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Using superconducting magnetic Wollaston prisms, high-resolution neutron

Larmor diffraction has been implemented at the High-Flux Isotope Reactor of

Oak Ridge National Laboratory (ORNL), Tennesse, USA. This technique

allows the inverse relationship between the achievable diffraction resolution

and the usable neutron flux to be overcome. Instead of employing physically

tilted radio-frequency spin flippers, the method uses magnetic Wollaston prisms

which are electromagnetically tuned by changing the field configurations in the

device. As implemented, this method can be used to measure lattice-spacing

changes induced, for example, by thermal expansion or strain with a resolution

of �d/d ’ 10�6, and the splitting of sharp Bragg peaks with a resolution of

�d/d = 3� 10�4. The resolution for discerning a change in the profile of a Bragg

peak is �d/d < 10�5. This is a remarkable degree of precision for a neutron

diffractometer as compact as the one used in this implementation. Higher

precision could be obtained by implementing this technique in an instrument

with a larger footprint. The availability of this technique will provide an

alternative when standard neutron diffraction methods fail and will greatly

benefit the scientific communities that require high-resolution diffraction

measurements.

1. Introduction

By measuring the diffraction angle and applying Bragg’s law,

conventional diffraction techniques using X-ray and neutron

scattering have shown their importance in determining the

atomic and/or magnetic structure of materials. To achieve a

lattice-spacing resolution better than �d/d ’ 10�3 is extre-

mely challenging for neutrons owing to the beam divergence

and relatively low neutron flux. However, the neutron, a

particle with a magnetic moment of �n = �1.93 �N, with �N

being the nuclear magneton, provides us with an alternative

way of approaching the problem by using the Larmor

precession of its spin in a magnetic field (Bloch, 1946; Mezei,

1972). This method is termed Larmor labelling, and it has been

used to encode the change in neutron energy (Mezei, 1972)

and trajectory (Rekveldt, 2011). For energy encoding, dubbed

neutron spin–echo (Mezei, 1972), the small energy change

experienced as a result of quasi-elastic neutron scattering can

be encoded into a change in the Larmor phase by using two

solenoids whose magnetic fields are parallel to the neutron

trajectories before and after scattering. For trajectory

encoding, such as spin–echo small-angle neutron scattering

(Rekveldt, 1996; Pynn et al., 2005; Parnell et al., 2015) or

Larmor diffraction (Rekveldt et al., 2001; Keller et al., 2002),
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the change in the neutron trajectory due to interaction with

the sample can also be labelled using the Larmor phase. By

measuring the Larmor phase of the overall beam using a

polarizing analyser, structural information about the sample

can be recovered. Neutron Larmor diffraction, first introduced

by Rekveldt et al. (2001), generates a Larmor phase that

depends only on the scattering vector of the Bragg peak

measured. Compared with high-resolution X-ray diffraction,

neutron Larmor diffraction takes full advantage of the pene-

trating power of neutrons and allows us to measure samples

containing light elements, like oxygen or carbon, as well as

magnetic samples in some cases.

The neutron Larmor diffraction concept as introduced by

Rekveldt et al. (2001) involves two rectangular regions of

constant magnetic field, located before and after the sample,

with their boundaries tilted to be parallel to the diffracting

crystal planes in such a way that the total Larmor phase �
produced by the setup is given by

� ¼
2m!LL

�h-
d; ð1Þ

where m is the mass of the neutron, !L is the Larmor

frequency given by !L = �nB with �n the gyromagnetic ratio of

the neutron and B the magnetic field, L is the size of the coil, h-

is the reduced Planck constant and d is the lattice spacing

(Rekveldt et al., 2001). Thus, instead of directly measuring the

change in the diffraction angle, this method allows the

measurement of small changes in the lattice spacing through

the change in the neutron Larmor phase �, allowing poorly

collimated neutron beams to be used and thereby overcoming

the limitations imposed by the inverse relationship between

the achievable resolution and the usable flux that apply to

traditional diffraction measurements.

