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Experimentally, the concentration of quasiparticles in gapped superconductors always largely exceeds
the equilibrium one at low temperatures. Since these quasiparticles are detrimental for many applications, it
is important to understand theoretically the origin of the excess. We demonstrate in detail that the dynamics
of quasiparticles localized at spatial fluctuations of the gap edge becomes exponentially slow. This gives
rise to the observed excess in the presence of a vanishingly weak nonequilibrium agent.
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Naively, the superconducting gap A should ensure an
exponentially small quasiparticle concentration at low
temperatures. However, various experiments indicate that
a long-lived, nonequilibrium quasiparticle population per-
sists in the superconductor [1-7]. The so-called quasipar-
ticle poisoning [8], whereby an unwanted quasiparticle is
trapped in a bound state, is an important factor harming the
ideal operation of superconducting devices [9]. Unwanted
quasiparticles also forbid tempting perspectives to use
Majorana states in superconductors for topologically pro-
tected quantum computing [10-12]. The poisoning rates
have been quantified [13—17], and much experimental work
is directed on protection from poisoning, with important
advances in this direction [18-22]. The nonequilibrium
quasiparticles are produced by some nonequilibrium
agent, which is most likely related to the absorption of
electromagnetic irradiation from the high-temperature
environment [23] and/or electromagnetic fields applied
to the setup in the course of its measurement and operation.
Surprisingly, the efforts to reduce the intensity of this
nonequilibrium agent are not entirely satisfying: the experi-
ments give a substantial residual quasiparticle concentra-
tion, even if all efforts are performed [24,25].

In this Letter, we make a step toward the solution of
this long-standing puzzle that impedes the successful
implementation of superconducting quantum information
processors. We investigate the peculiar dynamics of the
annihilation of quasiparticles localized at the spatial fluc-
tuations of the gap edge. Such fluctuations exist in all
superconductors owing to inevitable disorder. Importantly,
we find that the average distance between the quasiparticles
depends only logarithmically on the intensity of the non-
equilibrium agent, which is a consequence of the expo-
nential dependence of the annihilation rate on the distance
between two quasiparticles. It results in the quasiparticle
concentration
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valid at small A < '/ [A more accurate estimate for r is
given by Eq. (9)]. Here, r. is the relevant radius of the
localized quasiparticle state to be estimated in detail below:
for practical circumstances, it exceeds the superconducting
coherence length &, by not more than an order of magnitude.
Furthermore, A is the rate of nonequilibrium generation of
quasiparticles per unit volume, and I is a material constant
characterizing the inelastic quasiparticle relaxation due to
electron-phonon interaction. The packing coefficient C, ~
0.605 £0.008 can be derived from a simple bursting
bubbles model outlined below. Equation (1) predicts a
substantial concentration of quasiparticles, as well as the
inefficiency of efforts to reduce it by shielding the device,
consistent with the experimental observations. More work is
needed to quantitatively describe the data.

Let us outline the derivation of the above relations.
The relevant quasiparticles have energies close to the gap
edge, and they annihilate by emitting a phonon with energy
~2A. Assuming the “dirty” limit £ << vp/A, where vy is
the Fermi velocity, and the phonon wavelength not exceed-
ing the mean free path #, we derive a remarkably simple
relation for the annihilation rate of two quasiparticles [26]

=T / drp, () (x). 2)

Here, p;,(r) are the normalized probability densities to
find the quasiparticles 1,2 at position r. Furthermore, we
find [26] T = 24y(A)/(vyA), where v, is the normal-metal
density of states and y(A) is the normal-metal electron-
phonon relaxation rate at energy A. For aluminum, this
yields T =40 s~! ym®. Equation (2) is valid for localized
as well as for delocalized states.

