e., the 3.1%-enriched one). This is
due to the underestimation of its thermal production cross section
(Fig. 19). Therefore, the fuel initially burns less and loses reactivity
more slowly, which goes in the direction of an increase in the
power with burn-up. The opposite occurs for the less reactive
assembly type (1.8%-enriched), in which the power is overesti-
mated. A consequence of this evolution is that the power
deviations tend to decrease with burn-up in the three assemblies.
As shown in Fig. 23, the error in the multiplication factor (which is



Fig. 21. Example 5: error in the thermal-group nodal flux as a function of burn-up
in the UO2 assembly adjacent to an identical bundle.
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initially negative) similarly becomes lower for increasing values of
the fuel exposure, and approaches a constant value. When reho-
mogenization is applied, the deviations in the power are consider-
ably lower, especially in the assembly with Pyrex rods at the
beginning of the depletion. However, with the error pattern intro-
duced by the spectral corrections the aforementioned self-healing
effect vanishes. This might be the cause (or one of the causes) of
the monotonically increasing behavior of the deviations in the
power and keff (Fig. 23) when rehomogenization is applied.
Another possible source of inaccuracy in the depletion is that the
spectral corrections are only computed for the macroscopic cross
sections. Few-group microscopic cross sections are not rehomoge-
nized. Therefore, the solution of Bateman’s equations for the deple-
tion of fissile isotopes and of the burnable poison benefits from
rehomogenization only in part (namely, via the improved accuracy
in the few-group nodal flux, as observed in Figs. 20 and 21). This
source of error could be removed introducing isotopic rehomoge-
nization coefficients to correct the microscopic cross sections. For
the generic nuclide c (and reaction type x), the reference and vari-
ational isotopic parameters can be defined as

hR;x;c;G;j ¼
Z 1

0
duWG;jðuÞrx;c;GðuÞu1;GðuÞ; ð41aÞ
Fig. 22. Example 5: error in the nodal fission power as a funct
hV ;x;c;G;i;j ¼
Z 1

0
duWG;jðuÞrx;c;GðuÞQG;iðuÞ: ð41bÞ

A relation similar to Eq. (8) holds for the microscopic cross section
rx;c;G:

drx;c;G ¼ 1
�UG

XNQG

i¼1

aG;ihV ;x;c;G;i;0: ð42Þ

Rehomogenization of microscopic cross sections will be addressed
in future work.

3.2. Comparison with the fundamental-leakage approach

In this part of the analysis, the fundamental-leakage approach is
investigated and compared to the diffusive method for some test
cases without feedbacks. The nodal calculations are performed
with BRISINGR. The infinite-medium cross sections, discontinuity
factors and rehomogenization coefficients are computed in
APOLLO2-A. This choice has been made to avoid a computationally
demanding fine-group B1 spectrum calculation in SERPENT. The
diffusion coefficients are obtained from the homogeneous B1

model. This approach makes the assumption that the leakage coef-
ficient DG defining the critical leakage (Eq. (38)) can be used as dif-
fusion coefficient (Hebert, 2009). The results are briefly presented
for Examples 1 and 2, which are now simulated using single-
assembly input data generated with the critical-buckling proce-
dure. An additional test case (a supercritical UO3/MOX colorset)
is also considered.

For the assembly of Example 1 hosting Pyrex rods, Fig. 24 com-
pares the fundamental-mode leakage computed in APOLLO2-A and
the leakage predicted by rehomogenization with the diffusive
model. The spectrum perturbation determined with the two
approaches is also depicted. In the thermal group, the critical-
leakage spectrum significantly overestimates the reference
(in amplitude) for u 2 ½0:85;1:0	 ðE 2 ½0:15 eV;0:625 eV	Þ, and
underestimates it in the remaining part of the domain
(u 2 ½0:5;0:85	, corresponding to E 2 ½6 meV;0:15 eV	). As a conse-
quence, the magnitude of the spectrum change is underestimated
in the two lethargy ranges. In the epithermal region of the fast
group (u 2 ½0;0:3	, E 2 ½0:625 eV;110 eV	), the environmental leak-
age is negative (i.e., there is an incoming flow of neutrons),
whereas the fundamental-mode leakage is positive. Therefore,
the dU1 computed with the latter deviates significantly from the
reference in this lethargy range, and eventually has opposite sign
ion of burn-up in the two adjacent dissimilar assemblies.