Even though the use of two rectangular DC electromagnets

would be the most straightforward way of implementing

Larmor diffraction, the tilt angle is highly constrained since

the two electromagnets need to be long enough to reach a

useful resolution range. Therefore, to date neutron Larmor

diffraction has only been implemented using the neutron

resonance spin–echo (NRSE) technique (Keller & Keimer,

2015) with thin radio-frequency (RF) neutron-resonant flip-

pers rather than DC magnets, as shown in Fig. 1(a). The RF

flippers work as external clocks (Gähler et al., 1992), where the

first bootstrap pair starts the clock of the incident neutrons

and the second pair stops the clock and measures the time of

neutron passage. Owing to energy exchange between the

neutron spin and the RF flippers, the neutron polarization

vectors will be modulated in the time domain in the zero-field

regions between the two pairs of RF flippers. Effectively, the

modulation in time is equivalent to that of precession in a

static field with the same geometry as the zero-field regions

defined by the two pairs of RF flippers (so-called zero-field

precession). By using a so-called bootstrap mode (Golub &

Gähler, 1987), the total Larmor phase given in equation (1)

can be increased by a factor of four for the NRSE method

compared with the DC method with the same dimensions and

fields. This technique has been used with great success, for

example to measure the structural and magnetic phase tran-

sitions in electron-doped iron pnictides (Lu et al., 2016) and to

study the formation of magnetostructural domains in yttrium

barium copper oxides, YBCO (Náfrádi et al., 2016).

Recently, we also demonstrated our approach to imple-

menting Larmor diffraction using superconducting magnetic

Wollaston prisms (Li et al., 2017, 2014; Li, Parnell, Wang et al.,

2016), as shown in Fig. 1(b), and its principle has been

explained and demonstrated (Li & Pynn, 2014; Li et al., 2017).

Basically, by using a series of magnetic field boundaries with or

without inclinations, the method provides us with the possi-

bility of tuning the effective field boundaries by picking

different combinations of the fields. The inclined field

boundary is provided by the triangular field regions of the

magnetic Wollaston prisms, whose boundaries are defined by

the Meissner effect of the superconducting YBCO films, as

shown in Fig. 1(b). This eliminates the requirement to tilt the

coils physically, which means a high effective tilt angle can be

achieved. Though this approach is a DC method, the total

Larmor phase does not take the simple form given in equation

(1), owing to the electromagnetic tuning.

2. Larmor diffraction using magnetic Wollaston prisms

The details of tuning the effective tilt angle using magnetic

Wollaston prisms have been discussed by Li et al. (2017) and Li

& Pynn (2014) and the experimental tuning results are very

close to the calculations. This provides us with confidence to

tune the setup on the basis of the calculation results. Once the

effective field boundary of the setup has been tuned with

respect to the diffracting crystal planes, the accumulated total

Larmor phase (�) inside the device is only dependent on the d

spacing of the crystal and not, to lowest order, on the beam

collimation or the crystal mosaic. With the polarization
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Figure 1
The Larmor diffraction setup using (a) RF spin flippers in bootstrap
mode and (b) magnetic Wollaston prisms. For (a), the rectangles of
different colours are the RF spin flippers with different field directions.
They are enclosed inside a zero magnetic field chamber made of Mu
metal with high magnetic permeability. The tuning is achieved when the
field boundaries of the RF flippers are parallel to the crystal plane. For
(b), each arm is composed of two superconducting magnetic Wollaston
prisms with a rectangular field in between them. Regions of the same
colour have the same magnetic field in terms of both magnitude and
direction. All the field boundaries are provided by the Meissner effect of
superconducting YBCO films (350 nm) coated on 0.5 mm sapphire plates
(Li et al., 2014). The tuning is achieved when the effective tilt angle of the
magnetic field boundary [see equations (25) of the paper by Li & Pynn
(2014)] matches the orientation of the crystal plane. � is the inclination
angle of the hypotenuse film inside the Wollaston prism.



analyser, only the projection of the polarization vector along

the field direction of the analyser can be picked up, namely

cos(�). Therefore, for a crystal with a distribution of d

spacings whose mean value is d, the induced Larmor phase

variation is � = ðd=dÞ� and the neutron polarization

measured is the cosine Fourier transform of the distribution

over all lattice spacings (Keller et al., 2002),

Pð�Þ ¼
R

f ðd; d; �Þ cosð�Þ �ðdÞ: ð2Þ

Here, in the case of a simple Gaussian distribution of lattice

spacings, f ðd; d; �Þ is the normalized distribution function of

the lattice spacings, i.e.

f ðd; d; �Þ ¼
2

�

ln 2

�

� �1=2

exp �4 ln 2
d� d

�

� �2
" #

; ð3Þ

where � is the full width at half-maximum (FWHM) of the

distribution. In a more complicated case, as shown in Fig. 2( f),

if a Bragg peak is split into two peaks with lattice spacings of

d1 and d2 and amplitudes a1 and a2, f can be written as

f ¼ a1f d; d1; �1ð Þ þ a2 f d; d2; �2ð Þ with d1; d2 ¼ d��d=2;

