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We present a fast and model-free 2D and 3D single-molecule localization algorithm that allows more
than 3 × 106 localizations per second to be calculated on a standard multi-core central processing
unit with localization accuracies in line with the most accurate algorithms currently available. Our
algorithm converts the region of interest around a point spread function to two phase vectors (phasors)
by calculating the first Fourier coefficients in both the x- and y-direction. The angles of these phasors
are used to localize the center of the single fluorescent emitter, and the ratio of the magnitudes of the
two phasors is a measure for astigmatism, which can be used to obtain depth information (z-direction).
Our approach can be used both as a stand-alone algorithm for maximizing localization speed and as
a first estimator for more time consuming iterative algorithms. © 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5005899

INTRODUCTION

Single-molecule localization microscopy (SMLM) has
become a widely used technique in the biomolecular sci-
ences since seminal contributions successfully demonstrated
a roughly ten-fold improvement in spatial resolution over con-
ventional fluorescence microscopy.1–3 The key concept of
SMLM is that the position of a single fluorescent emitter
can be determined with an accuracy exceeding the diffrac-
tion limit as long as the emission of different molecules is
sufficiently separated in time and space.4–6 To localize the
individual particles with sub-diffraction accuracy in two or
three dimensions, a number of approaches have been devel-
oped.7 Frequently employed localization algorithms involve
the use of two-dimensional Gaussian functions to fit the inten-
sity profile of individual emitters with high precision. These
approaches, however, tend to be slow due to their iterative
nature,8,9 albeit data analysis in real time using graphics pro-
cessing units (GPUs) has been successfully demonstrated.10

Faster localization algorithms using, for example, center of
mass (CoM) calculations11 or radial symmetry12,13 tend to
have lower localization accuracy or lack the ability to assess
3D information at >105 localisations per second.14 Although
a Fourier domain localization scheme for non-iterative 2D
localization has been demonstrated theoretically, that method
has not been widely adopted as it did not offer significant

a)Author to whom correspondence should be addressed: Johannes.Hohlbein@
wur.nl. Tel.: +31 317 482 635. Fax: +31 317 482 725.

improvements in either localization speed or accuracy com-
pared to iterative algorithms.15

Here, we introduce a simple and non-iterative localization
algorithm with minimal computation time and high local-
ization accuracy for both 2D and 3D SMLM. Our approach
is based on the phasor approach for spectral imaging.16 In
pSMLM-3D, we calculate the location and astigmatism of two-
dimensional point spread functions (PSFs) of emitters. The real
and imaginary parts of the first coefficients in the horizontal
and vertical direction of the discrete Fourier transformation
represent coordinates of the x- and y-phasor in a phasor plot.
The associated angles provide information on the x- and y-
position, while the ratio of their magnitudes is a measure for
astigmatism that can be used to determine the z-position of
the emitter after introducing a cylindrical lens in the detec-
tion pathway of the microscope.17,18 Our analysis of simulated
PSFs with different photon counts indicates that phasor-based
localization achieves localization rates in the MHz range, using
only the central processing unit (CPU) rather than requir-
ing a GPU implementation, with similar localization accu-
racy as Gaussian-based iterative methods. Next to this, we
localized microtubules in dendritic cells in three dimensions
obtaining similar results with pSMLM-3D as with an itera-
tive Gaussian-based algorithm. Finally, we implemented our
algorithm both as a stand-alone MATLAB script and into
the freely available ImageJ19 plug-in ThunderSTORM20 to
which we further added the possibility to calculate inten-
sity and background levels of emitters based on aperture
photometry.21

0021-9606/2018/148(12)/123311/6 148, 123311-1 © Author(s) 2017

https://doi.org/10.1063/1.5005899
https://doi.org/10.1063/1.5005899
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5005899
mailto:Johannes.Hohlbein@wur.nl
mailto:Johannes.Hohlbein@wur.nl
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5005899&domain=pdf&date_stamp=2017-12-22


123311-2 Martens et al. J. Chem. Phys. 148, 123311 (2018)

