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Mathematical modelling of expanded bed
adsorption – a perspective on in silico process
design
Victor Koppejan,a Guilherme Ferreira,b Dong-Qiang Linc and Marcel
Ottensa

Abstract

Expanded bed adsorption (EBA) emerged in the early 1990s in an attempt to integrate the clarification, capture and initial
product concentration/purification process. Several mathematical models have been put forward to describe its operation.
However, none of the models developed specifically for EBA allows simultaneous prediction of bed hydrodynamics, mass
transfer/adsorption and (unwanted) interactions and fouling. This currently limits the development and early optimization
of EBA-based separation processes. In multiphase reactor engineering, the use of multiphase computational fluid dynamics
has been shown to improve fundamental understanding of fluidized beds. To advance EBA technology, a combination of
particle, equipment and process scale models should be used. By employing a cascade of multiscale simulations, the various
challenges EBA currently faces can be addressed. This allows for optimal design and selection of equipment, materials and
process conditions, and reduces risks and development times of downstream processes involving EBA.
© 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.
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INTRODUCTION
The downstream processing (DSP) of biological products typically
involves a sequence of unit operations to remove biomass, capture
the target, purify and finally formulate it.1 The combined impact of
multiple unit operations and incomplete recoveries at each step
translates to reduced overall yields and makes DSP of bioprod-
ucts very costly.2,3 Reducing the number of steps in DSP would
therefore be beneficial to the overall process economics. In EBA
the bed of adsorbent is mildly fluidized (expanded) and classified
by applying an upward liquid flow (shown schematically in Fig. 1).
This allows cells and debris to move through the bed relatively
unhindered while the desired product is captured by means of
adsorption. The technology of EBA is attractive because it fuses
three unit operations (clarification, capture, concentration and par-
tial purification) into one, promising improved overall yield.4

EBA came to life in the early 1990s to combine and replace clar-
ification, capture and initial product concentration/purification.5

Although there are examples of the use of EBA for large-scale
separations,4,6,7 the technology has not been widely adopted in
industry.8 To successfully apply EBA in an industrial setting, operat-
ing conditions should be optimized early in the process develop-
ment. For traditional packed bed chromatography (PBC), the use of
mechanistic models has improved the design and optimization of
both equipment and processes.8,9 Simulation of EBA has the added
difficulty of a non-stationary solid phase and the application of
an unprocessed fermentation broth or cell suspension. Therefore,
mechanistic modelling of EBA systems has not reached the same

level of maturity as in PBC. In many industrial applications, the chal-
lenge still remains in dealing with unwanted interactions between
the resin and broth components such as biomass, lipids or DNA.
These interactions result in resin fouling and particle agglomera-
tion, which in turn may cause collapse of the bed.10 Improvements
in controlling biomass adhesion have been made by modifying
the particle surface11–13 and the fluid phase pH or ionic strength.14

So far, these techniques have not yet been included or combined
with available predictive models for bed hydrodynamics. The aim
of this paper is to provide an overview of currently available mech-
anistic models for EBA systems, extend this with a summary of
models for liquid-solid fluidized beds (LSFBs) and propose how
these models can be extended to allow for in silico optimization
of EBA systems. This paper is organized as follows: (i) mathemat-
ical models describing EBA behaviour with specific focus on DSP
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in bioprocessing; (ii) stability analysis and multiphase computa-
tional fluid dynamics (CFD) for LFSBs; (iii) a case study which will
demonstrate how CFD can be used to evaluate designs of fluid
distributors for EBA columns; (iv) current challenges and potential
improvements for modelling and simulation of EBA systems; and
(v) summary and conclusions.

REVIEW OF MATHEMATICAL MODELS
DESCRIBING EBA BEHAVIOUR
Modelling and simulation of PBC has been shown highly beneficial
for equipment and process development. In addition to the trans-
fer and adsorption phenomena, modelling EBA presents addi-
tional challenges arising from axial distribution of particle prop-
erties (size, density, volume fraction) and unwanted interactions
between adsorbent particles and biomass. Throughout the his-
tory of EBA a number of mathematical models has been proposed
for describing EBA intended for application in bio-separation pro-
cesses. These models, categorized as ideal steady state, ideal
dynamic and non-ideal bed expansion, are reviewed in the coming
sections.

