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Full-field response monitoring in structural systems
driven by a set of identified equivalent forces

E. Lourens, D.J.M. Fallais

Faculty of Civil Engineering and GeoSciences, Delft University of Technology, Stevinweg 1,
2628 CN Delft, The Netherlands

Abstract

Kalman-type filters for coupled input-state estimation can be used to estimate
the full-field dynamic response of structures from only a limited set of vibration
measurements. The use of these coupled estimators allows for response pre-
diction to be performed in the absence of any knowledge of both the dynamic
evolution and spatial distribution of the excitation forces, where often a set of
response-driving equivalent forces is identified from the measurements. In this
contribution, a rigorous analysis of the concept of equivalent force based re-
sponse monitoring is performed, with the aim to clearly establish its limitations
and ranges of applicability. It is shown that, unlike commonly assumed, the
success of this type of response monitoring cannot be related solely to whether
the chosen set of equivalent forces satisfy the controllability requirements, but
will depend on the bandwith of the excitation forces in combination with the
extent/characteristics of the sensor network. Arguments are instantiated using
simple numerical examples where a comparison is made between the theoretical
assumptions used to derive the filters and the physical situation. Included in
the analyses are situations where a) the applied and equivalent loads are con-
centrated and collocated, b) the applied and equivalent loads are concentrated
and non-collocated, ¢) modal equivalent loads are used to represent concen-
trated non-moving forces, and d) modal equivalent loads are used to represent
concentrated moving forces. Results are applicable to any Kalman-type coupled
input-state estimator derived using the principles of minimum-variance unbiased
estimation.

Keywords: response prediction, controllability, equivalent forces, Kalman
filter, joint input-state estimation, structural health monitoring
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1. Introduction

The problem of reconstructing the dynamic states of a system from sparse
vibration measurements is considered, thereby contributing to ongoing research
in the area of full-field response estimation on the basis of output-only data.
The full-field response estimates are most commonly used for the purpose of
monitoring fatigue damage accumulation in the entire body of large-scale struc-
tures [1, 2, 3], but can also be used to obtain valuable insights into complex
interaction phenomena, e.g. ice-induced vibrations [4, 5], when monitored in
conjunction with the applied forces.

In recent years, a large number of inverse methodologies for the extrapola-
tion of locally measured structural response to unmeasured locations — through
the estimation of full-field quantities — have been proposed. These method-
ologies can roughly be divided into two categories, namely those that assume
that the numerical model used for the extrapolation is free from errors, and
those that do account for modelling errors. Belonging to the former category
are the modal expansion algorithms, where modal coordinates are identified
through a pseudo-inversion of the mode shape matrix. These approaches work
well for dynamic systems characterized by relatively low-order dynamic behav-
ior, e.g. the supporting structures of offshore wind turbines [6, 7]. The second
category consists of various Kalman-type filters, where modelling as well as
measurement errors are included in the estimation as stochastic processes of
which only the variances are known. Various state, coupled input-state, and
coupled input-state-parameter estimation algorithms have been developed in
this context, ranging from initial formulations for use with linear systems to
alternative filters for dealing with reduced-order models, acceleration-only data
and recently also nonlinear model descriptions. Limiting the discussion to lin-
ear systems, again two groups of filters can be distinguished: those that rely
on some assumptions regarding the loading on the structure (e.g. white noise,
or characterized by a certain known variance) [1, 8, 9], and those that are able
to observe full-field structural response in the absence of any knowledge of the
dynamic evolution of the applied loading [10, 11, 12].

In this contribution, we will focus on the second category presented above,
namely the Kalman-type filters, and more specifically on cases in which also the
spatial distribution of the loading is assumed unknown, and a set of response-
driving equivalent forces is identified from the measurements. This is done when
the locations of the main excitation sources are uncertain and/or time-varying,
which is often the case for large-scale civil or offshore structures. Through a
careful analysis of the assumptions forming the basis for the derivation of these
algorithms and their possible violation in various real-life applications, the lim-
itations of response estimation based on the concept of equivalent loading is
exemplified. Up to now, the success of this type of equivalent force based re-
sponse estimation has been related only to whether the chosen driving forces
satisfy the controllability requirements [13]. It will be shown that controlla-
bility is an insufficient criterion for guaranteeing the accuracy of the response



estimates, and that results remain sensitive to a correct assumption on the force
locations, unless the sensor network allows for the identification of a sufficiently
large number of modal forces. Concepts are illustrated using simple numeri-
cal examples where a comparison is made between the true and assumed noise
statistics and the response prediction accuracy for a number of distinct cases in
which the locations of the forces are only known approximately, or not at all, in
which case modal equivalent forces are assumed.