Fig. 23. Example 5: error in the multiplication factor as a function of burn-up.
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at the border with the thermal group. As in this region the fine-
group cross sections are higher, an error in the prediction of the
spectrum variation has more weight. In the high-energy region
(u 2 ½0:75;0:85	, that is, E 2 ½0:27 MeV;1:5 MeV	), the underestima-
tion of the environmental leakage causes a considerable overpre-
diction of dU1 (in absolute value). Analogous results are found for
the assembly without Pyrex rods. The effect of the mispredictions
in the fast group can be observed in Table 13, showing the devia-
tions in the integral parameters and in the main nodal cross sec-
tions (errors are in pcm for the multiplication factor and in
percent for the fission power and cross sections). With the
fundamental-leakage approach (calculation f), Ra;1 is significantly
overcorrected, whereas the corrections on mRf ;1 go in the wrong
direction. For both reaction types, the errors become higher than
in the calculation without rehomogenization. In the thermal group
the corrections have the right sign, but their magnitude is underes-
timated. The error in the fission power increases notably. Also in
this case, with the diffusive-leakage approach the cross-section
Fig. 24. Example 1: fundamental-mode and diffusive leakage distributions (top), and co
calculation with B2-corrected input data.
corrections are accurately predicted and the errors in keff and in
the fission power match the reference ones.

The same analysis is performed for the colorset of Example 2.
Fig. 25 depicts the leakage distribution and the spectrum variation
in the rodded assembly. Compared to the case without critical-
buckling correction (Fig. 8), the change in the shape (and sign) of
the fast-group spectrum deformation is apparent. The reconstruc-
tion of the perturbation with the fundamental-leakage approach
still lacks accuracy. In the thermal group, similar conclusions can
be drawn as for the previous test case. The deviations in the nodal
cross sections and in the integral parameters are in Table 14.
Calculation e accurately corrects Ra;1, which is instead largely
undercorrected with simulation f. The error in keff is reduced by
rehomogenization (especially with the diffusive-leakage model),
whereas the impact on the fission power is small (most of the error
is due to spatial effects).

In the examples considered so far, the errors in the fast-group
infinite-medium cross sections are mostly due to spectral effects,
rather than spatial ones. Hence, a last benchmark problem has
been tailored to achieve very high errors in the fast-group cross
sections. In this way, we can better evaluate the capability of reho-
mogenization to correct them. The example consists of a UO3/MOX
colorset. Its layout is the same as that illustrated in Fig. 10(a), with
one of the two MOX assemblies replaced by a UO3 assembly. The
three UO3 assemblies have 3.5% 235U enrichment, whereas the
MOX assembly has 8.0% 239Pu enrichment. The internal loading
of the fuel bundles corresponds to that of Fig. 10(b) and (c). The
diluted-boron concentration is 700 ppm, and the reference multi-
plication factor is 1.26257. The reference fission power is 0.87 in
the MOX assembly, 1.03 in the UO3 assembly next to it and 1.10
in the third UO3 bundle.

Figures 26 and 27 show the spectrum variation in the adjacent
UO3 and MOX assemblies (heterogeneous interface) and in the
UO3 assembly next to another UO3 bundle (homogeneous inter-
face). Compared to the previous test cases, the fundamental-
leakage spectrum provides a better approximation in the fast
group. In particular, the prediction is reasonably accurate for
the UO3 assembly next to the MOX assembly. However, in the
latter the perturbation is considerably underestimated in the
epithermal region. In the UO3 assembly bordering an identical
rresponding spectrum variation (bottom) in the assembly with Pyrex rods for the



Table 13
Example 1: errors in the integral parameters and main nodal cross sections for the simulation with B2-corrected input data.