Ideal steady state bed expansion
For packed bed chromatography, the column efficiency can
be described by the ‘height equivalent to a theoretical plate’
(HETP) model, which is based on the ‘tanks in series’ model by
Levenspiel.15 The HETP model assumes that all hydrodynamic
effects in the column are derived from the evolution of an inert
tracer pulse, described by a Gaussian distribution function. The
number of tanks in series, or plate number (N), can be calcu-
lated as the squared ratio of the retention time (tm) and the
peak variance (𝜎), N = (tm/𝜎)2. The height of a single plate can
then be calculated as HETP = L/N, where L is the column length.
Several authors16–20 have extended this model to EBA columns.
The bed expansion and voidage was approximated by assum-
ing a constant particle size, and applying the Richardson-Zaki
Equation21 to account for the hindered settling velocity. Pällson
and co-workers16 and Theodossiou et al.18 report that a combina-
tion of the Richardson-Zaki and HETP models provides misleading
information about the plate number and the axial dispersion in
the column. To allow comparison of different resins and columns,
Pällson and co-workers16 proposed to base the plate number
and vessel dispersion number on the settled bed height, but did
not include a particle size distribution.17 In addition, Hubbuch
et al.22 pointed out that the system’s piping, the flow distributor
and column outlet design all contribute to the vessel dispersion
number and the HETP. This further illustrates that using only the
HETP and dispersion values offers limited insight into the physical
behaviour of expanded beds.

The axial-dispersion model, widely used to describe PBC
performance,23,24 has been employed by several authors to
describe EBA columns, whose work will be summarized in this
section. The simplest of PBC models assumes a constant particle
size and void fraction along the bed height, after which the gov-
erning transport equation ((1)) becomes the same as that for a
PBC model25

𝜕c
𝜕t

+
uf

𝜖f

𝜕c
𝜕x

= Df
𝜕

2c
𝜕x2

− S (1)

Here, c is the solute concentration, uf is the liquid velocity, 𝜖f

is the liquid fraction and S is the source/sink term for transport
of solute to the particle phase (as the focus is on hydrodynamics,
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Figure 1. Schematic overview of bed expansion. A settled bed is expanded
by applying an upwards fluid flow. Once the bed is fully expanded and
has reached an equilibrium state, it develops a gradient in particle size and
density, which reduces particle back mixing.

intra-particle terms will not be treated in detail). A number of
authors describe the non-stationary particle phase by adding an
extra equation for the solid phase concentration:26–28

𝜖s
𝜕q′

𝜕t
= Ds

𝜕
2q′

𝜕z2
+ S (2)

where 𝜖s is the solids fraction, q′ is the average solute concentra-
tion in the solid phase and Ds is the solids dispersion coefficient. Ds

is either determined experimentally26,29–34 or is calculated27,28 via
van der Meer’s correlation:35

Ds = 0.04u1.8
f (3)

To account for varying particle size and density, algebraic expres-
sions have been proposed, such as those by Tong et al.27 (particle
size over bed height), de Araújo Padilha and co-workers36 (parti-
cle size and bed voidage) and Kaczmarski and Bellot37 (particle
size and density over bed height). Wistrand and Lacki38 and Yun
and colleagues39,40 used an approach developed by Al-Dibouni
and Garside41 to model the combined effect of particle size and
local hydrodynamics on the performance of an EBA column. Based
on their simulations of a Streamline resin (GE Healthcare, Upp-
sala, SE) with different size and distributions, Wistrand and Lacki38

concluded that intra-particle diffusion, liquid phase linear velocity
and viscosity had important effects on column utilization, whereas
axial dispersion and solids diffusion exerted negligible effects. Fen-
netau et al.42 evaluated the effect of column diameter on the radial
flow profile in 1 and 5 cm diameter columns. Their 2D simulations
showed that the axial dispersion increases with column diameter
due to the radial flow profile. However, their model assumed a con-
stant velocity profile over the length of the column and did not
take into account the effects of particle movement.