The paper is structured as follows: first the state-space notations which will
be required for the definition of the necessary error statistics are presented in
section 2, followed by a summary of the Kalman-type filters to which the results
will apply and the assumptions forming the basis for their derivation in section
3. Section 4 presents the concept of equivalent force based response monitoring,
and includes the development of new notation for quantifying discrepancies be-
tween the theoretical assumptions used to derive the filters and the true physical
situation. The latter notations are then used in a set of numerical examples in
section 5, on which basis conclusions are drawn for a selection of commonly
encountered engineering problems in section 6.

2. Formulation of the state-space equations

The formulations presented in this section can be found in many references;
we use the notation from [11], repeated here for convenience. The equations of
motion for a linear system discretized in space are formulated as:

Mii(t) + Cua(t) + Ku(t) = f(t) = Sp(¢t)p(t) (1)

where u(t) € R™POF is the vector of displacement, M, C and K € R"PoF X"por
denote the mass, damping and stiffness matrix, respectively, and f(t) is the
excitation vector. The excitation is factorized into a force influence matrix
Sp € R"ror*™ and the vector p(t) € R™ representing the n, force time
histories. Each column of the matrix S, gives the spatial distribution of the
load time history in the corresponding element of the vector p. In the case of
a point load, the column of S, has only a limited number of non-zero entries
corresponding to the distribution of the load over the degrees of freedom of the
FE mesh. In Eq. (1) S, is shown as being time dependent to allow also for the
case of moving loads.
By introducing the state vector x(t) € R™, ns = 2npor:

«0=( )

the second-order equations of motion (1) can be written in first-order state space
form:

k(t) = Acx(t) + Bcp(t) (2)

where the system matrices A, € R™*" and B, € R"*"r are defined as:
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and the subscript 'c’ denotes continuous time. The classical continuous-time
state space description of the vibrating system is subsequently found by supple-
menting the state equation (2) with the so-called observation equation:

d(t) = ch(t> + Jcp(t) (3)

in which

G.=[S4-S.M 'K S,-S,M'C ], J.=[S.M'S,]

and S,, S, and Sq € R™*™POF are selection matrices for acceleration, veloc-
ity and displacement, respectively, in which the locations of the measurements
and/or difference relations can be specified.

For large civil engineering structures a model reduction is often performed,
whereby the dynamics of the system is represented by a reduced number n,, of
modal coordinates z(t) € R™™ as u(t) = ®,z(t), ®, € R"Por*"m_ In state-space
this corresponds to writing:

x=| 5 4 |0

where the modal state vector ¢(t) € R?™» now collects the modal coordinates:

The modal state-space model then becomes:

é(t) = ACC(t) + Bcp(t) (4>
d(t) = GCC(t) + Jcp(t) (5)

with the expressions for the reduced-order continuous-time system matrices
A, € R?»x2mm B, € RZX"e G, € R"*2"m and J, € R™*™ reducing
to:

[ o I
A= | e 1 ()
[ o
B~ | gty | @
G. = [ Si®-S.,29° S,®-S,2T | (8)
J. = 'samﬂsp]. 9)



Here Q@ = diag{w;} € R™*™» is a diagonal matrix containing the real
eigenfrequencies w; in rad/s. The eigenvectors ® are assumed mass-normalized,
which leads to the orthogonality conditions: ®TM® =1I, and ®TK® = Q2.

Proportional damping involves the assumption that the eigenvectors also
diagonalize the damping matrix C: ®TC® = diag{2¢;w;} =T.

For the discretization of the full- or reduced-order state-space models — equa-
tions (2)&(3) or (4)&(5)) — a sampling rate of 1/At is used, with discrete time
instants defined at ¢, = kAt (k = 1,...,N). The discrete-time equivalent of
the modal state-space model is then written as:

Xp+1 = Axp+ Bpg (10)
dy = Gxi+Jpg (11)

where A = A2t B = [A —IJA7'B., G = G, J = J, and the matrices
B and J are converted from continuous to discrete time via a zero-order hold
assumption (constant inter-sample behavior) on the input.