UO2 1.8% UO2 3.1% + 16 b.p. rods

Errors (%)

Simulation Dkeff [pcm] DPfiss DRa;1 DRa;2 DmRf ;1 DmRf ;2 DPfiss DRa;1 DRa;2 DmRf ;1 DmRf ;2

No rehom. (a) �189 0.85 �0.04 0.69 0.51 0.81 �0.72 0.10 �0.50 �0.33 �1.03
Ref. dRspectr (b) �158 0.14 0.04 0.14 0.13 0.24 �0.12 �0.03 0.27 �0.10 �0.20
Rehom. – ref. env. leak. (c) �154 0.11 �0.01 0.08 0.15 0.17 �0.09 0.0 0.28 �0.11 �0.19
Rehom. – diff. leak., original (d) �155 0.11 0.13 0.12 0.20 0.22 �0.10 �0.13 0.23 �0.17 �0.25
Rehom. – diff. leak., approx. (e) �154 0.04 0.15 0.12 0.13 0.21 �0.03 �0.15 0.23 �0.12 �0.24
Rehom. – fund. leak. (f) �177 1.43 0.90 0.24 0.79 0.33 �1.22 �0.98 �0.02 �0.82 �0.52

Fig. 25. Example 2: fundamental-mode and diffusive leakage distributions (top), and corresponding spectrum variation (bottom) in the rodded assembly for the calculation
with B2-corrected input data.

Table 14
Example 2: errors in the integral parameters and main nodal cross sections for the simulation with B2-corrected input data.

UO2 1.8% UO2 1.8% + 24 AIC rods

Errors (%)

Simulation Dkeff [pcm] DPfiss DRa;1 DRa;2 DmRf ;1 DmRf ;2 DPfiss DRa;1 DRa;2 DmRf ;1 DmRf ;2

No rehom. (a) �540 0.94 �0.72 0.43 �0.13 0.46 �1.46 1.83 0.83 0.46 �0.76
Ref. dRspectr (b) �337 1.14 0.05 0.17 0.05 0.20 �1.77 0.47 1.32 �0.02 �0.07
Rehom. – ref. env. leak. (c) �381 1.12 0.07 0.18 0.02 0.21 �1.74 0.32 1.19 �0.1 �0.27
Rehom. – diff. leak., approx. (e) �357 1.17 0.12 0.19 �0.13 0.22 �1.82 0.23 1.17 0.08 �0.29
Rehom. – fund. leak. (f) �434 1.07 �0.51 0.25 �0.08 0.28 �1.66 1.03 1.06 0.22 �0.45

M. Gamarino et al. / Annals of Nuclear Energy 116 (2018) 257–279 275
assembly, the two leakage models produce a similarly accurate
outcome. In this case, due to the low interassembly heterogeneity
the fundamental-leakage approach provides a satisfactory
approximation of the environmental leakage. In the thermal
group, the infinite-medium leakage strategy is still inadequate,
especially in the MOX assembly. Table 15 shows the deviations
in the nodal cross sections and integral parameters. Their magni-
tude is relevant for the fast-group cross sections (up to 4% for
absorption in the MOX assembly). A considerable part of the
errors is due to the use of a B2-corrected collapsing spectrum
in an environment strongly deviating from criticality. The
benefits of rehomogenization in combination with the diffusive-
leakage model are apparent. The errors in group-one cross
sections are significantly reduced, and become very close to those
of calculation c. An improvement in the power prediction is also
found. With the fundamental-leakage approach the errors also
decrease, but to a smaller extent. The deficiencies in the calcula-
tion of the thermal corrections cause a strong overprediction of
the power in the MOX assembly. If no spectral correction is per-
formed, the errors in the thermal flux (not shown in Table 15) are
relevant: �6.67% in the MOX assembly, �4.88% in the adjacent
UO3 assembly and �4.92% in the remaining UO3 bundle. These
values are respectively reduced to �1.88%, 0.17% and 0.03% with
calculation e, and to �2.88%, 0.87% and 0.15% with calculation f.
In the second assembly, with calculation f the somewhat high
residual error in �U2 deteriorates the estimate of the total power,



Fig. 26. UO3/MOX example: spectrum variation in the adjacent UO3 and MOX assemblies (heterogeneous interface).

Fig. 27. UO3/MOX example: spectrum variation in the UO3 assembly next to another UO3 assembly (homogeneous interface).

Table 15
UO3/MOX example: errors in the integral parameters and main nodal cross sections.