Various authors have put forward models that divide the column
in several sections (not to be confused with spatial discretization
in the numerical solution of partial differential equations (PDEs)).
Typically these models are validated using multiple sampling
points along the column height. Li et al.43 developed a three-zone
model based on Wright and Glasser’s axial dispersion model.26

Extensive research was performed by Yun and Lin,39,40,44–46 who
used a multizone model with parameters based on regression of

wileyonlinelibrary.com/jctb © 2018 The Authors. J Chem Technol Biotechnol (2018)
Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
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residence time distribution data. Lin et al.46 showed that for resins
with a wide size and density distribution, local hydrodynamics and
HETP change considerably over the bed height.47

Ideal, dynamic bed expansion
In the previous sections bed expansion was assumed to remain
constant over time, and not influenced by changes in liquid
velocity or viscosity. In reality these can have a considerable
effect on the bed expansion. Thelen and Ramirez47–49 developed a
rigorous model to allow for model-based monitoring and control
of expanded beds.48–50 Based on the conservation equations for
two-phase flow combined with the Richardson-Zaki drag force
expression they derived (4) for the void fraction.

𝜕𝜖s

𝜕t
= − 𝜕

𝜕x

[
𝜖suf − 𝜖f Ds

𝜕𝜖s

𝜕x

]
(4)

This equation can be applied to two extremes, zero dispersion
and infinite dispersion. In the zero dispersion case, any changes
at the inlet of the column (such as differences in liquid velocity,

Box insert 1. Technological developments of EBA resins and flow distributors

The first EBA systems employed adsorbent particles from conventional packed bed systems. The low density of these particles
(1.2–1.3 g cm-3) limited the fluid velocity that could be used (typically 200–300 cm h-1).50 To overcome the limitations this caused,
particles with a densified core were developed, allowing linear velocities of up to 900 cm h-1. Early densified resins incorporated glass
or silica, while later metals such as steel or tungsten carbide were used.51 Several researchers have attempted to minimize unwanted
interactions by modifying the adsorbent particle backbone. Examples include adding polymers52 or employing low temperature
plasmas.13 While these modifications were found promising in academic research, they were not widely adopted by commercial resin
manufacturers. An extensive overview of commercially available and custom made resins can be found in Li et al.51

Traditional Densified core Surface Modification

Figure I. Developments in EBA resin particle design.

As is typical for packed bed columns, early EBA columns employed a perforated plate or mesh as flow distributor, sometimes in
combinations with large, inert particles. Both designs were found to be very susceptible to fouling and difficult to clean, limiting
their potential for use in the biopharma industry.53 Several designs were put forward that employed localized stirring in the bottom
of the column.54,55 One design, which used rotating/oscillating arms from which the fluid emerged had some commercial success,56

but suffered from the added mechanical complexity. Recently, a distributor design was reported that employed a crossflow mesh
distributor.57 The inventors claim that the shear stress at the mesh surface prevents fouling, but no test results have been published
to support this claim.

Perforated Plate/

Mesh

Movable Arms Crossflow Mesh

Figure II. Developments in flow distributor design for EBA columns.

viscosity or density) will be advected with the liquid phase velocity
and move along the column length in a sharp front, until they
reach the top of the bed. In the infinite dispersion case, the particle
phase is considered perfectly mixed and only the bed height reacts
to changes at the inlet.

The two cases were validated using a lab scale EBA system
with a Streamline resin (GE Healthcare, Uppsala, SE), which was
subjected to step changes of inlet velocity and fluid viscosity (for
bed expansion as well as bed contraction). The authors found
the infinite dispersion model could successfully predict expansion
and contraction profiles. However, as the particle size and density
are averaged over the entire bed, this model would not allow
for optimization of the particle size and density distributions.
Nonetheless it appears the only attempt to describe bed height
dynamics using multiphase fluid dynamics.

Non-ideal bed expansion
A major challenge in the operation of EBA in industry comes from
the unwanted interaction of components such as biomass, DNA
and lipids with the adsorbent particles.59 To investigate the effect

J Chem Technol Biotechnol (2018) © 2018 The Authors. wileyonlinelibrary.com/jctb
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Figure 2. Schematic representation of the extended PDE model.

of biomass on bed stability, the Villermaux and van Swaaij (VvS)
extended PDE model58 (originally developed to describe non-ideal
flow patterns and stagnant zones in packed beds) has been used
for EBA columns.59–61

In this model the bed is divided into a perfectly classified
(dynamic) and an aggregated (stagnant) region, as shown in Fig. 2.
The transport of a solute in the dynamic and stagnant zone can
then be described by two PDEs:

𝜕cd

𝜕t
+ uf

𝜕cd

𝜕x
= Df

𝜕
2cd

𝜕x2
− kA′

Ad

(
cd − cs

)
(5)

𝜕cs

𝜕t
= kA′

As

(
cd − cs

)
(6)