METHODS

Data analysis in SMLM consists of the following steps:
Identifying potential molecules and selecting regions of inter-
ests (ROIs) around their approximate localization, sub-pixel
localization within the ROI, and visualization of results
[Fig. 1(a)]. Here, we will only focus on the sub-pixel local-
ization step. We simulated the intensity pattern of a point
source emitter using a full vectorial model of the PSF as
described previously22 and depict it pixelated and with shot
noise, mimicking a typical camera acquisition under exper-
imental conditions [Fig. 1(b)]. As our algorithm is able to
utilize astigmatism commonly introduced by placing a cylin-
drical lens in the emission path for localization in three
dimensions,17,18 we simulated the full-width at half-maximum
(FWHM) of the PSF in the y-direction to be larger than the
in x-direction. We then calculated the first Fourier coeffi-
cients in the x- and y-direction by isolating them from the full
two-dimensional discrete Fourier transformation of the ROI
(see also the supplementary material, Sec. S1). Although
the coefficients can be calculated without computing the

complete Fourier transformation, this did not improve the
localization speed in the MATLAB environment. The real and
imaginary parts of each first Fourier coefficient are the coor-
dinates of a phasor, which are both fully described by their
phase angles (Θx and Θy) and magnitudes (rx and ry), repre-
senting the relative position of the emitter in real space and
values for the PSF ellipticity, respectively [Fig. 1(c)]. To aid
the reader, we calculated the inverse Fourier transformation
using only the isolated first Fourier coefficients to show the
data that are used for the calculation of the emitter’s posi-
tion and relative widths in real-space [Fig. 1(d)]. We also
show the localized position as determined from the phasor plot
[Fig. 1(d), green cross] and the ground-truth position [Fig. 1(d),
pink cross]. The two elements represented in the phasor plot
[Fig. 1(c)] have different distances to the origin. These magni-
tudes are inversely proportional to the FWHM of the original
PSF: ry < rx, leading to FWHMy > FWHMx, in agreement
with the simulated data. The ratio of the PSF width in x-
and y-direction can be used to calculate unknown z-positions
of emitters in sample data after recording of calibration
data.

FIG. 1. Illustration of sub-pixel localization using the phasor approach. (a) Standard workflow in single-molecule localization microscopy: (1) Acquisition of
raw image data; (2) image filtering; (3) approximate localization of emitters: obtaining ROIs; (4) sub-pixel localization. (b) Strongly pixelated image (7 × 7 pixel)
including noise representing standard conditions using camera-based detection of a simulated ellipsoidal point spread function with the ground-truth localization
indicated by a pink cross. (c) Phasor plot representation of the two first Fourier coefficients of the image data. By plotting their real versus the imaginary part,
the angles Θx and Θy represent the position (phase) of the molecule in real image space as the markings on the straight circle in the Fourier domain indicate the
normalized 1D position of the true center. Furthermore, the magnitudes rx and ry are reciprocally related to the PSF width in x and y in real-space, respectively.
Dotted lines are added for visual guidance. (d) Inverse Fourier transformation of the first two Fourier coefficients with the cumulated discrete intensity profile
plotted in the x- and y-direction and fitted with a sinusoid for visual guidance. From the angles Θx and Θy obtained from (c) and plotted in (d), we obtain
the position of the molecule in the image domain using y1 and x1 marked by a green cross, with the pink cross from the ground-truth position shown for
comparison.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-013898
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RESULTS

To assess the performance of the phasor algorithm, we
analyzed simulated data with a background level of 10 pho-
tons/pixels and a varying degree of total photon counts from
the emitter ranging from 80 to 50 000 photons using images
of 15 × 15 pixels. We compared the localization speed and
accuracy of pSMLM-3D with other well established localiza-
tion algorithms (for details see the supplementary material,
Sec. S2): Gaussian-maximum likelihood estimation (Gauss-
MLE),10 Gaussian-least squares fit (Gauss-LS),23 radial sym-
metry12 (RS), and centroid11,23 (Fig. 2). We further included
the Cramer-Rao Lower Bound (CRLB) to indicate the theo-
retically achievable resolution where relevant.24