ð4Þ

where d in this case is the average d spacing of all Bragg peaks

measured, i.e. d = (d1 + d2)/2. Its cosine Fourier transform is

given as

Pð�Þ ¼
h

G a1; �1ð Þ
2
þG a2; �2ð Þ

2

þ 2G a1; �1ð ÞG a2; �2ð Þ cos ��d=d
� �i1=2

; ð5Þ

where

Gða; �Þ ¼ a exp
��2�2

16 ln 2

� �
: ð6Þ

The measured trend of polarization P(�) is only dependent

on the distribution of the d spacings �d/d rather than on the

mean value of the lattice spacing. For this reason, the

following discussion will focus on the distribution of lattice

spacings. Fig. 2 shows examples of some potential results of

Larmor diffraction experiments (top) and the corresponding

distributions of the lattice spacings (bottom). Clearly, the

measured polarization follows the general expectations for

Fourier transformation. For a perfect crystal with a single-

valued lattice spacing, the amplitude of the Larmor phase

oscillations is constant. For a crystal with some broadening in

d spacing, the measured polarization would damp mono-

tonically towards a high neutron Larmor phase. For a Bragg

peak splitting, for example d1 and d2, each lattice spacing will

correspond to an oscillating polarization with a certain

frequency when scanning the Larmor phase. Therefore, these

two different frequencies will beat with each other, achieving a

maximum amplitude of the polarization oscillations when the

relative phase difference between the polarization signals for

the two Bragg peaks equals 2N�. To be specific, the beating

can be reflected by the oscillation caused by the cos(�d/d)�
term in equation (5), as shown in Fig. 2(c). When the phase

between the two different frequencies is (2N + 1)�, they are

completely out of phase and a minimum in the polarization

will be obtained. For a two-peak splitting such as that in

Fig. 2( f), the relative splitting of the d spacings, �d/d, is given

by �/�P=Min , where �P=Min is the Larmor phase at the first

minimum of the polarization (Fig. 2c). For example, if the first

minimum of the P(�) curve is observed at �P=Min = 1000 rad,

the lattice splitting �d/d = �/1000. So, to some extent,

�/�P=Min gives a good estimate of the achievable resolution

for measurements of the difference between two d spacings

that exist in the same sample. For measurements of the rela-

tive change in the d-spacing distribution profile (as a function

of temperature, for example), the achievable resolution will be

better (<10�5) because we just need to focus on the point with

the highest Larmor phase and see how it changes. As also

shown in Fig. 2(c), the population of the two lattice constants

will affect the local amplitude of the oscillation and the

broadening of each lattice constant will cause the overall

damping of the polarization curve.

3. Lattice structural distortion measurements of
CuFeO2

The experimental setup for neutron Larmor diffraction with

magnetic Wollaston prisms on the HB-1 polarized triple-axis

research papers

J. Appl. Cryst. (2018). 51 Fankang Li et al. � Neutron Larmor diffraction 3 of 7

Figure 2
(Top row) Three typical results of Larmor diffraction measurements for
demonstration, and (bottom row) their corresponding distributions of
lattice spacings.

Figure 3
(a) The experimental setup for Larmor diffraction on the HB-1 polarized
triple-axis spectrometer (PTAX) at HFIR, shown in transmission
geometry for better clarity. Neutrons travel from right to left. (b) A
drawing of the nutator used in panel (a), which can create a magnetic field
in any direction in the two-dimensional plane perpendicular to the beam.
The space between the exit of the monochromator drum and the entrance
of the analyser drum is �130 cm and cannot be changed.



spectrometer (PTAX) at the High-Flux Isotope Reactor

(HFIR) of Oak Ridge National Laboratory (ORNL),

Tennesse, USA, is shown in Fig. 3, with the neutrons travelling

from right to left straight through the sample. To minimize the

magnetic stray field in the sample area, the two arms are

surrounded by Mu metal plates on all four sides and these

plates are connected to the Mu metal chamber for the sample

(labelled 2). The stray field inside the Mu metal chamber can

be minimized to <0.1 G using a series of compensation coils.