Here, uf is the interstitial fluid velocity, Df is the fluid phase
dispersion coefficient, cd and cs are the tracer concentrations in
the dynamic and stagnant phase, k is the mass transfer coefficient
for transport between the dynamic and stagnant phase, A

′
is

the surface area between the phases and Ad and As are, respec-
tively, the cross-sectional areas of the dynamic and stagnant
phases perpendicular to the flow direction. Using this approach
Fernández-Lahore et al.59 have indicated that if more than 20% of
the bed becomes aggregated, the performance of the column is
seriously affected because preferential flow paths (channelling)
reduce the available surface area for adsorption. While this model
is currently the only one capable of providing information on
bed stability under more realistic process conditions, it does not
indicate where in the column agglomeration is happening, nor
what the local conditions were under which bed agglomeration
took place.

REVIEW OF MATHEMATICAL MODELS
FOR LIQUID–SOLID FLUIDIZED BEDS
Outside of the context of DSP in bioprocessing, an expanded
bed can be considered to be a classified, liquid–solid fluidized

bed. Liquid–solid fluidized beds can be found in many fields such
as biochemical, chemical, metallurgical and mineral processing
industries.62 In the previous section on EBA models the solid phase
has been described either by a 1D convection dispersion equation,
or by assuming a perfectly classified bed with an analytical expres-
sion for the particle size, density and void fraction. While both
approaches have been successfully used to describe early EBA sys-
tems, they require experimental data, for instance on the expan-
sion factor. Also, any non-ideal bed behaviour is described by
only a few empirical parameters. In fluidized bed research fluid
mechanics approaches are proven tools for predicting the com-
plex behaviours of both the continuous (fluid) and dispersed (par-
ticle) phases.63 The following section aims to review the modelling
techniques available in literature outside the field of EBA research
with special focus on methods for incorporating polydispersity.

Linear stability analysis
Early attempts to describe the stability of fluidized beds and the
transition from the homogeneous to heterogeneous flow regimes
were based on linear stability analysis (LSA) of a one-dimensional
set of mass and momentum equations. The concept of linear sta-
bility analysis is to superimpose infinitesimally small perturba-
tions onto a variable at steady state and evaluate the transient
behaviour resulting from it. Joshi et al.64 have applied the tech-
nique to a wide selection of multiphase systems, including LSFBs.
An attractive side of this form of LSA is that it is based on the
structure of the underlying equations, rather than its solution.
This could prove beneficial to predict the bed stability of EBA sys-
tems subjected to challenging conditions. The majority of the LSA
models have all assumed a constant particle size. In the field of
sedimentation, which is governed by the same physics as a LSFB
(only here the dispersed phase moves through a stagnant liquid
phase), the linear stability model has been extended to include
polydispersity.65 The extension of these approaches to fluidized
systems could provide a good starting point to predict the stability
of EBA systems.

Multiphase computational fluid dynamics
The description of fluidization using multiphase fluid dynamics
was pioneered by Anderson and Jackson.66 Starting from the
Navier–Stokes equations and the equations describing the motion
of a single particle, a set of continuum equations for the conserva-
tion of mass, momentum and energy of both the fluid and solid
phase was derived (Box insert 2). To describe the behaviour of the
solid phase, several methodologies exist. The most extensive and
detailed options would be to resolve the flow and transport phe-
nomena around each and every particle. This approach is known as
direct numerical or fully resolved simulation. Due to the high grid
requirements (on average around 1000 grid points per particle are
required) this approach is currently limited to several thousands of
particles.67 Another option is to set up and solve the flow variables
using the volume averaged Navier–Stokes equations (VANS). The
following section will evaluate the most widely used approaches
and show how they can be used to model polydisperse systems.

Eulerian computational fluid dynamics models
In the so-called Euler–Euler (or two-fluid) method for multiphase
flow both the continuous and the dispersed phase are described
using continuum equations. Both phases are considered to occupy
the same volume space, each with their own volume fraction
(Box insert 3). The momentum equations are coupled through

wileyonlinelibrary.com/jctb © 2018 The Authors. J Chem Technol Biotechnol (2018)
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Box insert 2. Solving computational fluid dynamics problems

Computational fluid dynamics (CFD) consists of solving the transport equations for the conservation of mass, momentum and
energy using numerical methods. While the specific implementation of the numerical methods may differ, all of them follow a similar
sequence of steps, which is shown schematically in the figure below.

mass / momentum /

energy balances
discretization Post-processing

Solving the

discretized system

Figure III. Schematic overview of the sequence of steps in solving CFD problems.