MOX UO3 3.5% (next to MOX) UO3 3.5% (next to UO3)

Errors (%)

Simulation Dkeff [pcm] DPfiss DRa;1 DRa;2 DmRf ;1 DmRf ;2 DPfiss DRa;1 DRa;2 DmRf ;1 DmRf ;2 DPfiss DRa;1 DRa;2 DmRf ;1 DmRf ;2

No rehom. (a) �26 1.16 �3.97 0.60 �1.67 0.57 0.0 �3.32 0.31 �2.03 0.33 �0.91 �3.20 �0.08 �2.06 �0.08
Ref. dRspectr (b) 76 1.31 �0.08 0.90 0.19 1.04 �0.28 0.02 0.08 0.23 0.09 �0.51 0.0 0.02 0.16 �0.03
Rehom. – ref. env. leak. (c) �223 0.86 �0.03 0.87 �0.13 1.0 �0.07 0.71 0.06 0.24 0.07 �0.55 0.45 0.0 �0.1 �0.01
Rehom. – diff. leak., approx. (e) �164 0.40 �0.27 0.90 �0.22 1.04 0.07 0.72 0.08 0.23 0.09 �0.46 0.59 0.0 0.03 0.0
Rehom. – fund. leak. (f) �60 �0.70 �1.35 0.49 �0.33 0.52 0.59 1.02 0.11 0.28 0.12 �0.54 0.57 0.02 �0.06 0.02
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even if the deviations in Ra;2 and mRf ;2 are close to the ones of cal-
culation c due to fortuitous error cancellation. The variation of keff
in calculation c goes in the opposite direction with respect to cal-
culation b. This is found, to a lesser extent, also for the fission
power in the MOX assembly. Such outcome is again a side effect
of the use of smoothly-varying basis functions, which cannot
reproduce in any way the fine details of the spectrum perturba-
tion (in particular, the resonance spikes).

As final remark, in all the test cases the fundamental-leakage
approach exhibits a somewhat faster convergence than the diffu-
sive one (namely, the increase in the number of flux iterations is
well below a factor of 2). This can be explained by the absence of
non-linearity.
4. Discussion

In this Section we discuss some aspects of the diffusive-leakage
method. Focus is given to its numerical features and computational
efficiency and to the validity of the assumption underpinning the
approximate formulation of the model (Eq. (28)). We also address
the influence of the fine-group diffusion-coefficient definition on
the accuracy of the leakage spectrum prediction.

4.1. Numerical aspects and implementation features

As mentioned in Section 2.2.1, the diffusive-leakage method is
non-linear and non-local. Non-linearity is tackled computing the
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leakage parameter hL;G;j with the spectrum-variation expansion
coefficients aG;i from the previous rehomogenization iteration.
The spectral correction problem cannot be solved independently
for each node, as in the case of the fundamental-leakage approach.
This requires to store the coefficients aG;i for all the nodes of the
system. However, with the Galerkin-based modal synthesis this
must be done irrespective of the leakage model to dampen numer-
ical oscillations observed in the convergence process (Gamarino
et al., 2018). Therefore, non-local features of the diffusive approach
add no further complexity to the rehomogenization problem.

When the normalization factor wk;m
G is computed for the leakage

spectrum at the interface between nodes k and m, numerical insta-
bility can arise if the denominator of Eq. (27) or Eq. (36) has a value
close to zero. This can occur, for instance, in adjacent fresh-fuel
nodes having the same composition. In order to avoid undesired
convergence issues in the nodal simulation, the diffusive approach
is only applied if the following approximate threshold condition is
met:

�Uk
G � �Um

G

�� ��
�Uavg;km
G

6 �tol; ð43Þ

where �tol is a given tolerance and �Uavg;km
G is the arithmetic average

of the two-group flux in nodes k and m. Otherwise, no action is per-
formed (i.e., the assumption is made that there is no leakage
through the given interface) or the fundamental-leakage shape is
used for that surface, if available from the lattice calculation. Values
of �tol in the range 0.1%-1.0% proved to be a suitable choice. A sim-
ilar threshold condition should be applied to the node-averaged

leakage �LkG, that divides J
k;m
G in Eqs. (27) and (36). However, this sec-

ond control is not necessary if we use the notation of Eq. (20) with

normalization to Jk;mG , instead of the notation of Eqs. (9) and (21)

with normalization to Jk;mG =�LkG.
Due to the non-linearity of the diffusive approach, the spectrum

perturbation and the leakage distribution computed by rehomoge-
nization are intimately coupled. In order to reduce oscillations in
the convergence of the calculation, numerical damping is per-
formed on the leakage coefficients at each assembly interface.
We define the leakage parameter qk;m