© 2016 American Physical Society
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For large enough quasiparticle concentrations (in par-
ticular, for delocalized states), one can neglect the corre-
lations in their positions. In that case, a simple mean-field
calculation [30] shows that the balance between generation
of nonequilibrium quasiparticles and their annihilation
A =T¢c? results in the nonequilibrium concentration
c = (A/T)Y2. In this regime, a generation rate A ~ 4 x
10° s7! yum~3 would thus result in ¢ ~ 10 gm~3. However,
the annihilation itself reduces the probability for quasipar-
ticles to be close to each other. Therefore, it boosts the
nonequilibrium concentration. This effect is most pro-
nounced if the quasiparticles are in localized states and
do not move.

The description of the quasiparticle bound states is
provided in Ref. [31] and has been recently revisited
[32] in the context of strongly disordered superconductors.
The main results can be summarized as follows. The
short-range fluctuations of the pairing potential shift the
gap edge E, = A —¢,, by ¢, < A, and smooth the density
of delocalized states on the same scale ¢,. The long-range
fluctuations of the pairing potential generate a tail of
localized states at energies E < E,. As the typical extent
of these localized states is much larger than the correlation
length of the pairing potential fluctuations, the latter can be
regarded as point correlated, with the two-point correlation
function ((A(r)A(r'))) = (6A)%5(r —r’). The intensity of
the fluctuations is conveniently characterized by a dimen-
sionless parameter F = a,(5A)%/(A%E)), where a;=
0.045 [33], & = +/hD/ A is the diffusive coherence length,
and D is the diffusion constant in the normal metal. For a
typical localized state with energy E < E,, the energy
distance from the edge ¢ = E, — E is of the order of the
typical fluctuation A/L%?(¢), on the length scale L(¢)
of this state. The length scale itself depends on energy,
L(e) = &[2A/(3€)]'/4. From this, one derives the energy
scale ey = F*SA of the exponential tail and the corre-
sponding length scale L; = L(ey) =~ 0.90£,/F'/. Strong
disorder would resultin &7, £, ~ A. However, it is typically
not the case in standard superconductors for which
e e, <A At g7 <e< gy, the density of states
reaches an exponential asymptotics

v(e) = vr(e/er)”’® expl~(e/er)], (3)

where v = ayvgy/erA/el and a; =0.79 [33], and the
most probable shape of the localized state is given by
(r/L(¢))

PLo(r) = W

sinh x

with  f(x) = (4)

" xcosh3x’

Let us consider a quasiparticle generated by a non-
equilibrium agent. Typically, its energy is much larger than
A. However, it loses its energy quickly due to low-energy

electron-phonon interactions before annihilating with
another quasiparticle. At some stage, the quasiparticle
reaches the gap edge and becomes localized at € = 7. It
is important for us to understand that its relaxation does not
stop here. One can estimate the number of localized states
that overlap with a given state and have a lower energy as

N(e) =L3(e) / * deu(el) = Ny (e/er) V3 expl—(e/er) .
(5)

with N = (4/5)vrepL3.. This number is likely to be big at
e = ey, where N(e7) ~ Ny ~ gv/e3A /e, > 1 [34]. Here,
g= m/OA(fg is the number of Cooper pairs in a cube of size
&y. Thus, the quasiparticle will relax further from these
states, and the relaxation stops only at a rather definite
energy e, [36] defined by N(e,) =1, e, ~ ep(In Ny )*>.
Therefore, we come to a rather unexpected conclusion: the
quasiparticles end up their random relaxation process at a
rather definite radius r. = L(e.)/2, that is,

re = 0458 (er/A) ™4 (InNy) 715, (6)

as illustrated in Fig. 1. Taking standard parameters for Al
[37], we expect that scale to be only slightly larger than
half the coherence length &, ~ 100 nm. For instance, taking
er/A =102 and e;/A = 107*, we find r, = &, and 3&,,
respectively.