The sample used for this measurement was CuFeO2 , which

undergoes a first-order structural phase transition induced by

the magnetic transition at 11 K and a second-order lower-

symmetry lattice distortion at 14 K, seen using high-resolution

synchrotron X-ray scattering performed on station 11-ID-C at

the Advanced Photon Source, Argonne National Laboratory,

Illinois, USA (Ye et al., 2006). Since lattice expansion

measurements on copper have already been demonstrated by

Li et al. (2017), the following part will focus on lattice distor-

tion measurements.

The neutron wavelength used for this measurement was

2.46 Å. Heusler (111) was used as monochromator and

analyser. The horizontal collimator sequence was 480–800–600–

2400 and the contamination from higher-order beams was

effectively eliminated using pyrolytic graphite filters.

The measured Bragg peak of CuFeO2 is (012) with 2� =

58.75�, so the tilt angle needed is 	 = 60.6� [see equations (15)

in the article by Li & Pynn (2014)], which means the magnetic

field ratio needs to be set to � = B4/B5 = �4.87 for the

configuration shown in Fig. 1(b). For the NRSE method, the

total Larmor phase is obtained by scanning the Larmor

frequency !L in the RF flippers while keeping the physical

field boundaries unchanged, and the polarization is then

obtained by varying the distance between the RF flippers (L),

as shown in Fig. 1(a). For our approach with Wollaston prisms,

the total Larmor phase is varied by scanning the current inside

the device while simultaneously maintaining the same effec-

tive tilt angle (i.e. � = constant). To minimize the measuring

time, as shown in Fig. 4, the Larmor phase is only scanned at

25 current bands, which are the 25 stripes in the plot. For each

current (stripe), the polarization (P = A/I) is obtained by

varying the current in a small region, where A and I are the

amplitude and shim intensity of the fringes shown in the inset

of Fig. 4(a).

During the experiment, as shown in Fig. 4, the fringes as a

function of the total Larmor phase are obtained for two

different temperatures, 6.7 K in Fig. 4(a) and 17 K in Fig. 4(b).

Clearly, the envelope of the fringes oscillates as a function of

the Larmor phase at 6.7 K, while the oscillating feature

disappears at 17 K, as reflected by the cosine term in equation

(5). The scan of the total Larmor phase was repeated for
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Figure 4
The fringes measured as a function of the current in B4 (bottom axis) and
the corresponding total Larmor phase (top axis). (a) T = 6.7 K and (b) T =
17 K. Each stripe in the plot corresponds to a fringe, shown in the inset
plot in panel (a), which is measured by scanning the current in the device
while maintaining the same effective tilt angle.

Figure 5
(Left) The normalized polarization as a function of the Larmor phase for
(a) 6.7 K, (b) 9.9 K and (c) 12 K. (Right) The distribution of the lattice
distortions �d/d, with the lattice variation �d normalized to the mean
value d to fit the corresponding polarization on the left. For panel (b), the
polarization efficiency was measured at only five different values of the
Larmor phase to show how the data fit is sufficient with them. The
populations and the FWHM of the split peaks are kept the same for the
different temperatures.



various temperatures. The polarization efficiencies of all the

fringes were extracted for all temperatures and normalized

with respect to the polarization efficiency at 17 K. Some of the

results are shown in Fig. 5. Here, results for three different

temperatures with the polarization normalized are shown on

the left and their corresponding distributions of the lattice

constants fitted by equation (4) are given on the right-hand

side. At 6.7 K, as shown in Fig. 5(a), where the structural

distortion is significant, an oscillation can be observed in the

polarization. As discussed earlier, this is due to the cosine term

in equation (5), and the position of the first minimum gives us

a good estimate of the absolute lattice distortion (�d/d =

�/�P=Min). For Fig. 5(b), though only five points were

obtained, the distribution of lattice constants can be obtained

precisely by fitting once the minimum position is known. To

obtain a high-resolution measurement of the peak splitting

(�d/d) in this case, the key is to maximize the achievable

Larmor phase, for example by using longer-wavelength

neutrons or by increasing the magnetic field intensity or the

size of the device.

The peak splitting �d/d is plotted in Fig. 6 as a function of

temperature, together with data obtained by X-ray diffraction

which are shown as open circles. Clearly, the values measured

by Larmor diffraction agree well with those obtained by X-ray

diffraction below 12 K. The slight difference at 12 K is possibly

due to the uncertainty in the temperature reading during the

two experiments. This can be seen from the difference in the

extrapolated critical temperatures for these two measure-

ments, both of which should be 13.5 K.

4. Discussion

4.1. Collimation of the host triple-axis spectrometer

For this technique, the host triple-axis spectrometer (TAX)

needs to be positioned to observe the Bragg peak of interest.