G;j for the edge of node k bor-
dering with m (we take as example the approximate formulation):

qk;mðnÞ
G;j ¼ wk;m

G
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Fig. 28. Example 1: (a) Thermal-group and (b) fast-group diffusion-coefficient distri
In Eq. (44), the superscript ðnÞ refers to the n-th rehomogenization

iteration. At each iteration, the parameter qk;mðnÞ
G;j is updated as

follows:

qk;mðnÞ0

G;j ¼ hqk;mðnÞ
G;j þ ð1� hÞqk;mðn�1Þ0

G;j ; ð45Þ

where qk;mðn�1Þ0

G;j denotes the estimate of Eq. (44) from the previous
rehomogenization iteration, and h is the damping factor (taken as
0.5). Under-relaxation has been found to strongly increase the sta-
bility of the computation. Without it, for most test cases a signifi-
cantly lower rate of convergence is observed. The drawback of

this procedure is that the coefficients qk;mðnÞ0

G;j must be saved in mem-
ory for each internodal surface. For a three-dimensional two-group
simulation with four basis functions per group, the memory
requirement is 48 coefficients per node.

The results of Section 3 showed that the computational cost of
spectral rehomogenization combined with the diffusive method is
reasonably low: for most of the test cases, the increase in the num-
ber of non-linear flux iterations is below a factor of 2.
4.2. On the approximate formulation of the method

As highlighted in Section 3, the differences between the original
and approximate formulations of the diffusive method are negligi-
ble. This confirms that the approximation of Eq. (28) is generally
acceptable. For example, Fig. 28 depicts the fine-group diffusion
coefficient in the two assemblies of Example 1. The deviations
between the two distributions are negligible in the fast group,
whereas they are more substantial in the thermal group. However,
the rehomogenization method is less sensitive to variations of the
thermal leakage, which has smaller magnitude.

The behavior observed in Fig. 28 can be justified considering
that the migration of fast neutrons is not significantly affected by
differences in the enrichment or by the presence of thermal absor-
bers (such as burnable poison and control rods). These are only
perceived when neutrons are slowed down to thermal energies.
A similar outcome has been also found when comparing the
diffusion-coefficient distributions of adjacent assemblies with sig-
nificantly different fuel composition, such as the UO2 and MOX
assemblies of Example 3.

To conclude, we verified that environmental effects on the fine-
energy diffusion coefficients are negligible, and that the perfor-
mance of the method is not influenced by the use of the infinite-
butions, computed with the CMM in SERPENT, in the two adjacent assemblies.



Fig. 29. Example 4: fine-group diffusion coefficient in the Gd-enriched assembly,
computed with the CMM and the outflow transport approximation in SERPENT.
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medium DG distributions (instead of the environmental ones) in
Eqs. (26) and (35).

4.3. Impact of the diffusion-coefficient definition

Weassess the sensitivity of the diffusive-leakage spectrum to the
diffusion-coefficient formulation, and its effect on the performance
of themethod. For the calculation of the diffusion coefficient, deter-
ministic lattice-physics codes usually rely either on the B1 method-
ology (Hebert, 2009) or on one of the conventional transport
approximations (Choi et al., 2015): consistent PN , outflow (or out-
scatter), inflow (or in-scatter). Several works (Choi et al., 2015,
2017; Smith, 2017) have highlighted the weaknesses of approaches
other than the inflow transport approximation, that is unanimously
credited to have the most rigorous foundation. For Monte Carlo
codes, Liu et al. (2016) proved that the optimalmethod is the already
Fig. 30. Example 4: reference diffusive-leakage spectrum in the Gd-enriched assembly (to
group diffusion coefficients from the CMM and the outflow transport approximation [Fi
mentioned CMM, equivalent to the inflow transport approximation
in the limit of a homogeneous hydrogen slab.

For the benchmark problems investigated in Section 3, we com-
puted the DG distributions with the options featured by the codes
SERPENT and APOLLO2-A: the CMM for the former, the B1 model
for the latter, and the outflow transport approximation for both.
As an illustrative case, we consider here the assembly with
gadolinium rods of Example 4, for which Fig. 29 shows the diffu-
sion coefficient from the CMM and the outflow transport approxi-
mation. The leakage spectra determined with the approximate
version of the diffusive model are depicted in Fig. 30. In order to
focus on the differences caused by the diffusion-coefficient formu-
lation, they have been computed using the reference environmen-
tal flux spectra. The spectrum variation predicted by
rehomogenization with the diffusive method is also shown.