3. Coupled state and input estimation

In recent years various Kalman-type filters capable of jointly estimating the
states x and input forces p based on a limited set of vibration measurements
d have been suggested. A comparative study based on shake table experiments
on a small-scale laboratory building was presented by Azam in 2015 [14]. This
study involved three of the most commonly applied coupled input-state estima-
tion algorithms, namely the joint input-state estimator (also sometimes referred
to as the Gillijns & De Moor filter) [10, 11], the Augmented Kalman filter (AKF)
[8], and the Dual Kalman filter (DKF) [9]. Recently also a ‘smoothing’ alter-
native was presented [12], where the input-state estimation is performed with a
certain time delay.

The common basis for all these algorithms is the discrete-time state-space
description (cf. previous section) supplemented with stochastic process and mea-
surement noise wy, and vg:

Xpy1 = Axp+ Bpg + wg (12)
dr. = Gxi+ Jpg + vk (13)

In the case of the AKF and DKF, the force evolution is also explicitly rep-
resented using a random walk model:

Pk+1 = Pk + Nk, (14)

with 7, a component of the stochastic process {n; € R*»}22 . The addition
of Eq. (14) allows for regularization of the inverse input estimation problem
through an appropriate choice of the covariance matrix of the process ny.



3.1. Noise process assumptions

To arrive at the recursion formulae for all above mentioned coupled state-
input estimators, certain assumptions on the noise processes {wy € R™}32,
{vi, € R™}92, (and {nr € R"}2, in the case of the AKF/DKF) have to
be made. Again a few common denominators can be formulated, namely that
for all algorithms wy, v, (and if applicable 7)) are assumed to be zero-mean,
white noise signals with known covariance matrices Q = E{wsw{} > 0, R =
E{vgv'} >0, (and QP = E{nyn;,"} > 0).

Depending on the specific formulation, the processes wy and vy are assumed
to be mutually uncorrelated, or correlated in accordance with a predefined co-
variance matrix S = E{wyv;"} (see for instance [15]). In general, however, the
former assumption is made due to the absence of reliable information on the
covariance matrix S in real life applications. In summary, the noise properties
then amount to writing:

)i o-[Sd]n o

As mentioned in the introduction the focus of this work is on having discrep-
ancies between the theoretical assumptions made and the physical situation, as
occuring in equivalent force based response monitoring, and the effect hereof on
the estimation. The specific coupled input-state estimation algorithm used is
therefore not of importance. A choice is made to generate the results used in
the numerical examples of section 5 with the Gillijns & De Moor filter [10] due
to its relative simplicity and the fact that the obtained results are independent
of a third covariance matrix QP.

4. Response prediction using equivalent forces

Once the state and force estimates - X and P - have been obtained with
a coupled input-state estimation algorithm, they can be used to estimate the
full-field response of the structure. The idea was first presented in [11], and
involves reformulating a new observation equation as follows:

aex,k = Gexkk + Jexf)k (16)

where [J denotes an estimated quantity, and the subscript ey abbreviates ex-
trapolated.

As mentioned already in the Introduction, the set of forces/force locations
accounted for in p/J¢x do not have to correspond to the true loading in situations
where the main excitation sources are uncertain or time-varying. Instead, the
force locations can be chosen with the soul aim of reproducing the full-field
response (Aiex,k. This latter case is referred to as equivalent force based response
monitoring. It is stressed here that this is a powerful idea, since it potentially
allows for real-time global response monitoring in the absence of any knowledge



of the driving forces, and using only a limited amount of sensors. Accordingly,
the concept of equivalent force based response monitoring is being used more
and more in various applications (cf. the Introduction), and sufficient clarity
regarding the correct use of the concept in conjunction with a coupled input-
state estimator is therefore becoming increasingly important.

When a set of equivalent forces p is identified, the process and measurement
noise wy and vg in Eq. (12) and (13) can be divided into contributions from
force location errors, modelling errors, and sensor noise. For reduced-order
systems constructed using Eq. (6) - (9), modelling errors consist of specifically
eigenfrequency, eigenmode, and damping errors, i.e. errors on the dynamic
properties. One can write:

wr = {wk}forcc + {wk}prop (17)
Ve = {vk}force + {'Uk}prop + {vk}sensor (18)

Defining Uyeq1 and Ceq as the matrices/vectors corresponding to respectively
the real and equivalent force locations, the contributions from errors on these
locations can be further specified as:

{wk}force = Brealpk,real - Beqf)k (19)
{'Uk:}force = Jrealpk,real - Jeqf)k: (20)

where Boq and Joq are constructed according to Eq. (7) and (9) using the
assumed locations of the equivalent forces. Note that the two stochastic error
processes become correlated in this case — S = E{wv; } # 0 — and depending
on the nature of the excitation, are possibly no longer white. A more in-depth
analysis of these error processes, including also the effects of intercorrelations
between their individual elements, will be presented in the next section. To do
so, first some additional notation is defined.