In terms of localization speed, pSMLM-3D achieved more
than 3 × 106 localizations per second (3 MHz) when using
ROIs with 7 × 7 pixels [Fig. 2(a)]. This localization rate is at
least an order of magnitude faster than our adapted implemen-
tations of other CPU-based algorithms and even significantly
faster than GPU-enabled Gauss-MLE. Moreover, we found
that the localization speed of GPU-based algorithms depends
on the amount of data transferred to the GPU: Whereas a stack
of 5000 7 × 7 pixel images was analyzed at a rate of 30 kHz,
a stack of 500 000 images (representing 49 MB of trans-
ferred data to the GPU) could be analyzed at 600 kHz. For
CPU-based algorithms, this dependency is absent, allowing
fast analysis of small PSF-containing image stacks, indica-
tive that CPU-based methods are well suited for real-time
analysis.

To assess the localization accuracy of the different local-
ization algorithms, we cropped the area around each simulated
PSF (15× 15 pixels) to create ROIs of 7× 7 pixels (in line with
the “rule of thumb” fitting region size of 2 · 3σPSF + 1)10 for
analysis by all methods, except for phasor where we used ROIs
of either 5 × 5 (for simulated photon counts <103 photons) or
7 × 7 (≥103 photons). We note that determining the optimal

ROI size is often challenging for all localization algorithms:
albeit working with larger ROIs can potentially increase the
localization accuracy as more information from the PSF is
extracted, larger contributions from background and near-by
other emitters can have a diametric effect. Moreover, these
effects depend on the photon count of the PSF and the type
of the localization algorithm used for analysis (see also the
supplementary material, Sec. S3).

The comparison showed that for PSFs consisting of 80
photon counts, the localization accuracy is around 0.3 unit pix-
els for Gauss-MLE, Gauss-LS, RS, and phasor and reduces to
0.005 unit pixels at 50 000 photon counts in line with the theo-
retically expected improvement of the localization accuracy
being proportional to the square root of the photon num-
ber25 [Fig. 2(b), Fig. S10A in Sec. S8 of the supplementary
material]. Between these outer limits, pSMLM-3D shows on
average a small 3.7% decrease in accuracy compared to Gauss-
MLE. We further note that the computationally inexpensive
centroid-based localization algorithm has a substantially worse
localization accuracy, in line with earlier results.12 We repeated
all simulations at reduced background levels of 1 or 5 photons
per pixel showing that the localization accuracies of all meth-
ods improve with lower background levels (supplementary
material, Sec. S4).

So far, we limited our analysis to localizations in two
dimensions. As our algorithm allows using the ratio of the rel-
ative widths of the PSF in the x- and y-direction introduced
by astigmatism, the position of an emitter in three dimen-
sions can be determined after performing a calibration routine
in which photostable fluorescent emitters (e.g., latex beads)
are imaged at different focus positions. Compared to non-
astigmatic PSFs, we used larger ROIs (11 × 11 pixels for
phasor, and 13 × 13 pixels for other methods, see Fig. S4 in
Sec. S5 of the supplementary material for details) to account
for the larger PSF footprint. Comparison of phasor with
other algorithms on simulated astigmatic PSFs showed that

FIG. 2. Comparison of computation speed and localization accuracy of phasor with other localization algorithms (Gaussian-MLE,10 Gaussian-LS,23 radial
symmetry,12 and centroid11,23). (a) Speed of localization after loading the raw data in the memory in MATLAB. 7 × 7 pixel ROIs are used; the amount of PSFs
at once supplied to the method is varied. (b) Accuracy comparison of phasor localization with other localization algorithms, comparing simulated PSFs with
different total photon counts on a 10 photon/pixel background. Accuracy in the horizontal direction of all methods together with the Cramer-Rao lower bound24

is shown. ROI size is 5 × 5 (<103 photons) or 7 × 7 (>103 photons) pixels for the phasor algorithm and 7 × 7 pixels for all other algorithms.
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FIG. 3. Analysis of a superresolved microtubule network of fixed HELA cells. (a) Visualization of superresolution data after ThunderSTORM analysis using
phasor (top, 7 × 7 pixel ROI) or Gauss-MLE (bottom, 11 × 11 pixel ROI) as a sub-pixel localization algorithm. Axial position is color-coded between �350 nm
and +350 nm. Note that this does not encompass all localized fluorophores. (b) Lateral resolving power of phasor (red bars) and Gaussian-MLE (blue line).
Shown here are three microtubules spaced below the diffraction limit taken from panel (b) in (a). (c) Axial resolving power of phasor (top) and Gaussian-MLE
(bottom). Each subpanel shows localized fluorophores in a 100 nm window. (d) Localization speed of complete analysis (image filtering, approximate localization,
and sub-pixel localization) using ThunderSTORM without sub-pixel localization (top), ThunderSTORM-Phasor (middle), and ThunderSTORM-Gauss-MLE
(bottom). Error bars represent standard deviations of at least three repeats.