Using these results, we can formulate a model of
stochastic quasiparticle dynamics [38]. The quasiparticles
appear in random points with the rate A, keep their
positions, and annihilate pairwise with a rate I'(R) that
is a function of their mutual distance R. The rate is obtained
from Egs. (2) and (4). Namely,

I(R) =T / drpuo(t)pro(r + R) = Trdg(R/r).  (7)

where

Quasiparticles

FIG. 1. The density of states and single quasiparticle relaxation
in a superconductor. (a) The density of states is BCS like, except
near the gap edge. (b) Near the gap edge, the singularity is
rounded at an energy scale &, and a tail of localized states within
the gap develops at an energy scale 7. (c) The relaxation of a
single quasiparticle stops at an energy scale €. > &, where the
localized states with lower energy no longer overlap.
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FIG. 2. Tllustration of the bursting bubbles model. Each particle
is represented by a bubble with diameter r (dark gray circles). If a
new particle appears centered in the gray area with diameter 2r
(case a, central panel), it immediately annihilates with another
particle (left panel). If the particle appears in the white area (case
b), it is simply added to the system (right panel).

g(2x) = (16zsinh*x)~!(3 + 2sinh?x — 3 cosh x sinh x/x).
In particular, g(x)=1/(60z) at x <1 and g(x)=
1/(27) exp[—x] at x> 1.

The behavior of the model is governed by a single
dimensionless parameter ArS/I". At large values of this
parameter, the typical distance between quasiparticles r is
much smaller than r., and correlations are negligible as
['(r) ~TrZ3 is constant on that length scale. In this limit,
we recover the mean-field result given above ¢ = (A/T")!/2,
which is independent of r. and does not rely on tail
states. At small values of the parameter Ar8/T, r is much
larger than r.. In this limit, it can be estimated from the
competition of the annihilation rate ~I'r;3 exp[—r/r.] and
the generation rate within the typical volume of a quasi-
particle ~Ar3. Thus, r = r,In[['/(Ar%)].

Because of the exponential dependence of the annihila-
tion rate on the typical distance, one of the rates prevails
over the other completely if the distance is changed by
or~r. < r. This allows one to introduce a simplified
model of bursting bubbles, see Fig. 2. Regardless the details
of T'(R), we can consider the quasiparticles as spherical
bubbles of radius /2. If two bubbles overlap, the particles

annihilate. This model is easily simulated: we add bubbles
to the system at random points. If the added bubble does not
overlap with the existing ones, the number of quasiparticles
is increased by 1. If there is an overlap, two bubbles burst,
decreasing the number by 1. Equilibrium is achieved when
these two outcomes happen with equal probabilities. This is
the case when the volume covered by spheres of radius r
centered around the quasiparticles equals half of the whole
volume. If we rather naively assume that the spheres do not
overlap, the volume covered is 4773 /3 per quasiparticle and
the concentration is ¢ = C,(4xr*/3)™" with C, = 0.5. In
reality, some spheres overlap, so the simulation yields a
slightly bigger packing coefficient, see Eq. (1).

To improve upon the logarithmic estimation of r, we
performed simulations of the full model taking into account
the details of I'(R) [26]. The stationary concentrations are
shown in Fig. 3.

In the limit ¥ = r/r. > 1, the dynamics of the quasi-
particle concentration is given by an evolution equation
¢(t) = A = Tge(r), with the effective asymptotic relaxa-
tion rate Iy (r) =4/ (3C,)bI'r 37 e™". Expressing c(r) =
C,/[4n(7r.)?/3] and introducing dimensionless time in
units of 9C,r}/(4xT"), this equation simplifies to

= (Ar/D)F* — bt e, (8)

The parameters b and f can be obtained by fitting the
simulation at small values of ArS/I" with the stationary
solution of Eq. (8) determined from

Ar8T = bi#3e™" (9)

that improves the accuracy of Eq. (1). We find f = 0.41 and
b = 0.008 [26]. At larger values of ArS/T", corresponding
to 7 < 3.0, the dependence of the concentration crosses
over to the square-root law discussed above.

10 B B B B Bk B B B B B T B
........... y =20nm = -=-7r =50nm .---""-""'" -~
c c T e - -
......... - i

—-= r =100 nm r =200nm| e _-"
10° y el -7 . E
10" 107 10™ 10™ 107 107 - 10° 10 10™ 10" 10°
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FIG. 3.