Recalling the definitions of the corresponding error covariance matrices Q =
E{w,w!} and R = E{v,v] }, and making a distinction between real and as-
sumed covariances, one can write:

Qe = Qreal - Qas (21)
Re = Rreal - Ras (22)
Sc = Srcal - Sas (23)

where the subscripts ‘e’ and ‘as’ denote erroneous and assumed, respectively,
and the real covariances are those specified in equations (17) and (18). These
matrices can be further decomposed into blocks representing (in the case of
a modally reduced state-space representation) the (co)variances between the
modal displacements z, the modal velocities z, and the data d, respectively:
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where Qe,zza Qe,zi7 Qe,ii S R(ns/2)><(ns/2) and Se,zd, Se,id S ]R(HS/Q)X”d-

5. Numerical examples

A 21-node cantilever beam model is constructed based on Euler-Bernoulli
beam theory and subsequently reduced to 10 degrees of freedom on the basis
of the first 10 modes. The properties of the beam are as presented in Table
1. The first three natural frequencies of the beam are 0.56, 3.51, and 9.82
Hz, respectively. The calculated modal properties are subsequently used to
construct a reduced-order modal state-space model using equations (6) - (9),
where a modal damping ratio of 2% is assumed for all modes. A graphical
representation of the beam including the sensor networks used in the upcoming
examples are shown in Fig. 1.

Table 1: Beam properties

Length L 1 [m]
Structural mass m 1 [kg/m]
Flexural rigidity EI 1 [Nm?]

Damping ratio ¢  0.02 -]

The excitation, applied at the tip of the cantilever, is chosen as a super-
position of two harmonic forces with frequencies equal to 2.03 Hz and 6.66 Hz,
respectively. These frequencies are chosen as the average of respectively the first
and second, and second and third, natural frequency of the structure. A sam-
pling frequency of 1000 Hz is used in all the following examples, satisfying the
Nyquist-Shannon sampling criterion with respect to the highest load frequency
and all structural frequencies up to the 6th mode. It is mentioned that when
the coupled input-state estimation is performed based on real data, the selected
time step size should also be chosen with regard to the physical delay in the
system, in order to ensure that causality is respected [16, 17].

An overview of the cases that will be analyzed in the following sections is
presented in Table 2. It is important to note that, for all cases, the data sets used
and chosen (equivalent) force locations satisfy the observability, controllability,
direct invertibility, and stability criteria as formulated in [13].

To analyze the effect of specifically the equivalent force assumptions, no
modelling errors will be included during the analyses, implying that {wg }prop =
{V& }prop = 0 in equations (17) and (18), whereby the error processes reduce to
wi = {Wk Horce and vk = {Vg Horce + {Vk }sensor- Also the sensor noise levels
are chosen to be negligible. Each measurement signal is corrupted with a white
noise signal whose standard deviation is proportional to the standard deviation
of the measurement signal itself. The measurement noise of the i*" sensor is



Table 2: Overview of cases analyzed.

Section: Case: Equ. load type: Location:
5.2 3L/4
5.3 Load at the tip nodal L/4
5.4 L/4,1L/2,3L/4, L
5.5 modal Py, Py, B3, Py
5.6 Moving load modal P, Py, B3, Py

modelled as: {v}i, . = £oa,r, with £ = le—12 the fixed low noise level, og,
the standard deviation of the considered output, and r € RN a vector of random
values drawn independently from a normal distribution with zero mean and unit
standard deviation.

The assumed noise matrix R,s is consistent with the added sensor noise,
so that R, of equation (22) is related solely to the force positions: R, =
E{{vk}fome{vk}};rce}. By also assuming Q,s = 0 and S,; = 0 in the fol-
lowing sections, Q. and S, can be similarly related solely to the force positions:
Q. =E {{Wk}force{’lUk}fTorce} and S, = E {{wk}force{vk};gme} — cf. equations
(19) and (20).

In order to rule out any effects on the results of potential initialization errors
or different convergence speeds, the first 10 seconds of each data trace will be
neglected during the post processing.