phasor remained the fastest tested algorithm whilst provid-
ing a lateral localization accuracy close to that of Gauss-MLE
and better than Gauss-LS and Centroid (Fig. S5 in Sec. S5
of the supplementary material, Fig. S10B in Sec. S8 of the
supplementary material). Although RS is capable of determin-
ing the ellipticity of PSFs,14 localisation rates did not exceed
105 Hz and the localisation accuracy did not match that of
Gauss-MLE.

With Gaussian-based methods, the PSF FWHM can be
elucidated directly from the Gaussian fit; in our algorithm,
the phasor magnitudes depend not only on the PSF FWHM
in the respective directions but also on the background. This
dependency can introduce a bias if the background of the cal-
ibration series differs from that of the actual data. However,
the ratio of the phasor magnitude in x versus in y remained
unaltered (supplementary material, Sec. S6), indicating that
calibration of the ratio between the magnitudes versus z-depth
should be performed. We calculated the axial localization
accuracies using phasor and Gauss-MLE both of which pro-
vide similar accuracies decreasing from around 200 nm at
very low photon counts (<500 per PSF) to under 20 nm at
high photon counts (>10 000 per PSF) (Sec. S7 of the supple-
mentary material, Fig. S10C in Sec. S8 of the supplementary
material).

To demonstrate the effectiveness of pSMLM-3D, we per-
formed a standard 3D-STORM measurement of fixed imma-
ture dendritic cells with fluorescently labeled microtubules. In
total, we recorded 50 000 frames (256 × 256 pixels), resulting
in 6.1 GB of raw data containing roughly 2.7 × 106 localized

molecules. We analyzed these data with the ThunderSTORM20

plugin for ImageJ19 both with phasor and Gaussian-MLE
[Fig. 3(a)]. The limited signal-to-noise ratio required chang-
ing the size of the ROIs for phasor and Gauss-MLE to 7 × 7
and 11 × 11 pixels, respectively. The lateral [Fig. 3(b)] and
axial [Fig. 3(c)] resolving power of phasor is in line with that
of Gauss-MLE. The complete analysis time using multi-core
computing, including the filtering of the image to find poten-
tial single molecules and excluding the loading of the data in
the computer’s memory, was over 5 h for Gauss-MLE, while
it took only around 90 s for pSMLM-3D. Entirely omitting
sub-pixel localization shortened the computation time by only
∼5 s, which means that around 95% of the 90 s computation
time is spend on image filtering and obtaining the approximate
localization. Complete SMLM analysis with phasor under
these conditions is at over 500 frames per second, indica-
tive that it is fast enough for real-time analysis applications
[Fig. 3(d)].

DISCUSSION AND CONCLUSION

The presented pSMLM-3D combines excellent localiza-
tion accuracies in three dimensions with exceptional localiza-
tion speed achievable on standard PCs. In-depth analysis of
synthetic point spread functions with different photon counts
and background levels indicated that pSMLM-3D achieves
a localization accuracy matching that of Gaussian-based
maximum likelihood estimation even at low signal-to-noise
ratios. Moreover, we demonstrated localization rates above
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3 MHz, which are at least one order of magnitude higher than
with other CPU-based algorithms. In fact, even compared to
GPU implementations of Gaussian-based localization algo-
rithms,26 our algorithm is faster, thus significantly reducing
the computational barrier and costs to analyze experimental
SMLM data. Porting the phasor approach to a GPU envi-
ronment is likely to achieve only marginal improvements in
speed as the bandwidth of transferring raw data is becom-
ing a limiting factor. However, implementations using field
programmable gate arrays (FPGAs) directly connected to the
camera chip are feasible, with real-time SMLM analysis with
Gaussian methods shown before.27