Simulating fluid flow starts by setting up the partial differential equations (PDEs) for the conservation of mass, momentum and energy
over a domain. These system are typically coupled (variables are present in multiple equations) and can be stiff in nature (exhibit
dynamics of multiple timescales). To create a solvable system a set of boundary conditions is required plus (or transient simulations)
an initial condition. Discretization involves dividing the spatial domain up in smaller elements or cells (also referred to as a mesh). This
converts the PDEs into a system of coupled ordinary differential equations (ODEs). For each time step this results in a matrix equation
which has to be solved numerically. The (sparse) matrices emerging from the discretization procedure have to be solved (repeatedly
for transient simulations). For small 1D/2D problems this can be done using a so-called direct solver (which uses a form of Gaussian
elimination). This method requires a large amount of computer memory so for larger (3D) problems iterative linear solvers are required.
During the simulation the variables that are solved for are saved to disk. The data can then be post-processed to yields plots and figures
of flow fields, etc.

the volume fraction and an inter-phase coupling force. The main
driver for the development of these models has been the simu-
lation of gas–solid fluidized beds,63 but a number of authors has
employed this method for LSFBs. An extensive overview can be
found in Lettieri and Mazzei.68 One of the challenges when using a
continuum description of the dispersed phase is the requirement
for closure relationships for the particle pressure and viscosity. For
a system having a single particle size this can be achieved using
the kinetic theory for granular flow, proposed by Gidaspow.69

In an attempt to investigate the effects of polydispersity several
authors have modelled bi-disperse systems using two Eulerian
solid phase descriptions for the solid phases.70,71 As mentioned by
Passalacqua and Fox72 this ‘multifluid’ approach can be extended
to any number of phases. However, this comes at the cost of an
extra set of mass and momentum equations for each solid phase.
For 3D systems with one fluid and two solid phases this already
results in a total of nine momentum equations (three sets of 3D
equations). Furthermore, the strong inter-phase coupling and par-
ticle stresses at higher particle fractions lead to a very stiff system
of equations, which is difficult to solve with the algorithms found
in most CFD software packages. To overcome this issue, the Eule-
rian model has been coupled to population balance solvers for the
dispersed phase.73 This has proven successful for liquid–liquid,74

gas–liquid75 and gas–solid flows.76 To the best of our knowledge
this method has not yet been successfully extended or validated
for dense, polydisperse solid–liquid suspensions.

Lagrangian description of dispersed phase
In the Euler–Lagrange approach the continuous phase is still
described by continuum mass, momentum and energy equations,
while the dispersed phase is considered as a set of discrete par-
ticles (box insert 3). This discrete treatment of the solid phase
removes the difficulties with polydispersity found in continuum

models. The motion of each particle is calculated using Newton’s
second law which states the acceleration of an object is equal to
the sum of the forces acting on it, divided by its mass. Several
‘flavours’ of the Lagrangian formulation exist, which differ in the
way the inter-particle collisions are modelled. Two widely used
methods are CFD combined with the discrete element method
(DEM) and the multiphase particle-in-cell method (MP-PIC). In
DEM, particle interactions are modelled by considering the parti-
cles to be small, soft spheres (box insert 3). The method was orig-
inally proposed by Cundall and Strack77 for granular assemblies,
and later applied to fluidized beds by Tsuji et al.78 An extensive
review of the CFD-DEM can be found in Zhou et al.79 The CFD-DEM
method has been used by Peng et al.80 to investigate the effect of
segregation and solid dispersion in a bi-disperse LSFB. Their sim-
ulations were found to be in good agreement with experimental
data. Since the local properties of both the liquid flow and particle
motion were available from the simulation, the effects of void frac-
tion, liquid velocity and particle properties on the solids dispersion
coefficient could be evaluated in detail.