5.1. Collocated nodal force

First a situation is considered where the force location is known exactly, and
no use is made of the concept of equivalent forces: {wp }rorce = {Vk }orce = 0,
and consequently Q. = Re = S = 0. The nodal force applied at the tip of
beam is identified in conjunction with the 10 modal states. Simulated data from
4 accelerometers and 1 strain gauge is used for the estimation, as shown in Fig.
la.

As expected, all modal states and the force are identified with high accuracy,
allowing for an error-free extrapolation of the response of the beam to any
location by means of Eq. 16. Results are omitted.

5.2. Nodal equivalent force at 3L/}

For the next analysis an equivalent force is considered to act at 3L/4, repre-
senting a situation where only some uncertain information on the force location
is available. In this case {wg}orce #Z 0 and {vg torce # 0, and consequently
all error matrices — Q., Re, and S, — will become populated. The force-state
estimation is performed based on the same measurement set as before.
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Figure 1: Analyzed beam including sensor networks a) with one strain measurement, and b)
with four strain measurements.
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Figure 2: True (dashed lines) and estimated (solid lines) time histories of (a) the modal states
and (b) the predicted strain and accelerations. Nodal equivalent force at 3L/4.
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State, i: 1 2 3 4 )
RMS.; 5.02e-02 6.79e-01 7.49e-01 9.49e-01 6.90e-01
State, i 6 7 8 9 10
RMS.; 3.29e-01 2091e-01 2.38e-01 2.98e-01 7.27e-01

Table 3: RMS values of normalized state estimate error. Nodal equivalent force at 3L/4.

Fig. 2 shows, on the left, the true and estimated modal states (top) and
modal velocities (bottom) for the first 3 modes. Although the first modal dis-
placement is identified relatively accurately, the discrepancies between the sim-
ulated and estimated modal states become larger for the higher modes. To
quantify these errors an RMS error measure for each modal state is defined as
follows:

2
Z— 2

MS. ; = —— 2

RMS... Nz<max|zz> (25)

where ¢ is the mode number. To disregard the effect on the error of having
large differences in orders of magnitude between the different states, the sim-
ulated states are first normalized to unity and the corresponding scale factors
subsequently used to scale also the estimates. The difference between the scaled
versions of the simulated and estimated state is finally used to compute the
normalized RMS error defined in Eq. 25. Table 3 presents these values for the
modal displacements in the current problem, clearly showing an increased error
for the higher-order modes, with a maximum occurring in mode 4.

Fig. 2 and Table 3 show that the modal states and forces cannot be recon-
structed uniquely, an effect caused by a violation of various assumptions used
in the derivation of the estimator. Since the identified modal estimates are in-
correct, the data reconstructed on the basis of these estimates — see equation
(16) — will also be incorrect, as shown on the right in Fig. 2. Note that here we
are not even attempting to reconstruct at locations other than those measured,
and still there exists a clear discrepancy between measured and reconstructed
data.

To further analyze these effects, Fig. 3 shows examples of realizations (time
traces) for various covariances that can be used to construct the error matrices
Q., Re, and S,.. Fig. 3a shows, for instance, the time traces corresponding to
all entries of the matrix {wk’zw;f,z}}j:o € RMs/2)x(n/2)  \where Wk .z € R»=/2
collects only those components of wj, corresponding to the modal displacements
z. The average of each of these time traces thus corresponds to an element
of the matrix Qe , as defined in equation (24). Recall that in the current
study realizations of all these components of the process and measurement noise
{wy, € R}, and {vy € Rnd}gzo can be calculated using equations (19) and
(20).

The frequency content of the realizations in Fig. 3 can be related to that
of the true and estimated forces, plotted in Fig. 4. The frequency of the two

11
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Figure 3: Time traces used to calculate all entries of a) Qezz € R(®s/2)X(1s/2) and (b)
Se,zd € R(1s/2)Xn4 for the case of a nodal equivalent force at 3L/4.

harmonics in the latter figure are in fact doubled in the error realizations due to
the fact that these are based on the square of the errors (sin2(x) = 17+S(2z)>
It is also worth noting that the error traces in Fig. 3 are not white noises,
as is the assumption in the filter. The effect hereof on the optimality of the
estimates is considered outside the scope of this work. Due to the fact that the
applied loading is a zero-mean harmonic force, no unaccounted for bias errors
are, however, introduced. Also here it is worth noting, though, that having bias
violations in the case of non-zero applied forces will cause additional errors not
analyzed in the examples presented in this contribution.