Concentration ¢ as a function of the generation rate A for quasiparticles annihilating pairwise with the rate given by Eq. (7)

with T = 40s~'um?® and several values of the quasiparticle localization radius r.. The straight line shows the mean-field estimate

¢ = +/A/T" for comparison.
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If the nonequilibrium agent ceases to work A = 0, the
quasiparticle concentration relaxes very slowly. In particu-
lar, Eq. (8) yields the estimate 7(¢) o In(['#/r2). Beyond the
logarithmic approximation, the results of the simulation
[26] are consistent with those obtained from the stationary
solution.

Using realistic values for the generation rate, we thus can
give accurate estimates of the quasiparticle concentration.
In particular, cosmic radiation at the sea level is dominated
by muons with energy in the GeV range and a flux of
~1 min~! ¢cm~2 [39]. The stopping power of GeV muons in
aluminum is ~1 MeVcm™' [39]. Assuming an efficient
conversion of the deposited energy into quasiparticles [40],
we thus find a generation rate A~ 107%s™!um™
(~10 day~! um=3). At r, ~ 0.1 um, it yields a quasiparticle
concentration ¢ ~0.01 yum™3, which is close to the one
measured in two recent experiments [6,24], where best efforts
were performed in screening electromagnetic radiation.

In the above considerations, we have assumed that the
annihilation rate does not depend on the spin state of two
quasiparticles. This is valid in two cases: (i) the localization
radius r, exceeds the spin-orbit relaxation length, which
may be relevant for heavy-atom metals, and (ii) the spin
coherence time of an isolated quasiparticle is shorter than
the (exponentially long) time scale I'; for annihilation. In
the opposite regimes, the quasiparticles could only anni-
hilate if in a spin-singlet state.

To account for the spin structure is a challenging task owing
to complex quantum entanglement of the spins of the over-
lapping quasiparticles that survive the annihilation. As a
simplifying description, we considered an extension of the
bursting bubbles model in which each bubble is assigned a
classical spin degree of freedom. Whenever two bubbles with
opposite spins overlap, they burst. The result of our simulation
[26] is an enhanced C,~2.19 +0.05. When spin-flip
processes are added, the concentration decreases down to
C, =~ 0.61 upon increasing the spin-flip rate, in agreement
with the above considerations for the spinless case.

The validity of our estimation is limited by a variety of
complex factors that can influence the nonequilibrium
quasiparticle dynamics in superconductors. In particular,
we ignored the possible formation of deep quasiparticle
traps at the surface of the superconductor and quasiparticle
accumulation in these traps. We also assumed immobile
quasiparticles, which is valid in the limit of a vanishing
temperature. At finite temperature, the quasiparticles could
diffuse owing to inelastic transitions, even if they reside in
localized states. This would favor their annihilation, as they
would come closer to each other. As a result, the estimate
for the concentration given in this Letter is rather an upper
bound at a given generation rate. The evaluation of the
diffusion of localized quasiparticles, as well as its complex
temperature dependence, would be a subject of interesting
research that is needed to understand the details of their
dynamics.

In conclusion, our work provides a crucial element in the
understanding of the excess quasiparticles in superconduct-
ing devices. The quasiparticles trapped at fluctuations of
the gap edge certainly contribute to low-frequency absorp-
tion in the bulk. Furthermore, the possibility of their
activated motion in the vicinity of a Josephson junction
is expected to provide a deleterious effect on the coherence
properties of a superconducting qubit by tunneling [41].
Thus, taking into account the physical phenomenon dis-
cussed in this work is essential for a correct interpretation
of several experiments mentioned above, for planning
new ones, and ultimately for the solution to quasiparticle
poisoning.

We thank M. Devoret, J. Pekola, and F. Portier for useful
discussions. This work is supported by the Nanosciences
Foundation in Grenoble, in the frame of its Chair of
Excellence Program, and by the ANR through Grant
No. ANR-12-BS04-0016-03.
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