The multiphase particle-in-cell method
The MP-PIC method can be thought of as a hybrid method that
aims to combine the Lagrangian description of the dispersed
phase with the computational efficiency of a two-fluid solver. The
main difference between the DEM method described in the previ-
ous section and MP-PIC is that the latter does not resolve collisions
between particles. Particle–particle collisions are handled using a
stochastic model based on a ‘particle pressure field’ and the fluid
and solids relaxation timescale models.81 All currently used MP-PIC
models rely on grouping particles in computational parcels. The
use of a stochastic collision model requires the amount of particles
to be high enough for statistical averaging. As this can mean that
hundreds of particles have to be grouped together, this method is

J Chem Technol Biotechnol (2018) © 2018 The Authors. wileyonlinelibrary.com/jctb
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Box insert 3. Methods for solving multiphase CFD problems

Eulerian–Lagrangian
To compute fluid flow, mass and heat transfer in multiphase systems a variety of methods can be employed. The (conceptually) least
complex approach is known as fully resolved CFD-DEM or direct numerical simulation (DNS). Here, the mesh is smaller than the particle
diameter and all the flow details around the particles are computed (Fig. IV). The particle surface is seen as a solid boundary for the
fluid and particle movement is computed by evaluating the forces in it. A large number of grid cells are required. To compute all the
flow paths, typically in the order of 1000–10 000 cells per particle. This limits the DNS approach to small systems of around 1000–10
000 cells simulated over time ranges in the order of seconds.

Eulerian

Figure IV. Examples of meshes used
in resolved (left) and unresolved (right)
Eulerian–Lagrangian simulations.

Figure V. Transformation of discrete
particles to a continuum description
using void fractions.

Figure VI. Schematic overview of
the spring/dash-pot slider model.

The unresolved CFD-DEM method uses bigger grid cells than the DNS method (Fig. IV). Typically several particle diameters are used as
cell size. The governing PDEs are extended to include the particle volume fraction and source terms for exchange of mass, momentum
and energy. These are then interpolated between the grid cells and the particles. Since not all details of the local flow field are
computed, semi-empirical correlations are required to describe transfer at the fluid/particle interface. This method allows for larger
systems of over a million particles to be simulated over time range in the order of minutes. The predictive quality of the simulations
does heavily depend on the used correlations for particles/fluid forces, which is currently an active field of research.

In the Eulerian description (also referred to as two-fluid or multi-fluid), the dispersed phase is not seen as discrete particles. Instead
both phases are seen as inter-penetrating continua, represented by a volume fraction (shown as 𝜀fluid and 𝜀particle in Fig. V.

Since all phases are now represented by PDEs, the computational requirements of this model are dictated by the number of grid
cells (i.e. the desired resolution of the simulation). This allows large-scale industrial equipment to be simulated over long timescales.
As with the CFD-DEM method, semi-empirical correlations are required to describe interaction and exchange between the phases.

For a mono-dispersed system, the number of particles and the surface area can be directly calculated from the volume fraction. This
cannot be done for poly-dispersed systems. This limits the use of this method in situations that display clear gradients or segregation
in particle sizes.

Discrete element method
In the discrete element method (DEM) solid particles are tracked using Newton’s laws of motion (acceleration= sum of forces divided
by the mass). The tracking of individual particles naturally allows for individual particle properties such as size and density. To model
the collision between solid particles, the particles are treated as soft spheres. When two particles make contact, the collision forces use
a combination of a spring, dashpot and slider. The combination of the spring stiffness, the viscous dampening of the dash-pot and the
friction value of the slider can be set to match the material properties of the particles (Fig. VI). However, the small time steps required
to accurately resolve the make this method very computationally expensive.

not well suited for the prediction of local particle properties,
such as solids dispersion coefficients. Until recently the MP-PIC
model has been primarily validated in gas–solid systems. In LSFBs,
the coupling between the phases is stiffer, as the densities are
closer in value.82 A recent comparison of Lagrangian models
for LSFBs showed that the MP-PIC method showed only minor
computational speed-ups at the expense of considerable loss in
accuracy.83

CASE STUDY: OPTIMIZING THE DESIGN OF A
ROTATING FLUID DISTRIBUTOR USING CFD
For proper application of the incoming feed stream to an EBA col-
umn, various designs for fluid distributors have been put forward.
While differing in shape and mode of operation, the general aim

of these devices is to provide a homogenous liquid and pre-
vent/avoid fouling and clogging. As mentioned in box insert 1, EBA
columns were developed that employed fluid distributors consist-
ing of several radially oriented arms which rotate/oscillate at the
bottom of the column. The rationale behind this design was that
the distributor motion prevents any dead zones in the bottom of
the column, while still providing a fully cleanable flow path.54,55 86

Arpanaei et al.54 evaluated and compared this design for several
column diameters, liquid velocities and rotation/oscillation fre-
quencies. Based on experimental measurements of an inert tracer
the HETP and Bodenstein numbers were calculated. However, the
placement and orientation of the holes through which the liquid
exited the arms was not investigated.