10 10.5 1 11.5 12 12.5 13 13.5 14
time [s]

(a)

Figure 4: True (dashed lines) and estimated (solid lines) time histories of nodal force at L
and 3L/4 respectively.

To analyze further the effect on the estimates of assuming an erroneous force
location, the mean of all error realizations, i.e. the matrices Qe 2z, Qe z2; Se,zd,
and R, defined in Eq. 24, are plotted in Fig. 5. Of these matrices, particularly

12



State, i: 1 2 3 4 5
RMS.; 3.06e+00 2.97e4+00 3.05e+00 4.04e+00 1.72e+400
State, i 6 7 8 9 10
RMS.; 1.59e4+00 4.05e+00 3.92e+00 1.78e+00 1.78e+4-00

Table 4: RMS values of normalized state estimate error. Nodal equivalent force at L/4.

interesting to consider are Qe 2z (0r Qe 2z) and Se .4, since they can most easily
be related to the uniqueness of the modal state estimates on the one side, and
the uniqueness of the coupled input-state estimates on the other.

It is clear from the nonzero off-diagonal elements in Q. ,, in Fig. 5a that the
force error correlates the state errors, especially between modal displacements 2,
3,4, 5 and 10. Note that the effect hereof is clearly visible in the results presented
in Table 3, where the largest error was found in modal state 4, corresponding
to the location of the largest entry on the diagonal of Qe ,, in Fig. 5. The same
observation can be made with regard to the error covariances between the modal
displacements and velocities shown in Fig. 5b. Due to these unaccounted-for
correlations, the algorithm is not able to uniquely identify the states.

Similar conclusions can be drawn with regard to the uniqueness of the state
versus force estimates on the basis of the matrix S 4 in Fig. 5c. The force error
strongly correlates the state error on for instance modal displacement 4 with
the measurement error on the tip acceleration, implying that it will be difficult
to distinguish between (and thus uniquely identify) the force and modal state 4
on the basis of this measurement.

As concerns Fig. 5d, the correlations between acceleration errors at L and
3L/4 are seen to be the largest, which can easily be explained by realizing
that these are the positions used to construct the direct transmission terms in
equation (20).

A final note is made on Fig. 5c and 5d: the direct transmission terms in Eq.
13 do not influence strain outputs since all corresponding entries in S, are zero,
and thus all error covariance terms related to strain outputs are zero (denoted
by a dot in the figure).

5.3. Nodal equivalent force at L/}

Next a case is considered in which the equivalent force is located at L/4 from
the support, while the true applied force is still acting at L. The measurement
set remains unchanged, and all observability, controllability, direct invertibility,
as well as stability criteria remain satisfied. As expected, the accuracy of the
state estimates drastically decreases, as shown in Fig. 6a and Table 4. The
response prediction consequentially deteriorates as well, as shown in Fig. 6b.

Compared to excitation at L, the placement of an equivalent force at L/4
correlates more modal errors — see matrix Qe zz in Fig. 7. (Note that the
matrices Qe ,z and R, have been and will from now on be omitted from these
figures since they do not add any valuable information). The correlations in

13
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Figure 6: True (dashed lines) and estimated (solid lines) time histories of (a) the modal states
and (b) the predicted strain and accelerations. Nodal equivalent force at L/4.



Q. 2z are also much stronger, as can be concluded from the order of magnitude
of its components compared to those in Fig. 5a. The normalized RMS state
errors are also an order of magnitude larger — cf. Table 3 and 4.

x1071

Figure 7: Error covariance matrices (a) Qe,zz and (b) S¢ ,a. Nodal equivalent force at L/4.

From the stronger correlations in S ,q in Fig. 7b it can also be concluded
that with an increased force error it becomes increasingly difficult to distinguish
between the effects of the force and those of the states on the measurements.

5.4. Equivalent forces at sensor locations

The case where equivalent forces are assumed to act at the sensor locations
is often seen — see e.g. [18, 11] — because it leads to a well-conditioned direct
transmission matrix J. The typical ill-conditioning of the input estimation
resulting from non-collocation is thus avoided.

For the current problem this case implies having equivalent forces at L/4,
L/2, 3L/4 and L. Since the number of forces to be identified has now increased,
it is necessary to revise the direct invertibility and stability requirements [13].
In order to ensure a stable system inversion, it becomes necessary to measure
at least three additional displacements/strains. A new sensor network is thus
defined as illustrated in Fig. 1b. This new network also satisfies all additional
criteria related to observability and controllability. Response estimation results
are shown in Fig. 8.