Splitting of Bragg peaks due to structural distortion can be

extremely hard to measure using a 2� scan of a TAX owing to

beam divergence. By encoding the diffracted neutron trajec-

tories into different Larmor phases, these split Bragg peaks

are labelled with different Larmor phases, which causes the

beating of the measured polarization as we observed above. A

prerequisite condition of this technique is to capture all the

diffracted neutrons from all the lattice distortions. For

example, if the lattice distortion is large enough that some of

the diffracted neutrons fall out of the detector or are cut off by

the collimator after the sample, the setup is not performing a

complete Fourier transform and we cannot get the correct

answer. Therefore, Larmor diffraction is similar to other

neutron Larmor labelling techniques (Parnell et al., 2015; Li,

Parnell, Bai et al., 2016), in that all the scattered or diffracted

neutrons need to be detected. From Bragg’s law 
 = 2dsin�, to

measure a lattice distortion of �d/d for a lattice spacing of d,

the minimum collimation after the analyser is �� =

� tan(�)(�d/d). For example, for 2� = 58.75� and �d/d = 3 �

10�3, the minimum collimation allowed for the outgoing

neutrons is �0.05�, which is much smaller than the typical

collimator used on the TAX. For incoming neutrons, the

divergence of the neutron beam will cause Larmor phase

aberration for the measured polarization and this will give an

intrinsic resolution for the setup, as discussed by Rekveldt et

al. (2014). So the incoming neutron beam needs to be well

collimated.

4.2. Optimization of the achievable Larmor phase

Fig. 1(b) shows only one of the configurations to operate the

device for Larmor diffraction, to be specific, B1 = B5 and B2 =

B3 = B4. According to the work of Li & Pynn (2014), any

research papers

J. Appl. Cryst. (2018). 51 Fankang Li et al. � Neutron Larmor diffraction 5 of 7

Figure 6
The measured �d/d as a function of temperature for CuFeO2. The solid
and open circles are the values obtained by Larmor diffraction and X-ray
diffraction, respectively. Owing to the limited number of data points, the
lines are included as a guide to the eye to show the critical temperature
discrepancy between these two methods. The error bars for the Larmor
diffraction measurements are smaller than the size of the points.

Figure 7
Schematic diagrams of the possible Larmor diffraction setups using the
magnetic Wollaston prisms. Regions with the same colour have the same
magnetic field intensity and direction. Arm-1 and Arm-2 denote the two
different arms with different sense of hypotenuse. Compared with the
configurations on the top row [(1) and (2)], the two arms are swapped in
the bottom configurations [(3) and (4)].



configuration that can keep B1 � B2 + B4 � B5 = 0 can be

employed. Therefore, it could also be connected such that B2 =

B4 and B1 = B3 = B5. Since the sense of the hypotenuse films

for the Wollaston prisms in these two arms are opposite to

each other, these two arms can also be swapped with respect to

the sample position. In principle, the rectangular field in

between the two Wollaston prisms is not related to the field

inside the Wollaston prisms but, to reduce the number of

power supplies required and to simplify operation, it is

connected in series to the other field regions. The possible

Larmor diffraction setups using the Wollaston prisms are

summarized in Fig. 7.

In Table 1, we list the configurations shown in Fig. 7,

including the calculations of the ratio of � = B4/B5 for a given

tilt angle 	 and the corresponding Larmor phase �. As

discussed earlier, the highest Larmor phase will determine the

resolution of the setup. For each configuration, the highest

achievable Larmor phase for each effective tilt angle has been

calculated and plotted in Fig. 8. In these calculations, we have

used certain parameters for our device, namely a maximum

current of 50 A with a magnetic field of 35 G A�1, a footprint

of 37 cm for each arm and a neutron wavelength of 2.46 Å.