Subpixel localization rates in the MHz range satisfy even
the most demanding applications as frame rates of cameras
suitable for single-molecule detection are currently not above
100 Hz (full frame), indicating that phasor localization could
be used in real-time environments. Moreover, some iterative
localization algorithms currently use the centroid-based local-
ization as a first estimation.10 We believe that in that setting,
the phasor approach can replace the initial step as it shows a
speed as well as an accuracy improvement. We note that all
necessary functions for performing the phasor algorithm are
trivial, which allows for an easy upgrade of existing SMLM
software packages. In computational environments in which a
fast Fourier transformation function is not inherently present, a
minimal algorithm to compute only the first Fourier coefficient
can be written to minimize computation times, as we did for
our JAVA implementation of phasor (supplementary material,
Sec. S9).

Compared to MLE, subpixel localization is possible in
smaller areas around each emitter with good localization accu-
racy, allowing us to use effectively a higher concentration
of fluorescently active emitters. This is especially apparent
with astigmatism, where an 11 × 11 pixel size in the phasor
approach gives similar localization accuracy as 13 × 13 pixel
size in the Gauss-MLE approach. This directly results in a
possible increase of 40% in fluorophore density with the same
chance of having partial emitter overlap. However, we note that
our current phasor implementation does not provide means of
resolving molecules whose emission partially overlap.

Like most localization algorithms currently available,
pSMLM-3D assumes well-behaved PSFs with symmetrical
emission profiles. Therefore, the algorithm depends on emit-
ters having sufficient rotational mobility as emission profiles
deviating from symmetrical PSFs can result in significant
localization errors as has been discussed.28–31

In summary, we believe that pSMLM-3D holds great
promise to replace or complement commonly used localization
algorithms, as the combination of high localization speeds and
high localization accuracy has not been shown to this extent
before.

MATERIAL AND METHODS
PSF simulations

PSF simulations have been performed as described ear-
lier22 with NA = 1.25, emission light at 500 nm, 100 nm/pixel
camera acquisition, and image sizes set to 15 × 15 pix-
els. The centre of the PSF is within ±1 pixel of the centre

of the image, and in the case of simulated astigmatic PSFs,
the astigmatism has a FWHM ratio between 0.33 and 3.0.
We used a full vectorial model of the PSF needed to
describe the high NA case typically used in fluorescent super-
resolution imaging. We accounted for the fact that in fluores-
cent super-resolution imaging, the emitter can rotate freely
during the excited state lifetime (∼ns), so for many excitation-
emission cycles, an average over randomly distributed emis-
sion dipole orientations will be observed in one camera
frame (∼ms).

Computer and software specifications

All computational work was performed on a 64-bit Win-
dows 7 computer with an Intel Core i7 6800K CPU @
3.40 GHz (6 cores, 12 threads), NVIDIA GTX1060 GPU
(1280 CUDA cores, 8 GHz memory speed, 6 GB GDDR5
frame buffer, driver version 376.51), and 64 GB of DDR4
RAM on a ASUSTeK X99-E WS motherboard.

We used two software packages in this work: MATLAB
(MathWorks, UK) version 2016b and FIJI.32 FIJI is based on
ImageJ19 version 1.51n, using JAVA version 1.8.0 66.

Software scripts used

Unless specified otherwise, we used variants of the pha-
sor script implemented in MATLAB (supplementary mate-
rial, Sec. S9). JAVA-implementation of the phasor approach
is based around a minimal discrete Fourier transformation
(supplementary material, Sec. S10) and includes a aperture
photometry-based method to estimate PSF intensity and back-
ground (also see the supplementary material, Sec. S11).21

Gauss-MLE, Gauss-RS, radial symmetry, center-of-mass, and
Cremer-Rao lower bound algorithms were adapted from ear-
lier use.10,12 For Gauss-MLE, 15 iterations were used;10

Gauss-LS had 400 maximum iterations, with a tolerance
of 10�6.

Chemicals

All chemicals were purchased from Sigma-Aldrich and
used without further purification, unless specified differently.