The modal displacements and velocities are seen to be estimated with high
accuracy in Fig. 8a, allowing for accurate response predictions at the sensor
locations (Fig. 8b) as well as at all other unmeasured locations. This high
accuracy can be attributed to having neglible discrepancies between the real
and assumed error covariance matrices, as illustrated in Fig. 9, where the error
magnitudes are of the order e™3® and e™3! on the matrices Qe zz and S¢ .4,
respectively.
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Figure 8: True (dashed lines) and estimated (solid lines) time histories of (a) the modal states
and (b) the predicted strains and accelerations. Equivalent forces at sensor locations.
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Figure 9: Error covariance matrices (a) Qe,zz and (b) Se za. Equivalent forces at all sensor
locations.
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It is important to realize, though, that it cannot be concluded that identi-
fying equivalent forces at the sensor locations will in general lead to accurate
response estimations. Considering again equations (19) and (20), it can be de-
duced that {wg}orce and {vg }orce and therefore the response estimation error
will depend on a) whether a sensor/equivalent force is placed at the exact force
location(s), and b) the difference between the norm of the column(s) of Beq
and Jeq corresponding to the true force location(s) and the norm of their other
columns. The smaller the difference, the larger the response estimation error
will be, since the amplitudes of the identified forces at the true as opposed to
the other equivalent force locations will become comparable. The current ex-
ample, where the true force is acting at the most sensitive location of the beam
(the tip), can in this sense be viewed as an ideal case, since the norms of the
matrices Beq and Jeq will be significantly larger at this location than at L/4,
L/2, and 3L/4. The error made through the addition of the other equivalent
forces is thus relatively small and the reconstruction is good. RMS values of
the normalized state estimation errors as defined in Eq. 25 is of the order of
magnitude e '3 (cf. tables 3 and 4 for previous results).

5.5. Modal equivalent forces

A simple way to ensure that the states can be related to the forces in a unique
way, is the identification of modal equivalent forces. For a system consisting of
nm modes and n, modal forces, this is achieved by defining:

QTSp = [Inpxnp On X (Nm—n )}T (26)
P m P
and then proceeding to construct B., J., B and J as in equations (7) and (9).
Apart from ensuring a unique force-state relation, modal forces can be used
for response prediction in applications where the spatial force distributions are
complex or time-varying, making it difficult to explicitly define S,. Examples
here are aerodynamic or hydrodynamic loading.

Correctly choosing the modal forces is crucial for an accurate response pre-
diction, since the chosen modes must be able to represent the (dynamic and
static) response of the structure. Two conflicting requirements arise in this re-
gard: on the one side a sufficient number of modal forces is required in order to
assure an accurate response prediction over a possibly broad range of frequen-
cies and operational deflection shapes, whereas the number of equivalent modal
forces is simultaneously restricted by the number of acceleration and displace-
ment /strain measurements through the direct invertibility and stability criteria
[13].

Recall that in the current example, the excitation frequencies of the beam
are chosen as the average of respectively the first and second, and second and
third, natural frequency of the structure. A choice is made to identify four
modal forces in order to drive the modal response of the first four modes. This
allows for the use of the same sensor network as in the previous section - cf.
Fig. 1b. Results are presented in Fig. 10 and 11.
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State, i: 1 2 3 4 )
RMS.; 6.56e-03 8.97e-03 2.04e-02 1.75e-01 5.00e-01
State, i 6 7 8 9 10
RMS.; 4.99-01 4.99e-01 4.99e-01 4.99e-01 4.99e-01

Table 5: RMS values of normalized state estimate error. Modal equivalent forces.

As expected, the modal states and velocities are again identified with high ac-
curacy in Fig. 10, which would allow for an equally accurate extrapolation of the
measured data to unmeasured locations. This is possible since the unaccounted-
for couplings in the error covariances matrices (e.g. Qe zz and Se ,q) are now
restricted to modes that hardly contribute to the response, as shown in Fig. 11.
The RMS values of the normalised state estimation errors are shown in Table
5, where the error on the (first) modal state most dominant in the response is
seen to be at least one order of magnitude smaller than with nodal equivalent
forces at 3L/4 or L/4.