The deviations between the two approaches have an effect on
the leakage especially in the higher-energy region of the fast group
(u P 0:7, i.e., E P 0:12 MeV), where the fine-energy diffusion coef-
ficient computed with the CMM is significantly lower than that
from the outflow transport approximation. When looking at the
spectrum perturbation, the outflow approach is less accurate in
the high-energy region. However, it provides a better approxima-
tion in the epithermal range, even if the leakage spectra corre-
sponding to the two formulations exhibit negligible differences
in this part of the energy domain. In the thermal group, the varia-
tions in the spectrum deformation driven by discrepancies in the
diffusion coefficient are not significant. If the outflow transport
approximation is used instead of the CMM, the errors in Ra;1 and
Rs;1!2 decrease from �0.40% and �0.48% (see calc. e in Table 11)
to �0.12% and �0.15% in the Gd-enriched assembly; from 0.39%
and 0.45% (see calc. e in Table 10) to 0.1% and 0.07% in the assem-
bly without poison. The error in the total fission power also
becomes lower than that found with the CMM formulation: from
�1.45% and 1.0% (see calc. e in Table 12) to �0.92% and 0.64% in
the fuel bundles without and with gadolinium, respectively. There-
fore, the approach used to compute the diffusion coefficient can
have a relevant impact on the outcome of the diffusive-leakage-
based rehomogenization.
p), and spectrum variation computed by rehomogenization (bottom) using the fine-
g. 29].
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The analysis of the remaining benchmark problems showed
that in the thermal group the outflow transport approximation
generally provides a more accurate leakage reconstruction. How-
ever, as observed for the above sample problem, the impact of
diffusion-coefficient variations is small in this energy group. In
the fast group, finding an evident trend is difficult and the accuracy
of the various formulations depends on the specific test case.

5. Conclusions and outlook

We presented a method to estimate the interassembly neutron
leakage spectrum in the real environment. This computational
scheme completes the spectral rehomogenization technique devel-
oped at AREVA NP. The proposed approach applies Fick’s diffusion
law to the node-averaged environmental flux spectra computed by
rehomogenization. It uses information from both the fine-group
lattice transport calculation and the nodal calculation. The
methodology has been extensively validated by numerical simula-
tion of multi-assembly sets exhibiting strong heterogeneity. Sev-
eral configurations (critical, subcritical and supercritical) have
been examined, ranging from fresh-fuel isothermal conditions to
depletion feedbacks.

The results show that rehomogenization combined with this
leakage model can capture spectral effects on the few-group nodal
cross sections very accurately. In the thermal group, the diffusive
approach matches the spectral corrections computed with the ref-
erence environmental leakage. In the fast group, more accurate
cross section inputs for nodal routines are also obtained, even
though small deviations from the reference corrections are
observed in some configurations. These can be due to: (i) minor
inaccuracies in the prediction of the leakage distribution in the
high-energy and epithermal regions, and (ii) the difficulty of the
basis functions reproducing the resonance details of the spectrum
perturbation and its strongly varying shape at high energies. A sig-
nificant improvement in the estimates of the nodal power distribu-
tion and of the multiplication factor is found. The gain in accuracy
is achieved at a low computational cost.

The method has been compared to a simpler approach based on
the fundamental-mode leakage distribution, computed by the lat-
tice code in the framework of the B1 critical-spectrum calculation.
For all the test cases, the diffusive model outperforms the critical-
leakage strategy. The latter only provides a satisfactory approxima-
tion of the environmental leakage in the presence of weak spectral
interactions, that is, in assemblies surrounded by nodes featuring
similar composition. When applied to heterogeneous fuel-loading
patterns, this method fails to accurately predict the leakage in
the thermal and epithermal ranges of the energy spectrum.

Spectral rehomogenization can only correct a part of the
homogenization defect. In order to fully take into account the envi-
ronmental effects, the method must be applied in combination
with spatial rehomogenization. The natural next stage of our inves-
tigation is to apply the methodology to reactor problems including
thermal-hydraulic feedbacks. Broadening the range of test cases to
reflector boundaries is also of great interest. These further steps
will be followed by the final validation in full-core calculations.
Additional topics to be addressed encompass the impact of spectral
rehomogenization on the accuracy of the pin-power distribution
reconstructed by dehomogenization and on the calculation of other
relevant operational parameters, such as the control-rod bank
worth.
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