Clearly, the highest Larmor phase of this technique is coupled

with the effective tilt angles. Specifically, the overall Larmor

phase for a high effective tilt angle is lower. For example, to

achieve a tilt angle beyond 45� using the setup shown in

Fig. 1(b), the field directions of B1 and B5 have to be the

opposite of B2, B3 and B4, which means the Larmor phase

generated in B1 and B5 will be subtracted from that accumu-

lated in B2, B3 and B4. For an effective tilt angle lower than

45�, B1 and B5 need to be the same direction as B2, B3 and B4,

which will add additional Larmor phases. Equivalently, the

effective tilt will lead to an effective size of the magnet, given

as the coefficient of B5 in Table 1. This is different from that of

the NRSE technique, where the Larmor phase is a constant for

all tilt angles, since the length of the flight path does not

change when changing the tilt angles, as shown in Fig. 1(a). On

the other hand, by introducing effective tilt using Wollaston

prisms, the polarization and transmission efficiency of the

setup are not affected when changing the effective tilt angle

since no physical movement of the coils is required. From the

calculations, we can see that configurations (1) and (4) are

similar and always have the highest Larmor phase. With a

maximum total Larmor phase of 12 000 rad, to observe at least

one minimum in Fig. 2(c) for a measurement of Bragg peak

splitting means a resolution of �d/d ’ �/�P=Min ’ 3 � 10�4.

However, the resolution may be higher (<10�5) for discerning

a change in the profile of a Bragg peak as a function of an

external parameter such as temperature. Currently, the

achievable resolution is constrained by the available space on

the beamline, as shown in Fig. 3, and the fact that the largest

usable neutron wavelength is limited to 2.46 Å since the host

TAX beamline is on a thermal neutron moderator.

5. Conclusions

We have successfully implemented high-resolution neutron

Larmor diffraction using superconducting magnetic Wollaston

prisms on a polarized-neutron triple-axis spectrometer located

at the HFIR at ORNL. Using this technique, we can measure

the splitting of a sharp Bragg peak with a resolution of �d/d =

3 � 10�4 and the resolution for discerning a change in the

profile of a Bragg peak can be �d/d < 10�5. For lattice changes

induced by thermal expansion or strain, a resolution better

than that presented by Li & Pynn (2014) or Li et al. (2017) can

be achieved. After 3–4 h of warming up the main power supply

and employing another precise and stable power supply in

parallel, a resolution of �d/d ’ 10�6 has been achieved in

measuring the thermal expansion. This is a remarkable degree

of precision for a neutron diffraction setup as compact as the

one used in this implementation. Although an X-ray

diffractometer can be configured to achieve a similar
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Figure 8
A map of the maximum accessible total Larmor phase for each
configuration listed in Table 1. The maximum current allowed inside
the device is 50 A and the magnetic field achieved is 35 G A�1. The
dimension used, as shown in Fig. 1, is S = 2D = 10.5 cm, and the
wavelength used is 2.46 Å.

Table 1
A chart for the possible field configurations in Fig. 7.

The configurations in (1) and (2) of Fig. 7 denote the cases of Arm-2 upstream
and the configurations (3) and (4) have the two arms swapped. �n is the
gyromagnetic ratio of the neutron, m is the neutron mass, h is Planck’s
constant and 
 is the neutron wavelength.

Configuration � = B4/B5

Total Larmor phase �
(� �nm
/h)

(1) B1 = B5, B2 = B3 = B4
Sþ 2Dð1þ tan	Þ

ðSþ 2DÞð1� tan	Þ
2[(S + 2D)� + 2D]B5

(2) B2 = B4, B1 = B3 = B5
ðSþ 2DÞð1þ tan	Þ

Sþ 2Dð1� tan	Þ
2[(S + 2D) + 2D�]B5

(3) B1 = B5, B2 = B3 = B4
Sþ 2Dð1� tan	Þ

ðSþ 2DÞð1þ tan	Þ
2[(S + 2D)� + 2D]B5

(4) B2 = B4, B1 = B3 = B5
ðSþ 2DÞð1� tan	Þ

Sþ 2Dð1þ tan	Þ
2[(S + 2D) + 2D�]B5



resolution, the wavelength spread needs to be minimized using

a double-bounce monochromator and the method is limited to

some specific samples. The achievable resolution of this setup

is equivalent to that of the TRISP instrument at the FRM II

reactor in Germany (Keller & Keimer, 2015).

YBCO is a type II superconductor, which means magnetic

flux can penetrate when the YBCO film experiences a large

enough perpendicular magnetic field (Brandt, 1996). To

achieve an even higher field, and thus resolution, a thicker

YBCO film is required and its development is still under

investigation.

The purpose of involving two Wollaston prisms in each arm

is to introduce a combination of inclined and non-inclined

magnetic field boundaries such that the effective field

boundaries can be varied by picking the right combination of

them. The current inclination angle (� in Fig. 1) is 45�. For a

given space available, reducing this angle can shrink the size of

the Wollaston prism along the beam direction and thus

increase the size of the rectangular field region in between,

which can also be used to generate a larger Larmor phase

without increasing the size of the device.
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