In contrast to identifying response-driving equivalent forces at the sensor
locations (section 5.4), the strategy of identifying equivalent modal forces will
allow for accurate response extrapolation in any type of structure excited by
forces at any possible location(s), on the condition that the modes included in
the modal force selection are able to fully represent the response of the structure
to the applied loading. It should be noted that for structures with rich dynamics
this could possibly imply the inclusion of a large number of modal forces, which
in turn would require a very extensive sensor network, in order to satisfy the
direct invertibility and stability criteria. In practice, though, it is possible to
partly bypass this effect by including displacement measurements calculated by
(offline) numerical integration of the measured accelerations — see e.g. [2]. A
quantification of the error introduced by the integration in these cases, and the
effect thereof on the response estimates, is considered outside the scope of the
current investigation.

5.6. The moving load problem

In this final example the moving load problem is considered, mainly due
to its relevance in the fatigue monitoring of bridges excited by moving traffic.
Note that in contrast to the previous section, it is not the type/location(s)
of the equivalent force(s) that are changing in this example, but the applied
loading itself. Response signals are generated for the sensor network defined in
Fig. 1b, but now due to a point load moving at a velocity of 1/Ty m/s, where
Ty = £0.05s is the fourth natural period of the beam. Drawing on the insights
gained in the previous sections on the importance of unique state-force relations,
a set of four modal equivalent forces are identified in order to drive the response.
Results are presented in Fig. 12.

As expected and partly also shown in Fig. 12a, the moving point load draws
response from various modes of the beam. The use of four modal forces is in
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Figure 12: True (dashed lines) and estimated (solid lines) time histories of (a) the modal states
and (b) the predicted strain and accelerations. Moving load case with four modal equivalent
loads.

this case not sufficient, and leads to inaccurate modal displacement and velocity
estimates. The response prediction errors shown in Fig. 12b are seen to be
significantly higher for the strains as opposed to the accelerations, which is
most likely due to the differences in their order of magnitudes.

Fig. 13 shows the modal loads themselves, calculated and identified as ®TS,p(t)
on the basis of Eq. 26, but with the force allocation matrix Sy(t) now time de-
pendent. As with the states presented in Fig. 12a, large discrepancies exist
between the true and identified modal forces. The reconstructed accelerations
at the measurement locations (Fig. 12b) are, however, matched rather accu-
rately. This again points to a problem of non-uniqueness in the solution, which
in this case stems from the fact that there are not enough sensors/modal forces
to account for the higher number of modes contributing to the response of the
beam to the moving load. It is thus not possible to sufficiently constrain the
inverse solution to produce state-force estimates that would accurately predict
the response also at locations other than those measured. Note that it is in this
case not meaningful to view the error covariance matrices Qe 2z and Sc 4, due
to the transient nature of the loading/response.

6. Conclusions

Modal state and force estimates obtained with Kalman-type filters can be
used to estimate the full-field response of a structure from sparse vibration mea-
surements. In this contribution, the focus was on situations where no knowledge
on the applied loading is available, neither in terms of its dynamic content, nor
its spatial distribution, and response-driving equivalent forces are identified. It
was shown that, unlike commonly assumed, the success of this type of equiv-
alent force based response monitoring cannot be related solely to whether the
chosen set of equivalent forces satisfy the controllability requirements. Since
modal states that are simultaneously excited by the equivalent forces cannot be
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Figure 13: True (dashed lines) and estimated (solid lines) time histories of the first four modal
forces.

uniquely identified if the assumed position of the force is wrong, results remain
sensitive to a correct assumptions on the force locations. This is mainly due
to the fact that no correlation is assumed between the noise processes on the
individual elements of respectively the process and measurement noise (both Q
and R are assumed diagonal), whereas these correlations in fact increase with
the distance between the positions of the equivalent and applied loads.

The identification of modal equivalent forces can solve this problem, since
the correlations are then dissolved, but require at least one acceleration and
displacement/strain sensor for every mode excited, making it practically fea-
sible only for systems exhibiting relatively low-order or band limited dynamic
behavior. Examples of such structures for which also the final goal of fatigue
monitoring could be of interest are the supporting structures for offshore wind
turbines, wind-excited tall buildings, or structures driven mainly by periodic
loads, whereas the applicability to for instance slender bridges excited by mov-
ing loads will in general be limited, depending on the number of modes that is
excited. The latter will in turn depend on the dynamic properties of the bridge,
its unevenness, the contact area of the tyres, etc.

It is finally mentioned that all conclusions drawn pertain only to forced
vibration systems, and is of no concern for systems excited mainly by transient
loads.
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