To investigate this effect in more detail, a single phase CFD model
was constructed using Ansys Fluent 15 (Canonsburg, PA, USA). The
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Figure 3. Base case design with a hole on the tip and a hole on the bottom
of the distributor arm.

Figure 4. Improved distributor design with two backwards angled holes,
both located on the side of the distributor arm.

flow field (velocity and pressure) was computed using a steady
state solver. Using this flow field, the motion of an inert tracer
was simulated over the course of 60 s. The simulation domain
consisted of a 10 cm column, in which a distributor with four arms
was placed. Two distributor designs were compared, which are
shown in Figs 3 and 4. The base case design (based on patent and
literature data54,84) had two orifices, one pointing downwards and
one pointing towards the column wall. The improved design also
had two orifices, both angled 45o in the direction away from the
rotating direction of the distributor arm.

The meshes of the base case and the improved design consisted
of 701296 and 711590 elements, respectively. An unstructured
mesh was used which was refined near the distributor arm and
inlet orifices (this is shown for the base case in Fig. 5). Three fluid
velocities (300, 500, 750 cm h-1) and three rotation speeds (5, 10
and 15 rpm) were tested. The fluid properties used were those of
water (taken from the Fluent material database). For the tracer
studies acetone was used (taken from the Fluent material
database), with a mass fraction of 0.01. This mass fraction was
deemed low enough to assume a constant bulk density, thereby
making the tracer fraction a passive scalar.

The two tested distributor designs behaved similarly under
varying liquid velocities but showed different behaviour when
the rotation speed was varied. Visualizations of the flow fields
are shown in Figs 6 and 7. In both cases the general solid body
rotation caused by the distributor arms can be observed. In the
improved design a recirculation pattern can be observed at the
rear of the arm.

In Figs 8 and 9, snapshots of the tracer motion are shown
through contour plots. The centrifugal effects in the flow field,
caused by rotation of the arm are visible in the curved tracer
contours of the 10 and 15 rpm snapshots of the base case design.

The tracer plots in Fig. 9 indicate the recirculations, caused by the
interactions of the jets exiting the arm with the bulk rotation flow,

Figure 5. Bottom section of the mesh used for the base case distributor
design, sliced along the YZ plane, viewed from the negative x-axis.

Figure 6. Flow field for the base case distributor design (linear column
velocity: 500 cm h-1, rotation speed 5 rpm).

Figure 7. Flow field for the improved distributor design (linear column
velocity: 500 cm h-1, rotation speed 5 rpm).

reduce the centrifugal effects in the flow field. As a result, the tracer
contours have a ‘flatter’ horizontal profile, indicating a more plug
flow like flow regime in the column.

To allow for a quantitative comparison of two designs, the aver-
age and standard deviation of the tracer fractions were evalu-
ated at a horizontal plane at 2 cm height (just above the fluid
distributor). The results are shown in Figs 10 and 11, again for

J Chem Technol Biotechnol (2018) © 2018 The Authors. wileyonlinelibrary.com/jctb
Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.



www.soci.org V Koppejan et al.

Tracer fraction [ ]

Figure 8. Contour plots of tracer fraction after 60 s (normalized by incoming tracer fraction) for the base case design at different rotation velocities (all
with a linear column velocity of 500 cm h-1).

Tracer fraction [ ]

Figure 9. Contour plots of tracer fraction after 60 s (normalized by incoming tracer fraction) for the improved design at different rotation velocities (all
with a linear column velocity of 500 cm h-1).

Figure 10. Mean normalized tracer fractions after 60 s at a plane height
of 2 cm for different rotation speeds (all with a linear column velocity of
500 cm h-1).

Figure 11. Standard deviations of tracer fraction after 60 s at a plane height
of 2 cm for different rotation speeds (all with a linear column velocity of
500 cm h-1).
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Figure 12. Overview of a multi-scale simulation cascade for simulating EBA systems.