Labeling of in vivo microtubules

Microtubules were fluorescently labeled via a double anti-
body labeling; primary antibody was a mouse-anti-βtubulin,
clone E7, isotype mouse IgG1; the secondary antibody was
labeled with Alexa 647 (goat anti-mouse IgG (H+L) Super-
clonal secondary antibody, Alexa Fluor 647, ThermoFischer).

HELA cells cultured on glass coverslips were fixed for
5 min with methanol at �20 ◦C, followed by 25 min fixation
by 4% paraformaldehyde (PFA) in PBS. Next, a blocking step
to prevent unspecific adsorption was performed by adding 3%
bovine serum albumin in PBS pH 7.2 + 20 mM glycine (MP
Biomedicals) and incubated for 1 h. Primary antibody was
added and incubated for 1 h. After washing with PBS, the
secondary antibody was added and incubated for 45 min. After
a final washing step, the cells were post-fixed with 2% PFA in
PBS for 15 min at RT and stored in PBS with 0.05% NaN3,
with the final cells being stable for imaging for several days
in PBS.
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During imaging, a Gloxy buffer33 containing 35 mM
β-mercaptoethanol was added to boost blinking of the fluo-
rophores. This blinking buffer was freshly prepared on the day
of imaging.

Single-molecule microscopy

We used a home-built microscope for imaging similar to
a microscope described in more detail elsewhere.34 Briefly,
our microscope is equipped with a laser engine (Omicron,
Germany), a 100× oil immersion SR/HP objective with NA
= 1.49 (Nikon, Japan), and a Zyla 4.2 plus sCMOS cam-
era for image acquisition (Andor, UK). 2 × 2 binning was
used during acquisition, which resulted in a pixel size of 128
× 128 nm. A cylindrical lens with 1000 mm focal distance was
placed in the emission path at 51 mm from the camera chip to
enable astigmatic measurements; alignment of the lens’ opti-
cal axis was performed to ensure PSF elongation in the x- or
y-direction.

Microtubule imaging and analysis

Fully labeled cells with added blinking buffer were
imaged for 50.000 frames (256 × 256 pixels) at 10 ms frame
time. A 642 nm laser at 70 mW in Hilo was used for imag-
ing of the fluorophores, a 405 nm laser at increasing power
throughout the measurement was used to activate fluorophores.
Analysis was performed via the ThunderSTORM20 plugin for
ImageJ,19 with phasor added as sub-pixel localization option
(supplementary material, Sec. S10). ThunderSTORM param-
eters for image filtering and approximate localization were
kept constant for phasor and Gauss-MLE localization: a β-
spline wavelet filter with order 3 and scale 3 was used, and
approximate localization was done via an 8-neighbourhood
connected local maximum, with a peak intensity threshold
equal to the standard deviation of F1 of the wavelet filter.
These settings are the default ThunderSTORM settings; the
only difference was a β-spline wavelet filter scale of 2 rather
than 3.

Sub-pixel localization was performed with either ellip-
tical Gauss-MLE (11 × 11 pixels, 1.6 pixels initial sigma)
or phasor (7 × 7 pixels). Localizations for pSMLM-3D and
Gauss-MLE in the acquired datasets were filtered as follows:
intensity/background >2; background standard deviation <
offset/2 (note that these are raw sCMOS counts rather than
photon numbers). Calibration files were recorded under sim-
ilar circumstances with immobilized fluorescent latex beads
(560 nm emission, 50 nm diameter) and moving the piezo z-
stage from �1000 nm to +1000 nm. These calibration files
were used during the sub-pixel localization to calculate the
z-position of the fluorophores.

Visualization of the superresolution data was done via
the average shifted histogram options, with a magnification
of 3 [Figs. 3(a) and 3(c)] or 5 [Fig. 3(b)]. No lateral or axial
shifts were added. 3D was enabled and visualized colored, after
which a composite image was formed in FIJI [Fig. 3(a)].

SUPPLEMENTARY MATERIAL

See supplementary material for additional information
and figures. For the latest implementation of pSMLM-3D into

ThunderSTORM, please see https://github.com/kjamartens/
thunderstorm/tree/phasor-intensity-1 and look for the folder
“Compiled plugin.”
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