Table 1. Schematic overview of models presented in the paper

Model type Capabilities Drawbacks Most suitable application

HETP Quick solutions without the need
for numerical methods

Solid phase does not behave as a
series of tanks

Back of the envelope calculations
for column sizing

Convection–dispersion Species transport, mass transfer and
adsorption over multiple column
runs

Does not include bed dynamics Optimization of column size and
process conditions

Stokesian two-phase flow A priori prediction of bed height
dynamics

Constant particle size limits use for
solid phase optimization

Monitoring/control (predicting of
bed height after changes in fluid
flow rate of liquid phase
composition

Extended PDE (Villermaux
van Swaaij)

Indicates solid phase agglomeration
using online measurements

No information of location of
agglomeration, time delay in
information, no predictive
capabilities

Monitoring/control (detecting solid
phase agglomeration)

varying rotation speeds. It can be observed that for the improved
design at all rotation speeds, the tracer fraction shows a higher
average and lower standard deviation. This further confirms the
‘flatter’ profile indicated in Fig. 9. Furthermore, a rotational speed
of 10 rpm appears to be optimum (in terms of high average and
low standard deviation).

This illustrates how CFD not only provides a ‘visual aid’ for
design exploration, but also allows optimization of operating
conditions. Furthermore, knowledge on the dispersion in the dis-
tributor region of the column can improve how well simplified
models (such as those used in flow sheeting software) approxi-
mate industrial scale equipment. This allows engineers to optimize
operations at an early stage of the process design, reducing the
time and effort required to bring process designs to full scale oper-
ation.

CURRENT CHALLENGES AND POTENTIAL
IMPROVEMENTS
Since the introduction of EBA, a variety of model equations has
been proposed to describe its operation. A summary overview of
these models, is given in Table 1.

Currently no model is available that is able to address bed
expansion, mass transfer, adsorption, and unwanted interactions

that lead to bed agglomeration. To allow process and equipment
design for EBA systems, it is vital that the dynamic bed behaviour
can be predicted while operating under realistic conditions. This
means current models will have to be improved or extended. In
multiphase reactor engineering, the use of multiphase compu-
tational fluid dynamics has been widely adopted,85 which has
improved fundamental knowledge on the stability and optimal
operation of fluidized beds. CFD studies have already proven
successful in PBC and EBA flow distributor design.57,86 However,
one major drawback of the multiphase CFD methods (both CFD
and DEM) is the limited time that can be simulated. Even with state
of the art algorithms on modern supercomputers, the maximum
time that can be simulated is in the order of minutes.87 As a conse-
quence, simplified (reduced order) models will still be required to
describe a separation process consisting of multiple consecutive
equilibration, load, wash, elution, regeneration/cleaning steps.

For successful implementation of EBA for industrial separations,
the benefits of different simulation strategies should be combined.
This is shown schematically in Fig. 12. CFD-DEM simulations can
be used to obtain particle scale data such as particle dispersion-
coefficients, mass transfer coefficients and particle agglomeration
behaviour. The physics of agglomeration are similar to solid phase
flocculation.88 Previous work in this field, such as Thomas et al.89

or Bridgeman and co-workers90 could provide good starting
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points for modelling agglomeration in EBA columns. Due to the
Lagrangian description of the particle phase, particle size and den-
sity distributions can be easily incorporated. Using Eulerian-CFD
models column and distributor design can be optimized. This
improves the desired plug flow through the bed and ensures
no ‘dead zones’ interfere with cleanability. Finally, reduced order
models can be employed in flow sheeting (the use of computer
programs to solve the mass and energy balances of the process to
calculate equipment sizes and process economics). By comparing
optimized EBA with alternative unit operations, more quantified
decisions can be made at an early stage of process development.
This reduces risks and delays, and assures EBA is used in situations
where it’s potential can be fully employed.

SUMMARY AND CONCLUSIONS
To successfully apply EBA in an industrial setting, model based
optimization of resin, equipment and process conditions is
required. For this, a variety of models for EBA has been pro-
posed in the literature, but the combined simulation of column
geometry, dynamic bed expansion, mass transfer, adsorption and
agglomeration has not been addressed. In multiphase reactor
engineering, the use of multiphase computational fluid dynamics
has been shown to improve fundamental understanding fluidized
beds. To advance EBA technology, a combination of particle,
equipment and process scale models should be used. By employ-
ing a cascade of multiscale simulations, the various challenges EBA
currently faces can be addressed. This allows for optimal selection
of equipment, materials and process conditions and reduces the
risk and development times of DSP involving EBA.
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